1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * Handle hardware traps and faults.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/kmsan.h>
19 #include <linux/spinlock.h>
20 #include <linux/kprobes.h>
21 #include <linux/uaccess.h>
22 #include <linux/kdebug.h>
23 #include <linux/kgdb.h>
24 #include <linux/kernel.h>
25 #include <linux/export.h>
26 #include <linux/ptrace.h>
27 #include <linux/uprobes.h>
28 #include <linux/string.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/kexec.h>
32 #include <linux/sched.h>
33 #include <linux/sched/task_stack.h>
34 #include <linux/timer.h>
35 #include <linux/init.h>
36 #include <linux/bug.h>
37 #include <linux/nmi.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/io.h>
41 #include <linux/hardirq.h>
42 #include <linux/atomic.h>
43 #include <linux/iommu.h>
44 #include <linux/ubsan.h>
45
46 #include <asm/stacktrace.h>
47 #include <asm/processor.h>
48 #include <asm/debugreg.h>
49 #include <asm/realmode.h>
50 #include <asm/text-patching.h>
51 #include <asm/ftrace.h>
52 #include <asm/traps.h>
53 #include <asm/desc.h>
54 #include <asm/fpu/api.h>
55 #include <asm/cpu.h>
56 #include <asm/cpu_entry_area.h>
57 #include <asm/mce.h>
58 #include <asm/fixmap.h>
59 #include <asm/mach_traps.h>
60 #include <asm/alternative.h>
61 #include <asm/fpu/xstate.h>
62 #include <asm/vm86.h>
63 #include <asm/umip.h>
64 #include <asm/insn.h>
65 #include <asm/insn-eval.h>
66 #include <asm/vdso.h>
67 #include <asm/tdx.h>
68 #include <asm/cfi.h>
69
70 #ifdef CONFIG_X86_64
71 #include <asm/x86_init.h>
72 #else
73 #include <asm/processor-flags.h>
74 #include <asm/setup.h>
75 #endif
76
77 #include <asm/proto.h>
78
79 DECLARE_BITMAP(system_vectors, NR_VECTORS);
80
is_valid_bugaddr(unsigned long addr)81 __always_inline int is_valid_bugaddr(unsigned long addr)
82 {
83 if (addr < TASK_SIZE_MAX)
84 return 0;
85
86 /*
87 * We got #UD, if the text isn't readable we'd have gotten
88 * a different exception.
89 */
90 return *(unsigned short *)addr == INSN_UD2;
91 }
92
93 /*
94 * Check for UD1 or UD2, accounting for Address Size Override Prefixes.
95 * If it's a UD1, get the ModRM byte to pass along to UBSan.
96 */
decode_bug(unsigned long addr,u32 * imm)97 __always_inline int decode_bug(unsigned long addr, u32 *imm)
98 {
99 u8 v;
100
101 if (addr < TASK_SIZE_MAX)
102 return BUG_NONE;
103
104 v = *(u8 *)(addr++);
105 if (v == INSN_ASOP)
106 v = *(u8 *)(addr++);
107 if (v != OPCODE_ESCAPE)
108 return BUG_NONE;
109
110 v = *(u8 *)(addr++);
111 if (v == SECOND_BYTE_OPCODE_UD2)
112 return BUG_UD2;
113
114 if (!IS_ENABLED(CONFIG_UBSAN_TRAP) || v != SECOND_BYTE_OPCODE_UD1)
115 return BUG_NONE;
116
117 /* Retrieve the immediate (type value) for the UBSAN UD1 */
118 v = *(u8 *)(addr++);
119 if (X86_MODRM_RM(v) == 4)
120 addr++;
121
122 *imm = 0;
123 if (X86_MODRM_MOD(v) == 1)
124 *imm = *(u8 *)addr;
125 else if (X86_MODRM_MOD(v) == 2)
126 *imm = *(u32 *)addr;
127 else
128 WARN_ONCE(1, "Unexpected MODRM_MOD: %u\n", X86_MODRM_MOD(v));
129
130 return BUG_UD1;
131 }
132
133
134 static nokprobe_inline int
do_trap_no_signal(struct task_struct * tsk,int trapnr,const char * str,struct pt_regs * regs,long error_code)135 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
136 struct pt_regs *regs, long error_code)
137 {
138 if (v8086_mode(regs)) {
139 /*
140 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
141 * On nmi (interrupt 2), do_trap should not be called.
142 */
143 if (trapnr < X86_TRAP_UD) {
144 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
145 error_code, trapnr))
146 return 0;
147 }
148 } else if (!user_mode(regs)) {
149 if (fixup_exception(regs, trapnr, error_code, 0))
150 return 0;
151
152 tsk->thread.error_code = error_code;
153 tsk->thread.trap_nr = trapnr;
154 die(str, regs, error_code);
155 } else {
156 if (fixup_vdso_exception(regs, trapnr, error_code, 0))
157 return 0;
158 }
159
160 /*
161 * We want error_code and trap_nr set for userspace faults and
162 * kernelspace faults which result in die(), but not
163 * kernelspace faults which are fixed up. die() gives the
164 * process no chance to handle the signal and notice the
165 * kernel fault information, so that won't result in polluting
166 * the information about previously queued, but not yet
167 * delivered, faults. See also exc_general_protection below.
168 */
169 tsk->thread.error_code = error_code;
170 tsk->thread.trap_nr = trapnr;
171
172 return -1;
173 }
174
show_signal(struct task_struct * tsk,int signr,const char * type,const char * desc,struct pt_regs * regs,long error_code)175 static void show_signal(struct task_struct *tsk, int signr,
176 const char *type, const char *desc,
177 struct pt_regs *regs, long error_code)
178 {
179 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
180 printk_ratelimit()) {
181 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
182 tsk->comm, task_pid_nr(tsk), type, desc,
183 regs->ip, regs->sp, error_code);
184 print_vma_addr(KERN_CONT " in ", regs->ip);
185 pr_cont("\n");
186 }
187 }
188
189 static void
do_trap(int trapnr,int signr,char * str,struct pt_regs * regs,long error_code,int sicode,void __user * addr)190 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
191 long error_code, int sicode, void __user *addr)
192 {
193 struct task_struct *tsk = current;
194
195 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
196 return;
197
198 show_signal(tsk, signr, "trap ", str, regs, error_code);
199
200 if (!sicode)
201 force_sig(signr);
202 else
203 force_sig_fault(signr, sicode, addr);
204 }
205 NOKPROBE_SYMBOL(do_trap);
206
do_error_trap(struct pt_regs * regs,long error_code,char * str,unsigned long trapnr,int signr,int sicode,void __user * addr)207 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
208 unsigned long trapnr, int signr, int sicode, void __user *addr)
209 {
210 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
211
212 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
213 NOTIFY_STOP) {
214 cond_local_irq_enable(regs);
215 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
216 cond_local_irq_disable(regs);
217 }
218 }
219
220 /*
221 * Posix requires to provide the address of the faulting instruction for
222 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
223 *
224 * This address is usually regs->ip, but when an uprobe moved the code out
225 * of line then regs->ip points to the XOL code which would confuse
226 * anything which analyzes the fault address vs. the unmodified binary. If
227 * a trap happened in XOL code then uprobe maps regs->ip back to the
228 * original instruction address.
229 */
error_get_trap_addr(struct pt_regs * regs)230 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
231 {
232 return (void __user *)uprobe_get_trap_addr(regs);
233 }
234
DEFINE_IDTENTRY(exc_divide_error)235 DEFINE_IDTENTRY(exc_divide_error)
236 {
237 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
238 FPE_INTDIV, error_get_trap_addr(regs));
239 }
240
DEFINE_IDTENTRY(exc_overflow)241 DEFINE_IDTENTRY(exc_overflow)
242 {
243 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
244 }
245
246 #ifdef CONFIG_X86_F00F_BUG
handle_invalid_op(struct pt_regs * regs)247 void handle_invalid_op(struct pt_regs *regs)
248 #else
249 static inline void handle_invalid_op(struct pt_regs *regs)
250 #endif
251 {
252 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
253 ILL_ILLOPN, error_get_trap_addr(regs));
254 }
255
handle_bug(struct pt_regs * regs)256 static noinstr bool handle_bug(struct pt_regs *regs)
257 {
258 bool handled = false;
259 int ud_type;
260 u32 imm;
261
262 ud_type = decode_bug(regs->ip, &imm);
263 if (ud_type == BUG_NONE)
264 return handled;
265
266 /*
267 * All lies, just get the WARN/BUG out.
268 */
269 instrumentation_begin();
270 /*
271 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
272 * is a rare case that uses @regs without passing them to
273 * irqentry_enter().
274 */
275 kmsan_unpoison_entry_regs(regs);
276 /*
277 * Since we're emulating a CALL with exceptions, restore the interrupt
278 * state to what it was at the exception site.
279 */
280 if (regs->flags & X86_EFLAGS_IF)
281 raw_local_irq_enable();
282 if (ud_type == BUG_UD2) {
283 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
284 handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
285 regs->ip += LEN_UD2;
286 handled = true;
287 }
288 } else if (IS_ENABLED(CONFIG_UBSAN_TRAP)) {
289 pr_crit("%s at %pS\n", report_ubsan_failure(regs, imm), (void *)regs->ip);
290 }
291 if (regs->flags & X86_EFLAGS_IF)
292 raw_local_irq_disable();
293 instrumentation_end();
294
295 return handled;
296 }
297
DEFINE_IDTENTRY_RAW(exc_invalid_op)298 DEFINE_IDTENTRY_RAW(exc_invalid_op)
299 {
300 irqentry_state_t state;
301
302 /*
303 * We use UD2 as a short encoding for 'CALL __WARN', as such
304 * handle it before exception entry to avoid recursive WARN
305 * in case exception entry is the one triggering WARNs.
306 */
307 if (!user_mode(regs) && handle_bug(regs))
308 return;
309
310 state = irqentry_enter(regs);
311 instrumentation_begin();
312 handle_invalid_op(regs);
313 instrumentation_end();
314 irqentry_exit(regs, state);
315 }
316
DEFINE_IDTENTRY(exc_coproc_segment_overrun)317 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
318 {
319 do_error_trap(regs, 0, "coprocessor segment overrun",
320 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
321 }
322
DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)323 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
324 {
325 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
326 0, NULL);
327 }
328
DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)329 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
330 {
331 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
332 SIGBUS, 0, NULL);
333 }
334
DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)335 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
336 {
337 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
338 0, NULL);
339 }
340
DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)341 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
342 {
343 char *str = "alignment check";
344
345 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
346 return;
347
348 if (!user_mode(regs))
349 die("Split lock detected\n", regs, error_code);
350
351 local_irq_enable();
352
353 if (handle_user_split_lock(regs, error_code))
354 goto out;
355
356 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
357 error_code, BUS_ADRALN, NULL);
358
359 out:
360 local_irq_disable();
361 }
362
363 #ifdef CONFIG_VMAP_STACK
handle_stack_overflow(struct pt_regs * regs,unsigned long fault_address,struct stack_info * info)364 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
365 unsigned long fault_address,
366 struct stack_info *info)
367 {
368 const char *name = stack_type_name(info->type);
369
370 printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
371 name, (void *)fault_address, info->begin, info->end);
372
373 die("stack guard page", regs, 0);
374
375 /* Be absolutely certain we don't return. */
376 panic("%s stack guard hit", name);
377 }
378 #endif
379
380 /*
381 * Prevent the compiler and/or objtool from marking the !CONFIG_X86_ESPFIX64
382 * version of exc_double_fault() as noreturn. Otherwise the noreturn mismatch
383 * between configs triggers objtool warnings.
384 *
385 * This is a temporary hack until we have compiler or plugin support for
386 * annotating noreturns.
387 */
388 #ifdef CONFIG_X86_ESPFIX64
389 #define always_true() true
390 #else
391 bool always_true(void);
always_true(void)392 bool __weak always_true(void) { return true; }
393 #endif
394
395 /*
396 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
397 *
398 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
399 * SDM's warnings about double faults being unrecoverable, returning works as
400 * expected. Presumably what the SDM actually means is that the CPU may get
401 * the register state wrong on entry, so returning could be a bad idea.
402 *
403 * Various CPU engineers have promised that double faults due to an IRET fault
404 * while the stack is read-only are, in fact, recoverable.
405 *
406 * On x86_32, this is entered through a task gate, and regs are synthesized
407 * from the TSS. Returning is, in principle, okay, but changes to regs will
408 * be lost. If, for some reason, we need to return to a context with modified
409 * regs, the shim code could be adjusted to synchronize the registers.
410 *
411 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
412 * to be read before doing anything else.
413 */
DEFINE_IDTENTRY_DF(exc_double_fault)414 DEFINE_IDTENTRY_DF(exc_double_fault)
415 {
416 static const char str[] = "double fault";
417 struct task_struct *tsk = current;
418
419 #ifdef CONFIG_VMAP_STACK
420 unsigned long address = read_cr2();
421 struct stack_info info;
422 #endif
423
424 #ifdef CONFIG_X86_ESPFIX64
425 extern unsigned char native_irq_return_iret[];
426
427 /*
428 * If IRET takes a non-IST fault on the espfix64 stack, then we
429 * end up promoting it to a doublefault. In that case, take
430 * advantage of the fact that we're not using the normal (TSS.sp0)
431 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
432 * and then modify our own IRET frame so that, when we return,
433 * we land directly at the #GP(0) vector with the stack already
434 * set up according to its expectations.
435 *
436 * The net result is that our #GP handler will think that we
437 * entered from usermode with the bad user context.
438 *
439 * No need for nmi_enter() here because we don't use RCU.
440 */
441 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
442 regs->cs == __KERNEL_CS &&
443 regs->ip == (unsigned long)native_irq_return_iret)
444 {
445 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
446 unsigned long *p = (unsigned long *)regs->sp;
447
448 /*
449 * regs->sp points to the failing IRET frame on the
450 * ESPFIX64 stack. Copy it to the entry stack. This fills
451 * in gpregs->ss through gpregs->ip.
452 *
453 */
454 gpregs->ip = p[0];
455 gpregs->cs = p[1];
456 gpregs->flags = p[2];
457 gpregs->sp = p[3];
458 gpregs->ss = p[4];
459 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
460
461 /*
462 * Adjust our frame so that we return straight to the #GP
463 * vector with the expected RSP value. This is safe because
464 * we won't enable interrupts or schedule before we invoke
465 * general_protection, so nothing will clobber the stack
466 * frame we just set up.
467 *
468 * We will enter general_protection with kernel GSBASE,
469 * which is what the stub expects, given that the faulting
470 * RIP will be the IRET instruction.
471 */
472 regs->ip = (unsigned long)asm_exc_general_protection;
473 regs->sp = (unsigned long)&gpregs->orig_ax;
474
475 return;
476 }
477 #endif
478
479 irqentry_nmi_enter(regs);
480 instrumentation_begin();
481 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
482
483 tsk->thread.error_code = error_code;
484 tsk->thread.trap_nr = X86_TRAP_DF;
485
486 #ifdef CONFIG_VMAP_STACK
487 /*
488 * If we overflow the stack into a guard page, the CPU will fail
489 * to deliver #PF and will send #DF instead. Similarly, if we
490 * take any non-IST exception while too close to the bottom of
491 * the stack, the processor will get a page fault while
492 * delivering the exception and will generate a double fault.
493 *
494 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
495 * Page-Fault Exception (#PF):
496 *
497 * Processors update CR2 whenever a page fault is detected. If a
498 * second page fault occurs while an earlier page fault is being
499 * delivered, the faulting linear address of the second fault will
500 * overwrite the contents of CR2 (replacing the previous
501 * address). These updates to CR2 occur even if the page fault
502 * results in a double fault or occurs during the delivery of a
503 * double fault.
504 *
505 * The logic below has a small possibility of incorrectly diagnosing
506 * some errors as stack overflows. For example, if the IDT or GDT
507 * gets corrupted such that #GP delivery fails due to a bad descriptor
508 * causing #GP and we hit this condition while CR2 coincidentally
509 * points to the stack guard page, we'll think we overflowed the
510 * stack. Given that we're going to panic one way or another
511 * if this happens, this isn't necessarily worth fixing.
512 *
513 * If necessary, we could improve the test by only diagnosing
514 * a stack overflow if the saved RSP points within 47 bytes of
515 * the bottom of the stack: if RSP == tsk_stack + 48 and we
516 * take an exception, the stack is already aligned and there
517 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
518 * possible error code, so a stack overflow would *not* double
519 * fault. With any less space left, exception delivery could
520 * fail, and, as a practical matter, we've overflowed the
521 * stack even if the actual trigger for the double fault was
522 * something else.
523 */
524 if (get_stack_guard_info((void *)address, &info))
525 handle_stack_overflow(regs, address, &info);
526 #endif
527
528 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
529 die("double fault", regs, error_code);
530 if (always_true())
531 panic("Machine halted.");
532 instrumentation_end();
533 }
534
DEFINE_IDTENTRY(exc_bounds)535 DEFINE_IDTENTRY(exc_bounds)
536 {
537 if (notify_die(DIE_TRAP, "bounds", regs, 0,
538 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
539 return;
540 cond_local_irq_enable(regs);
541
542 if (!user_mode(regs))
543 die("bounds", regs, 0);
544
545 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
546
547 cond_local_irq_disable(regs);
548 }
549
550 enum kernel_gp_hint {
551 GP_NO_HINT,
552 GP_NON_CANONICAL,
553 GP_CANONICAL
554 };
555
556 /*
557 * When an uncaught #GP occurs, try to determine the memory address accessed by
558 * the instruction and return that address to the caller. Also, try to figure
559 * out whether any part of the access to that address was non-canonical.
560 */
get_kernel_gp_address(struct pt_regs * regs,unsigned long * addr)561 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
562 unsigned long *addr)
563 {
564 u8 insn_buf[MAX_INSN_SIZE];
565 struct insn insn;
566 int ret;
567
568 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
569 MAX_INSN_SIZE))
570 return GP_NO_HINT;
571
572 ret = insn_decode_kernel(&insn, insn_buf);
573 if (ret < 0)
574 return GP_NO_HINT;
575
576 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
577 if (*addr == -1UL)
578 return GP_NO_HINT;
579
580 #ifdef CONFIG_X86_64
581 /*
582 * Check that:
583 * - the operand is not in the kernel half
584 * - the last byte of the operand is not in the user canonical half
585 */
586 if (*addr < ~__VIRTUAL_MASK &&
587 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
588 return GP_NON_CANONICAL;
589 #endif
590
591 return GP_CANONICAL;
592 }
593
594 #define GPFSTR "general protection fault"
595
fixup_iopl_exception(struct pt_regs * regs)596 static bool fixup_iopl_exception(struct pt_regs *regs)
597 {
598 struct thread_struct *t = ¤t->thread;
599 unsigned char byte;
600 unsigned long ip;
601
602 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
603 return false;
604
605 if (insn_get_effective_ip(regs, &ip))
606 return false;
607
608 if (get_user(byte, (const char __user *)ip))
609 return false;
610
611 if (byte != 0xfa && byte != 0xfb)
612 return false;
613
614 if (!t->iopl_warn && printk_ratelimit()) {
615 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
616 current->comm, task_pid_nr(current), ip);
617 print_vma_addr(KERN_CONT " in ", ip);
618 pr_cont("\n");
619 t->iopl_warn = 1;
620 }
621
622 regs->ip += 1;
623 return true;
624 }
625
626 /*
627 * The unprivileged ENQCMD instruction generates #GPs if the
628 * IA32_PASID MSR has not been populated. If possible, populate
629 * the MSR from a PASID previously allocated to the mm.
630 */
try_fixup_enqcmd_gp(void)631 static bool try_fixup_enqcmd_gp(void)
632 {
633 #ifdef CONFIG_IOMMU_SVA
634 u32 pasid;
635
636 /*
637 * MSR_IA32_PASID is managed using XSAVE. Directly
638 * writing to the MSR is only possible when fpregs
639 * are valid and the fpstate is not. This is
640 * guaranteed when handling a userspace exception
641 * in *before* interrupts are re-enabled.
642 */
643 lockdep_assert_irqs_disabled();
644
645 /*
646 * Hardware without ENQCMD will not generate
647 * #GPs that can be fixed up here.
648 */
649 if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
650 return false;
651
652 /*
653 * If the mm has not been allocated a
654 * PASID, the #GP can not be fixed up.
655 */
656 if (!mm_valid_pasid(current->mm))
657 return false;
658
659 pasid = current->mm->pasid;
660
661 /*
662 * Did this thread already have its PASID activated?
663 * If so, the #GP must be from something else.
664 */
665 if (current->pasid_activated)
666 return false;
667
668 wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
669 current->pasid_activated = 1;
670
671 return true;
672 #else
673 return false;
674 #endif
675 }
676
gp_try_fixup_and_notify(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str,unsigned long address)677 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
678 unsigned long error_code, const char *str,
679 unsigned long address)
680 {
681 if (fixup_exception(regs, trapnr, error_code, address))
682 return true;
683
684 current->thread.error_code = error_code;
685 current->thread.trap_nr = trapnr;
686
687 /*
688 * To be potentially processing a kprobe fault and to trust the result
689 * from kprobe_running(), we have to be non-preemptible.
690 */
691 if (!preemptible() && kprobe_running() &&
692 kprobe_fault_handler(regs, trapnr))
693 return true;
694
695 return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
696 }
697
gp_user_force_sig_segv(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str)698 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
699 unsigned long error_code, const char *str)
700 {
701 current->thread.error_code = error_code;
702 current->thread.trap_nr = trapnr;
703 show_signal(current, SIGSEGV, "", str, regs, error_code);
704 force_sig(SIGSEGV);
705 }
706
DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)707 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
708 {
709 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
710 enum kernel_gp_hint hint = GP_NO_HINT;
711 unsigned long gp_addr;
712
713 if (user_mode(regs) && try_fixup_enqcmd_gp())
714 return;
715
716 cond_local_irq_enable(regs);
717
718 if (static_cpu_has(X86_FEATURE_UMIP)) {
719 if (user_mode(regs) && fixup_umip_exception(regs))
720 goto exit;
721 }
722
723 if (v8086_mode(regs)) {
724 local_irq_enable();
725 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
726 local_irq_disable();
727 return;
728 }
729
730 if (user_mode(regs)) {
731 if (fixup_iopl_exception(regs))
732 goto exit;
733
734 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
735 goto exit;
736
737 gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
738 goto exit;
739 }
740
741 if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
742 goto exit;
743
744 if (error_code)
745 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
746 else
747 hint = get_kernel_gp_address(regs, &gp_addr);
748
749 if (hint != GP_NO_HINT)
750 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
751 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
752 : "maybe for address",
753 gp_addr);
754
755 /*
756 * KASAN is interested only in the non-canonical case, clear it
757 * otherwise.
758 */
759 if (hint != GP_NON_CANONICAL)
760 gp_addr = 0;
761
762 die_addr(desc, regs, error_code, gp_addr);
763
764 exit:
765 cond_local_irq_disable(regs);
766 }
767
do_int3(struct pt_regs * regs)768 static bool do_int3(struct pt_regs *regs)
769 {
770 int res;
771
772 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
773 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
774 SIGTRAP) == NOTIFY_STOP)
775 return true;
776 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
777
778 #ifdef CONFIG_KPROBES
779 if (kprobe_int3_handler(regs))
780 return true;
781 #endif
782 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
783
784 return res == NOTIFY_STOP;
785 }
786 NOKPROBE_SYMBOL(do_int3);
787
do_int3_user(struct pt_regs * regs)788 static void do_int3_user(struct pt_regs *regs)
789 {
790 if (do_int3(regs))
791 return;
792
793 cond_local_irq_enable(regs);
794 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
795 cond_local_irq_disable(regs);
796 }
797
DEFINE_IDTENTRY_RAW(exc_int3)798 DEFINE_IDTENTRY_RAW(exc_int3)
799 {
800 /*
801 * poke_int3_handler() is completely self contained code; it does (and
802 * must) *NOT* call out to anything, lest it hits upon yet another
803 * INT3.
804 */
805 if (poke_int3_handler(regs))
806 return;
807
808 /*
809 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
810 * and therefore can trigger INT3, hence poke_int3_handler() must
811 * be done before. If the entry came from kernel mode, then use
812 * nmi_enter() because the INT3 could have been hit in any context
813 * including NMI.
814 */
815 if (user_mode(regs)) {
816 irqentry_enter_from_user_mode(regs);
817 instrumentation_begin();
818 do_int3_user(regs);
819 instrumentation_end();
820 irqentry_exit_to_user_mode(regs);
821 } else {
822 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
823
824 instrumentation_begin();
825 if (!do_int3(regs))
826 die("int3", regs, 0);
827 instrumentation_end();
828 irqentry_nmi_exit(regs, irq_state);
829 }
830 }
831
832 #ifdef CONFIG_X86_64
833 /*
834 * Help handler running on a per-cpu (IST or entry trampoline) stack
835 * to switch to the normal thread stack if the interrupted code was in
836 * user mode. The actual stack switch is done in entry_64.S
837 */
sync_regs(struct pt_regs * eregs)838 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
839 {
840 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(pcpu_hot.top_of_stack) - 1;
841 if (regs != eregs)
842 *regs = *eregs;
843 return regs;
844 }
845
846 #ifdef CONFIG_AMD_MEM_ENCRYPT
vc_switch_off_ist(struct pt_regs * regs)847 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
848 {
849 unsigned long sp, *stack;
850 struct stack_info info;
851 struct pt_regs *regs_ret;
852
853 /*
854 * In the SYSCALL entry path the RSP value comes from user-space - don't
855 * trust it and switch to the current kernel stack
856 */
857 if (ip_within_syscall_gap(regs)) {
858 sp = this_cpu_read(pcpu_hot.top_of_stack);
859 goto sync;
860 }
861
862 /*
863 * From here on the RSP value is trusted. Now check whether entry
864 * happened from a safe stack. Not safe are the entry or unknown stacks,
865 * use the fall-back stack instead in this case.
866 */
867 sp = regs->sp;
868 stack = (unsigned long *)sp;
869
870 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
871 info.type > STACK_TYPE_EXCEPTION_LAST)
872 sp = __this_cpu_ist_top_va(VC2);
873
874 sync:
875 /*
876 * Found a safe stack - switch to it as if the entry didn't happen via
877 * IST stack. The code below only copies pt_regs, the real switch happens
878 * in assembly code.
879 */
880 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
881
882 regs_ret = (struct pt_regs *)sp;
883 *regs_ret = *regs;
884
885 return regs_ret;
886 }
887 #endif
888
fixup_bad_iret(struct pt_regs * bad_regs)889 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
890 {
891 struct pt_regs tmp, *new_stack;
892
893 /*
894 * This is called from entry_64.S early in handling a fault
895 * caused by a bad iret to user mode. To handle the fault
896 * correctly, we want to move our stack frame to where it would
897 * be had we entered directly on the entry stack (rather than
898 * just below the IRET frame) and we want to pretend that the
899 * exception came from the IRET target.
900 */
901 new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
902
903 /* Copy the IRET target to the temporary storage. */
904 __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
905
906 /* Copy the remainder of the stack from the current stack. */
907 __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
908
909 /* Update the entry stack */
910 __memcpy(new_stack, &tmp, sizeof(tmp));
911
912 BUG_ON(!user_mode(new_stack));
913 return new_stack;
914 }
915 #endif
916
is_sysenter_singlestep(struct pt_regs * regs)917 static bool is_sysenter_singlestep(struct pt_regs *regs)
918 {
919 /*
920 * We don't try for precision here. If we're anywhere in the region of
921 * code that can be single-stepped in the SYSENTER entry path, then
922 * assume that this is a useless single-step trap due to SYSENTER
923 * being invoked with TF set. (We don't know in advance exactly
924 * which instructions will be hit because BTF could plausibly
925 * be set.)
926 */
927 #ifdef CONFIG_X86_32
928 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
929 (unsigned long)__end_SYSENTER_singlestep_region -
930 (unsigned long)__begin_SYSENTER_singlestep_region;
931 #elif defined(CONFIG_IA32_EMULATION)
932 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
933 (unsigned long)__end_entry_SYSENTER_compat -
934 (unsigned long)entry_SYSENTER_compat;
935 #else
936 return false;
937 #endif
938 }
939
debug_read_clear_dr6(void)940 static __always_inline unsigned long debug_read_clear_dr6(void)
941 {
942 unsigned long dr6;
943
944 /*
945 * The Intel SDM says:
946 *
947 * Certain debug exceptions may clear bits 0-3. The remaining
948 * contents of the DR6 register are never cleared by the
949 * processor. To avoid confusion in identifying debug
950 * exceptions, debug handlers should clear the register before
951 * returning to the interrupted task.
952 *
953 * Keep it simple: clear DR6 immediately.
954 */
955 get_debugreg(dr6, 6);
956 set_debugreg(DR6_RESERVED, 6);
957 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
958
959 return dr6;
960 }
961
962 /*
963 * Our handling of the processor debug registers is non-trivial.
964 * We do not clear them on entry and exit from the kernel. Therefore
965 * it is possible to get a watchpoint trap here from inside the kernel.
966 * However, the code in ./ptrace.c has ensured that the user can
967 * only set watchpoints on userspace addresses. Therefore the in-kernel
968 * watchpoint trap can only occur in code which is reading/writing
969 * from user space. Such code must not hold kernel locks (since it
970 * can equally take a page fault), therefore it is safe to call
971 * force_sig_info even though that claims and releases locks.
972 *
973 * Code in ./signal.c ensures that the debug control register
974 * is restored before we deliver any signal, and therefore that
975 * user code runs with the correct debug control register even though
976 * we clear it here.
977 *
978 * Being careful here means that we don't have to be as careful in a
979 * lot of more complicated places (task switching can be a bit lazy
980 * about restoring all the debug state, and ptrace doesn't have to
981 * find every occurrence of the TF bit that could be saved away even
982 * by user code)
983 *
984 * May run on IST stack.
985 */
986
notify_debug(struct pt_regs * regs,unsigned long * dr6)987 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
988 {
989 /*
990 * Notifiers will clear bits in @dr6 to indicate the event has been
991 * consumed - hw_breakpoint_handler(), single_stop_cont().
992 *
993 * Notifiers will set bits in @virtual_dr6 to indicate the desire
994 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
995 */
996 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
997 return true;
998
999 return false;
1000 }
1001
exc_debug_kernel(struct pt_regs * regs,unsigned long dr6)1002 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
1003 unsigned long dr6)
1004 {
1005 /*
1006 * Disable breakpoints during exception handling; recursive exceptions
1007 * are exceedingly 'fun'.
1008 *
1009 * Since this function is NOKPROBE, and that also applies to
1010 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
1011 * HW_BREAKPOINT_W on our stack)
1012 *
1013 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
1014 * includes the entry stack is excluded for everything.
1015 */
1016 unsigned long dr7 = local_db_save();
1017 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
1018 instrumentation_begin();
1019
1020 /*
1021 * If something gets miswired and we end up here for a user mode
1022 * #DB, we will malfunction.
1023 */
1024 WARN_ON_ONCE(user_mode(regs));
1025
1026 if (test_thread_flag(TIF_BLOCKSTEP)) {
1027 /*
1028 * The SDM says "The processor clears the BTF flag when it
1029 * generates a debug exception." but PTRACE_BLOCKSTEP requested
1030 * it for userspace, but we just took a kernel #DB, so re-set
1031 * BTF.
1032 */
1033 unsigned long debugctl;
1034
1035 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1036 debugctl |= DEBUGCTLMSR_BTF;
1037 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1038 }
1039
1040 /*
1041 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
1042 * watchpoint at the same time then that will still be handled.
1043 */
1044 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
1045 dr6 &= ~DR_STEP;
1046
1047 /*
1048 * The kernel doesn't use INT1
1049 */
1050 if (!dr6)
1051 goto out;
1052
1053 if (notify_debug(regs, &dr6))
1054 goto out;
1055
1056 /*
1057 * The kernel doesn't use TF single-step outside of:
1058 *
1059 * - Kprobes, consumed through kprobe_debug_handler()
1060 * - KGDB, consumed through notify_debug()
1061 *
1062 * So if we get here with DR_STEP set, something is wonky.
1063 *
1064 * A known way to trigger this is through QEMU's GDB stub,
1065 * which leaks #DB into the guest and causes IST recursion.
1066 */
1067 if (WARN_ON_ONCE(dr6 & DR_STEP))
1068 regs->flags &= ~X86_EFLAGS_TF;
1069 out:
1070 instrumentation_end();
1071 irqentry_nmi_exit(regs, irq_state);
1072
1073 local_db_restore(dr7);
1074 }
1075
exc_debug_user(struct pt_regs * regs,unsigned long dr6)1076 static __always_inline void exc_debug_user(struct pt_regs *regs,
1077 unsigned long dr6)
1078 {
1079 bool icebp;
1080
1081 /*
1082 * If something gets miswired and we end up here for a kernel mode
1083 * #DB, we will malfunction.
1084 */
1085 WARN_ON_ONCE(!user_mode(regs));
1086
1087 /*
1088 * NB: We can't easily clear DR7 here because
1089 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1090 * user memory, etc. This means that a recursive #DB is possible. If
1091 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1092 * Since we're not on the IST stack right now, everything will be
1093 * fine.
1094 */
1095
1096 irqentry_enter_from_user_mode(regs);
1097 instrumentation_begin();
1098
1099 /*
1100 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1101 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1102 *
1103 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1104 * even if it is not the result of PTRACE_SINGLESTEP.
1105 */
1106 current->thread.virtual_dr6 = (dr6 & DR_STEP);
1107
1108 /*
1109 * The SDM says "The processor clears the BTF flag when it
1110 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
1111 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1112 */
1113 clear_thread_flag(TIF_BLOCKSTEP);
1114
1115 /*
1116 * If dr6 has no reason to give us about the origin of this trap,
1117 * then it's very likely the result of an icebp/int01 trap.
1118 * User wants a sigtrap for that.
1119 */
1120 icebp = !dr6;
1121
1122 if (notify_debug(regs, &dr6))
1123 goto out;
1124
1125 /* It's safe to allow irq's after DR6 has been saved */
1126 local_irq_enable();
1127
1128 if (v8086_mode(regs)) {
1129 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1130 goto out_irq;
1131 }
1132
1133 /* #DB for bus lock can only be triggered from userspace. */
1134 if (dr6 & DR_BUS_LOCK)
1135 handle_bus_lock(regs);
1136
1137 /* Add the virtual_dr6 bits for signals. */
1138 dr6 |= current->thread.virtual_dr6;
1139 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1140 send_sigtrap(regs, 0, get_si_code(dr6));
1141
1142 out_irq:
1143 local_irq_disable();
1144 out:
1145 instrumentation_end();
1146 irqentry_exit_to_user_mode(regs);
1147 }
1148
1149 #ifdef CONFIG_X86_64
1150 /* IST stack entry */
DEFINE_IDTENTRY_DEBUG(exc_debug)1151 DEFINE_IDTENTRY_DEBUG(exc_debug)
1152 {
1153 exc_debug_kernel(regs, debug_read_clear_dr6());
1154 }
1155
1156 /* User entry, runs on regular task stack */
DEFINE_IDTENTRY_DEBUG_USER(exc_debug)1157 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1158 {
1159 exc_debug_user(regs, debug_read_clear_dr6());
1160 }
1161 #else
1162 /* 32 bit does not have separate entry points. */
DEFINE_IDTENTRY_RAW(exc_debug)1163 DEFINE_IDTENTRY_RAW(exc_debug)
1164 {
1165 unsigned long dr6 = debug_read_clear_dr6();
1166
1167 if (user_mode(regs))
1168 exc_debug_user(regs, dr6);
1169 else
1170 exc_debug_kernel(regs, dr6);
1171 }
1172 #endif
1173
1174 /*
1175 * Note that we play around with the 'TS' bit in an attempt to get
1176 * the correct behaviour even in the presence of the asynchronous
1177 * IRQ13 behaviour
1178 */
math_error(struct pt_regs * regs,int trapnr)1179 static void math_error(struct pt_regs *regs, int trapnr)
1180 {
1181 struct task_struct *task = current;
1182 struct fpu *fpu = &task->thread.fpu;
1183 int si_code;
1184 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1185 "simd exception";
1186
1187 cond_local_irq_enable(regs);
1188
1189 if (!user_mode(regs)) {
1190 if (fixup_exception(regs, trapnr, 0, 0))
1191 goto exit;
1192
1193 task->thread.error_code = 0;
1194 task->thread.trap_nr = trapnr;
1195
1196 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1197 SIGFPE) != NOTIFY_STOP)
1198 die(str, regs, 0);
1199 goto exit;
1200 }
1201
1202 /*
1203 * Synchronize the FPU register state to the memory register state
1204 * if necessary. This allows the exception handler to inspect it.
1205 */
1206 fpu_sync_fpstate(fpu);
1207
1208 task->thread.trap_nr = trapnr;
1209 task->thread.error_code = 0;
1210
1211 si_code = fpu__exception_code(fpu, trapnr);
1212 /* Retry when we get spurious exceptions: */
1213 if (!si_code)
1214 goto exit;
1215
1216 if (fixup_vdso_exception(regs, trapnr, 0, 0))
1217 goto exit;
1218
1219 force_sig_fault(SIGFPE, si_code,
1220 (void __user *)uprobe_get_trap_addr(regs));
1221 exit:
1222 cond_local_irq_disable(regs);
1223 }
1224
DEFINE_IDTENTRY(exc_coprocessor_error)1225 DEFINE_IDTENTRY(exc_coprocessor_error)
1226 {
1227 math_error(regs, X86_TRAP_MF);
1228 }
1229
DEFINE_IDTENTRY(exc_simd_coprocessor_error)1230 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1231 {
1232 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1233 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1234 if (!static_cpu_has(X86_FEATURE_XMM)) {
1235 __exc_general_protection(regs, 0);
1236 return;
1237 }
1238 }
1239 math_error(regs, X86_TRAP_XF);
1240 }
1241
DEFINE_IDTENTRY(exc_spurious_interrupt_bug)1242 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1243 {
1244 /*
1245 * This addresses a Pentium Pro Erratum:
1246 *
1247 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1248 * Virtual Wire mode implemented through the local APIC, an
1249 * interrupt vector of 0Fh (Intel reserved encoding) may be
1250 * generated by the local APIC (Int 15). This vector may be
1251 * generated upon receipt of a spurious interrupt (an interrupt
1252 * which is removed before the system receives the INTA sequence)
1253 * instead of the programmed 8259 spurious interrupt vector.
1254 *
1255 * IMPLICATION: The spurious interrupt vector programmed in the
1256 * 8259 is normally handled by an operating system's spurious
1257 * interrupt handler. However, a vector of 0Fh is unknown to some
1258 * operating systems, which would crash if this erratum occurred.
1259 *
1260 * In theory this could be limited to 32bit, but the handler is not
1261 * hurting and who knows which other CPUs suffer from this.
1262 */
1263 }
1264
handle_xfd_event(struct pt_regs * regs)1265 static bool handle_xfd_event(struct pt_regs *regs)
1266 {
1267 u64 xfd_err;
1268 int err;
1269
1270 if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1271 return false;
1272
1273 rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1274 if (!xfd_err)
1275 return false;
1276
1277 wrmsrl(MSR_IA32_XFD_ERR, 0);
1278
1279 /* Die if that happens in kernel space */
1280 if (WARN_ON(!user_mode(regs)))
1281 return false;
1282
1283 local_irq_enable();
1284
1285 err = xfd_enable_feature(xfd_err);
1286
1287 switch (err) {
1288 case -EPERM:
1289 force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1290 break;
1291 case -EFAULT:
1292 force_sig(SIGSEGV);
1293 break;
1294 }
1295
1296 local_irq_disable();
1297 return true;
1298 }
1299
DEFINE_IDTENTRY(exc_device_not_available)1300 DEFINE_IDTENTRY(exc_device_not_available)
1301 {
1302 unsigned long cr0 = read_cr0();
1303
1304 if (handle_xfd_event(regs))
1305 return;
1306
1307 #ifdef CONFIG_MATH_EMULATION
1308 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1309 struct math_emu_info info = { };
1310
1311 cond_local_irq_enable(regs);
1312
1313 info.regs = regs;
1314 math_emulate(&info);
1315
1316 cond_local_irq_disable(regs);
1317 return;
1318 }
1319 #endif
1320
1321 /* This should not happen. */
1322 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1323 /* Try to fix it up and carry on. */
1324 write_cr0(cr0 & ~X86_CR0_TS);
1325 } else {
1326 /*
1327 * Something terrible happened, and we're better off trying
1328 * to kill the task than getting stuck in a never-ending
1329 * loop of #NM faults.
1330 */
1331 die("unexpected #NM exception", regs, 0);
1332 }
1333 }
1334
1335 #ifdef CONFIG_INTEL_TDX_GUEST
1336
1337 #define VE_FAULT_STR "VE fault"
1338
ve_raise_fault(struct pt_regs * regs,long error_code,unsigned long address)1339 static void ve_raise_fault(struct pt_regs *regs, long error_code,
1340 unsigned long address)
1341 {
1342 if (user_mode(regs)) {
1343 gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1344 return;
1345 }
1346
1347 if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
1348 VE_FAULT_STR, address)) {
1349 return;
1350 }
1351
1352 die_addr(VE_FAULT_STR, regs, error_code, address);
1353 }
1354
1355 /*
1356 * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1357 * specific guest actions which may happen in either user space or the
1358 * kernel:
1359 *
1360 * * Specific instructions (WBINVD, for example)
1361 * * Specific MSR accesses
1362 * * Specific CPUID leaf accesses
1363 * * Access to specific guest physical addresses
1364 *
1365 * In the settings that Linux will run in, virtualization exceptions are
1366 * never generated on accesses to normal, TD-private memory that has been
1367 * accepted (by BIOS or with tdx_enc_status_changed()).
1368 *
1369 * Syscall entry code has a critical window where the kernel stack is not
1370 * yet set up. Any exception in this window leads to hard to debug issues
1371 * and can be exploited for privilege escalation. Exceptions in the NMI
1372 * entry code also cause issues. Returning from the exception handler with
1373 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1374 *
1375 * For these reasons, the kernel avoids #VEs during the syscall gap and
1376 * the NMI entry code. Entry code paths do not access TD-shared memory,
1377 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1378 * that might generate #VE. VMM can remove memory from TD at any point,
1379 * but access to unaccepted (or missing) private memory leads to VM
1380 * termination, not to #VE.
1381 *
1382 * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1383 * handlers once the kernel is ready to deal with nested NMIs.
1384 *
1385 * During #VE delivery, all interrupts, including NMIs, are blocked until
1386 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1387 * the VE info.
1388 *
1389 * If a guest kernel action which would normally cause a #VE occurs in
1390 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1391 * exception) is delivered to the guest which will result in an oops.
1392 *
1393 * The entry code has been audited carefully for following these expectations.
1394 * Changes in the entry code have to be audited for correctness vs. this
1395 * aspect. Similarly to #PF, #VE in these places will expose kernel to
1396 * privilege escalation or may lead to random crashes.
1397 */
DEFINE_IDTENTRY(exc_virtualization_exception)1398 DEFINE_IDTENTRY(exc_virtualization_exception)
1399 {
1400 struct ve_info ve;
1401
1402 /*
1403 * NMIs/Machine-checks/Interrupts will be in a disabled state
1404 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1405 * info cannot be overwritten by a nested #VE.
1406 */
1407 tdx_get_ve_info(&ve);
1408
1409 cond_local_irq_enable(regs);
1410
1411 /*
1412 * If tdx_handle_virt_exception() could not process
1413 * it successfully, treat it as #GP(0) and handle it.
1414 */
1415 if (!tdx_handle_virt_exception(regs, &ve))
1416 ve_raise_fault(regs, 0, ve.gla);
1417
1418 cond_local_irq_disable(regs);
1419 }
1420
1421 #endif
1422
1423 #ifdef CONFIG_X86_32
DEFINE_IDTENTRY_SW(iret_error)1424 DEFINE_IDTENTRY_SW(iret_error)
1425 {
1426 local_irq_enable();
1427 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1428 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1429 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1430 ILL_BADSTK, (void __user *)NULL);
1431 }
1432 local_irq_disable();
1433 }
1434 #endif
1435
trap_init(void)1436 void __init trap_init(void)
1437 {
1438 /* Init cpu_entry_area before IST entries are set up */
1439 setup_cpu_entry_areas();
1440
1441 /* Init GHCB memory pages when running as an SEV-ES guest */
1442 sev_es_init_vc_handling();
1443
1444 /* Initialize TSS before setting up traps so ISTs work */
1445 cpu_init_exception_handling();
1446 /* Setup traps as cpu_init() might #GP */
1447 idt_setup_traps();
1448 cpu_init();
1449 }
1450