1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
5 */
6
7 #include <linux/slab.h>
8 #include <linux/spinlock.h>
9 #include <linux/compat.h>
10 #include <linux/completion.h>
11 #include <linux/buffer_head.h>
12 #include <linux/pagemap.h>
13 #include <linux/uio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mm.h>
16 #include <linux/mount.h>
17 #include <linux/fs.h>
18 #include <linux/filelock.h>
19 #include <linux/gfs2_ondisk.h>
20 #include <linux/falloc.h>
21 #include <linux/swap.h>
22 #include <linux/crc32.h>
23 #include <linux/writeback.h>
24 #include <linux/uaccess.h>
25 #include <linux/dlm.h>
26 #include <linux/dlm_plock.h>
27 #include <linux/delay.h>
28 #include <linux/backing-dev.h>
29 #include <linux/fileattr.h>
30
31 #include "gfs2.h"
32 #include "incore.h"
33 #include "bmap.h"
34 #include "aops.h"
35 #include "dir.h"
36 #include "glock.h"
37 #include "glops.h"
38 #include "inode.h"
39 #include "log.h"
40 #include "meta_io.h"
41 #include "quota.h"
42 #include "rgrp.h"
43 #include "trans.h"
44 #include "util.h"
45
46 /**
47 * gfs2_llseek - seek to a location in a file
48 * @file: the file
49 * @offset: the offset
50 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
51 *
52 * SEEK_END requires the glock for the file because it references the
53 * file's size.
54 *
55 * Returns: The new offset, or errno
56 */
57
gfs2_llseek(struct file * file,loff_t offset,int whence)58 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
59 {
60 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
61 struct gfs2_holder i_gh;
62 loff_t error;
63
64 switch (whence) {
65 case SEEK_END:
66 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
67 &i_gh);
68 if (!error) {
69 error = generic_file_llseek(file, offset, whence);
70 gfs2_glock_dq_uninit(&i_gh);
71 }
72 break;
73
74 case SEEK_DATA:
75 error = gfs2_seek_data(file, offset);
76 break;
77
78 case SEEK_HOLE:
79 error = gfs2_seek_hole(file, offset);
80 break;
81
82 case SEEK_CUR:
83 case SEEK_SET:
84 /*
85 * These don't reference inode->i_size and don't depend on the
86 * block mapping, so we don't need the glock.
87 */
88 error = generic_file_llseek(file, offset, whence);
89 break;
90 default:
91 error = -EINVAL;
92 }
93
94 return error;
95 }
96
97 /**
98 * gfs2_readdir - Iterator for a directory
99 * @file: The directory to read from
100 * @ctx: What to feed directory entries to
101 *
102 * Returns: errno
103 */
104
gfs2_readdir(struct file * file,struct dir_context * ctx)105 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
106 {
107 struct inode *dir = file->f_mapping->host;
108 struct gfs2_inode *dip = GFS2_I(dir);
109 struct gfs2_holder d_gh;
110 int error;
111
112 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
113 if (error)
114 return error;
115
116 error = gfs2_dir_read(dir, ctx, &file->f_ra);
117
118 gfs2_glock_dq_uninit(&d_gh);
119
120 return error;
121 }
122
123 /*
124 * struct fsflag_gfs2flag
125 *
126 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
127 * and to GFS2_DIF_JDATA for non-directories.
128 */
129 static struct {
130 u32 fsflag;
131 u32 gfsflag;
132 } fsflag_gfs2flag[] = {
133 {FS_SYNC_FL, GFS2_DIF_SYNC},
134 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
135 {FS_APPEND_FL, GFS2_DIF_APPENDONLY},
136 {FS_NOATIME_FL, GFS2_DIF_NOATIME},
137 {FS_INDEX_FL, GFS2_DIF_EXHASH},
138 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
139 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
140 };
141
gfs2_gfsflags_to_fsflags(struct inode * inode,u32 gfsflags)142 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
143 {
144 int i;
145 u32 fsflags = 0;
146
147 if (S_ISDIR(inode->i_mode))
148 gfsflags &= ~GFS2_DIF_JDATA;
149 else
150 gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
151
152 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
153 if (gfsflags & fsflag_gfs2flag[i].gfsflag)
154 fsflags |= fsflag_gfs2flag[i].fsflag;
155 return fsflags;
156 }
157
gfs2_fileattr_get(struct dentry * dentry,struct fileattr * fa)158 int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa)
159 {
160 struct inode *inode = d_inode(dentry);
161 struct gfs2_inode *ip = GFS2_I(inode);
162 struct gfs2_holder gh;
163 int error;
164 u32 fsflags;
165
166 if (d_is_special(dentry))
167 return -ENOTTY;
168
169 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
170 error = gfs2_glock_nq(&gh);
171 if (error)
172 goto out_uninit;
173
174 fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
175
176 fileattr_fill_flags(fa, fsflags);
177
178 gfs2_glock_dq(&gh);
179 out_uninit:
180 gfs2_holder_uninit(&gh);
181 return error;
182 }
183
gfs2_set_inode_flags(struct inode * inode)184 void gfs2_set_inode_flags(struct inode *inode)
185 {
186 struct gfs2_inode *ip = GFS2_I(inode);
187 unsigned int flags = inode->i_flags;
188
189 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
190 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
191 flags |= S_NOSEC;
192 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
193 flags |= S_IMMUTABLE;
194 if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
195 flags |= S_APPEND;
196 if (ip->i_diskflags & GFS2_DIF_NOATIME)
197 flags |= S_NOATIME;
198 if (ip->i_diskflags & GFS2_DIF_SYNC)
199 flags |= S_SYNC;
200 inode->i_flags = flags;
201 }
202
203 /* Flags that can be set by user space */
204 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
205 GFS2_DIF_IMMUTABLE| \
206 GFS2_DIF_APPENDONLY| \
207 GFS2_DIF_NOATIME| \
208 GFS2_DIF_SYNC| \
209 GFS2_DIF_TOPDIR| \
210 GFS2_DIF_INHERIT_JDATA)
211
212 /**
213 * do_gfs2_set_flags - set flags on an inode
214 * @inode: The inode
215 * @reqflags: The flags to set
216 * @mask: Indicates which flags are valid
217 *
218 */
do_gfs2_set_flags(struct inode * inode,u32 reqflags,u32 mask)219 static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask)
220 {
221 struct gfs2_inode *ip = GFS2_I(inode);
222 struct gfs2_sbd *sdp = GFS2_SB(inode);
223 struct buffer_head *bh;
224 struct gfs2_holder gh;
225 int error;
226 u32 new_flags, flags;
227
228 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
229 if (error)
230 return error;
231
232 error = 0;
233 flags = ip->i_diskflags;
234 new_flags = (flags & ~mask) | (reqflags & mask);
235 if ((new_flags ^ flags) == 0)
236 goto out;
237
238 if (!IS_IMMUTABLE(inode)) {
239 error = gfs2_permission(&nop_mnt_idmap, inode, MAY_WRITE);
240 if (error)
241 goto out;
242 }
243 if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
244 if (new_flags & GFS2_DIF_JDATA)
245 gfs2_log_flush(sdp, ip->i_gl,
246 GFS2_LOG_HEAD_FLUSH_NORMAL |
247 GFS2_LFC_SET_FLAGS);
248 error = filemap_fdatawrite(inode->i_mapping);
249 if (error)
250 goto out;
251 error = filemap_fdatawait(inode->i_mapping);
252 if (error)
253 goto out;
254 truncate_inode_pages(inode->i_mapping, 0);
255 if (new_flags & GFS2_DIF_JDATA)
256 gfs2_ordered_del_inode(ip);
257 }
258 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
259 if (error)
260 goto out;
261 error = gfs2_meta_inode_buffer(ip, &bh);
262 if (error)
263 goto out_trans_end;
264 inode_set_ctime_current(inode);
265 gfs2_trans_add_meta(ip->i_gl, bh);
266 ip->i_diskflags = new_flags;
267 gfs2_dinode_out(ip, bh->b_data);
268 brelse(bh);
269 gfs2_set_inode_flags(inode);
270 gfs2_set_aops(inode);
271 out_trans_end:
272 gfs2_trans_end(sdp);
273 out:
274 gfs2_glock_dq_uninit(&gh);
275 return error;
276 }
277
gfs2_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)278 int gfs2_fileattr_set(struct mnt_idmap *idmap,
279 struct dentry *dentry, struct fileattr *fa)
280 {
281 struct inode *inode = d_inode(dentry);
282 u32 fsflags = fa->flags, gfsflags = 0;
283 u32 mask;
284 int i;
285
286 if (d_is_special(dentry))
287 return -ENOTTY;
288
289 if (fileattr_has_fsx(fa))
290 return -EOPNOTSUPP;
291
292 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
293 if (fsflags & fsflag_gfs2flag[i].fsflag) {
294 fsflags &= ~fsflag_gfs2flag[i].fsflag;
295 gfsflags |= fsflag_gfs2flag[i].gfsflag;
296 }
297 }
298 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
299 return -EINVAL;
300
301 mask = GFS2_FLAGS_USER_SET;
302 if (S_ISDIR(inode->i_mode)) {
303 mask &= ~GFS2_DIF_JDATA;
304 } else {
305 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
306 if (gfsflags & GFS2_DIF_TOPDIR)
307 return -EINVAL;
308 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
309 }
310
311 return do_gfs2_set_flags(inode, gfsflags, mask);
312 }
313
gfs2_getlabel(struct file * filp,char __user * label)314 static int gfs2_getlabel(struct file *filp, char __user *label)
315 {
316 struct inode *inode = file_inode(filp);
317 struct gfs2_sbd *sdp = GFS2_SB(inode);
318
319 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
320 return -EFAULT;
321
322 return 0;
323 }
324
gfs2_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)325 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
326 {
327 switch(cmd) {
328 case FITRIM:
329 return gfs2_fitrim(filp, (void __user *)arg);
330 case FS_IOC_GETFSLABEL:
331 return gfs2_getlabel(filp, (char __user *)arg);
332 }
333
334 return -ENOTTY;
335 }
336
337 #ifdef CONFIG_COMPAT
gfs2_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)338 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
339 {
340 switch(cmd) {
341 /* Keep this list in sync with gfs2_ioctl */
342 case FITRIM:
343 case FS_IOC_GETFSLABEL:
344 break;
345 default:
346 return -ENOIOCTLCMD;
347 }
348
349 return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
350 }
351 #else
352 #define gfs2_compat_ioctl NULL
353 #endif
354
355 /**
356 * gfs2_size_hint - Give a hint to the size of a write request
357 * @filep: The struct file
358 * @offset: The file offset of the write
359 * @size: The length of the write
360 *
361 * When we are about to do a write, this function records the total
362 * write size in order to provide a suitable hint to the lower layers
363 * about how many blocks will be required.
364 *
365 */
366
gfs2_size_hint(struct file * filep,loff_t offset,size_t size)367 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
368 {
369 struct inode *inode = file_inode(filep);
370 struct gfs2_sbd *sdp = GFS2_SB(inode);
371 struct gfs2_inode *ip = GFS2_I(inode);
372 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
373 int hint = min_t(size_t, INT_MAX, blks);
374
375 if (hint > atomic_read(&ip->i_sizehint))
376 atomic_set(&ip->i_sizehint, hint);
377 }
378
379 /**
380 * gfs2_allocate_page_backing - Allocate blocks for a write fault
381 * @page: The (locked) page to allocate backing for
382 * @length: Size of the allocation
383 *
384 * We try to allocate all the blocks required for the page in one go. This
385 * might fail for various reasons, so we keep trying until all the blocks to
386 * back this page are allocated. If some of the blocks are already allocated,
387 * that is ok too.
388 */
gfs2_allocate_page_backing(struct page * page,unsigned int length)389 static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
390 {
391 u64 pos = page_offset(page);
392
393 do {
394 struct iomap iomap = { };
395
396 if (gfs2_iomap_alloc(page->mapping->host, pos, length, &iomap))
397 return -EIO;
398
399 if (length < iomap.length)
400 iomap.length = length;
401 length -= iomap.length;
402 pos += iomap.length;
403 } while (length > 0);
404
405 return 0;
406 }
407
408 /**
409 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
410 * @vmf: The virtual memory fault containing the page to become writable
411 *
412 * When the page becomes writable, we need to ensure that we have
413 * blocks allocated on disk to back that page.
414 */
415
gfs2_page_mkwrite(struct vm_fault * vmf)416 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
417 {
418 struct page *page = vmf->page;
419 struct inode *inode = file_inode(vmf->vma->vm_file);
420 struct gfs2_inode *ip = GFS2_I(inode);
421 struct gfs2_sbd *sdp = GFS2_SB(inode);
422 struct gfs2_alloc_parms ap = { .aflags = 0, };
423 u64 offset = page_offset(page);
424 unsigned int data_blocks, ind_blocks, rblocks;
425 vm_fault_t ret = VM_FAULT_LOCKED;
426 struct gfs2_holder gh;
427 unsigned int length;
428 loff_t size;
429 int err;
430
431 sb_start_pagefault(inode->i_sb);
432
433 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
434 err = gfs2_glock_nq(&gh);
435 if (err) {
436 ret = vmf_fs_error(err);
437 goto out_uninit;
438 }
439
440 /* Check page index against inode size */
441 size = i_size_read(inode);
442 if (offset >= size) {
443 ret = VM_FAULT_SIGBUS;
444 goto out_unlock;
445 }
446
447 /* Update file times before taking page lock */
448 file_update_time(vmf->vma->vm_file);
449
450 /* page is wholly or partially inside EOF */
451 if (size - offset < PAGE_SIZE)
452 length = size - offset;
453 else
454 length = PAGE_SIZE;
455
456 gfs2_size_hint(vmf->vma->vm_file, offset, length);
457
458 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
459 set_bit(GIF_SW_PAGED, &ip->i_flags);
460
461 /*
462 * iomap_writepage / iomap_writepages currently don't support inline
463 * files, so always unstuff here.
464 */
465
466 if (!gfs2_is_stuffed(ip) &&
467 !gfs2_write_alloc_required(ip, offset, length)) {
468 lock_page(page);
469 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
470 ret = VM_FAULT_NOPAGE;
471 unlock_page(page);
472 }
473 goto out_unlock;
474 }
475
476 err = gfs2_rindex_update(sdp);
477 if (err) {
478 ret = vmf_fs_error(err);
479 goto out_unlock;
480 }
481
482 gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
483 ap.target = data_blocks + ind_blocks;
484 err = gfs2_quota_lock_check(ip, &ap);
485 if (err) {
486 ret = vmf_fs_error(err);
487 goto out_unlock;
488 }
489 err = gfs2_inplace_reserve(ip, &ap);
490 if (err) {
491 ret = vmf_fs_error(err);
492 goto out_quota_unlock;
493 }
494
495 rblocks = RES_DINODE + ind_blocks;
496 if (gfs2_is_jdata(ip))
497 rblocks += data_blocks ? data_blocks : 1;
498 if (ind_blocks || data_blocks) {
499 rblocks += RES_STATFS + RES_QUOTA;
500 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
501 }
502 err = gfs2_trans_begin(sdp, rblocks, 0);
503 if (err) {
504 ret = vmf_fs_error(err);
505 goto out_trans_fail;
506 }
507
508 /* Unstuff, if required, and allocate backing blocks for page */
509 if (gfs2_is_stuffed(ip)) {
510 err = gfs2_unstuff_dinode(ip);
511 if (err) {
512 ret = vmf_fs_error(err);
513 goto out_trans_end;
514 }
515 }
516
517 lock_page(page);
518 /* If truncated, we must retry the operation, we may have raced
519 * with the glock demotion code.
520 */
521 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
522 ret = VM_FAULT_NOPAGE;
523 goto out_page_locked;
524 }
525
526 err = gfs2_allocate_page_backing(page, length);
527 if (err)
528 ret = vmf_fs_error(err);
529
530 out_page_locked:
531 if (ret != VM_FAULT_LOCKED)
532 unlock_page(page);
533 out_trans_end:
534 gfs2_trans_end(sdp);
535 out_trans_fail:
536 gfs2_inplace_release(ip);
537 out_quota_unlock:
538 gfs2_quota_unlock(ip);
539 out_unlock:
540 gfs2_glock_dq(&gh);
541 out_uninit:
542 gfs2_holder_uninit(&gh);
543 if (ret == VM_FAULT_LOCKED) {
544 set_page_dirty(page);
545 wait_for_stable_page(page);
546 }
547 sb_end_pagefault(inode->i_sb);
548 return ret;
549 }
550
gfs2_fault(struct vm_fault * vmf)551 static vm_fault_t gfs2_fault(struct vm_fault *vmf)
552 {
553 struct inode *inode = file_inode(vmf->vma->vm_file);
554 struct gfs2_inode *ip = GFS2_I(inode);
555 struct gfs2_holder gh;
556 vm_fault_t ret;
557 int err;
558
559 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
560 err = gfs2_glock_nq(&gh);
561 if (err) {
562 ret = vmf_fs_error(err);
563 goto out_uninit;
564 }
565 ret = filemap_fault(vmf);
566 gfs2_glock_dq(&gh);
567 out_uninit:
568 gfs2_holder_uninit(&gh);
569 return ret;
570 }
571
572 static const struct vm_operations_struct gfs2_vm_ops = {
573 .fault = gfs2_fault,
574 .map_pages = filemap_map_pages,
575 .page_mkwrite = gfs2_page_mkwrite,
576 };
577
578 /**
579 * gfs2_mmap
580 * @file: The file to map
581 * @vma: The VMA which described the mapping
582 *
583 * There is no need to get a lock here unless we should be updating
584 * atime. We ignore any locking errors since the only consequence is
585 * a missed atime update (which will just be deferred until later).
586 *
587 * Returns: 0
588 */
589
gfs2_mmap(struct file * file,struct vm_area_struct * vma)590 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
591 {
592 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
593
594 if (!(file->f_flags & O_NOATIME) &&
595 !IS_NOATIME(&ip->i_inode)) {
596 struct gfs2_holder i_gh;
597 int error;
598
599 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
600 &i_gh);
601 if (error)
602 return error;
603 /* grab lock to update inode */
604 gfs2_glock_dq_uninit(&i_gh);
605 file_accessed(file);
606 }
607 vma->vm_ops = &gfs2_vm_ops;
608
609 return 0;
610 }
611
612 /**
613 * gfs2_open_common - This is common to open and atomic_open
614 * @inode: The inode being opened
615 * @file: The file being opened
616 *
617 * This maybe called under a glock or not depending upon how it has
618 * been called. We must always be called under a glock for regular
619 * files, however. For other file types, it does not matter whether
620 * we hold the glock or not.
621 *
622 * Returns: Error code or 0 for success
623 */
624
gfs2_open_common(struct inode * inode,struct file * file)625 int gfs2_open_common(struct inode *inode, struct file *file)
626 {
627 struct gfs2_file *fp;
628 int ret;
629
630 if (S_ISREG(inode->i_mode)) {
631 ret = generic_file_open(inode, file);
632 if (ret)
633 return ret;
634
635 if (!gfs2_is_jdata(GFS2_I(inode)))
636 file->f_mode |= FMODE_CAN_ODIRECT;
637 }
638
639 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
640 if (!fp)
641 return -ENOMEM;
642
643 mutex_init(&fp->f_fl_mutex);
644
645 gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
646 file->private_data = fp;
647 if (file->f_mode & FMODE_WRITE) {
648 ret = gfs2_qa_get(GFS2_I(inode));
649 if (ret)
650 goto fail;
651 }
652 return 0;
653
654 fail:
655 kfree(file->private_data);
656 file->private_data = NULL;
657 return ret;
658 }
659
660 /**
661 * gfs2_open - open a file
662 * @inode: the inode to open
663 * @file: the struct file for this opening
664 *
665 * After atomic_open, this function is only used for opening files
666 * which are already cached. We must still get the glock for regular
667 * files to ensure that we have the file size uptodate for the large
668 * file check which is in the common code. That is only an issue for
669 * regular files though.
670 *
671 * Returns: errno
672 */
673
gfs2_open(struct inode * inode,struct file * file)674 static int gfs2_open(struct inode *inode, struct file *file)
675 {
676 struct gfs2_inode *ip = GFS2_I(inode);
677 struct gfs2_holder i_gh;
678 int error;
679 bool need_unlock = false;
680
681 if (S_ISREG(ip->i_inode.i_mode)) {
682 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
683 &i_gh);
684 if (error)
685 return error;
686 need_unlock = true;
687 }
688
689 error = gfs2_open_common(inode, file);
690
691 if (need_unlock)
692 gfs2_glock_dq_uninit(&i_gh);
693
694 return error;
695 }
696
697 /**
698 * gfs2_release - called to close a struct file
699 * @inode: the inode the struct file belongs to
700 * @file: the struct file being closed
701 *
702 * Returns: errno
703 */
704
gfs2_release(struct inode * inode,struct file * file)705 static int gfs2_release(struct inode *inode, struct file *file)
706 {
707 struct gfs2_inode *ip = GFS2_I(inode);
708
709 kfree(file->private_data);
710 file->private_data = NULL;
711
712 if (file->f_mode & FMODE_WRITE) {
713 if (gfs2_rs_active(&ip->i_res))
714 gfs2_rs_delete(ip);
715 gfs2_qa_put(ip);
716 }
717 return 0;
718 }
719
720 /**
721 * gfs2_fsync - sync the dirty data for a file (across the cluster)
722 * @file: the file that points to the dentry
723 * @start: the start position in the file to sync
724 * @end: the end position in the file to sync
725 * @datasync: set if we can ignore timestamp changes
726 *
727 * We split the data flushing here so that we don't wait for the data
728 * until after we've also sent the metadata to disk. Note that for
729 * data=ordered, we will write & wait for the data at the log flush
730 * stage anyway, so this is unlikely to make much of a difference
731 * except in the data=writeback case.
732 *
733 * If the fdatawrite fails due to any reason except -EIO, we will
734 * continue the remainder of the fsync, although we'll still report
735 * the error at the end. This is to match filemap_write_and_wait_range()
736 * behaviour.
737 *
738 * Returns: errno
739 */
740
gfs2_fsync(struct file * file,loff_t start,loff_t end,int datasync)741 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
742 int datasync)
743 {
744 struct address_space *mapping = file->f_mapping;
745 struct inode *inode = mapping->host;
746 int sync_state = inode->i_state & I_DIRTY;
747 struct gfs2_inode *ip = GFS2_I(inode);
748 int ret = 0, ret1 = 0;
749
750 if (mapping->nrpages) {
751 ret1 = filemap_fdatawrite_range(mapping, start, end);
752 if (ret1 == -EIO)
753 return ret1;
754 }
755
756 if (!gfs2_is_jdata(ip))
757 sync_state &= ~I_DIRTY_PAGES;
758 if (datasync)
759 sync_state &= ~I_DIRTY_SYNC;
760
761 if (sync_state) {
762 ret = sync_inode_metadata(inode, 1);
763 if (ret)
764 return ret;
765 if (gfs2_is_jdata(ip))
766 ret = file_write_and_wait(file);
767 if (ret)
768 return ret;
769 gfs2_ail_flush(ip->i_gl, 1);
770 }
771
772 if (mapping->nrpages)
773 ret = file_fdatawait_range(file, start, end);
774
775 return ret ? ret : ret1;
776 }
777
should_fault_in_pages(struct iov_iter * i,struct kiocb * iocb,size_t * prev_count,size_t * window_size)778 static inline bool should_fault_in_pages(struct iov_iter *i,
779 struct kiocb *iocb,
780 size_t *prev_count,
781 size_t *window_size)
782 {
783 size_t count = iov_iter_count(i);
784 size_t size, offs;
785
786 if (!count)
787 return false;
788 if (!user_backed_iter(i))
789 return false;
790
791 /*
792 * Try to fault in multiple pages initially. When that doesn't result
793 * in any progress, fall back to a single page.
794 */
795 size = PAGE_SIZE;
796 offs = offset_in_page(iocb->ki_pos);
797 if (*prev_count != count) {
798 size_t nr_dirtied;
799
800 nr_dirtied = max(current->nr_dirtied_pause -
801 current->nr_dirtied, 8);
802 size = min_t(size_t, SZ_1M, nr_dirtied << PAGE_SHIFT);
803 }
804
805 *prev_count = count;
806 *window_size = size - offs;
807 return true;
808 }
809
gfs2_file_direct_read(struct kiocb * iocb,struct iov_iter * to,struct gfs2_holder * gh)810 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
811 struct gfs2_holder *gh)
812 {
813 struct file *file = iocb->ki_filp;
814 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
815 size_t prev_count = 0, window_size = 0;
816 size_t read = 0;
817 ssize_t ret;
818
819 /*
820 * In this function, we disable page faults when we're holding the
821 * inode glock while doing I/O. If a page fault occurs, we indicate
822 * that the inode glock may be dropped, fault in the pages manually,
823 * and retry.
824 *
825 * Unlike generic_file_read_iter, for reads, iomap_dio_rw can trigger
826 * physical as well as manual page faults, and we need to disable both
827 * kinds.
828 *
829 * For direct I/O, gfs2 takes the inode glock in deferred mode. This
830 * locking mode is compatible with other deferred holders, so multiple
831 * processes and nodes can do direct I/O to a file at the same time.
832 * There's no guarantee that reads or writes will be atomic. Any
833 * coordination among readers and writers needs to happen externally.
834 */
835
836 if (!iov_iter_count(to))
837 return 0; /* skip atime */
838
839 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
840 retry:
841 ret = gfs2_glock_nq(gh);
842 if (ret)
843 goto out_uninit;
844 pagefault_disable();
845 to->nofault = true;
846 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
847 IOMAP_DIO_PARTIAL, NULL, read);
848 to->nofault = false;
849 pagefault_enable();
850 if (ret <= 0 && ret != -EFAULT)
851 goto out_unlock;
852 /* No increment (+=) because iomap_dio_rw returns a cumulative value. */
853 if (ret > 0)
854 read = ret;
855
856 if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
857 gfs2_glock_dq(gh);
858 window_size -= fault_in_iov_iter_writeable(to, window_size);
859 if (window_size)
860 goto retry;
861 }
862 out_unlock:
863 if (gfs2_holder_queued(gh))
864 gfs2_glock_dq(gh);
865 out_uninit:
866 gfs2_holder_uninit(gh);
867 /* User space doesn't expect partial success. */
868 if (ret < 0)
869 return ret;
870 return read;
871 }
872
gfs2_file_direct_write(struct kiocb * iocb,struct iov_iter * from,struct gfs2_holder * gh)873 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
874 struct gfs2_holder *gh)
875 {
876 struct file *file = iocb->ki_filp;
877 struct inode *inode = file->f_mapping->host;
878 struct gfs2_inode *ip = GFS2_I(inode);
879 size_t prev_count = 0, window_size = 0;
880 size_t written = 0;
881 bool enough_retries;
882 ssize_t ret;
883
884 /*
885 * In this function, we disable page faults when we're holding the
886 * inode glock while doing I/O. If a page fault occurs, we indicate
887 * that the inode glock may be dropped, fault in the pages manually,
888 * and retry.
889 *
890 * For writes, iomap_dio_rw only triggers manual page faults, so we
891 * don't need to disable physical ones.
892 */
893
894 /*
895 * Deferred lock, even if its a write, since we do no allocation on
896 * this path. All we need to change is the atime, and this lock mode
897 * ensures that other nodes have flushed their buffered read caches
898 * (i.e. their page cache entries for this inode). We do not,
899 * unfortunately, have the option of only flushing a range like the
900 * VFS does.
901 */
902 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
903 retry:
904 ret = gfs2_glock_nq(gh);
905 if (ret)
906 goto out_uninit;
907 /* Silently fall back to buffered I/O when writing beyond EOF */
908 if (iocb->ki_pos + iov_iter_count(from) > i_size_read(&ip->i_inode))
909 goto out_unlock;
910
911 from->nofault = true;
912 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
913 IOMAP_DIO_PARTIAL, NULL, written);
914 from->nofault = false;
915 if (ret <= 0) {
916 if (ret == -ENOTBLK)
917 ret = 0;
918 if (ret != -EFAULT)
919 goto out_unlock;
920 }
921 /* No increment (+=) because iomap_dio_rw returns a cumulative value. */
922 if (ret > 0)
923 written = ret;
924
925 enough_retries = prev_count == iov_iter_count(from) &&
926 window_size <= PAGE_SIZE;
927 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
928 gfs2_glock_dq(gh);
929 window_size -= fault_in_iov_iter_readable(from, window_size);
930 if (window_size) {
931 if (!enough_retries)
932 goto retry;
933 /* fall back to buffered I/O */
934 ret = 0;
935 }
936 }
937 out_unlock:
938 if (gfs2_holder_queued(gh))
939 gfs2_glock_dq(gh);
940 out_uninit:
941 gfs2_holder_uninit(gh);
942 /* User space doesn't expect partial success. */
943 if (ret < 0)
944 return ret;
945 return written;
946 }
947
gfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)948 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
949 {
950 struct gfs2_inode *ip;
951 struct gfs2_holder gh;
952 size_t prev_count = 0, window_size = 0;
953 size_t read = 0;
954 ssize_t ret;
955
956 /*
957 * In this function, we disable page faults when we're holding the
958 * inode glock while doing I/O. If a page fault occurs, we indicate
959 * that the inode glock may be dropped, fault in the pages manually,
960 * and retry.
961 */
962
963 if (iocb->ki_flags & IOCB_DIRECT)
964 return gfs2_file_direct_read(iocb, to, &gh);
965
966 pagefault_disable();
967 iocb->ki_flags |= IOCB_NOIO;
968 ret = generic_file_read_iter(iocb, to);
969 iocb->ki_flags &= ~IOCB_NOIO;
970 pagefault_enable();
971 if (ret >= 0) {
972 if (!iov_iter_count(to))
973 return ret;
974 read = ret;
975 } else if (ret != -EFAULT) {
976 if (ret != -EAGAIN)
977 return ret;
978 if (iocb->ki_flags & IOCB_NOWAIT)
979 return ret;
980 }
981 ip = GFS2_I(iocb->ki_filp->f_mapping->host);
982 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
983 retry:
984 ret = gfs2_glock_nq(&gh);
985 if (ret)
986 goto out_uninit;
987 pagefault_disable();
988 ret = generic_file_read_iter(iocb, to);
989 pagefault_enable();
990 if (ret <= 0 && ret != -EFAULT)
991 goto out_unlock;
992 if (ret > 0)
993 read += ret;
994
995 if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
996 gfs2_glock_dq(&gh);
997 window_size -= fault_in_iov_iter_writeable(to, window_size);
998 if (window_size)
999 goto retry;
1000 }
1001 out_unlock:
1002 if (gfs2_holder_queued(&gh))
1003 gfs2_glock_dq(&gh);
1004 out_uninit:
1005 gfs2_holder_uninit(&gh);
1006 return read ? read : ret;
1007 }
1008
gfs2_file_buffered_write(struct kiocb * iocb,struct iov_iter * from,struct gfs2_holder * gh)1009 static ssize_t gfs2_file_buffered_write(struct kiocb *iocb,
1010 struct iov_iter *from,
1011 struct gfs2_holder *gh)
1012 {
1013 struct file *file = iocb->ki_filp;
1014 struct inode *inode = file_inode(file);
1015 struct gfs2_inode *ip = GFS2_I(inode);
1016 struct gfs2_sbd *sdp = GFS2_SB(inode);
1017 struct gfs2_holder *statfs_gh = NULL;
1018 size_t prev_count = 0, window_size = 0;
1019 size_t orig_count = iov_iter_count(from);
1020 size_t written = 0;
1021 ssize_t ret;
1022
1023 /*
1024 * In this function, we disable page faults when we're holding the
1025 * inode glock while doing I/O. If a page fault occurs, we indicate
1026 * that the inode glock may be dropped, fault in the pages manually,
1027 * and retry.
1028 */
1029
1030 if (inode == sdp->sd_rindex) {
1031 statfs_gh = kmalloc(sizeof(*statfs_gh), GFP_NOFS);
1032 if (!statfs_gh)
1033 return -ENOMEM;
1034 }
1035
1036 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, gh);
1037 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1038 retry:
1039 window_size -= fault_in_iov_iter_readable(from, window_size);
1040 if (!window_size) {
1041 ret = -EFAULT;
1042 goto out_uninit;
1043 }
1044 from->count = min(from->count, window_size);
1045 }
1046 ret = gfs2_glock_nq(gh);
1047 if (ret)
1048 goto out_uninit;
1049
1050 if (inode == sdp->sd_rindex) {
1051 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1052
1053 ret = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1054 GL_NOCACHE, statfs_gh);
1055 if (ret)
1056 goto out_unlock;
1057 }
1058
1059 pagefault_disable();
1060 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
1061 pagefault_enable();
1062 if (ret > 0)
1063 written += ret;
1064
1065 if (inode == sdp->sd_rindex)
1066 gfs2_glock_dq_uninit(statfs_gh);
1067
1068 if (ret <= 0 && ret != -EFAULT)
1069 goto out_unlock;
1070
1071 from->count = orig_count - written;
1072 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1073 gfs2_glock_dq(gh);
1074 goto retry;
1075 }
1076 out_unlock:
1077 if (gfs2_holder_queued(gh))
1078 gfs2_glock_dq(gh);
1079 out_uninit:
1080 gfs2_holder_uninit(gh);
1081 kfree(statfs_gh);
1082 from->count = orig_count - written;
1083 return written ? written : ret;
1084 }
1085
1086 /**
1087 * gfs2_file_write_iter - Perform a write to a file
1088 * @iocb: The io context
1089 * @from: The data to write
1090 *
1091 * We have to do a lock/unlock here to refresh the inode size for
1092 * O_APPEND writes, otherwise we can land up writing at the wrong
1093 * offset. There is still a race, but provided the app is using its
1094 * own file locking, this will make O_APPEND work as expected.
1095 *
1096 */
1097
gfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1098 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1099 {
1100 struct file *file = iocb->ki_filp;
1101 struct inode *inode = file_inode(file);
1102 struct gfs2_inode *ip = GFS2_I(inode);
1103 struct gfs2_holder gh;
1104 ssize_t ret;
1105
1106 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
1107
1108 if (iocb->ki_flags & IOCB_APPEND) {
1109 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
1110 if (ret)
1111 return ret;
1112 gfs2_glock_dq_uninit(&gh);
1113 }
1114
1115 inode_lock(inode);
1116 ret = generic_write_checks(iocb, from);
1117 if (ret <= 0)
1118 goto out_unlock;
1119
1120 ret = file_remove_privs(file);
1121 if (ret)
1122 goto out_unlock;
1123
1124 ret = file_update_time(file);
1125 if (ret)
1126 goto out_unlock;
1127
1128 if (iocb->ki_flags & IOCB_DIRECT) {
1129 struct address_space *mapping = file->f_mapping;
1130 ssize_t buffered, ret2;
1131
1132 ret = gfs2_file_direct_write(iocb, from, &gh);
1133 if (ret < 0 || !iov_iter_count(from))
1134 goto out_unlock;
1135
1136 iocb->ki_flags |= IOCB_DSYNC;
1137 buffered = gfs2_file_buffered_write(iocb, from, &gh);
1138 if (unlikely(buffered <= 0)) {
1139 if (!ret)
1140 ret = buffered;
1141 goto out_unlock;
1142 }
1143
1144 /*
1145 * We need to ensure that the page cache pages are written to
1146 * disk and invalidated to preserve the expected O_DIRECT
1147 * semantics. If the writeback or invalidate fails, only report
1148 * the direct I/O range as we don't know if the buffered pages
1149 * made it to disk.
1150 */
1151 ret2 = generic_write_sync(iocb, buffered);
1152 invalidate_mapping_pages(mapping,
1153 (iocb->ki_pos - buffered) >> PAGE_SHIFT,
1154 (iocb->ki_pos - 1) >> PAGE_SHIFT);
1155 if (!ret || ret2 > 0)
1156 ret += ret2;
1157 } else {
1158 ret = gfs2_file_buffered_write(iocb, from, &gh);
1159 if (likely(ret > 0))
1160 ret = generic_write_sync(iocb, ret);
1161 }
1162
1163 out_unlock:
1164 inode_unlock(inode);
1165 return ret;
1166 }
1167
fallocate_chunk(struct inode * inode,loff_t offset,loff_t len,int mode)1168 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
1169 int mode)
1170 {
1171 struct super_block *sb = inode->i_sb;
1172 struct gfs2_inode *ip = GFS2_I(inode);
1173 loff_t end = offset + len;
1174 struct buffer_head *dibh;
1175 int error;
1176
1177 error = gfs2_meta_inode_buffer(ip, &dibh);
1178 if (unlikely(error))
1179 return error;
1180
1181 gfs2_trans_add_meta(ip->i_gl, dibh);
1182
1183 if (gfs2_is_stuffed(ip)) {
1184 error = gfs2_unstuff_dinode(ip);
1185 if (unlikely(error))
1186 goto out;
1187 }
1188
1189 while (offset < end) {
1190 struct iomap iomap = { };
1191
1192 error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap);
1193 if (error)
1194 goto out;
1195 offset = iomap.offset + iomap.length;
1196 if (!(iomap.flags & IOMAP_F_NEW))
1197 continue;
1198 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
1199 iomap.length >> inode->i_blkbits,
1200 GFP_NOFS);
1201 if (error) {
1202 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
1203 goto out;
1204 }
1205 }
1206 out:
1207 brelse(dibh);
1208 return error;
1209 }
1210
1211 /**
1212 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
1213 * blocks, determine how many bytes can be written.
1214 * @ip: The inode in question.
1215 * @len: Max cap of bytes. What we return in *len must be <= this.
1216 * @data_blocks: Compute and return the number of data blocks needed
1217 * @ind_blocks: Compute and return the number of indirect blocks needed
1218 * @max_blocks: The total blocks available to work with.
1219 *
1220 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
1221 */
calc_max_reserv(struct gfs2_inode * ip,loff_t * len,unsigned int * data_blocks,unsigned int * ind_blocks,unsigned int max_blocks)1222 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
1223 unsigned int *data_blocks, unsigned int *ind_blocks,
1224 unsigned int max_blocks)
1225 {
1226 loff_t max = *len;
1227 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1228 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
1229
1230 for (tmp = max_data; tmp > sdp->sd_diptrs;) {
1231 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
1232 max_data -= tmp;
1233 }
1234
1235 *data_blocks = max_data;
1236 *ind_blocks = max_blocks - max_data;
1237 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
1238 if (*len > max) {
1239 *len = max;
1240 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
1241 }
1242 }
1243
__gfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1244 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1245 {
1246 struct inode *inode = file_inode(file);
1247 struct gfs2_sbd *sdp = GFS2_SB(inode);
1248 struct gfs2_inode *ip = GFS2_I(inode);
1249 struct gfs2_alloc_parms ap = { .aflags = 0, };
1250 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1251 loff_t bytes, max_bytes, max_blks;
1252 int error;
1253 const loff_t pos = offset;
1254 const loff_t count = len;
1255 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
1256 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
1257 loff_t max_chunk_size = UINT_MAX & bsize_mask;
1258
1259 next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
1260
1261 offset &= bsize_mask;
1262
1263 len = next - offset;
1264 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1265 if (!bytes)
1266 bytes = UINT_MAX;
1267 bytes &= bsize_mask;
1268 if (bytes == 0)
1269 bytes = sdp->sd_sb.sb_bsize;
1270
1271 gfs2_size_hint(file, offset, len);
1272
1273 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1274 ap.min_target = data_blocks + ind_blocks;
1275
1276 while (len > 0) {
1277 if (len < bytes)
1278 bytes = len;
1279 if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1280 len -= bytes;
1281 offset += bytes;
1282 continue;
1283 }
1284
1285 /* We need to determine how many bytes we can actually
1286 * fallocate without exceeding quota or going over the
1287 * end of the fs. We start off optimistically by assuming
1288 * we can write max_bytes */
1289 max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1290
1291 /* Since max_bytes is most likely a theoretical max, we
1292 * calculate a more realistic 'bytes' to serve as a good
1293 * starting point for the number of bytes we may be able
1294 * to write */
1295 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1296 ap.target = data_blocks + ind_blocks;
1297
1298 error = gfs2_quota_lock_check(ip, &ap);
1299 if (error)
1300 return error;
1301 /* ap.allowed tells us how many blocks quota will allow
1302 * us to write. Check if this reduces max_blks */
1303 max_blks = UINT_MAX;
1304 if (ap.allowed)
1305 max_blks = ap.allowed;
1306
1307 error = gfs2_inplace_reserve(ip, &ap);
1308 if (error)
1309 goto out_qunlock;
1310
1311 /* check if the selected rgrp limits our max_blks further */
1312 if (ip->i_res.rs_reserved < max_blks)
1313 max_blks = ip->i_res.rs_reserved;
1314
1315 /* Almost done. Calculate bytes that can be written using
1316 * max_blks. We also recompute max_bytes, data_blocks and
1317 * ind_blocks */
1318 calc_max_reserv(ip, &max_bytes, &data_blocks,
1319 &ind_blocks, max_blks);
1320
1321 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1322 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1323 if (gfs2_is_jdata(ip))
1324 rblocks += data_blocks ? data_blocks : 1;
1325
1326 error = gfs2_trans_begin(sdp, rblocks,
1327 PAGE_SIZE >> inode->i_blkbits);
1328 if (error)
1329 goto out_trans_fail;
1330
1331 error = fallocate_chunk(inode, offset, max_bytes, mode);
1332 gfs2_trans_end(sdp);
1333
1334 if (error)
1335 goto out_trans_fail;
1336
1337 len -= max_bytes;
1338 offset += max_bytes;
1339 gfs2_inplace_release(ip);
1340 gfs2_quota_unlock(ip);
1341 }
1342
1343 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1344 i_size_write(inode, pos + count);
1345 file_update_time(file);
1346 mark_inode_dirty(inode);
1347
1348 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1349 return vfs_fsync_range(file, pos, pos + count - 1,
1350 (file->f_flags & __O_SYNC) ? 0 : 1);
1351 return 0;
1352
1353 out_trans_fail:
1354 gfs2_inplace_release(ip);
1355 out_qunlock:
1356 gfs2_quota_unlock(ip);
1357 return error;
1358 }
1359
gfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1360 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1361 {
1362 struct inode *inode = file_inode(file);
1363 struct gfs2_sbd *sdp = GFS2_SB(inode);
1364 struct gfs2_inode *ip = GFS2_I(inode);
1365 struct gfs2_holder gh;
1366 int ret;
1367
1368 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1369 return -EOPNOTSUPP;
1370 /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1371 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1372 return -EOPNOTSUPP;
1373
1374 inode_lock(inode);
1375
1376 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1377 ret = gfs2_glock_nq(&gh);
1378 if (ret)
1379 goto out_uninit;
1380
1381 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1382 (offset + len) > inode->i_size) {
1383 ret = inode_newsize_ok(inode, offset + len);
1384 if (ret)
1385 goto out_unlock;
1386 }
1387
1388 ret = get_write_access(inode);
1389 if (ret)
1390 goto out_unlock;
1391
1392 if (mode & FALLOC_FL_PUNCH_HOLE) {
1393 ret = __gfs2_punch_hole(file, offset, len);
1394 } else {
1395 ret = __gfs2_fallocate(file, mode, offset, len);
1396 if (ret)
1397 gfs2_rs_deltree(&ip->i_res);
1398 }
1399
1400 put_write_access(inode);
1401 out_unlock:
1402 gfs2_glock_dq(&gh);
1403 out_uninit:
1404 gfs2_holder_uninit(&gh);
1405 inode_unlock(inode);
1406 return ret;
1407 }
1408
gfs2_file_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)1409 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1410 struct file *out, loff_t *ppos,
1411 size_t len, unsigned int flags)
1412 {
1413 ssize_t ret;
1414
1415 gfs2_size_hint(out, *ppos, len);
1416
1417 ret = iter_file_splice_write(pipe, out, ppos, len, flags);
1418 return ret;
1419 }
1420
1421 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1422
1423 /**
1424 * gfs2_lock - acquire/release a posix lock on a file
1425 * @file: the file pointer
1426 * @cmd: either modify or retrieve lock state, possibly wait
1427 * @fl: type and range of lock
1428 *
1429 * Returns: errno
1430 */
1431
gfs2_lock(struct file * file,int cmd,struct file_lock * fl)1432 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1433 {
1434 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1435 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1436 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1437
1438 if (!(fl->fl_flags & FL_POSIX))
1439 return -ENOLCK;
1440 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1441 if (fl->fl_type == F_UNLCK)
1442 locks_lock_file_wait(file, fl);
1443 return -EIO;
1444 }
1445 if (cmd == F_CANCELLK)
1446 return dlm_posix_cancel(ls->ls_dlm, ip->i_no_addr, file, fl);
1447 else if (IS_GETLK(cmd))
1448 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1449 else if (fl->fl_type == F_UNLCK)
1450 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1451 else
1452 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1453 }
1454
__flock_holder_uninit(struct file * file,struct gfs2_holder * fl_gh)1455 static void __flock_holder_uninit(struct file *file, struct gfs2_holder *fl_gh)
1456 {
1457 struct gfs2_glock *gl = gfs2_glock_hold(fl_gh->gh_gl);
1458
1459 /*
1460 * Make sure gfs2_glock_put() won't sleep under the file->f_lock
1461 * spinlock.
1462 */
1463
1464 spin_lock(&file->f_lock);
1465 gfs2_holder_uninit(fl_gh);
1466 spin_unlock(&file->f_lock);
1467 gfs2_glock_put(gl);
1468 }
1469
do_flock(struct file * file,int cmd,struct file_lock * fl)1470 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1471 {
1472 struct gfs2_file *fp = file->private_data;
1473 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1474 struct gfs2_inode *ip = GFS2_I(file_inode(file));
1475 struct gfs2_glock *gl;
1476 unsigned int state;
1477 u16 flags;
1478 int error = 0;
1479 int sleeptime;
1480
1481 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1482 flags = GL_EXACT | GL_NOPID;
1483 if (!IS_SETLKW(cmd))
1484 flags |= LM_FLAG_TRY_1CB;
1485
1486 mutex_lock(&fp->f_fl_mutex);
1487
1488 if (gfs2_holder_initialized(fl_gh)) {
1489 struct file_lock request;
1490 if (fl_gh->gh_state == state)
1491 goto out;
1492 locks_init_lock(&request);
1493 request.fl_type = F_UNLCK;
1494 request.fl_flags = FL_FLOCK;
1495 locks_lock_file_wait(file, &request);
1496 gfs2_glock_dq(fl_gh);
1497 gfs2_holder_reinit(state, flags, fl_gh);
1498 } else {
1499 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1500 &gfs2_flock_glops, CREATE, &gl);
1501 if (error)
1502 goto out;
1503 spin_lock(&file->f_lock);
1504 gfs2_holder_init(gl, state, flags, fl_gh);
1505 spin_unlock(&file->f_lock);
1506 gfs2_glock_put(gl);
1507 }
1508 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1509 error = gfs2_glock_nq(fl_gh);
1510 if (error != GLR_TRYFAILED)
1511 break;
1512 fl_gh->gh_flags &= ~LM_FLAG_TRY_1CB;
1513 fl_gh->gh_flags |= LM_FLAG_TRY;
1514 msleep(sleeptime);
1515 }
1516 if (error) {
1517 __flock_holder_uninit(file, fl_gh);
1518 if (error == GLR_TRYFAILED)
1519 error = -EAGAIN;
1520 } else {
1521 error = locks_lock_file_wait(file, fl);
1522 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1523 }
1524
1525 out:
1526 mutex_unlock(&fp->f_fl_mutex);
1527 return error;
1528 }
1529
do_unflock(struct file * file,struct file_lock * fl)1530 static void do_unflock(struct file *file, struct file_lock *fl)
1531 {
1532 struct gfs2_file *fp = file->private_data;
1533 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1534
1535 mutex_lock(&fp->f_fl_mutex);
1536 locks_lock_file_wait(file, fl);
1537 if (gfs2_holder_initialized(fl_gh)) {
1538 gfs2_glock_dq(fl_gh);
1539 __flock_holder_uninit(file, fl_gh);
1540 }
1541 mutex_unlock(&fp->f_fl_mutex);
1542 }
1543
1544 /**
1545 * gfs2_flock - acquire/release a flock lock on a file
1546 * @file: the file pointer
1547 * @cmd: either modify or retrieve lock state, possibly wait
1548 * @fl: type and range of lock
1549 *
1550 * Returns: errno
1551 */
1552
gfs2_flock(struct file * file,int cmd,struct file_lock * fl)1553 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1554 {
1555 if (!(fl->fl_flags & FL_FLOCK))
1556 return -ENOLCK;
1557
1558 if (fl->fl_type == F_UNLCK) {
1559 do_unflock(file, fl);
1560 return 0;
1561 } else {
1562 return do_flock(file, cmd, fl);
1563 }
1564 }
1565
1566 const struct file_operations gfs2_file_fops = {
1567 .llseek = gfs2_llseek,
1568 .read_iter = gfs2_file_read_iter,
1569 .write_iter = gfs2_file_write_iter,
1570 .iopoll = iocb_bio_iopoll,
1571 .unlocked_ioctl = gfs2_ioctl,
1572 .compat_ioctl = gfs2_compat_ioctl,
1573 .mmap = gfs2_mmap,
1574 .open = gfs2_open,
1575 .release = gfs2_release,
1576 .fsync = gfs2_fsync,
1577 .lock = gfs2_lock,
1578 .flock = gfs2_flock,
1579 .splice_read = copy_splice_read,
1580 .splice_write = gfs2_file_splice_write,
1581 .setlease = simple_nosetlease,
1582 .fallocate = gfs2_fallocate,
1583 };
1584
1585 const struct file_operations gfs2_dir_fops = {
1586 .iterate_shared = gfs2_readdir,
1587 .unlocked_ioctl = gfs2_ioctl,
1588 .compat_ioctl = gfs2_compat_ioctl,
1589 .open = gfs2_open,
1590 .release = gfs2_release,
1591 .fsync = gfs2_fsync,
1592 .lock = gfs2_lock,
1593 .flock = gfs2_flock,
1594 .llseek = default_llseek,
1595 };
1596
1597 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1598
1599 const struct file_operations gfs2_file_fops_nolock = {
1600 .llseek = gfs2_llseek,
1601 .read_iter = gfs2_file_read_iter,
1602 .write_iter = gfs2_file_write_iter,
1603 .iopoll = iocb_bio_iopoll,
1604 .unlocked_ioctl = gfs2_ioctl,
1605 .compat_ioctl = gfs2_compat_ioctl,
1606 .mmap = gfs2_mmap,
1607 .open = gfs2_open,
1608 .release = gfs2_release,
1609 .fsync = gfs2_fsync,
1610 .splice_read = copy_splice_read,
1611 .splice_write = gfs2_file_splice_write,
1612 .setlease = generic_setlease,
1613 .fallocate = gfs2_fallocate,
1614 };
1615
1616 const struct file_operations gfs2_dir_fops_nolock = {
1617 .iterate_shared = gfs2_readdir,
1618 .unlocked_ioctl = gfs2_ioctl,
1619 .compat_ioctl = gfs2_compat_ioctl,
1620 .open = gfs2_open,
1621 .release = gfs2_release,
1622 .fsync = gfs2_fsync,
1623 .llseek = default_llseek,
1624 };
1625
1626