1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * fs/ext4/fast_commit.c
5 *
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7 *
8 * Ext4 fast commits routines.
9 */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14
15 /*
16 * Ext4 Fast Commits
17 * -----------------
18 *
19 * Ext4 fast commits implement fine grained journalling for Ext4.
20 *
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
26 *
27 * (A) Directory entry updates:
28 *
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
32 *
33 * (B) File specific data range updates:
34 *
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
37 *
38 * (C) Inode metadata (mtime / ctime etc):
39 *
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
43 * replay.
44 * Commit Operation
45 * ----------------
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
51 *
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
60 *
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
65 *
66 * Fast Commit Ineligibility
67 * -------------------------
68 *
69 * Not all operations are supported by fast commits today (e.g extended
70 * attributes). Fast commit ineligibility is marked by calling
71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72 * to full commit.
73 *
74 * Atomicity of commits
75 * --------------------
76 * In order to guarantee atomicity during the commit operation, fast commit
77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78 * tag contains CRC of the contents and TID of the transaction after which
79 * this fast commit should be applied. Recovery code replays fast commit
80 * logs only if there's at least 1 valid tail present. For every fast commit
81 * operation, there is 1 tail. This means, we may end up with multiple tails
82 * in the fast commit space. Here's an example:
83 *
84 * - Create a new file A and remove existing file B
85 * - fsync()
86 * - Append contents to file A
87 * - Truncate file A
88 * - fsync()
89 *
90 * The fast commit space at the end of above operations would look like this:
91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
93 *
94 * Replay code should thus check for all the valid tails in the FC area.
95 *
96 * Fast Commit Replay Idempotence
97 * ------------------------------
98 *
99 * Fast commits tags are idempotent in nature provided the recovery code follows
100 * certain rules. The guiding principle that the commit path follows while
101 * committing is that it stores the result of a particular operation instead of
102 * storing the procedure.
103 *
104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105 * was associated with inode 10. During fast commit, instead of storing this
106 * operation as a procedure "rename a to b", we store the resulting file system
107 * state as a "series" of outcomes:
108 *
109 * - Link dirent b to inode 10
110 * - Unlink dirent a
111 * - Inode <10> with valid refcount
112 *
113 * Now when recovery code runs, it needs "enforce" this state on the file
114 * system. This is what guarantees idempotence of fast commit replay.
115 *
116 * Let's take an example of a procedure that is not idempotent and see how fast
117 * commits make it idempotent. Consider following sequence of operations:
118 *
119 * rm A; mv B A; read A
120 * (x) (y) (z)
121 *
122 * (x), (y) and (z) are the points at which we can crash. If we store this
123 * sequence of operations as is then the replay is not idempotent. Let's say
124 * while in replay, we crash at (z). During the second replay, file A (which was
125 * actually created as a result of "mv B A" operation) would get deleted. Thus,
126 * file named A would be absent when we try to read A. So, this sequence of
127 * operations is not idempotent. However, as mentioned above, instead of storing
128 * the procedure fast commits store the outcome of each procedure. Thus the fast
129 * commit log for above procedure would be as follows:
130 *
131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132 * inode 11 before the replay)
133 *
134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11]
135 * (w) (x) (y) (z)
136 *
137 * If we crash at (z), we will have file A linked to inode 11. During the second
138 * replay, we will remove file A (inode 11). But we will create it back and make
139 * it point to inode 11. We won't find B, so we'll just skip that step. At this
140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142 * similarly. Thus, by converting a non-idempotent procedure into a series of
143 * idempotent outcomes, fast commits ensured idempotence during the replay.
144 *
145 * TODOs
146 * -----
147 *
148 * 0) Fast commit replay path hardening: Fast commit replay code should use
149 * journal handles to make sure all the updates it does during the replay
150 * path are atomic. With that if we crash during fast commit replay, after
151 * trying to do recovery again, we will find a file system where fast commit
152 * area is invalid (because new full commit would be found). In order to deal
153 * with that, fast commit replay code should ensure that the "FC_REPLAY"
154 * superblock state is persisted before starting the replay, so that after
155 * the crash, fast commit recovery code can look at that flag and perform
156 * fast commit recovery even if that area is invalidated by later full
157 * commits.
158 *
159 * 1) Fast commit's commit path locks the entire file system during fast
160 * commit. This has significant performance penalty. Instead of that, we
161 * should use ext4_fc_start/stop_update functions to start inode level
162 * updates from ext4_journal_start/stop. Once we do that we can drop file
163 * system locking during commit path.
164 *
165 * 2) Handle more ineligible cases.
166 */
167
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
170
ext4_end_buffer_io_sync(struct buffer_head * bh,int uptodate)171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172 {
173 BUFFER_TRACE(bh, "");
174 if (uptodate) {
175 ext4_debug("%s: Block %lld up-to-date",
176 __func__, bh->b_blocknr);
177 set_buffer_uptodate(bh);
178 } else {
179 ext4_debug("%s: Block %lld not up-to-date",
180 __func__, bh->b_blocknr);
181 clear_buffer_uptodate(bh);
182 }
183
184 unlock_buffer(bh);
185 }
186
ext4_fc_reset_inode(struct inode * inode)187 static inline void ext4_fc_reset_inode(struct inode *inode)
188 {
189 struct ext4_inode_info *ei = EXT4_I(inode);
190
191 ei->i_fc_lblk_start = 0;
192 ei->i_fc_lblk_len = 0;
193 }
194
ext4_fc_init_inode(struct inode * inode)195 void ext4_fc_init_inode(struct inode *inode)
196 {
197 struct ext4_inode_info *ei = EXT4_I(inode);
198
199 ext4_fc_reset_inode(inode);
200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 INIT_LIST_HEAD(&ei->i_fc_list);
202 INIT_LIST_HEAD(&ei->i_fc_dilist);
203 init_waitqueue_head(&ei->i_fc_wait);
204 atomic_set(&ei->i_fc_updates, 0);
205 }
206
207 /* This function must be called with sbi->s_fc_lock held. */
ext4_fc_wait_committing_inode(struct inode * inode)208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210 {
211 wait_queue_head_t *wq;
212 struct ext4_inode_info *ei = EXT4_I(inode);
213
214 #if (BITS_PER_LONG < 64)
215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 EXT4_STATE_FC_COMMITTING);
217 wq = bit_waitqueue(&ei->i_state_flags,
218 EXT4_STATE_FC_COMMITTING);
219 #else
220 DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 EXT4_STATE_FC_COMMITTING);
222 wq = bit_waitqueue(&ei->i_flags,
223 EXT4_STATE_FC_COMMITTING);
224 #endif
225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228 schedule();
229 finish_wait(wq, &wait.wq_entry);
230 }
231
ext4_fc_disabled(struct super_block * sb)232 static bool ext4_fc_disabled(struct super_block *sb)
233 {
234 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236 }
237
238 /*
239 * Inform Ext4's fast about start of an inode update
240 *
241 * This function is called by the high level call VFS callbacks before
242 * performing any inode update. This function blocks if there's an ongoing
243 * fast commit on the inode in question.
244 */
ext4_fc_start_update(struct inode * inode)245 void ext4_fc_start_update(struct inode *inode)
246 {
247 struct ext4_inode_info *ei = EXT4_I(inode);
248
249 if (ext4_fc_disabled(inode->i_sb))
250 return;
251
252 restart:
253 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 if (list_empty(&ei->i_fc_list))
255 goto out;
256
257 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 ext4_fc_wait_committing_inode(inode);
259 goto restart;
260 }
261 out:
262 atomic_inc(&ei->i_fc_updates);
263 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264 }
265
266 /*
267 * Stop inode update and wake up waiting fast commits if any.
268 */
ext4_fc_stop_update(struct inode * inode)269 void ext4_fc_stop_update(struct inode *inode)
270 {
271 struct ext4_inode_info *ei = EXT4_I(inode);
272
273 if (ext4_fc_disabled(inode->i_sb))
274 return;
275
276 if (atomic_dec_and_test(&ei->i_fc_updates))
277 wake_up_all(&ei->i_fc_wait);
278 }
279
280 /*
281 * Remove inode from fast commit list. If the inode is being committed
282 * we wait until inode commit is done.
283 */
ext4_fc_del(struct inode * inode)284 void ext4_fc_del(struct inode *inode)
285 {
286 struct ext4_inode_info *ei = EXT4_I(inode);
287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 struct ext4_fc_dentry_update *fc_dentry;
289
290 if (ext4_fc_disabled(inode->i_sb))
291 return;
292
293 restart:
294 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
295 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
297 return;
298 }
299
300 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 ext4_fc_wait_committing_inode(inode);
302 goto restart;
303 }
304
305 if (!list_empty(&ei->i_fc_list))
306 list_del_init(&ei->i_fc_list);
307
308 /*
309 * Since this inode is getting removed, let's also remove all FC
310 * dentry create references, since it is not needed to log it anyways.
311 */
312 if (list_empty(&ei->i_fc_dilist)) {
313 spin_unlock(&sbi->s_fc_lock);
314 return;
315 }
316
317 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 list_del_init(&fc_dentry->fcd_list);
320 list_del_init(&fc_dentry->fcd_dilist);
321
322 WARN_ON(!list_empty(&ei->i_fc_dilist));
323 spin_unlock(&sbi->s_fc_lock);
324
325 if (fc_dentry->fcd_name.name &&
326 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327 kfree(fc_dentry->fcd_name.name);
328 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
329
330 return;
331 }
332
333 /*
334 * Mark file system as fast commit ineligible, and record latest
335 * ineligible transaction tid. This means until the recorded
336 * transaction, commit operation would result in a full jbd2 commit.
337 */
ext4_fc_mark_ineligible(struct super_block * sb,int reason,handle_t * handle)338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
339 {
340 struct ext4_sb_info *sbi = EXT4_SB(sb);
341 tid_t tid;
342 bool has_transaction = true;
343 bool is_ineligible;
344
345 if (ext4_fc_disabled(sb))
346 return;
347
348 if (handle && !IS_ERR(handle))
349 tid = handle->h_transaction->t_tid;
350 else {
351 read_lock(&sbi->s_journal->j_state_lock);
352 if (sbi->s_journal->j_running_transaction)
353 tid = sbi->s_journal->j_running_transaction->t_tid;
354 else
355 has_transaction = false;
356 read_unlock(&sbi->s_journal->j_state_lock);
357 }
358 spin_lock(&sbi->s_fc_lock);
359 is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360 if (has_transaction &&
361 (!is_ineligible ||
362 (is_ineligible && tid_gt(tid, sbi->s_fc_ineligible_tid))))
363 sbi->s_fc_ineligible_tid = tid;
364 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
365 spin_unlock(&sbi->s_fc_lock);
366 WARN_ON(reason >= EXT4_FC_REASON_MAX);
367 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
368 }
369
370 /*
371 * Generic fast commit tracking function. If this is the first time this we are
372 * called after a full commit, we initialize fast commit fields and then call
373 * __fc_track_fn() with update = 0. If we have already been called after a full
374 * commit, we pass update = 1. Based on that, the track function can determine
375 * if it needs to track a field for the first time or if it needs to just
376 * update the previously tracked value.
377 *
378 * If enqueue is set, this function enqueues the inode in fast commit list.
379 */
ext4_fc_track_template(handle_t * handle,struct inode * inode,int (* __fc_track_fn)(handle_t * handle,struct inode *,void *,bool),void * args,int enqueue)380 static int ext4_fc_track_template(
381 handle_t *handle, struct inode *inode,
382 int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool),
383 void *args, int enqueue)
384 {
385 bool update = false;
386 struct ext4_inode_info *ei = EXT4_I(inode);
387 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
388 tid_t tid = 0;
389 int ret;
390
391 tid = handle->h_transaction->t_tid;
392 mutex_lock(&ei->i_fc_lock);
393 if (tid == ei->i_sync_tid) {
394 update = true;
395 } else {
396 ext4_fc_reset_inode(inode);
397 ei->i_sync_tid = tid;
398 }
399 ret = __fc_track_fn(handle, inode, args, update);
400 mutex_unlock(&ei->i_fc_lock);
401
402 if (!enqueue)
403 return ret;
404
405 spin_lock(&sbi->s_fc_lock);
406 if (list_empty(&EXT4_I(inode)->i_fc_list))
407 list_add_tail(&EXT4_I(inode)->i_fc_list,
408 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
409 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
410 &sbi->s_fc_q[FC_Q_STAGING] :
411 &sbi->s_fc_q[FC_Q_MAIN]);
412 spin_unlock(&sbi->s_fc_lock);
413
414 return ret;
415 }
416
417 struct __track_dentry_update_args {
418 struct dentry *dentry;
419 int op;
420 };
421
422 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
__track_dentry_update(handle_t * handle,struct inode * inode,void * arg,bool update)423 static int __track_dentry_update(handle_t *handle, struct inode *inode,
424 void *arg, bool update)
425 {
426 struct ext4_fc_dentry_update *node;
427 struct ext4_inode_info *ei = EXT4_I(inode);
428 struct __track_dentry_update_args *dentry_update =
429 (struct __track_dentry_update_args *)arg;
430 struct dentry *dentry = dentry_update->dentry;
431 struct inode *dir = dentry->d_parent->d_inode;
432 struct super_block *sb = inode->i_sb;
433 struct ext4_sb_info *sbi = EXT4_SB(sb);
434
435 mutex_unlock(&ei->i_fc_lock);
436
437 if (IS_ENCRYPTED(dir)) {
438 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
439 handle);
440 mutex_lock(&ei->i_fc_lock);
441 return -EOPNOTSUPP;
442 }
443
444 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
445 if (!node) {
446 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
447 mutex_lock(&ei->i_fc_lock);
448 return -ENOMEM;
449 }
450
451 node->fcd_op = dentry_update->op;
452 node->fcd_parent = dir->i_ino;
453 node->fcd_ino = inode->i_ino;
454 if (dentry->d_name.len > DNAME_INLINE_LEN) {
455 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
456 if (!node->fcd_name.name) {
457 kmem_cache_free(ext4_fc_dentry_cachep, node);
458 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
459 mutex_lock(&ei->i_fc_lock);
460 return -ENOMEM;
461 }
462 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
463 dentry->d_name.len);
464 } else {
465 memcpy(node->fcd_iname, dentry->d_name.name,
466 dentry->d_name.len);
467 node->fcd_name.name = node->fcd_iname;
468 }
469 node->fcd_name.len = dentry->d_name.len;
470 INIT_LIST_HEAD(&node->fcd_dilist);
471 spin_lock(&sbi->s_fc_lock);
472 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
473 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
474 list_add_tail(&node->fcd_list,
475 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
476 else
477 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
478
479 /*
480 * This helps us keep a track of all fc_dentry updates which is part of
481 * this ext4 inode. So in case the inode is getting unlinked, before
482 * even we get a chance to fsync, we could remove all fc_dentry
483 * references while evicting the inode in ext4_fc_del().
484 * Also with this, we don't need to loop over all the inodes in
485 * sbi->s_fc_q to get the corresponding inode in
486 * ext4_fc_commit_dentry_updates().
487 */
488 if (dentry_update->op == EXT4_FC_TAG_CREAT) {
489 WARN_ON(!list_empty(&ei->i_fc_dilist));
490 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
491 }
492 spin_unlock(&sbi->s_fc_lock);
493 mutex_lock(&ei->i_fc_lock);
494
495 return 0;
496 }
497
__ext4_fc_track_unlink(handle_t * handle,struct inode * inode,struct dentry * dentry)498 void __ext4_fc_track_unlink(handle_t *handle,
499 struct inode *inode, struct dentry *dentry)
500 {
501 struct __track_dentry_update_args args;
502 int ret;
503
504 args.dentry = dentry;
505 args.op = EXT4_FC_TAG_UNLINK;
506
507 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
508 (void *)&args, 0);
509 trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
510 }
511
ext4_fc_track_unlink(handle_t * handle,struct dentry * dentry)512 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
513 {
514 struct inode *inode = d_inode(dentry);
515
516 if (ext4_fc_disabled(inode->i_sb))
517 return;
518
519 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
520 return;
521
522 __ext4_fc_track_unlink(handle, inode, dentry);
523 }
524
__ext4_fc_track_link(handle_t * handle,struct inode * inode,struct dentry * dentry)525 void __ext4_fc_track_link(handle_t *handle,
526 struct inode *inode, struct dentry *dentry)
527 {
528 struct __track_dentry_update_args args;
529 int ret;
530
531 args.dentry = dentry;
532 args.op = EXT4_FC_TAG_LINK;
533
534 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
535 (void *)&args, 0);
536 trace_ext4_fc_track_link(handle, inode, dentry, ret);
537 }
538
ext4_fc_track_link(handle_t * handle,struct dentry * dentry)539 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
540 {
541 struct inode *inode = d_inode(dentry);
542
543 if (ext4_fc_disabled(inode->i_sb))
544 return;
545
546 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
547 return;
548
549 __ext4_fc_track_link(handle, inode, dentry);
550 }
551
__ext4_fc_track_create(handle_t * handle,struct inode * inode,struct dentry * dentry)552 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
553 struct dentry *dentry)
554 {
555 struct __track_dentry_update_args args;
556 int ret;
557
558 args.dentry = dentry;
559 args.op = EXT4_FC_TAG_CREAT;
560
561 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
562 (void *)&args, 0);
563 trace_ext4_fc_track_create(handle, inode, dentry, ret);
564 }
565
ext4_fc_track_create(handle_t * handle,struct dentry * dentry)566 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
567 {
568 struct inode *inode = d_inode(dentry);
569
570 if (ext4_fc_disabled(inode->i_sb))
571 return;
572
573 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
574 return;
575
576 __ext4_fc_track_create(handle, inode, dentry);
577 }
578
579 /* __track_fn for inode tracking */
__track_inode(handle_t * handle,struct inode * inode,void * arg,bool update)580 static int __track_inode(handle_t *handle, struct inode *inode, void *arg,
581 bool update)
582 {
583 if (update)
584 return -EEXIST;
585
586 EXT4_I(inode)->i_fc_lblk_len = 0;
587
588 return 0;
589 }
590
ext4_fc_track_inode(handle_t * handle,struct inode * inode)591 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
592 {
593 int ret;
594
595 if (S_ISDIR(inode->i_mode))
596 return;
597
598 if (ext4_fc_disabled(inode->i_sb))
599 return;
600
601 if (ext4_should_journal_data(inode)) {
602 ext4_fc_mark_ineligible(inode->i_sb,
603 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
604 return;
605 }
606
607 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
608 return;
609
610 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
611 trace_ext4_fc_track_inode(handle, inode, ret);
612 }
613
614 struct __track_range_args {
615 ext4_lblk_t start, end;
616 };
617
618 /* __track_fn for tracking data updates */
__track_range(handle_t * handle,struct inode * inode,void * arg,bool update)619 static int __track_range(handle_t *handle, struct inode *inode, void *arg,
620 bool update)
621 {
622 struct ext4_inode_info *ei = EXT4_I(inode);
623 ext4_lblk_t oldstart;
624 struct __track_range_args *__arg =
625 (struct __track_range_args *)arg;
626
627 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
628 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
629 return -ECANCELED;
630 }
631
632 oldstart = ei->i_fc_lblk_start;
633
634 if (update && ei->i_fc_lblk_len > 0) {
635 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
636 ei->i_fc_lblk_len =
637 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
638 ei->i_fc_lblk_start + 1;
639 } else {
640 ei->i_fc_lblk_start = __arg->start;
641 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
642 }
643
644 return 0;
645 }
646
ext4_fc_track_range(handle_t * handle,struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)647 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
648 ext4_lblk_t end)
649 {
650 struct __track_range_args args;
651 int ret;
652
653 if (S_ISDIR(inode->i_mode))
654 return;
655
656 if (ext4_fc_disabled(inode->i_sb))
657 return;
658
659 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
660 return;
661
662 if (ext4_has_inline_data(inode)) {
663 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
664 handle);
665 return;
666 }
667
668 args.start = start;
669 args.end = end;
670
671 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1);
672
673 trace_ext4_fc_track_range(handle, inode, start, end, ret);
674 }
675
ext4_fc_submit_bh(struct super_block * sb,bool is_tail)676 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
677 {
678 blk_opf_t write_flags = REQ_SYNC;
679 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
680
681 /* Add REQ_FUA | REQ_PREFLUSH only its tail */
682 if (test_opt(sb, BARRIER) && is_tail)
683 write_flags |= REQ_FUA | REQ_PREFLUSH;
684 lock_buffer(bh);
685 set_buffer_dirty(bh);
686 set_buffer_uptodate(bh);
687 bh->b_end_io = ext4_end_buffer_io_sync;
688 submit_bh(REQ_OP_WRITE | write_flags, bh);
689 EXT4_SB(sb)->s_fc_bh = NULL;
690 }
691
692 /* Ext4 commit path routines */
693
694 /*
695 * Allocate len bytes on a fast commit buffer.
696 *
697 * During the commit time this function is used to manage fast commit
698 * block space. We don't split a fast commit log onto different
699 * blocks. So this function makes sure that if there's not enough space
700 * on the current block, the remaining space in the current block is
701 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
702 * new block is from jbd2 and CRC is updated to reflect the padding
703 * we added.
704 */
ext4_fc_reserve_space(struct super_block * sb,int len,u32 * crc)705 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
706 {
707 struct ext4_fc_tl tl;
708 struct ext4_sb_info *sbi = EXT4_SB(sb);
709 struct buffer_head *bh;
710 int bsize = sbi->s_journal->j_blocksize;
711 int ret, off = sbi->s_fc_bytes % bsize;
712 int remaining;
713 u8 *dst;
714
715 /*
716 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
717 * cannot fulfill the request.
718 */
719 if (len > bsize - EXT4_FC_TAG_BASE_LEN)
720 return NULL;
721
722 if (!sbi->s_fc_bh) {
723 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
724 if (ret)
725 return NULL;
726 sbi->s_fc_bh = bh;
727 }
728 dst = sbi->s_fc_bh->b_data + off;
729
730 /*
731 * Allocate the bytes in the current block if we can do so while still
732 * leaving enough space for a PAD tlv.
733 */
734 remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
735 if (len <= remaining) {
736 sbi->s_fc_bytes += len;
737 return dst;
738 }
739
740 /*
741 * Else, terminate the current block with a PAD tlv, then allocate a new
742 * block and allocate the bytes at the start of that new block.
743 */
744
745 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
746 tl.fc_len = cpu_to_le16(remaining);
747 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
748 memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
749 *crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
750
751 ext4_fc_submit_bh(sb, false);
752
753 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
754 if (ret)
755 return NULL;
756 sbi->s_fc_bh = bh;
757 sbi->s_fc_bytes += bsize - off + len;
758 return sbi->s_fc_bh->b_data;
759 }
760
761 /*
762 * Complete a fast commit by writing tail tag.
763 *
764 * Writing tail tag marks the end of a fast commit. In order to guarantee
765 * atomicity, after writing tail tag, even if there's space remaining
766 * in the block, next commit shouldn't use it. That's why tail tag
767 * has the length as that of the remaining space on the block.
768 */
ext4_fc_write_tail(struct super_block * sb,u32 crc)769 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
770 {
771 struct ext4_sb_info *sbi = EXT4_SB(sb);
772 struct ext4_fc_tl tl;
773 struct ext4_fc_tail tail;
774 int off, bsize = sbi->s_journal->j_blocksize;
775 u8 *dst;
776
777 /*
778 * ext4_fc_reserve_space takes care of allocating an extra block if
779 * there's no enough space on this block for accommodating this tail.
780 */
781 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
782 if (!dst)
783 return -ENOSPC;
784
785 off = sbi->s_fc_bytes % bsize;
786
787 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
788 tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
789 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
790
791 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
792 dst += EXT4_FC_TAG_BASE_LEN;
793 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
794 memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
795 dst += sizeof(tail.fc_tid);
796 crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
797 dst - (u8 *)sbi->s_fc_bh->b_data);
798 tail.fc_crc = cpu_to_le32(crc);
799 memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
800 dst += sizeof(tail.fc_crc);
801 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
802
803 ext4_fc_submit_bh(sb, true);
804
805 return 0;
806 }
807
808 /*
809 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
810 * Returns false if there's not enough space.
811 */
ext4_fc_add_tlv(struct super_block * sb,u16 tag,u16 len,u8 * val,u32 * crc)812 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
813 u32 *crc)
814 {
815 struct ext4_fc_tl tl;
816 u8 *dst;
817
818 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
819 if (!dst)
820 return false;
821
822 tl.fc_tag = cpu_to_le16(tag);
823 tl.fc_len = cpu_to_le16(len);
824
825 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
826 memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
827
828 return true;
829 }
830
831 /* Same as above, but adds dentry tlv. */
ext4_fc_add_dentry_tlv(struct super_block * sb,u32 * crc,struct ext4_fc_dentry_update * fc_dentry)832 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
833 struct ext4_fc_dentry_update *fc_dentry)
834 {
835 struct ext4_fc_dentry_info fcd;
836 struct ext4_fc_tl tl;
837 int dlen = fc_dentry->fcd_name.len;
838 u8 *dst = ext4_fc_reserve_space(sb,
839 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
840
841 if (!dst)
842 return false;
843
844 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
845 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
846 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
847 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
848 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
849 dst += EXT4_FC_TAG_BASE_LEN;
850 memcpy(dst, &fcd, sizeof(fcd));
851 dst += sizeof(fcd);
852 memcpy(dst, fc_dentry->fcd_name.name, dlen);
853
854 return true;
855 }
856
857 /*
858 * Writes inode in the fast commit space under TLV with tag @tag.
859 * Returns 0 on success, error on failure.
860 */
ext4_fc_write_inode(struct inode * inode,u32 * crc)861 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
862 {
863 struct ext4_inode_info *ei = EXT4_I(inode);
864 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
865 int ret;
866 struct ext4_iloc iloc;
867 struct ext4_fc_inode fc_inode;
868 struct ext4_fc_tl tl;
869 u8 *dst;
870
871 ret = ext4_get_inode_loc(inode, &iloc);
872 if (ret)
873 return ret;
874
875 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
876 inode_len = EXT4_INODE_SIZE(inode->i_sb);
877 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
878 inode_len += ei->i_extra_isize;
879
880 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
881 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
882 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
883
884 ret = -ECANCELED;
885 dst = ext4_fc_reserve_space(inode->i_sb,
886 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
887 if (!dst)
888 goto err;
889
890 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
891 dst += EXT4_FC_TAG_BASE_LEN;
892 memcpy(dst, &fc_inode, sizeof(fc_inode));
893 dst += sizeof(fc_inode);
894 memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
895 ret = 0;
896 err:
897 brelse(iloc.bh);
898 return ret;
899 }
900
901 /*
902 * Writes updated data ranges for the inode in question. Updates CRC.
903 * Returns 0 on success, error otherwise.
904 */
ext4_fc_write_inode_data(struct inode * inode,u32 * crc)905 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
906 {
907 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
908 struct ext4_inode_info *ei = EXT4_I(inode);
909 struct ext4_map_blocks map;
910 struct ext4_fc_add_range fc_ext;
911 struct ext4_fc_del_range lrange;
912 struct ext4_extent *ex;
913 int ret;
914
915 mutex_lock(&ei->i_fc_lock);
916 if (ei->i_fc_lblk_len == 0) {
917 mutex_unlock(&ei->i_fc_lock);
918 return 0;
919 }
920 old_blk_size = ei->i_fc_lblk_start;
921 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
922 ei->i_fc_lblk_len = 0;
923 mutex_unlock(&ei->i_fc_lock);
924
925 cur_lblk_off = old_blk_size;
926 ext4_debug("will try writing %d to %d for inode %ld\n",
927 cur_lblk_off, new_blk_size, inode->i_ino);
928
929 while (cur_lblk_off <= new_blk_size) {
930 map.m_lblk = cur_lblk_off;
931 map.m_len = new_blk_size - cur_lblk_off + 1;
932 ret = ext4_map_blocks(NULL, inode, &map, 0);
933 if (ret < 0)
934 return -ECANCELED;
935
936 if (map.m_len == 0) {
937 cur_lblk_off++;
938 continue;
939 }
940
941 if (ret == 0) {
942 lrange.fc_ino = cpu_to_le32(inode->i_ino);
943 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
944 lrange.fc_len = cpu_to_le32(map.m_len);
945 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
946 sizeof(lrange), (u8 *)&lrange, crc))
947 return -ENOSPC;
948 } else {
949 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
950 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
951
952 /* Limit the number of blocks in one extent */
953 map.m_len = min(max, map.m_len);
954
955 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
956 ex = (struct ext4_extent *)&fc_ext.fc_ex;
957 ex->ee_block = cpu_to_le32(map.m_lblk);
958 ex->ee_len = cpu_to_le16(map.m_len);
959 ext4_ext_store_pblock(ex, map.m_pblk);
960 if (map.m_flags & EXT4_MAP_UNWRITTEN)
961 ext4_ext_mark_unwritten(ex);
962 else
963 ext4_ext_mark_initialized(ex);
964 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
965 sizeof(fc_ext), (u8 *)&fc_ext, crc))
966 return -ENOSPC;
967 }
968
969 cur_lblk_off += map.m_len;
970 }
971
972 return 0;
973 }
974
975
976 /* Submit data for all the fast commit inodes */
ext4_fc_submit_inode_data_all(journal_t * journal)977 static int ext4_fc_submit_inode_data_all(journal_t *journal)
978 {
979 struct super_block *sb = journal->j_private;
980 struct ext4_sb_info *sbi = EXT4_SB(sb);
981 struct ext4_inode_info *ei;
982 int ret = 0;
983
984 spin_lock(&sbi->s_fc_lock);
985 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
986 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
987 while (atomic_read(&ei->i_fc_updates)) {
988 DEFINE_WAIT(wait);
989
990 prepare_to_wait(&ei->i_fc_wait, &wait,
991 TASK_UNINTERRUPTIBLE);
992 if (atomic_read(&ei->i_fc_updates)) {
993 spin_unlock(&sbi->s_fc_lock);
994 schedule();
995 spin_lock(&sbi->s_fc_lock);
996 }
997 finish_wait(&ei->i_fc_wait, &wait);
998 }
999 spin_unlock(&sbi->s_fc_lock);
1000 ret = jbd2_submit_inode_data(journal, ei->jinode);
1001 if (ret)
1002 return ret;
1003 spin_lock(&sbi->s_fc_lock);
1004 }
1005 spin_unlock(&sbi->s_fc_lock);
1006
1007 return ret;
1008 }
1009
1010 /* Wait for completion of data for all the fast commit inodes */
ext4_fc_wait_inode_data_all(journal_t * journal)1011 static int ext4_fc_wait_inode_data_all(journal_t *journal)
1012 {
1013 struct super_block *sb = journal->j_private;
1014 struct ext4_sb_info *sbi = EXT4_SB(sb);
1015 struct ext4_inode_info *pos, *n;
1016 int ret = 0;
1017
1018 spin_lock(&sbi->s_fc_lock);
1019 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1020 if (!ext4_test_inode_state(&pos->vfs_inode,
1021 EXT4_STATE_FC_COMMITTING))
1022 continue;
1023 spin_unlock(&sbi->s_fc_lock);
1024
1025 ret = jbd2_wait_inode_data(journal, pos->jinode);
1026 if (ret)
1027 return ret;
1028 spin_lock(&sbi->s_fc_lock);
1029 }
1030 spin_unlock(&sbi->s_fc_lock);
1031
1032 return 0;
1033 }
1034
1035 /* Commit all the directory entry updates */
ext4_fc_commit_dentry_updates(journal_t * journal,u32 * crc)1036 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1037 __acquires(&sbi->s_fc_lock)
1038 __releases(&sbi->s_fc_lock)
1039 {
1040 struct super_block *sb = journal->j_private;
1041 struct ext4_sb_info *sbi = EXT4_SB(sb);
1042 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1043 struct inode *inode;
1044 struct ext4_inode_info *ei;
1045 int ret;
1046
1047 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1048 return 0;
1049 list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1050 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1051 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1052 spin_unlock(&sbi->s_fc_lock);
1053 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1054 ret = -ENOSPC;
1055 goto lock_and_exit;
1056 }
1057 spin_lock(&sbi->s_fc_lock);
1058 continue;
1059 }
1060 /*
1061 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1062 * corresponding inode pointer
1063 */
1064 WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1065 ei = list_first_entry(&fc_dentry->fcd_dilist,
1066 struct ext4_inode_info, i_fc_dilist);
1067 inode = &ei->vfs_inode;
1068 WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1069
1070 spin_unlock(&sbi->s_fc_lock);
1071
1072 /*
1073 * We first write the inode and then the create dirent. This
1074 * allows the recovery code to create an unnamed inode first
1075 * and then link it to a directory entry. This allows us
1076 * to use namei.c routines almost as is and simplifies
1077 * the recovery code.
1078 */
1079 ret = ext4_fc_write_inode(inode, crc);
1080 if (ret)
1081 goto lock_and_exit;
1082
1083 ret = ext4_fc_write_inode_data(inode, crc);
1084 if (ret)
1085 goto lock_and_exit;
1086
1087 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1088 ret = -ENOSPC;
1089 goto lock_and_exit;
1090 }
1091
1092 spin_lock(&sbi->s_fc_lock);
1093 }
1094 return 0;
1095 lock_and_exit:
1096 spin_lock(&sbi->s_fc_lock);
1097 return ret;
1098 }
1099
ext4_fc_perform_commit(journal_t * journal)1100 static int ext4_fc_perform_commit(journal_t *journal)
1101 {
1102 struct super_block *sb = journal->j_private;
1103 struct ext4_sb_info *sbi = EXT4_SB(sb);
1104 struct ext4_inode_info *iter;
1105 struct ext4_fc_head head;
1106 struct inode *inode;
1107 struct blk_plug plug;
1108 int ret = 0;
1109 u32 crc = 0;
1110
1111 ret = ext4_fc_submit_inode_data_all(journal);
1112 if (ret)
1113 return ret;
1114
1115 ret = ext4_fc_wait_inode_data_all(journal);
1116 if (ret)
1117 return ret;
1118
1119 /*
1120 * If file system device is different from journal device, issue a cache
1121 * flush before we start writing fast commit blocks.
1122 */
1123 if (journal->j_fs_dev != journal->j_dev)
1124 blkdev_issue_flush(journal->j_fs_dev);
1125
1126 blk_start_plug(&plug);
1127 if (sbi->s_fc_bytes == 0) {
1128 /*
1129 * Add a head tag only if this is the first fast commit
1130 * in this TID.
1131 */
1132 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1133 head.fc_tid = cpu_to_le32(
1134 sbi->s_journal->j_running_transaction->t_tid);
1135 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1136 (u8 *)&head, &crc)) {
1137 ret = -ENOSPC;
1138 goto out;
1139 }
1140 }
1141
1142 spin_lock(&sbi->s_fc_lock);
1143 ret = ext4_fc_commit_dentry_updates(journal, &crc);
1144 if (ret) {
1145 spin_unlock(&sbi->s_fc_lock);
1146 goto out;
1147 }
1148
1149 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1150 inode = &iter->vfs_inode;
1151 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1152 continue;
1153
1154 spin_unlock(&sbi->s_fc_lock);
1155 ret = ext4_fc_write_inode_data(inode, &crc);
1156 if (ret)
1157 goto out;
1158 ret = ext4_fc_write_inode(inode, &crc);
1159 if (ret)
1160 goto out;
1161 spin_lock(&sbi->s_fc_lock);
1162 }
1163 spin_unlock(&sbi->s_fc_lock);
1164
1165 ret = ext4_fc_write_tail(sb, crc);
1166
1167 out:
1168 blk_finish_plug(&plug);
1169 return ret;
1170 }
1171
ext4_fc_update_stats(struct super_block * sb,int status,u64 commit_time,int nblks,tid_t commit_tid)1172 static void ext4_fc_update_stats(struct super_block *sb, int status,
1173 u64 commit_time, int nblks, tid_t commit_tid)
1174 {
1175 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1176
1177 ext4_debug("Fast commit ended with status = %d for tid %u",
1178 status, commit_tid);
1179 if (status == EXT4_FC_STATUS_OK) {
1180 stats->fc_num_commits++;
1181 stats->fc_numblks += nblks;
1182 if (likely(stats->s_fc_avg_commit_time))
1183 stats->s_fc_avg_commit_time =
1184 (commit_time +
1185 stats->s_fc_avg_commit_time * 3) / 4;
1186 else
1187 stats->s_fc_avg_commit_time = commit_time;
1188 } else if (status == EXT4_FC_STATUS_FAILED ||
1189 status == EXT4_FC_STATUS_INELIGIBLE) {
1190 if (status == EXT4_FC_STATUS_FAILED)
1191 stats->fc_failed_commits++;
1192 stats->fc_ineligible_commits++;
1193 } else {
1194 stats->fc_skipped_commits++;
1195 }
1196 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1197 }
1198
1199 /*
1200 * The main commit entry point. Performs a fast commit for transaction
1201 * commit_tid if needed. If it's not possible to perform a fast commit
1202 * due to various reasons, we fall back to full commit. Returns 0
1203 * on success, error otherwise.
1204 */
ext4_fc_commit(journal_t * journal,tid_t commit_tid)1205 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1206 {
1207 struct super_block *sb = journal->j_private;
1208 struct ext4_sb_info *sbi = EXT4_SB(sb);
1209 int nblks = 0, ret, bsize = journal->j_blocksize;
1210 int subtid = atomic_read(&sbi->s_fc_subtid);
1211 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1212 ktime_t start_time, commit_time;
1213
1214 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1215 return jbd2_complete_transaction(journal, commit_tid);
1216
1217 trace_ext4_fc_commit_start(sb, commit_tid);
1218
1219 start_time = ktime_get();
1220
1221 restart_fc:
1222 ret = jbd2_fc_begin_commit(journal, commit_tid);
1223 if (ret == -EALREADY) {
1224 /* There was an ongoing commit, check if we need to restart */
1225 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1226 tid_gt(commit_tid, journal->j_commit_sequence))
1227 goto restart_fc;
1228 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1229 commit_tid);
1230 return 0;
1231 } else if (ret) {
1232 /*
1233 * Commit couldn't start. Just update stats and perform a
1234 * full commit.
1235 */
1236 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1237 commit_tid);
1238 return jbd2_complete_transaction(journal, commit_tid);
1239 }
1240
1241 /*
1242 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1243 * if we are fast commit ineligible.
1244 */
1245 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1246 status = EXT4_FC_STATUS_INELIGIBLE;
1247 goto fallback;
1248 }
1249
1250 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1251 ret = ext4_fc_perform_commit(journal);
1252 if (ret < 0) {
1253 status = EXT4_FC_STATUS_FAILED;
1254 goto fallback;
1255 }
1256 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1257 ret = jbd2_fc_wait_bufs(journal, nblks);
1258 if (ret < 0) {
1259 status = EXT4_FC_STATUS_FAILED;
1260 goto fallback;
1261 }
1262 atomic_inc(&sbi->s_fc_subtid);
1263 ret = jbd2_fc_end_commit(journal);
1264 /*
1265 * weight the commit time higher than the average time so we
1266 * don't react too strongly to vast changes in the commit time
1267 */
1268 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1269 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1270 return ret;
1271
1272 fallback:
1273 ret = jbd2_fc_end_commit_fallback(journal);
1274 ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1275 return ret;
1276 }
1277
1278 /*
1279 * Fast commit cleanup routine. This is called after every fast commit and
1280 * full commit. full is true if we are called after a full commit.
1281 */
ext4_fc_cleanup(journal_t * journal,int full,tid_t tid)1282 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1283 {
1284 struct super_block *sb = journal->j_private;
1285 struct ext4_sb_info *sbi = EXT4_SB(sb);
1286 struct ext4_inode_info *iter, *iter_n;
1287 struct ext4_fc_dentry_update *fc_dentry;
1288
1289 if (full && sbi->s_fc_bh)
1290 sbi->s_fc_bh = NULL;
1291
1292 trace_ext4_fc_cleanup(journal, full, tid);
1293 jbd2_fc_release_bufs(journal);
1294
1295 spin_lock(&sbi->s_fc_lock);
1296 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1297 i_fc_list) {
1298 list_del_init(&iter->i_fc_list);
1299 ext4_clear_inode_state(&iter->vfs_inode,
1300 EXT4_STATE_FC_COMMITTING);
1301 if (tid_geq(tid, iter->i_sync_tid)) {
1302 ext4_fc_reset_inode(&iter->vfs_inode);
1303 } else if (full) {
1304 /*
1305 * We are called after a full commit, inode has been
1306 * modified while the commit was running. Re-enqueue
1307 * the inode into STAGING, which will then be splice
1308 * back into MAIN. This cannot happen during
1309 * fastcommit because the journal is locked all the
1310 * time in that case (and tid doesn't increase so
1311 * tid check above isn't reliable).
1312 */
1313 list_add_tail(&EXT4_I(&iter->vfs_inode)->i_fc_list,
1314 &sbi->s_fc_q[FC_Q_STAGING]);
1315 }
1316 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1317 smp_mb();
1318 #if (BITS_PER_LONG < 64)
1319 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1320 #else
1321 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1322 #endif
1323 }
1324
1325 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1326 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1327 struct ext4_fc_dentry_update,
1328 fcd_list);
1329 list_del_init(&fc_dentry->fcd_list);
1330 list_del_init(&fc_dentry->fcd_dilist);
1331 spin_unlock(&sbi->s_fc_lock);
1332
1333 if (fc_dentry->fcd_name.name &&
1334 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1335 kfree(fc_dentry->fcd_name.name);
1336 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1337 spin_lock(&sbi->s_fc_lock);
1338 }
1339
1340 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1341 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1342 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1343 &sbi->s_fc_q[FC_Q_MAIN]);
1344
1345 if (tid_geq(tid, sbi->s_fc_ineligible_tid)) {
1346 sbi->s_fc_ineligible_tid = 0;
1347 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1348 }
1349
1350 if (full)
1351 sbi->s_fc_bytes = 0;
1352 spin_unlock(&sbi->s_fc_lock);
1353 trace_ext4_fc_stats(sb);
1354 }
1355
1356 /* Ext4 Replay Path Routines */
1357
1358 /* Helper struct for dentry replay routines */
1359 struct dentry_info_args {
1360 int parent_ino, dname_len, ino, inode_len;
1361 char *dname;
1362 };
1363
1364 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1365 struct ext4_fc_tl_mem {
1366 u16 fc_tag;
1367 u16 fc_len;
1368 };
1369
tl_to_darg(struct dentry_info_args * darg,struct ext4_fc_tl_mem * tl,u8 * val)1370 static inline void tl_to_darg(struct dentry_info_args *darg,
1371 struct ext4_fc_tl_mem *tl, u8 *val)
1372 {
1373 struct ext4_fc_dentry_info fcd;
1374
1375 memcpy(&fcd, val, sizeof(fcd));
1376
1377 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1378 darg->ino = le32_to_cpu(fcd.fc_ino);
1379 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1380 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1381 }
1382
ext4_fc_get_tl(struct ext4_fc_tl_mem * tl,u8 * val)1383 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1384 {
1385 struct ext4_fc_tl tl_disk;
1386
1387 memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1388 tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1389 tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1390 }
1391
1392 /* Unlink replay function */
ext4_fc_replay_unlink(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1393 static int ext4_fc_replay_unlink(struct super_block *sb,
1394 struct ext4_fc_tl_mem *tl, u8 *val)
1395 {
1396 struct inode *inode, *old_parent;
1397 struct qstr entry;
1398 struct dentry_info_args darg;
1399 int ret = 0;
1400
1401 tl_to_darg(&darg, tl, val);
1402
1403 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1404 darg.parent_ino, darg.dname_len);
1405
1406 entry.name = darg.dname;
1407 entry.len = darg.dname_len;
1408 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1409
1410 if (IS_ERR(inode)) {
1411 ext4_debug("Inode %d not found", darg.ino);
1412 return 0;
1413 }
1414
1415 old_parent = ext4_iget(sb, darg.parent_ino,
1416 EXT4_IGET_NORMAL);
1417 if (IS_ERR(old_parent)) {
1418 ext4_debug("Dir with inode %d not found", darg.parent_ino);
1419 iput(inode);
1420 return 0;
1421 }
1422
1423 ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1424 /* -ENOENT ok coz it might not exist anymore. */
1425 if (ret == -ENOENT)
1426 ret = 0;
1427 iput(old_parent);
1428 iput(inode);
1429 return ret;
1430 }
1431
ext4_fc_replay_link_internal(struct super_block * sb,struct dentry_info_args * darg,struct inode * inode)1432 static int ext4_fc_replay_link_internal(struct super_block *sb,
1433 struct dentry_info_args *darg,
1434 struct inode *inode)
1435 {
1436 struct inode *dir = NULL;
1437 struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1438 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1439 int ret = 0;
1440
1441 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1442 if (IS_ERR(dir)) {
1443 ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1444 dir = NULL;
1445 goto out;
1446 }
1447
1448 dentry_dir = d_obtain_alias(dir);
1449 if (IS_ERR(dentry_dir)) {
1450 ext4_debug("Failed to obtain dentry");
1451 dentry_dir = NULL;
1452 goto out;
1453 }
1454
1455 dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1456 if (!dentry_inode) {
1457 ext4_debug("Inode dentry not created.");
1458 ret = -ENOMEM;
1459 goto out;
1460 }
1461
1462 ret = __ext4_link(dir, inode, dentry_inode);
1463 /*
1464 * It's possible that link already existed since data blocks
1465 * for the dir in question got persisted before we crashed OR
1466 * we replayed this tag and crashed before the entire replay
1467 * could complete.
1468 */
1469 if (ret && ret != -EEXIST) {
1470 ext4_debug("Failed to link\n");
1471 goto out;
1472 }
1473
1474 ret = 0;
1475 out:
1476 if (dentry_dir) {
1477 d_drop(dentry_dir);
1478 dput(dentry_dir);
1479 } else if (dir) {
1480 iput(dir);
1481 }
1482 if (dentry_inode) {
1483 d_drop(dentry_inode);
1484 dput(dentry_inode);
1485 }
1486
1487 return ret;
1488 }
1489
1490 /* Link replay function */
ext4_fc_replay_link(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1491 static int ext4_fc_replay_link(struct super_block *sb,
1492 struct ext4_fc_tl_mem *tl, u8 *val)
1493 {
1494 struct inode *inode;
1495 struct dentry_info_args darg;
1496 int ret = 0;
1497
1498 tl_to_darg(&darg, tl, val);
1499 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1500 darg.parent_ino, darg.dname_len);
1501
1502 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1503 if (IS_ERR(inode)) {
1504 ext4_debug("Inode not found.");
1505 return 0;
1506 }
1507
1508 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1509 iput(inode);
1510 return ret;
1511 }
1512
1513 /*
1514 * Record all the modified inodes during replay. We use this later to setup
1515 * block bitmaps correctly.
1516 */
ext4_fc_record_modified_inode(struct super_block * sb,int ino)1517 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1518 {
1519 struct ext4_fc_replay_state *state;
1520 int i;
1521
1522 state = &EXT4_SB(sb)->s_fc_replay_state;
1523 for (i = 0; i < state->fc_modified_inodes_used; i++)
1524 if (state->fc_modified_inodes[i] == ino)
1525 return 0;
1526 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1527 int *fc_modified_inodes;
1528
1529 fc_modified_inodes = krealloc(state->fc_modified_inodes,
1530 sizeof(int) * (state->fc_modified_inodes_size +
1531 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1532 GFP_KERNEL);
1533 if (!fc_modified_inodes)
1534 return -ENOMEM;
1535 state->fc_modified_inodes = fc_modified_inodes;
1536 state->fc_modified_inodes_size +=
1537 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1538 }
1539 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1540 return 0;
1541 }
1542
1543 /*
1544 * Inode replay function
1545 */
ext4_fc_replay_inode(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1546 static int ext4_fc_replay_inode(struct super_block *sb,
1547 struct ext4_fc_tl_mem *tl, u8 *val)
1548 {
1549 struct ext4_fc_inode fc_inode;
1550 struct ext4_inode *raw_inode;
1551 struct ext4_inode *raw_fc_inode;
1552 struct inode *inode = NULL;
1553 struct ext4_iloc iloc;
1554 int inode_len, ino, ret, tag = tl->fc_tag;
1555 struct ext4_extent_header *eh;
1556 size_t off_gen = offsetof(struct ext4_inode, i_generation);
1557
1558 memcpy(&fc_inode, val, sizeof(fc_inode));
1559
1560 ino = le32_to_cpu(fc_inode.fc_ino);
1561 trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1562
1563 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1564 if (!IS_ERR(inode)) {
1565 ext4_ext_clear_bb(inode);
1566 iput(inode);
1567 }
1568 inode = NULL;
1569
1570 ret = ext4_fc_record_modified_inode(sb, ino);
1571 if (ret)
1572 goto out;
1573
1574 raw_fc_inode = (struct ext4_inode *)
1575 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1576 ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1577 if (ret)
1578 goto out;
1579
1580 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1581 raw_inode = ext4_raw_inode(&iloc);
1582
1583 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1584 memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1585 inode_len - off_gen);
1586 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1587 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1588 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1589 memset(eh, 0, sizeof(*eh));
1590 eh->eh_magic = EXT4_EXT_MAGIC;
1591 eh->eh_max = cpu_to_le16(
1592 (sizeof(raw_inode->i_block) -
1593 sizeof(struct ext4_extent_header))
1594 / sizeof(struct ext4_extent));
1595 }
1596 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1597 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1598 sizeof(raw_inode->i_block));
1599 }
1600
1601 /* Immediately update the inode on disk. */
1602 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1603 if (ret)
1604 goto out;
1605 ret = sync_dirty_buffer(iloc.bh);
1606 if (ret)
1607 goto out;
1608 ret = ext4_mark_inode_used(sb, ino);
1609 if (ret)
1610 goto out;
1611
1612 /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1613 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1614 if (IS_ERR(inode)) {
1615 ext4_debug("Inode not found.");
1616 return -EFSCORRUPTED;
1617 }
1618
1619 /*
1620 * Our allocator could have made different decisions than before
1621 * crashing. This should be fixed but until then, we calculate
1622 * the number of blocks the inode.
1623 */
1624 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1625 ext4_ext_replay_set_iblocks(inode);
1626
1627 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1628 ext4_reset_inode_seed(inode);
1629
1630 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1631 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1632 sync_dirty_buffer(iloc.bh);
1633 brelse(iloc.bh);
1634 out:
1635 iput(inode);
1636 if (!ret)
1637 blkdev_issue_flush(sb->s_bdev);
1638
1639 return 0;
1640 }
1641
1642 /*
1643 * Dentry create replay function.
1644 *
1645 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1646 * inode for which we are trying to create a dentry here, should already have
1647 * been replayed before we start here.
1648 */
ext4_fc_replay_create(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1649 static int ext4_fc_replay_create(struct super_block *sb,
1650 struct ext4_fc_tl_mem *tl, u8 *val)
1651 {
1652 int ret = 0;
1653 struct inode *inode = NULL;
1654 struct inode *dir = NULL;
1655 struct dentry_info_args darg;
1656
1657 tl_to_darg(&darg, tl, val);
1658
1659 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1660 darg.parent_ino, darg.dname_len);
1661
1662 /* This takes care of update group descriptor and other metadata */
1663 ret = ext4_mark_inode_used(sb, darg.ino);
1664 if (ret)
1665 goto out;
1666
1667 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1668 if (IS_ERR(inode)) {
1669 ext4_debug("inode %d not found.", darg.ino);
1670 inode = NULL;
1671 ret = -EINVAL;
1672 goto out;
1673 }
1674
1675 if (S_ISDIR(inode->i_mode)) {
1676 /*
1677 * If we are creating a directory, we need to make sure that the
1678 * dot and dot dot dirents are setup properly.
1679 */
1680 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1681 if (IS_ERR(dir)) {
1682 ext4_debug("Dir %d not found.", darg.ino);
1683 goto out;
1684 }
1685 ret = ext4_init_new_dir(NULL, dir, inode);
1686 iput(dir);
1687 if (ret) {
1688 ret = 0;
1689 goto out;
1690 }
1691 }
1692 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1693 if (ret)
1694 goto out;
1695 set_nlink(inode, 1);
1696 ext4_mark_inode_dirty(NULL, inode);
1697 out:
1698 iput(inode);
1699 return ret;
1700 }
1701
1702 /*
1703 * Record physical disk regions which are in use as per fast commit area,
1704 * and used by inodes during replay phase. Our simple replay phase
1705 * allocator excludes these regions from allocation.
1706 */
ext4_fc_record_regions(struct super_block * sb,int ino,ext4_lblk_t lblk,ext4_fsblk_t pblk,int len,int replay)1707 int ext4_fc_record_regions(struct super_block *sb, int ino,
1708 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1709 {
1710 struct ext4_fc_replay_state *state;
1711 struct ext4_fc_alloc_region *region;
1712
1713 state = &EXT4_SB(sb)->s_fc_replay_state;
1714 /*
1715 * during replay phase, the fc_regions_valid may not same as
1716 * fc_regions_used, update it when do new additions.
1717 */
1718 if (replay && state->fc_regions_used != state->fc_regions_valid)
1719 state->fc_regions_used = state->fc_regions_valid;
1720 if (state->fc_regions_used == state->fc_regions_size) {
1721 struct ext4_fc_alloc_region *fc_regions;
1722
1723 fc_regions = krealloc(state->fc_regions,
1724 sizeof(struct ext4_fc_alloc_region) *
1725 (state->fc_regions_size +
1726 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1727 GFP_KERNEL);
1728 if (!fc_regions)
1729 return -ENOMEM;
1730 state->fc_regions_size +=
1731 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1732 state->fc_regions = fc_regions;
1733 }
1734 region = &state->fc_regions[state->fc_regions_used++];
1735 region->ino = ino;
1736 region->lblk = lblk;
1737 region->pblk = pblk;
1738 region->len = len;
1739
1740 if (replay)
1741 state->fc_regions_valid++;
1742
1743 return 0;
1744 }
1745
1746 /* Replay add range tag */
ext4_fc_replay_add_range(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1747 static int ext4_fc_replay_add_range(struct super_block *sb,
1748 struct ext4_fc_tl_mem *tl, u8 *val)
1749 {
1750 struct ext4_fc_add_range fc_add_ex;
1751 struct ext4_extent newex, *ex;
1752 struct inode *inode;
1753 ext4_lblk_t start, cur;
1754 int remaining, len;
1755 ext4_fsblk_t start_pblk;
1756 struct ext4_map_blocks map;
1757 struct ext4_ext_path *path = NULL;
1758 int ret;
1759
1760 memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1761 ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1762
1763 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1764 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1765 ext4_ext_get_actual_len(ex));
1766
1767 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1768 if (IS_ERR(inode)) {
1769 ext4_debug("Inode not found.");
1770 return 0;
1771 }
1772
1773 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1774 if (ret)
1775 goto out;
1776
1777 start = le32_to_cpu(ex->ee_block);
1778 start_pblk = ext4_ext_pblock(ex);
1779 len = ext4_ext_get_actual_len(ex);
1780
1781 cur = start;
1782 remaining = len;
1783 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1784 start, start_pblk, len, ext4_ext_is_unwritten(ex),
1785 inode->i_ino);
1786
1787 while (remaining > 0) {
1788 map.m_lblk = cur;
1789 map.m_len = remaining;
1790 map.m_pblk = 0;
1791 ret = ext4_map_blocks(NULL, inode, &map, 0);
1792
1793 if (ret < 0)
1794 goto out;
1795
1796 if (ret == 0) {
1797 /* Range is not mapped */
1798 path = ext4_find_extent(inode, cur, NULL, 0);
1799 if (IS_ERR(path))
1800 goto out;
1801 memset(&newex, 0, sizeof(newex));
1802 newex.ee_block = cpu_to_le32(cur);
1803 ext4_ext_store_pblock(
1804 &newex, start_pblk + cur - start);
1805 newex.ee_len = cpu_to_le16(map.m_len);
1806 if (ext4_ext_is_unwritten(ex))
1807 ext4_ext_mark_unwritten(&newex);
1808 down_write(&EXT4_I(inode)->i_data_sem);
1809 ret = ext4_ext_insert_extent(
1810 NULL, inode, &path, &newex, 0);
1811 up_write((&EXT4_I(inode)->i_data_sem));
1812 ext4_free_ext_path(path);
1813 if (ret)
1814 goto out;
1815 goto next;
1816 }
1817
1818 if (start_pblk + cur - start != map.m_pblk) {
1819 /*
1820 * Logical to physical mapping changed. This can happen
1821 * if this range was removed and then reallocated to
1822 * map to new physical blocks during a fast commit.
1823 */
1824 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1825 ext4_ext_is_unwritten(ex),
1826 start_pblk + cur - start);
1827 if (ret)
1828 goto out;
1829 /*
1830 * Mark the old blocks as free since they aren't used
1831 * anymore. We maintain an array of all the modified
1832 * inodes. In case these blocks are still used at either
1833 * a different logical range in the same inode or in
1834 * some different inode, we will mark them as allocated
1835 * at the end of the FC replay using our array of
1836 * modified inodes.
1837 */
1838 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1839 goto next;
1840 }
1841
1842 /* Range is mapped and needs a state change */
1843 ext4_debug("Converting from %ld to %d %lld",
1844 map.m_flags & EXT4_MAP_UNWRITTEN,
1845 ext4_ext_is_unwritten(ex), map.m_pblk);
1846 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1847 ext4_ext_is_unwritten(ex), map.m_pblk);
1848 if (ret)
1849 goto out;
1850 /*
1851 * We may have split the extent tree while toggling the state.
1852 * Try to shrink the extent tree now.
1853 */
1854 ext4_ext_replay_shrink_inode(inode, start + len);
1855 next:
1856 cur += map.m_len;
1857 remaining -= map.m_len;
1858 }
1859 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1860 sb->s_blocksize_bits);
1861 out:
1862 iput(inode);
1863 return 0;
1864 }
1865
1866 /* Replay DEL_RANGE tag */
1867 static int
ext4_fc_replay_del_range(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1868 ext4_fc_replay_del_range(struct super_block *sb,
1869 struct ext4_fc_tl_mem *tl, u8 *val)
1870 {
1871 struct inode *inode;
1872 struct ext4_fc_del_range lrange;
1873 struct ext4_map_blocks map;
1874 ext4_lblk_t cur, remaining;
1875 int ret;
1876
1877 memcpy(&lrange, val, sizeof(lrange));
1878 cur = le32_to_cpu(lrange.fc_lblk);
1879 remaining = le32_to_cpu(lrange.fc_len);
1880
1881 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1882 le32_to_cpu(lrange.fc_ino), cur, remaining);
1883
1884 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1885 if (IS_ERR(inode)) {
1886 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1887 return 0;
1888 }
1889
1890 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1891 if (ret)
1892 goto out;
1893
1894 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1895 inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1896 le32_to_cpu(lrange.fc_len));
1897 while (remaining > 0) {
1898 map.m_lblk = cur;
1899 map.m_len = remaining;
1900
1901 ret = ext4_map_blocks(NULL, inode, &map, 0);
1902 if (ret < 0)
1903 goto out;
1904 if (ret > 0) {
1905 remaining -= ret;
1906 cur += ret;
1907 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1908 } else {
1909 remaining -= map.m_len;
1910 cur += map.m_len;
1911 }
1912 }
1913
1914 down_write(&EXT4_I(inode)->i_data_sem);
1915 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1916 le32_to_cpu(lrange.fc_lblk) +
1917 le32_to_cpu(lrange.fc_len) - 1);
1918 up_write(&EXT4_I(inode)->i_data_sem);
1919 if (ret)
1920 goto out;
1921 ext4_ext_replay_shrink_inode(inode,
1922 i_size_read(inode) >> sb->s_blocksize_bits);
1923 ext4_mark_inode_dirty(NULL, inode);
1924 out:
1925 iput(inode);
1926 return 0;
1927 }
1928
ext4_fc_set_bitmaps_and_counters(struct super_block * sb)1929 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1930 {
1931 struct ext4_fc_replay_state *state;
1932 struct inode *inode;
1933 struct ext4_ext_path *path = NULL;
1934 struct ext4_map_blocks map;
1935 int i, ret, j;
1936 ext4_lblk_t cur, end;
1937
1938 state = &EXT4_SB(sb)->s_fc_replay_state;
1939 for (i = 0; i < state->fc_modified_inodes_used; i++) {
1940 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1941 EXT4_IGET_NORMAL);
1942 if (IS_ERR(inode)) {
1943 ext4_debug("Inode %d not found.",
1944 state->fc_modified_inodes[i]);
1945 continue;
1946 }
1947 cur = 0;
1948 end = EXT_MAX_BLOCKS;
1949 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1950 iput(inode);
1951 continue;
1952 }
1953 while (cur < end) {
1954 map.m_lblk = cur;
1955 map.m_len = end - cur;
1956
1957 ret = ext4_map_blocks(NULL, inode, &map, 0);
1958 if (ret < 0)
1959 break;
1960
1961 if (ret > 0) {
1962 path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1963 if (!IS_ERR(path)) {
1964 for (j = 0; j < path->p_depth; j++)
1965 ext4_mb_mark_bb(inode->i_sb,
1966 path[j].p_block, 1, 1);
1967 ext4_free_ext_path(path);
1968 }
1969 cur += ret;
1970 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1971 map.m_len, 1);
1972 } else {
1973 cur = cur + (map.m_len ? map.m_len : 1);
1974 }
1975 }
1976 iput(inode);
1977 }
1978 }
1979
1980 /*
1981 * Check if block is in excluded regions for block allocation. The simple
1982 * allocator that runs during replay phase is calls this function to see
1983 * if it is okay to use a block.
1984 */
ext4_fc_replay_check_excluded(struct super_block * sb,ext4_fsblk_t blk)1985 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1986 {
1987 int i;
1988 struct ext4_fc_replay_state *state;
1989
1990 state = &EXT4_SB(sb)->s_fc_replay_state;
1991 for (i = 0; i < state->fc_regions_valid; i++) {
1992 if (state->fc_regions[i].ino == 0 ||
1993 state->fc_regions[i].len == 0)
1994 continue;
1995 if (in_range(blk, state->fc_regions[i].pblk,
1996 state->fc_regions[i].len))
1997 return true;
1998 }
1999 return false;
2000 }
2001
2002 /* Cleanup function called after replay */
ext4_fc_replay_cleanup(struct super_block * sb)2003 void ext4_fc_replay_cleanup(struct super_block *sb)
2004 {
2005 struct ext4_sb_info *sbi = EXT4_SB(sb);
2006
2007 sbi->s_mount_state &= ~EXT4_FC_REPLAY;
2008 kfree(sbi->s_fc_replay_state.fc_regions);
2009 kfree(sbi->s_fc_replay_state.fc_modified_inodes);
2010 }
2011
ext4_fc_value_len_isvalid(struct ext4_sb_info * sbi,int tag,int len)2012 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
2013 int tag, int len)
2014 {
2015 switch (tag) {
2016 case EXT4_FC_TAG_ADD_RANGE:
2017 return len == sizeof(struct ext4_fc_add_range);
2018 case EXT4_FC_TAG_DEL_RANGE:
2019 return len == sizeof(struct ext4_fc_del_range);
2020 case EXT4_FC_TAG_CREAT:
2021 case EXT4_FC_TAG_LINK:
2022 case EXT4_FC_TAG_UNLINK:
2023 len -= sizeof(struct ext4_fc_dentry_info);
2024 return len >= 1 && len <= EXT4_NAME_LEN;
2025 case EXT4_FC_TAG_INODE:
2026 len -= sizeof(struct ext4_fc_inode);
2027 return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2028 len <= sbi->s_inode_size;
2029 case EXT4_FC_TAG_PAD:
2030 return true; /* padding can have any length */
2031 case EXT4_FC_TAG_TAIL:
2032 return len >= sizeof(struct ext4_fc_tail);
2033 case EXT4_FC_TAG_HEAD:
2034 return len == sizeof(struct ext4_fc_head);
2035 }
2036 return false;
2037 }
2038
2039 /*
2040 * Recovery Scan phase handler
2041 *
2042 * This function is called during the scan phase and is responsible
2043 * for doing following things:
2044 * - Make sure the fast commit area has valid tags for replay
2045 * - Count number of tags that need to be replayed by the replay handler
2046 * - Verify CRC
2047 * - Create a list of excluded blocks for allocation during replay phase
2048 *
2049 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2050 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2051 * to indicate that scan has finished and JBD2 can now start replay phase.
2052 * It returns a negative error to indicate that there was an error. At the end
2053 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2054 * to indicate the number of tags that need to replayed during the replay phase.
2055 */
ext4_fc_replay_scan(journal_t * journal,struct buffer_head * bh,int off,tid_t expected_tid)2056 static int ext4_fc_replay_scan(journal_t *journal,
2057 struct buffer_head *bh, int off,
2058 tid_t expected_tid)
2059 {
2060 struct super_block *sb = journal->j_private;
2061 struct ext4_sb_info *sbi = EXT4_SB(sb);
2062 struct ext4_fc_replay_state *state;
2063 int ret = JBD2_FC_REPLAY_CONTINUE;
2064 struct ext4_fc_add_range ext;
2065 struct ext4_fc_tl_mem tl;
2066 struct ext4_fc_tail tail;
2067 __u8 *start, *end, *cur, *val;
2068 struct ext4_fc_head head;
2069 struct ext4_extent *ex;
2070
2071 state = &sbi->s_fc_replay_state;
2072
2073 start = (u8 *)bh->b_data;
2074 end = start + journal->j_blocksize;
2075
2076 if (state->fc_replay_expected_off == 0) {
2077 state->fc_cur_tag = 0;
2078 state->fc_replay_num_tags = 0;
2079 state->fc_crc = 0;
2080 state->fc_regions = NULL;
2081 state->fc_regions_valid = state->fc_regions_used =
2082 state->fc_regions_size = 0;
2083 /* Check if we can stop early */
2084 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2085 != EXT4_FC_TAG_HEAD)
2086 return 0;
2087 }
2088
2089 if (off != state->fc_replay_expected_off) {
2090 ret = -EFSCORRUPTED;
2091 goto out_err;
2092 }
2093
2094 state->fc_replay_expected_off++;
2095 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2096 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2097 ext4_fc_get_tl(&tl, cur);
2098 val = cur + EXT4_FC_TAG_BASE_LEN;
2099 if (tl.fc_len > end - val ||
2100 !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2101 ret = state->fc_replay_num_tags ?
2102 JBD2_FC_REPLAY_STOP : -ECANCELED;
2103 goto out_err;
2104 }
2105 ext4_debug("Scan phase, tag:%s, blk %lld\n",
2106 tag2str(tl.fc_tag), bh->b_blocknr);
2107 switch (tl.fc_tag) {
2108 case EXT4_FC_TAG_ADD_RANGE:
2109 memcpy(&ext, val, sizeof(ext));
2110 ex = (struct ext4_extent *)&ext.fc_ex;
2111 ret = ext4_fc_record_regions(sb,
2112 le32_to_cpu(ext.fc_ino),
2113 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2114 ext4_ext_get_actual_len(ex), 0);
2115 if (ret < 0)
2116 break;
2117 ret = JBD2_FC_REPLAY_CONTINUE;
2118 fallthrough;
2119 case EXT4_FC_TAG_DEL_RANGE:
2120 case EXT4_FC_TAG_LINK:
2121 case EXT4_FC_TAG_UNLINK:
2122 case EXT4_FC_TAG_CREAT:
2123 case EXT4_FC_TAG_INODE:
2124 case EXT4_FC_TAG_PAD:
2125 state->fc_cur_tag++;
2126 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2127 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2128 break;
2129 case EXT4_FC_TAG_TAIL:
2130 state->fc_cur_tag++;
2131 memcpy(&tail, val, sizeof(tail));
2132 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2133 EXT4_FC_TAG_BASE_LEN +
2134 offsetof(struct ext4_fc_tail,
2135 fc_crc));
2136 if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2137 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2138 state->fc_replay_num_tags = state->fc_cur_tag;
2139 state->fc_regions_valid =
2140 state->fc_regions_used;
2141 } else {
2142 ret = state->fc_replay_num_tags ?
2143 JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2144 }
2145 state->fc_crc = 0;
2146 break;
2147 case EXT4_FC_TAG_HEAD:
2148 memcpy(&head, val, sizeof(head));
2149 if (le32_to_cpu(head.fc_features) &
2150 ~EXT4_FC_SUPPORTED_FEATURES) {
2151 ret = -EOPNOTSUPP;
2152 break;
2153 }
2154 if (le32_to_cpu(head.fc_tid) != expected_tid) {
2155 ret = JBD2_FC_REPLAY_STOP;
2156 break;
2157 }
2158 state->fc_cur_tag++;
2159 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2160 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2161 break;
2162 default:
2163 ret = state->fc_replay_num_tags ?
2164 JBD2_FC_REPLAY_STOP : -ECANCELED;
2165 }
2166 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2167 break;
2168 }
2169
2170 out_err:
2171 trace_ext4_fc_replay_scan(sb, ret, off);
2172 return ret;
2173 }
2174
2175 /*
2176 * Main recovery path entry point.
2177 * The meaning of return codes is similar as above.
2178 */
ext4_fc_replay(journal_t * journal,struct buffer_head * bh,enum passtype pass,int off,tid_t expected_tid)2179 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2180 enum passtype pass, int off, tid_t expected_tid)
2181 {
2182 struct super_block *sb = journal->j_private;
2183 struct ext4_sb_info *sbi = EXT4_SB(sb);
2184 struct ext4_fc_tl_mem tl;
2185 __u8 *start, *end, *cur, *val;
2186 int ret = JBD2_FC_REPLAY_CONTINUE;
2187 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2188 struct ext4_fc_tail tail;
2189
2190 if (pass == PASS_SCAN) {
2191 state->fc_current_pass = PASS_SCAN;
2192 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2193 }
2194
2195 if (state->fc_current_pass != pass) {
2196 state->fc_current_pass = pass;
2197 sbi->s_mount_state |= EXT4_FC_REPLAY;
2198 }
2199 if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2200 ext4_debug("Replay stops\n");
2201 ext4_fc_set_bitmaps_and_counters(sb);
2202 return 0;
2203 }
2204
2205 #ifdef CONFIG_EXT4_DEBUG
2206 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2207 pr_warn("Dropping fc block %d because max_replay set\n", off);
2208 return JBD2_FC_REPLAY_STOP;
2209 }
2210 #endif
2211
2212 start = (u8 *)bh->b_data;
2213 end = start + journal->j_blocksize;
2214
2215 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2216 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2217 ext4_fc_get_tl(&tl, cur);
2218 val = cur + EXT4_FC_TAG_BASE_LEN;
2219
2220 if (state->fc_replay_num_tags == 0) {
2221 ret = JBD2_FC_REPLAY_STOP;
2222 ext4_fc_set_bitmaps_and_counters(sb);
2223 break;
2224 }
2225
2226 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2227 state->fc_replay_num_tags--;
2228 switch (tl.fc_tag) {
2229 case EXT4_FC_TAG_LINK:
2230 ret = ext4_fc_replay_link(sb, &tl, val);
2231 break;
2232 case EXT4_FC_TAG_UNLINK:
2233 ret = ext4_fc_replay_unlink(sb, &tl, val);
2234 break;
2235 case EXT4_FC_TAG_ADD_RANGE:
2236 ret = ext4_fc_replay_add_range(sb, &tl, val);
2237 break;
2238 case EXT4_FC_TAG_CREAT:
2239 ret = ext4_fc_replay_create(sb, &tl, val);
2240 break;
2241 case EXT4_FC_TAG_DEL_RANGE:
2242 ret = ext4_fc_replay_del_range(sb, &tl, val);
2243 break;
2244 case EXT4_FC_TAG_INODE:
2245 ret = ext4_fc_replay_inode(sb, &tl, val);
2246 break;
2247 case EXT4_FC_TAG_PAD:
2248 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2249 tl.fc_len, 0);
2250 break;
2251 case EXT4_FC_TAG_TAIL:
2252 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2253 0, tl.fc_len, 0);
2254 memcpy(&tail, val, sizeof(tail));
2255 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2256 break;
2257 case EXT4_FC_TAG_HEAD:
2258 break;
2259 default:
2260 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2261 ret = -ECANCELED;
2262 break;
2263 }
2264 if (ret < 0)
2265 break;
2266 ret = JBD2_FC_REPLAY_CONTINUE;
2267 }
2268 return ret;
2269 }
2270
ext4_fc_init(struct super_block * sb,journal_t * journal)2271 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2272 {
2273 /*
2274 * We set replay callback even if fast commit disabled because we may
2275 * could still have fast commit blocks that need to be replayed even if
2276 * fast commit has now been turned off.
2277 */
2278 journal->j_fc_replay_callback = ext4_fc_replay;
2279 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2280 return;
2281 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2282 }
2283
2284 static const char * const fc_ineligible_reasons[] = {
2285 [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2286 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2287 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2288 [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2289 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2290 [EXT4_FC_REASON_RESIZE] = "Resize",
2291 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2292 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2293 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2294 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2295 };
2296
ext4_fc_info_show(struct seq_file * seq,void * v)2297 int ext4_fc_info_show(struct seq_file *seq, void *v)
2298 {
2299 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2300 struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2301 int i;
2302
2303 if (v != SEQ_START_TOKEN)
2304 return 0;
2305
2306 seq_printf(seq,
2307 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2308 stats->fc_num_commits, stats->fc_ineligible_commits,
2309 stats->fc_numblks,
2310 div_u64(stats->s_fc_avg_commit_time, 1000));
2311 seq_puts(seq, "Ineligible reasons:\n");
2312 for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2313 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2314 stats->fc_ineligible_reason_count[i]);
2315
2316 return 0;
2317 }
2318
ext4_fc_init_dentry_cache(void)2319 int __init ext4_fc_init_dentry_cache(void)
2320 {
2321 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2322 SLAB_RECLAIM_ACCOUNT);
2323
2324 if (ext4_fc_dentry_cachep == NULL)
2325 return -ENOMEM;
2326
2327 return 0;
2328 }
2329
ext4_fc_destroy_dentry_cache(void)2330 void ext4_fc_destroy_dentry_cache(void)
2331 {
2332 kmem_cache_destroy(ext4_fc_dentry_cachep);
2333 }
2334