1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51
52 #include "ext4.h"
53 #include "ext4_extents.h" /* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98
99 /*
100 * Lock ordering
101 *
102 * page fault path:
103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104 * -> page lock -> i_data_sem (rw)
105 *
106 * buffered write path:
107 * sb_start_write -> i_mutex -> mmap_lock
108 * sb_start_write -> i_mutex -> transaction start -> page lock ->
109 * i_data_sem (rw)
110 *
111 * truncate:
112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113 * page lock
114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115 * i_data_sem (rw)
116 *
117 * direct IO:
118 * sb_start_write -> i_mutex -> mmap_lock
119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120 *
121 * writepages:
122 * transaction start -> page lock(s) -> i_data_sem (rw)
123 */
124
125 static const struct fs_context_operations ext4_context_ops = {
126 .parse_param = ext4_parse_param,
127 .get_tree = ext4_get_tree,
128 .reconfigure = ext4_reconfigure,
129 .free = ext4_fc_free,
130 };
131
132
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 .owner = THIS_MODULE,
136 .name = "ext2",
137 .init_fs_context = ext4_init_fs_context,
138 .parameters = ext4_param_specs,
139 .kill_sb = ext4_kill_sb,
140 .fs_flags = FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148
149
150 static struct file_system_type ext3_fs_type = {
151 .owner = THIS_MODULE,
152 .name = "ext3",
153 .init_fs_context = ext4_init_fs_context,
154 .parameters = ext4_param_specs,
155 .kill_sb = ext4_kill_sb,
156 .fs_flags = FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161
162
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io)163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 bh_end_io_t *end_io)
165 {
166 /*
167 * buffer's verified bit is no longer valid after reading from
168 * disk again due to write out error, clear it to make sure we
169 * recheck the buffer contents.
170 */
171 clear_buffer_verified(bh);
172
173 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
174 get_bh(bh);
175 submit_bh(REQ_OP_READ | op_flags, bh);
176 }
177
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io)178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
179 bh_end_io_t *end_io)
180 {
181 BUG_ON(!buffer_locked(bh));
182
183 if (ext4_buffer_uptodate(bh)) {
184 unlock_buffer(bh);
185 return;
186 }
187 __ext4_read_bh(bh, op_flags, end_io);
188 }
189
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io)190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
191 {
192 BUG_ON(!buffer_locked(bh));
193
194 if (ext4_buffer_uptodate(bh)) {
195 unlock_buffer(bh);
196 return 0;
197 }
198
199 __ext4_read_bh(bh, op_flags, end_io);
200
201 wait_on_buffer(bh);
202 if (buffer_uptodate(bh))
203 return 0;
204 return -EIO;
205 }
206
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
208 {
209 lock_buffer(bh);
210 if (!wait) {
211 ext4_read_bh_nowait(bh, op_flags, NULL);
212 return 0;
213 }
214 return ext4_read_bh(bh, op_flags, NULL);
215 }
216
217 /*
218 * This works like __bread_gfp() except it uses ERR_PTR for error
219 * returns. Currently with sb_bread it's impossible to distinguish
220 * between ENOMEM and EIO situations (since both result in a NULL
221 * return.
222 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
224 sector_t block,
225 blk_opf_t op_flags, gfp_t gfp)
226 {
227 struct buffer_head *bh;
228 int ret;
229
230 bh = sb_getblk_gfp(sb, block, gfp);
231 if (bh == NULL)
232 return ERR_PTR(-ENOMEM);
233 if (ext4_buffer_uptodate(bh))
234 return bh;
235
236 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
237 if (ret) {
238 put_bh(bh);
239 return ERR_PTR(ret);
240 }
241 return bh;
242 }
243
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
245 blk_opf_t op_flags)
246 {
247 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
248 }
249
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)250 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
251 sector_t block)
252 {
253 return __ext4_sb_bread_gfp(sb, block, 0, 0);
254 }
255
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)256 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
257 {
258 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
259
260 if (likely(bh)) {
261 if (trylock_buffer(bh))
262 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
263 brelse(bh);
264 }
265 }
266
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)267 static int ext4_verify_csum_type(struct super_block *sb,
268 struct ext4_super_block *es)
269 {
270 if (!ext4_has_feature_metadata_csum(sb))
271 return 1;
272
273 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
274 }
275
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)276 __le32 ext4_superblock_csum(struct super_block *sb,
277 struct ext4_super_block *es)
278 {
279 struct ext4_sb_info *sbi = EXT4_SB(sb);
280 int offset = offsetof(struct ext4_super_block, s_checksum);
281 __u32 csum;
282
283 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
284
285 return cpu_to_le32(csum);
286 }
287
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)288 static int ext4_superblock_csum_verify(struct super_block *sb,
289 struct ext4_super_block *es)
290 {
291 if (!ext4_has_metadata_csum(sb))
292 return 1;
293
294 return es->s_checksum == ext4_superblock_csum(sb, es);
295 }
296
ext4_superblock_csum_set(struct super_block * sb)297 void ext4_superblock_csum_set(struct super_block *sb)
298 {
299 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
300
301 if (!ext4_has_metadata_csum(sb))
302 return;
303
304 es->s_checksum = ext4_superblock_csum(sb, es);
305 }
306
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)307 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
308 struct ext4_group_desc *bg)
309 {
310 return le32_to_cpu(bg->bg_block_bitmap_lo) |
311 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
312 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
313 }
314
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)315 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
316 struct ext4_group_desc *bg)
317 {
318 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
319 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
320 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
321 }
322
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)323 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
324 struct ext4_group_desc *bg)
325 {
326 return le32_to_cpu(bg->bg_inode_table_lo) |
327 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
328 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
329 }
330
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)331 __u32 ext4_free_group_clusters(struct super_block *sb,
332 struct ext4_group_desc *bg)
333 {
334 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
335 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
336 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
337 }
338
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)339 __u32 ext4_free_inodes_count(struct super_block *sb,
340 struct ext4_group_desc *bg)
341 {
342 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
343 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
344 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
345 }
346
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)347 __u32 ext4_used_dirs_count(struct super_block *sb,
348 struct ext4_group_desc *bg)
349 {
350 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
351 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
352 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
353 }
354
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)355 __u32 ext4_itable_unused_count(struct super_block *sb,
356 struct ext4_group_desc *bg)
357 {
358 return le16_to_cpu(bg->bg_itable_unused_lo) |
359 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
360 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
361 }
362
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)363 void ext4_block_bitmap_set(struct super_block *sb,
364 struct ext4_group_desc *bg, ext4_fsblk_t blk)
365 {
366 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
367 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
368 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
369 }
370
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)371 void ext4_inode_bitmap_set(struct super_block *sb,
372 struct ext4_group_desc *bg, ext4_fsblk_t blk)
373 {
374 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
375 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
376 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
377 }
378
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)379 void ext4_inode_table_set(struct super_block *sb,
380 struct ext4_group_desc *bg, ext4_fsblk_t blk)
381 {
382 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
383 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
384 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
385 }
386
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)387 void ext4_free_group_clusters_set(struct super_block *sb,
388 struct ext4_group_desc *bg, __u32 count)
389 {
390 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
391 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
392 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
393 }
394
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)395 void ext4_free_inodes_set(struct super_block *sb,
396 struct ext4_group_desc *bg, __u32 count)
397 {
398 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
399 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
400 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
401 }
402
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)403 void ext4_used_dirs_set(struct super_block *sb,
404 struct ext4_group_desc *bg, __u32 count)
405 {
406 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
407 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
408 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
409 }
410
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)411 void ext4_itable_unused_set(struct super_block *sb,
412 struct ext4_group_desc *bg, __u32 count)
413 {
414 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
415 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
416 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
417 }
418
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)419 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
420 {
421 now = clamp_val(now, 0, (1ull << 40) - 1);
422
423 *lo = cpu_to_le32(lower_32_bits(now));
424 *hi = upper_32_bits(now);
425 }
426
__ext4_get_tstamp(__le32 * lo,__u8 * hi)427 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
428 {
429 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
430 }
431 #define ext4_update_tstamp(es, tstamp) \
432 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
433 ktime_get_real_seconds())
434 #define ext4_get_tstamp(es, tstamp) \
435 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
436
437 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
438 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
439
440 /*
441 * The ext4_maybe_update_superblock() function checks and updates the
442 * superblock if needed.
443 *
444 * This function is designed to update the on-disk superblock only under
445 * certain conditions to prevent excessive disk writes and unnecessary
446 * waking of the disk from sleep. The superblock will be updated if:
447 * 1. More than an hour has passed since the last superblock update, and
448 * 2. More than 16MB have been written since the last superblock update.
449 *
450 * @sb: The superblock
451 */
ext4_maybe_update_superblock(struct super_block * sb)452 static void ext4_maybe_update_superblock(struct super_block *sb)
453 {
454 struct ext4_sb_info *sbi = EXT4_SB(sb);
455 struct ext4_super_block *es = sbi->s_es;
456 journal_t *journal = sbi->s_journal;
457 time64_t now;
458 __u64 last_update;
459 __u64 lifetime_write_kbytes;
460 __u64 diff_size;
461
462 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
463 !journal || (journal->j_flags & JBD2_UNMOUNT))
464 return;
465
466 now = ktime_get_real_seconds();
467 last_update = ext4_get_tstamp(es, s_wtime);
468
469 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
470 return;
471
472 lifetime_write_kbytes = sbi->s_kbytes_written +
473 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
474 sbi->s_sectors_written_start) >> 1);
475
476 /* Get the number of kilobytes not written to disk to account
477 * for statistics and compare with a multiple of 16 MB. This
478 * is used to determine when the next superblock commit should
479 * occur (i.e. not more often than once per 16MB if there was
480 * less written in an hour).
481 */
482 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
483
484 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
485 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
486 }
487
488 /*
489 * The del_gendisk() function uninitializes the disk-specific data
490 * structures, including the bdi structure, without telling anyone
491 * else. Once this happens, any attempt to call mark_buffer_dirty()
492 * (for example, by ext4_commit_super), will cause a kernel OOPS.
493 * This is a kludge to prevent these oops until we can put in a proper
494 * hook in del_gendisk() to inform the VFS and file system layers.
495 */
block_device_ejected(struct super_block * sb)496 static int block_device_ejected(struct super_block *sb)
497 {
498 struct inode *bd_inode = sb->s_bdev->bd_inode;
499 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
500
501 return bdi->dev == NULL;
502 }
503
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)504 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
505 {
506 struct super_block *sb = journal->j_private;
507 struct ext4_sb_info *sbi = EXT4_SB(sb);
508 int error = is_journal_aborted(journal);
509 struct ext4_journal_cb_entry *jce;
510
511 BUG_ON(txn->t_state == T_FINISHED);
512
513 ext4_process_freed_data(sb, txn->t_tid);
514 ext4_maybe_update_superblock(sb);
515
516 spin_lock(&sbi->s_md_lock);
517 while (!list_empty(&txn->t_private_list)) {
518 jce = list_entry(txn->t_private_list.next,
519 struct ext4_journal_cb_entry, jce_list);
520 list_del_init(&jce->jce_list);
521 spin_unlock(&sbi->s_md_lock);
522 jce->jce_func(sb, jce, error);
523 spin_lock(&sbi->s_md_lock);
524 }
525 spin_unlock(&sbi->s_md_lock);
526 }
527
528 /*
529 * This writepage callback for write_cache_pages()
530 * takes care of a few cases after page cleaning.
531 *
532 * write_cache_pages() already checks for dirty pages
533 * and calls clear_page_dirty_for_io(), which we want,
534 * to write protect the pages.
535 *
536 * However, we may have to redirty a page (see below.)
537 */
ext4_journalled_writepage_callback(struct folio * folio,struct writeback_control * wbc,void * data)538 static int ext4_journalled_writepage_callback(struct folio *folio,
539 struct writeback_control *wbc,
540 void *data)
541 {
542 transaction_t *transaction = (transaction_t *) data;
543 struct buffer_head *bh, *head;
544 struct journal_head *jh;
545
546 bh = head = folio_buffers(folio);
547 do {
548 /*
549 * We have to redirty a page in these cases:
550 * 1) If buffer is dirty, it means the page was dirty because it
551 * contains a buffer that needs checkpointing. So the dirty bit
552 * needs to be preserved so that checkpointing writes the buffer
553 * properly.
554 * 2) If buffer is not part of the committing transaction
555 * (we may have just accidentally come across this buffer because
556 * inode range tracking is not exact) or if the currently running
557 * transaction already contains this buffer as well, dirty bit
558 * needs to be preserved so that the buffer gets writeprotected
559 * properly on running transaction's commit.
560 */
561 jh = bh2jh(bh);
562 if (buffer_dirty(bh) ||
563 (jh && (jh->b_transaction != transaction ||
564 jh->b_next_transaction))) {
565 folio_redirty_for_writepage(wbc, folio);
566 goto out;
567 }
568 } while ((bh = bh->b_this_page) != head);
569
570 out:
571 return AOP_WRITEPAGE_ACTIVATE;
572 }
573
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)574 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
575 {
576 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
577 struct writeback_control wbc = {
578 .sync_mode = WB_SYNC_ALL,
579 .nr_to_write = LONG_MAX,
580 .range_start = jinode->i_dirty_start,
581 .range_end = jinode->i_dirty_end,
582 };
583
584 return write_cache_pages(mapping, &wbc,
585 ext4_journalled_writepage_callback,
586 jinode->i_transaction);
587 }
588
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)589 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
590 {
591 int ret;
592
593 if (ext4_should_journal_data(jinode->i_vfs_inode))
594 ret = ext4_journalled_submit_inode_data_buffers(jinode);
595 else
596 ret = ext4_normal_submit_inode_data_buffers(jinode);
597 return ret;
598 }
599
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)600 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
601 {
602 int ret = 0;
603
604 if (!ext4_should_journal_data(jinode->i_vfs_inode))
605 ret = jbd2_journal_finish_inode_data_buffers(jinode);
606
607 return ret;
608 }
609
system_going_down(void)610 static bool system_going_down(void)
611 {
612 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
613 || system_state == SYSTEM_RESTART;
614 }
615
616 struct ext4_err_translation {
617 int code;
618 int errno;
619 };
620
621 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
622
623 static struct ext4_err_translation err_translation[] = {
624 EXT4_ERR_TRANSLATE(EIO),
625 EXT4_ERR_TRANSLATE(ENOMEM),
626 EXT4_ERR_TRANSLATE(EFSBADCRC),
627 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
628 EXT4_ERR_TRANSLATE(ENOSPC),
629 EXT4_ERR_TRANSLATE(ENOKEY),
630 EXT4_ERR_TRANSLATE(EROFS),
631 EXT4_ERR_TRANSLATE(EFBIG),
632 EXT4_ERR_TRANSLATE(EEXIST),
633 EXT4_ERR_TRANSLATE(ERANGE),
634 EXT4_ERR_TRANSLATE(EOVERFLOW),
635 EXT4_ERR_TRANSLATE(EBUSY),
636 EXT4_ERR_TRANSLATE(ENOTDIR),
637 EXT4_ERR_TRANSLATE(ENOTEMPTY),
638 EXT4_ERR_TRANSLATE(ESHUTDOWN),
639 EXT4_ERR_TRANSLATE(EFAULT),
640 };
641
ext4_errno_to_code(int errno)642 static int ext4_errno_to_code(int errno)
643 {
644 int i;
645
646 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
647 if (err_translation[i].errno == errno)
648 return err_translation[i].code;
649 return EXT4_ERR_UNKNOWN;
650 }
651
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)652 static void save_error_info(struct super_block *sb, int error,
653 __u32 ino, __u64 block,
654 const char *func, unsigned int line)
655 {
656 struct ext4_sb_info *sbi = EXT4_SB(sb);
657
658 /* We default to EFSCORRUPTED error... */
659 if (error == 0)
660 error = EFSCORRUPTED;
661
662 spin_lock(&sbi->s_error_lock);
663 sbi->s_add_error_count++;
664 sbi->s_last_error_code = error;
665 sbi->s_last_error_line = line;
666 sbi->s_last_error_ino = ino;
667 sbi->s_last_error_block = block;
668 sbi->s_last_error_func = func;
669 sbi->s_last_error_time = ktime_get_real_seconds();
670 if (!sbi->s_first_error_time) {
671 sbi->s_first_error_code = error;
672 sbi->s_first_error_line = line;
673 sbi->s_first_error_ino = ino;
674 sbi->s_first_error_block = block;
675 sbi->s_first_error_func = func;
676 sbi->s_first_error_time = sbi->s_last_error_time;
677 }
678 spin_unlock(&sbi->s_error_lock);
679 }
680
681 /* Deal with the reporting of failure conditions on a filesystem such as
682 * inconsistencies detected or read IO failures.
683 *
684 * On ext2, we can store the error state of the filesystem in the
685 * superblock. That is not possible on ext4, because we may have other
686 * write ordering constraints on the superblock which prevent us from
687 * writing it out straight away; and given that the journal is about to
688 * be aborted, we can't rely on the current, or future, transactions to
689 * write out the superblock safely.
690 *
691 * We'll just use the jbd2_journal_abort() error code to record an error in
692 * the journal instead. On recovery, the journal will complain about
693 * that error until we've noted it down and cleared it.
694 *
695 * If force_ro is set, we unconditionally force the filesystem into an
696 * ABORT|READONLY state, unless the error response on the fs has been set to
697 * panic in which case we take the easy way out and panic immediately. This is
698 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
699 * at a critical moment in log management.
700 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)701 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
702 __u32 ino, __u64 block,
703 const char *func, unsigned int line)
704 {
705 journal_t *journal = EXT4_SB(sb)->s_journal;
706 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
707
708 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
709 if (test_opt(sb, WARN_ON_ERROR))
710 WARN_ON_ONCE(1);
711
712 if (!continue_fs && !sb_rdonly(sb)) {
713 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
714 if (journal)
715 jbd2_journal_abort(journal, -EIO);
716 }
717
718 if (!bdev_read_only(sb->s_bdev)) {
719 save_error_info(sb, error, ino, block, func, line);
720 /*
721 * In case the fs should keep running, we need to writeout
722 * superblock through the journal. Due to lock ordering
723 * constraints, it may not be safe to do it right here so we
724 * defer superblock flushing to a workqueue.
725 */
726 if (continue_fs && journal)
727 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
728 else
729 ext4_commit_super(sb);
730 }
731
732 /*
733 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
734 * could panic during 'reboot -f' as the underlying device got already
735 * disabled.
736 */
737 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
738 panic("EXT4-fs (device %s): panic forced after error\n",
739 sb->s_id);
740 }
741
742 if (sb_rdonly(sb) || continue_fs)
743 return;
744
745 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
746 /*
747 * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem
748 * modifications. We don't set SB_RDONLY because that requires
749 * sb->s_umount semaphore and setting it without proper remount
750 * procedure is confusing code such as freeze_super() leading to
751 * deadlocks and other problems.
752 */
753 }
754
update_super_work(struct work_struct * work)755 static void update_super_work(struct work_struct *work)
756 {
757 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
758 s_sb_upd_work);
759 journal_t *journal = sbi->s_journal;
760 handle_t *handle;
761
762 /*
763 * If the journal is still running, we have to write out superblock
764 * through the journal to avoid collisions of other journalled sb
765 * updates.
766 *
767 * We use directly jbd2 functions here to avoid recursing back into
768 * ext4 error handling code during handling of previous errors.
769 */
770 if (!sb_rdonly(sbi->s_sb) && journal) {
771 struct buffer_head *sbh = sbi->s_sbh;
772 bool call_notify_err = false;
773
774 handle = jbd2_journal_start(journal, 1);
775 if (IS_ERR(handle))
776 goto write_directly;
777 if (jbd2_journal_get_write_access(handle, sbh)) {
778 jbd2_journal_stop(handle);
779 goto write_directly;
780 }
781
782 if (sbi->s_add_error_count > 0)
783 call_notify_err = true;
784
785 ext4_update_super(sbi->s_sb);
786 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
787 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
788 "superblock detected");
789 clear_buffer_write_io_error(sbh);
790 set_buffer_uptodate(sbh);
791 }
792
793 if (jbd2_journal_dirty_metadata(handle, sbh)) {
794 jbd2_journal_stop(handle);
795 goto write_directly;
796 }
797 jbd2_journal_stop(handle);
798
799 if (call_notify_err)
800 ext4_notify_error_sysfs(sbi);
801
802 return;
803 }
804 write_directly:
805 /*
806 * Write through journal failed. Write sb directly to get error info
807 * out and hope for the best.
808 */
809 ext4_commit_super(sbi->s_sb);
810 ext4_notify_error_sysfs(sbi);
811 }
812
813 #define ext4_error_ratelimit(sb) \
814 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
815 "EXT4-fs error")
816
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)817 void __ext4_error(struct super_block *sb, const char *function,
818 unsigned int line, bool force_ro, int error, __u64 block,
819 const char *fmt, ...)
820 {
821 struct va_format vaf;
822 va_list args;
823
824 if (unlikely(ext4_forced_shutdown(sb)))
825 return;
826
827 trace_ext4_error(sb, function, line);
828 if (ext4_error_ratelimit(sb)) {
829 va_start(args, fmt);
830 vaf.fmt = fmt;
831 vaf.va = &args;
832 printk(KERN_CRIT
833 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
834 sb->s_id, function, line, current->comm, &vaf);
835 va_end(args);
836 }
837 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
838
839 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
840 }
841
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)842 void __ext4_error_inode(struct inode *inode, const char *function,
843 unsigned int line, ext4_fsblk_t block, int error,
844 const char *fmt, ...)
845 {
846 va_list args;
847 struct va_format vaf;
848
849 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
850 return;
851
852 trace_ext4_error(inode->i_sb, function, line);
853 if (ext4_error_ratelimit(inode->i_sb)) {
854 va_start(args, fmt);
855 vaf.fmt = fmt;
856 vaf.va = &args;
857 if (block)
858 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
859 "inode #%lu: block %llu: comm %s: %pV\n",
860 inode->i_sb->s_id, function, line, inode->i_ino,
861 block, current->comm, &vaf);
862 else
863 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
864 "inode #%lu: comm %s: %pV\n",
865 inode->i_sb->s_id, function, line, inode->i_ino,
866 current->comm, &vaf);
867 va_end(args);
868 }
869 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
870
871 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
872 function, line);
873 }
874
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)875 void __ext4_error_file(struct file *file, const char *function,
876 unsigned int line, ext4_fsblk_t block,
877 const char *fmt, ...)
878 {
879 va_list args;
880 struct va_format vaf;
881 struct inode *inode = file_inode(file);
882 char pathname[80], *path;
883
884 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
885 return;
886
887 trace_ext4_error(inode->i_sb, function, line);
888 if (ext4_error_ratelimit(inode->i_sb)) {
889 path = file_path(file, pathname, sizeof(pathname));
890 if (IS_ERR(path))
891 path = "(unknown)";
892 va_start(args, fmt);
893 vaf.fmt = fmt;
894 vaf.va = &args;
895 if (block)
896 printk(KERN_CRIT
897 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
898 "block %llu: comm %s: path %s: %pV\n",
899 inode->i_sb->s_id, function, line, inode->i_ino,
900 block, current->comm, path, &vaf);
901 else
902 printk(KERN_CRIT
903 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
904 "comm %s: path %s: %pV\n",
905 inode->i_sb->s_id, function, line, inode->i_ino,
906 current->comm, path, &vaf);
907 va_end(args);
908 }
909 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
910
911 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
912 function, line);
913 }
914
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])915 const char *ext4_decode_error(struct super_block *sb, int errno,
916 char nbuf[16])
917 {
918 char *errstr = NULL;
919
920 switch (errno) {
921 case -EFSCORRUPTED:
922 errstr = "Corrupt filesystem";
923 break;
924 case -EFSBADCRC:
925 errstr = "Filesystem failed CRC";
926 break;
927 case -EIO:
928 errstr = "IO failure";
929 break;
930 case -ENOMEM:
931 errstr = "Out of memory";
932 break;
933 case -EROFS:
934 if (!sb || (EXT4_SB(sb)->s_journal &&
935 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
936 errstr = "Journal has aborted";
937 else
938 errstr = "Readonly filesystem";
939 break;
940 default:
941 /* If the caller passed in an extra buffer for unknown
942 * errors, textualise them now. Else we just return
943 * NULL. */
944 if (nbuf) {
945 /* Check for truncated error codes... */
946 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
947 errstr = nbuf;
948 }
949 break;
950 }
951
952 return errstr;
953 }
954
955 /* __ext4_std_error decodes expected errors from journaling functions
956 * automatically and invokes the appropriate error response. */
957
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)958 void __ext4_std_error(struct super_block *sb, const char *function,
959 unsigned int line, int errno)
960 {
961 char nbuf[16];
962 const char *errstr;
963
964 if (unlikely(ext4_forced_shutdown(sb)))
965 return;
966
967 /* Special case: if the error is EROFS, and we're not already
968 * inside a transaction, then there's really no point in logging
969 * an error. */
970 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
971 return;
972
973 if (ext4_error_ratelimit(sb)) {
974 errstr = ext4_decode_error(sb, errno, nbuf);
975 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
976 sb->s_id, function, line, errstr);
977 }
978 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
979
980 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
981 }
982
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)983 void __ext4_msg(struct super_block *sb,
984 const char *prefix, const char *fmt, ...)
985 {
986 struct va_format vaf;
987 va_list args;
988
989 if (sb) {
990 atomic_inc(&EXT4_SB(sb)->s_msg_count);
991 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
992 "EXT4-fs"))
993 return;
994 }
995
996 va_start(args, fmt);
997 vaf.fmt = fmt;
998 vaf.va = &args;
999 if (sb)
1000 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1001 else
1002 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1003 va_end(args);
1004 }
1005
ext4_warning_ratelimit(struct super_block * sb)1006 static int ext4_warning_ratelimit(struct super_block *sb)
1007 {
1008 atomic_inc(&EXT4_SB(sb)->s_warning_count);
1009 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1010 "EXT4-fs warning");
1011 }
1012
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)1013 void __ext4_warning(struct super_block *sb, const char *function,
1014 unsigned int line, const char *fmt, ...)
1015 {
1016 struct va_format vaf;
1017 va_list args;
1018
1019 if (!ext4_warning_ratelimit(sb))
1020 return;
1021
1022 va_start(args, fmt);
1023 vaf.fmt = fmt;
1024 vaf.va = &args;
1025 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1026 sb->s_id, function, line, &vaf);
1027 va_end(args);
1028 }
1029
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)1030 void __ext4_warning_inode(const struct inode *inode, const char *function,
1031 unsigned int line, const char *fmt, ...)
1032 {
1033 struct va_format vaf;
1034 va_list args;
1035
1036 if (!ext4_warning_ratelimit(inode->i_sb))
1037 return;
1038
1039 va_start(args, fmt);
1040 vaf.fmt = fmt;
1041 vaf.va = &args;
1042 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1043 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1044 function, line, inode->i_ino, current->comm, &vaf);
1045 va_end(args);
1046 }
1047
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)1048 void __ext4_grp_locked_error(const char *function, unsigned int line,
1049 struct super_block *sb, ext4_group_t grp,
1050 unsigned long ino, ext4_fsblk_t block,
1051 const char *fmt, ...)
1052 __releases(bitlock)
1053 __acquires(bitlock)
1054 {
1055 struct va_format vaf;
1056 va_list args;
1057
1058 if (unlikely(ext4_forced_shutdown(sb)))
1059 return;
1060
1061 trace_ext4_error(sb, function, line);
1062 if (ext4_error_ratelimit(sb)) {
1063 va_start(args, fmt);
1064 vaf.fmt = fmt;
1065 vaf.va = &args;
1066 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1067 sb->s_id, function, line, grp);
1068 if (ino)
1069 printk(KERN_CONT "inode %lu: ", ino);
1070 if (block)
1071 printk(KERN_CONT "block %llu:",
1072 (unsigned long long) block);
1073 printk(KERN_CONT "%pV\n", &vaf);
1074 va_end(args);
1075 }
1076
1077 if (test_opt(sb, ERRORS_CONT)) {
1078 if (test_opt(sb, WARN_ON_ERROR))
1079 WARN_ON_ONCE(1);
1080 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1081 if (!bdev_read_only(sb->s_bdev)) {
1082 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1083 line);
1084 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1085 }
1086 return;
1087 }
1088 ext4_unlock_group(sb, grp);
1089 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1090 /*
1091 * We only get here in the ERRORS_RO case; relocking the group
1092 * may be dangerous, but nothing bad will happen since the
1093 * filesystem will have already been marked read/only and the
1094 * journal has been aborted. We return 1 as a hint to callers
1095 * who might what to use the return value from
1096 * ext4_grp_locked_error() to distinguish between the
1097 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1098 * aggressively from the ext4 function in question, with a
1099 * more appropriate error code.
1100 */
1101 ext4_lock_group(sb, grp);
1102 return;
1103 }
1104
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1105 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1106 ext4_group_t group,
1107 unsigned int flags)
1108 {
1109 struct ext4_sb_info *sbi = EXT4_SB(sb);
1110 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1111 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1112 int ret;
1113
1114 if (!grp || !gdp)
1115 return;
1116 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1117 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1118 &grp->bb_state);
1119 if (!ret)
1120 percpu_counter_sub(&sbi->s_freeclusters_counter,
1121 grp->bb_free);
1122 }
1123
1124 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1125 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1126 &grp->bb_state);
1127 if (!ret && gdp) {
1128 int count;
1129
1130 count = ext4_free_inodes_count(sb, gdp);
1131 percpu_counter_sub(&sbi->s_freeinodes_counter,
1132 count);
1133 }
1134 }
1135 }
1136
ext4_update_dynamic_rev(struct super_block * sb)1137 void ext4_update_dynamic_rev(struct super_block *sb)
1138 {
1139 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1140
1141 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1142 return;
1143
1144 ext4_warning(sb,
1145 "updating to rev %d because of new feature flag, "
1146 "running e2fsck is recommended",
1147 EXT4_DYNAMIC_REV);
1148
1149 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1150 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1151 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1152 /* leave es->s_feature_*compat flags alone */
1153 /* es->s_uuid will be set by e2fsck if empty */
1154
1155 /*
1156 * The rest of the superblock fields should be zero, and if not it
1157 * means they are likely already in use, so leave them alone. We
1158 * can leave it up to e2fsck to clean up any inconsistencies there.
1159 */
1160 }
1161
orphan_list_entry(struct list_head * l)1162 static inline struct inode *orphan_list_entry(struct list_head *l)
1163 {
1164 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1165 }
1166
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1167 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1168 {
1169 struct list_head *l;
1170
1171 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1172 le32_to_cpu(sbi->s_es->s_last_orphan));
1173
1174 printk(KERN_ERR "sb_info orphan list:\n");
1175 list_for_each(l, &sbi->s_orphan) {
1176 struct inode *inode = orphan_list_entry(l);
1177 printk(KERN_ERR " "
1178 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1179 inode->i_sb->s_id, inode->i_ino, inode,
1180 inode->i_mode, inode->i_nlink,
1181 NEXT_ORPHAN(inode));
1182 }
1183 }
1184
1185 #ifdef CONFIG_QUOTA
1186 static int ext4_quota_off(struct super_block *sb, int type);
1187
ext4_quotas_off(struct super_block * sb,int type)1188 static inline void ext4_quotas_off(struct super_block *sb, int type)
1189 {
1190 BUG_ON(type > EXT4_MAXQUOTAS);
1191
1192 /* Use our quota_off function to clear inode flags etc. */
1193 for (type--; type >= 0; type--)
1194 ext4_quota_off(sb, type);
1195 }
1196
1197 /*
1198 * This is a helper function which is used in the mount/remount
1199 * codepaths (which holds s_umount) to fetch the quota file name.
1200 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1201 static inline char *get_qf_name(struct super_block *sb,
1202 struct ext4_sb_info *sbi,
1203 int type)
1204 {
1205 return rcu_dereference_protected(sbi->s_qf_names[type],
1206 lockdep_is_held(&sb->s_umount));
1207 }
1208 #else
ext4_quotas_off(struct super_block * sb,int type)1209 static inline void ext4_quotas_off(struct super_block *sb, int type)
1210 {
1211 }
1212 #endif
1213
ext4_percpu_param_init(struct ext4_sb_info * sbi)1214 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1215 {
1216 ext4_fsblk_t block;
1217 int err;
1218
1219 block = ext4_count_free_clusters(sbi->s_sb);
1220 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1221 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1222 GFP_KERNEL);
1223 if (!err) {
1224 unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1225 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1226 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1227 GFP_KERNEL);
1228 }
1229 if (!err)
1230 err = percpu_counter_init(&sbi->s_dirs_counter,
1231 ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1232 if (!err)
1233 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1234 GFP_KERNEL);
1235 if (!err)
1236 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1237 GFP_KERNEL);
1238 if (!err)
1239 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1240
1241 if (err)
1242 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1243
1244 return err;
1245 }
1246
ext4_percpu_param_destroy(struct ext4_sb_info * sbi)1247 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1248 {
1249 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1250 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1251 percpu_counter_destroy(&sbi->s_dirs_counter);
1252 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1253 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1254 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1255 }
1256
ext4_group_desc_free(struct ext4_sb_info * sbi)1257 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1258 {
1259 struct buffer_head **group_desc;
1260 int i;
1261
1262 rcu_read_lock();
1263 group_desc = rcu_dereference(sbi->s_group_desc);
1264 for (i = 0; i < sbi->s_gdb_count; i++)
1265 brelse(group_desc[i]);
1266 kvfree(group_desc);
1267 rcu_read_unlock();
1268 }
1269
ext4_flex_groups_free(struct ext4_sb_info * sbi)1270 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1271 {
1272 struct flex_groups **flex_groups;
1273 int i;
1274
1275 rcu_read_lock();
1276 flex_groups = rcu_dereference(sbi->s_flex_groups);
1277 if (flex_groups) {
1278 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1279 kvfree(flex_groups[i]);
1280 kvfree(flex_groups);
1281 }
1282 rcu_read_unlock();
1283 }
1284
ext4_put_super(struct super_block * sb)1285 static void ext4_put_super(struct super_block *sb)
1286 {
1287 struct ext4_sb_info *sbi = EXT4_SB(sb);
1288 struct ext4_super_block *es = sbi->s_es;
1289 int aborted = 0;
1290 int err;
1291
1292 /*
1293 * Unregister sysfs before destroying jbd2 journal.
1294 * Since we could still access attr_journal_task attribute via sysfs
1295 * path which could have sbi->s_journal->j_task as NULL
1296 * Unregister sysfs before flush sbi->s_sb_upd_work.
1297 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1298 * read metadata verify failed then will queue error work.
1299 * update_super_work will call start_this_handle may trigger
1300 * BUG_ON.
1301 */
1302 ext4_unregister_sysfs(sb);
1303
1304 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1305 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1306 &sb->s_uuid);
1307
1308 ext4_unregister_li_request(sb);
1309 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1310
1311 flush_work(&sbi->s_sb_upd_work);
1312 destroy_workqueue(sbi->rsv_conversion_wq);
1313 ext4_release_orphan_info(sb);
1314
1315 if (sbi->s_journal) {
1316 aborted = is_journal_aborted(sbi->s_journal);
1317 err = jbd2_journal_destroy(sbi->s_journal);
1318 sbi->s_journal = NULL;
1319 if ((err < 0) && !aborted) {
1320 ext4_abort(sb, -err, "Couldn't clean up the journal");
1321 }
1322 }
1323
1324 ext4_es_unregister_shrinker(sbi);
1325 timer_shutdown_sync(&sbi->s_err_report);
1326 ext4_release_system_zone(sb);
1327 ext4_mb_release(sb);
1328 ext4_ext_release(sb);
1329
1330 if (!sb_rdonly(sb) && !aborted) {
1331 ext4_clear_feature_journal_needs_recovery(sb);
1332 ext4_clear_feature_orphan_present(sb);
1333 es->s_state = cpu_to_le16(sbi->s_mount_state);
1334 }
1335 if (!sb_rdonly(sb))
1336 ext4_commit_super(sb);
1337
1338 ext4_group_desc_free(sbi);
1339 ext4_flex_groups_free(sbi);
1340 ext4_percpu_param_destroy(sbi);
1341 #ifdef CONFIG_QUOTA
1342 for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1343 kfree(get_qf_name(sb, sbi, i));
1344 #endif
1345
1346 /* Debugging code just in case the in-memory inode orphan list
1347 * isn't empty. The on-disk one can be non-empty if we've
1348 * detected an error and taken the fs readonly, but the
1349 * in-memory list had better be clean by this point. */
1350 if (!list_empty(&sbi->s_orphan))
1351 dump_orphan_list(sb, sbi);
1352 ASSERT(list_empty(&sbi->s_orphan));
1353
1354 sync_blockdev(sb->s_bdev);
1355 invalidate_bdev(sb->s_bdev);
1356 if (sbi->s_journal_bdev) {
1357 /*
1358 * Invalidate the journal device's buffers. We don't want them
1359 * floating about in memory - the physical journal device may
1360 * hotswapped, and it breaks the `ro-after' testing code.
1361 */
1362 sync_blockdev(sbi->s_journal_bdev);
1363 invalidate_bdev(sbi->s_journal_bdev);
1364 }
1365
1366 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1367 sbi->s_ea_inode_cache = NULL;
1368
1369 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1370 sbi->s_ea_block_cache = NULL;
1371
1372 ext4_stop_mmpd(sbi);
1373
1374 brelse(sbi->s_sbh);
1375 sb->s_fs_info = NULL;
1376 /*
1377 * Now that we are completely done shutting down the
1378 * superblock, we need to actually destroy the kobject.
1379 */
1380 kobject_put(&sbi->s_kobj);
1381 wait_for_completion(&sbi->s_kobj_unregister);
1382 if (sbi->s_chksum_driver)
1383 crypto_free_shash(sbi->s_chksum_driver);
1384 kfree(sbi->s_blockgroup_lock);
1385 fs_put_dax(sbi->s_daxdev, NULL);
1386 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1387 #if IS_ENABLED(CONFIG_UNICODE)
1388 utf8_unload(sb->s_encoding);
1389 #endif
1390 kfree(sbi);
1391 }
1392
1393 static struct kmem_cache *ext4_inode_cachep;
1394
1395 /*
1396 * Called inside transaction, so use GFP_NOFS
1397 */
ext4_alloc_inode(struct super_block * sb)1398 static struct inode *ext4_alloc_inode(struct super_block *sb)
1399 {
1400 struct ext4_inode_info *ei;
1401
1402 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1403 if (!ei)
1404 return NULL;
1405
1406 inode_set_iversion(&ei->vfs_inode, 1);
1407 ei->i_flags = 0;
1408 spin_lock_init(&ei->i_raw_lock);
1409 ei->i_prealloc_node = RB_ROOT;
1410 atomic_set(&ei->i_prealloc_active, 0);
1411 rwlock_init(&ei->i_prealloc_lock);
1412 ext4_es_init_tree(&ei->i_es_tree);
1413 rwlock_init(&ei->i_es_lock);
1414 INIT_LIST_HEAD(&ei->i_es_list);
1415 ei->i_es_all_nr = 0;
1416 ei->i_es_shk_nr = 0;
1417 ei->i_es_shrink_lblk = 0;
1418 ei->i_reserved_data_blocks = 0;
1419 spin_lock_init(&(ei->i_block_reservation_lock));
1420 ext4_init_pending_tree(&ei->i_pending_tree);
1421 #ifdef CONFIG_QUOTA
1422 ei->i_reserved_quota = 0;
1423 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1424 #endif
1425 ei->jinode = NULL;
1426 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1427 spin_lock_init(&ei->i_completed_io_lock);
1428 ei->i_sync_tid = 0;
1429 ei->i_datasync_tid = 0;
1430 atomic_set(&ei->i_unwritten, 0);
1431 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1432 ext4_fc_init_inode(&ei->vfs_inode);
1433 mutex_init(&ei->i_fc_lock);
1434 return &ei->vfs_inode;
1435 }
1436
ext4_drop_inode(struct inode * inode)1437 static int ext4_drop_inode(struct inode *inode)
1438 {
1439 int drop = generic_drop_inode(inode);
1440
1441 if (!drop)
1442 drop = fscrypt_drop_inode(inode);
1443
1444 trace_ext4_drop_inode(inode, drop);
1445 return drop;
1446 }
1447
ext4_free_in_core_inode(struct inode * inode)1448 static void ext4_free_in_core_inode(struct inode *inode)
1449 {
1450 fscrypt_free_inode(inode);
1451 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1452 pr_warn("%s: inode %ld still in fc list",
1453 __func__, inode->i_ino);
1454 }
1455 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1456 }
1457
ext4_destroy_inode(struct inode * inode)1458 static void ext4_destroy_inode(struct inode *inode)
1459 {
1460 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1461 ext4_msg(inode->i_sb, KERN_ERR,
1462 "Inode %lu (%p): orphan list check failed!",
1463 inode->i_ino, EXT4_I(inode));
1464 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1465 EXT4_I(inode), sizeof(struct ext4_inode_info),
1466 true);
1467 dump_stack();
1468 }
1469
1470 if (EXT4_I(inode)->i_reserved_data_blocks)
1471 ext4_msg(inode->i_sb, KERN_ERR,
1472 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1473 inode->i_ino, EXT4_I(inode),
1474 EXT4_I(inode)->i_reserved_data_blocks);
1475 }
1476
ext4_shutdown(struct super_block * sb)1477 static void ext4_shutdown(struct super_block *sb)
1478 {
1479 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1480 }
1481
init_once(void * foo)1482 static void init_once(void *foo)
1483 {
1484 struct ext4_inode_info *ei = foo;
1485
1486 INIT_LIST_HEAD(&ei->i_orphan);
1487 init_rwsem(&ei->xattr_sem);
1488 init_rwsem(&ei->i_data_sem);
1489 inode_init_once(&ei->vfs_inode);
1490 ext4_fc_init_inode(&ei->vfs_inode);
1491 }
1492
init_inodecache(void)1493 static int __init init_inodecache(void)
1494 {
1495 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1496 sizeof(struct ext4_inode_info), 0,
1497 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1498 SLAB_ACCOUNT),
1499 offsetof(struct ext4_inode_info, i_data),
1500 sizeof_field(struct ext4_inode_info, i_data),
1501 init_once);
1502 if (ext4_inode_cachep == NULL)
1503 return -ENOMEM;
1504 return 0;
1505 }
1506
destroy_inodecache(void)1507 static void destroy_inodecache(void)
1508 {
1509 /*
1510 * Make sure all delayed rcu free inodes are flushed before we
1511 * destroy cache.
1512 */
1513 rcu_barrier();
1514 kmem_cache_destroy(ext4_inode_cachep);
1515 }
1516
ext4_clear_inode(struct inode * inode)1517 void ext4_clear_inode(struct inode *inode)
1518 {
1519 ext4_fc_del(inode);
1520 invalidate_inode_buffers(inode);
1521 clear_inode(inode);
1522 ext4_discard_preallocations(inode, 0);
1523 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1524 dquot_drop(inode);
1525 if (EXT4_I(inode)->jinode) {
1526 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1527 EXT4_I(inode)->jinode);
1528 jbd2_free_inode(EXT4_I(inode)->jinode);
1529 EXT4_I(inode)->jinode = NULL;
1530 }
1531 fscrypt_put_encryption_info(inode);
1532 fsverity_cleanup_inode(inode);
1533 }
1534
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1535 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1536 u64 ino, u32 generation)
1537 {
1538 struct inode *inode;
1539
1540 /*
1541 * Currently we don't know the generation for parent directory, so
1542 * a generation of 0 means "accept any"
1543 */
1544 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1545 if (IS_ERR(inode))
1546 return ERR_CAST(inode);
1547 if (generation && inode->i_generation != generation) {
1548 iput(inode);
1549 return ERR_PTR(-ESTALE);
1550 }
1551
1552 return inode;
1553 }
1554
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1555 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1556 int fh_len, int fh_type)
1557 {
1558 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1559 ext4_nfs_get_inode);
1560 }
1561
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1562 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1563 int fh_len, int fh_type)
1564 {
1565 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1566 ext4_nfs_get_inode);
1567 }
1568
ext4_nfs_commit_metadata(struct inode * inode)1569 static int ext4_nfs_commit_metadata(struct inode *inode)
1570 {
1571 struct writeback_control wbc = {
1572 .sync_mode = WB_SYNC_ALL
1573 };
1574
1575 trace_ext4_nfs_commit_metadata(inode);
1576 return ext4_write_inode(inode, &wbc);
1577 }
1578
1579 #ifdef CONFIG_QUOTA
1580 static const char * const quotatypes[] = INITQFNAMES;
1581 #define QTYPE2NAME(t) (quotatypes[t])
1582
1583 static int ext4_write_dquot(struct dquot *dquot);
1584 static int ext4_acquire_dquot(struct dquot *dquot);
1585 static int ext4_release_dquot(struct dquot *dquot);
1586 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1587 static int ext4_write_info(struct super_block *sb, int type);
1588 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1589 const struct path *path);
1590 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1591 size_t len, loff_t off);
1592 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1593 const char *data, size_t len, loff_t off);
1594 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1595 unsigned int flags);
1596
ext4_get_dquots(struct inode * inode)1597 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1598 {
1599 return EXT4_I(inode)->i_dquot;
1600 }
1601
1602 static const struct dquot_operations ext4_quota_operations = {
1603 .get_reserved_space = ext4_get_reserved_space,
1604 .write_dquot = ext4_write_dquot,
1605 .acquire_dquot = ext4_acquire_dquot,
1606 .release_dquot = ext4_release_dquot,
1607 .mark_dirty = ext4_mark_dquot_dirty,
1608 .write_info = ext4_write_info,
1609 .alloc_dquot = dquot_alloc,
1610 .destroy_dquot = dquot_destroy,
1611 .get_projid = ext4_get_projid,
1612 .get_inode_usage = ext4_get_inode_usage,
1613 .get_next_id = dquot_get_next_id,
1614 };
1615
1616 static const struct quotactl_ops ext4_qctl_operations = {
1617 .quota_on = ext4_quota_on,
1618 .quota_off = ext4_quota_off,
1619 .quota_sync = dquot_quota_sync,
1620 .get_state = dquot_get_state,
1621 .set_info = dquot_set_dqinfo,
1622 .get_dqblk = dquot_get_dqblk,
1623 .set_dqblk = dquot_set_dqblk,
1624 .get_nextdqblk = dquot_get_next_dqblk,
1625 };
1626 #endif
1627
1628 static const struct super_operations ext4_sops = {
1629 .alloc_inode = ext4_alloc_inode,
1630 .free_inode = ext4_free_in_core_inode,
1631 .destroy_inode = ext4_destroy_inode,
1632 .write_inode = ext4_write_inode,
1633 .dirty_inode = ext4_dirty_inode,
1634 .drop_inode = ext4_drop_inode,
1635 .evict_inode = ext4_evict_inode,
1636 .put_super = ext4_put_super,
1637 .sync_fs = ext4_sync_fs,
1638 .freeze_fs = ext4_freeze,
1639 .unfreeze_fs = ext4_unfreeze,
1640 .statfs = ext4_statfs,
1641 .show_options = ext4_show_options,
1642 .shutdown = ext4_shutdown,
1643 #ifdef CONFIG_QUOTA
1644 .quota_read = ext4_quota_read,
1645 .quota_write = ext4_quota_write,
1646 .get_dquots = ext4_get_dquots,
1647 #endif
1648 };
1649
1650 static const struct export_operations ext4_export_ops = {
1651 .fh_to_dentry = ext4_fh_to_dentry,
1652 .fh_to_parent = ext4_fh_to_parent,
1653 .get_parent = ext4_get_parent,
1654 .commit_metadata = ext4_nfs_commit_metadata,
1655 };
1656
1657 enum {
1658 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1659 Opt_resgid, Opt_resuid, Opt_sb,
1660 Opt_nouid32, Opt_debug, Opt_removed,
1661 Opt_user_xattr, Opt_acl,
1662 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1663 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1664 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1665 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1666 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1667 Opt_inlinecrypt,
1668 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1669 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1670 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1671 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1672 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1673 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1674 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1675 Opt_inode_readahead_blks, Opt_journal_ioprio,
1676 Opt_dioread_nolock, Opt_dioread_lock,
1677 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1678 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1679 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1680 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1681 #ifdef CONFIG_EXT4_DEBUG
1682 Opt_fc_debug_max_replay, Opt_fc_debug_force
1683 #endif
1684 };
1685
1686 static const struct constant_table ext4_param_errors[] = {
1687 {"continue", EXT4_MOUNT_ERRORS_CONT},
1688 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1689 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1690 {}
1691 };
1692
1693 static const struct constant_table ext4_param_data[] = {
1694 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1695 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1696 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1697 {}
1698 };
1699
1700 static const struct constant_table ext4_param_data_err[] = {
1701 {"abort", Opt_data_err_abort},
1702 {"ignore", Opt_data_err_ignore},
1703 {}
1704 };
1705
1706 static const struct constant_table ext4_param_jqfmt[] = {
1707 {"vfsold", QFMT_VFS_OLD},
1708 {"vfsv0", QFMT_VFS_V0},
1709 {"vfsv1", QFMT_VFS_V1},
1710 {}
1711 };
1712
1713 static const struct constant_table ext4_param_dax[] = {
1714 {"always", Opt_dax_always},
1715 {"inode", Opt_dax_inode},
1716 {"never", Opt_dax_never},
1717 {}
1718 };
1719
1720 /* String parameter that allows empty argument */
1721 #define fsparam_string_empty(NAME, OPT) \
1722 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1723
1724 /*
1725 * Mount option specification
1726 * We don't use fsparam_flag_no because of the way we set the
1727 * options and the way we show them in _ext4_show_options(). To
1728 * keep the changes to a minimum, let's keep the negative options
1729 * separate for now.
1730 */
1731 static const struct fs_parameter_spec ext4_param_specs[] = {
1732 fsparam_flag ("bsddf", Opt_bsd_df),
1733 fsparam_flag ("minixdf", Opt_minix_df),
1734 fsparam_flag ("grpid", Opt_grpid),
1735 fsparam_flag ("bsdgroups", Opt_grpid),
1736 fsparam_flag ("nogrpid", Opt_nogrpid),
1737 fsparam_flag ("sysvgroups", Opt_nogrpid),
1738 fsparam_u32 ("resgid", Opt_resgid),
1739 fsparam_u32 ("resuid", Opt_resuid),
1740 fsparam_u32 ("sb", Opt_sb),
1741 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1742 fsparam_flag ("nouid32", Opt_nouid32),
1743 fsparam_flag ("debug", Opt_debug),
1744 fsparam_flag ("oldalloc", Opt_removed),
1745 fsparam_flag ("orlov", Opt_removed),
1746 fsparam_flag ("user_xattr", Opt_user_xattr),
1747 fsparam_flag ("acl", Opt_acl),
1748 fsparam_flag ("norecovery", Opt_noload),
1749 fsparam_flag ("noload", Opt_noload),
1750 fsparam_flag ("bh", Opt_removed),
1751 fsparam_flag ("nobh", Opt_removed),
1752 fsparam_u32 ("commit", Opt_commit),
1753 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1754 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1755 fsparam_u32 ("journal_dev", Opt_journal_dev),
1756 fsparam_bdev ("journal_path", Opt_journal_path),
1757 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1758 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1759 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1760 fsparam_flag ("abort", Opt_abort),
1761 fsparam_enum ("data", Opt_data, ext4_param_data),
1762 fsparam_enum ("data_err", Opt_data_err,
1763 ext4_param_data_err),
1764 fsparam_string_empty
1765 ("usrjquota", Opt_usrjquota),
1766 fsparam_string_empty
1767 ("grpjquota", Opt_grpjquota),
1768 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1769 fsparam_flag ("grpquota", Opt_grpquota),
1770 fsparam_flag ("quota", Opt_quota),
1771 fsparam_flag ("noquota", Opt_noquota),
1772 fsparam_flag ("usrquota", Opt_usrquota),
1773 fsparam_flag ("prjquota", Opt_prjquota),
1774 fsparam_flag ("barrier", Opt_barrier),
1775 fsparam_u32 ("barrier", Opt_barrier),
1776 fsparam_flag ("nobarrier", Opt_nobarrier),
1777 fsparam_flag ("i_version", Opt_removed),
1778 fsparam_flag ("dax", Opt_dax),
1779 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1780 fsparam_u32 ("stripe", Opt_stripe),
1781 fsparam_flag ("delalloc", Opt_delalloc),
1782 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1783 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1784 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1785 fsparam_u32 ("debug_want_extra_isize",
1786 Opt_debug_want_extra_isize),
1787 fsparam_flag ("mblk_io_submit", Opt_removed),
1788 fsparam_flag ("nomblk_io_submit", Opt_removed),
1789 fsparam_flag ("block_validity", Opt_block_validity),
1790 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1791 fsparam_u32 ("inode_readahead_blks",
1792 Opt_inode_readahead_blks),
1793 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1794 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1795 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1796 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1797 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1798 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1799 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1800 fsparam_flag ("discard", Opt_discard),
1801 fsparam_flag ("nodiscard", Opt_nodiscard),
1802 fsparam_u32 ("init_itable", Opt_init_itable),
1803 fsparam_flag ("init_itable", Opt_init_itable),
1804 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1805 #ifdef CONFIG_EXT4_DEBUG
1806 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1807 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1808 #endif
1809 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1810 fsparam_flag ("test_dummy_encryption",
1811 Opt_test_dummy_encryption),
1812 fsparam_string ("test_dummy_encryption",
1813 Opt_test_dummy_encryption),
1814 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1815 fsparam_flag ("nombcache", Opt_nombcache),
1816 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1817 fsparam_flag ("prefetch_block_bitmaps",
1818 Opt_removed),
1819 fsparam_flag ("no_prefetch_block_bitmaps",
1820 Opt_no_prefetch_block_bitmaps),
1821 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1822 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1823 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1824 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1825 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1826 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1827 {}
1828 };
1829
1830 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1831
1832 #define MOPT_SET 0x0001
1833 #define MOPT_CLEAR 0x0002
1834 #define MOPT_NOSUPPORT 0x0004
1835 #define MOPT_EXPLICIT 0x0008
1836 #ifdef CONFIG_QUOTA
1837 #define MOPT_Q 0
1838 #define MOPT_QFMT 0x0010
1839 #else
1840 #define MOPT_Q MOPT_NOSUPPORT
1841 #define MOPT_QFMT MOPT_NOSUPPORT
1842 #endif
1843 #define MOPT_NO_EXT2 0x0020
1844 #define MOPT_NO_EXT3 0x0040
1845 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1846 #define MOPT_SKIP 0x0080
1847 #define MOPT_2 0x0100
1848
1849 static const struct mount_opts {
1850 int token;
1851 int mount_opt;
1852 int flags;
1853 } ext4_mount_opts[] = {
1854 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1855 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1856 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1857 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1858 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1859 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1860 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1861 MOPT_EXT4_ONLY | MOPT_SET},
1862 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1863 MOPT_EXT4_ONLY | MOPT_CLEAR},
1864 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1865 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1866 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1867 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1868 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1869 MOPT_EXT4_ONLY | MOPT_CLEAR},
1870 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1871 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1872 {Opt_commit, 0, MOPT_NO_EXT2},
1873 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1874 MOPT_EXT4_ONLY | MOPT_CLEAR},
1875 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1876 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1877 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1878 EXT4_MOUNT_JOURNAL_CHECKSUM),
1879 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1880 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1881 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1882 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1883 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1884 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1885 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1886 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1887 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1888 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1889 {Opt_journal_path, 0, MOPT_NO_EXT2},
1890 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1891 {Opt_data, 0, MOPT_NO_EXT2},
1892 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1893 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1894 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1895 #else
1896 {Opt_acl, 0, MOPT_NOSUPPORT},
1897 #endif
1898 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1899 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1900 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1901 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1902 MOPT_SET | MOPT_Q},
1903 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1904 MOPT_SET | MOPT_Q},
1905 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1906 MOPT_SET | MOPT_Q},
1907 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1908 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1909 MOPT_CLEAR | MOPT_Q},
1910 {Opt_usrjquota, 0, MOPT_Q},
1911 {Opt_grpjquota, 0, MOPT_Q},
1912 {Opt_jqfmt, 0, MOPT_QFMT},
1913 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1914 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1915 MOPT_SET},
1916 #ifdef CONFIG_EXT4_DEBUG
1917 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1918 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1919 #endif
1920 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1921 {Opt_err, 0, 0}
1922 };
1923
1924 #if IS_ENABLED(CONFIG_UNICODE)
1925 static const struct ext4_sb_encodings {
1926 __u16 magic;
1927 char *name;
1928 unsigned int version;
1929 } ext4_sb_encoding_map[] = {
1930 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1931 };
1932
1933 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1934 ext4_sb_read_encoding(const struct ext4_super_block *es)
1935 {
1936 __u16 magic = le16_to_cpu(es->s_encoding);
1937 int i;
1938
1939 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1940 if (magic == ext4_sb_encoding_map[i].magic)
1941 return &ext4_sb_encoding_map[i];
1942
1943 return NULL;
1944 }
1945 #endif
1946
1947 #define EXT4_SPEC_JQUOTA (1 << 0)
1948 #define EXT4_SPEC_JQFMT (1 << 1)
1949 #define EXT4_SPEC_DATAJ (1 << 2)
1950 #define EXT4_SPEC_SB_BLOCK (1 << 3)
1951 #define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1952 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1953 #define EXT4_SPEC_s_want_extra_isize (1 << 7)
1954 #define EXT4_SPEC_s_max_batch_time (1 << 8)
1955 #define EXT4_SPEC_s_min_batch_time (1 << 9)
1956 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1957 #define EXT4_SPEC_s_li_wait_mult (1 << 11)
1958 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1959 #define EXT4_SPEC_s_stripe (1 << 13)
1960 #define EXT4_SPEC_s_resuid (1 << 14)
1961 #define EXT4_SPEC_s_resgid (1 << 15)
1962 #define EXT4_SPEC_s_commit_interval (1 << 16)
1963 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1964 #define EXT4_SPEC_s_sb_block (1 << 18)
1965 #define EXT4_SPEC_mb_optimize_scan (1 << 19)
1966
1967 struct ext4_fs_context {
1968 char *s_qf_names[EXT4_MAXQUOTAS];
1969 struct fscrypt_dummy_policy dummy_enc_policy;
1970 int s_jquota_fmt; /* Format of quota to use */
1971 #ifdef CONFIG_EXT4_DEBUG
1972 int s_fc_debug_max_replay;
1973 #endif
1974 unsigned short qname_spec;
1975 unsigned long vals_s_flags; /* Bits to set in s_flags */
1976 unsigned long mask_s_flags; /* Bits changed in s_flags */
1977 unsigned long journal_devnum;
1978 unsigned long s_commit_interval;
1979 unsigned long s_stripe;
1980 unsigned int s_inode_readahead_blks;
1981 unsigned int s_want_extra_isize;
1982 unsigned int s_li_wait_mult;
1983 unsigned int s_max_dir_size_kb;
1984 unsigned int journal_ioprio;
1985 unsigned int vals_s_mount_opt;
1986 unsigned int mask_s_mount_opt;
1987 unsigned int vals_s_mount_opt2;
1988 unsigned int mask_s_mount_opt2;
1989 unsigned int opt_flags; /* MOPT flags */
1990 unsigned int spec;
1991 u32 s_max_batch_time;
1992 u32 s_min_batch_time;
1993 kuid_t s_resuid;
1994 kgid_t s_resgid;
1995 ext4_fsblk_t s_sb_block;
1996 };
1997
ext4_fc_free(struct fs_context * fc)1998 static void ext4_fc_free(struct fs_context *fc)
1999 {
2000 struct ext4_fs_context *ctx = fc->fs_private;
2001 int i;
2002
2003 if (!ctx)
2004 return;
2005
2006 for (i = 0; i < EXT4_MAXQUOTAS; i++)
2007 kfree(ctx->s_qf_names[i]);
2008
2009 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2010 kfree(ctx);
2011 }
2012
ext4_init_fs_context(struct fs_context * fc)2013 int ext4_init_fs_context(struct fs_context *fc)
2014 {
2015 struct ext4_fs_context *ctx;
2016
2017 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2018 if (!ctx)
2019 return -ENOMEM;
2020
2021 fc->fs_private = ctx;
2022 fc->ops = &ext4_context_ops;
2023
2024 return 0;
2025 }
2026
2027 #ifdef CONFIG_QUOTA
2028 /*
2029 * Note the name of the specified quota file.
2030 */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)2031 static int note_qf_name(struct fs_context *fc, int qtype,
2032 struct fs_parameter *param)
2033 {
2034 struct ext4_fs_context *ctx = fc->fs_private;
2035 char *qname;
2036
2037 if (param->size < 1) {
2038 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2039 return -EINVAL;
2040 }
2041 if (strchr(param->string, '/')) {
2042 ext4_msg(NULL, KERN_ERR,
2043 "quotafile must be on filesystem root");
2044 return -EINVAL;
2045 }
2046 if (ctx->s_qf_names[qtype]) {
2047 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2048 ext4_msg(NULL, KERN_ERR,
2049 "%s quota file already specified",
2050 QTYPE2NAME(qtype));
2051 return -EINVAL;
2052 }
2053 return 0;
2054 }
2055
2056 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2057 if (!qname) {
2058 ext4_msg(NULL, KERN_ERR,
2059 "Not enough memory for storing quotafile name");
2060 return -ENOMEM;
2061 }
2062 ctx->s_qf_names[qtype] = qname;
2063 ctx->qname_spec |= 1 << qtype;
2064 ctx->spec |= EXT4_SPEC_JQUOTA;
2065 return 0;
2066 }
2067
2068 /*
2069 * Clear the name of the specified quota file.
2070 */
unnote_qf_name(struct fs_context * fc,int qtype)2071 static int unnote_qf_name(struct fs_context *fc, int qtype)
2072 {
2073 struct ext4_fs_context *ctx = fc->fs_private;
2074
2075 if (ctx->s_qf_names[qtype])
2076 kfree(ctx->s_qf_names[qtype]);
2077
2078 ctx->s_qf_names[qtype] = NULL;
2079 ctx->qname_spec |= 1 << qtype;
2080 ctx->spec |= EXT4_SPEC_JQUOTA;
2081 return 0;
2082 }
2083 #endif
2084
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2085 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2086 struct ext4_fs_context *ctx)
2087 {
2088 int err;
2089
2090 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2091 ext4_msg(NULL, KERN_WARNING,
2092 "test_dummy_encryption option not supported");
2093 return -EINVAL;
2094 }
2095 err = fscrypt_parse_test_dummy_encryption(param,
2096 &ctx->dummy_enc_policy);
2097 if (err == -EINVAL) {
2098 ext4_msg(NULL, KERN_WARNING,
2099 "Value of option \"%s\" is unrecognized", param->key);
2100 } else if (err == -EEXIST) {
2101 ext4_msg(NULL, KERN_WARNING,
2102 "Conflicting test_dummy_encryption options");
2103 return -EINVAL;
2104 }
2105 return err;
2106 }
2107
2108 #define EXT4_SET_CTX(name) \
2109 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
2110 unsigned long flag) \
2111 { \
2112 ctx->mask_s_##name |= flag; \
2113 ctx->vals_s_##name |= flag; \
2114 }
2115
2116 #define EXT4_CLEAR_CTX(name) \
2117 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
2118 unsigned long flag) \
2119 { \
2120 ctx->mask_s_##name |= flag; \
2121 ctx->vals_s_##name &= ~flag; \
2122 }
2123
2124 #define EXT4_TEST_CTX(name) \
2125 static inline unsigned long \
2126 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2127 { \
2128 return (ctx->vals_s_##name & flag); \
2129 }
2130
2131 EXT4_SET_CTX(flags); /* set only */
2132 EXT4_SET_CTX(mount_opt);
2133 EXT4_CLEAR_CTX(mount_opt);
2134 EXT4_TEST_CTX(mount_opt);
2135 EXT4_SET_CTX(mount_opt2);
2136 EXT4_CLEAR_CTX(mount_opt2);
2137 EXT4_TEST_CTX(mount_opt2);
2138
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2139 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2140 {
2141 struct ext4_fs_context *ctx = fc->fs_private;
2142 struct fs_parse_result result;
2143 const struct mount_opts *m;
2144 int is_remount;
2145 kuid_t uid;
2146 kgid_t gid;
2147 int token;
2148
2149 token = fs_parse(fc, ext4_param_specs, param, &result);
2150 if (token < 0)
2151 return token;
2152 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2153
2154 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2155 if (token == m->token)
2156 break;
2157
2158 ctx->opt_flags |= m->flags;
2159
2160 if (m->flags & MOPT_EXPLICIT) {
2161 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2162 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2163 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2164 ctx_set_mount_opt2(ctx,
2165 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2166 } else
2167 return -EINVAL;
2168 }
2169
2170 if (m->flags & MOPT_NOSUPPORT) {
2171 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2172 param->key);
2173 return 0;
2174 }
2175
2176 switch (token) {
2177 #ifdef CONFIG_QUOTA
2178 case Opt_usrjquota:
2179 if (!*param->string)
2180 return unnote_qf_name(fc, USRQUOTA);
2181 else
2182 return note_qf_name(fc, USRQUOTA, param);
2183 case Opt_grpjquota:
2184 if (!*param->string)
2185 return unnote_qf_name(fc, GRPQUOTA);
2186 else
2187 return note_qf_name(fc, GRPQUOTA, param);
2188 #endif
2189 case Opt_sb:
2190 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2191 ext4_msg(NULL, KERN_WARNING,
2192 "Ignoring %s option on remount", param->key);
2193 } else {
2194 ctx->s_sb_block = result.uint_32;
2195 ctx->spec |= EXT4_SPEC_s_sb_block;
2196 }
2197 return 0;
2198 case Opt_removed:
2199 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2200 param->key);
2201 return 0;
2202 case Opt_inlinecrypt:
2203 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2204 ctx_set_flags(ctx, SB_INLINECRYPT);
2205 #else
2206 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2207 #endif
2208 return 0;
2209 case Opt_errors:
2210 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2211 ctx_set_mount_opt(ctx, result.uint_32);
2212 return 0;
2213 #ifdef CONFIG_QUOTA
2214 case Opt_jqfmt:
2215 ctx->s_jquota_fmt = result.uint_32;
2216 ctx->spec |= EXT4_SPEC_JQFMT;
2217 return 0;
2218 #endif
2219 case Opt_data:
2220 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2221 ctx_set_mount_opt(ctx, result.uint_32);
2222 ctx->spec |= EXT4_SPEC_DATAJ;
2223 return 0;
2224 case Opt_commit:
2225 if (result.uint_32 == 0)
2226 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2227 else if (result.uint_32 > INT_MAX / HZ) {
2228 ext4_msg(NULL, KERN_ERR,
2229 "Invalid commit interval %d, "
2230 "must be smaller than %d",
2231 result.uint_32, INT_MAX / HZ);
2232 return -EINVAL;
2233 }
2234 ctx->s_commit_interval = HZ * result.uint_32;
2235 ctx->spec |= EXT4_SPEC_s_commit_interval;
2236 return 0;
2237 case Opt_debug_want_extra_isize:
2238 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2239 ext4_msg(NULL, KERN_ERR,
2240 "Invalid want_extra_isize %d", result.uint_32);
2241 return -EINVAL;
2242 }
2243 ctx->s_want_extra_isize = result.uint_32;
2244 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2245 return 0;
2246 case Opt_max_batch_time:
2247 ctx->s_max_batch_time = result.uint_32;
2248 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2249 return 0;
2250 case Opt_min_batch_time:
2251 ctx->s_min_batch_time = result.uint_32;
2252 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2253 return 0;
2254 case Opt_inode_readahead_blks:
2255 if (result.uint_32 &&
2256 (result.uint_32 > (1 << 30) ||
2257 !is_power_of_2(result.uint_32))) {
2258 ext4_msg(NULL, KERN_ERR,
2259 "EXT4-fs: inode_readahead_blks must be "
2260 "0 or a power of 2 smaller than 2^31");
2261 return -EINVAL;
2262 }
2263 ctx->s_inode_readahead_blks = result.uint_32;
2264 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2265 return 0;
2266 case Opt_init_itable:
2267 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2268 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2269 if (param->type == fs_value_is_string)
2270 ctx->s_li_wait_mult = result.uint_32;
2271 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2272 return 0;
2273 case Opt_max_dir_size_kb:
2274 ctx->s_max_dir_size_kb = result.uint_32;
2275 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2276 return 0;
2277 #ifdef CONFIG_EXT4_DEBUG
2278 case Opt_fc_debug_max_replay:
2279 ctx->s_fc_debug_max_replay = result.uint_32;
2280 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2281 return 0;
2282 #endif
2283 case Opt_stripe:
2284 ctx->s_stripe = result.uint_32;
2285 ctx->spec |= EXT4_SPEC_s_stripe;
2286 return 0;
2287 case Opt_resuid:
2288 uid = make_kuid(current_user_ns(), result.uint_32);
2289 if (!uid_valid(uid)) {
2290 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2291 result.uint_32);
2292 return -EINVAL;
2293 }
2294 ctx->s_resuid = uid;
2295 ctx->spec |= EXT4_SPEC_s_resuid;
2296 return 0;
2297 case Opt_resgid:
2298 gid = make_kgid(current_user_ns(), result.uint_32);
2299 if (!gid_valid(gid)) {
2300 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2301 result.uint_32);
2302 return -EINVAL;
2303 }
2304 ctx->s_resgid = gid;
2305 ctx->spec |= EXT4_SPEC_s_resgid;
2306 return 0;
2307 case Opt_journal_dev:
2308 if (is_remount) {
2309 ext4_msg(NULL, KERN_ERR,
2310 "Cannot specify journal on remount");
2311 return -EINVAL;
2312 }
2313 ctx->journal_devnum = result.uint_32;
2314 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2315 return 0;
2316 case Opt_journal_path:
2317 {
2318 struct inode *journal_inode;
2319 struct path path;
2320 int error;
2321
2322 if (is_remount) {
2323 ext4_msg(NULL, KERN_ERR,
2324 "Cannot specify journal on remount");
2325 return -EINVAL;
2326 }
2327
2328 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2329 if (error) {
2330 ext4_msg(NULL, KERN_ERR, "error: could not find "
2331 "journal device path");
2332 return -EINVAL;
2333 }
2334
2335 journal_inode = d_inode(path.dentry);
2336 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2337 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2338 path_put(&path);
2339 return 0;
2340 }
2341 case Opt_journal_ioprio:
2342 if (result.uint_32 > 7) {
2343 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2344 " (must be 0-7)");
2345 return -EINVAL;
2346 }
2347 ctx->journal_ioprio =
2348 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2349 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2350 return 0;
2351 case Opt_test_dummy_encryption:
2352 return ext4_parse_test_dummy_encryption(param, ctx);
2353 case Opt_dax:
2354 case Opt_dax_type:
2355 #ifdef CONFIG_FS_DAX
2356 {
2357 int type = (token == Opt_dax) ?
2358 Opt_dax : result.uint_32;
2359
2360 switch (type) {
2361 case Opt_dax:
2362 case Opt_dax_always:
2363 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2364 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2365 break;
2366 case Opt_dax_never:
2367 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2368 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2369 break;
2370 case Opt_dax_inode:
2371 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2372 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2373 /* Strictly for printing options */
2374 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2375 break;
2376 }
2377 return 0;
2378 }
2379 #else
2380 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2381 return -EINVAL;
2382 #endif
2383 case Opt_data_err:
2384 if (result.uint_32 == Opt_data_err_abort)
2385 ctx_set_mount_opt(ctx, m->mount_opt);
2386 else if (result.uint_32 == Opt_data_err_ignore)
2387 ctx_clear_mount_opt(ctx, m->mount_opt);
2388 return 0;
2389 case Opt_mb_optimize_scan:
2390 if (result.int_32 == 1) {
2391 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2392 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2393 } else if (result.int_32 == 0) {
2394 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2395 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2396 } else {
2397 ext4_msg(NULL, KERN_WARNING,
2398 "mb_optimize_scan should be set to 0 or 1.");
2399 return -EINVAL;
2400 }
2401 return 0;
2402 }
2403
2404 /*
2405 * At this point we should only be getting options requiring MOPT_SET,
2406 * or MOPT_CLEAR. Anything else is a bug
2407 */
2408 if (m->token == Opt_err) {
2409 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2410 param->key);
2411 WARN_ON(1);
2412 return -EINVAL;
2413 }
2414
2415 else {
2416 unsigned int set = 0;
2417
2418 if ((param->type == fs_value_is_flag) ||
2419 result.uint_32 > 0)
2420 set = 1;
2421
2422 if (m->flags & MOPT_CLEAR)
2423 set = !set;
2424 else if (unlikely(!(m->flags & MOPT_SET))) {
2425 ext4_msg(NULL, KERN_WARNING,
2426 "buggy handling of option %s",
2427 param->key);
2428 WARN_ON(1);
2429 return -EINVAL;
2430 }
2431 if (m->flags & MOPT_2) {
2432 if (set != 0)
2433 ctx_set_mount_opt2(ctx, m->mount_opt);
2434 else
2435 ctx_clear_mount_opt2(ctx, m->mount_opt);
2436 } else {
2437 if (set != 0)
2438 ctx_set_mount_opt(ctx, m->mount_opt);
2439 else
2440 ctx_clear_mount_opt(ctx, m->mount_opt);
2441 }
2442 }
2443
2444 return 0;
2445 }
2446
parse_options(struct fs_context * fc,char * options)2447 static int parse_options(struct fs_context *fc, char *options)
2448 {
2449 struct fs_parameter param;
2450 int ret;
2451 char *key;
2452
2453 if (!options)
2454 return 0;
2455
2456 while ((key = strsep(&options, ",")) != NULL) {
2457 if (*key) {
2458 size_t v_len = 0;
2459 char *value = strchr(key, '=');
2460
2461 param.type = fs_value_is_flag;
2462 param.string = NULL;
2463
2464 if (value) {
2465 if (value == key)
2466 continue;
2467
2468 *value++ = 0;
2469 v_len = strlen(value);
2470 param.string = kmemdup_nul(value, v_len,
2471 GFP_KERNEL);
2472 if (!param.string)
2473 return -ENOMEM;
2474 param.type = fs_value_is_string;
2475 }
2476
2477 param.key = key;
2478 param.size = v_len;
2479
2480 ret = ext4_parse_param(fc, ¶m);
2481 if (param.string)
2482 kfree(param.string);
2483 if (ret < 0)
2484 return ret;
2485 }
2486 }
2487
2488 ret = ext4_validate_options(fc);
2489 if (ret < 0)
2490 return ret;
2491
2492 return 0;
2493 }
2494
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2495 static int parse_apply_sb_mount_options(struct super_block *sb,
2496 struct ext4_fs_context *m_ctx)
2497 {
2498 struct ext4_sb_info *sbi = EXT4_SB(sb);
2499 char *s_mount_opts = NULL;
2500 struct ext4_fs_context *s_ctx = NULL;
2501 struct fs_context *fc = NULL;
2502 int ret = -ENOMEM;
2503
2504 if (!sbi->s_es->s_mount_opts[0])
2505 return 0;
2506
2507 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2508 sizeof(sbi->s_es->s_mount_opts),
2509 GFP_KERNEL);
2510 if (!s_mount_opts)
2511 return ret;
2512
2513 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2514 if (!fc)
2515 goto out_free;
2516
2517 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2518 if (!s_ctx)
2519 goto out_free;
2520
2521 fc->fs_private = s_ctx;
2522 fc->s_fs_info = sbi;
2523
2524 ret = parse_options(fc, s_mount_opts);
2525 if (ret < 0)
2526 goto parse_failed;
2527
2528 ret = ext4_check_opt_consistency(fc, sb);
2529 if (ret < 0) {
2530 parse_failed:
2531 ext4_msg(sb, KERN_WARNING,
2532 "failed to parse options in superblock: %s",
2533 s_mount_opts);
2534 ret = 0;
2535 goto out_free;
2536 }
2537
2538 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2539 m_ctx->journal_devnum = s_ctx->journal_devnum;
2540 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2541 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2542
2543 ext4_apply_options(fc, sb);
2544 ret = 0;
2545
2546 out_free:
2547 if (fc) {
2548 ext4_fc_free(fc);
2549 kfree(fc);
2550 }
2551 kfree(s_mount_opts);
2552 return ret;
2553 }
2554
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2555 static void ext4_apply_quota_options(struct fs_context *fc,
2556 struct super_block *sb)
2557 {
2558 #ifdef CONFIG_QUOTA
2559 bool quota_feature = ext4_has_feature_quota(sb);
2560 struct ext4_fs_context *ctx = fc->fs_private;
2561 struct ext4_sb_info *sbi = EXT4_SB(sb);
2562 char *qname;
2563 int i;
2564
2565 if (quota_feature)
2566 return;
2567
2568 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2569 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2570 if (!(ctx->qname_spec & (1 << i)))
2571 continue;
2572
2573 qname = ctx->s_qf_names[i]; /* May be NULL */
2574 if (qname)
2575 set_opt(sb, QUOTA);
2576 ctx->s_qf_names[i] = NULL;
2577 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2578 lockdep_is_held(&sb->s_umount));
2579 if (qname)
2580 kfree_rcu_mightsleep(qname);
2581 }
2582 }
2583
2584 if (ctx->spec & EXT4_SPEC_JQFMT)
2585 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2586 #endif
2587 }
2588
2589 /*
2590 * Check quota settings consistency.
2591 */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2592 static int ext4_check_quota_consistency(struct fs_context *fc,
2593 struct super_block *sb)
2594 {
2595 #ifdef CONFIG_QUOTA
2596 struct ext4_fs_context *ctx = fc->fs_private;
2597 struct ext4_sb_info *sbi = EXT4_SB(sb);
2598 bool quota_feature = ext4_has_feature_quota(sb);
2599 bool quota_loaded = sb_any_quota_loaded(sb);
2600 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2601 int quota_flags, i;
2602
2603 /*
2604 * We do the test below only for project quotas. 'usrquota' and
2605 * 'grpquota' mount options are allowed even without quota feature
2606 * to support legacy quotas in quota files.
2607 */
2608 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2609 !ext4_has_feature_project(sb)) {
2610 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2611 "Cannot enable project quota enforcement.");
2612 return -EINVAL;
2613 }
2614
2615 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2616 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2617 if (quota_loaded &&
2618 ctx->mask_s_mount_opt & quota_flags &&
2619 !ctx_test_mount_opt(ctx, quota_flags))
2620 goto err_quota_change;
2621
2622 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2623
2624 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2625 if (!(ctx->qname_spec & (1 << i)))
2626 continue;
2627
2628 if (quota_loaded &&
2629 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2630 goto err_jquota_change;
2631
2632 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2633 strcmp(get_qf_name(sb, sbi, i),
2634 ctx->s_qf_names[i]) != 0)
2635 goto err_jquota_specified;
2636 }
2637
2638 if (quota_feature) {
2639 ext4_msg(NULL, KERN_INFO,
2640 "Journaled quota options ignored when "
2641 "QUOTA feature is enabled");
2642 return 0;
2643 }
2644 }
2645
2646 if (ctx->spec & EXT4_SPEC_JQFMT) {
2647 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2648 goto err_jquota_change;
2649 if (quota_feature) {
2650 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2651 "ignored when QUOTA feature is enabled");
2652 return 0;
2653 }
2654 }
2655
2656 /* Make sure we don't mix old and new quota format */
2657 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2658 ctx->s_qf_names[USRQUOTA]);
2659 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2660 ctx->s_qf_names[GRPQUOTA]);
2661
2662 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2663 test_opt(sb, USRQUOTA));
2664
2665 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2666 test_opt(sb, GRPQUOTA));
2667
2668 if (usr_qf_name) {
2669 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2670 usrquota = false;
2671 }
2672 if (grp_qf_name) {
2673 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2674 grpquota = false;
2675 }
2676
2677 if (usr_qf_name || grp_qf_name) {
2678 if (usrquota || grpquota) {
2679 ext4_msg(NULL, KERN_ERR, "old and new quota "
2680 "format mixing");
2681 return -EINVAL;
2682 }
2683
2684 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2685 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2686 "not specified");
2687 return -EINVAL;
2688 }
2689 }
2690
2691 return 0;
2692
2693 err_quota_change:
2694 ext4_msg(NULL, KERN_ERR,
2695 "Cannot change quota options when quota turned on");
2696 return -EINVAL;
2697 err_jquota_change:
2698 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2699 "options when quota turned on");
2700 return -EINVAL;
2701 err_jquota_specified:
2702 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2703 QTYPE2NAME(i));
2704 return -EINVAL;
2705 #else
2706 return 0;
2707 #endif
2708 }
2709
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2710 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2711 struct super_block *sb)
2712 {
2713 const struct ext4_fs_context *ctx = fc->fs_private;
2714 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2715
2716 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2717 return 0;
2718
2719 if (!ext4_has_feature_encrypt(sb)) {
2720 ext4_msg(NULL, KERN_WARNING,
2721 "test_dummy_encryption requires encrypt feature");
2722 return -EINVAL;
2723 }
2724 /*
2725 * This mount option is just for testing, and it's not worthwhile to
2726 * implement the extra complexity (e.g. RCU protection) that would be
2727 * needed to allow it to be set or changed during remount. We do allow
2728 * it to be specified during remount, but only if there is no change.
2729 */
2730 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2731 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2732 &ctx->dummy_enc_policy))
2733 return 0;
2734 ext4_msg(NULL, KERN_WARNING,
2735 "Can't set or change test_dummy_encryption on remount");
2736 return -EINVAL;
2737 }
2738 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2739 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2740 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2741 &ctx->dummy_enc_policy))
2742 return 0;
2743 ext4_msg(NULL, KERN_WARNING,
2744 "Conflicting test_dummy_encryption options");
2745 return -EINVAL;
2746 }
2747 return 0;
2748 }
2749
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2750 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2751 struct super_block *sb)
2752 {
2753 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2754 /* if already set, it was already verified to be the same */
2755 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2756 return;
2757 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2758 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2759 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2760 }
2761
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2762 static int ext4_check_opt_consistency(struct fs_context *fc,
2763 struct super_block *sb)
2764 {
2765 struct ext4_fs_context *ctx = fc->fs_private;
2766 struct ext4_sb_info *sbi = fc->s_fs_info;
2767 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2768 int err;
2769
2770 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2771 ext4_msg(NULL, KERN_ERR,
2772 "Mount option(s) incompatible with ext2");
2773 return -EINVAL;
2774 }
2775 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2776 ext4_msg(NULL, KERN_ERR,
2777 "Mount option(s) incompatible with ext3");
2778 return -EINVAL;
2779 }
2780
2781 if (ctx->s_want_extra_isize >
2782 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2783 ext4_msg(NULL, KERN_ERR,
2784 "Invalid want_extra_isize %d",
2785 ctx->s_want_extra_isize);
2786 return -EINVAL;
2787 }
2788
2789 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2790 int blocksize =
2791 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2792 if (blocksize < PAGE_SIZE)
2793 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2794 "experimental mount option 'dioread_nolock' "
2795 "for blocksize < PAGE_SIZE");
2796 }
2797
2798 err = ext4_check_test_dummy_encryption(fc, sb);
2799 if (err)
2800 return err;
2801
2802 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2803 if (!sbi->s_journal) {
2804 ext4_msg(NULL, KERN_WARNING,
2805 "Remounting file system with no journal "
2806 "so ignoring journalled data option");
2807 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2808 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2809 test_opt(sb, DATA_FLAGS)) {
2810 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2811 "on remount");
2812 return -EINVAL;
2813 }
2814 }
2815
2816 if (is_remount) {
2817 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2818 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2819 ext4_msg(NULL, KERN_ERR, "can't mount with "
2820 "both data=journal and dax");
2821 return -EINVAL;
2822 }
2823
2824 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2825 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2826 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2827 fail_dax_change_remount:
2828 ext4_msg(NULL, KERN_ERR, "can't change "
2829 "dax mount option while remounting");
2830 return -EINVAL;
2831 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2832 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2833 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2834 goto fail_dax_change_remount;
2835 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2836 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2837 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2838 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2839 goto fail_dax_change_remount;
2840 }
2841 }
2842
2843 return ext4_check_quota_consistency(fc, sb);
2844 }
2845
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2846 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2847 {
2848 struct ext4_fs_context *ctx = fc->fs_private;
2849 struct ext4_sb_info *sbi = fc->s_fs_info;
2850
2851 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2852 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2853 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2854 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2855 sb->s_flags &= ~ctx->mask_s_flags;
2856 sb->s_flags |= ctx->vals_s_flags;
2857
2858 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2859 APPLY(s_commit_interval);
2860 APPLY(s_stripe);
2861 APPLY(s_max_batch_time);
2862 APPLY(s_min_batch_time);
2863 APPLY(s_want_extra_isize);
2864 APPLY(s_inode_readahead_blks);
2865 APPLY(s_max_dir_size_kb);
2866 APPLY(s_li_wait_mult);
2867 APPLY(s_resgid);
2868 APPLY(s_resuid);
2869
2870 #ifdef CONFIG_EXT4_DEBUG
2871 APPLY(s_fc_debug_max_replay);
2872 #endif
2873
2874 ext4_apply_quota_options(fc, sb);
2875 ext4_apply_test_dummy_encryption(ctx, sb);
2876 }
2877
2878
ext4_validate_options(struct fs_context * fc)2879 static int ext4_validate_options(struct fs_context *fc)
2880 {
2881 #ifdef CONFIG_QUOTA
2882 struct ext4_fs_context *ctx = fc->fs_private;
2883 char *usr_qf_name, *grp_qf_name;
2884
2885 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2886 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2887
2888 if (usr_qf_name || grp_qf_name) {
2889 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2890 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2891
2892 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2893 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2894
2895 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2896 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2897 ext4_msg(NULL, KERN_ERR, "old and new quota "
2898 "format mixing");
2899 return -EINVAL;
2900 }
2901 }
2902 #endif
2903 return 1;
2904 }
2905
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2906 static inline void ext4_show_quota_options(struct seq_file *seq,
2907 struct super_block *sb)
2908 {
2909 #if defined(CONFIG_QUOTA)
2910 struct ext4_sb_info *sbi = EXT4_SB(sb);
2911 char *usr_qf_name, *grp_qf_name;
2912
2913 if (sbi->s_jquota_fmt) {
2914 char *fmtname = "";
2915
2916 switch (sbi->s_jquota_fmt) {
2917 case QFMT_VFS_OLD:
2918 fmtname = "vfsold";
2919 break;
2920 case QFMT_VFS_V0:
2921 fmtname = "vfsv0";
2922 break;
2923 case QFMT_VFS_V1:
2924 fmtname = "vfsv1";
2925 break;
2926 }
2927 seq_printf(seq, ",jqfmt=%s", fmtname);
2928 }
2929
2930 rcu_read_lock();
2931 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2932 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2933 if (usr_qf_name)
2934 seq_show_option(seq, "usrjquota", usr_qf_name);
2935 if (grp_qf_name)
2936 seq_show_option(seq, "grpjquota", grp_qf_name);
2937 rcu_read_unlock();
2938 #endif
2939 }
2940
token2str(int token)2941 static const char *token2str(int token)
2942 {
2943 const struct fs_parameter_spec *spec;
2944
2945 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2946 if (spec->opt == token && !spec->type)
2947 break;
2948 return spec->name;
2949 }
2950
2951 /*
2952 * Show an option if
2953 * - it's set to a non-default value OR
2954 * - if the per-sb default is different from the global default
2955 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2956 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2957 int nodefs)
2958 {
2959 struct ext4_sb_info *sbi = EXT4_SB(sb);
2960 struct ext4_super_block *es = sbi->s_es;
2961 int def_errors;
2962 const struct mount_opts *m;
2963 char sep = nodefs ? '\n' : ',';
2964
2965 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2966 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2967
2968 if (sbi->s_sb_block != 1)
2969 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2970
2971 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2972 int want_set = m->flags & MOPT_SET;
2973 int opt_2 = m->flags & MOPT_2;
2974 unsigned int mount_opt, def_mount_opt;
2975
2976 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2977 m->flags & MOPT_SKIP)
2978 continue;
2979
2980 if (opt_2) {
2981 mount_opt = sbi->s_mount_opt2;
2982 def_mount_opt = sbi->s_def_mount_opt2;
2983 } else {
2984 mount_opt = sbi->s_mount_opt;
2985 def_mount_opt = sbi->s_def_mount_opt;
2986 }
2987 /* skip if same as the default */
2988 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2989 continue;
2990 /* select Opt_noFoo vs Opt_Foo */
2991 if ((want_set &&
2992 (mount_opt & m->mount_opt) != m->mount_opt) ||
2993 (!want_set && (mount_opt & m->mount_opt)))
2994 continue;
2995 SEQ_OPTS_PRINT("%s", token2str(m->token));
2996 }
2997
2998 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2999 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
3000 SEQ_OPTS_PRINT("resuid=%u",
3001 from_kuid_munged(&init_user_ns, sbi->s_resuid));
3002 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3003 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3004 SEQ_OPTS_PRINT("resgid=%u",
3005 from_kgid_munged(&init_user_ns, sbi->s_resgid));
3006 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3007 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3008 SEQ_OPTS_PUTS("errors=remount-ro");
3009 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3010 SEQ_OPTS_PUTS("errors=continue");
3011 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3012 SEQ_OPTS_PUTS("errors=panic");
3013 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3014 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3015 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3016 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3017 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3018 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3019 if (nodefs || sbi->s_stripe)
3020 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3021 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3022 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3023 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3024 SEQ_OPTS_PUTS("data=journal");
3025 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3026 SEQ_OPTS_PUTS("data=ordered");
3027 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3028 SEQ_OPTS_PUTS("data=writeback");
3029 }
3030 if (nodefs ||
3031 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3032 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3033 sbi->s_inode_readahead_blks);
3034
3035 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3036 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3037 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3038 if (nodefs || sbi->s_max_dir_size_kb)
3039 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3040 if (test_opt(sb, DATA_ERR_ABORT))
3041 SEQ_OPTS_PUTS("data_err=abort");
3042
3043 fscrypt_show_test_dummy_encryption(seq, sep, sb);
3044
3045 if (sb->s_flags & SB_INLINECRYPT)
3046 SEQ_OPTS_PUTS("inlinecrypt");
3047
3048 if (test_opt(sb, DAX_ALWAYS)) {
3049 if (IS_EXT2_SB(sb))
3050 SEQ_OPTS_PUTS("dax");
3051 else
3052 SEQ_OPTS_PUTS("dax=always");
3053 } else if (test_opt2(sb, DAX_NEVER)) {
3054 SEQ_OPTS_PUTS("dax=never");
3055 } else if (test_opt2(sb, DAX_INODE)) {
3056 SEQ_OPTS_PUTS("dax=inode");
3057 }
3058
3059 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3060 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3061 SEQ_OPTS_PUTS("mb_optimize_scan=0");
3062 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3063 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3064 SEQ_OPTS_PUTS("mb_optimize_scan=1");
3065 }
3066
3067 ext4_show_quota_options(seq, sb);
3068 return 0;
3069 }
3070
ext4_show_options(struct seq_file * seq,struct dentry * root)3071 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3072 {
3073 return _ext4_show_options(seq, root->d_sb, 0);
3074 }
3075
ext4_seq_options_show(struct seq_file * seq,void * offset)3076 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3077 {
3078 struct super_block *sb = seq->private;
3079 int rc;
3080
3081 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3082 rc = _ext4_show_options(seq, sb, 1);
3083 seq_puts(seq, "\n");
3084 return rc;
3085 }
3086
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3087 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3088 int read_only)
3089 {
3090 struct ext4_sb_info *sbi = EXT4_SB(sb);
3091 int err = 0;
3092
3093 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3094 ext4_msg(sb, KERN_ERR, "revision level too high, "
3095 "forcing read-only mode");
3096 err = -EROFS;
3097 goto done;
3098 }
3099 if (read_only)
3100 goto done;
3101 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3102 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3103 "running e2fsck is recommended");
3104 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3105 ext4_msg(sb, KERN_WARNING,
3106 "warning: mounting fs with errors, "
3107 "running e2fsck is recommended");
3108 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3109 le16_to_cpu(es->s_mnt_count) >=
3110 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3111 ext4_msg(sb, KERN_WARNING,
3112 "warning: maximal mount count reached, "
3113 "running e2fsck is recommended");
3114 else if (le32_to_cpu(es->s_checkinterval) &&
3115 (ext4_get_tstamp(es, s_lastcheck) +
3116 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3117 ext4_msg(sb, KERN_WARNING,
3118 "warning: checktime reached, "
3119 "running e2fsck is recommended");
3120 if (!sbi->s_journal)
3121 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3122 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3123 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3124 le16_add_cpu(&es->s_mnt_count, 1);
3125 ext4_update_tstamp(es, s_mtime);
3126 if (sbi->s_journal) {
3127 ext4_set_feature_journal_needs_recovery(sb);
3128 if (ext4_has_feature_orphan_file(sb))
3129 ext4_set_feature_orphan_present(sb);
3130 }
3131
3132 err = ext4_commit_super(sb);
3133 done:
3134 if (test_opt(sb, DEBUG))
3135 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3136 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3137 sb->s_blocksize,
3138 sbi->s_groups_count,
3139 EXT4_BLOCKS_PER_GROUP(sb),
3140 EXT4_INODES_PER_GROUP(sb),
3141 sbi->s_mount_opt, sbi->s_mount_opt2);
3142 return err;
3143 }
3144
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3145 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3146 {
3147 struct ext4_sb_info *sbi = EXT4_SB(sb);
3148 struct flex_groups **old_groups, **new_groups;
3149 int size, i, j;
3150
3151 if (!sbi->s_log_groups_per_flex)
3152 return 0;
3153
3154 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3155 if (size <= sbi->s_flex_groups_allocated)
3156 return 0;
3157
3158 new_groups = kvzalloc(roundup_pow_of_two(size *
3159 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3160 if (!new_groups) {
3161 ext4_msg(sb, KERN_ERR,
3162 "not enough memory for %d flex group pointers", size);
3163 return -ENOMEM;
3164 }
3165 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3166 new_groups[i] = kvzalloc(roundup_pow_of_two(
3167 sizeof(struct flex_groups)),
3168 GFP_KERNEL);
3169 if (!new_groups[i]) {
3170 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3171 kvfree(new_groups[j]);
3172 kvfree(new_groups);
3173 ext4_msg(sb, KERN_ERR,
3174 "not enough memory for %d flex groups", size);
3175 return -ENOMEM;
3176 }
3177 }
3178 rcu_read_lock();
3179 old_groups = rcu_dereference(sbi->s_flex_groups);
3180 if (old_groups)
3181 memcpy(new_groups, old_groups,
3182 (sbi->s_flex_groups_allocated *
3183 sizeof(struct flex_groups *)));
3184 rcu_read_unlock();
3185 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3186 sbi->s_flex_groups_allocated = size;
3187 if (old_groups)
3188 ext4_kvfree_array_rcu(old_groups);
3189 return 0;
3190 }
3191
ext4_fill_flex_info(struct super_block * sb)3192 static int ext4_fill_flex_info(struct super_block *sb)
3193 {
3194 struct ext4_sb_info *sbi = EXT4_SB(sb);
3195 struct ext4_group_desc *gdp = NULL;
3196 struct flex_groups *fg;
3197 ext4_group_t flex_group;
3198 int i, err;
3199
3200 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3201 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3202 sbi->s_log_groups_per_flex = 0;
3203 return 1;
3204 }
3205
3206 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3207 if (err)
3208 goto failed;
3209
3210 for (i = 0; i < sbi->s_groups_count; i++) {
3211 gdp = ext4_get_group_desc(sb, i, NULL);
3212
3213 flex_group = ext4_flex_group(sbi, i);
3214 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3215 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3216 atomic64_add(ext4_free_group_clusters(sb, gdp),
3217 &fg->free_clusters);
3218 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3219 }
3220
3221 return 1;
3222 failed:
3223 return 0;
3224 }
3225
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3226 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3227 struct ext4_group_desc *gdp)
3228 {
3229 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3230 __u16 crc = 0;
3231 __le32 le_group = cpu_to_le32(block_group);
3232 struct ext4_sb_info *sbi = EXT4_SB(sb);
3233
3234 if (ext4_has_metadata_csum(sbi->s_sb)) {
3235 /* Use new metadata_csum algorithm */
3236 __u32 csum32;
3237 __u16 dummy_csum = 0;
3238
3239 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3240 sizeof(le_group));
3241 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3242 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3243 sizeof(dummy_csum));
3244 offset += sizeof(dummy_csum);
3245 if (offset < sbi->s_desc_size)
3246 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3247 sbi->s_desc_size - offset);
3248
3249 crc = csum32 & 0xFFFF;
3250 goto out;
3251 }
3252
3253 /* old crc16 code */
3254 if (!ext4_has_feature_gdt_csum(sb))
3255 return 0;
3256
3257 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3258 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3259 crc = crc16(crc, (__u8 *)gdp, offset);
3260 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3261 /* for checksum of struct ext4_group_desc do the rest...*/
3262 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3263 crc = crc16(crc, (__u8 *)gdp + offset,
3264 sbi->s_desc_size - offset);
3265
3266 out:
3267 return cpu_to_le16(crc);
3268 }
3269
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3270 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3271 struct ext4_group_desc *gdp)
3272 {
3273 if (ext4_has_group_desc_csum(sb) &&
3274 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3275 return 0;
3276
3277 return 1;
3278 }
3279
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3280 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3281 struct ext4_group_desc *gdp)
3282 {
3283 if (!ext4_has_group_desc_csum(sb))
3284 return;
3285 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3286 }
3287
3288 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3289 static int ext4_check_descriptors(struct super_block *sb,
3290 ext4_fsblk_t sb_block,
3291 ext4_group_t *first_not_zeroed)
3292 {
3293 struct ext4_sb_info *sbi = EXT4_SB(sb);
3294 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3295 ext4_fsblk_t last_block;
3296 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3297 ext4_fsblk_t block_bitmap;
3298 ext4_fsblk_t inode_bitmap;
3299 ext4_fsblk_t inode_table;
3300 int flexbg_flag = 0;
3301 ext4_group_t i, grp = sbi->s_groups_count;
3302
3303 if (ext4_has_feature_flex_bg(sb))
3304 flexbg_flag = 1;
3305
3306 ext4_debug("Checking group descriptors");
3307
3308 for (i = 0; i < sbi->s_groups_count; i++) {
3309 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3310
3311 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3312 last_block = ext4_blocks_count(sbi->s_es) - 1;
3313 else
3314 last_block = first_block +
3315 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3316
3317 if ((grp == sbi->s_groups_count) &&
3318 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3319 grp = i;
3320
3321 block_bitmap = ext4_block_bitmap(sb, gdp);
3322 if (block_bitmap == sb_block) {
3323 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3324 "Block bitmap for group %u overlaps "
3325 "superblock", i);
3326 if (!sb_rdonly(sb))
3327 return 0;
3328 }
3329 if (block_bitmap >= sb_block + 1 &&
3330 block_bitmap <= last_bg_block) {
3331 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3332 "Block bitmap for group %u overlaps "
3333 "block group descriptors", i);
3334 if (!sb_rdonly(sb))
3335 return 0;
3336 }
3337 if (block_bitmap < first_block || block_bitmap > last_block) {
3338 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3339 "Block bitmap for group %u not in group "
3340 "(block %llu)!", i, block_bitmap);
3341 return 0;
3342 }
3343 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3344 if (inode_bitmap == sb_block) {
3345 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3346 "Inode bitmap for group %u overlaps "
3347 "superblock", i);
3348 if (!sb_rdonly(sb))
3349 return 0;
3350 }
3351 if (inode_bitmap >= sb_block + 1 &&
3352 inode_bitmap <= last_bg_block) {
3353 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3354 "Inode bitmap for group %u overlaps "
3355 "block group descriptors", i);
3356 if (!sb_rdonly(sb))
3357 return 0;
3358 }
3359 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3360 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3361 "Inode bitmap for group %u not in group "
3362 "(block %llu)!", i, inode_bitmap);
3363 return 0;
3364 }
3365 inode_table = ext4_inode_table(sb, gdp);
3366 if (inode_table == sb_block) {
3367 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3368 "Inode table for group %u overlaps "
3369 "superblock", i);
3370 if (!sb_rdonly(sb))
3371 return 0;
3372 }
3373 if (inode_table >= sb_block + 1 &&
3374 inode_table <= last_bg_block) {
3375 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3376 "Inode table for group %u overlaps "
3377 "block group descriptors", i);
3378 if (!sb_rdonly(sb))
3379 return 0;
3380 }
3381 if (inode_table < first_block ||
3382 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3383 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3384 "Inode table for group %u not in group "
3385 "(block %llu)!", i, inode_table);
3386 return 0;
3387 }
3388 ext4_lock_group(sb, i);
3389 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3390 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3391 "Checksum for group %u failed (%u!=%u)",
3392 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3393 gdp)), le16_to_cpu(gdp->bg_checksum));
3394 if (!sb_rdonly(sb)) {
3395 ext4_unlock_group(sb, i);
3396 return 0;
3397 }
3398 }
3399 ext4_unlock_group(sb, i);
3400 if (!flexbg_flag)
3401 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3402 }
3403 if (NULL != first_not_zeroed)
3404 *first_not_zeroed = grp;
3405 return 1;
3406 }
3407
3408 /*
3409 * Maximal extent format file size.
3410 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3411 * extent format containers, within a sector_t, and within i_blocks
3412 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3413 * so that won't be a limiting factor.
3414 *
3415 * However there is other limiting factor. We do store extents in the form
3416 * of starting block and length, hence the resulting length of the extent
3417 * covering maximum file size must fit into on-disk format containers as
3418 * well. Given that length is always by 1 unit bigger than max unit (because
3419 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3420 *
3421 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3422 */
ext4_max_size(int blkbits,int has_huge_files)3423 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3424 {
3425 loff_t res;
3426 loff_t upper_limit = MAX_LFS_FILESIZE;
3427
3428 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3429
3430 if (!has_huge_files) {
3431 upper_limit = (1LL << 32) - 1;
3432
3433 /* total blocks in file system block size */
3434 upper_limit >>= (blkbits - 9);
3435 upper_limit <<= blkbits;
3436 }
3437
3438 /*
3439 * 32-bit extent-start container, ee_block. We lower the maxbytes
3440 * by one fs block, so ee_len can cover the extent of maximum file
3441 * size
3442 */
3443 res = (1LL << 32) - 1;
3444 res <<= blkbits;
3445
3446 /* Sanity check against vm- & vfs- imposed limits */
3447 if (res > upper_limit)
3448 res = upper_limit;
3449
3450 return res;
3451 }
3452
3453 /*
3454 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3455 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3456 * We need to be 1 filesystem block less than the 2^48 sector limit.
3457 */
ext4_max_bitmap_size(int bits,int has_huge_files)3458 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3459 {
3460 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3461 int meta_blocks;
3462 unsigned int ppb = 1 << (bits - 2);
3463
3464 /*
3465 * This is calculated to be the largest file size for a dense, block
3466 * mapped file such that the file's total number of 512-byte sectors,
3467 * including data and all indirect blocks, does not exceed (2^48 - 1).
3468 *
3469 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3470 * number of 512-byte sectors of the file.
3471 */
3472 if (!has_huge_files) {
3473 /*
3474 * !has_huge_files or implies that the inode i_block field
3475 * represents total file blocks in 2^32 512-byte sectors ==
3476 * size of vfs inode i_blocks * 8
3477 */
3478 upper_limit = (1LL << 32) - 1;
3479
3480 /* total blocks in file system block size */
3481 upper_limit >>= (bits - 9);
3482
3483 } else {
3484 /*
3485 * We use 48 bit ext4_inode i_blocks
3486 * With EXT4_HUGE_FILE_FL set the i_blocks
3487 * represent total number of blocks in
3488 * file system block size
3489 */
3490 upper_limit = (1LL << 48) - 1;
3491
3492 }
3493
3494 /* Compute how many blocks we can address by block tree */
3495 res += ppb;
3496 res += ppb * ppb;
3497 res += ((loff_t)ppb) * ppb * ppb;
3498 /* Compute how many metadata blocks are needed */
3499 meta_blocks = 1;
3500 meta_blocks += 1 + ppb;
3501 meta_blocks += 1 + ppb + ppb * ppb;
3502 /* Does block tree limit file size? */
3503 if (res + meta_blocks <= upper_limit)
3504 goto check_lfs;
3505
3506 res = upper_limit;
3507 /* How many metadata blocks are needed for addressing upper_limit? */
3508 upper_limit -= EXT4_NDIR_BLOCKS;
3509 /* indirect blocks */
3510 meta_blocks = 1;
3511 upper_limit -= ppb;
3512 /* double indirect blocks */
3513 if (upper_limit < ppb * ppb) {
3514 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3515 res -= meta_blocks;
3516 goto check_lfs;
3517 }
3518 meta_blocks += 1 + ppb;
3519 upper_limit -= ppb * ppb;
3520 /* tripple indirect blocks for the rest */
3521 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3522 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3523 res -= meta_blocks;
3524 check_lfs:
3525 res <<= bits;
3526 if (res > MAX_LFS_FILESIZE)
3527 res = MAX_LFS_FILESIZE;
3528
3529 return res;
3530 }
3531
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3532 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3533 ext4_fsblk_t logical_sb_block, int nr)
3534 {
3535 struct ext4_sb_info *sbi = EXT4_SB(sb);
3536 ext4_group_t bg, first_meta_bg;
3537 int has_super = 0;
3538
3539 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3540
3541 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3542 return logical_sb_block + nr + 1;
3543 bg = sbi->s_desc_per_block * nr;
3544 if (ext4_bg_has_super(sb, bg))
3545 has_super = 1;
3546
3547 /*
3548 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3549 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3550 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3551 * compensate.
3552 */
3553 if (sb->s_blocksize == 1024 && nr == 0 &&
3554 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3555 has_super++;
3556
3557 return (has_super + ext4_group_first_block_no(sb, bg));
3558 }
3559
3560 /**
3561 * ext4_get_stripe_size: Get the stripe size.
3562 * @sbi: In memory super block info
3563 *
3564 * If we have specified it via mount option, then
3565 * use the mount option value. If the value specified at mount time is
3566 * greater than the blocks per group use the super block value.
3567 * If the super block value is greater than blocks per group return 0.
3568 * Allocator needs it be less than blocks per group.
3569 *
3570 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3571 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3572 {
3573 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3574 unsigned long stripe_width =
3575 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3576 int ret;
3577
3578 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3579 ret = sbi->s_stripe;
3580 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3581 ret = stripe_width;
3582 else if (stride && stride <= sbi->s_blocks_per_group)
3583 ret = stride;
3584 else
3585 ret = 0;
3586
3587 /*
3588 * If the stripe width is 1, this makes no sense and
3589 * we set it to 0 to turn off stripe handling code.
3590 */
3591 if (ret <= 1)
3592 ret = 0;
3593
3594 return ret;
3595 }
3596
3597 /*
3598 * Check whether this filesystem can be mounted based on
3599 * the features present and the RDONLY/RDWR mount requested.
3600 * Returns 1 if this filesystem can be mounted as requested,
3601 * 0 if it cannot be.
3602 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3603 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3604 {
3605 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3606 ext4_msg(sb, KERN_ERR,
3607 "Couldn't mount because of "
3608 "unsupported optional features (%x)",
3609 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3610 ~EXT4_FEATURE_INCOMPAT_SUPP));
3611 return 0;
3612 }
3613
3614 #if !IS_ENABLED(CONFIG_UNICODE)
3615 if (ext4_has_feature_casefold(sb)) {
3616 ext4_msg(sb, KERN_ERR,
3617 "Filesystem with casefold feature cannot be "
3618 "mounted without CONFIG_UNICODE");
3619 return 0;
3620 }
3621 #endif
3622
3623 if (readonly)
3624 return 1;
3625
3626 if (ext4_has_feature_readonly(sb)) {
3627 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3628 sb->s_flags |= SB_RDONLY;
3629 return 1;
3630 }
3631
3632 /* Check that feature set is OK for a read-write mount */
3633 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3634 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3635 "unsupported optional features (%x)",
3636 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3637 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3638 return 0;
3639 }
3640 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3641 ext4_msg(sb, KERN_ERR,
3642 "Can't support bigalloc feature without "
3643 "extents feature\n");
3644 return 0;
3645 }
3646
3647 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3648 if (!readonly && (ext4_has_feature_quota(sb) ||
3649 ext4_has_feature_project(sb))) {
3650 ext4_msg(sb, KERN_ERR,
3651 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3652 return 0;
3653 }
3654 #endif /* CONFIG_QUOTA */
3655 return 1;
3656 }
3657
3658 /*
3659 * This function is called once a day if we have errors logged
3660 * on the file system
3661 */
print_daily_error_info(struct timer_list * t)3662 static void print_daily_error_info(struct timer_list *t)
3663 {
3664 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3665 struct super_block *sb = sbi->s_sb;
3666 struct ext4_super_block *es = sbi->s_es;
3667
3668 if (es->s_error_count)
3669 /* fsck newer than v1.41.13 is needed to clean this condition. */
3670 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3671 le32_to_cpu(es->s_error_count));
3672 if (es->s_first_error_time) {
3673 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3674 sb->s_id,
3675 ext4_get_tstamp(es, s_first_error_time),
3676 (int) sizeof(es->s_first_error_func),
3677 es->s_first_error_func,
3678 le32_to_cpu(es->s_first_error_line));
3679 if (es->s_first_error_ino)
3680 printk(KERN_CONT ": inode %u",
3681 le32_to_cpu(es->s_first_error_ino));
3682 if (es->s_first_error_block)
3683 printk(KERN_CONT ": block %llu", (unsigned long long)
3684 le64_to_cpu(es->s_first_error_block));
3685 printk(KERN_CONT "\n");
3686 }
3687 if (es->s_last_error_time) {
3688 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3689 sb->s_id,
3690 ext4_get_tstamp(es, s_last_error_time),
3691 (int) sizeof(es->s_last_error_func),
3692 es->s_last_error_func,
3693 le32_to_cpu(es->s_last_error_line));
3694 if (es->s_last_error_ino)
3695 printk(KERN_CONT ": inode %u",
3696 le32_to_cpu(es->s_last_error_ino));
3697 if (es->s_last_error_block)
3698 printk(KERN_CONT ": block %llu", (unsigned long long)
3699 le64_to_cpu(es->s_last_error_block));
3700 printk(KERN_CONT "\n");
3701 }
3702 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3703 }
3704
3705 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3706 static int ext4_run_li_request(struct ext4_li_request *elr)
3707 {
3708 struct ext4_group_desc *gdp = NULL;
3709 struct super_block *sb = elr->lr_super;
3710 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3711 ext4_group_t group = elr->lr_next_group;
3712 unsigned int prefetch_ios = 0;
3713 int ret = 0;
3714 int nr = EXT4_SB(sb)->s_mb_prefetch;
3715 u64 start_time;
3716
3717 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3718 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3719 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3720 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3721 if (group >= elr->lr_next_group) {
3722 ret = 1;
3723 if (elr->lr_first_not_zeroed != ngroups &&
3724 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3725 elr->lr_next_group = elr->lr_first_not_zeroed;
3726 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3727 ret = 0;
3728 }
3729 }
3730 return ret;
3731 }
3732
3733 for (; group < ngroups; group++) {
3734 gdp = ext4_get_group_desc(sb, group, NULL);
3735 if (!gdp) {
3736 ret = 1;
3737 break;
3738 }
3739
3740 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3741 break;
3742 }
3743
3744 if (group >= ngroups)
3745 ret = 1;
3746
3747 if (!ret) {
3748 start_time = ktime_get_real_ns();
3749 ret = ext4_init_inode_table(sb, group,
3750 elr->lr_timeout ? 0 : 1);
3751 trace_ext4_lazy_itable_init(sb, group);
3752 if (elr->lr_timeout == 0) {
3753 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3754 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3755 }
3756 elr->lr_next_sched = jiffies + elr->lr_timeout;
3757 elr->lr_next_group = group + 1;
3758 }
3759 return ret;
3760 }
3761
3762 /*
3763 * Remove lr_request from the list_request and free the
3764 * request structure. Should be called with li_list_mtx held
3765 */
ext4_remove_li_request(struct ext4_li_request * elr)3766 static void ext4_remove_li_request(struct ext4_li_request *elr)
3767 {
3768 if (!elr)
3769 return;
3770
3771 list_del(&elr->lr_request);
3772 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3773 kfree(elr);
3774 }
3775
ext4_unregister_li_request(struct super_block * sb)3776 static void ext4_unregister_li_request(struct super_block *sb)
3777 {
3778 mutex_lock(&ext4_li_mtx);
3779 if (!ext4_li_info) {
3780 mutex_unlock(&ext4_li_mtx);
3781 return;
3782 }
3783
3784 mutex_lock(&ext4_li_info->li_list_mtx);
3785 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3786 mutex_unlock(&ext4_li_info->li_list_mtx);
3787 mutex_unlock(&ext4_li_mtx);
3788 }
3789
3790 static struct task_struct *ext4_lazyinit_task;
3791
3792 /*
3793 * This is the function where ext4lazyinit thread lives. It walks
3794 * through the request list searching for next scheduled filesystem.
3795 * When such a fs is found, run the lazy initialization request
3796 * (ext4_rn_li_request) and keep track of the time spend in this
3797 * function. Based on that time we compute next schedule time of
3798 * the request. When walking through the list is complete, compute
3799 * next waking time and put itself into sleep.
3800 */
ext4_lazyinit_thread(void * arg)3801 static int ext4_lazyinit_thread(void *arg)
3802 {
3803 struct ext4_lazy_init *eli = arg;
3804 struct list_head *pos, *n;
3805 struct ext4_li_request *elr;
3806 unsigned long next_wakeup, cur;
3807
3808 BUG_ON(NULL == eli);
3809 set_freezable();
3810
3811 cont_thread:
3812 while (true) {
3813 next_wakeup = MAX_JIFFY_OFFSET;
3814
3815 mutex_lock(&eli->li_list_mtx);
3816 if (list_empty(&eli->li_request_list)) {
3817 mutex_unlock(&eli->li_list_mtx);
3818 goto exit_thread;
3819 }
3820 list_for_each_safe(pos, n, &eli->li_request_list) {
3821 int err = 0;
3822 int progress = 0;
3823 elr = list_entry(pos, struct ext4_li_request,
3824 lr_request);
3825
3826 if (time_before(jiffies, elr->lr_next_sched)) {
3827 if (time_before(elr->lr_next_sched, next_wakeup))
3828 next_wakeup = elr->lr_next_sched;
3829 continue;
3830 }
3831 if (down_read_trylock(&elr->lr_super->s_umount)) {
3832 if (sb_start_write_trylock(elr->lr_super)) {
3833 progress = 1;
3834 /*
3835 * We hold sb->s_umount, sb can not
3836 * be removed from the list, it is
3837 * now safe to drop li_list_mtx
3838 */
3839 mutex_unlock(&eli->li_list_mtx);
3840 err = ext4_run_li_request(elr);
3841 sb_end_write(elr->lr_super);
3842 mutex_lock(&eli->li_list_mtx);
3843 n = pos->next;
3844 }
3845 up_read((&elr->lr_super->s_umount));
3846 }
3847 /* error, remove the lazy_init job */
3848 if (err) {
3849 ext4_remove_li_request(elr);
3850 continue;
3851 }
3852 if (!progress) {
3853 elr->lr_next_sched = jiffies +
3854 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3855 }
3856 if (time_before(elr->lr_next_sched, next_wakeup))
3857 next_wakeup = elr->lr_next_sched;
3858 }
3859 mutex_unlock(&eli->li_list_mtx);
3860
3861 try_to_freeze();
3862
3863 cur = jiffies;
3864 if ((time_after_eq(cur, next_wakeup)) ||
3865 (MAX_JIFFY_OFFSET == next_wakeup)) {
3866 cond_resched();
3867 continue;
3868 }
3869
3870 schedule_timeout_interruptible(next_wakeup - cur);
3871
3872 if (kthread_should_stop()) {
3873 ext4_clear_request_list();
3874 goto exit_thread;
3875 }
3876 }
3877
3878 exit_thread:
3879 /*
3880 * It looks like the request list is empty, but we need
3881 * to check it under the li_list_mtx lock, to prevent any
3882 * additions into it, and of course we should lock ext4_li_mtx
3883 * to atomically free the list and ext4_li_info, because at
3884 * this point another ext4 filesystem could be registering
3885 * new one.
3886 */
3887 mutex_lock(&ext4_li_mtx);
3888 mutex_lock(&eli->li_list_mtx);
3889 if (!list_empty(&eli->li_request_list)) {
3890 mutex_unlock(&eli->li_list_mtx);
3891 mutex_unlock(&ext4_li_mtx);
3892 goto cont_thread;
3893 }
3894 mutex_unlock(&eli->li_list_mtx);
3895 kfree(ext4_li_info);
3896 ext4_li_info = NULL;
3897 mutex_unlock(&ext4_li_mtx);
3898
3899 return 0;
3900 }
3901
ext4_clear_request_list(void)3902 static void ext4_clear_request_list(void)
3903 {
3904 struct list_head *pos, *n;
3905 struct ext4_li_request *elr;
3906
3907 mutex_lock(&ext4_li_info->li_list_mtx);
3908 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3909 elr = list_entry(pos, struct ext4_li_request,
3910 lr_request);
3911 ext4_remove_li_request(elr);
3912 }
3913 mutex_unlock(&ext4_li_info->li_list_mtx);
3914 }
3915
ext4_run_lazyinit_thread(void)3916 static int ext4_run_lazyinit_thread(void)
3917 {
3918 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3919 ext4_li_info, "ext4lazyinit");
3920 if (IS_ERR(ext4_lazyinit_task)) {
3921 int err = PTR_ERR(ext4_lazyinit_task);
3922 ext4_clear_request_list();
3923 kfree(ext4_li_info);
3924 ext4_li_info = NULL;
3925 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3926 "initialization thread\n",
3927 err);
3928 return err;
3929 }
3930 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3931 return 0;
3932 }
3933
3934 /*
3935 * Check whether it make sense to run itable init. thread or not.
3936 * If there is at least one uninitialized inode table, return
3937 * corresponding group number, else the loop goes through all
3938 * groups and return total number of groups.
3939 */
ext4_has_uninit_itable(struct super_block * sb)3940 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3941 {
3942 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3943 struct ext4_group_desc *gdp = NULL;
3944
3945 if (!ext4_has_group_desc_csum(sb))
3946 return ngroups;
3947
3948 for (group = 0; group < ngroups; group++) {
3949 gdp = ext4_get_group_desc(sb, group, NULL);
3950 if (!gdp)
3951 continue;
3952
3953 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3954 break;
3955 }
3956
3957 return group;
3958 }
3959
ext4_li_info_new(void)3960 static int ext4_li_info_new(void)
3961 {
3962 struct ext4_lazy_init *eli = NULL;
3963
3964 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3965 if (!eli)
3966 return -ENOMEM;
3967
3968 INIT_LIST_HEAD(&eli->li_request_list);
3969 mutex_init(&eli->li_list_mtx);
3970
3971 eli->li_state |= EXT4_LAZYINIT_QUIT;
3972
3973 ext4_li_info = eli;
3974
3975 return 0;
3976 }
3977
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3978 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3979 ext4_group_t start)
3980 {
3981 struct ext4_li_request *elr;
3982
3983 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3984 if (!elr)
3985 return NULL;
3986
3987 elr->lr_super = sb;
3988 elr->lr_first_not_zeroed = start;
3989 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3990 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3991 elr->lr_next_group = start;
3992 } else {
3993 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3994 }
3995
3996 /*
3997 * Randomize first schedule time of the request to
3998 * spread the inode table initialization requests
3999 * better.
4000 */
4001 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
4002 return elr;
4003 }
4004
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)4005 int ext4_register_li_request(struct super_block *sb,
4006 ext4_group_t first_not_zeroed)
4007 {
4008 struct ext4_sb_info *sbi = EXT4_SB(sb);
4009 struct ext4_li_request *elr = NULL;
4010 ext4_group_t ngroups = sbi->s_groups_count;
4011 int ret = 0;
4012
4013 mutex_lock(&ext4_li_mtx);
4014 if (sbi->s_li_request != NULL) {
4015 /*
4016 * Reset timeout so it can be computed again, because
4017 * s_li_wait_mult might have changed.
4018 */
4019 sbi->s_li_request->lr_timeout = 0;
4020 goto out;
4021 }
4022
4023 if (sb_rdonly(sb) ||
4024 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4025 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4026 goto out;
4027
4028 elr = ext4_li_request_new(sb, first_not_zeroed);
4029 if (!elr) {
4030 ret = -ENOMEM;
4031 goto out;
4032 }
4033
4034 if (NULL == ext4_li_info) {
4035 ret = ext4_li_info_new();
4036 if (ret)
4037 goto out;
4038 }
4039
4040 mutex_lock(&ext4_li_info->li_list_mtx);
4041 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4042 mutex_unlock(&ext4_li_info->li_list_mtx);
4043
4044 sbi->s_li_request = elr;
4045 /*
4046 * set elr to NULL here since it has been inserted to
4047 * the request_list and the removal and free of it is
4048 * handled by ext4_clear_request_list from now on.
4049 */
4050 elr = NULL;
4051
4052 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4053 ret = ext4_run_lazyinit_thread();
4054 if (ret)
4055 goto out;
4056 }
4057 out:
4058 mutex_unlock(&ext4_li_mtx);
4059 if (ret)
4060 kfree(elr);
4061 return ret;
4062 }
4063
4064 /*
4065 * We do not need to lock anything since this is called on
4066 * module unload.
4067 */
ext4_destroy_lazyinit_thread(void)4068 static void ext4_destroy_lazyinit_thread(void)
4069 {
4070 /*
4071 * If thread exited earlier
4072 * there's nothing to be done.
4073 */
4074 if (!ext4_li_info || !ext4_lazyinit_task)
4075 return;
4076
4077 kthread_stop(ext4_lazyinit_task);
4078 }
4079
set_journal_csum_feature_set(struct super_block * sb)4080 static int set_journal_csum_feature_set(struct super_block *sb)
4081 {
4082 int ret = 1;
4083 int compat, incompat;
4084 struct ext4_sb_info *sbi = EXT4_SB(sb);
4085
4086 if (ext4_has_metadata_csum(sb)) {
4087 /* journal checksum v3 */
4088 compat = 0;
4089 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4090 } else {
4091 /* journal checksum v1 */
4092 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4093 incompat = 0;
4094 }
4095
4096 jbd2_journal_clear_features(sbi->s_journal,
4097 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4098 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4099 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4100 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4101 ret = jbd2_journal_set_features(sbi->s_journal,
4102 compat, 0,
4103 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4104 incompat);
4105 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4106 ret = jbd2_journal_set_features(sbi->s_journal,
4107 compat, 0,
4108 incompat);
4109 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4110 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4111 } else {
4112 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4113 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4114 }
4115
4116 return ret;
4117 }
4118
4119 /*
4120 * Note: calculating the overhead so we can be compatible with
4121 * historical BSD practice is quite difficult in the face of
4122 * clusters/bigalloc. This is because multiple metadata blocks from
4123 * different block group can end up in the same allocation cluster.
4124 * Calculating the exact overhead in the face of clustered allocation
4125 * requires either O(all block bitmaps) in memory or O(number of block
4126 * groups**2) in time. We will still calculate the superblock for
4127 * older file systems --- and if we come across with a bigalloc file
4128 * system with zero in s_overhead_clusters the estimate will be close to
4129 * correct especially for very large cluster sizes --- but for newer
4130 * file systems, it's better to calculate this figure once at mkfs
4131 * time, and store it in the superblock. If the superblock value is
4132 * present (even for non-bigalloc file systems), we will use it.
4133 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4134 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4135 char *buf)
4136 {
4137 struct ext4_sb_info *sbi = EXT4_SB(sb);
4138 struct ext4_group_desc *gdp;
4139 ext4_fsblk_t first_block, last_block, b;
4140 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4141 int s, j, count = 0;
4142 int has_super = ext4_bg_has_super(sb, grp);
4143
4144 if (!ext4_has_feature_bigalloc(sb))
4145 return (has_super + ext4_bg_num_gdb(sb, grp) +
4146 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4147 sbi->s_itb_per_group + 2);
4148
4149 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4150 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4151 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4152 for (i = 0; i < ngroups; i++) {
4153 gdp = ext4_get_group_desc(sb, i, NULL);
4154 b = ext4_block_bitmap(sb, gdp);
4155 if (b >= first_block && b <= last_block) {
4156 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4157 count++;
4158 }
4159 b = ext4_inode_bitmap(sb, gdp);
4160 if (b >= first_block && b <= last_block) {
4161 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4162 count++;
4163 }
4164 b = ext4_inode_table(sb, gdp);
4165 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4166 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4167 int c = EXT4_B2C(sbi, b - first_block);
4168 ext4_set_bit(c, buf);
4169 count++;
4170 }
4171 if (i != grp)
4172 continue;
4173 s = 0;
4174 if (ext4_bg_has_super(sb, grp)) {
4175 ext4_set_bit(s++, buf);
4176 count++;
4177 }
4178 j = ext4_bg_num_gdb(sb, grp);
4179 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4180 ext4_error(sb, "Invalid number of block group "
4181 "descriptor blocks: %d", j);
4182 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4183 }
4184 count += j;
4185 for (; j > 0; j--)
4186 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4187 }
4188 if (!count)
4189 return 0;
4190 return EXT4_CLUSTERS_PER_GROUP(sb) -
4191 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4192 }
4193
4194 /*
4195 * Compute the overhead and stash it in sbi->s_overhead
4196 */
ext4_calculate_overhead(struct super_block * sb)4197 int ext4_calculate_overhead(struct super_block *sb)
4198 {
4199 struct ext4_sb_info *sbi = EXT4_SB(sb);
4200 struct ext4_super_block *es = sbi->s_es;
4201 struct inode *j_inode;
4202 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4203 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4204 ext4_fsblk_t overhead = 0;
4205 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4206
4207 if (!buf)
4208 return -ENOMEM;
4209
4210 /*
4211 * Compute the overhead (FS structures). This is constant
4212 * for a given filesystem unless the number of block groups
4213 * changes so we cache the previous value until it does.
4214 */
4215
4216 /*
4217 * All of the blocks before first_data_block are overhead
4218 */
4219 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4220
4221 /*
4222 * Add the overhead found in each block group
4223 */
4224 for (i = 0; i < ngroups; i++) {
4225 int blks;
4226
4227 blks = count_overhead(sb, i, buf);
4228 overhead += blks;
4229 if (blks)
4230 memset(buf, 0, PAGE_SIZE);
4231 cond_resched();
4232 }
4233
4234 /*
4235 * Add the internal journal blocks whether the journal has been
4236 * loaded or not
4237 */
4238 if (sbi->s_journal && !sbi->s_journal_bdev)
4239 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4240 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4241 /* j_inum for internal journal is non-zero */
4242 j_inode = ext4_get_journal_inode(sb, j_inum);
4243 if (!IS_ERR(j_inode)) {
4244 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4245 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4246 iput(j_inode);
4247 } else {
4248 ext4_msg(sb, KERN_ERR, "can't get journal size");
4249 }
4250 }
4251 sbi->s_overhead = overhead;
4252 smp_wmb();
4253 free_page((unsigned long) buf);
4254 return 0;
4255 }
4256
ext4_set_resv_clusters(struct super_block * sb)4257 static void ext4_set_resv_clusters(struct super_block *sb)
4258 {
4259 ext4_fsblk_t resv_clusters;
4260 struct ext4_sb_info *sbi = EXT4_SB(sb);
4261
4262 /*
4263 * There's no need to reserve anything when we aren't using extents.
4264 * The space estimates are exact, there are no unwritten extents,
4265 * hole punching doesn't need new metadata... This is needed especially
4266 * to keep ext2/3 backward compatibility.
4267 */
4268 if (!ext4_has_feature_extents(sb))
4269 return;
4270 /*
4271 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4272 * This should cover the situations where we can not afford to run
4273 * out of space like for example punch hole, or converting
4274 * unwritten extents in delalloc path. In most cases such
4275 * allocation would require 1, or 2 blocks, higher numbers are
4276 * very rare.
4277 */
4278 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4279 sbi->s_cluster_bits);
4280
4281 do_div(resv_clusters, 50);
4282 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4283
4284 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4285 }
4286
ext4_quota_mode(struct super_block * sb)4287 static const char *ext4_quota_mode(struct super_block *sb)
4288 {
4289 #ifdef CONFIG_QUOTA
4290 if (!ext4_quota_capable(sb))
4291 return "none";
4292
4293 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4294 return "journalled";
4295 else
4296 return "writeback";
4297 #else
4298 return "disabled";
4299 #endif
4300 }
4301
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4302 static void ext4_setup_csum_trigger(struct super_block *sb,
4303 enum ext4_journal_trigger_type type,
4304 void (*trigger)(
4305 struct jbd2_buffer_trigger_type *type,
4306 struct buffer_head *bh,
4307 void *mapped_data,
4308 size_t size))
4309 {
4310 struct ext4_sb_info *sbi = EXT4_SB(sb);
4311
4312 sbi->s_journal_triggers[type].sb = sb;
4313 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4314 }
4315
ext4_free_sbi(struct ext4_sb_info * sbi)4316 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4317 {
4318 if (!sbi)
4319 return;
4320
4321 kfree(sbi->s_blockgroup_lock);
4322 fs_put_dax(sbi->s_daxdev, NULL);
4323 kfree(sbi);
4324 }
4325
ext4_alloc_sbi(struct super_block * sb)4326 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4327 {
4328 struct ext4_sb_info *sbi;
4329
4330 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4331 if (!sbi)
4332 return NULL;
4333
4334 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4335 NULL, NULL);
4336
4337 sbi->s_blockgroup_lock =
4338 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4339
4340 if (!sbi->s_blockgroup_lock)
4341 goto err_out;
4342
4343 sb->s_fs_info = sbi;
4344 sbi->s_sb = sb;
4345 return sbi;
4346 err_out:
4347 fs_put_dax(sbi->s_daxdev, NULL);
4348 kfree(sbi);
4349 return NULL;
4350 }
4351
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4352 static void ext4_set_def_opts(struct super_block *sb,
4353 struct ext4_super_block *es)
4354 {
4355 unsigned long def_mount_opts;
4356
4357 /* Set defaults before we parse the mount options */
4358 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4359 set_opt(sb, INIT_INODE_TABLE);
4360 if (def_mount_opts & EXT4_DEFM_DEBUG)
4361 set_opt(sb, DEBUG);
4362 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4363 set_opt(sb, GRPID);
4364 if (def_mount_opts & EXT4_DEFM_UID16)
4365 set_opt(sb, NO_UID32);
4366 /* xattr user namespace & acls are now defaulted on */
4367 set_opt(sb, XATTR_USER);
4368 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4369 set_opt(sb, POSIX_ACL);
4370 #endif
4371 if (ext4_has_feature_fast_commit(sb))
4372 set_opt2(sb, JOURNAL_FAST_COMMIT);
4373 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4374 if (ext4_has_metadata_csum(sb))
4375 set_opt(sb, JOURNAL_CHECKSUM);
4376
4377 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4378 set_opt(sb, JOURNAL_DATA);
4379 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4380 set_opt(sb, ORDERED_DATA);
4381 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4382 set_opt(sb, WRITEBACK_DATA);
4383
4384 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4385 set_opt(sb, ERRORS_PANIC);
4386 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4387 set_opt(sb, ERRORS_CONT);
4388 else
4389 set_opt(sb, ERRORS_RO);
4390 /* block_validity enabled by default; disable with noblock_validity */
4391 set_opt(sb, BLOCK_VALIDITY);
4392 if (def_mount_opts & EXT4_DEFM_DISCARD)
4393 set_opt(sb, DISCARD);
4394
4395 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4396 set_opt(sb, BARRIER);
4397
4398 /*
4399 * enable delayed allocation by default
4400 * Use -o nodelalloc to turn it off
4401 */
4402 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4403 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4404 set_opt(sb, DELALLOC);
4405
4406 if (sb->s_blocksize == PAGE_SIZE)
4407 set_opt(sb, DIOREAD_NOLOCK);
4408 }
4409
ext4_handle_clustersize(struct super_block * sb)4410 static int ext4_handle_clustersize(struct super_block *sb)
4411 {
4412 struct ext4_sb_info *sbi = EXT4_SB(sb);
4413 struct ext4_super_block *es = sbi->s_es;
4414 int clustersize;
4415
4416 /* Handle clustersize */
4417 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4418 if (ext4_has_feature_bigalloc(sb)) {
4419 if (clustersize < sb->s_blocksize) {
4420 ext4_msg(sb, KERN_ERR,
4421 "cluster size (%d) smaller than "
4422 "block size (%lu)", clustersize, sb->s_blocksize);
4423 return -EINVAL;
4424 }
4425 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4426 le32_to_cpu(es->s_log_block_size);
4427 sbi->s_clusters_per_group =
4428 le32_to_cpu(es->s_clusters_per_group);
4429 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4430 ext4_msg(sb, KERN_ERR,
4431 "#clusters per group too big: %lu",
4432 sbi->s_clusters_per_group);
4433 return -EINVAL;
4434 }
4435 if (sbi->s_blocks_per_group !=
4436 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4437 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4438 "clusters per group (%lu) inconsistent",
4439 sbi->s_blocks_per_group,
4440 sbi->s_clusters_per_group);
4441 return -EINVAL;
4442 }
4443 } else {
4444 if (clustersize != sb->s_blocksize) {
4445 ext4_msg(sb, KERN_ERR,
4446 "fragment/cluster size (%d) != "
4447 "block size (%lu)", clustersize, sb->s_blocksize);
4448 return -EINVAL;
4449 }
4450 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4451 ext4_msg(sb, KERN_ERR,
4452 "#blocks per group too big: %lu",
4453 sbi->s_blocks_per_group);
4454 return -EINVAL;
4455 }
4456 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4457 sbi->s_cluster_bits = 0;
4458 }
4459 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4460
4461 /* Do we have standard group size of clustersize * 8 blocks ? */
4462 if (sbi->s_blocks_per_group == clustersize << 3)
4463 set_opt2(sb, STD_GROUP_SIZE);
4464
4465 return 0;
4466 }
4467
ext4_fast_commit_init(struct super_block * sb)4468 static void ext4_fast_commit_init(struct super_block *sb)
4469 {
4470 struct ext4_sb_info *sbi = EXT4_SB(sb);
4471
4472 /* Initialize fast commit stuff */
4473 atomic_set(&sbi->s_fc_subtid, 0);
4474 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4475 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4476 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4477 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4478 sbi->s_fc_bytes = 0;
4479 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4480 sbi->s_fc_ineligible_tid = 0;
4481 spin_lock_init(&sbi->s_fc_lock);
4482 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4483 sbi->s_fc_replay_state.fc_regions = NULL;
4484 sbi->s_fc_replay_state.fc_regions_size = 0;
4485 sbi->s_fc_replay_state.fc_regions_used = 0;
4486 sbi->s_fc_replay_state.fc_regions_valid = 0;
4487 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4488 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4489 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4490 }
4491
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4492 static int ext4_inode_info_init(struct super_block *sb,
4493 struct ext4_super_block *es)
4494 {
4495 struct ext4_sb_info *sbi = EXT4_SB(sb);
4496
4497 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4498 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4499 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4500 } else {
4501 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4502 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4503 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4504 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4505 sbi->s_first_ino);
4506 return -EINVAL;
4507 }
4508 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4509 (!is_power_of_2(sbi->s_inode_size)) ||
4510 (sbi->s_inode_size > sb->s_blocksize)) {
4511 ext4_msg(sb, KERN_ERR,
4512 "unsupported inode size: %d",
4513 sbi->s_inode_size);
4514 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4515 return -EINVAL;
4516 }
4517 /*
4518 * i_atime_extra is the last extra field available for
4519 * [acm]times in struct ext4_inode. Checking for that
4520 * field should suffice to ensure we have extra space
4521 * for all three.
4522 */
4523 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4524 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4525 sb->s_time_gran = 1;
4526 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4527 } else {
4528 sb->s_time_gran = NSEC_PER_SEC;
4529 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4530 }
4531 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4532 }
4533
4534 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4535 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4536 EXT4_GOOD_OLD_INODE_SIZE;
4537 if (ext4_has_feature_extra_isize(sb)) {
4538 unsigned v, max = (sbi->s_inode_size -
4539 EXT4_GOOD_OLD_INODE_SIZE);
4540
4541 v = le16_to_cpu(es->s_want_extra_isize);
4542 if (v > max) {
4543 ext4_msg(sb, KERN_ERR,
4544 "bad s_want_extra_isize: %d", v);
4545 return -EINVAL;
4546 }
4547 if (sbi->s_want_extra_isize < v)
4548 sbi->s_want_extra_isize = v;
4549
4550 v = le16_to_cpu(es->s_min_extra_isize);
4551 if (v > max) {
4552 ext4_msg(sb, KERN_ERR,
4553 "bad s_min_extra_isize: %d", v);
4554 return -EINVAL;
4555 }
4556 if (sbi->s_want_extra_isize < v)
4557 sbi->s_want_extra_isize = v;
4558 }
4559 }
4560
4561 return 0;
4562 }
4563
4564 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4565 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4566 {
4567 const struct ext4_sb_encodings *encoding_info;
4568 struct unicode_map *encoding;
4569 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4570
4571 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4572 return 0;
4573
4574 encoding_info = ext4_sb_read_encoding(es);
4575 if (!encoding_info) {
4576 ext4_msg(sb, KERN_ERR,
4577 "Encoding requested by superblock is unknown");
4578 return -EINVAL;
4579 }
4580
4581 encoding = utf8_load(encoding_info->version);
4582 if (IS_ERR(encoding)) {
4583 ext4_msg(sb, KERN_ERR,
4584 "can't mount with superblock charset: %s-%u.%u.%u "
4585 "not supported by the kernel. flags: 0x%x.",
4586 encoding_info->name,
4587 unicode_major(encoding_info->version),
4588 unicode_minor(encoding_info->version),
4589 unicode_rev(encoding_info->version),
4590 encoding_flags);
4591 return -EINVAL;
4592 }
4593 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4594 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4595 unicode_major(encoding_info->version),
4596 unicode_minor(encoding_info->version),
4597 unicode_rev(encoding_info->version),
4598 encoding_flags);
4599
4600 sb->s_encoding = encoding;
4601 sb->s_encoding_flags = encoding_flags;
4602
4603 return 0;
4604 }
4605 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4606 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4607 {
4608 return 0;
4609 }
4610 #endif
4611
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4612 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4613 {
4614 struct ext4_sb_info *sbi = EXT4_SB(sb);
4615
4616 /* Warn if metadata_csum and gdt_csum are both set. */
4617 if (ext4_has_feature_metadata_csum(sb) &&
4618 ext4_has_feature_gdt_csum(sb))
4619 ext4_warning(sb, "metadata_csum and uninit_bg are "
4620 "redundant flags; please run fsck.");
4621
4622 /* Check for a known checksum algorithm */
4623 if (!ext4_verify_csum_type(sb, es)) {
4624 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4625 "unknown checksum algorithm.");
4626 return -EINVAL;
4627 }
4628 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4629 ext4_orphan_file_block_trigger);
4630
4631 /* Load the checksum driver */
4632 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4633 if (IS_ERR(sbi->s_chksum_driver)) {
4634 int ret = PTR_ERR(sbi->s_chksum_driver);
4635 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4636 sbi->s_chksum_driver = NULL;
4637 return ret;
4638 }
4639
4640 /* Check superblock checksum */
4641 if (!ext4_superblock_csum_verify(sb, es)) {
4642 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4643 "invalid superblock checksum. Run e2fsck?");
4644 return -EFSBADCRC;
4645 }
4646
4647 /* Precompute checksum seed for all metadata */
4648 if (ext4_has_feature_csum_seed(sb))
4649 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4650 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4651 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4652 sizeof(es->s_uuid));
4653 return 0;
4654 }
4655
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4656 static int ext4_check_feature_compatibility(struct super_block *sb,
4657 struct ext4_super_block *es,
4658 int silent)
4659 {
4660 struct ext4_sb_info *sbi = EXT4_SB(sb);
4661
4662 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4663 (ext4_has_compat_features(sb) ||
4664 ext4_has_ro_compat_features(sb) ||
4665 ext4_has_incompat_features(sb)))
4666 ext4_msg(sb, KERN_WARNING,
4667 "feature flags set on rev 0 fs, "
4668 "running e2fsck is recommended");
4669
4670 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4671 set_opt2(sb, HURD_COMPAT);
4672 if (ext4_has_feature_64bit(sb)) {
4673 ext4_msg(sb, KERN_ERR,
4674 "The Hurd can't support 64-bit file systems");
4675 return -EINVAL;
4676 }
4677
4678 /*
4679 * ea_inode feature uses l_i_version field which is not
4680 * available in HURD_COMPAT mode.
4681 */
4682 if (ext4_has_feature_ea_inode(sb)) {
4683 ext4_msg(sb, KERN_ERR,
4684 "ea_inode feature is not supported for Hurd");
4685 return -EINVAL;
4686 }
4687 }
4688
4689 if (IS_EXT2_SB(sb)) {
4690 if (ext2_feature_set_ok(sb))
4691 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4692 "using the ext4 subsystem");
4693 else {
4694 /*
4695 * If we're probing be silent, if this looks like
4696 * it's actually an ext[34] filesystem.
4697 */
4698 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4699 return -EINVAL;
4700 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4701 "to feature incompatibilities");
4702 return -EINVAL;
4703 }
4704 }
4705
4706 if (IS_EXT3_SB(sb)) {
4707 if (ext3_feature_set_ok(sb))
4708 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4709 "using the ext4 subsystem");
4710 else {
4711 /*
4712 * If we're probing be silent, if this looks like
4713 * it's actually an ext4 filesystem.
4714 */
4715 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4716 return -EINVAL;
4717 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4718 "to feature incompatibilities");
4719 return -EINVAL;
4720 }
4721 }
4722
4723 /*
4724 * Check feature flags regardless of the revision level, since we
4725 * previously didn't change the revision level when setting the flags,
4726 * so there is a chance incompat flags are set on a rev 0 filesystem.
4727 */
4728 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4729 return -EINVAL;
4730
4731 if (sbi->s_daxdev) {
4732 if (sb->s_blocksize == PAGE_SIZE)
4733 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4734 else
4735 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4736 }
4737
4738 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4739 if (ext4_has_feature_inline_data(sb)) {
4740 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4741 " that may contain inline data");
4742 return -EINVAL;
4743 }
4744 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4745 ext4_msg(sb, KERN_ERR,
4746 "DAX unsupported by block device.");
4747 return -EINVAL;
4748 }
4749 }
4750
4751 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4752 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4753 es->s_encryption_level);
4754 return -EINVAL;
4755 }
4756
4757 return 0;
4758 }
4759
ext4_check_geometry(struct super_block * sb,struct ext4_super_block * es)4760 static int ext4_check_geometry(struct super_block *sb,
4761 struct ext4_super_block *es)
4762 {
4763 struct ext4_sb_info *sbi = EXT4_SB(sb);
4764 __u64 blocks_count;
4765 int err;
4766
4767 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4768 ext4_msg(sb, KERN_ERR,
4769 "Number of reserved GDT blocks insanely large: %d",
4770 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4771 return -EINVAL;
4772 }
4773 /*
4774 * Test whether we have more sectors than will fit in sector_t,
4775 * and whether the max offset is addressable by the page cache.
4776 */
4777 err = generic_check_addressable(sb->s_blocksize_bits,
4778 ext4_blocks_count(es));
4779 if (err) {
4780 ext4_msg(sb, KERN_ERR, "filesystem"
4781 " too large to mount safely on this system");
4782 return err;
4783 }
4784
4785 /* check blocks count against device size */
4786 blocks_count = sb_bdev_nr_blocks(sb);
4787 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4788 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4789 "exceeds size of device (%llu blocks)",
4790 ext4_blocks_count(es), blocks_count);
4791 return -EINVAL;
4792 }
4793
4794 /*
4795 * It makes no sense for the first data block to be beyond the end
4796 * of the filesystem.
4797 */
4798 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4799 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4800 "block %u is beyond end of filesystem (%llu)",
4801 le32_to_cpu(es->s_first_data_block),
4802 ext4_blocks_count(es));
4803 return -EINVAL;
4804 }
4805 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4806 (sbi->s_cluster_ratio == 1)) {
4807 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4808 "block is 0 with a 1k block and cluster size");
4809 return -EINVAL;
4810 }
4811
4812 blocks_count = (ext4_blocks_count(es) -
4813 le32_to_cpu(es->s_first_data_block) +
4814 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4815 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4816 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4817 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4818 "(block count %llu, first data block %u, "
4819 "blocks per group %lu)", blocks_count,
4820 ext4_blocks_count(es),
4821 le32_to_cpu(es->s_first_data_block),
4822 EXT4_BLOCKS_PER_GROUP(sb));
4823 return -EINVAL;
4824 }
4825 sbi->s_groups_count = blocks_count;
4826 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4827 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4828 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4829 le32_to_cpu(es->s_inodes_count)) {
4830 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4831 le32_to_cpu(es->s_inodes_count),
4832 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4833 return -EINVAL;
4834 }
4835
4836 return 0;
4837 }
4838
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4839 static int ext4_group_desc_init(struct super_block *sb,
4840 struct ext4_super_block *es,
4841 ext4_fsblk_t logical_sb_block,
4842 ext4_group_t *first_not_zeroed)
4843 {
4844 struct ext4_sb_info *sbi = EXT4_SB(sb);
4845 unsigned int db_count;
4846 ext4_fsblk_t block;
4847 int i;
4848
4849 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4850 EXT4_DESC_PER_BLOCK(sb);
4851 if (ext4_has_feature_meta_bg(sb)) {
4852 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4853 ext4_msg(sb, KERN_WARNING,
4854 "first meta block group too large: %u "
4855 "(group descriptor block count %u)",
4856 le32_to_cpu(es->s_first_meta_bg), db_count);
4857 return -EINVAL;
4858 }
4859 }
4860 rcu_assign_pointer(sbi->s_group_desc,
4861 kvmalloc_array(db_count,
4862 sizeof(struct buffer_head *),
4863 GFP_KERNEL));
4864 if (sbi->s_group_desc == NULL) {
4865 ext4_msg(sb, KERN_ERR, "not enough memory");
4866 return -ENOMEM;
4867 }
4868
4869 bgl_lock_init(sbi->s_blockgroup_lock);
4870
4871 /* Pre-read the descriptors into the buffer cache */
4872 for (i = 0; i < db_count; i++) {
4873 block = descriptor_loc(sb, logical_sb_block, i);
4874 ext4_sb_breadahead_unmovable(sb, block);
4875 }
4876
4877 for (i = 0; i < db_count; i++) {
4878 struct buffer_head *bh;
4879
4880 block = descriptor_loc(sb, logical_sb_block, i);
4881 bh = ext4_sb_bread_unmovable(sb, block);
4882 if (IS_ERR(bh)) {
4883 ext4_msg(sb, KERN_ERR,
4884 "can't read group descriptor %d", i);
4885 sbi->s_gdb_count = i;
4886 return PTR_ERR(bh);
4887 }
4888 rcu_read_lock();
4889 rcu_dereference(sbi->s_group_desc)[i] = bh;
4890 rcu_read_unlock();
4891 }
4892 sbi->s_gdb_count = db_count;
4893 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4894 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4895 return -EFSCORRUPTED;
4896 }
4897
4898 return 0;
4899 }
4900
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4901 static int ext4_load_and_init_journal(struct super_block *sb,
4902 struct ext4_super_block *es,
4903 struct ext4_fs_context *ctx)
4904 {
4905 struct ext4_sb_info *sbi = EXT4_SB(sb);
4906 int err;
4907
4908 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4909 if (err)
4910 return err;
4911
4912 if (ext4_has_feature_64bit(sb) &&
4913 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4914 JBD2_FEATURE_INCOMPAT_64BIT)) {
4915 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4916 goto out;
4917 }
4918
4919 if (!set_journal_csum_feature_set(sb)) {
4920 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4921 "feature set");
4922 goto out;
4923 }
4924
4925 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4926 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4927 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4928 ext4_msg(sb, KERN_ERR,
4929 "Failed to set fast commit journal feature");
4930 goto out;
4931 }
4932
4933 /* We have now updated the journal if required, so we can
4934 * validate the data journaling mode. */
4935 switch (test_opt(sb, DATA_FLAGS)) {
4936 case 0:
4937 /* No mode set, assume a default based on the journal
4938 * capabilities: ORDERED_DATA if the journal can
4939 * cope, else JOURNAL_DATA
4940 */
4941 if (jbd2_journal_check_available_features
4942 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4943 set_opt(sb, ORDERED_DATA);
4944 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4945 } else {
4946 set_opt(sb, JOURNAL_DATA);
4947 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4948 }
4949 break;
4950
4951 case EXT4_MOUNT_ORDERED_DATA:
4952 case EXT4_MOUNT_WRITEBACK_DATA:
4953 if (!jbd2_journal_check_available_features
4954 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4955 ext4_msg(sb, KERN_ERR, "Journal does not support "
4956 "requested data journaling mode");
4957 goto out;
4958 }
4959 break;
4960 default:
4961 break;
4962 }
4963
4964 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4965 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4966 ext4_msg(sb, KERN_ERR, "can't mount with "
4967 "journal_async_commit in data=ordered mode");
4968 goto out;
4969 }
4970
4971 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4972
4973 sbi->s_journal->j_submit_inode_data_buffers =
4974 ext4_journal_submit_inode_data_buffers;
4975 sbi->s_journal->j_finish_inode_data_buffers =
4976 ext4_journal_finish_inode_data_buffers;
4977
4978 return 0;
4979
4980 out:
4981 /* flush s_sb_upd_work before destroying the journal. */
4982 flush_work(&sbi->s_sb_upd_work);
4983 jbd2_journal_destroy(sbi->s_journal);
4984 sbi->s_journal = NULL;
4985 return -EINVAL;
4986 }
4987
ext4_check_journal_data_mode(struct super_block * sb)4988 static int ext4_check_journal_data_mode(struct super_block *sb)
4989 {
4990 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4991 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4992 "data=journal disables delayed allocation, "
4993 "dioread_nolock, O_DIRECT and fast_commit support!\n");
4994 /* can't mount with both data=journal and dioread_nolock. */
4995 clear_opt(sb, DIOREAD_NOLOCK);
4996 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4997 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4998 ext4_msg(sb, KERN_ERR, "can't mount with "
4999 "both data=journal and delalloc");
5000 return -EINVAL;
5001 }
5002 if (test_opt(sb, DAX_ALWAYS)) {
5003 ext4_msg(sb, KERN_ERR, "can't mount with "
5004 "both data=journal and dax");
5005 return -EINVAL;
5006 }
5007 if (ext4_has_feature_encrypt(sb)) {
5008 ext4_msg(sb, KERN_WARNING,
5009 "encrypted files will use data=ordered "
5010 "instead of data journaling mode");
5011 }
5012 if (test_opt(sb, DELALLOC))
5013 clear_opt(sb, DELALLOC);
5014 } else {
5015 sb->s_iflags |= SB_I_CGROUPWB;
5016 }
5017
5018 return 0;
5019 }
5020
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)5021 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5022 int silent)
5023 {
5024 struct ext4_sb_info *sbi = EXT4_SB(sb);
5025 struct ext4_super_block *es;
5026 ext4_fsblk_t logical_sb_block;
5027 unsigned long offset = 0;
5028 struct buffer_head *bh;
5029 int ret = -EINVAL;
5030 int blocksize;
5031
5032 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5033 if (!blocksize) {
5034 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5035 return -EINVAL;
5036 }
5037
5038 /*
5039 * The ext4 superblock will not be buffer aligned for other than 1kB
5040 * block sizes. We need to calculate the offset from buffer start.
5041 */
5042 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5043 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5044 offset = do_div(logical_sb_block, blocksize);
5045 } else {
5046 logical_sb_block = sbi->s_sb_block;
5047 }
5048
5049 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5050 if (IS_ERR(bh)) {
5051 ext4_msg(sb, KERN_ERR, "unable to read superblock");
5052 return PTR_ERR(bh);
5053 }
5054 /*
5055 * Note: s_es must be initialized as soon as possible because
5056 * some ext4 macro-instructions depend on its value
5057 */
5058 es = (struct ext4_super_block *) (bh->b_data + offset);
5059 sbi->s_es = es;
5060 sb->s_magic = le16_to_cpu(es->s_magic);
5061 if (sb->s_magic != EXT4_SUPER_MAGIC) {
5062 if (!silent)
5063 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5064 goto out;
5065 }
5066
5067 if (le32_to_cpu(es->s_log_block_size) >
5068 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5069 ext4_msg(sb, KERN_ERR,
5070 "Invalid log block size: %u",
5071 le32_to_cpu(es->s_log_block_size));
5072 goto out;
5073 }
5074 if (le32_to_cpu(es->s_log_cluster_size) >
5075 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5076 ext4_msg(sb, KERN_ERR,
5077 "Invalid log cluster size: %u",
5078 le32_to_cpu(es->s_log_cluster_size));
5079 goto out;
5080 }
5081
5082 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5083
5084 /*
5085 * If the default block size is not the same as the real block size,
5086 * we need to reload it.
5087 */
5088 if (sb->s_blocksize == blocksize) {
5089 *lsb = logical_sb_block;
5090 sbi->s_sbh = bh;
5091 return 0;
5092 }
5093
5094 /*
5095 * bh must be released before kill_bdev(), otherwise
5096 * it won't be freed and its page also. kill_bdev()
5097 * is called by sb_set_blocksize().
5098 */
5099 brelse(bh);
5100 /* Validate the filesystem blocksize */
5101 if (!sb_set_blocksize(sb, blocksize)) {
5102 ext4_msg(sb, KERN_ERR, "bad block size %d",
5103 blocksize);
5104 bh = NULL;
5105 goto out;
5106 }
5107
5108 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5109 offset = do_div(logical_sb_block, blocksize);
5110 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5111 if (IS_ERR(bh)) {
5112 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5113 ret = PTR_ERR(bh);
5114 bh = NULL;
5115 goto out;
5116 }
5117 es = (struct ext4_super_block *)(bh->b_data + offset);
5118 sbi->s_es = es;
5119 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5120 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5121 goto out;
5122 }
5123 *lsb = logical_sb_block;
5124 sbi->s_sbh = bh;
5125 return 0;
5126 out:
5127 brelse(bh);
5128 return ret;
5129 }
5130
ext4_hash_info_init(struct super_block * sb)5131 static void ext4_hash_info_init(struct super_block *sb)
5132 {
5133 struct ext4_sb_info *sbi = EXT4_SB(sb);
5134 struct ext4_super_block *es = sbi->s_es;
5135 unsigned int i;
5136
5137 for (i = 0; i < 4; i++)
5138 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5139
5140 sbi->s_def_hash_version = es->s_def_hash_version;
5141 if (ext4_has_feature_dir_index(sb)) {
5142 i = le32_to_cpu(es->s_flags);
5143 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5144 sbi->s_hash_unsigned = 3;
5145 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5146 #ifdef __CHAR_UNSIGNED__
5147 if (!sb_rdonly(sb))
5148 es->s_flags |=
5149 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5150 sbi->s_hash_unsigned = 3;
5151 #else
5152 if (!sb_rdonly(sb))
5153 es->s_flags |=
5154 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5155 #endif
5156 }
5157 }
5158 }
5159
ext4_block_group_meta_init(struct super_block * sb,int silent)5160 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5161 {
5162 struct ext4_sb_info *sbi = EXT4_SB(sb);
5163 struct ext4_super_block *es = sbi->s_es;
5164 int has_huge_files;
5165
5166 has_huge_files = ext4_has_feature_huge_file(sb);
5167 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5168 has_huge_files);
5169 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5170
5171 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5172 if (ext4_has_feature_64bit(sb)) {
5173 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5174 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5175 !is_power_of_2(sbi->s_desc_size)) {
5176 ext4_msg(sb, KERN_ERR,
5177 "unsupported descriptor size %lu",
5178 sbi->s_desc_size);
5179 return -EINVAL;
5180 }
5181 } else
5182 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5183
5184 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5185 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5186
5187 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5188 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5189 if (!silent)
5190 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5191 return -EINVAL;
5192 }
5193 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5194 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5195 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5196 sbi->s_inodes_per_group);
5197 return -EINVAL;
5198 }
5199 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5200 sbi->s_inodes_per_block;
5201 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5202 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5203 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5204 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5205
5206 return 0;
5207 }
5208
5209 /*
5210 * It's hard to get stripe aligned blocks if stripe is not aligned with
5211 * cluster, just disable stripe and alert user to simplify code and avoid
5212 * stripe aligned allocation which will rarely succeed.
5213 */
ext4_is_stripe_incompatible(struct super_block * sb,unsigned long stripe)5214 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5215 {
5216 struct ext4_sb_info *sbi = EXT4_SB(sb);
5217 return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5218 stripe % sbi->s_cluster_ratio != 0);
5219 }
5220
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5221 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5222 {
5223 struct ext4_super_block *es = NULL;
5224 struct ext4_sb_info *sbi = EXT4_SB(sb);
5225 ext4_fsblk_t logical_sb_block;
5226 struct inode *root;
5227 int needs_recovery;
5228 int err;
5229 ext4_group_t first_not_zeroed;
5230 struct ext4_fs_context *ctx = fc->fs_private;
5231 int silent = fc->sb_flags & SB_SILENT;
5232
5233 /* Set defaults for the variables that will be set during parsing */
5234 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5235 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5236
5237 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5238 sbi->s_sectors_written_start =
5239 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5240
5241 err = ext4_load_super(sb, &logical_sb_block, silent);
5242 if (err)
5243 goto out_fail;
5244
5245 es = sbi->s_es;
5246 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5247
5248 err = ext4_init_metadata_csum(sb, es);
5249 if (err)
5250 goto failed_mount;
5251
5252 ext4_set_def_opts(sb, es);
5253
5254 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5255 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5256 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5257 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5258 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5259
5260 /*
5261 * set default s_li_wait_mult for lazyinit, for the case there is
5262 * no mount option specified.
5263 */
5264 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5265
5266 err = ext4_inode_info_init(sb, es);
5267 if (err)
5268 goto failed_mount;
5269
5270 err = parse_apply_sb_mount_options(sb, ctx);
5271 if (err < 0)
5272 goto failed_mount;
5273
5274 sbi->s_def_mount_opt = sbi->s_mount_opt;
5275 sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5276
5277 err = ext4_check_opt_consistency(fc, sb);
5278 if (err < 0)
5279 goto failed_mount;
5280
5281 ext4_apply_options(fc, sb);
5282
5283 err = ext4_encoding_init(sb, es);
5284 if (err)
5285 goto failed_mount;
5286
5287 err = ext4_check_journal_data_mode(sb);
5288 if (err)
5289 goto failed_mount;
5290
5291 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5292 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5293
5294 /* i_version is always enabled now */
5295 sb->s_flags |= SB_I_VERSION;
5296
5297 err = ext4_check_feature_compatibility(sb, es, silent);
5298 if (err)
5299 goto failed_mount;
5300
5301 err = ext4_block_group_meta_init(sb, silent);
5302 if (err)
5303 goto failed_mount;
5304
5305 ext4_hash_info_init(sb);
5306
5307 err = ext4_handle_clustersize(sb);
5308 if (err)
5309 goto failed_mount;
5310
5311 err = ext4_check_geometry(sb, es);
5312 if (err)
5313 goto failed_mount;
5314
5315 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5316 spin_lock_init(&sbi->s_error_lock);
5317 INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5318
5319 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5320 if (err)
5321 goto failed_mount3;
5322
5323 err = ext4_es_register_shrinker(sbi);
5324 if (err)
5325 goto failed_mount3;
5326
5327 sbi->s_stripe = ext4_get_stripe_size(sbi);
5328 if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5329 ext4_msg(sb, KERN_WARNING,
5330 "stripe (%lu) is not aligned with cluster size (%u), "
5331 "stripe is disabled",
5332 sbi->s_stripe, sbi->s_cluster_ratio);
5333 sbi->s_stripe = 0;
5334 }
5335 sbi->s_extent_max_zeroout_kb = 32;
5336
5337 /*
5338 * set up enough so that it can read an inode
5339 */
5340 sb->s_op = &ext4_sops;
5341 sb->s_export_op = &ext4_export_ops;
5342 sb->s_xattr = ext4_xattr_handlers;
5343 #ifdef CONFIG_FS_ENCRYPTION
5344 sb->s_cop = &ext4_cryptops;
5345 #endif
5346 #ifdef CONFIG_FS_VERITY
5347 sb->s_vop = &ext4_verityops;
5348 #endif
5349 #ifdef CONFIG_QUOTA
5350 sb->dq_op = &ext4_quota_operations;
5351 if (ext4_has_feature_quota(sb))
5352 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5353 else
5354 sb->s_qcop = &ext4_qctl_operations;
5355 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5356 #endif
5357 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5358
5359 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5360 mutex_init(&sbi->s_orphan_lock);
5361
5362 ext4_fast_commit_init(sb);
5363
5364 sb->s_root = NULL;
5365
5366 needs_recovery = (es->s_last_orphan != 0 ||
5367 ext4_has_feature_orphan_present(sb) ||
5368 ext4_has_feature_journal_needs_recovery(sb));
5369
5370 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5371 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5372 if (err)
5373 goto failed_mount3a;
5374 }
5375
5376 err = -EINVAL;
5377 /*
5378 * The first inode we look at is the journal inode. Don't try
5379 * root first: it may be modified in the journal!
5380 */
5381 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5382 err = ext4_load_and_init_journal(sb, es, ctx);
5383 if (err)
5384 goto failed_mount3a;
5385 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5386 ext4_has_feature_journal_needs_recovery(sb)) {
5387 ext4_msg(sb, KERN_ERR, "required journal recovery "
5388 "suppressed and not mounted read-only");
5389 goto failed_mount3a;
5390 } else {
5391 /* Nojournal mode, all journal mount options are illegal */
5392 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5393 ext4_msg(sb, KERN_ERR, "can't mount with "
5394 "journal_async_commit, fs mounted w/o journal");
5395 goto failed_mount3a;
5396 }
5397
5398 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5399 ext4_msg(sb, KERN_ERR, "can't mount with "
5400 "journal_checksum, fs mounted w/o journal");
5401 goto failed_mount3a;
5402 }
5403 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5404 ext4_msg(sb, KERN_ERR, "can't mount with "
5405 "commit=%lu, fs mounted w/o journal",
5406 sbi->s_commit_interval / HZ);
5407 goto failed_mount3a;
5408 }
5409 if (EXT4_MOUNT_DATA_FLAGS &
5410 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5411 ext4_msg(sb, KERN_ERR, "can't mount with "
5412 "data=, fs mounted w/o journal");
5413 goto failed_mount3a;
5414 }
5415 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5416 clear_opt(sb, JOURNAL_CHECKSUM);
5417 clear_opt(sb, DATA_FLAGS);
5418 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5419 sbi->s_journal = NULL;
5420 needs_recovery = 0;
5421 }
5422
5423 if (!test_opt(sb, NO_MBCACHE)) {
5424 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5425 if (!sbi->s_ea_block_cache) {
5426 ext4_msg(sb, KERN_ERR,
5427 "Failed to create ea_block_cache");
5428 err = -EINVAL;
5429 goto failed_mount_wq;
5430 }
5431
5432 if (ext4_has_feature_ea_inode(sb)) {
5433 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5434 if (!sbi->s_ea_inode_cache) {
5435 ext4_msg(sb, KERN_ERR,
5436 "Failed to create ea_inode_cache");
5437 err = -EINVAL;
5438 goto failed_mount_wq;
5439 }
5440 }
5441 }
5442
5443 /*
5444 * Get the # of file system overhead blocks from the
5445 * superblock if present.
5446 */
5447 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5448 /* ignore the precalculated value if it is ridiculous */
5449 if (sbi->s_overhead > ext4_blocks_count(es))
5450 sbi->s_overhead = 0;
5451 /*
5452 * If the bigalloc feature is not enabled recalculating the
5453 * overhead doesn't take long, so we might as well just redo
5454 * it to make sure we are using the correct value.
5455 */
5456 if (!ext4_has_feature_bigalloc(sb))
5457 sbi->s_overhead = 0;
5458 if (sbi->s_overhead == 0) {
5459 err = ext4_calculate_overhead(sb);
5460 if (err)
5461 goto failed_mount_wq;
5462 }
5463
5464 /*
5465 * The maximum number of concurrent works can be high and
5466 * concurrency isn't really necessary. Limit it to 1.
5467 */
5468 EXT4_SB(sb)->rsv_conversion_wq =
5469 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5470 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5471 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5472 err = -ENOMEM;
5473 goto failed_mount4;
5474 }
5475
5476 /*
5477 * The jbd2_journal_load will have done any necessary log recovery,
5478 * so we can safely mount the rest of the filesystem now.
5479 */
5480
5481 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5482 if (IS_ERR(root)) {
5483 ext4_msg(sb, KERN_ERR, "get root inode failed");
5484 err = PTR_ERR(root);
5485 root = NULL;
5486 goto failed_mount4;
5487 }
5488 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5489 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5490 iput(root);
5491 err = -EFSCORRUPTED;
5492 goto failed_mount4;
5493 }
5494
5495 sb->s_root = d_make_root(root);
5496 if (!sb->s_root) {
5497 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5498 err = -ENOMEM;
5499 goto failed_mount4;
5500 }
5501
5502 err = ext4_setup_super(sb, es, sb_rdonly(sb));
5503 if (err == -EROFS) {
5504 sb->s_flags |= SB_RDONLY;
5505 } else if (err)
5506 goto failed_mount4a;
5507
5508 ext4_set_resv_clusters(sb);
5509
5510 if (test_opt(sb, BLOCK_VALIDITY)) {
5511 err = ext4_setup_system_zone(sb);
5512 if (err) {
5513 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5514 "zone (%d)", err);
5515 goto failed_mount4a;
5516 }
5517 }
5518 ext4_fc_replay_cleanup(sb);
5519
5520 ext4_ext_init(sb);
5521
5522 /*
5523 * Enable optimize_scan if number of groups is > threshold. This can be
5524 * turned off by passing "mb_optimize_scan=0". This can also be
5525 * turned on forcefully by passing "mb_optimize_scan=1".
5526 */
5527 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5528 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5529 set_opt2(sb, MB_OPTIMIZE_SCAN);
5530 else
5531 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5532 }
5533
5534 err = ext4_mb_init(sb);
5535 if (err) {
5536 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5537 err);
5538 goto failed_mount5;
5539 }
5540
5541 /*
5542 * We can only set up the journal commit callback once
5543 * mballoc is initialized
5544 */
5545 if (sbi->s_journal)
5546 sbi->s_journal->j_commit_callback =
5547 ext4_journal_commit_callback;
5548
5549 err = ext4_percpu_param_init(sbi);
5550 if (err)
5551 goto failed_mount6;
5552
5553 if (ext4_has_feature_flex_bg(sb))
5554 if (!ext4_fill_flex_info(sb)) {
5555 ext4_msg(sb, KERN_ERR,
5556 "unable to initialize "
5557 "flex_bg meta info!");
5558 err = -ENOMEM;
5559 goto failed_mount6;
5560 }
5561
5562 err = ext4_register_li_request(sb, first_not_zeroed);
5563 if (err)
5564 goto failed_mount6;
5565
5566 err = ext4_init_orphan_info(sb);
5567 if (err)
5568 goto failed_mount7;
5569 #ifdef CONFIG_QUOTA
5570 /* Enable quota usage during mount. */
5571 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5572 err = ext4_enable_quotas(sb);
5573 if (err)
5574 goto failed_mount8;
5575 }
5576 #endif /* CONFIG_QUOTA */
5577
5578 /*
5579 * Save the original bdev mapping's wb_err value which could be
5580 * used to detect the metadata async write error.
5581 */
5582 spin_lock_init(&sbi->s_bdev_wb_lock);
5583 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5584 &sbi->s_bdev_wb_err);
5585 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5586 ext4_orphan_cleanup(sb, es);
5587 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5588 /*
5589 * Update the checksum after updating free space/inode counters and
5590 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5591 * checksum in the buffer cache until it is written out and
5592 * e2fsprogs programs trying to open a file system immediately
5593 * after it is mounted can fail.
5594 */
5595 ext4_superblock_csum_set(sb);
5596 if (needs_recovery) {
5597 ext4_msg(sb, KERN_INFO, "recovery complete");
5598 err = ext4_mark_recovery_complete(sb, es);
5599 if (err)
5600 goto failed_mount9;
5601 }
5602
5603 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5604 ext4_msg(sb, KERN_WARNING,
5605 "mounting with \"discard\" option, but the device does not support discard");
5606
5607 if (es->s_error_count)
5608 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5609
5610 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5611 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5612 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5613 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5614 atomic_set(&sbi->s_warning_count, 0);
5615 atomic_set(&sbi->s_msg_count, 0);
5616
5617 /* Register sysfs after all initializations are complete. */
5618 err = ext4_register_sysfs(sb);
5619 if (err)
5620 goto failed_mount9;
5621
5622 return 0;
5623
5624 failed_mount9:
5625 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5626 failed_mount8: __maybe_unused
5627 ext4_release_orphan_info(sb);
5628 failed_mount7:
5629 ext4_unregister_li_request(sb);
5630 failed_mount6:
5631 ext4_mb_release(sb);
5632 ext4_flex_groups_free(sbi);
5633 ext4_percpu_param_destroy(sbi);
5634 failed_mount5:
5635 ext4_ext_release(sb);
5636 ext4_release_system_zone(sb);
5637 failed_mount4a:
5638 dput(sb->s_root);
5639 sb->s_root = NULL;
5640 failed_mount4:
5641 ext4_msg(sb, KERN_ERR, "mount failed");
5642 if (EXT4_SB(sb)->rsv_conversion_wq)
5643 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5644 failed_mount_wq:
5645 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5646 sbi->s_ea_inode_cache = NULL;
5647
5648 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5649 sbi->s_ea_block_cache = NULL;
5650
5651 if (sbi->s_journal) {
5652 /* flush s_sb_upd_work before journal destroy. */
5653 flush_work(&sbi->s_sb_upd_work);
5654 jbd2_journal_destroy(sbi->s_journal);
5655 sbi->s_journal = NULL;
5656 }
5657 failed_mount3a:
5658 ext4_es_unregister_shrinker(sbi);
5659 failed_mount3:
5660 /* flush s_sb_upd_work before sbi destroy */
5661 flush_work(&sbi->s_sb_upd_work);
5662 ext4_stop_mmpd(sbi);
5663 del_timer_sync(&sbi->s_err_report);
5664 ext4_group_desc_free(sbi);
5665 failed_mount:
5666 if (sbi->s_chksum_driver)
5667 crypto_free_shash(sbi->s_chksum_driver);
5668
5669 #if IS_ENABLED(CONFIG_UNICODE)
5670 utf8_unload(sb->s_encoding);
5671 #endif
5672
5673 #ifdef CONFIG_QUOTA
5674 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5675 kfree(get_qf_name(sb, sbi, i));
5676 #endif
5677 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5678 brelse(sbi->s_sbh);
5679 if (sbi->s_journal_bdev) {
5680 invalidate_bdev(sbi->s_journal_bdev);
5681 blkdev_put(sbi->s_journal_bdev, sb);
5682 }
5683 out_fail:
5684 invalidate_bdev(sb->s_bdev);
5685 sb->s_fs_info = NULL;
5686 return err;
5687 }
5688
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5689 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5690 {
5691 struct ext4_fs_context *ctx = fc->fs_private;
5692 struct ext4_sb_info *sbi;
5693 const char *descr;
5694 int ret;
5695
5696 sbi = ext4_alloc_sbi(sb);
5697 if (!sbi)
5698 return -ENOMEM;
5699
5700 fc->s_fs_info = sbi;
5701
5702 /* Cleanup superblock name */
5703 strreplace(sb->s_id, '/', '!');
5704
5705 sbi->s_sb_block = 1; /* Default super block location */
5706 if (ctx->spec & EXT4_SPEC_s_sb_block)
5707 sbi->s_sb_block = ctx->s_sb_block;
5708
5709 ret = __ext4_fill_super(fc, sb);
5710 if (ret < 0)
5711 goto free_sbi;
5712
5713 if (sbi->s_journal) {
5714 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5715 descr = " journalled data mode";
5716 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5717 descr = " ordered data mode";
5718 else
5719 descr = " writeback data mode";
5720 } else
5721 descr = "out journal";
5722
5723 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5724 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5725 "Quota mode: %s.", &sb->s_uuid,
5726 sb_rdonly(sb) ? "ro" : "r/w", descr,
5727 ext4_quota_mode(sb));
5728
5729 /* Update the s_overhead_clusters if necessary */
5730 ext4_update_overhead(sb, false);
5731 return 0;
5732
5733 free_sbi:
5734 ext4_free_sbi(sbi);
5735 fc->s_fs_info = NULL;
5736 return ret;
5737 }
5738
ext4_get_tree(struct fs_context * fc)5739 static int ext4_get_tree(struct fs_context *fc)
5740 {
5741 return get_tree_bdev(fc, ext4_fill_super);
5742 }
5743
5744 /*
5745 * Setup any per-fs journal parameters now. We'll do this both on
5746 * initial mount, once the journal has been initialised but before we've
5747 * done any recovery; and again on any subsequent remount.
5748 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5749 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5750 {
5751 struct ext4_sb_info *sbi = EXT4_SB(sb);
5752
5753 journal->j_commit_interval = sbi->s_commit_interval;
5754 journal->j_min_batch_time = sbi->s_min_batch_time;
5755 journal->j_max_batch_time = sbi->s_max_batch_time;
5756 ext4_fc_init(sb, journal);
5757
5758 write_lock(&journal->j_state_lock);
5759 if (test_opt(sb, BARRIER))
5760 journal->j_flags |= JBD2_BARRIER;
5761 else
5762 journal->j_flags &= ~JBD2_BARRIER;
5763 if (test_opt(sb, DATA_ERR_ABORT))
5764 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5765 else
5766 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5767 /*
5768 * Always enable journal cycle record option, letting the journal
5769 * records log transactions continuously between each mount.
5770 */
5771 journal->j_flags |= JBD2_CYCLE_RECORD;
5772 write_unlock(&journal->j_state_lock);
5773 }
5774
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5775 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5776 unsigned int journal_inum)
5777 {
5778 struct inode *journal_inode;
5779
5780 /*
5781 * Test for the existence of a valid inode on disk. Bad things
5782 * happen if we iget() an unused inode, as the subsequent iput()
5783 * will try to delete it.
5784 */
5785 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5786 if (IS_ERR(journal_inode)) {
5787 ext4_msg(sb, KERN_ERR, "no journal found");
5788 return ERR_CAST(journal_inode);
5789 }
5790 if (!journal_inode->i_nlink) {
5791 make_bad_inode(journal_inode);
5792 iput(journal_inode);
5793 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5794 return ERR_PTR(-EFSCORRUPTED);
5795 }
5796 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5797 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5798 iput(journal_inode);
5799 return ERR_PTR(-EFSCORRUPTED);
5800 }
5801
5802 ext4_debug("Journal inode found at %p: %lld bytes\n",
5803 journal_inode, journal_inode->i_size);
5804 return journal_inode;
5805 }
5806
ext4_journal_bmap(journal_t * journal,sector_t * block)5807 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5808 {
5809 struct ext4_map_blocks map;
5810 int ret;
5811
5812 if (journal->j_inode == NULL)
5813 return 0;
5814
5815 map.m_lblk = *block;
5816 map.m_len = 1;
5817 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5818 if (ret <= 0) {
5819 ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5820 "journal bmap failed: block %llu ret %d\n",
5821 *block, ret);
5822 jbd2_journal_abort(journal, ret ? ret : -EIO);
5823 return ret;
5824 }
5825 *block = map.m_pblk;
5826 return 0;
5827 }
5828
ext4_open_inode_journal(struct super_block * sb,unsigned int journal_inum)5829 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5830 unsigned int journal_inum)
5831 {
5832 struct inode *journal_inode;
5833 journal_t *journal;
5834
5835 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5836 if (IS_ERR(journal_inode))
5837 return ERR_CAST(journal_inode);
5838
5839 journal = jbd2_journal_init_inode(journal_inode);
5840 if (IS_ERR(journal)) {
5841 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5842 iput(journal_inode);
5843 return ERR_CAST(journal);
5844 }
5845 journal->j_private = sb;
5846 journal->j_bmap = ext4_journal_bmap;
5847 ext4_init_journal_params(sb, journal);
5848 return journal;
5849 }
5850
ext4_get_journal_blkdev(struct super_block * sb,dev_t j_dev,ext4_fsblk_t * j_start,ext4_fsblk_t * j_len)5851 static struct block_device *ext4_get_journal_blkdev(struct super_block *sb,
5852 dev_t j_dev, ext4_fsblk_t *j_start,
5853 ext4_fsblk_t *j_len)
5854 {
5855 struct buffer_head *bh;
5856 struct block_device *bdev;
5857 int hblock, blocksize;
5858 ext4_fsblk_t sb_block;
5859 unsigned long offset;
5860 struct ext4_super_block *es;
5861 int errno;
5862
5863 /* see get_tree_bdev why this is needed and safe */
5864 up_write(&sb->s_umount);
5865 bdev = blkdev_get_by_dev(j_dev, BLK_OPEN_READ | BLK_OPEN_WRITE, sb,
5866 &fs_holder_ops);
5867 down_write(&sb->s_umount);
5868 if (IS_ERR(bdev)) {
5869 ext4_msg(sb, KERN_ERR,
5870 "failed to open journal device unknown-block(%u,%u) %ld",
5871 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev));
5872 return ERR_CAST(bdev);
5873 }
5874
5875 blocksize = sb->s_blocksize;
5876 hblock = bdev_logical_block_size(bdev);
5877 if (blocksize < hblock) {
5878 ext4_msg(sb, KERN_ERR,
5879 "blocksize too small for journal device");
5880 errno = -EINVAL;
5881 goto out_bdev;
5882 }
5883
5884 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5885 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5886 set_blocksize(bdev, blocksize);
5887 bh = __bread(bdev, sb_block, blocksize);
5888 if (!bh) {
5889 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5890 "external journal");
5891 errno = -EINVAL;
5892 goto out_bdev;
5893 }
5894
5895 es = (struct ext4_super_block *) (bh->b_data + offset);
5896 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5897 !(le32_to_cpu(es->s_feature_incompat) &
5898 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5899 ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5900 errno = -EFSCORRUPTED;
5901 goto out_bh;
5902 }
5903
5904 if ((le32_to_cpu(es->s_feature_ro_compat) &
5905 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5906 es->s_checksum != ext4_superblock_csum(sb, es)) {
5907 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5908 errno = -EFSCORRUPTED;
5909 goto out_bh;
5910 }
5911
5912 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5913 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5914 errno = -EFSCORRUPTED;
5915 goto out_bh;
5916 }
5917
5918 *j_start = sb_block + 1;
5919 *j_len = ext4_blocks_count(es);
5920 brelse(bh);
5921 return bdev;
5922
5923 out_bh:
5924 brelse(bh);
5925 out_bdev:
5926 blkdev_put(bdev, sb);
5927 return ERR_PTR(errno);
5928 }
5929
ext4_open_dev_journal(struct super_block * sb,dev_t j_dev)5930 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5931 dev_t j_dev)
5932 {
5933 journal_t *journal;
5934 ext4_fsblk_t j_start;
5935 ext4_fsblk_t j_len;
5936 struct block_device *journal_bdev;
5937 int errno = 0;
5938
5939 journal_bdev = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5940 if (IS_ERR(journal_bdev))
5941 return ERR_CAST(journal_bdev);
5942
5943 journal = jbd2_journal_init_dev(journal_bdev, sb->s_bdev, j_start,
5944 j_len, sb->s_blocksize);
5945 if (IS_ERR(journal)) {
5946 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5947 errno = PTR_ERR(journal);
5948 goto out_bdev;
5949 }
5950 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5951 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5952 "user (unsupported) - %d",
5953 be32_to_cpu(journal->j_superblock->s_nr_users));
5954 errno = -EINVAL;
5955 goto out_journal;
5956 }
5957 journal->j_private = sb;
5958 EXT4_SB(sb)->s_journal_bdev = journal_bdev;
5959 ext4_init_journal_params(sb, journal);
5960 return journal;
5961
5962 out_journal:
5963 jbd2_journal_destroy(journal);
5964 out_bdev:
5965 blkdev_put(journal_bdev, sb);
5966 return ERR_PTR(errno);
5967 }
5968
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5969 static int ext4_load_journal(struct super_block *sb,
5970 struct ext4_super_block *es,
5971 unsigned long journal_devnum)
5972 {
5973 journal_t *journal;
5974 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5975 dev_t journal_dev;
5976 int err = 0;
5977 int really_read_only;
5978 int journal_dev_ro;
5979
5980 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5981 return -EFSCORRUPTED;
5982
5983 if (journal_devnum &&
5984 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5985 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5986 "numbers have changed");
5987 journal_dev = new_decode_dev(journal_devnum);
5988 } else
5989 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5990
5991 if (journal_inum && journal_dev) {
5992 ext4_msg(sb, KERN_ERR,
5993 "filesystem has both journal inode and journal device!");
5994 return -EINVAL;
5995 }
5996
5997 if (journal_inum) {
5998 journal = ext4_open_inode_journal(sb, journal_inum);
5999 if (IS_ERR(journal))
6000 return PTR_ERR(journal);
6001 } else {
6002 journal = ext4_open_dev_journal(sb, journal_dev);
6003 if (IS_ERR(journal))
6004 return PTR_ERR(journal);
6005 }
6006
6007 journal_dev_ro = bdev_read_only(journal->j_dev);
6008 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6009
6010 if (journal_dev_ro && !sb_rdonly(sb)) {
6011 ext4_msg(sb, KERN_ERR,
6012 "journal device read-only, try mounting with '-o ro'");
6013 err = -EROFS;
6014 goto err_out;
6015 }
6016
6017 /*
6018 * Are we loading a blank journal or performing recovery after a
6019 * crash? For recovery, we need to check in advance whether we
6020 * can get read-write access to the device.
6021 */
6022 if (ext4_has_feature_journal_needs_recovery(sb)) {
6023 if (sb_rdonly(sb)) {
6024 ext4_msg(sb, KERN_INFO, "INFO: recovery "
6025 "required on readonly filesystem");
6026 if (really_read_only) {
6027 ext4_msg(sb, KERN_ERR, "write access "
6028 "unavailable, cannot proceed "
6029 "(try mounting with noload)");
6030 err = -EROFS;
6031 goto err_out;
6032 }
6033 ext4_msg(sb, KERN_INFO, "write access will "
6034 "be enabled during recovery");
6035 }
6036 }
6037
6038 if (!(journal->j_flags & JBD2_BARRIER))
6039 ext4_msg(sb, KERN_INFO, "barriers disabled");
6040
6041 if (!ext4_has_feature_journal_needs_recovery(sb))
6042 err = jbd2_journal_wipe(journal, !really_read_only);
6043 if (!err) {
6044 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6045 __le16 orig_state;
6046 bool changed = false;
6047
6048 if (save)
6049 memcpy(save, ((char *) es) +
6050 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6051 err = jbd2_journal_load(journal);
6052 if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6053 save, EXT4_S_ERR_LEN)) {
6054 memcpy(((char *) es) + EXT4_S_ERR_START,
6055 save, EXT4_S_ERR_LEN);
6056 changed = true;
6057 }
6058 kfree(save);
6059 orig_state = es->s_state;
6060 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6061 EXT4_ERROR_FS);
6062 if (orig_state != es->s_state)
6063 changed = true;
6064 /* Write out restored error information to the superblock */
6065 if (changed && !really_read_only) {
6066 int err2;
6067 err2 = ext4_commit_super(sb);
6068 err = err ? : err2;
6069 }
6070 }
6071
6072 if (err) {
6073 ext4_msg(sb, KERN_ERR, "error loading journal");
6074 goto err_out;
6075 }
6076
6077 EXT4_SB(sb)->s_journal = journal;
6078 err = ext4_clear_journal_err(sb, es);
6079 if (err) {
6080 EXT4_SB(sb)->s_journal = NULL;
6081 jbd2_journal_destroy(journal);
6082 return err;
6083 }
6084
6085 if (!really_read_only && journal_devnum &&
6086 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6087 es->s_journal_dev = cpu_to_le32(journal_devnum);
6088 ext4_commit_super(sb);
6089 }
6090 if (!really_read_only && journal_inum &&
6091 journal_inum != le32_to_cpu(es->s_journal_inum)) {
6092 es->s_journal_inum = cpu_to_le32(journal_inum);
6093 ext4_commit_super(sb);
6094 }
6095
6096 return 0;
6097
6098 err_out:
6099 jbd2_journal_destroy(journal);
6100 return err;
6101 }
6102
6103 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)6104 static void ext4_update_super(struct super_block *sb)
6105 {
6106 struct ext4_sb_info *sbi = EXT4_SB(sb);
6107 struct ext4_super_block *es = sbi->s_es;
6108 struct buffer_head *sbh = sbi->s_sbh;
6109
6110 lock_buffer(sbh);
6111 /*
6112 * If the file system is mounted read-only, don't update the
6113 * superblock write time. This avoids updating the superblock
6114 * write time when we are mounting the root file system
6115 * read/only but we need to replay the journal; at that point,
6116 * for people who are east of GMT and who make their clock
6117 * tick in localtime for Windows bug-for-bug compatibility,
6118 * the clock is set in the future, and this will cause e2fsck
6119 * to complain and force a full file system check.
6120 */
6121 if (!sb_rdonly(sb))
6122 ext4_update_tstamp(es, s_wtime);
6123 es->s_kbytes_written =
6124 cpu_to_le64(sbi->s_kbytes_written +
6125 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6126 sbi->s_sectors_written_start) >> 1));
6127 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6128 ext4_free_blocks_count_set(es,
6129 EXT4_C2B(sbi, percpu_counter_sum_positive(
6130 &sbi->s_freeclusters_counter)));
6131 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6132 es->s_free_inodes_count =
6133 cpu_to_le32(percpu_counter_sum_positive(
6134 &sbi->s_freeinodes_counter));
6135 /* Copy error information to the on-disk superblock */
6136 spin_lock(&sbi->s_error_lock);
6137 if (sbi->s_add_error_count > 0) {
6138 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6139 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6140 __ext4_update_tstamp(&es->s_first_error_time,
6141 &es->s_first_error_time_hi,
6142 sbi->s_first_error_time);
6143 strncpy(es->s_first_error_func, sbi->s_first_error_func,
6144 sizeof(es->s_first_error_func));
6145 es->s_first_error_line =
6146 cpu_to_le32(sbi->s_first_error_line);
6147 es->s_first_error_ino =
6148 cpu_to_le32(sbi->s_first_error_ino);
6149 es->s_first_error_block =
6150 cpu_to_le64(sbi->s_first_error_block);
6151 es->s_first_error_errcode =
6152 ext4_errno_to_code(sbi->s_first_error_code);
6153 }
6154 __ext4_update_tstamp(&es->s_last_error_time,
6155 &es->s_last_error_time_hi,
6156 sbi->s_last_error_time);
6157 strncpy(es->s_last_error_func, sbi->s_last_error_func,
6158 sizeof(es->s_last_error_func));
6159 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6160 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6161 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6162 es->s_last_error_errcode =
6163 ext4_errno_to_code(sbi->s_last_error_code);
6164 /*
6165 * Start the daily error reporting function if it hasn't been
6166 * started already
6167 */
6168 if (!es->s_error_count)
6169 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6170 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6171 sbi->s_add_error_count = 0;
6172 }
6173 spin_unlock(&sbi->s_error_lock);
6174
6175 ext4_superblock_csum_set(sb);
6176 unlock_buffer(sbh);
6177 }
6178
ext4_commit_super(struct super_block * sb)6179 static int ext4_commit_super(struct super_block *sb)
6180 {
6181 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6182
6183 if (!sbh)
6184 return -EINVAL;
6185 if (block_device_ejected(sb))
6186 return -ENODEV;
6187
6188 ext4_update_super(sb);
6189
6190 lock_buffer(sbh);
6191 /* Buffer got discarded which means block device got invalidated */
6192 if (!buffer_mapped(sbh)) {
6193 unlock_buffer(sbh);
6194 return -EIO;
6195 }
6196
6197 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6198 /*
6199 * Oh, dear. A previous attempt to write the
6200 * superblock failed. This could happen because the
6201 * USB device was yanked out. Or it could happen to
6202 * be a transient write error and maybe the block will
6203 * be remapped. Nothing we can do but to retry the
6204 * write and hope for the best.
6205 */
6206 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6207 "superblock detected");
6208 clear_buffer_write_io_error(sbh);
6209 set_buffer_uptodate(sbh);
6210 }
6211 get_bh(sbh);
6212 /* Clear potential dirty bit if it was journalled update */
6213 clear_buffer_dirty(sbh);
6214 sbh->b_end_io = end_buffer_write_sync;
6215 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6216 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6217 wait_on_buffer(sbh);
6218 if (buffer_write_io_error(sbh)) {
6219 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6220 "superblock");
6221 clear_buffer_write_io_error(sbh);
6222 set_buffer_uptodate(sbh);
6223 return -EIO;
6224 }
6225 return 0;
6226 }
6227
6228 /*
6229 * Have we just finished recovery? If so, and if we are mounting (or
6230 * remounting) the filesystem readonly, then we will end up with a
6231 * consistent fs on disk. Record that fact.
6232 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6233 static int ext4_mark_recovery_complete(struct super_block *sb,
6234 struct ext4_super_block *es)
6235 {
6236 int err;
6237 journal_t *journal = EXT4_SB(sb)->s_journal;
6238
6239 if (!ext4_has_feature_journal(sb)) {
6240 if (journal != NULL) {
6241 ext4_error(sb, "Journal got removed while the fs was "
6242 "mounted!");
6243 return -EFSCORRUPTED;
6244 }
6245 return 0;
6246 }
6247 jbd2_journal_lock_updates(journal);
6248 err = jbd2_journal_flush(journal, 0);
6249 if (err < 0)
6250 goto out;
6251
6252 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6253 ext4_has_feature_orphan_present(sb))) {
6254 if (!ext4_orphan_file_empty(sb)) {
6255 ext4_error(sb, "Orphan file not empty on read-only fs.");
6256 err = -EFSCORRUPTED;
6257 goto out;
6258 }
6259 ext4_clear_feature_journal_needs_recovery(sb);
6260 ext4_clear_feature_orphan_present(sb);
6261 ext4_commit_super(sb);
6262 }
6263 out:
6264 jbd2_journal_unlock_updates(journal);
6265 return err;
6266 }
6267
6268 /*
6269 * If we are mounting (or read-write remounting) a filesystem whose journal
6270 * has recorded an error from a previous lifetime, move that error to the
6271 * main filesystem now.
6272 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6273 static int ext4_clear_journal_err(struct super_block *sb,
6274 struct ext4_super_block *es)
6275 {
6276 journal_t *journal;
6277 int j_errno;
6278 const char *errstr;
6279
6280 if (!ext4_has_feature_journal(sb)) {
6281 ext4_error(sb, "Journal got removed while the fs was mounted!");
6282 return -EFSCORRUPTED;
6283 }
6284
6285 journal = EXT4_SB(sb)->s_journal;
6286
6287 /*
6288 * Now check for any error status which may have been recorded in the
6289 * journal by a prior ext4_error() or ext4_abort()
6290 */
6291
6292 j_errno = jbd2_journal_errno(journal);
6293 if (j_errno) {
6294 char nbuf[16];
6295
6296 errstr = ext4_decode_error(sb, j_errno, nbuf);
6297 ext4_warning(sb, "Filesystem error recorded "
6298 "from previous mount: %s", errstr);
6299
6300 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6301 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6302 j_errno = ext4_commit_super(sb);
6303 if (j_errno)
6304 return j_errno;
6305 ext4_warning(sb, "Marked fs in need of filesystem check.");
6306
6307 jbd2_journal_clear_err(journal);
6308 jbd2_journal_update_sb_errno(journal);
6309 }
6310 return 0;
6311 }
6312
6313 /*
6314 * Force the running and committing transactions to commit,
6315 * and wait on the commit.
6316 */
ext4_force_commit(struct super_block * sb)6317 int ext4_force_commit(struct super_block *sb)
6318 {
6319 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6320 }
6321
ext4_sync_fs(struct super_block * sb,int wait)6322 static int ext4_sync_fs(struct super_block *sb, int wait)
6323 {
6324 int ret = 0;
6325 tid_t target;
6326 bool needs_barrier = false;
6327 struct ext4_sb_info *sbi = EXT4_SB(sb);
6328
6329 if (unlikely(ext4_forced_shutdown(sb)))
6330 return 0;
6331
6332 trace_ext4_sync_fs(sb, wait);
6333 flush_workqueue(sbi->rsv_conversion_wq);
6334 /*
6335 * Writeback quota in non-journalled quota case - journalled quota has
6336 * no dirty dquots
6337 */
6338 dquot_writeback_dquots(sb, -1);
6339 /*
6340 * Data writeback is possible w/o journal transaction, so barrier must
6341 * being sent at the end of the function. But we can skip it if
6342 * transaction_commit will do it for us.
6343 */
6344 if (sbi->s_journal) {
6345 target = jbd2_get_latest_transaction(sbi->s_journal);
6346 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6347 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6348 needs_barrier = true;
6349
6350 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6351 if (wait)
6352 ret = jbd2_log_wait_commit(sbi->s_journal,
6353 target);
6354 }
6355 } else if (wait && test_opt(sb, BARRIER))
6356 needs_barrier = true;
6357 if (needs_barrier) {
6358 int err;
6359 err = blkdev_issue_flush(sb->s_bdev);
6360 if (!ret)
6361 ret = err;
6362 }
6363
6364 return ret;
6365 }
6366
6367 /*
6368 * LVM calls this function before a (read-only) snapshot is created. This
6369 * gives us a chance to flush the journal completely and mark the fs clean.
6370 *
6371 * Note that only this function cannot bring a filesystem to be in a clean
6372 * state independently. It relies on upper layer to stop all data & metadata
6373 * modifications.
6374 */
ext4_freeze(struct super_block * sb)6375 static int ext4_freeze(struct super_block *sb)
6376 {
6377 int error = 0;
6378 journal_t *journal = EXT4_SB(sb)->s_journal;
6379
6380 if (journal) {
6381 /* Now we set up the journal barrier. */
6382 jbd2_journal_lock_updates(journal);
6383
6384 /*
6385 * Don't clear the needs_recovery flag if we failed to
6386 * flush the journal.
6387 */
6388 error = jbd2_journal_flush(journal, 0);
6389 if (error < 0)
6390 goto out;
6391
6392 /* Journal blocked and flushed, clear needs_recovery flag. */
6393 ext4_clear_feature_journal_needs_recovery(sb);
6394 if (ext4_orphan_file_empty(sb))
6395 ext4_clear_feature_orphan_present(sb);
6396 }
6397
6398 error = ext4_commit_super(sb);
6399 out:
6400 if (journal)
6401 /* we rely on upper layer to stop further updates */
6402 jbd2_journal_unlock_updates(journal);
6403 return error;
6404 }
6405
6406 /*
6407 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6408 * flag here, even though the filesystem is not technically dirty yet.
6409 */
ext4_unfreeze(struct super_block * sb)6410 static int ext4_unfreeze(struct super_block *sb)
6411 {
6412 if (ext4_forced_shutdown(sb))
6413 return 0;
6414
6415 if (EXT4_SB(sb)->s_journal) {
6416 /* Reset the needs_recovery flag before the fs is unlocked. */
6417 ext4_set_feature_journal_needs_recovery(sb);
6418 if (ext4_has_feature_orphan_file(sb))
6419 ext4_set_feature_orphan_present(sb);
6420 }
6421
6422 ext4_commit_super(sb);
6423 return 0;
6424 }
6425
6426 /*
6427 * Structure to save mount options for ext4_remount's benefit
6428 */
6429 struct ext4_mount_options {
6430 unsigned long s_mount_opt;
6431 unsigned long s_mount_opt2;
6432 kuid_t s_resuid;
6433 kgid_t s_resgid;
6434 unsigned long s_commit_interval;
6435 u32 s_min_batch_time, s_max_batch_time;
6436 #ifdef CONFIG_QUOTA
6437 int s_jquota_fmt;
6438 char *s_qf_names[EXT4_MAXQUOTAS];
6439 #endif
6440 };
6441
__ext4_remount(struct fs_context * fc,struct super_block * sb)6442 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6443 {
6444 struct ext4_fs_context *ctx = fc->fs_private;
6445 struct ext4_super_block *es;
6446 struct ext4_sb_info *sbi = EXT4_SB(sb);
6447 unsigned long old_sb_flags;
6448 struct ext4_mount_options old_opts;
6449 ext4_group_t g;
6450 int err = 0;
6451 int alloc_ctx;
6452 #ifdef CONFIG_QUOTA
6453 int enable_quota = 0;
6454 int i, j;
6455 char *to_free[EXT4_MAXQUOTAS];
6456 #endif
6457
6458
6459 /* Store the original options */
6460 old_sb_flags = sb->s_flags;
6461 old_opts.s_mount_opt = sbi->s_mount_opt;
6462 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6463 old_opts.s_resuid = sbi->s_resuid;
6464 old_opts.s_resgid = sbi->s_resgid;
6465 old_opts.s_commit_interval = sbi->s_commit_interval;
6466 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6467 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6468 #ifdef CONFIG_QUOTA
6469 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6470 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6471 if (sbi->s_qf_names[i]) {
6472 char *qf_name = get_qf_name(sb, sbi, i);
6473
6474 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6475 if (!old_opts.s_qf_names[i]) {
6476 for (j = 0; j < i; j++)
6477 kfree(old_opts.s_qf_names[j]);
6478 return -ENOMEM;
6479 }
6480 } else
6481 old_opts.s_qf_names[i] = NULL;
6482 #endif
6483 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6484 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6485 ctx->journal_ioprio =
6486 sbi->s_journal->j_task->io_context->ioprio;
6487 else
6488 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6489
6490 }
6491
6492 if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6493 ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6494 ext4_msg(sb, KERN_WARNING,
6495 "stripe (%lu) is not aligned with cluster size (%u), "
6496 "stripe is disabled",
6497 ctx->s_stripe, sbi->s_cluster_ratio);
6498 ctx->s_stripe = 0;
6499 }
6500
6501 /*
6502 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6503 * two calls to ext4_should_dioread_nolock() to return inconsistent
6504 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6505 * here s_writepages_rwsem to avoid race between writepages ops and
6506 * remount.
6507 */
6508 alloc_ctx = ext4_writepages_down_write(sb);
6509 ext4_apply_options(fc, sb);
6510 ext4_writepages_up_write(sb, alloc_ctx);
6511
6512 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6513 test_opt(sb, JOURNAL_CHECKSUM)) {
6514 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6515 "during remount not supported; ignoring");
6516 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6517 }
6518
6519 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6520 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6521 ext4_msg(sb, KERN_ERR, "can't mount with "
6522 "both data=journal and delalloc");
6523 err = -EINVAL;
6524 goto restore_opts;
6525 }
6526 if (test_opt(sb, DIOREAD_NOLOCK)) {
6527 ext4_msg(sb, KERN_ERR, "can't mount with "
6528 "both data=journal and dioread_nolock");
6529 err = -EINVAL;
6530 goto restore_opts;
6531 }
6532 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6533 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6534 ext4_msg(sb, KERN_ERR, "can't mount with "
6535 "journal_async_commit in data=ordered mode");
6536 err = -EINVAL;
6537 goto restore_opts;
6538 }
6539 }
6540
6541 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6542 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6543 err = -EINVAL;
6544 goto restore_opts;
6545 }
6546
6547 if (test_opt2(sb, ABORT))
6548 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6549
6550 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6551 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6552
6553 es = sbi->s_es;
6554
6555 if (sbi->s_journal) {
6556 ext4_init_journal_params(sb, sbi->s_journal);
6557 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6558 }
6559
6560 /* Flush outstanding errors before changing fs state */
6561 flush_work(&sbi->s_sb_upd_work);
6562
6563 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6564 if (ext4_forced_shutdown(sb)) {
6565 err = -EROFS;
6566 goto restore_opts;
6567 }
6568
6569 if (fc->sb_flags & SB_RDONLY) {
6570 err = sync_filesystem(sb);
6571 if (err < 0)
6572 goto restore_opts;
6573 err = dquot_suspend(sb, -1);
6574 if (err < 0)
6575 goto restore_opts;
6576
6577 /*
6578 * First of all, the unconditional stuff we have to do
6579 * to disable replay of the journal when we next remount
6580 */
6581 sb->s_flags |= SB_RDONLY;
6582
6583 /*
6584 * OK, test if we are remounting a valid rw partition
6585 * readonly, and if so set the rdonly flag and then
6586 * mark the partition as valid again.
6587 */
6588 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6589 (sbi->s_mount_state & EXT4_VALID_FS))
6590 es->s_state = cpu_to_le16(sbi->s_mount_state);
6591
6592 if (sbi->s_journal) {
6593 /*
6594 * We let remount-ro finish even if marking fs
6595 * as clean failed...
6596 */
6597 ext4_mark_recovery_complete(sb, es);
6598 }
6599 } else {
6600 /* Make sure we can mount this feature set readwrite */
6601 if (ext4_has_feature_readonly(sb) ||
6602 !ext4_feature_set_ok(sb, 0)) {
6603 err = -EROFS;
6604 goto restore_opts;
6605 }
6606 /*
6607 * Make sure the group descriptor checksums
6608 * are sane. If they aren't, refuse to remount r/w.
6609 */
6610 for (g = 0; g < sbi->s_groups_count; g++) {
6611 struct ext4_group_desc *gdp =
6612 ext4_get_group_desc(sb, g, NULL);
6613
6614 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6615 ext4_msg(sb, KERN_ERR,
6616 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6617 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6618 le16_to_cpu(gdp->bg_checksum));
6619 err = -EFSBADCRC;
6620 goto restore_opts;
6621 }
6622 }
6623
6624 /*
6625 * If we have an unprocessed orphan list hanging
6626 * around from a previously readonly bdev mount,
6627 * require a full umount/remount for now.
6628 */
6629 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6630 ext4_msg(sb, KERN_WARNING, "Couldn't "
6631 "remount RDWR because of unprocessed "
6632 "orphan inode list. Please "
6633 "umount/remount instead");
6634 err = -EINVAL;
6635 goto restore_opts;
6636 }
6637
6638 /*
6639 * Mounting a RDONLY partition read-write, so reread
6640 * and store the current valid flag. (It may have
6641 * been changed by e2fsck since we originally mounted
6642 * the partition.)
6643 */
6644 if (sbi->s_journal) {
6645 err = ext4_clear_journal_err(sb, es);
6646 if (err)
6647 goto restore_opts;
6648 }
6649 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6650 ~EXT4_FC_REPLAY);
6651
6652 err = ext4_setup_super(sb, es, 0);
6653 if (err)
6654 goto restore_opts;
6655
6656 sb->s_flags &= ~SB_RDONLY;
6657 if (ext4_has_feature_mmp(sb)) {
6658 err = ext4_multi_mount_protect(sb,
6659 le64_to_cpu(es->s_mmp_block));
6660 if (err)
6661 goto restore_opts;
6662 }
6663 #ifdef CONFIG_QUOTA
6664 enable_quota = 1;
6665 #endif
6666 }
6667 }
6668
6669 /*
6670 * Handle creation of system zone data early because it can fail.
6671 * Releasing of existing data is done when we are sure remount will
6672 * succeed.
6673 */
6674 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6675 err = ext4_setup_system_zone(sb);
6676 if (err)
6677 goto restore_opts;
6678 }
6679
6680 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6681 err = ext4_commit_super(sb);
6682 if (err)
6683 goto restore_opts;
6684 }
6685
6686 #ifdef CONFIG_QUOTA
6687 if (enable_quota) {
6688 if (sb_any_quota_suspended(sb))
6689 dquot_resume(sb, -1);
6690 else if (ext4_has_feature_quota(sb)) {
6691 err = ext4_enable_quotas(sb);
6692 if (err)
6693 goto restore_opts;
6694 }
6695 }
6696 /* Release old quota file names */
6697 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6698 kfree(old_opts.s_qf_names[i]);
6699 #endif
6700 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6701 ext4_release_system_zone(sb);
6702
6703 /*
6704 * Reinitialize lazy itable initialization thread based on
6705 * current settings
6706 */
6707 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6708 ext4_unregister_li_request(sb);
6709 else {
6710 ext4_group_t first_not_zeroed;
6711 first_not_zeroed = ext4_has_uninit_itable(sb);
6712 ext4_register_li_request(sb, first_not_zeroed);
6713 }
6714
6715 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6716 ext4_stop_mmpd(sbi);
6717
6718 return 0;
6719
6720 restore_opts:
6721 /*
6722 * If there was a failing r/w to ro transition, we may need to
6723 * re-enable quota
6724 */
6725 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6726 sb_any_quota_suspended(sb))
6727 dquot_resume(sb, -1);
6728
6729 alloc_ctx = ext4_writepages_down_write(sb);
6730 sb->s_flags = old_sb_flags;
6731 sbi->s_mount_opt = old_opts.s_mount_opt;
6732 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6733 sbi->s_resuid = old_opts.s_resuid;
6734 sbi->s_resgid = old_opts.s_resgid;
6735 sbi->s_commit_interval = old_opts.s_commit_interval;
6736 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6737 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6738 ext4_writepages_up_write(sb, alloc_ctx);
6739
6740 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6741 ext4_release_system_zone(sb);
6742 #ifdef CONFIG_QUOTA
6743 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6744 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6745 to_free[i] = get_qf_name(sb, sbi, i);
6746 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6747 }
6748 synchronize_rcu();
6749 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6750 kfree(to_free[i]);
6751 #endif
6752 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6753 ext4_stop_mmpd(sbi);
6754 return err;
6755 }
6756
ext4_reconfigure(struct fs_context * fc)6757 static int ext4_reconfigure(struct fs_context *fc)
6758 {
6759 struct super_block *sb = fc->root->d_sb;
6760 int ret;
6761
6762 fc->s_fs_info = EXT4_SB(sb);
6763
6764 ret = ext4_check_opt_consistency(fc, sb);
6765 if (ret < 0)
6766 return ret;
6767
6768 ret = __ext4_remount(fc, sb);
6769 if (ret < 0)
6770 return ret;
6771
6772 ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6773 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6774 ext4_quota_mode(sb));
6775
6776 return 0;
6777 }
6778
6779 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6780 static int ext4_statfs_project(struct super_block *sb,
6781 kprojid_t projid, struct kstatfs *buf)
6782 {
6783 struct kqid qid;
6784 struct dquot *dquot;
6785 u64 limit;
6786 u64 curblock;
6787
6788 qid = make_kqid_projid(projid);
6789 dquot = dqget(sb, qid);
6790 if (IS_ERR(dquot))
6791 return PTR_ERR(dquot);
6792 spin_lock(&dquot->dq_dqb_lock);
6793
6794 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6795 dquot->dq_dqb.dqb_bhardlimit);
6796 limit >>= sb->s_blocksize_bits;
6797
6798 if (limit && buf->f_blocks > limit) {
6799 curblock = (dquot->dq_dqb.dqb_curspace +
6800 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6801 buf->f_blocks = limit;
6802 buf->f_bfree = buf->f_bavail =
6803 (buf->f_blocks > curblock) ?
6804 (buf->f_blocks - curblock) : 0;
6805 }
6806
6807 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6808 dquot->dq_dqb.dqb_ihardlimit);
6809 if (limit && buf->f_files > limit) {
6810 buf->f_files = limit;
6811 buf->f_ffree =
6812 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6813 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6814 }
6815
6816 spin_unlock(&dquot->dq_dqb_lock);
6817 dqput(dquot);
6818 return 0;
6819 }
6820 #endif
6821
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6822 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6823 {
6824 struct super_block *sb = dentry->d_sb;
6825 struct ext4_sb_info *sbi = EXT4_SB(sb);
6826 struct ext4_super_block *es = sbi->s_es;
6827 ext4_fsblk_t overhead = 0, resv_blocks;
6828 s64 bfree;
6829 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6830
6831 if (!test_opt(sb, MINIX_DF))
6832 overhead = sbi->s_overhead;
6833
6834 buf->f_type = EXT4_SUPER_MAGIC;
6835 buf->f_bsize = sb->s_blocksize;
6836 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6837 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6838 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6839 /* prevent underflow in case that few free space is available */
6840 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6841 buf->f_bavail = buf->f_bfree -
6842 (ext4_r_blocks_count(es) + resv_blocks);
6843 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6844 buf->f_bavail = 0;
6845 buf->f_files = le32_to_cpu(es->s_inodes_count);
6846 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6847 buf->f_namelen = EXT4_NAME_LEN;
6848 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6849
6850 #ifdef CONFIG_QUOTA
6851 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6852 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6853 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6854 #endif
6855 return 0;
6856 }
6857
6858
6859 #ifdef CONFIG_QUOTA
6860
6861 /*
6862 * Helper functions so that transaction is started before we acquire dqio_sem
6863 * to keep correct lock ordering of transaction > dqio_sem
6864 */
dquot_to_inode(struct dquot * dquot)6865 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6866 {
6867 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6868 }
6869
ext4_write_dquot(struct dquot * dquot)6870 static int ext4_write_dquot(struct dquot *dquot)
6871 {
6872 int ret, err;
6873 handle_t *handle;
6874 struct inode *inode;
6875
6876 inode = dquot_to_inode(dquot);
6877 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6878 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6879 if (IS_ERR(handle))
6880 return PTR_ERR(handle);
6881 ret = dquot_commit(dquot);
6882 if (ret < 0)
6883 ext4_error_err(dquot->dq_sb, -ret,
6884 "Failed to commit dquot type %d",
6885 dquot->dq_id.type);
6886 err = ext4_journal_stop(handle);
6887 if (!ret)
6888 ret = err;
6889 return ret;
6890 }
6891
ext4_acquire_dquot(struct dquot * dquot)6892 static int ext4_acquire_dquot(struct dquot *dquot)
6893 {
6894 int ret, err;
6895 handle_t *handle;
6896
6897 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6898 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6899 if (IS_ERR(handle))
6900 return PTR_ERR(handle);
6901 ret = dquot_acquire(dquot);
6902 if (ret < 0)
6903 ext4_error_err(dquot->dq_sb, -ret,
6904 "Failed to acquire dquot type %d",
6905 dquot->dq_id.type);
6906 err = ext4_journal_stop(handle);
6907 if (!ret)
6908 ret = err;
6909 return ret;
6910 }
6911
ext4_release_dquot(struct dquot * dquot)6912 static int ext4_release_dquot(struct dquot *dquot)
6913 {
6914 int ret, err;
6915 handle_t *handle;
6916
6917 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6918 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6919 if (IS_ERR(handle)) {
6920 /* Release dquot anyway to avoid endless cycle in dqput() */
6921 dquot_release(dquot);
6922 return PTR_ERR(handle);
6923 }
6924 ret = dquot_release(dquot);
6925 if (ret < 0)
6926 ext4_error_err(dquot->dq_sb, -ret,
6927 "Failed to release dquot type %d",
6928 dquot->dq_id.type);
6929 err = ext4_journal_stop(handle);
6930 if (!ret)
6931 ret = err;
6932 return ret;
6933 }
6934
ext4_mark_dquot_dirty(struct dquot * dquot)6935 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6936 {
6937 struct super_block *sb = dquot->dq_sb;
6938
6939 if (ext4_is_quota_journalled(sb)) {
6940 dquot_mark_dquot_dirty(dquot);
6941 return ext4_write_dquot(dquot);
6942 } else {
6943 return dquot_mark_dquot_dirty(dquot);
6944 }
6945 }
6946
ext4_write_info(struct super_block * sb,int type)6947 static int ext4_write_info(struct super_block *sb, int type)
6948 {
6949 int ret, err;
6950 handle_t *handle;
6951
6952 /* Data block + inode block */
6953 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6954 if (IS_ERR(handle))
6955 return PTR_ERR(handle);
6956 ret = dquot_commit_info(sb, type);
6957 err = ext4_journal_stop(handle);
6958 if (!ret)
6959 ret = err;
6960 return ret;
6961 }
6962
lockdep_set_quota_inode(struct inode * inode,int subclass)6963 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6964 {
6965 struct ext4_inode_info *ei = EXT4_I(inode);
6966
6967 /* The first argument of lockdep_set_subclass has to be
6968 * *exactly* the same as the argument to init_rwsem() --- in
6969 * this case, in init_once() --- or lockdep gets unhappy
6970 * because the name of the lock is set using the
6971 * stringification of the argument to init_rwsem().
6972 */
6973 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6974 lockdep_set_subclass(&ei->i_data_sem, subclass);
6975 }
6976
6977 /*
6978 * Standard function to be called on quota_on
6979 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6980 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6981 const struct path *path)
6982 {
6983 int err;
6984
6985 if (!test_opt(sb, QUOTA))
6986 return -EINVAL;
6987
6988 /* Quotafile not on the same filesystem? */
6989 if (path->dentry->d_sb != sb)
6990 return -EXDEV;
6991
6992 /* Quota already enabled for this file? */
6993 if (IS_NOQUOTA(d_inode(path->dentry)))
6994 return -EBUSY;
6995
6996 /* Journaling quota? */
6997 if (EXT4_SB(sb)->s_qf_names[type]) {
6998 /* Quotafile not in fs root? */
6999 if (path->dentry->d_parent != sb->s_root)
7000 ext4_msg(sb, KERN_WARNING,
7001 "Quota file not on filesystem root. "
7002 "Journaled quota will not work");
7003 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7004 } else {
7005 /*
7006 * Clear the flag just in case mount options changed since
7007 * last time.
7008 */
7009 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7010 }
7011
7012 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7013 err = dquot_quota_on(sb, type, format_id, path);
7014 if (!err) {
7015 struct inode *inode = d_inode(path->dentry);
7016 handle_t *handle;
7017
7018 /*
7019 * Set inode flags to prevent userspace from messing with quota
7020 * files. If this fails, we return success anyway since quotas
7021 * are already enabled and this is not a hard failure.
7022 */
7023 inode_lock(inode);
7024 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7025 if (IS_ERR(handle))
7026 goto unlock_inode;
7027 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7028 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7029 S_NOATIME | S_IMMUTABLE);
7030 err = ext4_mark_inode_dirty(handle, inode);
7031 ext4_journal_stop(handle);
7032 unlock_inode:
7033 inode_unlock(inode);
7034 if (err)
7035 dquot_quota_off(sb, type);
7036 }
7037 if (err)
7038 lockdep_set_quota_inode(path->dentry->d_inode,
7039 I_DATA_SEM_NORMAL);
7040 return err;
7041 }
7042
ext4_check_quota_inum(int type,unsigned long qf_inum)7043 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7044 {
7045 switch (type) {
7046 case USRQUOTA:
7047 return qf_inum == EXT4_USR_QUOTA_INO;
7048 case GRPQUOTA:
7049 return qf_inum == EXT4_GRP_QUOTA_INO;
7050 case PRJQUOTA:
7051 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7052 default:
7053 BUG();
7054 }
7055 }
7056
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)7057 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7058 unsigned int flags)
7059 {
7060 int err;
7061 struct inode *qf_inode;
7062 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7063 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7064 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7065 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7066 };
7067
7068 BUG_ON(!ext4_has_feature_quota(sb));
7069
7070 if (!qf_inums[type])
7071 return -EPERM;
7072
7073 if (!ext4_check_quota_inum(type, qf_inums[type])) {
7074 ext4_error(sb, "Bad quota inum: %lu, type: %d",
7075 qf_inums[type], type);
7076 return -EUCLEAN;
7077 }
7078
7079 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7080 if (IS_ERR(qf_inode)) {
7081 ext4_error(sb, "Bad quota inode: %lu, type: %d",
7082 qf_inums[type], type);
7083 return PTR_ERR(qf_inode);
7084 }
7085
7086 /* Don't account quota for quota files to avoid recursion */
7087 qf_inode->i_flags |= S_NOQUOTA;
7088 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7089 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7090 if (err)
7091 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7092 iput(qf_inode);
7093
7094 return err;
7095 }
7096
7097 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)7098 int ext4_enable_quotas(struct super_block *sb)
7099 {
7100 int type, err = 0;
7101 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7102 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7103 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7104 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7105 };
7106 bool quota_mopt[EXT4_MAXQUOTAS] = {
7107 test_opt(sb, USRQUOTA),
7108 test_opt(sb, GRPQUOTA),
7109 test_opt(sb, PRJQUOTA),
7110 };
7111
7112 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7113 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7114 if (qf_inums[type]) {
7115 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7116 DQUOT_USAGE_ENABLED |
7117 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7118 if (err) {
7119 ext4_warning(sb,
7120 "Failed to enable quota tracking "
7121 "(type=%d, err=%d, ino=%lu). "
7122 "Please run e2fsck to fix.", type,
7123 err, qf_inums[type]);
7124
7125 ext4_quotas_off(sb, type);
7126 return err;
7127 }
7128 }
7129 }
7130 return 0;
7131 }
7132
ext4_quota_off(struct super_block * sb,int type)7133 static int ext4_quota_off(struct super_block *sb, int type)
7134 {
7135 struct inode *inode = sb_dqopt(sb)->files[type];
7136 handle_t *handle;
7137 int err;
7138
7139 /* Force all delayed allocation blocks to be allocated.
7140 * Caller already holds s_umount sem */
7141 if (test_opt(sb, DELALLOC))
7142 sync_filesystem(sb);
7143
7144 if (!inode || !igrab(inode))
7145 goto out;
7146
7147 err = dquot_quota_off(sb, type);
7148 if (err || ext4_has_feature_quota(sb))
7149 goto out_put;
7150 /*
7151 * When the filesystem was remounted read-only first, we cannot cleanup
7152 * inode flags here. Bad luck but people should be using QUOTA feature
7153 * these days anyway.
7154 */
7155 if (sb_rdonly(sb))
7156 goto out_put;
7157
7158 inode_lock(inode);
7159 /*
7160 * Update modification times of quota files when userspace can
7161 * start looking at them. If we fail, we return success anyway since
7162 * this is not a hard failure and quotas are already disabled.
7163 */
7164 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7165 if (IS_ERR(handle)) {
7166 err = PTR_ERR(handle);
7167 goto out_unlock;
7168 }
7169 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7170 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7171 inode->i_mtime = inode_set_ctime_current(inode);
7172 err = ext4_mark_inode_dirty(handle, inode);
7173 ext4_journal_stop(handle);
7174 out_unlock:
7175 inode_unlock(inode);
7176 out_put:
7177 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7178 iput(inode);
7179 return err;
7180 out:
7181 return dquot_quota_off(sb, type);
7182 }
7183
7184 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7185 * acquiring the locks... As quota files are never truncated and quota code
7186 * itself serializes the operations (and no one else should touch the files)
7187 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7188 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7189 size_t len, loff_t off)
7190 {
7191 struct inode *inode = sb_dqopt(sb)->files[type];
7192 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7193 int offset = off & (sb->s_blocksize - 1);
7194 int tocopy;
7195 size_t toread;
7196 struct buffer_head *bh;
7197 loff_t i_size = i_size_read(inode);
7198
7199 if (off > i_size)
7200 return 0;
7201 if (off+len > i_size)
7202 len = i_size-off;
7203 toread = len;
7204 while (toread > 0) {
7205 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7206 bh = ext4_bread(NULL, inode, blk, 0);
7207 if (IS_ERR(bh))
7208 return PTR_ERR(bh);
7209 if (!bh) /* A hole? */
7210 memset(data, 0, tocopy);
7211 else
7212 memcpy(data, bh->b_data+offset, tocopy);
7213 brelse(bh);
7214 offset = 0;
7215 toread -= tocopy;
7216 data += tocopy;
7217 blk++;
7218 }
7219 return len;
7220 }
7221
7222 /* Write to quotafile (we know the transaction is already started and has
7223 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7224 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7225 const char *data, size_t len, loff_t off)
7226 {
7227 struct inode *inode = sb_dqopt(sb)->files[type];
7228 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7229 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7230 int retries = 0;
7231 struct buffer_head *bh;
7232 handle_t *handle = journal_current_handle();
7233
7234 if (!handle) {
7235 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7236 " cancelled because transaction is not started",
7237 (unsigned long long)off, (unsigned long long)len);
7238 return -EIO;
7239 }
7240 /*
7241 * Since we account only one data block in transaction credits,
7242 * then it is impossible to cross a block boundary.
7243 */
7244 if (sb->s_blocksize - offset < len) {
7245 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7246 " cancelled because not block aligned",
7247 (unsigned long long)off, (unsigned long long)len);
7248 return -EIO;
7249 }
7250
7251 do {
7252 bh = ext4_bread(handle, inode, blk,
7253 EXT4_GET_BLOCKS_CREATE |
7254 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7255 } while (PTR_ERR(bh) == -ENOSPC &&
7256 ext4_should_retry_alloc(inode->i_sb, &retries));
7257 if (IS_ERR(bh))
7258 return PTR_ERR(bh);
7259 if (!bh)
7260 goto out;
7261 BUFFER_TRACE(bh, "get write access");
7262 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7263 if (err) {
7264 brelse(bh);
7265 return err;
7266 }
7267 lock_buffer(bh);
7268 memcpy(bh->b_data+offset, data, len);
7269 flush_dcache_page(bh->b_page);
7270 unlock_buffer(bh);
7271 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7272 brelse(bh);
7273 out:
7274 if (inode->i_size < off + len) {
7275 i_size_write(inode, off + len);
7276 EXT4_I(inode)->i_disksize = inode->i_size;
7277 err2 = ext4_mark_inode_dirty(handle, inode);
7278 if (unlikely(err2 && !err))
7279 err = err2;
7280 }
7281 return err ? err : len;
7282 }
7283 #endif
7284
7285 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7286 static inline void register_as_ext2(void)
7287 {
7288 int err = register_filesystem(&ext2_fs_type);
7289 if (err)
7290 printk(KERN_WARNING
7291 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7292 }
7293
unregister_as_ext2(void)7294 static inline void unregister_as_ext2(void)
7295 {
7296 unregister_filesystem(&ext2_fs_type);
7297 }
7298
ext2_feature_set_ok(struct super_block * sb)7299 static inline int ext2_feature_set_ok(struct super_block *sb)
7300 {
7301 if (ext4_has_unknown_ext2_incompat_features(sb))
7302 return 0;
7303 if (sb_rdonly(sb))
7304 return 1;
7305 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7306 return 0;
7307 return 1;
7308 }
7309 #else
register_as_ext2(void)7310 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7311 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7312 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7313 #endif
7314
register_as_ext3(void)7315 static inline void register_as_ext3(void)
7316 {
7317 int err = register_filesystem(&ext3_fs_type);
7318 if (err)
7319 printk(KERN_WARNING
7320 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7321 }
7322
unregister_as_ext3(void)7323 static inline void unregister_as_ext3(void)
7324 {
7325 unregister_filesystem(&ext3_fs_type);
7326 }
7327
ext3_feature_set_ok(struct super_block * sb)7328 static inline int ext3_feature_set_ok(struct super_block *sb)
7329 {
7330 if (ext4_has_unknown_ext3_incompat_features(sb))
7331 return 0;
7332 if (!ext4_has_feature_journal(sb))
7333 return 0;
7334 if (sb_rdonly(sb))
7335 return 1;
7336 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7337 return 0;
7338 return 1;
7339 }
7340
ext4_kill_sb(struct super_block * sb)7341 static void ext4_kill_sb(struct super_block *sb)
7342 {
7343 struct ext4_sb_info *sbi = EXT4_SB(sb);
7344 struct block_device *journal_bdev = sbi ? sbi->s_journal_bdev : NULL;
7345
7346 kill_block_super(sb);
7347
7348 if (journal_bdev)
7349 blkdev_put(journal_bdev, sb);
7350 }
7351
7352 static struct file_system_type ext4_fs_type = {
7353 .owner = THIS_MODULE,
7354 .name = "ext4",
7355 .init_fs_context = ext4_init_fs_context,
7356 .parameters = ext4_param_specs,
7357 .kill_sb = ext4_kill_sb,
7358 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7359 };
7360 MODULE_ALIAS_FS("ext4");
7361
7362 /* Shared across all ext4 file systems */
7363 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7364
ext4_init_fs(void)7365 static int __init ext4_init_fs(void)
7366 {
7367 int i, err;
7368
7369 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7370 ext4_li_info = NULL;
7371
7372 /* Build-time check for flags consistency */
7373 ext4_check_flag_values();
7374
7375 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7376 init_waitqueue_head(&ext4__ioend_wq[i]);
7377
7378 err = ext4_init_es();
7379 if (err)
7380 return err;
7381
7382 err = ext4_init_pending();
7383 if (err)
7384 goto out7;
7385
7386 err = ext4_init_post_read_processing();
7387 if (err)
7388 goto out6;
7389
7390 err = ext4_init_pageio();
7391 if (err)
7392 goto out5;
7393
7394 err = ext4_init_system_zone();
7395 if (err)
7396 goto out4;
7397
7398 err = ext4_init_sysfs();
7399 if (err)
7400 goto out3;
7401
7402 err = ext4_init_mballoc();
7403 if (err)
7404 goto out2;
7405 err = init_inodecache();
7406 if (err)
7407 goto out1;
7408
7409 err = ext4_fc_init_dentry_cache();
7410 if (err)
7411 goto out05;
7412
7413 register_as_ext3();
7414 register_as_ext2();
7415 err = register_filesystem(&ext4_fs_type);
7416 if (err)
7417 goto out;
7418
7419 return 0;
7420 out:
7421 unregister_as_ext2();
7422 unregister_as_ext3();
7423 ext4_fc_destroy_dentry_cache();
7424 out05:
7425 destroy_inodecache();
7426 out1:
7427 ext4_exit_mballoc();
7428 out2:
7429 ext4_exit_sysfs();
7430 out3:
7431 ext4_exit_system_zone();
7432 out4:
7433 ext4_exit_pageio();
7434 out5:
7435 ext4_exit_post_read_processing();
7436 out6:
7437 ext4_exit_pending();
7438 out7:
7439 ext4_exit_es();
7440
7441 return err;
7442 }
7443
ext4_exit_fs(void)7444 static void __exit ext4_exit_fs(void)
7445 {
7446 ext4_destroy_lazyinit_thread();
7447 unregister_as_ext2();
7448 unregister_as_ext3();
7449 unregister_filesystem(&ext4_fs_type);
7450 ext4_fc_destroy_dentry_cache();
7451 destroy_inodecache();
7452 ext4_exit_mballoc();
7453 ext4_exit_sysfs();
7454 ext4_exit_system_zone();
7455 ext4_exit_pageio();
7456 ext4_exit_post_read_processing();
7457 ext4_exit_es();
7458 ext4_exit_pending();
7459 }
7460
7461 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7462 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7463 MODULE_LICENSE("GPL");
7464 MODULE_SOFTDEP("pre: crc32c");
7465 module_init(ext4_init_fs)
7466 module_exit(ext4_exit_fs)
7467