xref: /openbmc/linux/drivers/net/ethernet/tundra/tsi108_eth.c (revision 7ae9fb1b7ecbb5d85d07857943f677fd1a559b18)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*******************************************************************************
3  
4    Copyright(c) 2006 Tundra Semiconductor Corporation.
5  
6  
7  *******************************************************************************/
8  
9  /* This driver is based on the driver code originally developed
10   * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
11   * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
12   *
13   * Currently changes from original version are:
14   * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
15   * - modifications to handle two ports independently and support for
16   *   additional PHY devices (alexandre.bounine@tundra.com)
17   * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
18   *
19   */
20  
21  #include <linux/module.h>
22  #include <linux/types.h>
23  #include <linux/interrupt.h>
24  #include <linux/net.h>
25  #include <linux/netdevice.h>
26  #include <linux/etherdevice.h>
27  #include <linux/ethtool.h>
28  #include <linux/skbuff.h>
29  #include <linux/spinlock.h>
30  #include <linux/delay.h>
31  #include <linux/crc32.h>
32  #include <linux/mii.h>
33  #include <linux/device.h>
34  #include <linux/pci.h>
35  #include <linux/rtnetlink.h>
36  #include <linux/timer.h>
37  #include <linux/platform_device.h>
38  #include <linux/gfp.h>
39  
40  #include <asm/io.h>
41  #include <asm/tsi108.h>
42  
43  #include "tsi108_eth.h"
44  
45  #define MII_READ_DELAY 10000	/* max link wait time in msec */
46  
47  #define TSI108_RXRING_LEN     256
48  
49  /* NOTE: The driver currently does not support receiving packets
50   * larger than the buffer size, so don't decrease this (unless you
51   * want to add such support).
52   */
53  #define TSI108_RXBUF_SIZE     1536
54  
55  #define TSI108_TXRING_LEN     256
56  
57  #define TSI108_TX_INT_FREQ    64
58  
59  /* Check the phy status every half a second. */
60  #define CHECK_PHY_INTERVAL (HZ/2)
61  
62  struct tsi108_prv_data {
63  	void  __iomem *regs;	/* Base of normal regs */
64  	void  __iomem *phyregs;	/* Base of register bank used for PHY access */
65  
66  	struct net_device *dev;
67  	struct napi_struct napi;
68  
69  	unsigned int phy;		/* Index of PHY for this interface */
70  	unsigned int irq_num;
71  	unsigned int id;
72  	unsigned int phy_type;
73  
74  	struct timer_list timer;/* Timer that triggers the check phy function */
75  	unsigned int rxtail;	/* Next entry in rxring to read */
76  	unsigned int rxhead;	/* Next entry in rxring to give a new buffer */
77  	unsigned int rxfree;	/* Number of free, allocated RX buffers */
78  
79  	unsigned int rxpending;	/* Non-zero if there are still descriptors
80  				 * to be processed from a previous descriptor
81  				 * interrupt condition that has been cleared */
82  
83  	unsigned int txtail;	/* Next TX descriptor to check status on */
84  	unsigned int txhead;	/* Next TX descriptor to use */
85  
86  	/* Number of free TX descriptors.  This could be calculated from
87  	 * rxhead and rxtail if one descriptor were left unused to disambiguate
88  	 * full and empty conditions, but it's simpler to just keep track
89  	 * explicitly. */
90  
91  	unsigned int txfree;
92  
93  	unsigned int phy_ok;		/* The PHY is currently powered on. */
94  
95  	/* PHY status (duplex is 1 for half, 2 for full,
96  	 * so that the default 0 indicates that neither has
97  	 * yet been configured). */
98  
99  	unsigned int link_up;
100  	unsigned int speed;
101  	unsigned int duplex;
102  
103  	tx_desc *txring;
104  	rx_desc *rxring;
105  	struct sk_buff *txskbs[TSI108_TXRING_LEN];
106  	struct sk_buff *rxskbs[TSI108_RXRING_LEN];
107  
108  	dma_addr_t txdma, rxdma;
109  
110  	/* txlock nests in misclock and phy_lock */
111  
112  	spinlock_t txlock, misclock;
113  
114  	/* stats is used to hold the upper bits of each hardware counter,
115  	 * and tmpstats is used to hold the full values for returning
116  	 * to the caller of get_stats().  They must be separate in case
117  	 * an overflow interrupt occurs before the stats are consumed.
118  	 */
119  
120  	struct net_device_stats stats;
121  	struct net_device_stats tmpstats;
122  
123  	/* These stats are kept separate in hardware, thus require individual
124  	 * fields for handling carry.  They are combined in get_stats.
125  	 */
126  
127  	unsigned long rx_fcs;	/* Add to rx_frame_errors */
128  	unsigned long rx_short_fcs;	/* Add to rx_frame_errors */
129  	unsigned long rx_long_fcs;	/* Add to rx_frame_errors */
130  	unsigned long rx_underruns;	/* Add to rx_length_errors */
131  	unsigned long rx_overruns;	/* Add to rx_length_errors */
132  
133  	unsigned long tx_coll_abort;	/* Add to tx_aborted_errors/collisions */
134  	unsigned long tx_pause_drop;	/* Add to tx_aborted_errors */
135  
136  	unsigned long mc_hash[16];
137  	u32 msg_enable;			/* debug message level */
138  	struct mii_if_info mii_if;
139  	unsigned int init_media;
140  
141  	struct platform_device *pdev;
142  };
143  
144  static void tsi108_timed_checker(struct timer_list *t);
145  
146  #ifdef DEBUG
dump_eth_one(struct net_device * dev)147  static void dump_eth_one(struct net_device *dev)
148  {
149  	struct tsi108_prv_data *data = netdev_priv(dev);
150  
151  	printk("Dumping %s...\n", dev->name);
152  	printk("intstat %x intmask %x phy_ok %d"
153  	       " link %d speed %d duplex %d\n",
154  	       TSI_READ(TSI108_EC_INTSTAT),
155  	       TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
156  	       data->link_up, data->speed, data->duplex);
157  
158  	printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
159  	       data->txhead, data->txtail, data->txfree,
160  	       TSI_READ(TSI108_EC_TXSTAT),
161  	       TSI_READ(TSI108_EC_TXESTAT),
162  	       TSI_READ(TSI108_EC_TXERR));
163  
164  	printk("RX: head %d, tail %d, free %d, stat %x,"
165  	       " estat %x, err %x, pending %d\n\n",
166  	       data->rxhead, data->rxtail, data->rxfree,
167  	       TSI_READ(TSI108_EC_RXSTAT),
168  	       TSI_READ(TSI108_EC_RXESTAT),
169  	       TSI_READ(TSI108_EC_RXERR), data->rxpending);
170  }
171  #endif
172  
173  /* Synchronization is needed between the thread and up/down events.
174   * Note that the PHY is accessed through the same registers for both
175   * interfaces, so this can't be made interface-specific.
176   */
177  
178  static DEFINE_SPINLOCK(phy_lock);
179  
tsi108_read_mii(struct tsi108_prv_data * data,int reg)180  static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
181  {
182  	unsigned i;
183  
184  	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
185  				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
186  				(reg << TSI108_MAC_MII_ADDR_REG));
187  	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
188  	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
189  	for (i = 0; i < 100; i++) {
190  		if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
191  		      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
192  			break;
193  		udelay(10);
194  	}
195  
196  	if (i == 100)
197  		return 0xffff;
198  	else
199  		return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
200  }
201  
tsi108_write_mii(struct tsi108_prv_data * data,int reg,u16 val)202  static void tsi108_write_mii(struct tsi108_prv_data *data,
203  				int reg, u16 val)
204  {
205  	unsigned i = 100;
206  	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
207  				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
208  				(reg << TSI108_MAC_MII_ADDR_REG));
209  	TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
210  	while (i--) {
211  		if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
212  			TSI108_MAC_MII_IND_BUSY))
213  			break;
214  		udelay(10);
215  	}
216  }
217  
tsi108_mdio_read(struct net_device * dev,int addr,int reg)218  static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
219  {
220  	struct tsi108_prv_data *data = netdev_priv(dev);
221  	return tsi108_read_mii(data, reg);
222  }
223  
tsi108_mdio_write(struct net_device * dev,int addr,int reg,int val)224  static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
225  {
226  	struct tsi108_prv_data *data = netdev_priv(dev);
227  	tsi108_write_mii(data, reg, val);
228  }
229  
tsi108_write_tbi(struct tsi108_prv_data * data,int reg,u16 val)230  static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
231  					int reg, u16 val)
232  {
233  	unsigned i = 1000;
234  	TSI_WRITE(TSI108_MAC_MII_ADDR,
235  			     (0x1e << TSI108_MAC_MII_ADDR_PHY)
236  			     | (reg << TSI108_MAC_MII_ADDR_REG));
237  	TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
238  	while(i--) {
239  		if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
240  			return;
241  		udelay(10);
242  	}
243  	printk(KERN_ERR "%s function time out\n", __func__);
244  }
245  
mii_speed(struct mii_if_info * mii)246  static int mii_speed(struct mii_if_info *mii)
247  {
248  	int advert, lpa, val, media;
249  	int lpa2 = 0;
250  	int speed;
251  
252  	if (!mii_link_ok(mii))
253  		return 0;
254  
255  	val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
256  	if ((val & BMSR_ANEGCOMPLETE) == 0)
257  		return 0;
258  
259  	advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
260  	lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
261  	media = mii_nway_result(advert & lpa);
262  
263  	if (mii->supports_gmii)
264  		lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
265  
266  	speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
267  			(media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
268  	return speed;
269  }
270  
tsi108_check_phy(struct net_device * dev)271  static void tsi108_check_phy(struct net_device *dev)
272  {
273  	struct tsi108_prv_data *data = netdev_priv(dev);
274  	u32 mac_cfg2_reg, portctrl_reg;
275  	u32 duplex;
276  	u32 speed;
277  	unsigned long flags;
278  
279  	spin_lock_irqsave(&phy_lock, flags);
280  
281  	if (!data->phy_ok)
282  		goto out;
283  
284  	duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
285  	data->init_media = 0;
286  
287  	if (netif_carrier_ok(dev)) {
288  
289  		speed = mii_speed(&data->mii_if);
290  
291  		if ((speed != data->speed) || duplex) {
292  
293  			mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
294  			portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
295  
296  			mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
297  
298  			if (speed == 1000) {
299  				mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
300  				portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
301  			} else {
302  				mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
303  				portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
304  			}
305  
306  			data->speed = speed;
307  
308  			if (data->mii_if.full_duplex) {
309  				mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
310  				portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
311  				data->duplex = 2;
312  			} else {
313  				mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
314  				portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
315  				data->duplex = 1;
316  			}
317  
318  			TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
319  			TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
320  		}
321  
322  		if (data->link_up == 0) {
323  			/* The manual says it can take 3-4 usecs for the speed change
324  			 * to take effect.
325  			 */
326  			udelay(5);
327  
328  			spin_lock(&data->txlock);
329  			if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
330  				netif_wake_queue(dev);
331  
332  			data->link_up = 1;
333  			spin_unlock(&data->txlock);
334  		}
335  	} else {
336  		if (data->link_up == 1) {
337  			netif_stop_queue(dev);
338  			data->link_up = 0;
339  			printk(KERN_NOTICE "%s : link is down\n", dev->name);
340  		}
341  
342  		goto out;
343  	}
344  
345  
346  out:
347  	spin_unlock_irqrestore(&phy_lock, flags);
348  }
349  
350  static inline void
tsi108_stat_carry_one(int carry,int carry_bit,int carry_shift,unsigned long * upper)351  tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
352  		      unsigned long *upper)
353  {
354  	if (carry & carry_bit)
355  		*upper += carry_shift;
356  }
357  
tsi108_stat_carry(struct net_device * dev)358  static void tsi108_stat_carry(struct net_device *dev)
359  {
360  	struct tsi108_prv_data *data = netdev_priv(dev);
361  	unsigned long flags;
362  	u32 carry1, carry2;
363  
364  	spin_lock_irqsave(&data->misclock, flags);
365  
366  	carry1 = TSI_READ(TSI108_STAT_CARRY1);
367  	carry2 = TSI_READ(TSI108_STAT_CARRY2);
368  
369  	TSI_WRITE(TSI108_STAT_CARRY1, carry1);
370  	TSI_WRITE(TSI108_STAT_CARRY2, carry2);
371  
372  	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
373  			      TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
374  
375  	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
376  			      TSI108_STAT_RXPKTS_CARRY,
377  			      &data->stats.rx_packets);
378  
379  	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
380  			      TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
381  
382  	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
383  			      TSI108_STAT_RXMCAST_CARRY,
384  			      &data->stats.multicast);
385  
386  	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
387  			      TSI108_STAT_RXALIGN_CARRY,
388  			      &data->stats.rx_frame_errors);
389  
390  	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
391  			      TSI108_STAT_RXLENGTH_CARRY,
392  			      &data->stats.rx_length_errors);
393  
394  	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
395  			      TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
396  
397  	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
398  			      TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
399  
400  	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
401  			      TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
402  
403  	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
404  			      TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
405  
406  	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
407  			      TSI108_STAT_RXDROP_CARRY,
408  			      &data->stats.rx_missed_errors);
409  
410  	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
411  			      TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
412  
413  	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
414  			      TSI108_STAT_TXPKTS_CARRY,
415  			      &data->stats.tx_packets);
416  
417  	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
418  			      TSI108_STAT_TXEXDEF_CARRY,
419  			      &data->stats.tx_aborted_errors);
420  
421  	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
422  			      TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
423  
424  	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
425  			      TSI108_STAT_TXTCOL_CARRY,
426  			      &data->stats.collisions);
427  
428  	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
429  			      TSI108_STAT_TXPAUSEDROP_CARRY,
430  			      &data->tx_pause_drop);
431  
432  	spin_unlock_irqrestore(&data->misclock, flags);
433  }
434  
435  /* Read a stat counter atomically with respect to carries.
436   * data->misclock must be held.
437   */
438  static inline unsigned long
tsi108_read_stat(struct tsi108_prv_data * data,int reg,int carry_bit,int carry_shift,unsigned long * upper)439  tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
440  		 int carry_shift, unsigned long *upper)
441  {
442  	int carryreg;
443  	unsigned long val;
444  
445  	if (reg < 0xb0)
446  		carryreg = TSI108_STAT_CARRY1;
447  	else
448  		carryreg = TSI108_STAT_CARRY2;
449  
450        again:
451  	val = TSI_READ(reg) | *upper;
452  
453  	/* Check to see if it overflowed, but the interrupt hasn't
454  	 * been serviced yet.  If so, handle the carry here, and
455  	 * try again.
456  	 */
457  
458  	if (unlikely(TSI_READ(carryreg) & carry_bit)) {
459  		*upper += carry_shift;
460  		TSI_WRITE(carryreg, carry_bit);
461  		goto again;
462  	}
463  
464  	return val;
465  }
466  
tsi108_get_stats(struct net_device * dev)467  static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
468  {
469  	unsigned long excol;
470  
471  	struct tsi108_prv_data *data = netdev_priv(dev);
472  	spin_lock_irq(&data->misclock);
473  
474  	data->tmpstats.rx_packets =
475  	    tsi108_read_stat(data, TSI108_STAT_RXPKTS,
476  			     TSI108_STAT_CARRY1_RXPKTS,
477  			     TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
478  
479  	data->tmpstats.tx_packets =
480  	    tsi108_read_stat(data, TSI108_STAT_TXPKTS,
481  			     TSI108_STAT_CARRY2_TXPKTS,
482  			     TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
483  
484  	data->tmpstats.rx_bytes =
485  	    tsi108_read_stat(data, TSI108_STAT_RXBYTES,
486  			     TSI108_STAT_CARRY1_RXBYTES,
487  			     TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
488  
489  	data->tmpstats.tx_bytes =
490  	    tsi108_read_stat(data, TSI108_STAT_TXBYTES,
491  			     TSI108_STAT_CARRY2_TXBYTES,
492  			     TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
493  
494  	data->tmpstats.multicast =
495  	    tsi108_read_stat(data, TSI108_STAT_RXMCAST,
496  			     TSI108_STAT_CARRY1_RXMCAST,
497  			     TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
498  
499  	excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
500  				 TSI108_STAT_CARRY2_TXEXCOL,
501  				 TSI108_STAT_TXEXCOL_CARRY,
502  				 &data->tx_coll_abort);
503  
504  	data->tmpstats.collisions =
505  	    tsi108_read_stat(data, TSI108_STAT_TXTCOL,
506  			     TSI108_STAT_CARRY2_TXTCOL,
507  			     TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
508  
509  	data->tmpstats.collisions += excol;
510  
511  	data->tmpstats.rx_length_errors =
512  	    tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
513  			     TSI108_STAT_CARRY1_RXLENGTH,
514  			     TSI108_STAT_RXLENGTH_CARRY,
515  			     &data->stats.rx_length_errors);
516  
517  	data->tmpstats.rx_length_errors +=
518  	    tsi108_read_stat(data, TSI108_STAT_RXRUNT,
519  			     TSI108_STAT_CARRY1_RXRUNT,
520  			     TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
521  
522  	data->tmpstats.rx_length_errors +=
523  	    tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
524  			     TSI108_STAT_CARRY1_RXJUMBO,
525  			     TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
526  
527  	data->tmpstats.rx_frame_errors =
528  	    tsi108_read_stat(data, TSI108_STAT_RXALIGN,
529  			     TSI108_STAT_CARRY1_RXALIGN,
530  			     TSI108_STAT_RXALIGN_CARRY,
531  			     &data->stats.rx_frame_errors);
532  
533  	data->tmpstats.rx_frame_errors +=
534  	    tsi108_read_stat(data, TSI108_STAT_RXFCS,
535  			     TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
536  			     &data->rx_fcs);
537  
538  	data->tmpstats.rx_frame_errors +=
539  	    tsi108_read_stat(data, TSI108_STAT_RXFRAG,
540  			     TSI108_STAT_CARRY1_RXFRAG,
541  			     TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
542  
543  	data->tmpstats.rx_missed_errors =
544  	    tsi108_read_stat(data, TSI108_STAT_RXDROP,
545  			     TSI108_STAT_CARRY1_RXDROP,
546  			     TSI108_STAT_RXDROP_CARRY,
547  			     &data->stats.rx_missed_errors);
548  
549  	/* These three are maintained by software. */
550  	data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
551  	data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
552  
553  	data->tmpstats.tx_aborted_errors =
554  	    tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
555  			     TSI108_STAT_CARRY2_TXEXDEF,
556  			     TSI108_STAT_TXEXDEF_CARRY,
557  			     &data->stats.tx_aborted_errors);
558  
559  	data->tmpstats.tx_aborted_errors +=
560  	    tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
561  			     TSI108_STAT_CARRY2_TXPAUSE,
562  			     TSI108_STAT_TXPAUSEDROP_CARRY,
563  			     &data->tx_pause_drop);
564  
565  	data->tmpstats.tx_aborted_errors += excol;
566  
567  	data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
568  	data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
569  	    data->tmpstats.rx_crc_errors +
570  	    data->tmpstats.rx_frame_errors +
571  	    data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
572  
573  	spin_unlock_irq(&data->misclock);
574  	return &data->tmpstats;
575  }
576  
tsi108_restart_rx(struct tsi108_prv_data * data,struct net_device * dev)577  static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
578  {
579  	TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
580  			     TSI108_EC_RXQ_PTRHIGH_VALID);
581  
582  	TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
583  			     | TSI108_EC_RXCTRL_QUEUE0);
584  }
585  
tsi108_restart_tx(struct tsi108_prv_data * data)586  static void tsi108_restart_tx(struct tsi108_prv_data * data)
587  {
588  	TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
589  			     TSI108_EC_TXQ_PTRHIGH_VALID);
590  
591  	TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
592  			     TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
593  }
594  
595  /* txlock must be held by caller, with IRQs disabled, and
596   * with permission to re-enable them when the lock is dropped.
597   */
tsi108_complete_tx(struct net_device * dev)598  static void tsi108_complete_tx(struct net_device *dev)
599  {
600  	struct tsi108_prv_data *data = netdev_priv(dev);
601  	int tx;
602  	struct sk_buff *skb;
603  	int release = 0;
604  
605  	while (!data->txfree || data->txhead != data->txtail) {
606  		tx = data->txtail;
607  
608  		if (data->txring[tx].misc & TSI108_TX_OWN)
609  			break;
610  
611  		skb = data->txskbs[tx];
612  
613  		if (!(data->txring[tx].misc & TSI108_TX_OK))
614  			printk("%s: bad tx packet, misc %x\n",
615  			       dev->name, data->txring[tx].misc);
616  
617  		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
618  		data->txfree++;
619  
620  		if (data->txring[tx].misc & TSI108_TX_EOF) {
621  			dev_kfree_skb_any(skb);
622  			release++;
623  		}
624  	}
625  
626  	if (release) {
627  		if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
628  			netif_wake_queue(dev);
629  	}
630  }
631  
tsi108_send_packet(struct sk_buff * skb,struct net_device * dev)632  static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
633  {
634  	struct tsi108_prv_data *data = netdev_priv(dev);
635  	int frags = skb_shinfo(skb)->nr_frags + 1;
636  	int i;
637  
638  	if (!data->phy_ok && net_ratelimit())
639  		printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
640  
641  	if (!data->link_up) {
642  		printk(KERN_ERR "%s: Transmit while link is down!\n",
643  		       dev->name);
644  		netif_stop_queue(dev);
645  		return NETDEV_TX_BUSY;
646  	}
647  
648  	if (data->txfree < MAX_SKB_FRAGS + 1) {
649  		netif_stop_queue(dev);
650  
651  		if (net_ratelimit())
652  			printk(KERN_ERR "%s: Transmit with full tx ring!\n",
653  			       dev->name);
654  		return NETDEV_TX_BUSY;
655  	}
656  
657  	if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
658  		netif_stop_queue(dev);
659  	}
660  
661  	spin_lock_irq(&data->txlock);
662  
663  	for (i = 0; i < frags; i++) {
664  		int misc = 0;
665  		int tx = data->txhead;
666  
667  		/* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
668  		 * the interrupt bit.  TX descriptor-complete interrupts are
669  		 * enabled when the queue fills up, and masked when there is
670  		 * still free space.  This way, when saturating the outbound
671  		 * link, the tx interrupts are kept to a reasonable level.
672  		 * When the queue is not full, reclamation of skbs still occurs
673  		 * as new packets are transmitted, or on a queue-empty
674  		 * interrupt.
675  		 */
676  
677  		if ((tx % TSI108_TX_INT_FREQ == 0) &&
678  		    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
679  			misc = TSI108_TX_INT;
680  
681  		data->txskbs[tx] = skb;
682  
683  		if (i == 0) {
684  			data->txring[tx].buf0 = dma_map_single(&data->pdev->dev,
685  					skb->data, skb_headlen(skb),
686  					DMA_TO_DEVICE);
687  			data->txring[tx].len = skb_headlen(skb);
688  			misc |= TSI108_TX_SOF;
689  		} else {
690  			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
691  
692  			data->txring[tx].buf0 =
693  				skb_frag_dma_map(&data->pdev->dev, frag,
694  						0, skb_frag_size(frag),
695  						DMA_TO_DEVICE);
696  			data->txring[tx].len = skb_frag_size(frag);
697  		}
698  
699  		if (i == frags - 1)
700  			misc |= TSI108_TX_EOF;
701  
702  		if (netif_msg_pktdata(data)) {
703  			int i;
704  			printk("%s: Tx Frame contents (%d)\n", dev->name,
705  			       skb->len);
706  			for (i = 0; i < skb->len; i++)
707  				printk(" %2.2x", skb->data[i]);
708  			printk(".\n");
709  		}
710  		data->txring[tx].misc = misc | TSI108_TX_OWN;
711  
712  		data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
713  		data->txfree--;
714  	}
715  
716  	tsi108_complete_tx(dev);
717  
718  	/* This must be done after the check for completed tx descriptors,
719  	 * so that the tail pointer is correct.
720  	 */
721  
722  	if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
723  		tsi108_restart_tx(data);
724  
725  	spin_unlock_irq(&data->txlock);
726  	return NETDEV_TX_OK;
727  }
728  
tsi108_complete_rx(struct net_device * dev,int budget)729  static int tsi108_complete_rx(struct net_device *dev, int budget)
730  {
731  	struct tsi108_prv_data *data = netdev_priv(dev);
732  	int done = 0;
733  
734  	while (data->rxfree && done != budget) {
735  		int rx = data->rxtail;
736  		struct sk_buff *skb;
737  
738  		if (data->rxring[rx].misc & TSI108_RX_OWN)
739  			break;
740  
741  		skb = data->rxskbs[rx];
742  		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
743  		data->rxfree--;
744  		done++;
745  
746  		if (data->rxring[rx].misc & TSI108_RX_BAD) {
747  			spin_lock_irq(&data->misclock);
748  
749  			if (data->rxring[rx].misc & TSI108_RX_CRC)
750  				data->stats.rx_crc_errors++;
751  			if (data->rxring[rx].misc & TSI108_RX_OVER)
752  				data->stats.rx_fifo_errors++;
753  
754  			spin_unlock_irq(&data->misclock);
755  
756  			dev_kfree_skb_any(skb);
757  			continue;
758  		}
759  		if (netif_msg_pktdata(data)) {
760  			int i;
761  			printk("%s: Rx Frame contents (%d)\n",
762  			       dev->name, data->rxring[rx].len);
763  			for (i = 0; i < data->rxring[rx].len; i++)
764  				printk(" %2.2x", skb->data[i]);
765  			printk(".\n");
766  		}
767  
768  		skb_put(skb, data->rxring[rx].len);
769  		skb->protocol = eth_type_trans(skb, dev);
770  		netif_receive_skb(skb);
771  	}
772  
773  	return done;
774  }
775  
tsi108_refill_rx(struct net_device * dev,int budget)776  static int tsi108_refill_rx(struct net_device *dev, int budget)
777  {
778  	struct tsi108_prv_data *data = netdev_priv(dev);
779  	int done = 0;
780  
781  	while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
782  		int rx = data->rxhead;
783  		struct sk_buff *skb;
784  
785  		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
786  		data->rxskbs[rx] = skb;
787  		if (!skb)
788  			break;
789  
790  		data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev,
791  				skb->data, TSI108_RX_SKB_SIZE,
792  				DMA_FROM_DEVICE);
793  
794  		/* Sometimes the hardware sets blen to zero after packet
795  		 * reception, even though the manual says that it's only ever
796  		 * modified by the driver.
797  		 */
798  
799  		data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
800  		data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
801  
802  		data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
803  		data->rxfree++;
804  		done++;
805  	}
806  
807  	if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
808  			   TSI108_EC_RXSTAT_QUEUE0))
809  		tsi108_restart_rx(data, dev);
810  
811  	return done;
812  }
813  
tsi108_poll(struct napi_struct * napi,int budget)814  static int tsi108_poll(struct napi_struct *napi, int budget)
815  {
816  	struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
817  	struct net_device *dev = data->dev;
818  	u32 estat = TSI_READ(TSI108_EC_RXESTAT);
819  	u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
820  	int num_received = 0, num_filled = 0;
821  
822  	intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
823  	    TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
824  
825  	TSI_WRITE(TSI108_EC_RXESTAT, estat);
826  	TSI_WRITE(TSI108_EC_INTSTAT, intstat);
827  
828  	if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
829  		num_received = tsi108_complete_rx(dev, budget);
830  
831  	/* This should normally fill no more slots than the number of
832  	 * packets received in tsi108_complete_rx().  The exception
833  	 * is when we previously ran out of memory for RX SKBs.  In that
834  	 * case, it's helpful to obey the budget, not only so that the
835  	 * CPU isn't hogged, but so that memory (which may still be low)
836  	 * is not hogged by one device.
837  	 *
838  	 * A work unit is considered to be two SKBs to allow us to catch
839  	 * up when the ring has shrunk due to out-of-memory but we're
840  	 * still removing the full budget's worth of packets each time.
841  	 */
842  
843  	if (data->rxfree < TSI108_RXRING_LEN)
844  		num_filled = tsi108_refill_rx(dev, budget * 2);
845  
846  	if (intstat & TSI108_INT_RXERROR) {
847  		u32 err = TSI_READ(TSI108_EC_RXERR);
848  		TSI_WRITE(TSI108_EC_RXERR, err);
849  
850  		if (err) {
851  			if (net_ratelimit())
852  				printk(KERN_DEBUG "%s: RX error %x\n",
853  				       dev->name, err);
854  
855  			if (!(TSI_READ(TSI108_EC_RXSTAT) &
856  			      TSI108_EC_RXSTAT_QUEUE0))
857  				tsi108_restart_rx(data, dev);
858  		}
859  	}
860  
861  	if (intstat & TSI108_INT_RXOVERRUN) {
862  		spin_lock_irq(&data->misclock);
863  		data->stats.rx_fifo_errors++;
864  		spin_unlock_irq(&data->misclock);
865  	}
866  
867  	if (num_received < budget) {
868  		data->rxpending = 0;
869  		napi_complete_done(napi, num_received);
870  
871  		TSI_WRITE(TSI108_EC_INTMASK,
872  				     TSI_READ(TSI108_EC_INTMASK)
873  				     & ~(TSI108_INT_RXQUEUE0
874  					 | TSI108_INT_RXTHRESH |
875  					 TSI108_INT_RXOVERRUN |
876  					 TSI108_INT_RXERROR |
877  					 TSI108_INT_RXWAIT));
878  	} else {
879  		data->rxpending = 1;
880  	}
881  
882  	return num_received;
883  }
884  
tsi108_rx_int(struct net_device * dev)885  static void tsi108_rx_int(struct net_device *dev)
886  {
887  	struct tsi108_prv_data *data = netdev_priv(dev);
888  
889  	/* A race could cause dev to already be scheduled, so it's not an
890  	 * error if that happens (and interrupts shouldn't be re-masked,
891  	 * because that can cause harmful races, if poll has already
892  	 * unmasked them but not cleared LINK_STATE_SCHED).
893  	 *
894  	 * This can happen if this code races with tsi108_poll(), which masks
895  	 * the interrupts after tsi108_irq_one() read the mask, but before
896  	 * napi_schedule is called.  It could also happen due to calls
897  	 * from tsi108_check_rxring().
898  	 */
899  
900  	if (napi_schedule_prep(&data->napi)) {
901  		/* Mask, rather than ack, the receive interrupts.  The ack
902  		 * will happen in tsi108_poll().
903  		 */
904  
905  		TSI_WRITE(TSI108_EC_INTMASK,
906  				     TSI_READ(TSI108_EC_INTMASK) |
907  				     TSI108_INT_RXQUEUE0
908  				     | TSI108_INT_RXTHRESH |
909  				     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
910  				     TSI108_INT_RXWAIT);
911  		__napi_schedule(&data->napi);
912  	} else {
913  		if (!netif_running(dev)) {
914  			/* This can happen if an interrupt occurs while the
915  			 * interface is being brought down, as the START
916  			 * bit is cleared before the stop function is called.
917  			 *
918  			 * In this case, the interrupts must be masked, or
919  			 * they will continue indefinitely.
920  			 *
921  			 * There's a race here if the interface is brought down
922  			 * and then up in rapid succession, as the device could
923  			 * be made running after the above check and before
924  			 * the masking below.  This will only happen if the IRQ
925  			 * thread has a lower priority than the task brining
926  			 * up the interface.  Fixing this race would likely
927  			 * require changes in generic code.
928  			 */
929  
930  			TSI_WRITE(TSI108_EC_INTMASK,
931  					     TSI_READ
932  					     (TSI108_EC_INTMASK) |
933  					     TSI108_INT_RXQUEUE0 |
934  					     TSI108_INT_RXTHRESH |
935  					     TSI108_INT_RXOVERRUN |
936  					     TSI108_INT_RXERROR |
937  					     TSI108_INT_RXWAIT);
938  		}
939  	}
940  }
941  
942  /* If the RX ring has run out of memory, try periodically
943   * to allocate some more, as otherwise poll would never
944   * get called (apart from the initial end-of-queue condition).
945   *
946   * This is called once per second (by default) from the thread.
947   */
948  
tsi108_check_rxring(struct net_device * dev)949  static void tsi108_check_rxring(struct net_device *dev)
950  {
951  	struct tsi108_prv_data *data = netdev_priv(dev);
952  
953  	/* A poll is scheduled, as opposed to caling tsi108_refill_rx
954  	 * directly, so as to keep the receive path single-threaded
955  	 * (and thus not needing a lock).
956  	 */
957  
958  	if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
959  		tsi108_rx_int(dev);
960  }
961  
tsi108_tx_int(struct net_device * dev)962  static void tsi108_tx_int(struct net_device *dev)
963  {
964  	struct tsi108_prv_data *data = netdev_priv(dev);
965  	u32 estat = TSI_READ(TSI108_EC_TXESTAT);
966  
967  	TSI_WRITE(TSI108_EC_TXESTAT, estat);
968  	TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
969  			     TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
970  	if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
971  		u32 err = TSI_READ(TSI108_EC_TXERR);
972  		TSI_WRITE(TSI108_EC_TXERR, err);
973  
974  		if (err && net_ratelimit())
975  			printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
976  	}
977  
978  	if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
979  		spin_lock(&data->txlock);
980  		tsi108_complete_tx(dev);
981  		spin_unlock(&data->txlock);
982  	}
983  }
984  
985  
tsi108_irq(int irq,void * dev_id)986  static irqreturn_t tsi108_irq(int irq, void *dev_id)
987  {
988  	struct net_device *dev = dev_id;
989  	struct tsi108_prv_data *data = netdev_priv(dev);
990  	u32 stat = TSI_READ(TSI108_EC_INTSTAT);
991  
992  	if (!(stat & TSI108_INT_ANY))
993  		return IRQ_NONE;	/* Not our interrupt */
994  
995  	stat &= ~TSI_READ(TSI108_EC_INTMASK);
996  
997  	if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
998  		    TSI108_INT_TXERROR))
999  		tsi108_tx_int(dev);
1000  	if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1001  		    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1002  		    TSI108_INT_RXERROR))
1003  		tsi108_rx_int(dev);
1004  
1005  	if (stat & TSI108_INT_SFN) {
1006  		if (net_ratelimit())
1007  			printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1008  		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1009  	}
1010  
1011  	if (stat & TSI108_INT_STATCARRY) {
1012  		tsi108_stat_carry(dev);
1013  		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1014  	}
1015  
1016  	return IRQ_HANDLED;
1017  }
1018  
tsi108_stop_ethernet(struct net_device * dev)1019  static void tsi108_stop_ethernet(struct net_device *dev)
1020  {
1021  	struct tsi108_prv_data *data = netdev_priv(dev);
1022  	int i = 1000;
1023  	/* Disable all TX and RX queues ... */
1024  	TSI_WRITE(TSI108_EC_TXCTRL, 0);
1025  	TSI_WRITE(TSI108_EC_RXCTRL, 0);
1026  
1027  	/* ...and wait for them to become idle */
1028  	while(i--) {
1029  		if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1030  			break;
1031  		udelay(10);
1032  	}
1033  	i = 1000;
1034  	while(i--){
1035  		if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1036  			return;
1037  		udelay(10);
1038  	}
1039  	printk(KERN_ERR "%s function time out\n", __func__);
1040  }
1041  
tsi108_reset_ether(struct tsi108_prv_data * data)1042  static void tsi108_reset_ether(struct tsi108_prv_data * data)
1043  {
1044  	TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1045  	udelay(100);
1046  	TSI_WRITE(TSI108_MAC_CFG1, 0);
1047  
1048  	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1049  	udelay(100);
1050  	TSI_WRITE(TSI108_EC_PORTCTRL,
1051  			     TSI_READ(TSI108_EC_PORTCTRL) &
1052  			     ~TSI108_EC_PORTCTRL_STATRST);
1053  
1054  	TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1055  	udelay(100);
1056  	TSI_WRITE(TSI108_EC_TXCFG,
1057  			     TSI_READ(TSI108_EC_TXCFG) &
1058  			     ~TSI108_EC_TXCFG_RST);
1059  
1060  	TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1061  	udelay(100);
1062  	TSI_WRITE(TSI108_EC_RXCFG,
1063  			     TSI_READ(TSI108_EC_RXCFG) &
1064  			     ~TSI108_EC_RXCFG_RST);
1065  
1066  	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1067  			     TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1068  			     TSI108_MAC_MII_MGMT_RST);
1069  	udelay(100);
1070  	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1071  			     (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1072  			     ~(TSI108_MAC_MII_MGMT_RST |
1073  			       TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1074  }
1075  
tsi108_get_mac(struct net_device * dev)1076  static int tsi108_get_mac(struct net_device *dev)
1077  {
1078  	struct tsi108_prv_data *data = netdev_priv(dev);
1079  	u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1080  	u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1081  	u8 addr[ETH_ALEN];
1082  
1083  	/* Note that the octets are reversed from what the manual says,
1084  	 * producing an even weirder ordering...
1085  	 */
1086  	if (word2 == 0 && word1 == 0) {
1087  		addr[0] = 0x00;
1088  		addr[1] = 0x06;
1089  		addr[2] = 0xd2;
1090  		addr[3] = 0x00;
1091  		addr[4] = 0x00;
1092  		if (0x8 == data->phy)
1093  			addr[5] = 0x01;
1094  		else
1095  			addr[5] = 0x02;
1096  		eth_hw_addr_set(dev, addr);
1097  
1098  		word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1099  
1100  		word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1101  		    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1102  
1103  		TSI_WRITE(TSI108_MAC_ADDR1, word1);
1104  		TSI_WRITE(TSI108_MAC_ADDR2, word2);
1105  	} else {
1106  		addr[0] = (word2 >> 16) & 0xff;
1107  		addr[1] = (word2 >> 24) & 0xff;
1108  		addr[2] = (word1 >> 0) & 0xff;
1109  		addr[3] = (word1 >> 8) & 0xff;
1110  		addr[4] = (word1 >> 16) & 0xff;
1111  		addr[5] = (word1 >> 24) & 0xff;
1112  		eth_hw_addr_set(dev, addr);
1113  	}
1114  
1115  	if (!is_valid_ether_addr(dev->dev_addr)) {
1116  		printk(KERN_ERR
1117  		       "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1118  		       dev->name, word1, word2);
1119  		return -EINVAL;
1120  	}
1121  
1122  	return 0;
1123  }
1124  
tsi108_set_mac(struct net_device * dev,void * addr)1125  static int tsi108_set_mac(struct net_device *dev, void *addr)
1126  {
1127  	struct tsi108_prv_data *data = netdev_priv(dev);
1128  	u32 word1, word2;
1129  
1130  	if (!is_valid_ether_addr(addr))
1131  		return -EADDRNOTAVAIL;
1132  
1133  	/* +2 is for the offset of the HW addr type */
1134  	eth_hw_addr_set(dev, ((unsigned char *)addr) + 2);
1135  
1136  	word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1137  
1138  	word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1139  	    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1140  
1141  	spin_lock_irq(&data->misclock);
1142  	TSI_WRITE(TSI108_MAC_ADDR1, word1);
1143  	TSI_WRITE(TSI108_MAC_ADDR2, word2);
1144  	spin_lock(&data->txlock);
1145  
1146  	if (data->txfree && data->link_up)
1147  		netif_wake_queue(dev);
1148  
1149  	spin_unlock(&data->txlock);
1150  	spin_unlock_irq(&data->misclock);
1151  	return 0;
1152  }
1153  
1154  /* Protected by dev->xmit_lock. */
tsi108_set_rx_mode(struct net_device * dev)1155  static void tsi108_set_rx_mode(struct net_device *dev)
1156  {
1157  	struct tsi108_prv_data *data = netdev_priv(dev);
1158  	u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1159  
1160  	if (dev->flags & IFF_PROMISC) {
1161  		rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1162  		rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1163  		goto out;
1164  	}
1165  
1166  	rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1167  
1168  	if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1169  		int i;
1170  		struct netdev_hw_addr *ha;
1171  		rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1172  
1173  		memset(data->mc_hash, 0, sizeof(data->mc_hash));
1174  
1175  		netdev_for_each_mc_addr(ha, dev) {
1176  			u32 hash, crc;
1177  
1178  			crc = ether_crc(6, ha->addr);
1179  			hash = crc >> 23;
1180  			__set_bit(hash, &data->mc_hash[0]);
1181  		}
1182  
1183  		TSI_WRITE(TSI108_EC_HASHADDR,
1184  				     TSI108_EC_HASHADDR_AUTOINC |
1185  				     TSI108_EC_HASHADDR_MCAST);
1186  
1187  		for (i = 0; i < 16; i++) {
1188  			/* The manual says that the hardware may drop
1189  			 * back-to-back writes to the data register.
1190  			 */
1191  			udelay(1);
1192  			TSI_WRITE(TSI108_EC_HASHDATA,
1193  					     data->mc_hash[i]);
1194  		}
1195  	}
1196  
1197        out:
1198  	TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1199  }
1200  
tsi108_init_phy(struct net_device * dev)1201  static void tsi108_init_phy(struct net_device *dev)
1202  {
1203  	struct tsi108_prv_data *data = netdev_priv(dev);
1204  	u32 i = 0;
1205  	u16 phyval = 0;
1206  	unsigned long flags;
1207  
1208  	spin_lock_irqsave(&phy_lock, flags);
1209  
1210  	tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1211  	while (--i) {
1212  		if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1213  			break;
1214  		udelay(10);
1215  	}
1216  	if (i == 0)
1217  		printk(KERN_ERR "%s function time out\n", __func__);
1218  
1219  	if (data->phy_type == TSI108_PHY_BCM54XX) {
1220  		tsi108_write_mii(data, 0x09, 0x0300);
1221  		tsi108_write_mii(data, 0x10, 0x1020);
1222  		tsi108_write_mii(data, 0x1c, 0x8c00);
1223  	}
1224  
1225  	tsi108_write_mii(data,
1226  			 MII_BMCR,
1227  			 BMCR_ANENABLE | BMCR_ANRESTART);
1228  	while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1229  		cpu_relax();
1230  
1231  	/* Set G/MII mode and receive clock select in TBI control #2.  The
1232  	 * second port won't work if this isn't done, even though we don't
1233  	 * use TBI mode.
1234  	 */
1235  
1236  	tsi108_write_tbi(data, 0x11, 0x30);
1237  
1238  	/* FIXME: It seems to take more than 2 back-to-back reads to the
1239  	 * PHY_STAT register before the link up status bit is set.
1240  	 */
1241  
1242  	data->link_up = 0;
1243  
1244  	while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1245  		 BMSR_LSTATUS)) {
1246  		if (i++ > (MII_READ_DELAY / 10)) {
1247  			break;
1248  		}
1249  		spin_unlock_irqrestore(&phy_lock, flags);
1250  		msleep(10);
1251  		spin_lock_irqsave(&phy_lock, flags);
1252  	}
1253  
1254  	data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1255  	printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1256  	data->phy_ok = 1;
1257  	data->init_media = 1;
1258  	spin_unlock_irqrestore(&phy_lock, flags);
1259  }
1260  
tsi108_kill_phy(struct net_device * dev)1261  static void tsi108_kill_phy(struct net_device *dev)
1262  {
1263  	struct tsi108_prv_data *data = netdev_priv(dev);
1264  	unsigned long flags;
1265  
1266  	spin_lock_irqsave(&phy_lock, flags);
1267  	tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1268  	data->phy_ok = 0;
1269  	spin_unlock_irqrestore(&phy_lock, flags);
1270  }
1271  
tsi108_open(struct net_device * dev)1272  static int tsi108_open(struct net_device *dev)
1273  {
1274  	int i;
1275  	struct tsi108_prv_data *data = netdev_priv(dev);
1276  	unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1277  	unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1278  
1279  	i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1280  	if (i != 0) {
1281  		printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1282  		       data->id, data->irq_num);
1283  		return i;
1284  	} else {
1285  		dev->irq = data->irq_num;
1286  		printk(KERN_NOTICE
1287  		       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1288  		       data->id, dev->irq, dev->name);
1289  	}
1290  
1291  	data->rxring = dma_alloc_coherent(&data->pdev->dev, rxring_size,
1292  					  &data->rxdma, GFP_KERNEL);
1293  	if (!data->rxring) {
1294  		free_irq(data->irq_num, dev);
1295  		return -ENOMEM;
1296  	}
1297  
1298  	data->txring = dma_alloc_coherent(&data->pdev->dev, txring_size,
1299  					  &data->txdma, GFP_KERNEL);
1300  	if (!data->txring) {
1301  		free_irq(data->irq_num, dev);
1302  		dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring,
1303  				    data->rxdma);
1304  		return -ENOMEM;
1305  	}
1306  
1307  	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1308  		data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1309  		data->rxring[i].blen = TSI108_RXBUF_SIZE;
1310  		data->rxring[i].vlan = 0;
1311  	}
1312  
1313  	data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1314  
1315  	data->rxtail = 0;
1316  	data->rxhead = 0;
1317  
1318  	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1319  		struct sk_buff *skb;
1320  
1321  		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1322  		if (!skb) {
1323  			/* Bah.  No memory for now, but maybe we'll get
1324  			 * some more later.
1325  			 * For now, we'll live with the smaller ring.
1326  			 */
1327  			printk(KERN_WARNING
1328  			       "%s: Could only allocate %d receive skb(s).\n",
1329  			       dev->name, i);
1330  			data->rxhead = i;
1331  			break;
1332  		}
1333  
1334  		data->rxskbs[i] = skb;
1335  		data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1336  		data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1337  	}
1338  
1339  	data->rxfree = i;
1340  	TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1341  
1342  	for (i = 0; i < TSI108_TXRING_LEN; i++) {
1343  		data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1344  		data->txring[i].misc = 0;
1345  	}
1346  
1347  	data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1348  	data->txtail = 0;
1349  	data->txhead = 0;
1350  	data->txfree = TSI108_TXRING_LEN;
1351  	TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1352  	tsi108_init_phy(dev);
1353  
1354  	napi_enable(&data->napi);
1355  
1356  	timer_setup(&data->timer, tsi108_timed_checker, 0);
1357  	mod_timer(&data->timer, jiffies + 1);
1358  
1359  	tsi108_restart_rx(data, dev);
1360  
1361  	TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1362  
1363  	TSI_WRITE(TSI108_EC_INTMASK,
1364  			     ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1365  			       TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1366  			       TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1367  			       TSI108_INT_SFN | TSI108_INT_STATCARRY));
1368  
1369  	TSI_WRITE(TSI108_MAC_CFG1,
1370  			     TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1371  	netif_start_queue(dev);
1372  	return 0;
1373  }
1374  
tsi108_close(struct net_device * dev)1375  static int tsi108_close(struct net_device *dev)
1376  {
1377  	struct tsi108_prv_data *data = netdev_priv(dev);
1378  
1379  	netif_stop_queue(dev);
1380  	napi_disable(&data->napi);
1381  
1382  	del_timer_sync(&data->timer);
1383  
1384  	tsi108_stop_ethernet(dev);
1385  	tsi108_kill_phy(dev);
1386  	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1387  	TSI_WRITE(TSI108_MAC_CFG1, 0);
1388  
1389  	/* Check for any pending TX packets, and drop them. */
1390  
1391  	while (!data->txfree || data->txhead != data->txtail) {
1392  		int tx = data->txtail;
1393  		struct sk_buff *skb;
1394  		skb = data->txskbs[tx];
1395  		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1396  		data->txfree++;
1397  		dev_kfree_skb(skb);
1398  	}
1399  
1400  	free_irq(data->irq_num, dev);
1401  
1402  	/* Discard the RX ring. */
1403  
1404  	while (data->rxfree) {
1405  		int rx = data->rxtail;
1406  		struct sk_buff *skb;
1407  
1408  		skb = data->rxskbs[rx];
1409  		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1410  		data->rxfree--;
1411  		dev_kfree_skb(skb);
1412  	}
1413  
1414  	dma_free_coherent(&data->pdev->dev,
1415  			    TSI108_RXRING_LEN * sizeof(rx_desc),
1416  			    data->rxring, data->rxdma);
1417  	dma_free_coherent(&data->pdev->dev,
1418  			    TSI108_TXRING_LEN * sizeof(tx_desc),
1419  			    data->txring, data->txdma);
1420  
1421  	return 0;
1422  }
1423  
tsi108_init_mac(struct net_device * dev)1424  static void tsi108_init_mac(struct net_device *dev)
1425  {
1426  	struct tsi108_prv_data *data = netdev_priv(dev);
1427  
1428  	TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1429  			     TSI108_MAC_CFG2_PADCRC);
1430  
1431  	TSI_WRITE(TSI108_EC_TXTHRESH,
1432  			     (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1433  			     (192 << TSI108_EC_TXTHRESH_STOPFILL));
1434  
1435  	TSI_WRITE(TSI108_STAT_CARRYMASK1,
1436  			     ~(TSI108_STAT_CARRY1_RXBYTES |
1437  			       TSI108_STAT_CARRY1_RXPKTS |
1438  			       TSI108_STAT_CARRY1_RXFCS |
1439  			       TSI108_STAT_CARRY1_RXMCAST |
1440  			       TSI108_STAT_CARRY1_RXALIGN |
1441  			       TSI108_STAT_CARRY1_RXLENGTH |
1442  			       TSI108_STAT_CARRY1_RXRUNT |
1443  			       TSI108_STAT_CARRY1_RXJUMBO |
1444  			       TSI108_STAT_CARRY1_RXFRAG |
1445  			       TSI108_STAT_CARRY1_RXJABBER |
1446  			       TSI108_STAT_CARRY1_RXDROP));
1447  
1448  	TSI_WRITE(TSI108_STAT_CARRYMASK2,
1449  			     ~(TSI108_STAT_CARRY2_TXBYTES |
1450  			       TSI108_STAT_CARRY2_TXPKTS |
1451  			       TSI108_STAT_CARRY2_TXEXDEF |
1452  			       TSI108_STAT_CARRY2_TXEXCOL |
1453  			       TSI108_STAT_CARRY2_TXTCOL |
1454  			       TSI108_STAT_CARRY2_TXPAUSE));
1455  
1456  	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1457  	TSI_WRITE(TSI108_MAC_CFG1, 0);
1458  
1459  	TSI_WRITE(TSI108_EC_RXCFG,
1460  			     TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1461  
1462  	TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1463  			     TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1464  			     TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1465  						TSI108_EC_TXQ_CFG_SFNPORT));
1466  
1467  	TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1468  			     TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1469  			     TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1470  						TSI108_EC_RXQ_CFG_SFNPORT));
1471  
1472  	TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1473  			     TSI108_EC_TXQ_BUFCFG_BURST256 |
1474  			     TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1475  						TSI108_EC_TXQ_BUFCFG_SFNPORT));
1476  
1477  	TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1478  			     TSI108_EC_RXQ_BUFCFG_BURST256 |
1479  			     TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1480  						TSI108_EC_RXQ_BUFCFG_SFNPORT));
1481  
1482  	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1483  }
1484  
tsi108_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1485  static int tsi108_get_link_ksettings(struct net_device *dev,
1486  				     struct ethtool_link_ksettings *cmd)
1487  {
1488  	struct tsi108_prv_data *data = netdev_priv(dev);
1489  	unsigned long flags;
1490  
1491  	spin_lock_irqsave(&data->txlock, flags);
1492  	mii_ethtool_get_link_ksettings(&data->mii_if, cmd);
1493  	spin_unlock_irqrestore(&data->txlock, flags);
1494  
1495  	return 0;
1496  }
1497  
tsi108_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1498  static int tsi108_set_link_ksettings(struct net_device *dev,
1499  				     const struct ethtool_link_ksettings *cmd)
1500  {
1501  	struct tsi108_prv_data *data = netdev_priv(dev);
1502  	unsigned long flags;
1503  	int rc;
1504  
1505  	spin_lock_irqsave(&data->txlock, flags);
1506  	rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd);
1507  	spin_unlock_irqrestore(&data->txlock, flags);
1508  
1509  	return rc;
1510  }
1511  
tsi108_do_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1512  static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1513  {
1514  	struct tsi108_prv_data *data = netdev_priv(dev);
1515  	if (!netif_running(dev))
1516  		return -EINVAL;
1517  	return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1518  }
1519  
1520  static const struct ethtool_ops tsi108_ethtool_ops = {
1521  	.get_link 	= ethtool_op_get_link,
1522  	.get_link_ksettings	= tsi108_get_link_ksettings,
1523  	.set_link_ksettings	= tsi108_set_link_ksettings,
1524  };
1525  
1526  static const struct net_device_ops tsi108_netdev_ops = {
1527  	.ndo_open		= tsi108_open,
1528  	.ndo_stop		= tsi108_close,
1529  	.ndo_start_xmit		= tsi108_send_packet,
1530  	.ndo_set_rx_mode	= tsi108_set_rx_mode,
1531  	.ndo_get_stats		= tsi108_get_stats,
1532  	.ndo_eth_ioctl		= tsi108_do_ioctl,
1533  	.ndo_set_mac_address	= tsi108_set_mac,
1534  	.ndo_validate_addr	= eth_validate_addr,
1535  };
1536  
1537  static int
tsi108_init_one(struct platform_device * pdev)1538  tsi108_init_one(struct platform_device *pdev)
1539  {
1540  	struct net_device *dev = NULL;
1541  	struct tsi108_prv_data *data = NULL;
1542  	hw_info *einfo;
1543  	int err = 0;
1544  
1545  	einfo = dev_get_platdata(&pdev->dev);
1546  
1547  	if (NULL == einfo) {
1548  		printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1549  		       pdev->id);
1550  		return -ENODEV;
1551  	}
1552  
1553  	/* Create an ethernet device instance */
1554  
1555  	dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1556  	if (!dev)
1557  		return -ENOMEM;
1558  
1559  	printk("tsi108_eth%d: probe...\n", pdev->id);
1560  	data = netdev_priv(dev);
1561  	data->dev = dev;
1562  	data->pdev = pdev;
1563  
1564  	pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1565  			pdev->id, einfo->regs, einfo->phyregs,
1566  			einfo->phy, einfo->irq_num);
1567  
1568  	data->regs = ioremap(einfo->regs, 0x400);
1569  	if (NULL == data->regs) {
1570  		err = -ENOMEM;
1571  		goto regs_fail;
1572  	}
1573  
1574  	data->phyregs = ioremap(einfo->phyregs, 0x400);
1575  	if (NULL == data->phyregs) {
1576  		err = -ENOMEM;
1577  		goto phyregs_fail;
1578  	}
1579  /* MII setup */
1580  	data->mii_if.dev = dev;
1581  	data->mii_if.mdio_read = tsi108_mdio_read;
1582  	data->mii_if.mdio_write = tsi108_mdio_write;
1583  	data->mii_if.phy_id = einfo->phy;
1584  	data->mii_if.phy_id_mask = 0x1f;
1585  	data->mii_if.reg_num_mask = 0x1f;
1586  
1587  	data->phy = einfo->phy;
1588  	data->phy_type = einfo->phy_type;
1589  	data->irq_num = einfo->irq_num;
1590  	data->id = pdev->id;
1591  	netif_napi_add(dev, &data->napi, tsi108_poll);
1592  	dev->netdev_ops = &tsi108_netdev_ops;
1593  	dev->ethtool_ops = &tsi108_ethtool_ops;
1594  
1595  	/* Apparently, the Linux networking code won't use scatter-gather
1596  	 * if the hardware doesn't do checksums.  However, it's faster
1597  	 * to checksum in place and use SG, as (among other reasons)
1598  	 * the cache won't be dirtied (which then has to be flushed
1599  	 * before DMA).  The checksumming is done by the driver (via
1600  	 * a new function skb_csum_dev() in net/core/skbuff.c).
1601  	 */
1602  
1603  	dev->features = NETIF_F_HIGHDMA;
1604  
1605  	spin_lock_init(&data->txlock);
1606  	spin_lock_init(&data->misclock);
1607  
1608  	tsi108_reset_ether(data);
1609  	tsi108_kill_phy(dev);
1610  
1611  	if ((err = tsi108_get_mac(dev)) != 0) {
1612  		printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1613  		       dev->name);
1614  		goto register_fail;
1615  	}
1616  
1617  	tsi108_init_mac(dev);
1618  	err = register_netdev(dev);
1619  	if (err) {
1620  		printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1621  				dev->name);
1622  		goto register_fail;
1623  	}
1624  
1625  	platform_set_drvdata(pdev, dev);
1626  	printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1627  	       dev->name, dev->dev_addr);
1628  #ifdef DEBUG
1629  	data->msg_enable = DEBUG;
1630  	dump_eth_one(dev);
1631  #endif
1632  
1633  	return 0;
1634  
1635  register_fail:
1636  	iounmap(data->phyregs);
1637  
1638  phyregs_fail:
1639  	iounmap(data->regs);
1640  
1641  regs_fail:
1642  	free_netdev(dev);
1643  	return err;
1644  }
1645  
1646  /* There's no way to either get interrupts from the PHY when
1647   * something changes, or to have the Tsi108 automatically communicate
1648   * with the PHY to reconfigure itself.
1649   *
1650   * Thus, we have to do it using a timer.
1651   */
1652  
tsi108_timed_checker(struct timer_list * t)1653  static void tsi108_timed_checker(struct timer_list *t)
1654  {
1655  	struct tsi108_prv_data *data = from_timer(data, t, timer);
1656  	struct net_device *dev = data->dev;
1657  
1658  	tsi108_check_phy(dev);
1659  	tsi108_check_rxring(dev);
1660  	mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1661  }
1662  
tsi108_ether_remove(struct platform_device * pdev)1663  static int tsi108_ether_remove(struct platform_device *pdev)
1664  {
1665  	struct net_device *dev = platform_get_drvdata(pdev);
1666  	struct tsi108_prv_data *priv = netdev_priv(dev);
1667  
1668  	unregister_netdev(dev);
1669  	tsi108_stop_ethernet(dev);
1670  	iounmap(priv->regs);
1671  	iounmap(priv->phyregs);
1672  	free_netdev(dev);
1673  
1674  	return 0;
1675  }
1676  
1677  /* Structure for a device driver */
1678  
1679  static struct platform_driver tsi_eth_driver = {
1680  	.probe = tsi108_init_one,
1681  	.remove = tsi108_ether_remove,
1682  	.driver	= {
1683  		.name = "tsi-ethernet",
1684  	},
1685  };
1686  module_platform_driver(tsi_eth_driver);
1687  
1688  MODULE_AUTHOR("Tundra Semiconductor Corporation");
1689  MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1690  MODULE_LICENSE("GPL");
1691  MODULE_ALIAS("platform:tsi-ethernet");
1692