xref: /openbmc/linux/arch/ia64/lib/copy_user.S (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *
4  * Optimized version of the copy_user() routine.
5  * It is used to copy date across the kernel/user boundary.
6  *
7  * The source and destination are always on opposite side of
8  * the boundary. When reading from user space we must catch
9  * faults on loads. When writing to user space we must catch
10  * errors on stores. Note that because of the nature of the copy
11  * we don't need to worry about overlapping regions.
12  *
13  *
14  * Inputs:
15  *	in0	address of source buffer
16  *	in1	address of destination buffer
17  *	in2	number of bytes to copy
18  *
19  * Outputs:
20  *	ret0	0 in case of success. The number of bytes NOT copied in
21  *		case of error.
22  *
23  * Copyright (C) 2000-2001 Hewlett-Packard Co
24  *	Stephane Eranian <eranian@hpl.hp.com>
25  *
26  * Fixme:
27  *	- handle the case where we have more than 16 bytes and the alignment
28  *	  are different.
29  *	- more benchmarking
30  *	- fix extraneous stop bit introduced by the EX() macro.
31  */
32 
33 #include <linux/export.h>
34 #include <asm/asmmacro.h>
35 
36 //
37 // Tuneable parameters
38 //
39 #define COPY_BREAK	16	// we do byte copy below (must be >=16)
40 #define PIPE_DEPTH	21	// pipe depth
41 
42 #define EPI		p[PIPE_DEPTH-1]
43 
44 //
45 // arguments
46 //
47 #define dst		in0
48 #define src		in1
49 #define len		in2
50 
51 //
52 // local registers
53 //
54 #define t1		r2	// rshift in bytes
55 #define t2		r3	// lshift in bytes
56 #define rshift		r14	// right shift in bits
57 #define lshift		r15	// left shift in bits
58 #define word1		r16
59 #define word2		r17
60 #define cnt		r18
61 #define len2		r19
62 #define saved_lc	r20
63 #define saved_pr	r21
64 #define tmp		r22
65 #define val		r23
66 #define src1		r24
67 #define dst1		r25
68 #define src2		r26
69 #define dst2		r27
70 #define len1		r28
71 #define enddst		r29
72 #define endsrc		r30
73 #define saved_pfs	r31
74 
75 GLOBAL_ENTRY(__copy_user)
76 	.prologue
77 	.save ar.pfs, saved_pfs
78 	alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7)
79 
80 	.rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH]
81 	.rotp p[PIPE_DEPTH]
82 
83 	adds len2=-1,len	// br.ctop is repeat/until
84 	mov ret0=r0
85 
86 	;;			// RAW of cfm when len=0
87 	cmp.eq p8,p0=r0,len	// check for zero length
88 	.save ar.lc, saved_lc
89 	mov saved_lc=ar.lc	// preserve ar.lc (slow)
90 (p8)	br.ret.spnt.many rp	// empty mempcy()
91 	;;
92 	add enddst=dst,len	// first byte after end of source
93 	add endsrc=src,len	// first byte after end of destination
94 	.save pr, saved_pr
95 	mov saved_pr=pr		// preserve predicates
96 
97 	.body
98 
99 	mov dst1=dst		// copy because of rotation
100 	mov ar.ec=PIPE_DEPTH
101 	mov pr.rot=1<<16	// p16=true all others are false
102 
103 	mov src1=src		// copy because of rotation
104 	mov ar.lc=len2		// initialize lc for small count
105 	cmp.lt p10,p7=COPY_BREAK,len	// if len > COPY_BREAK then long copy
106 
107 	xor tmp=src,dst		// same alignment test prepare
108 (p10)	br.cond.dptk .long_copy_user
109 	;;			// RAW pr.rot/p16 ?
110 	//
111 	// Now we do the byte by byte loop with software pipeline
112 	//
113 	// p7 is necessarily false by now
114 1:
115 	EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
116 	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
117 	br.ctop.dptk.few 1b
118 	;;
119 	mov ar.lc=saved_lc
120 	mov pr=saved_pr,0xffffffffffff0000
121 	mov ar.pfs=saved_pfs		// restore ar.ec
122 	br.ret.sptk.many rp		// end of short memcpy
123 
124 	//
125 	// Not 8-byte aligned
126 	//
127 .diff_align_copy_user:
128 	// At this point we know we have more than 16 bytes to copy
129 	// and also that src and dest do _not_ have the same alignment.
130 	and src2=0x7,src1				// src offset
131 	and dst2=0x7,dst1				// dst offset
132 	;;
133 	// The basic idea is that we copy byte-by-byte at the head so
134 	// that we can reach 8-byte alignment for both src1 and dst1.
135 	// Then copy the body using software pipelined 8-byte copy,
136 	// shifting the two back-to-back words right and left, then copy
137 	// the tail by copying byte-by-byte.
138 	//
139 	// Fault handling. If the byte-by-byte at the head fails on the
140 	// load, then restart and finish the pipleline by copying zeros
141 	// to the dst1. Then copy zeros for the rest of dst1.
142 	// If 8-byte software pipeline fails on the load, do the same as
143 	// failure_in3 does. If the byte-by-byte at the tail fails, it is
144 	// handled simply by failure_in_pipe1.
145 	//
146 	// The case p14 represents the source has more bytes in the
147 	// the first word (by the shifted part), whereas the p15 needs to
148 	// copy some bytes from the 2nd word of the source that has the
149 	// tail of the 1st of the destination.
150 	//
151 
152 	//
153 	// Optimization. If dst1 is 8-byte aligned (quite common), we don't need
154 	// to copy the head to dst1, to start 8-byte copy software pipeline.
155 	// We know src1 is not 8-byte aligned in this case.
156 	//
157 	cmp.eq p14,p15=r0,dst2
158 (p15)	br.cond.spnt 1f
159 	;;
160 	sub t1=8,src2
161 	mov t2=src2
162 	;;
163 	shl rshift=t2,3
164 	sub len1=len,t1					// set len1
165 	;;
166 	sub lshift=64,rshift
167 	;;
168 	br.cond.spnt .word_copy_user
169 	;;
170 1:
171 	cmp.leu	p14,p15=src2,dst2
172 	sub t1=dst2,src2
173 	;;
174 	.pred.rel "mutex", p14, p15
175 (p14)	sub word1=8,src2				// (8 - src offset)
176 (p15)	sub t1=r0,t1					// absolute value
177 (p15)	sub word1=8,dst2				// (8 - dst offset)
178 	;;
179 	// For the case p14, we don't need to copy the shifted part to
180 	// the 1st word of destination.
181 	sub t2=8,t1
182 (p14)	sub word1=word1,t1
183 	;;
184 	sub len1=len,word1				// resulting len
185 (p15)	shl rshift=t1,3					// in bits
186 (p14)	shl rshift=t2,3
187 	;;
188 (p14)	sub len1=len1,t1
189 	adds cnt=-1,word1
190 	;;
191 	sub lshift=64,rshift
192 	mov ar.ec=PIPE_DEPTH
193 	mov pr.rot=1<<16	// p16=true all others are false
194 	mov ar.lc=cnt
195 	;;
196 2:
197 	EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1)
198 	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
199 	br.ctop.dptk.few 2b
200 	;;
201 	clrrrb
202 	;;
203 .word_copy_user:
204 	cmp.gtu p9,p0=16,len1
205 (p9)	br.cond.spnt 4f			// if (16 > len1) skip 8-byte copy
206 	;;
207 	shr.u cnt=len1,3		// number of 64-bit words
208 	;;
209 	adds cnt=-1,cnt
210 	;;
211 	.pred.rel "mutex", p14, p15
212 (p14)	sub src1=src1,t2
213 (p15)	sub src1=src1,t1
214 	//
215 	// Now both src1 and dst1 point to an 8-byte aligned address. And
216 	// we have more than 8 bytes to copy.
217 	//
218 	mov ar.lc=cnt
219 	mov ar.ec=PIPE_DEPTH
220 	mov pr.rot=1<<16	// p16=true all others are false
221 	;;
222 3:
223 	//
224 	// The pipleline consists of 3 stages:
225 	// 1 (p16):	Load a word from src1
226 	// 2 (EPI_1):	Shift right pair, saving to tmp
227 	// 3 (EPI):	Store tmp to dst1
228 	//
229 	// To make it simple, use at least 2 (p16) loops to set up val1[n]
230 	// because we need 2 back-to-back val1[] to get tmp.
231 	// Note that this implies EPI_2 must be p18 or greater.
232 	//
233 
234 #define EPI_1		p[PIPE_DEPTH-2]
235 #define SWITCH(pred, shift)	cmp.eq pred,p0=shift,rshift
236 #define CASE(pred, shift)	\
237 	(pred)	br.cond.spnt .copy_user_bit##shift
238 #define BODY(rshift)						\
239 .copy_user_bit##rshift:						\
240 1:								\
241 	EX(.failure_out,(EPI) st8 [dst1]=tmp,8);		\
242 (EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;	\
243 	EX(3f,(p16) ld8 val1[1]=[src1],8);			\
244 (p16)	mov val1[0]=r0;						\
245 	br.ctop.dptk 1b;					\
246 	;;							\
247 	br.cond.sptk.many .diff_align_do_tail;			\
248 2:								\
249 (EPI)	st8 [dst1]=tmp,8;					\
250 (EPI_1)	shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;	\
251 3:								\
252 (p16)	mov val1[1]=r0;						\
253 (p16)	mov val1[0]=r0;						\
254 	br.ctop.dptk 2b;					\
255 	;;							\
256 	br.cond.sptk.many .failure_in2
257 
258 	//
259 	// Since the instruction 'shrp' requires a fixed 128-bit value
260 	// specifying the bits to shift, we need to provide 7 cases
261 	// below.
262 	//
263 	SWITCH(p6, 8)
264 	SWITCH(p7, 16)
265 	SWITCH(p8, 24)
266 	SWITCH(p9, 32)
267 	SWITCH(p10, 40)
268 	SWITCH(p11, 48)
269 	SWITCH(p12, 56)
270 	;;
271 	CASE(p6, 8)
272 	CASE(p7, 16)
273 	CASE(p8, 24)
274 	CASE(p9, 32)
275 	CASE(p10, 40)
276 	CASE(p11, 48)
277 	CASE(p12, 56)
278 	;;
279 	BODY(8)
280 	BODY(16)
281 	BODY(24)
282 	BODY(32)
283 	BODY(40)
284 	BODY(48)
285 	BODY(56)
286 	;;
287 .diff_align_do_tail:
288 	.pred.rel "mutex", p14, p15
289 (p14)	sub src1=src1,t1
290 (p14)	adds dst1=-8,dst1
291 (p15)	sub dst1=dst1,t1
292 	;;
293 4:
294 	// Tail correction.
295 	//
296 	// The problem with this piplelined loop is that the last word is not
297 	// loaded and thus parf of the last word written is not correct.
298 	// To fix that, we simply copy the tail byte by byte.
299 
300 	sub len1=endsrc,src1,1
301 	clrrrb
302 	;;
303 	mov ar.ec=PIPE_DEPTH
304 	mov pr.rot=1<<16	// p16=true all others are false
305 	mov ar.lc=len1
306 	;;
307 5:
308 	EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
309 	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
310 	br.ctop.dptk.few 5b
311 	;;
312 	mov ar.lc=saved_lc
313 	mov pr=saved_pr,0xffffffffffff0000
314 	mov ar.pfs=saved_pfs
315 	br.ret.sptk.many rp
316 
317 	//
318 	// Beginning of long mempcy (i.e. > 16 bytes)
319 	//
320 .long_copy_user:
321 	tbit.nz p6,p7=src1,0	// odd alignment
322 	and tmp=7,tmp
323 	;;
324 	cmp.eq p10,p8=r0,tmp
325 	mov len1=len		// copy because of rotation
326 (p8)	br.cond.dpnt .diff_align_copy_user
327 	;;
328 	// At this point we know we have more than 16 bytes to copy
329 	// and also that both src and dest have the same alignment
330 	// which may not be the one we want. So for now we must move
331 	// forward slowly until we reach 16byte alignment: no need to
332 	// worry about reaching the end of buffer.
333 	//
334 	EX(.failure_in1,(p6) ld1 val1[0]=[src1],1)	// 1-byte aligned
335 (p6)	adds len1=-1,len1;;
336 	tbit.nz p7,p0=src1,1
337 	;;
338 	EX(.failure_in1,(p7) ld2 val1[1]=[src1],2)	// 2-byte aligned
339 (p7)	adds len1=-2,len1;;
340 	tbit.nz p8,p0=src1,2
341 	;;
342 	//
343 	// Stop bit not required after ld4 because if we fail on ld4
344 	// we have never executed the ld1, therefore st1 is not executed.
345 	//
346 	EX(.failure_in1,(p8) ld4 val2[0]=[src1],4)	// 4-byte aligned
347 	;;
348 	EX(.failure_out,(p6) st1 [dst1]=val1[0],1)
349 	tbit.nz p9,p0=src1,3
350 	;;
351 	//
352 	// Stop bit not required after ld8 because if we fail on ld8
353 	// we have never executed the ld2, therefore st2 is not executed.
354 	//
355 	EX(.failure_in1,(p9) ld8 val2[1]=[src1],8)	// 8-byte aligned
356 	EX(.failure_out,(p7) st2 [dst1]=val1[1],2)
357 (p8)	adds len1=-4,len1
358 	;;
359 	EX(.failure_out, (p8) st4 [dst1]=val2[0],4)
360 (p9)	adds len1=-8,len1;;
361 	shr.u cnt=len1,4		// number of 128-bit (2x64bit) words
362 	;;
363 	EX(.failure_out, (p9) st8 [dst1]=val2[1],8)
364 	tbit.nz p6,p0=len1,3
365 	cmp.eq p7,p0=r0,cnt
366 	adds tmp=-1,cnt			// br.ctop is repeat/until
367 (p7)	br.cond.dpnt .dotail		// we have less than 16 bytes left
368 	;;
369 	adds src2=8,src1
370 	adds dst2=8,dst1
371 	mov ar.lc=tmp
372 	;;
373 	//
374 	// 16bytes/iteration
375 	//
376 2:
377 	EX(.failure_in3,(p16) ld8 val1[0]=[src1],16)
378 (p16)	ld8 val2[0]=[src2],16
379 
380 	EX(.failure_out, (EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16)
381 (EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16
382 	br.ctop.dptk 2b
383 	;;			// RAW on src1 when fall through from loop
384 	//
385 	// Tail correction based on len only
386 	//
387 	// No matter where we come from (loop or test) the src1 pointer
388 	// is 16 byte aligned AND we have less than 16 bytes to copy.
389 	//
390 .dotail:
391 	EX(.failure_in1,(p6) ld8 val1[0]=[src1],8)	// at least 8 bytes
392 	tbit.nz p7,p0=len1,2
393 	;;
394 	EX(.failure_in1,(p7) ld4 val1[1]=[src1],4)	// at least 4 bytes
395 	tbit.nz p8,p0=len1,1
396 	;;
397 	EX(.failure_in1,(p8) ld2 val2[0]=[src1],2)	// at least 2 bytes
398 	tbit.nz p9,p0=len1,0
399 	;;
400 	EX(.failure_out, (p6) st8 [dst1]=val1[0],8)
401 	;;
402 	EX(.failure_in1,(p9) ld1 val2[1]=[src1])	// only 1 byte left
403 	mov ar.lc=saved_lc
404 	;;
405 	EX(.failure_out,(p7) st4 [dst1]=val1[1],4)
406 	mov pr=saved_pr,0xffffffffffff0000
407 	;;
408 	EX(.failure_out, (p8)	st2 [dst1]=val2[0],2)
409 	mov ar.pfs=saved_pfs
410 	;;
411 	EX(.failure_out, (p9)	st1 [dst1]=val2[1])
412 	br.ret.sptk.many rp
413 
414 
415 	//
416 	// Here we handle the case where the byte by byte copy fails
417 	// on the load.
418 	// Several factors make the zeroing of the rest of the buffer kind of
419 	// tricky:
420 	//	- the pipeline: loads/stores are not in sync (pipeline)
421 	//
422 	//	  In the same loop iteration, the dst1 pointer does not directly
423 	//	  reflect where the faulty load was.
424 	//
425 	//	- pipeline effect
426 	//	  When you get a fault on load, you may have valid data from
427 	//	  previous loads not yet store in transit. Such data must be
428 	//	  store normally before moving onto zeroing the rest.
429 	//
430 	//	- single/multi dispersal independence.
431 	//
432 	// solution:
433 	//	- we don't disrupt the pipeline, i.e. data in transit in
434 	//	  the software pipeline will be eventually move to memory.
435 	//	  We simply replace the load with a simple mov and keep the
436 	//	  pipeline going. We can't really do this inline because
437 	//	  p16 is always reset to 1 when lc > 0.
438 	//
439 .failure_in_pipe1:
440 	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
441 1:
442 (p16)	mov val1[0]=r0
443 (EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1
444 	br.ctop.dptk 1b
445 	;;
446 	mov pr=saved_pr,0xffffffffffff0000
447 	mov ar.lc=saved_lc
448 	mov ar.pfs=saved_pfs
449 	br.ret.sptk.many rp
450 
451 	//
452 	// This is the case where the byte by byte copy fails on the load
453 	// when we copy the head. We need to finish the pipeline and copy
454 	// zeros for the rest of the destination. Since this happens
455 	// at the top we still need to fill the body and tail.
456 .failure_in_pipe2:
457 	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
458 2:
459 (p16)	mov val1[0]=r0
460 (EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1
461 	br.ctop.dptk 2b
462 	;;
463 	sub len=enddst,dst1,1		// precompute len
464 	br.cond.dptk.many .failure_in1bis
465 	;;
466 
467 	//
468 	// Here we handle the head & tail part when we check for alignment.
469 	// The following code handles only the load failures. The
470 	// main diffculty comes from the fact that loads/stores are
471 	// scheduled. So when you fail on a load, the stores corresponding
472 	// to previous successful loads must be executed.
473 	//
474 	// However some simplifications are possible given the way
475 	// things work.
476 	//
477 	// 1) HEAD
478 	// Theory of operation:
479 	//
480 	//  Page A   | Page B
481 	//  ---------|-----
482 	//          1|8 x
483 	//	  1 2|8 x
484 	//	    4|8 x
485 	//	  1 4|8 x
486 	//        2 4|8 x
487 	//      1 2 4|8 x
488 	//	     |1
489 	//	     |2 x
490 	//	     |4 x
491 	//
492 	// page_size >= 4k (2^12).  (x means 4, 2, 1)
493 	// Here we suppose Page A exists and Page B does not.
494 	//
495 	// As we move towards eight byte alignment we may encounter faults.
496 	// The numbers on each page show the size of the load (current alignment).
497 	//
498 	// Key point:
499 	//	- if you fail on 1, 2, 4 then you have never executed any smaller
500 	//	  size loads, e.g. failing ld4 means no ld1 nor ld2 executed
501 	//	  before.
502 	//
503 	// This allows us to simplify the cleanup code, because basically you
504 	// only have to worry about "pending" stores in the case of a failing
505 	// ld8(). Given the way the code is written today, this means only
506 	// worry about st2, st4. There we can use the information encapsulated
507 	// into the predicates.
508 	//
509 	// Other key point:
510 	//	- if you fail on the ld8 in the head, it means you went straight
511 	//	  to it, i.e. 8byte alignment within an unexisting page.
512 	// Again this comes from the fact that if you crossed just for the ld8 then
513 	// you are 8byte aligned but also 16byte align, therefore you would
514 	// either go for the 16byte copy loop OR the ld8 in the tail part.
515 	// The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible
516 	// because it would mean you had 15bytes to copy in which case you
517 	// would have defaulted to the byte by byte copy.
518 	//
519 	//
520 	// 2) TAIL
521 	// Here we now we have less than 16 bytes AND we are either 8 or 16 byte
522 	// aligned.
523 	//
524 	// Key point:
525 	// This means that we either:
526 	//		- are right on a page boundary
527 	//	OR
528 	//		- are at more than 16 bytes from a page boundary with
529 	//		  at most 15 bytes to copy: no chance of crossing.
530 	//
531 	// This allows us to assume that if we fail on a load we haven't possibly
532 	// executed any of the previous (tail) ones, so we don't need to do
533 	// any stores. For instance, if we fail on ld2, this means we had
534 	// 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4.
535 	//
536 	// This means that we are in a situation similar the a fault in the
537 	// head part. That's nice!
538 	//
539 .failure_in1:
540 	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
541 	sub len=endsrc,src1,1
542 	//
543 	// we know that ret0 can never be zero at this point
544 	// because we failed why trying to do a load, i.e. there is still
545 	// some work to do.
546 	// The failure_in1bis and length problem is taken care of at the
547 	// calling side.
548 	//
549 	;;
550 .failure_in1bis:		// from (.failure_in3)
551 	mov ar.lc=len		// Continue with a stupid byte store.
552 	;;
553 5:
554 	st1 [dst1]=r0,1
555 	br.cloop.dptk 5b
556 	;;
557 	mov pr=saved_pr,0xffffffffffff0000
558 	mov ar.lc=saved_lc
559 	mov ar.pfs=saved_pfs
560 	br.ret.sptk.many rp
561 
562 	//
563 	// Here we simply restart the loop but instead
564 	// of doing loads we fill the pipeline with zeroes
565 	// We can't simply store r0 because we may have valid
566 	// data in transit in the pipeline.
567 	// ar.lc and ar.ec are setup correctly at this point
568 	//
569 	// we MUST use src1/endsrc here and not dst1/enddst because
570 	// of the pipeline effect.
571 	//
572 .failure_in3:
573 	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
574 	;;
575 2:
576 (p16)	mov val1[0]=r0
577 (p16)	mov val2[0]=r0
578 (EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16
579 (EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16
580 	br.ctop.dptk 2b
581 	;;
582 	cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ?
583 	sub len=enddst,dst1,1		// precompute len
584 (p6)	br.cond.dptk .failure_in1bis
585 	;;
586 	mov pr=saved_pr,0xffffffffffff0000
587 	mov ar.lc=saved_lc
588 	mov ar.pfs=saved_pfs
589 	br.ret.sptk.many rp
590 
591 .failure_in2:
592 	sub ret0=endsrc,src1
593 	cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ?
594 	sub len=enddst,dst1,1		// precompute len
595 (p6)	br.cond.dptk .failure_in1bis
596 	;;
597 	mov pr=saved_pr,0xffffffffffff0000
598 	mov ar.lc=saved_lc
599 	mov ar.pfs=saved_pfs
600 	br.ret.sptk.many rp
601 
602 	//
603 	// handling of failures on stores: that's the easy part
604 	//
605 .failure_out:
606 	sub ret0=enddst,dst1
607 	mov pr=saved_pr,0xffffffffffff0000
608 	mov ar.lc=saved_lc
609 
610 	mov ar.pfs=saved_pfs
611 	br.ret.sptk.many rp
612 END(__copy_user)
613 EXPORT_SYMBOL(__copy_user)
614