1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * BPF JIT compiler
4 *
5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7 */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/ftrace.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/text-patching.h>
19
emit_code(u8 * ptr,u32 bytes,unsigned int len)20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
21 {
22 if (len == 1)
23 *ptr = bytes;
24 else if (len == 2)
25 *(u16 *)ptr = bytes;
26 else {
27 *(u32 *)ptr = bytes;
28 barrier();
29 }
30 return ptr + len;
31 }
32
33 #define EMIT(bytes, len) \
34 do { prog = emit_code(prog, bytes, len); } while (0)
35
36 #define EMIT1(b1) EMIT(b1, 1)
37 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
38 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
40
41 #define EMIT1_off32(b1, off) \
42 do { EMIT1(b1); EMIT(off, 4); } while (0)
43 #define EMIT2_off32(b1, b2, off) \
44 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45 #define EMIT3_off32(b1, b2, b3, off) \
46 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47 #define EMIT4_off32(b1, b2, b3, b4, off) \
48 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
49
50 #ifdef CONFIG_X86_KERNEL_IBT
51 #define EMIT_ENDBR() EMIT(gen_endbr(), 4)
52 #else
53 #define EMIT_ENDBR()
54 #endif
55
is_imm8(int value)56 static bool is_imm8(int value)
57 {
58 return value <= 127 && value >= -128;
59 }
60
61 /*
62 * Let us limit the positive offset to be <= 123.
63 * This is to ensure eventual jit convergence For the following patterns:
64 * ...
65 * pass4, final_proglen=4391:
66 * ...
67 * 20e: 48 85 ff test rdi,rdi
68 * 211: 74 7d je 0x290
69 * 213: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0]
70 * ...
71 * 289: 48 85 ff test rdi,rdi
72 * 28c: 74 17 je 0x2a5
73 * 28e: e9 7f ff ff ff jmp 0x212
74 * 293: bf 03 00 00 00 mov edi,0x3
75 * Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125)
76 * and insn at 0x28e is 5-byte jmp insn with offset -129.
77 *
78 * pass5, final_proglen=4392:
79 * ...
80 * 20e: 48 85 ff test rdi,rdi
81 * 211: 0f 84 80 00 00 00 je 0x297
82 * 217: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0]
83 * ...
84 * 28d: 48 85 ff test rdi,rdi
85 * 290: 74 1a je 0x2ac
86 * 292: eb 84 jmp 0x218
87 * 294: bf 03 00 00 00 mov edi,0x3
88 * Note that insn at 0x211 is 6-byte cond jump insn now since its offset
89 * becomes 0x80 based on previous round (0x293 - 0x213 = 0x80).
90 * At the same time, insn at 0x292 is a 2-byte insn since its offset is
91 * -124.
92 *
93 * pass6 will repeat the same code as in pass4 and this will prevent
94 * eventual convergence.
95 *
96 * To fix this issue, we need to break je (2->6 bytes) <-> jmp (5->2 bytes)
97 * cycle in the above. In the above example je offset <= 0x7c should work.
98 *
99 * For other cases, je <-> je needs offset <= 0x7b to avoid no convergence
100 * issue. For jmp <-> je and jmp <-> jmp cases, jmp offset <= 0x7c should
101 * avoid no convergence issue.
102 *
103 * Overall, let us limit the positive offset for 8bit cond/uncond jmp insn
104 * to maximum 123 (0x7b). This way, the jit pass can eventually converge.
105 */
is_imm8_jmp_offset(int value)106 static bool is_imm8_jmp_offset(int value)
107 {
108 return value <= 123 && value >= -128;
109 }
110
is_simm32(s64 value)111 static bool is_simm32(s64 value)
112 {
113 return value == (s64)(s32)value;
114 }
115
is_uimm32(u64 value)116 static bool is_uimm32(u64 value)
117 {
118 return value == (u64)(u32)value;
119 }
120
121 /* mov dst, src */
122 #define EMIT_mov(DST, SRC) \
123 do { \
124 if (DST != SRC) \
125 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
126 } while (0)
127
bpf_size_to_x86_bytes(int bpf_size)128 static int bpf_size_to_x86_bytes(int bpf_size)
129 {
130 if (bpf_size == BPF_W)
131 return 4;
132 else if (bpf_size == BPF_H)
133 return 2;
134 else if (bpf_size == BPF_B)
135 return 1;
136 else if (bpf_size == BPF_DW)
137 return 4; /* imm32 */
138 else
139 return 0;
140 }
141
142 /*
143 * List of x86 cond jumps opcodes (. + s8)
144 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
145 */
146 #define X86_JB 0x72
147 #define X86_JAE 0x73
148 #define X86_JE 0x74
149 #define X86_JNE 0x75
150 #define X86_JBE 0x76
151 #define X86_JA 0x77
152 #define X86_JL 0x7C
153 #define X86_JGE 0x7D
154 #define X86_JLE 0x7E
155 #define X86_JG 0x7F
156
157 /* Pick a register outside of BPF range for JIT internal work */
158 #define AUX_REG (MAX_BPF_JIT_REG + 1)
159 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
160
161 /*
162 * The following table maps BPF registers to x86-64 registers.
163 *
164 * x86-64 register R12 is unused, since if used as base address
165 * register in load/store instructions, it always needs an
166 * extra byte of encoding and is callee saved.
167 *
168 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
169 * trampoline. x86-64 register R10 is used for blinding (if enabled).
170 */
171 static const int reg2hex[] = {
172 [BPF_REG_0] = 0, /* RAX */
173 [BPF_REG_1] = 7, /* RDI */
174 [BPF_REG_2] = 6, /* RSI */
175 [BPF_REG_3] = 2, /* RDX */
176 [BPF_REG_4] = 1, /* RCX */
177 [BPF_REG_5] = 0, /* R8 */
178 [BPF_REG_6] = 3, /* RBX callee saved */
179 [BPF_REG_7] = 5, /* R13 callee saved */
180 [BPF_REG_8] = 6, /* R14 callee saved */
181 [BPF_REG_9] = 7, /* R15 callee saved */
182 [BPF_REG_FP] = 5, /* RBP readonly */
183 [BPF_REG_AX] = 2, /* R10 temp register */
184 [AUX_REG] = 3, /* R11 temp register */
185 [X86_REG_R9] = 1, /* R9 register, 6th function argument */
186 };
187
188 static const int reg2pt_regs[] = {
189 [BPF_REG_0] = offsetof(struct pt_regs, ax),
190 [BPF_REG_1] = offsetof(struct pt_regs, di),
191 [BPF_REG_2] = offsetof(struct pt_regs, si),
192 [BPF_REG_3] = offsetof(struct pt_regs, dx),
193 [BPF_REG_4] = offsetof(struct pt_regs, cx),
194 [BPF_REG_5] = offsetof(struct pt_regs, r8),
195 [BPF_REG_6] = offsetof(struct pt_regs, bx),
196 [BPF_REG_7] = offsetof(struct pt_regs, r13),
197 [BPF_REG_8] = offsetof(struct pt_regs, r14),
198 [BPF_REG_9] = offsetof(struct pt_regs, r15),
199 };
200
201 /*
202 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
203 * which need extra byte of encoding.
204 * rax,rcx,...,rbp have simpler encoding
205 */
is_ereg(u32 reg)206 static bool is_ereg(u32 reg)
207 {
208 return (1 << reg) & (BIT(BPF_REG_5) |
209 BIT(AUX_REG) |
210 BIT(BPF_REG_7) |
211 BIT(BPF_REG_8) |
212 BIT(BPF_REG_9) |
213 BIT(X86_REG_R9) |
214 BIT(BPF_REG_AX));
215 }
216
217 /*
218 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
219 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
220 * of encoding. al,cl,dl,bl have simpler encoding.
221 */
is_ereg_8l(u32 reg)222 static bool is_ereg_8l(u32 reg)
223 {
224 return is_ereg(reg) ||
225 (1 << reg) & (BIT(BPF_REG_1) |
226 BIT(BPF_REG_2) |
227 BIT(BPF_REG_FP));
228 }
229
is_axreg(u32 reg)230 static bool is_axreg(u32 reg)
231 {
232 return reg == BPF_REG_0;
233 }
234
235 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
add_1mod(u8 byte,u32 reg)236 static u8 add_1mod(u8 byte, u32 reg)
237 {
238 if (is_ereg(reg))
239 byte |= 1;
240 return byte;
241 }
242
add_2mod(u8 byte,u32 r1,u32 r2)243 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
244 {
245 if (is_ereg(r1))
246 byte |= 1;
247 if (is_ereg(r2))
248 byte |= 4;
249 return byte;
250 }
251
252 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
add_1reg(u8 byte,u32 dst_reg)253 static u8 add_1reg(u8 byte, u32 dst_reg)
254 {
255 return byte + reg2hex[dst_reg];
256 }
257
258 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
add_2reg(u8 byte,u32 dst_reg,u32 src_reg)259 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
260 {
261 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
262 }
263
264 /* Some 1-byte opcodes for binary ALU operations */
265 static u8 simple_alu_opcodes[] = {
266 [BPF_ADD] = 0x01,
267 [BPF_SUB] = 0x29,
268 [BPF_AND] = 0x21,
269 [BPF_OR] = 0x09,
270 [BPF_XOR] = 0x31,
271 [BPF_LSH] = 0xE0,
272 [BPF_RSH] = 0xE8,
273 [BPF_ARSH] = 0xF8,
274 };
275
jit_fill_hole(void * area,unsigned int size)276 static void jit_fill_hole(void *area, unsigned int size)
277 {
278 /* Fill whole space with INT3 instructions */
279 memset(area, 0xcc, size);
280 }
281
bpf_arch_text_invalidate(void * dst,size_t len)282 int bpf_arch_text_invalidate(void *dst, size_t len)
283 {
284 return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
285 }
286
287 struct jit_context {
288 int cleanup_addr; /* Epilogue code offset */
289
290 /*
291 * Program specific offsets of labels in the code; these rely on the
292 * JIT doing at least 2 passes, recording the position on the first
293 * pass, only to generate the correct offset on the second pass.
294 */
295 int tail_call_direct_label;
296 int tail_call_indirect_label;
297 };
298
299 /* Maximum number of bytes emitted while JITing one eBPF insn */
300 #define BPF_MAX_INSN_SIZE 128
301 #define BPF_INSN_SAFETY 64
302
303 /* Number of bytes emit_patch() needs to generate instructions */
304 #define X86_PATCH_SIZE 5
305 /* Number of bytes that will be skipped on tailcall */
306 #define X86_TAIL_CALL_OFFSET (11 + ENDBR_INSN_SIZE)
307
push_callee_regs(u8 ** pprog,bool * callee_regs_used)308 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
309 {
310 u8 *prog = *pprog;
311
312 if (callee_regs_used[0])
313 EMIT1(0x53); /* push rbx */
314 if (callee_regs_used[1])
315 EMIT2(0x41, 0x55); /* push r13 */
316 if (callee_regs_used[2])
317 EMIT2(0x41, 0x56); /* push r14 */
318 if (callee_regs_used[3])
319 EMIT2(0x41, 0x57); /* push r15 */
320 *pprog = prog;
321 }
322
pop_callee_regs(u8 ** pprog,bool * callee_regs_used)323 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
324 {
325 u8 *prog = *pprog;
326
327 if (callee_regs_used[3])
328 EMIT2(0x41, 0x5F); /* pop r15 */
329 if (callee_regs_used[2])
330 EMIT2(0x41, 0x5E); /* pop r14 */
331 if (callee_regs_used[1])
332 EMIT2(0x41, 0x5D); /* pop r13 */
333 if (callee_regs_used[0])
334 EMIT1(0x5B); /* pop rbx */
335 *pprog = prog;
336 }
337
338 /*
339 * Emit x86-64 prologue code for BPF program.
340 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
341 * while jumping to another program
342 */
emit_prologue(u8 ** pprog,u32 stack_depth,bool ebpf_from_cbpf,bool tail_call_reachable,bool is_subprog)343 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
344 bool tail_call_reachable, bool is_subprog)
345 {
346 u8 *prog = *pprog;
347
348 /* BPF trampoline can be made to work without these nops,
349 * but let's waste 5 bytes for now and optimize later
350 */
351 EMIT_ENDBR();
352 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
353 prog += X86_PATCH_SIZE;
354 if (!ebpf_from_cbpf) {
355 if (tail_call_reachable && !is_subprog)
356 EMIT2(0x31, 0xC0); /* xor eax, eax */
357 else
358 EMIT2(0x66, 0x90); /* nop2 */
359 }
360 EMIT1(0x55); /* push rbp */
361 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
362
363 /* X86_TAIL_CALL_OFFSET is here */
364 EMIT_ENDBR();
365
366 /* sub rsp, rounded_stack_depth */
367 if (stack_depth)
368 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
369 if (tail_call_reachable)
370 EMIT1(0x50); /* push rax */
371 *pprog = prog;
372 }
373
emit_patch(u8 ** pprog,void * func,void * ip,u8 opcode)374 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
375 {
376 u8 *prog = *pprog;
377 s64 offset;
378
379 offset = func - (ip + X86_PATCH_SIZE);
380 if (!is_simm32(offset)) {
381 pr_err("Target call %p is out of range\n", func);
382 return -ERANGE;
383 }
384 EMIT1_off32(opcode, offset);
385 *pprog = prog;
386 return 0;
387 }
388
emit_call(u8 ** pprog,void * func,void * ip)389 static int emit_call(u8 **pprog, void *func, void *ip)
390 {
391 return emit_patch(pprog, func, ip, 0xE8);
392 }
393
emit_rsb_call(u8 ** pprog,void * func,void * ip)394 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
395 {
396 OPTIMIZER_HIDE_VAR(func);
397 ip += x86_call_depth_emit_accounting(pprog, func);
398 return emit_patch(pprog, func, ip, 0xE8);
399 }
400
emit_jump(u8 ** pprog,void * func,void * ip)401 static int emit_jump(u8 **pprog, void *func, void *ip)
402 {
403 return emit_patch(pprog, func, ip, 0xE9);
404 }
405
__bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)406 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
407 void *old_addr, void *new_addr)
408 {
409 const u8 *nop_insn = x86_nops[5];
410 u8 old_insn[X86_PATCH_SIZE];
411 u8 new_insn[X86_PATCH_SIZE];
412 u8 *prog;
413 int ret;
414
415 memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
416 if (old_addr) {
417 prog = old_insn;
418 ret = t == BPF_MOD_CALL ?
419 emit_call(&prog, old_addr, ip) :
420 emit_jump(&prog, old_addr, ip);
421 if (ret)
422 return ret;
423 }
424
425 memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
426 if (new_addr) {
427 prog = new_insn;
428 ret = t == BPF_MOD_CALL ?
429 emit_call(&prog, new_addr, ip) :
430 emit_jump(&prog, new_addr, ip);
431 if (ret)
432 return ret;
433 }
434
435 ret = -EBUSY;
436 mutex_lock(&text_mutex);
437 if (memcmp(ip, old_insn, X86_PATCH_SIZE))
438 goto out;
439 ret = 1;
440 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
441 text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
442 ret = 0;
443 }
444 out:
445 mutex_unlock(&text_mutex);
446 return ret;
447 }
448
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)449 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
450 void *old_addr, void *new_addr)
451 {
452 if (!is_kernel_text((long)ip) &&
453 !is_bpf_text_address((long)ip))
454 /* BPF poking in modules is not supported */
455 return -EINVAL;
456
457 /*
458 * See emit_prologue(), for IBT builds the trampoline hook is preceded
459 * with an ENDBR instruction.
460 */
461 if (is_endbr(*(u32 *)ip))
462 ip += ENDBR_INSN_SIZE;
463
464 return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
465 }
466
467 #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8)
468
emit_indirect_jump(u8 ** pprog,int reg,u8 * ip)469 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
470 {
471 u8 *prog = *pprog;
472
473 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
474 EMIT_LFENCE();
475 EMIT2(0xFF, 0xE0 + reg);
476 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
477 OPTIMIZER_HIDE_VAR(reg);
478 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
479 emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
480 else
481 emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
482 } else {
483 EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */
484 if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
485 EMIT1(0xCC); /* int3 */
486 }
487
488 *pprog = prog;
489 }
490
emit_return(u8 ** pprog,u8 * ip)491 static void emit_return(u8 **pprog, u8 *ip)
492 {
493 u8 *prog = *pprog;
494
495 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
496 emit_jump(&prog, x86_return_thunk, ip);
497 } else {
498 EMIT1(0xC3); /* ret */
499 if (IS_ENABLED(CONFIG_SLS))
500 EMIT1(0xCC); /* int3 */
501 }
502
503 *pprog = prog;
504 }
505
506 /*
507 * Generate the following code:
508 *
509 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
510 * if (index >= array->map.max_entries)
511 * goto out;
512 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
513 * goto out;
514 * prog = array->ptrs[index];
515 * if (prog == NULL)
516 * goto out;
517 * goto *(prog->bpf_func + prologue_size);
518 * out:
519 */
emit_bpf_tail_call_indirect(u8 ** pprog,bool * callee_regs_used,u32 stack_depth,u8 * ip,struct jit_context * ctx)520 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
521 u32 stack_depth, u8 *ip,
522 struct jit_context *ctx)
523 {
524 int tcc_off = -4 - round_up(stack_depth, 8);
525 u8 *prog = *pprog, *start = *pprog;
526 int offset;
527
528 /*
529 * rdi - pointer to ctx
530 * rsi - pointer to bpf_array
531 * rdx - index in bpf_array
532 */
533
534 /*
535 * if (index >= array->map.max_entries)
536 * goto out;
537 */
538 EMIT2(0x89, 0xD2); /* mov edx, edx */
539 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
540 offsetof(struct bpf_array, map.max_entries));
541
542 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
543 EMIT2(X86_JBE, offset); /* jbe out */
544
545 /*
546 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
547 * goto out;
548 */
549 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
550 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
551
552 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
553 EMIT2(X86_JAE, offset); /* jae out */
554 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
555 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
556
557 /* prog = array->ptrs[index]; */
558 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
559 offsetof(struct bpf_array, ptrs));
560
561 /*
562 * if (prog == NULL)
563 * goto out;
564 */
565 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */
566
567 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
568 EMIT2(X86_JE, offset); /* je out */
569
570 pop_callee_regs(&prog, callee_regs_used);
571
572 EMIT1(0x58); /* pop rax */
573 if (stack_depth)
574 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */
575 round_up(stack_depth, 8));
576
577 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
578 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */
579 offsetof(struct bpf_prog, bpf_func));
580 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */
581 X86_TAIL_CALL_OFFSET);
582 /*
583 * Now we're ready to jump into next BPF program
584 * rdi == ctx (1st arg)
585 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
586 */
587 emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
588
589 /* out: */
590 ctx->tail_call_indirect_label = prog - start;
591 *pprog = prog;
592 }
593
emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor * poke,u8 ** pprog,u8 * ip,bool * callee_regs_used,u32 stack_depth,struct jit_context * ctx)594 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
595 u8 **pprog, u8 *ip,
596 bool *callee_regs_used, u32 stack_depth,
597 struct jit_context *ctx)
598 {
599 int tcc_off = -4 - round_up(stack_depth, 8);
600 u8 *prog = *pprog, *start = *pprog;
601 int offset;
602
603 /*
604 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
605 * goto out;
606 */
607 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
608 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
609
610 offset = ctx->tail_call_direct_label - (prog + 2 - start);
611 EMIT2(X86_JAE, offset); /* jae out */
612 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
613 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
614
615 poke->tailcall_bypass = ip + (prog - start);
616 poke->adj_off = X86_TAIL_CALL_OFFSET;
617 poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
618 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
619
620 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
621 poke->tailcall_bypass);
622
623 pop_callee_regs(&prog, callee_regs_used);
624 EMIT1(0x58); /* pop rax */
625 if (stack_depth)
626 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
627
628 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
629 prog += X86_PATCH_SIZE;
630
631 /* out: */
632 ctx->tail_call_direct_label = prog - start;
633
634 *pprog = prog;
635 }
636
bpf_tail_call_direct_fixup(struct bpf_prog * prog)637 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
638 {
639 struct bpf_jit_poke_descriptor *poke;
640 struct bpf_array *array;
641 struct bpf_prog *target;
642 int i, ret;
643
644 for (i = 0; i < prog->aux->size_poke_tab; i++) {
645 poke = &prog->aux->poke_tab[i];
646 if (poke->aux && poke->aux != prog->aux)
647 continue;
648
649 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
650
651 if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
652 continue;
653
654 array = container_of(poke->tail_call.map, struct bpf_array, map);
655 mutex_lock(&array->aux->poke_mutex);
656 target = array->ptrs[poke->tail_call.key];
657 if (target) {
658 ret = __bpf_arch_text_poke(poke->tailcall_target,
659 BPF_MOD_JUMP, NULL,
660 (u8 *)target->bpf_func +
661 poke->adj_off);
662 BUG_ON(ret < 0);
663 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
664 BPF_MOD_JUMP,
665 (u8 *)poke->tailcall_target +
666 X86_PATCH_SIZE, NULL);
667 BUG_ON(ret < 0);
668 }
669 WRITE_ONCE(poke->tailcall_target_stable, true);
670 mutex_unlock(&array->aux->poke_mutex);
671 }
672 }
673
emit_mov_imm32(u8 ** pprog,bool sign_propagate,u32 dst_reg,const u32 imm32)674 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
675 u32 dst_reg, const u32 imm32)
676 {
677 u8 *prog = *pprog;
678 u8 b1, b2, b3;
679
680 /*
681 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
682 * (which zero-extends imm32) to save 2 bytes.
683 */
684 if (sign_propagate && (s32)imm32 < 0) {
685 /* 'mov %rax, imm32' sign extends imm32 */
686 b1 = add_1mod(0x48, dst_reg);
687 b2 = 0xC7;
688 b3 = 0xC0;
689 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
690 goto done;
691 }
692
693 /*
694 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
695 * to save 3 bytes.
696 */
697 if (imm32 == 0) {
698 if (is_ereg(dst_reg))
699 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
700 b2 = 0x31; /* xor */
701 b3 = 0xC0;
702 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
703 goto done;
704 }
705
706 /* mov %eax, imm32 */
707 if (is_ereg(dst_reg))
708 EMIT1(add_1mod(0x40, dst_reg));
709 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
710 done:
711 *pprog = prog;
712 }
713
emit_mov_imm64(u8 ** pprog,u32 dst_reg,const u32 imm32_hi,const u32 imm32_lo)714 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
715 const u32 imm32_hi, const u32 imm32_lo)
716 {
717 u8 *prog = *pprog;
718
719 if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
720 /*
721 * For emitting plain u32, where sign bit must not be
722 * propagated LLVM tends to load imm64 over mov32
723 * directly, so save couple of bytes by just doing
724 * 'mov %eax, imm32' instead.
725 */
726 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
727 } else {
728 /* movabsq rax, imm64 */
729 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
730 EMIT(imm32_lo, 4);
731 EMIT(imm32_hi, 4);
732 }
733
734 *pprog = prog;
735 }
736
emit_mov_reg(u8 ** pprog,bool is64,u32 dst_reg,u32 src_reg)737 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
738 {
739 u8 *prog = *pprog;
740
741 if (is64) {
742 /* mov dst, src */
743 EMIT_mov(dst_reg, src_reg);
744 } else {
745 /* mov32 dst, src */
746 if (is_ereg(dst_reg) || is_ereg(src_reg))
747 EMIT1(add_2mod(0x40, dst_reg, src_reg));
748 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
749 }
750
751 *pprog = prog;
752 }
753
emit_movsx_reg(u8 ** pprog,int num_bits,bool is64,u32 dst_reg,u32 src_reg)754 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
755 u32 src_reg)
756 {
757 u8 *prog = *pprog;
758
759 if (is64) {
760 /* movs[b,w,l]q dst, src */
761 if (num_bits == 8)
762 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
763 add_2reg(0xC0, src_reg, dst_reg));
764 else if (num_bits == 16)
765 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
766 add_2reg(0xC0, src_reg, dst_reg));
767 else if (num_bits == 32)
768 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
769 add_2reg(0xC0, src_reg, dst_reg));
770 } else {
771 /* movs[b,w]l dst, src */
772 if (num_bits == 8) {
773 EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
774 add_2reg(0xC0, src_reg, dst_reg));
775 } else if (num_bits == 16) {
776 if (is_ereg(dst_reg) || is_ereg(src_reg))
777 EMIT1(add_2mod(0x40, src_reg, dst_reg));
778 EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
779 add_2reg(0xC0, src_reg, dst_reg));
780 }
781 }
782
783 *pprog = prog;
784 }
785
786 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
emit_insn_suffix(u8 ** pprog,u32 ptr_reg,u32 val_reg,int off)787 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
788 {
789 u8 *prog = *pprog;
790
791 if (is_imm8(off)) {
792 /* 1-byte signed displacement.
793 *
794 * If off == 0 we could skip this and save one extra byte, but
795 * special case of x86 R13 which always needs an offset is not
796 * worth the hassle
797 */
798 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
799 } else {
800 /* 4-byte signed displacement */
801 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
802 }
803 *pprog = prog;
804 }
805
806 /*
807 * Emit a REX byte if it will be necessary to address these registers
808 */
maybe_emit_mod(u8 ** pprog,u32 dst_reg,u32 src_reg,bool is64)809 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
810 {
811 u8 *prog = *pprog;
812
813 if (is64)
814 EMIT1(add_2mod(0x48, dst_reg, src_reg));
815 else if (is_ereg(dst_reg) || is_ereg(src_reg))
816 EMIT1(add_2mod(0x40, dst_reg, src_reg));
817 *pprog = prog;
818 }
819
820 /*
821 * Similar version of maybe_emit_mod() for a single register
822 */
maybe_emit_1mod(u8 ** pprog,u32 reg,bool is64)823 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
824 {
825 u8 *prog = *pprog;
826
827 if (is64)
828 EMIT1(add_1mod(0x48, reg));
829 else if (is_ereg(reg))
830 EMIT1(add_1mod(0x40, reg));
831 *pprog = prog;
832 }
833
834 /* LDX: dst_reg = *(u8*)(src_reg + off) */
emit_ldx(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)835 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
836 {
837 u8 *prog = *pprog;
838
839 switch (size) {
840 case BPF_B:
841 /* Emit 'movzx rax, byte ptr [rax + off]' */
842 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
843 break;
844 case BPF_H:
845 /* Emit 'movzx rax, word ptr [rax + off]' */
846 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
847 break;
848 case BPF_W:
849 /* Emit 'mov eax, dword ptr [rax+0x14]' */
850 if (is_ereg(dst_reg) || is_ereg(src_reg))
851 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
852 else
853 EMIT1(0x8B);
854 break;
855 case BPF_DW:
856 /* Emit 'mov rax, qword ptr [rax+0x14]' */
857 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
858 break;
859 }
860 emit_insn_suffix(&prog, src_reg, dst_reg, off);
861 *pprog = prog;
862 }
863
864 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
emit_ldsx(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)865 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
866 {
867 u8 *prog = *pprog;
868
869 switch (size) {
870 case BPF_B:
871 /* Emit 'movsx rax, byte ptr [rax + off]' */
872 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
873 break;
874 case BPF_H:
875 /* Emit 'movsx rax, word ptr [rax + off]' */
876 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
877 break;
878 case BPF_W:
879 /* Emit 'movsx rax, dword ptr [rax+0x14]' */
880 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
881 break;
882 }
883 emit_insn_suffix(&prog, src_reg, dst_reg, off);
884 *pprog = prog;
885 }
886
887 /* STX: *(u8*)(dst_reg + off) = src_reg */
emit_stx(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)888 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
889 {
890 u8 *prog = *pprog;
891
892 switch (size) {
893 case BPF_B:
894 /* Emit 'mov byte ptr [rax + off], al' */
895 if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
896 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
897 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
898 else
899 EMIT1(0x88);
900 break;
901 case BPF_H:
902 if (is_ereg(dst_reg) || is_ereg(src_reg))
903 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
904 else
905 EMIT2(0x66, 0x89);
906 break;
907 case BPF_W:
908 if (is_ereg(dst_reg) || is_ereg(src_reg))
909 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
910 else
911 EMIT1(0x89);
912 break;
913 case BPF_DW:
914 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
915 break;
916 }
917 emit_insn_suffix(&prog, dst_reg, src_reg, off);
918 *pprog = prog;
919 }
920
emit_atomic(u8 ** pprog,u8 atomic_op,u32 dst_reg,u32 src_reg,s16 off,u8 bpf_size)921 static int emit_atomic(u8 **pprog, u8 atomic_op,
922 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
923 {
924 u8 *prog = *pprog;
925
926 EMIT1(0xF0); /* lock prefix */
927
928 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
929
930 /* emit opcode */
931 switch (atomic_op) {
932 case BPF_ADD:
933 case BPF_AND:
934 case BPF_OR:
935 case BPF_XOR:
936 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
937 EMIT1(simple_alu_opcodes[atomic_op]);
938 break;
939 case BPF_ADD | BPF_FETCH:
940 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
941 EMIT2(0x0F, 0xC1);
942 break;
943 case BPF_XCHG:
944 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
945 EMIT1(0x87);
946 break;
947 case BPF_CMPXCHG:
948 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
949 EMIT2(0x0F, 0xB1);
950 break;
951 default:
952 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
953 return -EFAULT;
954 }
955
956 emit_insn_suffix(&prog, dst_reg, src_reg, off);
957
958 *pprog = prog;
959 return 0;
960 }
961
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)962 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
963 {
964 u32 reg = x->fixup >> 8;
965
966 /* jump over faulting load and clear dest register */
967 *(unsigned long *)((void *)regs + reg) = 0;
968 regs->ip += x->fixup & 0xff;
969 return true;
970 }
971
detect_reg_usage(struct bpf_insn * insn,int insn_cnt,bool * regs_used,bool * tail_call_seen)972 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
973 bool *regs_used, bool *tail_call_seen)
974 {
975 int i;
976
977 for (i = 1; i <= insn_cnt; i++, insn++) {
978 if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
979 *tail_call_seen = true;
980 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
981 regs_used[0] = true;
982 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
983 regs_used[1] = true;
984 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
985 regs_used[2] = true;
986 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
987 regs_used[3] = true;
988 }
989 }
990
emit_nops(u8 ** pprog,int len)991 static void emit_nops(u8 **pprog, int len)
992 {
993 u8 *prog = *pprog;
994 int i, noplen;
995
996 while (len > 0) {
997 noplen = len;
998
999 if (noplen > ASM_NOP_MAX)
1000 noplen = ASM_NOP_MAX;
1001
1002 for (i = 0; i < noplen; i++)
1003 EMIT1(x86_nops[noplen][i]);
1004 len -= noplen;
1005 }
1006
1007 *pprog = prog;
1008 }
1009
1010 /* emit the 3-byte VEX prefix
1011 *
1012 * r: same as rex.r, extra bit for ModRM reg field
1013 * x: same as rex.x, extra bit for SIB index field
1014 * b: same as rex.b, extra bit for ModRM r/m, or SIB base
1015 * m: opcode map select, encoding escape bytes e.g. 0x0f38
1016 * w: same as rex.w (32 bit or 64 bit) or opcode specific
1017 * src_reg2: additional source reg (encoded as BPF reg)
1018 * l: vector length (128 bit or 256 bit) or reserved
1019 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1020 */
emit_3vex(u8 ** pprog,bool r,bool x,bool b,u8 m,bool w,u8 src_reg2,bool l,u8 pp)1021 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1022 bool w, u8 src_reg2, bool l, u8 pp)
1023 {
1024 u8 *prog = *pprog;
1025 const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1026 u8 b1, b2;
1027 u8 vvvv = reg2hex[src_reg2];
1028
1029 /* reg2hex gives only the lower 3 bit of vvvv */
1030 if (is_ereg(src_reg2))
1031 vvvv |= 1 << 3;
1032
1033 /*
1034 * 2nd byte of 3-byte VEX prefix
1035 * ~ means bit inverted encoding
1036 *
1037 * 7 0
1038 * +---+---+---+---+---+---+---+---+
1039 * |~R |~X |~B | m |
1040 * +---+---+---+---+---+---+---+---+
1041 */
1042 b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1043 /*
1044 * 3rd byte of 3-byte VEX prefix
1045 *
1046 * 7 0
1047 * +---+---+---+---+---+---+---+---+
1048 * | W | ~vvvv | L | pp |
1049 * +---+---+---+---+---+---+---+---+
1050 */
1051 b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1052
1053 EMIT3(b0, b1, b2);
1054 *pprog = prog;
1055 }
1056
1057 /* emit BMI2 shift instruction */
emit_shiftx(u8 ** pprog,u32 dst_reg,u8 src_reg,bool is64,u8 op)1058 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1059 {
1060 u8 *prog = *pprog;
1061 bool r = is_ereg(dst_reg);
1062 u8 m = 2; /* escape code 0f38 */
1063
1064 emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1065 EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1066 *pprog = prog;
1067 }
1068
1069 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1070
1071 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1072 #define RESTORE_TAIL_CALL_CNT(stack) \
1073 EMIT3_off32(0x48, 0x8B, 0x85, -round_up(stack, 8) - 8)
1074
do_jit(struct bpf_prog * bpf_prog,int * addrs,u8 * image,u8 * rw_image,int oldproglen,struct jit_context * ctx,bool jmp_padding)1075 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1076 int oldproglen, struct jit_context *ctx, bool jmp_padding)
1077 {
1078 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1079 struct bpf_insn *insn = bpf_prog->insnsi;
1080 bool callee_regs_used[4] = {};
1081 int insn_cnt = bpf_prog->len;
1082 bool tail_call_seen = false;
1083 bool seen_exit = false;
1084 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1085 int i, excnt = 0;
1086 int ilen, proglen = 0;
1087 u8 *prog = temp;
1088 int err;
1089
1090 detect_reg_usage(insn, insn_cnt, callee_regs_used,
1091 &tail_call_seen);
1092
1093 /* tail call's presence in current prog implies it is reachable */
1094 tail_call_reachable |= tail_call_seen;
1095
1096 emit_prologue(&prog, bpf_prog->aux->stack_depth,
1097 bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1098 bpf_prog->aux->func_idx != 0);
1099 push_callee_regs(&prog, callee_regs_used);
1100
1101 ilen = prog - temp;
1102 if (rw_image)
1103 memcpy(rw_image + proglen, temp, ilen);
1104 proglen += ilen;
1105 addrs[0] = proglen;
1106 prog = temp;
1107
1108 for (i = 1; i <= insn_cnt; i++, insn++) {
1109 const s32 imm32 = insn->imm;
1110 u32 dst_reg = insn->dst_reg;
1111 u32 src_reg = insn->src_reg;
1112 u8 b2 = 0, b3 = 0;
1113 u8 *start_of_ldx;
1114 s64 jmp_offset;
1115 s16 insn_off;
1116 u8 jmp_cond;
1117 u8 *func;
1118 int nops;
1119
1120 switch (insn->code) {
1121 /* ALU */
1122 case BPF_ALU | BPF_ADD | BPF_X:
1123 case BPF_ALU | BPF_SUB | BPF_X:
1124 case BPF_ALU | BPF_AND | BPF_X:
1125 case BPF_ALU | BPF_OR | BPF_X:
1126 case BPF_ALU | BPF_XOR | BPF_X:
1127 case BPF_ALU64 | BPF_ADD | BPF_X:
1128 case BPF_ALU64 | BPF_SUB | BPF_X:
1129 case BPF_ALU64 | BPF_AND | BPF_X:
1130 case BPF_ALU64 | BPF_OR | BPF_X:
1131 case BPF_ALU64 | BPF_XOR | BPF_X:
1132 maybe_emit_mod(&prog, dst_reg, src_reg,
1133 BPF_CLASS(insn->code) == BPF_ALU64);
1134 b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1135 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1136 break;
1137
1138 case BPF_ALU64 | BPF_MOV | BPF_X:
1139 case BPF_ALU | BPF_MOV | BPF_X:
1140 if (insn->off == 0)
1141 emit_mov_reg(&prog,
1142 BPF_CLASS(insn->code) == BPF_ALU64,
1143 dst_reg, src_reg);
1144 else
1145 emit_movsx_reg(&prog, insn->off,
1146 BPF_CLASS(insn->code) == BPF_ALU64,
1147 dst_reg, src_reg);
1148 break;
1149
1150 /* neg dst */
1151 case BPF_ALU | BPF_NEG:
1152 case BPF_ALU64 | BPF_NEG:
1153 maybe_emit_1mod(&prog, dst_reg,
1154 BPF_CLASS(insn->code) == BPF_ALU64);
1155 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1156 break;
1157
1158 case BPF_ALU | BPF_ADD | BPF_K:
1159 case BPF_ALU | BPF_SUB | BPF_K:
1160 case BPF_ALU | BPF_AND | BPF_K:
1161 case BPF_ALU | BPF_OR | BPF_K:
1162 case BPF_ALU | BPF_XOR | BPF_K:
1163 case BPF_ALU64 | BPF_ADD | BPF_K:
1164 case BPF_ALU64 | BPF_SUB | BPF_K:
1165 case BPF_ALU64 | BPF_AND | BPF_K:
1166 case BPF_ALU64 | BPF_OR | BPF_K:
1167 case BPF_ALU64 | BPF_XOR | BPF_K:
1168 maybe_emit_1mod(&prog, dst_reg,
1169 BPF_CLASS(insn->code) == BPF_ALU64);
1170
1171 /*
1172 * b3 holds 'normal' opcode, b2 short form only valid
1173 * in case dst is eax/rax.
1174 */
1175 switch (BPF_OP(insn->code)) {
1176 case BPF_ADD:
1177 b3 = 0xC0;
1178 b2 = 0x05;
1179 break;
1180 case BPF_SUB:
1181 b3 = 0xE8;
1182 b2 = 0x2D;
1183 break;
1184 case BPF_AND:
1185 b3 = 0xE0;
1186 b2 = 0x25;
1187 break;
1188 case BPF_OR:
1189 b3 = 0xC8;
1190 b2 = 0x0D;
1191 break;
1192 case BPF_XOR:
1193 b3 = 0xF0;
1194 b2 = 0x35;
1195 break;
1196 }
1197
1198 if (is_imm8(imm32))
1199 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1200 else if (is_axreg(dst_reg))
1201 EMIT1_off32(b2, imm32);
1202 else
1203 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1204 break;
1205
1206 case BPF_ALU64 | BPF_MOV | BPF_K:
1207 case BPF_ALU | BPF_MOV | BPF_K:
1208 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1209 dst_reg, imm32);
1210 break;
1211
1212 case BPF_LD | BPF_IMM | BPF_DW:
1213 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1214 insn++;
1215 i++;
1216 break;
1217
1218 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1219 case BPF_ALU | BPF_MOD | BPF_X:
1220 case BPF_ALU | BPF_DIV | BPF_X:
1221 case BPF_ALU | BPF_MOD | BPF_K:
1222 case BPF_ALU | BPF_DIV | BPF_K:
1223 case BPF_ALU64 | BPF_MOD | BPF_X:
1224 case BPF_ALU64 | BPF_DIV | BPF_X:
1225 case BPF_ALU64 | BPF_MOD | BPF_K:
1226 case BPF_ALU64 | BPF_DIV | BPF_K: {
1227 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1228
1229 if (dst_reg != BPF_REG_0)
1230 EMIT1(0x50); /* push rax */
1231 if (dst_reg != BPF_REG_3)
1232 EMIT1(0x52); /* push rdx */
1233
1234 if (BPF_SRC(insn->code) == BPF_X) {
1235 if (src_reg == BPF_REG_0 ||
1236 src_reg == BPF_REG_3) {
1237 /* mov r11, src_reg */
1238 EMIT_mov(AUX_REG, src_reg);
1239 src_reg = AUX_REG;
1240 }
1241 } else {
1242 /* mov r11, imm32 */
1243 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1244 src_reg = AUX_REG;
1245 }
1246
1247 if (dst_reg != BPF_REG_0)
1248 /* mov rax, dst_reg */
1249 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1250
1251 if (insn->off == 0) {
1252 /*
1253 * xor edx, edx
1254 * equivalent to 'xor rdx, rdx', but one byte less
1255 */
1256 EMIT2(0x31, 0xd2);
1257
1258 /* div src_reg */
1259 maybe_emit_1mod(&prog, src_reg, is64);
1260 EMIT2(0xF7, add_1reg(0xF0, src_reg));
1261 } else {
1262 if (BPF_CLASS(insn->code) == BPF_ALU)
1263 EMIT1(0x99); /* cdq */
1264 else
1265 EMIT2(0x48, 0x99); /* cqo */
1266
1267 /* idiv src_reg */
1268 maybe_emit_1mod(&prog, src_reg, is64);
1269 EMIT2(0xF7, add_1reg(0xF8, src_reg));
1270 }
1271
1272 if (BPF_OP(insn->code) == BPF_MOD &&
1273 dst_reg != BPF_REG_3)
1274 /* mov dst_reg, rdx */
1275 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1276 else if (BPF_OP(insn->code) == BPF_DIV &&
1277 dst_reg != BPF_REG_0)
1278 /* mov dst_reg, rax */
1279 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1280
1281 if (dst_reg != BPF_REG_3)
1282 EMIT1(0x5A); /* pop rdx */
1283 if (dst_reg != BPF_REG_0)
1284 EMIT1(0x58); /* pop rax */
1285 break;
1286 }
1287
1288 case BPF_ALU | BPF_MUL | BPF_K:
1289 case BPF_ALU64 | BPF_MUL | BPF_K:
1290 maybe_emit_mod(&prog, dst_reg, dst_reg,
1291 BPF_CLASS(insn->code) == BPF_ALU64);
1292
1293 if (is_imm8(imm32))
1294 /* imul dst_reg, dst_reg, imm8 */
1295 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1296 imm32);
1297 else
1298 /* imul dst_reg, dst_reg, imm32 */
1299 EMIT2_off32(0x69,
1300 add_2reg(0xC0, dst_reg, dst_reg),
1301 imm32);
1302 break;
1303
1304 case BPF_ALU | BPF_MUL | BPF_X:
1305 case BPF_ALU64 | BPF_MUL | BPF_X:
1306 maybe_emit_mod(&prog, src_reg, dst_reg,
1307 BPF_CLASS(insn->code) == BPF_ALU64);
1308
1309 /* imul dst_reg, src_reg */
1310 EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1311 break;
1312
1313 /* Shifts */
1314 case BPF_ALU | BPF_LSH | BPF_K:
1315 case BPF_ALU | BPF_RSH | BPF_K:
1316 case BPF_ALU | BPF_ARSH | BPF_K:
1317 case BPF_ALU64 | BPF_LSH | BPF_K:
1318 case BPF_ALU64 | BPF_RSH | BPF_K:
1319 case BPF_ALU64 | BPF_ARSH | BPF_K:
1320 maybe_emit_1mod(&prog, dst_reg,
1321 BPF_CLASS(insn->code) == BPF_ALU64);
1322
1323 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1324 if (imm32 == 1)
1325 EMIT2(0xD1, add_1reg(b3, dst_reg));
1326 else
1327 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1328 break;
1329
1330 case BPF_ALU | BPF_LSH | BPF_X:
1331 case BPF_ALU | BPF_RSH | BPF_X:
1332 case BPF_ALU | BPF_ARSH | BPF_X:
1333 case BPF_ALU64 | BPF_LSH | BPF_X:
1334 case BPF_ALU64 | BPF_RSH | BPF_X:
1335 case BPF_ALU64 | BPF_ARSH | BPF_X:
1336 /* BMI2 shifts aren't better when shift count is already in rcx */
1337 if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1338 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1339 bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1340 u8 op;
1341
1342 switch (BPF_OP(insn->code)) {
1343 case BPF_LSH:
1344 op = 1; /* prefix 0x66 */
1345 break;
1346 case BPF_RSH:
1347 op = 3; /* prefix 0xf2 */
1348 break;
1349 case BPF_ARSH:
1350 op = 2; /* prefix 0xf3 */
1351 break;
1352 }
1353
1354 emit_shiftx(&prog, dst_reg, src_reg, w, op);
1355
1356 break;
1357 }
1358
1359 if (src_reg != BPF_REG_4) { /* common case */
1360 /* Check for bad case when dst_reg == rcx */
1361 if (dst_reg == BPF_REG_4) {
1362 /* mov r11, dst_reg */
1363 EMIT_mov(AUX_REG, dst_reg);
1364 dst_reg = AUX_REG;
1365 } else {
1366 EMIT1(0x51); /* push rcx */
1367 }
1368 /* mov rcx, src_reg */
1369 EMIT_mov(BPF_REG_4, src_reg);
1370 }
1371
1372 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1373 maybe_emit_1mod(&prog, dst_reg,
1374 BPF_CLASS(insn->code) == BPF_ALU64);
1375
1376 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1377 EMIT2(0xD3, add_1reg(b3, dst_reg));
1378
1379 if (src_reg != BPF_REG_4) {
1380 if (insn->dst_reg == BPF_REG_4)
1381 /* mov dst_reg, r11 */
1382 EMIT_mov(insn->dst_reg, AUX_REG);
1383 else
1384 EMIT1(0x59); /* pop rcx */
1385 }
1386
1387 break;
1388
1389 case BPF_ALU | BPF_END | BPF_FROM_BE:
1390 case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1391 switch (imm32) {
1392 case 16:
1393 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
1394 EMIT1(0x66);
1395 if (is_ereg(dst_reg))
1396 EMIT1(0x41);
1397 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1398
1399 /* Emit 'movzwl eax, ax' */
1400 if (is_ereg(dst_reg))
1401 EMIT3(0x45, 0x0F, 0xB7);
1402 else
1403 EMIT2(0x0F, 0xB7);
1404 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1405 break;
1406 case 32:
1407 /* Emit 'bswap eax' to swap lower 4 bytes */
1408 if (is_ereg(dst_reg))
1409 EMIT2(0x41, 0x0F);
1410 else
1411 EMIT1(0x0F);
1412 EMIT1(add_1reg(0xC8, dst_reg));
1413 break;
1414 case 64:
1415 /* Emit 'bswap rax' to swap 8 bytes */
1416 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1417 add_1reg(0xC8, dst_reg));
1418 break;
1419 }
1420 break;
1421
1422 case BPF_ALU | BPF_END | BPF_FROM_LE:
1423 switch (imm32) {
1424 case 16:
1425 /*
1426 * Emit 'movzwl eax, ax' to zero extend 16-bit
1427 * into 64 bit
1428 */
1429 if (is_ereg(dst_reg))
1430 EMIT3(0x45, 0x0F, 0xB7);
1431 else
1432 EMIT2(0x0F, 0xB7);
1433 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1434 break;
1435 case 32:
1436 /* Emit 'mov eax, eax' to clear upper 32-bits */
1437 if (is_ereg(dst_reg))
1438 EMIT1(0x45);
1439 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1440 break;
1441 case 64:
1442 /* nop */
1443 break;
1444 }
1445 break;
1446
1447 /* speculation barrier */
1448 case BPF_ST | BPF_NOSPEC:
1449 EMIT_LFENCE();
1450 break;
1451
1452 /* ST: *(u8*)(dst_reg + off) = imm */
1453 case BPF_ST | BPF_MEM | BPF_B:
1454 if (is_ereg(dst_reg))
1455 EMIT2(0x41, 0xC6);
1456 else
1457 EMIT1(0xC6);
1458 goto st;
1459 case BPF_ST | BPF_MEM | BPF_H:
1460 if (is_ereg(dst_reg))
1461 EMIT3(0x66, 0x41, 0xC7);
1462 else
1463 EMIT2(0x66, 0xC7);
1464 goto st;
1465 case BPF_ST | BPF_MEM | BPF_W:
1466 if (is_ereg(dst_reg))
1467 EMIT2(0x41, 0xC7);
1468 else
1469 EMIT1(0xC7);
1470 goto st;
1471 case BPF_ST | BPF_MEM | BPF_DW:
1472 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1473
1474 st: if (is_imm8(insn->off))
1475 EMIT2(add_1reg(0x40, dst_reg), insn->off);
1476 else
1477 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1478
1479 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1480 break;
1481
1482 /* STX: *(u8*)(dst_reg + off) = src_reg */
1483 case BPF_STX | BPF_MEM | BPF_B:
1484 case BPF_STX | BPF_MEM | BPF_H:
1485 case BPF_STX | BPF_MEM | BPF_W:
1486 case BPF_STX | BPF_MEM | BPF_DW:
1487 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1488 break;
1489
1490 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1491 case BPF_LDX | BPF_MEM | BPF_B:
1492 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1493 case BPF_LDX | BPF_MEM | BPF_H:
1494 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1495 case BPF_LDX | BPF_MEM | BPF_W:
1496 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1497 case BPF_LDX | BPF_MEM | BPF_DW:
1498 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1499 /* LDXS: dst_reg = *(s8*)(src_reg + off) */
1500 case BPF_LDX | BPF_MEMSX | BPF_B:
1501 case BPF_LDX | BPF_MEMSX | BPF_H:
1502 case BPF_LDX | BPF_MEMSX | BPF_W:
1503 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1504 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1505 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1506 insn_off = insn->off;
1507
1508 if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1509 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1510 /* Conservatively check that src_reg + insn->off is a kernel address:
1511 * src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE
1512 * and
1513 * src_reg + insn->off < VSYSCALL_ADDR
1514 */
1515
1516 u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR;
1517 u8 *end_of_jmp;
1518
1519 /* movabsq r10, VSYSCALL_ADDR */
1520 emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32,
1521 (u32)(long)VSYSCALL_ADDR);
1522
1523 /* mov src_reg, r11 */
1524 EMIT_mov(AUX_REG, src_reg);
1525
1526 if (insn->off) {
1527 /* add r11, insn->off */
1528 maybe_emit_1mod(&prog, AUX_REG, true);
1529 EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
1530 }
1531
1532 /* sub r11, r10 */
1533 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
1534 EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
1535
1536 /* movabsq r10, limit */
1537 emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32,
1538 (u32)(long)limit);
1539
1540 /* cmp r10, r11 */
1541 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
1542 EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
1543
1544 /* if unsigned '>', goto load */
1545 EMIT2(X86_JA, 0);
1546 end_of_jmp = prog;
1547
1548 /* xor dst_reg, dst_reg */
1549 emit_mov_imm32(&prog, false, dst_reg, 0);
1550 /* jmp byte_after_ldx */
1551 EMIT2(0xEB, 0);
1552
1553 /* populate jmp_offset for JAE above to jump to start_of_ldx */
1554 start_of_ldx = prog;
1555 end_of_jmp[-1] = start_of_ldx - end_of_jmp;
1556 }
1557 if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
1558 BPF_MODE(insn->code) == BPF_MEMSX)
1559 emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1560 else
1561 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1562 if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1563 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1564 struct exception_table_entry *ex;
1565 u8 *_insn = image + proglen + (start_of_ldx - temp);
1566 s64 delta;
1567
1568 /* populate jmp_offset for JMP above */
1569 start_of_ldx[-1] = prog - start_of_ldx;
1570
1571 if (!bpf_prog->aux->extable)
1572 break;
1573
1574 if (excnt >= bpf_prog->aux->num_exentries) {
1575 pr_err("ex gen bug\n");
1576 return -EFAULT;
1577 }
1578 ex = &bpf_prog->aux->extable[excnt++];
1579
1580 delta = _insn - (u8 *)&ex->insn;
1581 if (!is_simm32(delta)) {
1582 pr_err("extable->insn doesn't fit into 32-bit\n");
1583 return -EFAULT;
1584 }
1585 /* switch ex to rw buffer for writes */
1586 ex = (void *)rw_image + ((void *)ex - (void *)image);
1587
1588 ex->insn = delta;
1589
1590 ex->data = EX_TYPE_BPF;
1591
1592 if (dst_reg > BPF_REG_9) {
1593 pr_err("verifier error\n");
1594 return -EFAULT;
1595 }
1596 /*
1597 * Compute size of x86 insn and its target dest x86 register.
1598 * ex_handler_bpf() will use lower 8 bits to adjust
1599 * pt_regs->ip to jump over this x86 instruction
1600 * and upper bits to figure out which pt_regs to zero out.
1601 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1602 * of 4 bytes will be ignored and rbx will be zero inited.
1603 */
1604 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1605 }
1606 break;
1607
1608 case BPF_STX | BPF_ATOMIC | BPF_W:
1609 case BPF_STX | BPF_ATOMIC | BPF_DW:
1610 if (insn->imm == (BPF_AND | BPF_FETCH) ||
1611 insn->imm == (BPF_OR | BPF_FETCH) ||
1612 insn->imm == (BPF_XOR | BPF_FETCH)) {
1613 bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1614 u32 real_src_reg = src_reg;
1615 u32 real_dst_reg = dst_reg;
1616 u8 *branch_target;
1617
1618 /*
1619 * Can't be implemented with a single x86 insn.
1620 * Need to do a CMPXCHG loop.
1621 */
1622
1623 /* Will need RAX as a CMPXCHG operand so save R0 */
1624 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1625 if (src_reg == BPF_REG_0)
1626 real_src_reg = BPF_REG_AX;
1627 if (dst_reg == BPF_REG_0)
1628 real_dst_reg = BPF_REG_AX;
1629
1630 branch_target = prog;
1631 /* Load old value */
1632 emit_ldx(&prog, BPF_SIZE(insn->code),
1633 BPF_REG_0, real_dst_reg, insn->off);
1634 /*
1635 * Perform the (commutative) operation locally,
1636 * put the result in the AUX_REG.
1637 */
1638 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1639 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1640 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1641 add_2reg(0xC0, AUX_REG, real_src_reg));
1642 /* Attempt to swap in new value */
1643 err = emit_atomic(&prog, BPF_CMPXCHG,
1644 real_dst_reg, AUX_REG,
1645 insn->off,
1646 BPF_SIZE(insn->code));
1647 if (WARN_ON(err))
1648 return err;
1649 /*
1650 * ZF tells us whether we won the race. If it's
1651 * cleared we need to try again.
1652 */
1653 EMIT2(X86_JNE, -(prog - branch_target) - 2);
1654 /* Return the pre-modification value */
1655 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1656 /* Restore R0 after clobbering RAX */
1657 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1658 break;
1659 }
1660
1661 err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1662 insn->off, BPF_SIZE(insn->code));
1663 if (err)
1664 return err;
1665 break;
1666
1667 /* call */
1668 case BPF_JMP | BPF_CALL: {
1669 int offs;
1670
1671 func = (u8 *) __bpf_call_base + imm32;
1672 if (tail_call_reachable) {
1673 RESTORE_TAIL_CALL_CNT(bpf_prog->aux->stack_depth);
1674 if (!imm32)
1675 return -EINVAL;
1676 offs = 7 + x86_call_depth_emit_accounting(&prog, func);
1677 } else {
1678 if (!imm32)
1679 return -EINVAL;
1680 offs = x86_call_depth_emit_accounting(&prog, func);
1681 }
1682 if (emit_call(&prog, func, image + addrs[i - 1] + offs))
1683 return -EINVAL;
1684 break;
1685 }
1686
1687 case BPF_JMP | BPF_TAIL_CALL:
1688 if (imm32)
1689 emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1690 &prog, image + addrs[i - 1],
1691 callee_regs_used,
1692 bpf_prog->aux->stack_depth,
1693 ctx);
1694 else
1695 emit_bpf_tail_call_indirect(&prog,
1696 callee_regs_used,
1697 bpf_prog->aux->stack_depth,
1698 image + addrs[i - 1],
1699 ctx);
1700 break;
1701
1702 /* cond jump */
1703 case BPF_JMP | BPF_JEQ | BPF_X:
1704 case BPF_JMP | BPF_JNE | BPF_X:
1705 case BPF_JMP | BPF_JGT | BPF_X:
1706 case BPF_JMP | BPF_JLT | BPF_X:
1707 case BPF_JMP | BPF_JGE | BPF_X:
1708 case BPF_JMP | BPF_JLE | BPF_X:
1709 case BPF_JMP | BPF_JSGT | BPF_X:
1710 case BPF_JMP | BPF_JSLT | BPF_X:
1711 case BPF_JMP | BPF_JSGE | BPF_X:
1712 case BPF_JMP | BPF_JSLE | BPF_X:
1713 case BPF_JMP32 | BPF_JEQ | BPF_X:
1714 case BPF_JMP32 | BPF_JNE | BPF_X:
1715 case BPF_JMP32 | BPF_JGT | BPF_X:
1716 case BPF_JMP32 | BPF_JLT | BPF_X:
1717 case BPF_JMP32 | BPF_JGE | BPF_X:
1718 case BPF_JMP32 | BPF_JLE | BPF_X:
1719 case BPF_JMP32 | BPF_JSGT | BPF_X:
1720 case BPF_JMP32 | BPF_JSLT | BPF_X:
1721 case BPF_JMP32 | BPF_JSGE | BPF_X:
1722 case BPF_JMP32 | BPF_JSLE | BPF_X:
1723 /* cmp dst_reg, src_reg */
1724 maybe_emit_mod(&prog, dst_reg, src_reg,
1725 BPF_CLASS(insn->code) == BPF_JMP);
1726 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1727 goto emit_cond_jmp;
1728
1729 case BPF_JMP | BPF_JSET | BPF_X:
1730 case BPF_JMP32 | BPF_JSET | BPF_X:
1731 /* test dst_reg, src_reg */
1732 maybe_emit_mod(&prog, dst_reg, src_reg,
1733 BPF_CLASS(insn->code) == BPF_JMP);
1734 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1735 goto emit_cond_jmp;
1736
1737 case BPF_JMP | BPF_JSET | BPF_K:
1738 case BPF_JMP32 | BPF_JSET | BPF_K:
1739 /* test dst_reg, imm32 */
1740 maybe_emit_1mod(&prog, dst_reg,
1741 BPF_CLASS(insn->code) == BPF_JMP);
1742 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1743 goto emit_cond_jmp;
1744
1745 case BPF_JMP | BPF_JEQ | BPF_K:
1746 case BPF_JMP | BPF_JNE | BPF_K:
1747 case BPF_JMP | BPF_JGT | BPF_K:
1748 case BPF_JMP | BPF_JLT | BPF_K:
1749 case BPF_JMP | BPF_JGE | BPF_K:
1750 case BPF_JMP | BPF_JLE | BPF_K:
1751 case BPF_JMP | BPF_JSGT | BPF_K:
1752 case BPF_JMP | BPF_JSLT | BPF_K:
1753 case BPF_JMP | BPF_JSGE | BPF_K:
1754 case BPF_JMP | BPF_JSLE | BPF_K:
1755 case BPF_JMP32 | BPF_JEQ | BPF_K:
1756 case BPF_JMP32 | BPF_JNE | BPF_K:
1757 case BPF_JMP32 | BPF_JGT | BPF_K:
1758 case BPF_JMP32 | BPF_JLT | BPF_K:
1759 case BPF_JMP32 | BPF_JGE | BPF_K:
1760 case BPF_JMP32 | BPF_JLE | BPF_K:
1761 case BPF_JMP32 | BPF_JSGT | BPF_K:
1762 case BPF_JMP32 | BPF_JSLT | BPF_K:
1763 case BPF_JMP32 | BPF_JSGE | BPF_K:
1764 case BPF_JMP32 | BPF_JSLE | BPF_K:
1765 /* test dst_reg, dst_reg to save one extra byte */
1766 if (imm32 == 0) {
1767 maybe_emit_mod(&prog, dst_reg, dst_reg,
1768 BPF_CLASS(insn->code) == BPF_JMP);
1769 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1770 goto emit_cond_jmp;
1771 }
1772
1773 /* cmp dst_reg, imm8/32 */
1774 maybe_emit_1mod(&prog, dst_reg,
1775 BPF_CLASS(insn->code) == BPF_JMP);
1776
1777 if (is_imm8(imm32))
1778 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1779 else
1780 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1781
1782 emit_cond_jmp: /* Convert BPF opcode to x86 */
1783 switch (BPF_OP(insn->code)) {
1784 case BPF_JEQ:
1785 jmp_cond = X86_JE;
1786 break;
1787 case BPF_JSET:
1788 case BPF_JNE:
1789 jmp_cond = X86_JNE;
1790 break;
1791 case BPF_JGT:
1792 /* GT is unsigned '>', JA in x86 */
1793 jmp_cond = X86_JA;
1794 break;
1795 case BPF_JLT:
1796 /* LT is unsigned '<', JB in x86 */
1797 jmp_cond = X86_JB;
1798 break;
1799 case BPF_JGE:
1800 /* GE is unsigned '>=', JAE in x86 */
1801 jmp_cond = X86_JAE;
1802 break;
1803 case BPF_JLE:
1804 /* LE is unsigned '<=', JBE in x86 */
1805 jmp_cond = X86_JBE;
1806 break;
1807 case BPF_JSGT:
1808 /* Signed '>', GT in x86 */
1809 jmp_cond = X86_JG;
1810 break;
1811 case BPF_JSLT:
1812 /* Signed '<', LT in x86 */
1813 jmp_cond = X86_JL;
1814 break;
1815 case BPF_JSGE:
1816 /* Signed '>=', GE in x86 */
1817 jmp_cond = X86_JGE;
1818 break;
1819 case BPF_JSLE:
1820 /* Signed '<=', LE in x86 */
1821 jmp_cond = X86_JLE;
1822 break;
1823 default: /* to silence GCC warning */
1824 return -EFAULT;
1825 }
1826 jmp_offset = addrs[i + insn->off] - addrs[i];
1827 if (is_imm8_jmp_offset(jmp_offset)) {
1828 if (jmp_padding) {
1829 /* To keep the jmp_offset valid, the extra bytes are
1830 * padded before the jump insn, so we subtract the
1831 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1832 *
1833 * If the previous pass already emits an imm8
1834 * jmp_cond, then this BPF insn won't shrink, so
1835 * "nops" is 0.
1836 *
1837 * On the other hand, if the previous pass emits an
1838 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1839 * keep the image from shrinking further.
1840 *
1841 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1842 * is 2 bytes, so the size difference is 4 bytes.
1843 */
1844 nops = INSN_SZ_DIFF - 2;
1845 if (nops != 0 && nops != 4) {
1846 pr_err("unexpected jmp_cond padding: %d bytes\n",
1847 nops);
1848 return -EFAULT;
1849 }
1850 emit_nops(&prog, nops);
1851 }
1852 EMIT2(jmp_cond, jmp_offset);
1853 } else if (is_simm32(jmp_offset)) {
1854 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1855 } else {
1856 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1857 return -EFAULT;
1858 }
1859
1860 break;
1861
1862 case BPF_JMP | BPF_JA:
1863 case BPF_JMP32 | BPF_JA:
1864 if (BPF_CLASS(insn->code) == BPF_JMP) {
1865 if (insn->off == -1)
1866 /* -1 jmp instructions will always jump
1867 * backwards two bytes. Explicitly handling
1868 * this case avoids wasting too many passes
1869 * when there are long sequences of replaced
1870 * dead code.
1871 */
1872 jmp_offset = -2;
1873 else
1874 jmp_offset = addrs[i + insn->off] - addrs[i];
1875 } else {
1876 if (insn->imm == -1)
1877 jmp_offset = -2;
1878 else
1879 jmp_offset = addrs[i + insn->imm] - addrs[i];
1880 }
1881
1882 if (!jmp_offset) {
1883 /*
1884 * If jmp_padding is enabled, the extra nops will
1885 * be inserted. Otherwise, optimize out nop jumps.
1886 */
1887 if (jmp_padding) {
1888 /* There are 3 possible conditions.
1889 * (1) This BPF_JA is already optimized out in
1890 * the previous run, so there is no need
1891 * to pad any extra byte (0 byte).
1892 * (2) The previous pass emits an imm8 jmp,
1893 * so we pad 2 bytes to match the previous
1894 * insn size.
1895 * (3) Similarly, the previous pass emits an
1896 * imm32 jmp, and 5 bytes is padded.
1897 */
1898 nops = INSN_SZ_DIFF;
1899 if (nops != 0 && nops != 2 && nops != 5) {
1900 pr_err("unexpected nop jump padding: %d bytes\n",
1901 nops);
1902 return -EFAULT;
1903 }
1904 emit_nops(&prog, nops);
1905 }
1906 break;
1907 }
1908 emit_jmp:
1909 if (is_imm8_jmp_offset(jmp_offset)) {
1910 if (jmp_padding) {
1911 /* To avoid breaking jmp_offset, the extra bytes
1912 * are padded before the actual jmp insn, so
1913 * 2 bytes is subtracted from INSN_SZ_DIFF.
1914 *
1915 * If the previous pass already emits an imm8
1916 * jmp, there is nothing to pad (0 byte).
1917 *
1918 * If it emits an imm32 jmp (5 bytes) previously
1919 * and now an imm8 jmp (2 bytes), then we pad
1920 * (5 - 2 = 3) bytes to stop the image from
1921 * shrinking further.
1922 */
1923 nops = INSN_SZ_DIFF - 2;
1924 if (nops != 0 && nops != 3) {
1925 pr_err("unexpected jump padding: %d bytes\n",
1926 nops);
1927 return -EFAULT;
1928 }
1929 emit_nops(&prog, INSN_SZ_DIFF - 2);
1930 }
1931 EMIT2(0xEB, jmp_offset);
1932 } else if (is_simm32(jmp_offset)) {
1933 EMIT1_off32(0xE9, jmp_offset);
1934 } else {
1935 pr_err("jmp gen bug %llx\n", jmp_offset);
1936 return -EFAULT;
1937 }
1938 break;
1939
1940 case BPF_JMP | BPF_EXIT:
1941 if (seen_exit) {
1942 jmp_offset = ctx->cleanup_addr - addrs[i];
1943 goto emit_jmp;
1944 }
1945 seen_exit = true;
1946 /* Update cleanup_addr */
1947 ctx->cleanup_addr = proglen;
1948 pop_callee_regs(&prog, callee_regs_used);
1949 EMIT1(0xC9); /* leave */
1950 emit_return(&prog, image + addrs[i - 1] + (prog - temp));
1951 break;
1952
1953 default:
1954 /*
1955 * By design x86-64 JIT should support all BPF instructions.
1956 * This error will be seen if new instruction was added
1957 * to the interpreter, but not to the JIT, or if there is
1958 * junk in bpf_prog.
1959 */
1960 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1961 return -EINVAL;
1962 }
1963
1964 ilen = prog - temp;
1965 if (ilen > BPF_MAX_INSN_SIZE) {
1966 pr_err("bpf_jit: fatal insn size error\n");
1967 return -EFAULT;
1968 }
1969
1970 if (image) {
1971 /*
1972 * When populating the image, assert that:
1973 *
1974 * i) We do not write beyond the allocated space, and
1975 * ii) addrs[i] did not change from the prior run, in order
1976 * to validate assumptions made for computing branch
1977 * displacements.
1978 */
1979 if (unlikely(proglen + ilen > oldproglen ||
1980 proglen + ilen != addrs[i])) {
1981 pr_err("bpf_jit: fatal error\n");
1982 return -EFAULT;
1983 }
1984 memcpy(rw_image + proglen, temp, ilen);
1985 }
1986 proglen += ilen;
1987 addrs[i] = proglen;
1988 prog = temp;
1989 }
1990
1991 if (image && excnt != bpf_prog->aux->num_exentries) {
1992 pr_err("extable is not populated\n");
1993 return -EFAULT;
1994 }
1995 return proglen;
1996 }
1997
clean_stack_garbage(const struct btf_func_model * m,u8 ** pprog,int nr_stack_slots,int stack_size)1998 static void clean_stack_garbage(const struct btf_func_model *m,
1999 u8 **pprog, int nr_stack_slots,
2000 int stack_size)
2001 {
2002 int arg_size, off;
2003 u8 *prog;
2004
2005 /* Generally speaking, the compiler will pass the arguments
2006 * on-stack with "push" instruction, which will take 8-byte
2007 * on the stack. In this case, there won't be garbage values
2008 * while we copy the arguments from origin stack frame to current
2009 * in BPF_DW.
2010 *
2011 * However, sometimes the compiler will only allocate 4-byte on
2012 * the stack for the arguments. For now, this case will only
2013 * happen if there is only one argument on-stack and its size
2014 * not more than 4 byte. In this case, there will be garbage
2015 * values on the upper 4-byte where we store the argument on
2016 * current stack frame.
2017 *
2018 * arguments on origin stack:
2019 *
2020 * stack_arg_1(4-byte) xxx(4-byte)
2021 *
2022 * what we copy:
2023 *
2024 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
2025 *
2026 * and the xxx is the garbage values which we should clean here.
2027 */
2028 if (nr_stack_slots != 1)
2029 return;
2030
2031 /* the size of the last argument */
2032 arg_size = m->arg_size[m->nr_args - 1];
2033 if (arg_size <= 4) {
2034 off = -(stack_size - 4);
2035 prog = *pprog;
2036 /* mov DWORD PTR [rbp + off], 0 */
2037 if (!is_imm8(off))
2038 EMIT2_off32(0xC7, 0x85, off);
2039 else
2040 EMIT3(0xC7, 0x45, off);
2041 EMIT(0, 4);
2042 *pprog = prog;
2043 }
2044 }
2045
2046 /* get the count of the regs that are used to pass arguments */
get_nr_used_regs(const struct btf_func_model * m)2047 static int get_nr_used_regs(const struct btf_func_model *m)
2048 {
2049 int i, arg_regs, nr_used_regs = 0;
2050
2051 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2052 arg_regs = (m->arg_size[i] + 7) / 8;
2053 if (nr_used_regs + arg_regs <= 6)
2054 nr_used_regs += arg_regs;
2055
2056 if (nr_used_regs >= 6)
2057 break;
2058 }
2059
2060 return nr_used_regs;
2061 }
2062
save_args(const struct btf_func_model * m,u8 ** prog,int stack_size,bool for_call_origin)2063 static void save_args(const struct btf_func_model *m, u8 **prog,
2064 int stack_size, bool for_call_origin)
2065 {
2066 int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2067 int i, j;
2068
2069 /* Store function arguments to stack.
2070 * For a function that accepts two pointers the sequence will be:
2071 * mov QWORD PTR [rbp-0x10],rdi
2072 * mov QWORD PTR [rbp-0x8],rsi
2073 */
2074 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2075 arg_regs = (m->arg_size[i] + 7) / 8;
2076
2077 /* According to the research of Yonghong, struct members
2078 * should be all in register or all on the stack.
2079 * Meanwhile, the compiler will pass the argument on regs
2080 * if the remaining regs can hold the argument.
2081 *
2082 * Disorder of the args can happen. For example:
2083 *
2084 * struct foo_struct {
2085 * long a;
2086 * int b;
2087 * };
2088 * int foo(char, char, char, char, char, struct foo_struct,
2089 * char);
2090 *
2091 * the arg1-5,arg7 will be passed by regs, and arg6 will
2092 * by stack.
2093 */
2094 if (nr_regs + arg_regs > 6) {
2095 /* copy function arguments from origin stack frame
2096 * into current stack frame.
2097 *
2098 * The starting address of the arguments on-stack
2099 * is:
2100 * rbp + 8(push rbp) +
2101 * 8(return addr of origin call) +
2102 * 8(return addr of the caller)
2103 * which means: rbp + 24
2104 */
2105 for (j = 0; j < arg_regs; j++) {
2106 emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2107 nr_stack_slots * 8 + 0x18);
2108 emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2109 -stack_size);
2110
2111 if (!nr_stack_slots)
2112 first_off = stack_size;
2113 stack_size -= 8;
2114 nr_stack_slots++;
2115 }
2116 } else {
2117 /* Only copy the arguments on-stack to current
2118 * 'stack_size' and ignore the regs, used to
2119 * prepare the arguments on-stack for orign call.
2120 */
2121 if (for_call_origin) {
2122 nr_regs += arg_regs;
2123 continue;
2124 }
2125
2126 /* copy the arguments from regs into stack */
2127 for (j = 0; j < arg_regs; j++) {
2128 emit_stx(prog, BPF_DW, BPF_REG_FP,
2129 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2130 -stack_size);
2131 stack_size -= 8;
2132 nr_regs++;
2133 }
2134 }
2135 }
2136
2137 clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2138 }
2139
restore_regs(const struct btf_func_model * m,u8 ** prog,int stack_size)2140 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2141 int stack_size)
2142 {
2143 int i, j, arg_regs, nr_regs = 0;
2144
2145 /* Restore function arguments from stack.
2146 * For a function that accepts two pointers the sequence will be:
2147 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2148 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2149 *
2150 * The logic here is similar to what we do in save_args()
2151 */
2152 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2153 arg_regs = (m->arg_size[i] + 7) / 8;
2154 if (nr_regs + arg_regs <= 6) {
2155 for (j = 0; j < arg_regs; j++) {
2156 emit_ldx(prog, BPF_DW,
2157 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2158 BPF_REG_FP,
2159 -stack_size);
2160 stack_size -= 8;
2161 nr_regs++;
2162 }
2163 } else {
2164 stack_size -= 8 * arg_regs;
2165 }
2166
2167 if (nr_regs >= 6)
2168 break;
2169 }
2170 }
2171
invoke_bpf_prog(const struct btf_func_model * m,u8 ** pprog,struct bpf_tramp_link * l,int stack_size,int run_ctx_off,bool save_ret)2172 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2173 struct bpf_tramp_link *l, int stack_size,
2174 int run_ctx_off, bool save_ret)
2175 {
2176 u8 *prog = *pprog;
2177 u8 *jmp_insn;
2178 int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2179 struct bpf_prog *p = l->link.prog;
2180 u64 cookie = l->cookie;
2181
2182 /* mov rdi, cookie */
2183 emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2184
2185 /* Prepare struct bpf_tramp_run_ctx.
2186 *
2187 * bpf_tramp_run_ctx is already preserved by
2188 * arch_prepare_bpf_trampoline().
2189 *
2190 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2191 */
2192 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2193
2194 /* arg1: mov rdi, progs[i] */
2195 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2196 /* arg2: lea rsi, [rbp - ctx_cookie_off] */
2197 if (!is_imm8(-run_ctx_off))
2198 EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2199 else
2200 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2201
2202 if (emit_rsb_call(&prog, bpf_trampoline_enter(p), prog))
2203 return -EINVAL;
2204 /* remember prog start time returned by __bpf_prog_enter */
2205 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2206
2207 /* if (__bpf_prog_enter*(prog) == 0)
2208 * goto skip_exec_of_prog;
2209 */
2210 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
2211 /* emit 2 nops that will be replaced with JE insn */
2212 jmp_insn = prog;
2213 emit_nops(&prog, 2);
2214
2215 /* arg1: lea rdi, [rbp - stack_size] */
2216 if (!is_imm8(-stack_size))
2217 EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2218 else
2219 EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2220 /* arg2: progs[i]->insnsi for interpreter */
2221 if (!p->jited)
2222 emit_mov_imm64(&prog, BPF_REG_2,
2223 (long) p->insnsi >> 32,
2224 (u32) (long) p->insnsi);
2225 /* call JITed bpf program or interpreter */
2226 if (emit_rsb_call(&prog, p->bpf_func, prog))
2227 return -EINVAL;
2228
2229 /*
2230 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2231 * of the previous call which is then passed on the stack to
2232 * the next BPF program.
2233 *
2234 * BPF_TRAMP_FENTRY trampoline may need to return the return
2235 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2236 */
2237 if (save_ret)
2238 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2239
2240 /* replace 2 nops with JE insn, since jmp target is known */
2241 jmp_insn[0] = X86_JE;
2242 jmp_insn[1] = prog - jmp_insn - 2;
2243
2244 /* arg1: mov rdi, progs[i] */
2245 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2246 /* arg2: mov rsi, rbx <- start time in nsec */
2247 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2248 /* arg3: lea rdx, [rbp - run_ctx_off] */
2249 if (!is_imm8(-run_ctx_off))
2250 EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2251 else
2252 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2253 if (emit_rsb_call(&prog, bpf_trampoline_exit(p), prog))
2254 return -EINVAL;
2255
2256 *pprog = prog;
2257 return 0;
2258 }
2259
emit_align(u8 ** pprog,u32 align)2260 static void emit_align(u8 **pprog, u32 align)
2261 {
2262 u8 *target, *prog = *pprog;
2263
2264 target = PTR_ALIGN(prog, align);
2265 if (target != prog)
2266 emit_nops(&prog, target - prog);
2267
2268 *pprog = prog;
2269 }
2270
emit_cond_near_jump(u8 ** pprog,void * func,void * ip,u8 jmp_cond)2271 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2272 {
2273 u8 *prog = *pprog;
2274 s64 offset;
2275
2276 offset = func - (ip + 2 + 4);
2277 if (!is_simm32(offset)) {
2278 pr_err("Target %p is out of range\n", func);
2279 return -EINVAL;
2280 }
2281 EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2282 *pprog = prog;
2283 return 0;
2284 }
2285
invoke_bpf(const struct btf_func_model * m,u8 ** pprog,struct bpf_tramp_links * tl,int stack_size,int run_ctx_off,bool save_ret)2286 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2287 struct bpf_tramp_links *tl, int stack_size,
2288 int run_ctx_off, bool save_ret)
2289 {
2290 int i;
2291 u8 *prog = *pprog;
2292
2293 for (i = 0; i < tl->nr_links; i++) {
2294 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2295 run_ctx_off, save_ret))
2296 return -EINVAL;
2297 }
2298 *pprog = prog;
2299 return 0;
2300 }
2301
invoke_bpf_mod_ret(const struct btf_func_model * m,u8 ** pprog,struct bpf_tramp_links * tl,int stack_size,int run_ctx_off,u8 ** branches)2302 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2303 struct bpf_tramp_links *tl, int stack_size,
2304 int run_ctx_off, u8 **branches)
2305 {
2306 u8 *prog = *pprog;
2307 int i;
2308
2309 /* The first fmod_ret program will receive a garbage return value.
2310 * Set this to 0 to avoid confusing the program.
2311 */
2312 emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2313 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2314 for (i = 0; i < tl->nr_links; i++) {
2315 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true))
2316 return -EINVAL;
2317
2318 /* mod_ret prog stored return value into [rbp - 8]. Emit:
2319 * if (*(u64 *)(rbp - 8) != 0)
2320 * goto do_fexit;
2321 */
2322 /* cmp QWORD PTR [rbp - 0x8], 0x0 */
2323 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2324
2325 /* Save the location of the branch and Generate 6 nops
2326 * (4 bytes for an offset and 2 bytes for the jump) These nops
2327 * are replaced with a conditional jump once do_fexit (i.e. the
2328 * start of the fexit invocation) is finalized.
2329 */
2330 branches[i] = prog;
2331 emit_nops(&prog, 4 + 2);
2332 }
2333
2334 *pprog = prog;
2335 return 0;
2336 }
2337
2338 /* Example:
2339 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2340 * its 'struct btf_func_model' will be nr_args=2
2341 * The assembly code when eth_type_trans is executing after trampoline:
2342 *
2343 * push rbp
2344 * mov rbp, rsp
2345 * sub rsp, 16 // space for skb and dev
2346 * push rbx // temp regs to pass start time
2347 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack
2348 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack
2349 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2350 * mov rbx, rax // remember start time in bpf stats are enabled
2351 * lea rdi, [rbp - 16] // R1==ctx of bpf prog
2352 * call addr_of_jited_FENTRY_prog
2353 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2354 * mov rsi, rbx // prog start time
2355 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2356 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
2357 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
2358 * pop rbx
2359 * leave
2360 * ret
2361 *
2362 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2363 * replaced with 'call generated_bpf_trampoline'. When it returns
2364 * eth_type_trans will continue executing with original skb and dev pointers.
2365 *
2366 * The assembly code when eth_type_trans is called from trampoline:
2367 *
2368 * push rbp
2369 * mov rbp, rsp
2370 * sub rsp, 24 // space for skb, dev, return value
2371 * push rbx // temp regs to pass start time
2372 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack
2373 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack
2374 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2375 * mov rbx, rax // remember start time if bpf stats are enabled
2376 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
2377 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
2378 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2379 * mov rsi, rbx // prog start time
2380 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2381 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
2382 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
2383 * call eth_type_trans+5 // execute body of eth_type_trans
2384 * mov qword ptr [rbp - 8], rax // save return value
2385 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2386 * mov rbx, rax // remember start time in bpf stats are enabled
2387 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
2388 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
2389 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2390 * mov rsi, rbx // prog start time
2391 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2392 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
2393 * pop rbx
2394 * leave
2395 * add rsp, 8 // skip eth_type_trans's frame
2396 * ret // return to its caller
2397 */
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2398 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2399 const struct btf_func_model *m, u32 flags,
2400 struct bpf_tramp_links *tlinks,
2401 void *func_addr)
2402 {
2403 int i, ret, nr_regs = m->nr_args, stack_size = 0;
2404 int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
2405 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2406 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2407 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2408 void *orig_call = func_addr;
2409 u8 **branches = NULL;
2410 u8 *prog;
2411 bool save_ret;
2412
2413 /* extra registers for struct arguments */
2414 for (i = 0; i < m->nr_args; i++)
2415 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2416 nr_regs += (m->arg_size[i] + 7) / 8 - 1;
2417
2418 /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
2419 * are passed through regs, the remains are through stack.
2420 */
2421 if (nr_regs > MAX_BPF_FUNC_ARGS)
2422 return -ENOTSUPP;
2423
2424 /* Generated trampoline stack layout:
2425 *
2426 * RBP + 8 [ return address ]
2427 * RBP + 0 [ RBP ]
2428 *
2429 * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or
2430 * BPF_TRAMP_F_RET_FENTRY_RET flags
2431 *
2432 * [ reg_argN ] always
2433 * [ ... ]
2434 * RBP - regs_off [ reg_arg1 ] program's ctx pointer
2435 *
2436 * RBP - nregs_off [ regs count ] always
2437 *
2438 * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
2439 *
2440 * RBP - rbx_off [ rbx value ] always
2441 *
2442 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2443 *
2444 * [ stack_argN ] BPF_TRAMP_F_CALL_ORIG
2445 * [ ... ]
2446 * [ stack_arg2 ]
2447 * RBP - arg_stack_off [ stack_arg1 ]
2448 * RSP [ tail_call_cnt ] BPF_TRAMP_F_TAIL_CALL_CTX
2449 */
2450
2451 /* room for return value of orig_call or fentry prog */
2452 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2453 if (save_ret)
2454 stack_size += 8;
2455
2456 stack_size += nr_regs * 8;
2457 regs_off = stack_size;
2458
2459 /* regs count */
2460 stack_size += 8;
2461 nregs_off = stack_size;
2462
2463 if (flags & BPF_TRAMP_F_IP_ARG)
2464 stack_size += 8; /* room for IP address argument */
2465
2466 ip_off = stack_size;
2467
2468 stack_size += 8;
2469 rbx_off = stack_size;
2470
2471 stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2472 run_ctx_off = stack_size;
2473
2474 if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
2475 /* the space that used to pass arguments on-stack */
2476 stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
2477 /* make sure the stack pointer is 16-byte aligned if we
2478 * need pass arguments on stack, which means
2479 * [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
2480 * should be 16-byte aligned. Following code depend on
2481 * that stack_size is already 8-byte aligned.
2482 */
2483 stack_size += (stack_size % 16) ? 0 : 8;
2484 }
2485
2486 arg_stack_off = stack_size;
2487
2488 if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2489 /* skip patched call instruction and point orig_call to actual
2490 * body of the kernel function.
2491 */
2492 if (is_endbr(*(u32 *)orig_call))
2493 orig_call += ENDBR_INSN_SIZE;
2494 orig_call += X86_PATCH_SIZE;
2495 }
2496
2497 prog = image;
2498
2499 EMIT_ENDBR();
2500 /*
2501 * This is the direct-call trampoline, as such it needs accounting
2502 * for the __fentry__ call.
2503 */
2504 x86_call_depth_emit_accounting(&prog, NULL);
2505 EMIT1(0x55); /* push rbp */
2506 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2507 if (!is_imm8(stack_size))
2508 /* sub rsp, stack_size */
2509 EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
2510 else
2511 /* sub rsp, stack_size */
2512 EMIT4(0x48, 0x83, 0xEC, stack_size);
2513 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2514 EMIT1(0x50); /* push rax */
2515 /* mov QWORD PTR [rbp - rbx_off], rbx */
2516 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
2517
2518 /* Store number of argument registers of the traced function:
2519 * mov rax, nr_regs
2520 * mov QWORD PTR [rbp - nregs_off], rax
2521 */
2522 emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
2523 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
2524
2525 if (flags & BPF_TRAMP_F_IP_ARG) {
2526 /* Store IP address of the traced function:
2527 * movabsq rax, func_addr
2528 * mov QWORD PTR [rbp - ip_off], rax
2529 */
2530 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2531 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2532 }
2533
2534 save_args(m, &prog, regs_off, false);
2535
2536 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2537 /* arg1: mov rdi, im */
2538 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2539 if (emit_rsb_call(&prog, __bpf_tramp_enter, prog)) {
2540 ret = -EINVAL;
2541 goto cleanup;
2542 }
2543 }
2544
2545 if (fentry->nr_links)
2546 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2547 flags & BPF_TRAMP_F_RET_FENTRY_RET))
2548 return -EINVAL;
2549
2550 if (fmod_ret->nr_links) {
2551 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2552 GFP_KERNEL);
2553 if (!branches)
2554 return -ENOMEM;
2555
2556 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2557 run_ctx_off, branches)) {
2558 ret = -EINVAL;
2559 goto cleanup;
2560 }
2561 }
2562
2563 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2564 restore_regs(m, &prog, regs_off);
2565 save_args(m, &prog, arg_stack_off, true);
2566
2567 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2568 /* Before calling the original function, restore the
2569 * tail_call_cnt from stack to rax.
2570 */
2571 RESTORE_TAIL_CALL_CNT(stack_size);
2572
2573 if (flags & BPF_TRAMP_F_ORIG_STACK) {
2574 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
2575 EMIT2(0xff, 0xd3); /* call *rbx */
2576 } else {
2577 /* call original function */
2578 if (emit_rsb_call(&prog, orig_call, prog)) {
2579 ret = -EINVAL;
2580 goto cleanup;
2581 }
2582 }
2583 /* remember return value in a stack for bpf prog to access */
2584 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2585 im->ip_after_call = prog;
2586 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2587 prog += X86_PATCH_SIZE;
2588 }
2589
2590 if (fmod_ret->nr_links) {
2591 /* From Intel 64 and IA-32 Architectures Optimization
2592 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2593 * Coding Rule 11: All branch targets should be 16-byte
2594 * aligned.
2595 */
2596 emit_align(&prog, 16);
2597 /* Update the branches saved in invoke_bpf_mod_ret with the
2598 * aligned address of do_fexit.
2599 */
2600 for (i = 0; i < fmod_ret->nr_links; i++)
2601 emit_cond_near_jump(&branches[i], prog, branches[i],
2602 X86_JNE);
2603 }
2604
2605 if (fexit->nr_links)
2606 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false)) {
2607 ret = -EINVAL;
2608 goto cleanup;
2609 }
2610
2611 if (flags & BPF_TRAMP_F_RESTORE_REGS)
2612 restore_regs(m, &prog, regs_off);
2613
2614 /* This needs to be done regardless. If there were fmod_ret programs,
2615 * the return value is only updated on the stack and still needs to be
2616 * restored to R0.
2617 */
2618 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2619 im->ip_epilogue = prog;
2620 /* arg1: mov rdi, im */
2621 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2622 if (emit_rsb_call(&prog, __bpf_tramp_exit, prog)) {
2623 ret = -EINVAL;
2624 goto cleanup;
2625 }
2626 } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2627 /* Before running the original function, restore the
2628 * tail_call_cnt from stack to rax.
2629 */
2630 RESTORE_TAIL_CALL_CNT(stack_size);
2631
2632 /* restore return value of orig_call or fentry prog back into RAX */
2633 if (save_ret)
2634 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2635
2636 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
2637 EMIT1(0xC9); /* leave */
2638 if (flags & BPF_TRAMP_F_SKIP_FRAME)
2639 /* skip our return address and return to parent */
2640 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2641 emit_return(&prog, prog);
2642 /* Make sure the trampoline generation logic doesn't overflow */
2643 if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2644 ret = -EFAULT;
2645 goto cleanup;
2646 }
2647 ret = prog - (u8 *)image;
2648
2649 cleanup:
2650 kfree(branches);
2651 return ret;
2652 }
2653
emit_bpf_dispatcher(u8 ** pprog,int a,int b,s64 * progs,u8 * image,u8 * buf)2654 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2655 {
2656 u8 *jg_reloc, *prog = *pprog;
2657 int pivot, err, jg_bytes = 1;
2658 s64 jg_offset;
2659
2660 if (a == b) {
2661 /* Leaf node of recursion, i.e. not a range of indices
2662 * anymore.
2663 */
2664 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
2665 if (!is_simm32(progs[a]))
2666 return -1;
2667 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2668 progs[a]);
2669 err = emit_cond_near_jump(&prog, /* je func */
2670 (void *)progs[a], image + (prog - buf),
2671 X86_JE);
2672 if (err)
2673 return err;
2674
2675 emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
2676
2677 *pprog = prog;
2678 return 0;
2679 }
2680
2681 /* Not a leaf node, so we pivot, and recursively descend into
2682 * the lower and upper ranges.
2683 */
2684 pivot = (b - a) / 2;
2685 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
2686 if (!is_simm32(progs[a + pivot]))
2687 return -1;
2688 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2689
2690 if (pivot > 2) { /* jg upper_part */
2691 /* Require near jump. */
2692 jg_bytes = 4;
2693 EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2694 } else {
2695 EMIT2(X86_JG, 0);
2696 }
2697 jg_reloc = prog;
2698
2699 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */
2700 progs, image, buf);
2701 if (err)
2702 return err;
2703
2704 /* From Intel 64 and IA-32 Architectures Optimization
2705 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2706 * Coding Rule 11: All branch targets should be 16-byte
2707 * aligned.
2708 */
2709 emit_align(&prog, 16);
2710 jg_offset = prog - jg_reloc;
2711 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2712
2713 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
2714 b, progs, image, buf);
2715 if (err)
2716 return err;
2717
2718 *pprog = prog;
2719 return 0;
2720 }
2721
cmp_ips(const void * a,const void * b)2722 static int cmp_ips(const void *a, const void *b)
2723 {
2724 const s64 *ipa = a;
2725 const s64 *ipb = b;
2726
2727 if (*ipa > *ipb)
2728 return 1;
2729 if (*ipa < *ipb)
2730 return -1;
2731 return 0;
2732 }
2733
arch_prepare_bpf_dispatcher(void * image,void * buf,s64 * funcs,int num_funcs)2734 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2735 {
2736 u8 *prog = buf;
2737
2738 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2739 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
2740 }
2741
2742 struct x64_jit_data {
2743 struct bpf_binary_header *rw_header;
2744 struct bpf_binary_header *header;
2745 int *addrs;
2746 u8 *image;
2747 int proglen;
2748 struct jit_context ctx;
2749 };
2750
2751 #define MAX_PASSES 20
2752 #define PADDING_PASSES (MAX_PASSES - 5)
2753
bpf_int_jit_compile(struct bpf_prog * prog)2754 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2755 {
2756 struct bpf_binary_header *rw_header = NULL;
2757 struct bpf_binary_header *header = NULL;
2758 struct bpf_prog *tmp, *orig_prog = prog;
2759 struct x64_jit_data *jit_data;
2760 int proglen, oldproglen = 0;
2761 struct jit_context ctx = {};
2762 bool tmp_blinded = false;
2763 bool extra_pass = false;
2764 bool padding = false;
2765 u8 *rw_image = NULL;
2766 u8 *image = NULL;
2767 int *addrs;
2768 int pass;
2769 int i;
2770
2771 if (!prog->jit_requested)
2772 return orig_prog;
2773
2774 tmp = bpf_jit_blind_constants(prog);
2775 /*
2776 * If blinding was requested and we failed during blinding,
2777 * we must fall back to the interpreter.
2778 */
2779 if (IS_ERR(tmp))
2780 return orig_prog;
2781 if (tmp != prog) {
2782 tmp_blinded = true;
2783 prog = tmp;
2784 }
2785
2786 jit_data = prog->aux->jit_data;
2787 if (!jit_data) {
2788 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2789 if (!jit_data) {
2790 prog = orig_prog;
2791 goto out;
2792 }
2793 prog->aux->jit_data = jit_data;
2794 }
2795 addrs = jit_data->addrs;
2796 if (addrs) {
2797 ctx = jit_data->ctx;
2798 oldproglen = jit_data->proglen;
2799 image = jit_data->image;
2800 header = jit_data->header;
2801 rw_header = jit_data->rw_header;
2802 rw_image = (void *)rw_header + ((void *)image - (void *)header);
2803 extra_pass = true;
2804 padding = true;
2805 goto skip_init_addrs;
2806 }
2807 addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2808 if (!addrs) {
2809 prog = orig_prog;
2810 goto out_addrs;
2811 }
2812
2813 /*
2814 * Before first pass, make a rough estimation of addrs[]
2815 * each BPF instruction is translated to less than 64 bytes
2816 */
2817 for (proglen = 0, i = 0; i <= prog->len; i++) {
2818 proglen += 64;
2819 addrs[i] = proglen;
2820 }
2821 ctx.cleanup_addr = proglen;
2822 skip_init_addrs:
2823
2824 /*
2825 * JITed image shrinks with every pass and the loop iterates
2826 * until the image stops shrinking. Very large BPF programs
2827 * may converge on the last pass. In such case do one more
2828 * pass to emit the final image.
2829 */
2830 for (pass = 0; pass < MAX_PASSES || image; pass++) {
2831 if (!padding && pass >= PADDING_PASSES)
2832 padding = true;
2833 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
2834 if (proglen <= 0) {
2835 out_image:
2836 image = NULL;
2837 if (header) {
2838 bpf_arch_text_copy(&header->size, &rw_header->size,
2839 sizeof(rw_header->size));
2840 bpf_jit_binary_pack_free(header, rw_header);
2841 }
2842 /* Fall back to interpreter mode */
2843 prog = orig_prog;
2844 if (extra_pass) {
2845 prog->bpf_func = NULL;
2846 prog->jited = 0;
2847 prog->jited_len = 0;
2848 }
2849 goto out_addrs;
2850 }
2851 if (image) {
2852 if (proglen != oldproglen) {
2853 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2854 proglen, oldproglen);
2855 goto out_image;
2856 }
2857 break;
2858 }
2859 if (proglen == oldproglen) {
2860 /*
2861 * The number of entries in extable is the number of BPF_LDX
2862 * insns that access kernel memory via "pointer to BTF type".
2863 * The verifier changed their opcode from LDX|MEM|size
2864 * to LDX|PROBE_MEM|size to make JITing easier.
2865 */
2866 u32 align = __alignof__(struct exception_table_entry);
2867 u32 extable_size = prog->aux->num_exentries *
2868 sizeof(struct exception_table_entry);
2869
2870 /* allocate module memory for x86 insns and extable */
2871 header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
2872 &image, align, &rw_header, &rw_image,
2873 jit_fill_hole);
2874 if (!header) {
2875 prog = orig_prog;
2876 goto out_addrs;
2877 }
2878 prog->aux->extable = (void *) image + roundup(proglen, align);
2879 }
2880 oldproglen = proglen;
2881 cond_resched();
2882 }
2883
2884 if (bpf_jit_enable > 1)
2885 bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
2886
2887 if (image) {
2888 if (!prog->is_func || extra_pass) {
2889 /*
2890 * bpf_jit_binary_pack_finalize fails in two scenarios:
2891 * 1) header is not pointing to proper module memory;
2892 * 2) the arch doesn't support bpf_arch_text_copy().
2893 *
2894 * Both cases are serious bugs and justify WARN_ON.
2895 */
2896 if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
2897 /* header has been freed */
2898 header = NULL;
2899 goto out_image;
2900 }
2901
2902 bpf_tail_call_direct_fixup(prog);
2903 } else {
2904 jit_data->addrs = addrs;
2905 jit_data->ctx = ctx;
2906 jit_data->proglen = proglen;
2907 jit_data->image = image;
2908 jit_data->header = header;
2909 jit_data->rw_header = rw_header;
2910 }
2911 prog->bpf_func = (void *)image;
2912 prog->jited = 1;
2913 prog->jited_len = proglen;
2914 } else {
2915 prog = orig_prog;
2916 }
2917
2918 if (!image || !prog->is_func || extra_pass) {
2919 if (image)
2920 bpf_prog_fill_jited_linfo(prog, addrs + 1);
2921 out_addrs:
2922 kvfree(addrs);
2923 kfree(jit_data);
2924 prog->aux->jit_data = NULL;
2925 }
2926 out:
2927 if (tmp_blinded)
2928 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2929 tmp : orig_prog);
2930 return prog;
2931 }
2932
bpf_jit_supports_kfunc_call(void)2933 bool bpf_jit_supports_kfunc_call(void)
2934 {
2935 return true;
2936 }
2937
bpf_arch_text_copy(void * dst,void * src,size_t len)2938 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2939 {
2940 if (text_poke_copy(dst, src, len) == NULL)
2941 return ERR_PTR(-EINVAL);
2942 return dst;
2943 }
2944
2945 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
bpf_jit_supports_subprog_tailcalls(void)2946 bool bpf_jit_supports_subprog_tailcalls(void)
2947 {
2948 return true;
2949 }
2950
bpf_jit_free(struct bpf_prog * prog)2951 void bpf_jit_free(struct bpf_prog *prog)
2952 {
2953 if (prog->jited) {
2954 struct x64_jit_data *jit_data = prog->aux->jit_data;
2955 struct bpf_binary_header *hdr;
2956
2957 /*
2958 * If we fail the final pass of JIT (from jit_subprogs),
2959 * the program may not be finalized yet. Call finalize here
2960 * before freeing it.
2961 */
2962 if (jit_data) {
2963 bpf_jit_binary_pack_finalize(prog, jit_data->header,
2964 jit_data->rw_header);
2965 kvfree(jit_data->addrs);
2966 kfree(jit_data);
2967 }
2968 hdr = bpf_jit_binary_pack_hdr(prog);
2969 bpf_jit_binary_pack_free(hdr, NULL);
2970 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2971 }
2972
2973 bpf_prog_unlock_free(prog);
2974 }
2975
bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor * poke,struct bpf_prog * new,struct bpf_prog * old)2976 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
2977 struct bpf_prog *new, struct bpf_prog *old)
2978 {
2979 u8 *old_addr, *new_addr, *old_bypass_addr;
2980 int ret;
2981
2982 old_bypass_addr = old ? NULL : poke->bypass_addr;
2983 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
2984 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
2985
2986 /*
2987 * On program loading or teardown, the program's kallsym entry
2988 * might not be in place, so we use __bpf_arch_text_poke to skip
2989 * the kallsyms check.
2990 */
2991 if (new) {
2992 ret = __bpf_arch_text_poke(poke->tailcall_target,
2993 BPF_MOD_JUMP,
2994 old_addr, new_addr);
2995 BUG_ON(ret < 0);
2996 if (!old) {
2997 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
2998 BPF_MOD_JUMP,
2999 poke->bypass_addr,
3000 NULL);
3001 BUG_ON(ret < 0);
3002 }
3003 } else {
3004 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3005 BPF_MOD_JUMP,
3006 old_bypass_addr,
3007 poke->bypass_addr);
3008 BUG_ON(ret < 0);
3009 /* let other CPUs finish the execution of program
3010 * so that it will not possible to expose them
3011 * to invalid nop, stack unwind, nop state
3012 */
3013 if (!ret)
3014 synchronize_rcu();
3015 ret = __bpf_arch_text_poke(poke->tailcall_target,
3016 BPF_MOD_JUMP,
3017 old_addr, NULL);
3018 BUG_ON(ret < 0);
3019 }
3020 }
3021