1 /*
2 * CPU interfaces that are target independent.
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * SPDX-License-Identifier: LGPL-2.1+
7 */
8 #ifndef CPU_COMMON_H
9 #define CPU_COMMON_H
10
11 #include "exec/vaddr.h"
12 #ifndef CONFIG_USER_ONLY
13 #include "exec/hwaddr.h"
14 #endif
15 #include "hw/core/cpu.h"
16 #include "tcg/debug-assert.h"
17 #include "exec/page-protection.h"
18
19 #define EXCP_INTERRUPT 0x10000 /* async interruption */
20 #define EXCP_HLT 0x10001 /* hlt instruction reached */
21 #define EXCP_DEBUG 0x10002 /* cpu stopped after a breakpoint or singlestep */
22 #define EXCP_HALTED 0x10003 /* cpu is halted (waiting for external event) */
23 #define EXCP_YIELD 0x10004 /* cpu wants to yield timeslice to another */
24 #define EXCP_ATOMIC 0x10005 /* stop-the-world and emulate atomic */
25
26 void cpu_exec_init_all(void);
27 void cpu_exec_step_atomic(CPUState *cpu);
28
29 #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size())
30
31 /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */
32 extern QemuMutex qemu_cpu_list_lock;
33 void qemu_init_cpu_list(void);
34 void cpu_list_lock(void);
35 void cpu_list_unlock(void);
36 unsigned int cpu_list_generation_id_get(void);
37
38 int cpu_get_free_index(void);
39
40 void tcg_iommu_init_notifier_list(CPUState *cpu);
41 void tcg_iommu_free_notifier_list(CPUState *cpu);
42
43 #if !defined(CONFIG_USER_ONLY)
44
45 enum device_endian {
46 DEVICE_NATIVE_ENDIAN,
47 DEVICE_BIG_ENDIAN,
48 DEVICE_LITTLE_ENDIAN,
49 };
50
51 #if HOST_BIG_ENDIAN
52 #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN
53 #else
54 #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN
55 #endif
56
57 /* address in the RAM (different from a physical address) */
58 #if defined(CONFIG_XEN_BACKEND)
59 typedef uint64_t ram_addr_t;
60 # define RAM_ADDR_MAX UINT64_MAX
61 # define RAM_ADDR_FMT "%" PRIx64
62 #else
63 typedef uintptr_t ram_addr_t;
64 # define RAM_ADDR_MAX UINTPTR_MAX
65 # define RAM_ADDR_FMT "%" PRIxPTR
66 #endif
67
68 /* memory API */
69
70 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length);
71 /* This should not be used by devices. */
72 ram_addr_t qemu_ram_addr_from_host(void *ptr);
73 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr);
74 RAMBlock *qemu_ram_block_by_name(const char *name);
75
76 /*
77 * Translates a host ptr back to a RAMBlock and an offset in that RAMBlock.
78 *
79 * @ptr: The host pointer to translate.
80 * @round_offset: Whether to round the result offset down to a target page
81 * @offset: Will be set to the offset within the returned RAMBlock.
82 *
83 * Returns: RAMBlock (or NULL if not found)
84 *
85 * By the time this function returns, the returned pointer is not protected
86 * by RCU anymore. If the caller is not within an RCU critical section and
87 * does not hold the BQL, it must have other means of protecting the
88 * pointer, such as a reference to the memory region that owns the RAMBlock.
89 */
90 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
91 ram_addr_t *offset);
92 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host);
93 void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev);
94 void qemu_ram_unset_idstr(RAMBlock *block);
95 const char *qemu_ram_get_idstr(RAMBlock *rb);
96 void *qemu_ram_get_host_addr(RAMBlock *rb);
97 ram_addr_t qemu_ram_get_offset(RAMBlock *rb);
98 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb);
99 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb);
100 bool qemu_ram_is_shared(RAMBlock *rb);
101 bool qemu_ram_is_noreserve(RAMBlock *rb);
102 bool qemu_ram_is_uf_zeroable(RAMBlock *rb);
103 void qemu_ram_set_uf_zeroable(RAMBlock *rb);
104 bool qemu_ram_is_migratable(RAMBlock *rb);
105 void qemu_ram_set_migratable(RAMBlock *rb);
106 void qemu_ram_unset_migratable(RAMBlock *rb);
107 bool qemu_ram_is_named_file(RAMBlock *rb);
108 int qemu_ram_get_fd(RAMBlock *rb);
109
110 size_t qemu_ram_pagesize(RAMBlock *block);
111 size_t qemu_ram_pagesize_largest(void);
112
113 /**
114 * cpu_address_space_init:
115 * @cpu: CPU to add this address space to
116 * @asidx: integer index of this address space
117 * @prefix: prefix to be used as name of address space
118 * @mr: the root memory region of address space
119 *
120 * Add the specified address space to the CPU's cpu_ases list.
121 * The address space added with @asidx 0 is the one used for the
122 * convenience pointer cpu->as.
123 * The target-specific code which registers ASes is responsible
124 * for defining what semantics address space 0, 1, 2, etc have.
125 *
126 * Before the first call to this function, the caller must set
127 * cpu->num_ases to the total number of address spaces it needs
128 * to support.
129 *
130 * Note that with KVM only one address space is supported.
131 */
132 void cpu_address_space_init(CPUState *cpu, int asidx,
133 const char *prefix, MemoryRegion *mr);
134 /**
135 * cpu_address_space_destroy:
136 * @cpu: CPU for which address space needs to be destroyed
137 * @asidx: integer index of this address space
138 *
139 * Note that with KVM only one address space is supported.
140 */
141 void cpu_address_space_destroy(CPUState *cpu, int asidx);
142
143 void cpu_physical_memory_rw(hwaddr addr, void *buf,
144 hwaddr len, bool is_write);
cpu_physical_memory_read(hwaddr addr,void * buf,hwaddr len)145 static inline void cpu_physical_memory_read(hwaddr addr,
146 void *buf, hwaddr len)
147 {
148 cpu_physical_memory_rw(addr, buf, len, false);
149 }
cpu_physical_memory_write(hwaddr addr,const void * buf,hwaddr len)150 static inline void cpu_physical_memory_write(hwaddr addr,
151 const void *buf, hwaddr len)
152 {
153 cpu_physical_memory_rw(addr, (void *)buf, len, true);
154 }
155 void *cpu_physical_memory_map(hwaddr addr,
156 hwaddr *plen,
157 bool is_write);
158 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
159 bool is_write, hwaddr access_len);
160
161 bool cpu_physical_memory_is_io(hwaddr phys_addr);
162
163 /* Coalesced MMIO regions are areas where write operations can be reordered.
164 * This usually implies that write operations are side-effect free. This allows
165 * batching which can make a major impact on performance when using
166 * virtualization.
167 */
168 void qemu_flush_coalesced_mmio_buffer(void);
169
170 void cpu_flush_icache_range(hwaddr start, hwaddr len);
171
172 typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque);
173
174 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque);
175 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length);
176 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
177 size_t length);
178
179 #endif
180
181 /* Returns: 0 on success, -1 on error */
182 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
183 void *ptr, size_t len, bool is_write);
184
185 /* vl.c */
186 void list_cpus(void);
187
188 #ifdef CONFIG_TCG
189
190 bool tcg_cflags_has(CPUState *cpu, uint32_t flags);
191 void tcg_cflags_set(CPUState *cpu, uint32_t flags);
192
193 /* current cflags for hashing/comparison */
194 uint32_t curr_cflags(CPUState *cpu);
195
196 /**
197 * cpu_unwind_state_data:
198 * @cpu: the cpu context
199 * @host_pc: the host pc within the translation
200 * @data: output data
201 *
202 * Attempt to load the the unwind state for a host pc occurring in
203 * translated code. If @host_pc is not in translated code, the
204 * function returns false; otherwise @data is loaded.
205 * This is the same unwind info as given to restore_state_to_opc.
206 */
207 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data);
208
209 /**
210 * cpu_restore_state:
211 * @cpu: the cpu context
212 * @host_pc: the host pc within the translation
213 * @return: true if state was restored, false otherwise
214 *
215 * Attempt to restore the state for a fault occurring in translated
216 * code. If @host_pc is not in translated code no state is
217 * restored and the function returns false.
218 */
219 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc);
220
221 G_NORETURN void cpu_loop_exit_noexc(CPUState *cpu);
222 G_NORETURN void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
223 #endif /* CONFIG_TCG */
224 G_NORETURN void cpu_loop_exit(CPUState *cpu);
225 G_NORETURN void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
226
227 /* accel/tcg/cpu-exec.c */
228 int cpu_exec(CPUState *cpu);
229
230 /**
231 * env_archcpu(env)
232 * @env: The architecture environment
233 *
234 * Return the ArchCPU associated with the environment.
235 */
env_archcpu(CPUArchState * env)236 static inline ArchCPU *env_archcpu(CPUArchState *env)
237 {
238 return (void *)env - sizeof(CPUState);
239 }
240
241 /**
242 * env_cpu_const(env)
243 * @env: The architecture environment
244 *
245 * Return the CPUState associated with the environment.
246 */
env_cpu_const(const CPUArchState * env)247 static inline const CPUState *env_cpu_const(const CPUArchState *env)
248 {
249 return (void *)env - sizeof(CPUState);
250 }
251
252 /**
253 * env_cpu(env)
254 * @env: The architecture environment
255 *
256 * Return the CPUState associated with the environment.
257 */
env_cpu(CPUArchState * env)258 static inline CPUState *env_cpu(CPUArchState *env)
259 {
260 return (CPUState *)env_cpu_const(env);
261 }
262
263 #ifndef CONFIG_USER_ONLY
264 /**
265 * cpu_mmu_index:
266 * @env: The cpu environment
267 * @ifetch: True for code access, false for data access.
268 *
269 * Return the core mmu index for the current translation regime.
270 * This function is used by generic TCG code paths.
271 *
272 * The user-only version of this function is inline in cpu-all.h,
273 * where it always returns MMU_USER_IDX.
274 */
cpu_mmu_index(CPUState * cs,bool ifetch)275 static inline int cpu_mmu_index(CPUState *cs, bool ifetch)
276 {
277 int ret = cs->cc->mmu_index(cs, ifetch);
278 tcg_debug_assert(ret >= 0 && ret < NB_MMU_MODES);
279 return ret;
280 }
281 #endif /* !CONFIG_USER_ONLY */
282
283 #endif /* CPU_COMMON_H */
284