xref: /openbmc/linux/drivers/pwm/pwm-sifive.c (revision 0a41b0c5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017-2018 SiFive
4  * For SiFive's PWM IP block documentation please refer Chapter 14 of
5  * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
6  *
7  * Limitations:
8  * - When changing both duty cycle and period, we cannot prevent in
9  *   software that the output might produce a period with mixed
10  *   settings (new period length and old duty cycle).
11  * - The hardware cannot generate a 100% duty cycle.
12  * - The hardware generates only inverted output.
13  */
14 #include <linux/clk.h>
15 #include <linux/io.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/pwm.h>
20 #include <linux/slab.h>
21 #include <linux/bitfield.h>
22 
23 /* Register offsets */
24 #define PWM_SIFIVE_PWMCFG		0x0
25 #define PWM_SIFIVE_PWMCOUNT		0x8
26 #define PWM_SIFIVE_PWMS			0x10
27 #define PWM_SIFIVE_PWMCMP(i)		(0x20 + 4 * (i))
28 
29 /* PWMCFG fields */
30 #define PWM_SIFIVE_PWMCFG_SCALE		GENMASK(3, 0)
31 #define PWM_SIFIVE_PWMCFG_STICKY	BIT(8)
32 #define PWM_SIFIVE_PWMCFG_ZERO_CMP	BIT(9)
33 #define PWM_SIFIVE_PWMCFG_DEGLITCH	BIT(10)
34 #define PWM_SIFIVE_PWMCFG_EN_ALWAYS	BIT(12)
35 #define PWM_SIFIVE_PWMCFG_EN_ONCE	BIT(13)
36 #define PWM_SIFIVE_PWMCFG_CENTER	BIT(16)
37 #define PWM_SIFIVE_PWMCFG_GANG		BIT(24)
38 #define PWM_SIFIVE_PWMCFG_IP		BIT(28)
39 
40 #define PWM_SIFIVE_CMPWIDTH		16
41 #define PWM_SIFIVE_DEFAULT_PERIOD	10000000
42 
43 struct pwm_sifive_ddata {
44 	struct pwm_chip	chip;
45 	struct mutex lock; /* lock to protect user_count and approx_period */
46 	struct notifier_block notifier;
47 	struct clk *clk;
48 	void __iomem *regs;
49 	unsigned int real_period;
50 	unsigned int approx_period;
51 	int user_count;
52 };
53 
54 static inline
pwm_sifive_chip_to_ddata(struct pwm_chip * chip)55 struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *chip)
56 {
57 	return container_of(chip, struct pwm_sifive_ddata, chip);
58 }
59 
pwm_sifive_request(struct pwm_chip * chip,struct pwm_device * pwm)60 static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
61 {
62 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
63 
64 	mutex_lock(&ddata->lock);
65 	ddata->user_count++;
66 	mutex_unlock(&ddata->lock);
67 
68 	return 0;
69 }
70 
pwm_sifive_free(struct pwm_chip * chip,struct pwm_device * pwm)71 static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
72 {
73 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
74 
75 	mutex_lock(&ddata->lock);
76 	ddata->user_count--;
77 	mutex_unlock(&ddata->lock);
78 }
79 
80 /* Called holding ddata->lock */
pwm_sifive_update_clock(struct pwm_sifive_ddata * ddata,unsigned long rate)81 static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
82 				    unsigned long rate)
83 {
84 	unsigned long long num;
85 	unsigned long scale_pow;
86 	int scale;
87 	u32 val;
88 	/*
89 	 * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
90 	 * period length is using pwmscale which provides the number of bits the
91 	 * counter is shifted before being feed to the comparators. A period
92 	 * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
93 	 * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
94 	 */
95 	scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
96 	scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
97 
98 	val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
99 	      FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
100 	writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
101 
102 	/* As scale <= 15 the shift operation cannot overflow. */
103 	num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
104 	ddata->real_period = div64_ul(num, rate);
105 	dev_dbg(ddata->chip.dev,
106 		"New real_period = %u ns\n", ddata->real_period);
107 }
108 
pwm_sifive_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)109 static int pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
110 				struct pwm_state *state)
111 {
112 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
113 	u32 duty, val;
114 
115 	duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
116 
117 	state->enabled = duty > 0;
118 
119 	val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
120 	if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
121 		state->enabled = false;
122 
123 	state->period = ddata->real_period;
124 	state->duty_cycle =
125 		(u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
126 	state->polarity = PWM_POLARITY_INVERSED;
127 
128 	return 0;
129 }
130 
pwm_sifive_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)131 static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
132 			    const struct pwm_state *state)
133 {
134 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
135 	struct pwm_state cur_state;
136 	unsigned int duty_cycle;
137 	unsigned long long num;
138 	bool enabled;
139 	int ret = 0;
140 	u32 frac;
141 
142 	if (state->polarity != PWM_POLARITY_INVERSED)
143 		return -EINVAL;
144 
145 	cur_state = pwm->state;
146 	enabled = cur_state.enabled;
147 
148 	duty_cycle = state->duty_cycle;
149 	if (!state->enabled)
150 		duty_cycle = 0;
151 
152 	/*
153 	 * The problem of output producing mixed setting as mentioned at top,
154 	 * occurs here. To minimize the window for this problem, we are
155 	 * calculating the register values first and then writing them
156 	 * consecutively
157 	 */
158 	num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
159 	frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
160 	/* The hardware cannot generate a 100% duty cycle */
161 	frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
162 
163 	mutex_lock(&ddata->lock);
164 	if (state->period != ddata->approx_period) {
165 		/*
166 		 * Don't let a 2nd user change the period underneath the 1st user.
167 		 * However if ddate->approx_period == 0 this is the first time we set
168 		 * any period, so let whoever gets here first set the period so other
169 		 * users who agree on the period won't fail.
170 		 */
171 		if (ddata->user_count != 1 && ddata->approx_period) {
172 			mutex_unlock(&ddata->lock);
173 			return -EBUSY;
174 		}
175 		ddata->approx_period = state->period;
176 		pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
177 	}
178 	mutex_unlock(&ddata->lock);
179 
180 	/*
181 	 * If the PWM is enabled the clk is already on. So only enable it
182 	 * conditionally to have it on exactly once afterwards independent of
183 	 * the PWM state.
184 	 */
185 	if (!enabled) {
186 		ret = clk_enable(ddata->clk);
187 		if (ret) {
188 			dev_err(ddata->chip.dev, "Enable clk failed\n");
189 			return ret;
190 		}
191 	}
192 
193 	writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
194 
195 	if (!state->enabled)
196 		clk_disable(ddata->clk);
197 
198 	return 0;
199 }
200 
201 static const struct pwm_ops pwm_sifive_ops = {
202 	.request = pwm_sifive_request,
203 	.free = pwm_sifive_free,
204 	.get_state = pwm_sifive_get_state,
205 	.apply = pwm_sifive_apply,
206 	.owner = THIS_MODULE,
207 };
208 
pwm_sifive_clock_notifier(struct notifier_block * nb,unsigned long event,void * data)209 static int pwm_sifive_clock_notifier(struct notifier_block *nb,
210 				     unsigned long event, void *data)
211 {
212 	struct clk_notifier_data *ndata = data;
213 	struct pwm_sifive_ddata *ddata =
214 		container_of(nb, struct pwm_sifive_ddata, notifier);
215 
216 	if (event == POST_RATE_CHANGE) {
217 		mutex_lock(&ddata->lock);
218 		pwm_sifive_update_clock(ddata, ndata->new_rate);
219 		mutex_unlock(&ddata->lock);
220 	}
221 
222 	return NOTIFY_OK;
223 }
224 
pwm_sifive_probe(struct platform_device * pdev)225 static int pwm_sifive_probe(struct platform_device *pdev)
226 {
227 	struct device *dev = &pdev->dev;
228 	struct pwm_sifive_ddata *ddata;
229 	struct pwm_chip *chip;
230 	int ret;
231 	u32 val;
232 	unsigned int enabled_pwms = 0, enabled_clks = 1;
233 
234 	ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
235 	if (!ddata)
236 		return -ENOMEM;
237 
238 	mutex_init(&ddata->lock);
239 	chip = &ddata->chip;
240 	chip->dev = dev;
241 	chip->ops = &pwm_sifive_ops;
242 	chip->npwm = 4;
243 
244 	ddata->regs = devm_platform_ioremap_resource(pdev, 0);
245 	if (IS_ERR(ddata->regs))
246 		return PTR_ERR(ddata->regs);
247 
248 	ddata->clk = devm_clk_get_prepared(dev, NULL);
249 	if (IS_ERR(ddata->clk))
250 		return dev_err_probe(dev, PTR_ERR(ddata->clk),
251 				     "Unable to find controller clock\n");
252 
253 	ret = clk_enable(ddata->clk);
254 	if (ret) {
255 		dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
256 		return ret;
257 	}
258 
259 	val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
260 	if (val & PWM_SIFIVE_PWMCFG_EN_ALWAYS) {
261 		unsigned int i;
262 
263 		for (i = 0; i < chip->npwm; ++i) {
264 			val = readl(ddata->regs + PWM_SIFIVE_PWMCMP(i));
265 			if (val > 0)
266 				++enabled_pwms;
267 		}
268 	}
269 
270 	/* The clk should be on once for each running PWM. */
271 	if (enabled_pwms) {
272 		while (enabled_clks < enabled_pwms) {
273 			/* This is not expected to fail as the clk is already on */
274 			ret = clk_enable(ddata->clk);
275 			if (unlikely(ret)) {
276 				dev_err_probe(dev, ret, "Failed to enable clk\n");
277 				goto disable_clk;
278 			}
279 			++enabled_clks;
280 		}
281 	} else {
282 		clk_disable(ddata->clk);
283 		enabled_clks = 0;
284 	}
285 
286 	/* Watch for changes to underlying clock frequency */
287 	ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
288 	ret = clk_notifier_register(ddata->clk, &ddata->notifier);
289 	if (ret) {
290 		dev_err(dev, "failed to register clock notifier: %d\n", ret);
291 		goto disable_clk;
292 	}
293 
294 	ret = pwmchip_add(chip);
295 	if (ret < 0) {
296 		dev_err(dev, "cannot register PWM: %d\n", ret);
297 		goto unregister_clk;
298 	}
299 
300 	platform_set_drvdata(pdev, ddata);
301 	dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
302 
303 	return 0;
304 
305 unregister_clk:
306 	clk_notifier_unregister(ddata->clk, &ddata->notifier);
307 disable_clk:
308 	while (enabled_clks) {
309 		clk_disable(ddata->clk);
310 		--enabled_clks;
311 	}
312 
313 	return ret;
314 }
315 
pwm_sifive_remove(struct platform_device * dev)316 static void pwm_sifive_remove(struct platform_device *dev)
317 {
318 	struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
319 	struct pwm_device *pwm;
320 	int ch;
321 
322 	pwmchip_remove(&ddata->chip);
323 	clk_notifier_unregister(ddata->clk, &ddata->notifier);
324 
325 	for (ch = 0; ch < ddata->chip.npwm; ch++) {
326 		pwm = &ddata->chip.pwms[ch];
327 		if (pwm->state.enabled)
328 			clk_disable(ddata->clk);
329 	}
330 }
331 
332 static const struct of_device_id pwm_sifive_of_match[] = {
333 	{ .compatible = "sifive,pwm0" },
334 	{},
335 };
336 MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
337 
338 static struct platform_driver pwm_sifive_driver = {
339 	.probe = pwm_sifive_probe,
340 	.remove_new = pwm_sifive_remove,
341 	.driver = {
342 		.name = "pwm-sifive",
343 		.of_match_table = pwm_sifive_of_match,
344 	},
345 };
346 module_platform_driver(pwm_sifive_driver);
347 
348 MODULE_DESCRIPTION("SiFive PWM driver");
349 MODULE_LICENSE("GPL v2");
350