1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include "net_driver.h"
12 #include <linux/filter.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <net/gre.h>
16 #include "efx_common.h"
17 #include "efx_channels.h"
18 #include "efx.h"
19 #include "mcdi.h"
20 #include "selftest.h"
21 #include "rx_common.h"
22 #include "tx_common.h"
23 #include "nic.h"
24 #include "mcdi_port_common.h"
25 #include "io.h"
26 #include "mcdi_pcol.h"
27
28 static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
29 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
30 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
31 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
32 module_param(debug, uint, 0);
33 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
34
35 /* This is the time (in jiffies) between invocations of the hardware
36 * monitor.
37 * On Falcon-based NICs, this will:
38 * - Check the on-board hardware monitor;
39 * - Poll the link state and reconfigure the hardware as necessary.
40 * On Siena-based NICs for power systems with EEH support, this will give EEH a
41 * chance to start.
42 */
43 static unsigned int efx_monitor_interval = 1 * HZ;
44
45 /* How often and how many times to poll for a reset while waiting for a
46 * BIST that another function started to complete.
47 */
48 #define BIST_WAIT_DELAY_MS 100
49 #define BIST_WAIT_DELAY_COUNT 100
50
51 /* Default stats update time */
52 #define STATS_PERIOD_MS_DEFAULT 1000
53
54 static const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
55 static const char *const efx_reset_type_names[] = {
56 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
57 [RESET_TYPE_ALL] = "ALL",
58 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
59 [RESET_TYPE_WORLD] = "WORLD",
60 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
61 [RESET_TYPE_DATAPATH] = "DATAPATH",
62 [RESET_TYPE_MC_BIST] = "MC_BIST",
63 [RESET_TYPE_DISABLE] = "DISABLE",
64 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
65 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
66 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
67 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
68 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
69 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)",
70 };
71
72 #define RESET_TYPE(type) \
73 STRING_TABLE_LOOKUP(type, efx_reset_type)
74
75 /* Loopback mode names (see LOOPBACK_MODE()) */
76 const unsigned int efx_siena_loopback_mode_max = LOOPBACK_MAX;
77 const char *const efx_siena_loopback_mode_names[] = {
78 [LOOPBACK_NONE] = "NONE",
79 [LOOPBACK_DATA] = "DATAPATH",
80 [LOOPBACK_GMAC] = "GMAC",
81 [LOOPBACK_XGMII] = "XGMII",
82 [LOOPBACK_XGXS] = "XGXS",
83 [LOOPBACK_XAUI] = "XAUI",
84 [LOOPBACK_GMII] = "GMII",
85 [LOOPBACK_SGMII] = "SGMII",
86 [LOOPBACK_XGBR] = "XGBR",
87 [LOOPBACK_XFI] = "XFI",
88 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
89 [LOOPBACK_GMII_FAR] = "GMII_FAR",
90 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
91 [LOOPBACK_XFI_FAR] = "XFI_FAR",
92 [LOOPBACK_GPHY] = "GPHY",
93 [LOOPBACK_PHYXS] = "PHYXS",
94 [LOOPBACK_PCS] = "PCS",
95 [LOOPBACK_PMAPMD] = "PMA/PMD",
96 [LOOPBACK_XPORT] = "XPORT",
97 [LOOPBACK_XGMII_WS] = "XGMII_WS",
98 [LOOPBACK_XAUI_WS] = "XAUI_WS",
99 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
100 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
101 [LOOPBACK_GMII_WS] = "GMII_WS",
102 [LOOPBACK_XFI_WS] = "XFI_WS",
103 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
104 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
105 };
106
107 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
108 * queued onto this work queue. This is not a per-nic work queue, because
109 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
110 */
111 static struct workqueue_struct *reset_workqueue;
112
efx_siena_create_reset_workqueue(void)113 int efx_siena_create_reset_workqueue(void)
114 {
115 reset_workqueue = create_singlethread_workqueue("sfc_siena_reset");
116 if (!reset_workqueue) {
117 printk(KERN_ERR "Failed to create reset workqueue\n");
118 return -ENOMEM;
119 }
120
121 return 0;
122 }
123
efx_siena_queue_reset_work(struct efx_nic * efx)124 void efx_siena_queue_reset_work(struct efx_nic *efx)
125 {
126 queue_work(reset_workqueue, &efx->reset_work);
127 }
128
efx_siena_flush_reset_workqueue(struct efx_nic * efx)129 void efx_siena_flush_reset_workqueue(struct efx_nic *efx)
130 {
131 cancel_work_sync(&efx->reset_work);
132 }
133
efx_siena_destroy_reset_workqueue(void)134 void efx_siena_destroy_reset_workqueue(void)
135 {
136 if (reset_workqueue) {
137 destroy_workqueue(reset_workqueue);
138 reset_workqueue = NULL;
139 }
140 }
141
142 /* We assume that efx->type->reconfigure_mac will always try to sync RX
143 * filters and therefore needs to read-lock the filter table against freeing
144 */
efx_siena_mac_reconfigure(struct efx_nic * efx,bool mtu_only)145 void efx_siena_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
146 {
147 if (efx->type->reconfigure_mac) {
148 down_read(&efx->filter_sem);
149 efx->type->reconfigure_mac(efx, mtu_only);
150 up_read(&efx->filter_sem);
151 }
152 }
153
154 /* Asynchronous work item for changing MAC promiscuity and multicast
155 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
156 * MAC directly.
157 */
efx_mac_work(struct work_struct * data)158 static void efx_mac_work(struct work_struct *data)
159 {
160 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
161
162 mutex_lock(&efx->mac_lock);
163 if (efx->port_enabled)
164 efx_siena_mac_reconfigure(efx, false);
165 mutex_unlock(&efx->mac_lock);
166 }
167
efx_siena_set_mac_address(struct net_device * net_dev,void * data)168 int efx_siena_set_mac_address(struct net_device *net_dev, void *data)
169 {
170 struct efx_nic *efx = netdev_priv(net_dev);
171 struct sockaddr *addr = data;
172 u8 *new_addr = addr->sa_data;
173 u8 old_addr[6];
174 int rc;
175
176 if (!is_valid_ether_addr(new_addr)) {
177 netif_err(efx, drv, efx->net_dev,
178 "invalid ethernet MAC address requested: %pM\n",
179 new_addr);
180 return -EADDRNOTAVAIL;
181 }
182
183 /* save old address */
184 ether_addr_copy(old_addr, net_dev->dev_addr);
185 eth_hw_addr_set(net_dev, new_addr);
186 if (efx->type->set_mac_address) {
187 rc = efx->type->set_mac_address(efx);
188 if (rc) {
189 eth_hw_addr_set(net_dev, old_addr);
190 return rc;
191 }
192 }
193
194 /* Reconfigure the MAC */
195 mutex_lock(&efx->mac_lock);
196 efx_siena_mac_reconfigure(efx, false);
197 mutex_unlock(&efx->mac_lock);
198
199 return 0;
200 }
201
202 /* Context: netif_addr_lock held, BHs disabled. */
efx_siena_set_rx_mode(struct net_device * net_dev)203 void efx_siena_set_rx_mode(struct net_device *net_dev)
204 {
205 struct efx_nic *efx = netdev_priv(net_dev);
206
207 if (efx->port_enabled)
208 queue_work(efx->workqueue, &efx->mac_work);
209 /* Otherwise efx_start_port() will do this */
210 }
211
efx_siena_set_features(struct net_device * net_dev,netdev_features_t data)212 int efx_siena_set_features(struct net_device *net_dev, netdev_features_t data)
213 {
214 struct efx_nic *efx = netdev_priv(net_dev);
215 int rc;
216
217 /* If disabling RX n-tuple filtering, clear existing filters */
218 if (net_dev->features & ~data & NETIF_F_NTUPLE) {
219 rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
220 if (rc)
221 return rc;
222 }
223
224 /* If Rx VLAN filter is changed, update filters via mac_reconfigure.
225 * If rx-fcs is changed, mac_reconfigure updates that too.
226 */
227 if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
228 NETIF_F_RXFCS)) {
229 /* efx_siena_set_rx_mode() will schedule MAC work to update filters
230 * when a new features are finally set in net_dev.
231 */
232 efx_siena_set_rx_mode(net_dev);
233 }
234
235 return 0;
236 }
237
238 /* This ensures that the kernel is kept informed (via
239 * netif_carrier_on/off) of the link status, and also maintains the
240 * link status's stop on the port's TX queue.
241 */
efx_siena_link_status_changed(struct efx_nic * efx)242 void efx_siena_link_status_changed(struct efx_nic *efx)
243 {
244 struct efx_link_state *link_state = &efx->link_state;
245
246 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
247 * that no events are triggered between unregister_netdev() and the
248 * driver unloading. A more general condition is that NETDEV_CHANGE
249 * can only be generated between NETDEV_UP and NETDEV_DOWN
250 */
251 if (!netif_running(efx->net_dev))
252 return;
253
254 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
255 efx->n_link_state_changes++;
256
257 if (link_state->up)
258 netif_carrier_on(efx->net_dev);
259 else
260 netif_carrier_off(efx->net_dev);
261 }
262
263 /* Status message for kernel log */
264 if (link_state->up)
265 netif_info(efx, link, efx->net_dev,
266 "link up at %uMbps %s-duplex (MTU %d)\n",
267 link_state->speed, link_state->fd ? "full" : "half",
268 efx->net_dev->mtu);
269 else
270 netif_info(efx, link, efx->net_dev, "link down\n");
271 }
272
efx_siena_xdp_max_mtu(struct efx_nic * efx)273 unsigned int efx_siena_xdp_max_mtu(struct efx_nic *efx)
274 {
275 /* The maximum MTU that we can fit in a single page, allowing for
276 * framing, overhead and XDP headroom + tailroom.
277 */
278 int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) +
279 efx->rx_prefix_size + efx->type->rx_buffer_padding +
280 efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM;
281
282 return PAGE_SIZE - overhead;
283 }
284
285 /* Context: process, rtnl_lock() held. */
efx_siena_change_mtu(struct net_device * net_dev,int new_mtu)286 int efx_siena_change_mtu(struct net_device *net_dev, int new_mtu)
287 {
288 struct efx_nic *efx = netdev_priv(net_dev);
289 int rc;
290
291 rc = efx_check_disabled(efx);
292 if (rc)
293 return rc;
294
295 if (rtnl_dereference(efx->xdp_prog) &&
296 new_mtu > efx_siena_xdp_max_mtu(efx)) {
297 netif_err(efx, drv, efx->net_dev,
298 "Requested MTU of %d too big for XDP (max: %d)\n",
299 new_mtu, efx_siena_xdp_max_mtu(efx));
300 return -EINVAL;
301 }
302
303 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
304
305 efx_device_detach_sync(efx);
306 efx_siena_stop_all(efx);
307
308 mutex_lock(&efx->mac_lock);
309 net_dev->mtu = new_mtu;
310 efx_siena_mac_reconfigure(efx, true);
311 mutex_unlock(&efx->mac_lock);
312
313 efx_siena_start_all(efx);
314 efx_device_attach_if_not_resetting(efx);
315 return 0;
316 }
317
318 /**************************************************************************
319 *
320 * Hardware monitor
321 *
322 **************************************************************************/
323
324 /* Run periodically off the general workqueue */
efx_monitor(struct work_struct * data)325 static void efx_monitor(struct work_struct *data)
326 {
327 struct efx_nic *efx = container_of(data, struct efx_nic,
328 monitor_work.work);
329
330 netif_vdbg(efx, timer, efx->net_dev,
331 "hardware monitor executing on CPU %d\n",
332 raw_smp_processor_id());
333 BUG_ON(efx->type->monitor == NULL);
334
335 /* If the mac_lock is already held then it is likely a port
336 * reconfiguration is already in place, which will likely do
337 * most of the work of monitor() anyway.
338 */
339 if (mutex_trylock(&efx->mac_lock)) {
340 if (efx->port_enabled && efx->type->monitor)
341 efx->type->monitor(efx);
342 mutex_unlock(&efx->mac_lock);
343 }
344
345 efx_siena_start_monitor(efx);
346 }
347
efx_siena_start_monitor(struct efx_nic * efx)348 void efx_siena_start_monitor(struct efx_nic *efx)
349 {
350 if (efx->type->monitor)
351 queue_delayed_work(efx->workqueue, &efx->monitor_work,
352 efx_monitor_interval);
353 }
354
355 /**************************************************************************
356 *
357 * Event queue processing
358 *
359 *************************************************************************/
360
361 /* Channels are shutdown and reinitialised whilst the NIC is running
362 * to propagate configuration changes (mtu, checksum offload), or
363 * to clear hardware error conditions
364 */
efx_start_datapath(struct efx_nic * efx)365 static void efx_start_datapath(struct efx_nic *efx)
366 {
367 netdev_features_t old_features = efx->net_dev->features;
368 bool old_rx_scatter = efx->rx_scatter;
369 size_t rx_buf_len;
370
371 /* Calculate the rx buffer allocation parameters required to
372 * support the current MTU, including padding for header
373 * alignment and overruns.
374 */
375 efx->rx_dma_len = (efx->rx_prefix_size +
376 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
377 efx->type->rx_buffer_padding);
378 rx_buf_len = (sizeof(struct efx_rx_page_state) + EFX_XDP_HEADROOM +
379 efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM);
380
381 if (rx_buf_len <= PAGE_SIZE) {
382 efx->rx_scatter = efx->type->always_rx_scatter;
383 efx->rx_buffer_order = 0;
384 } else if (efx->type->can_rx_scatter) {
385 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
386 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
387 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
388 EFX_RX_BUF_ALIGNMENT) >
389 PAGE_SIZE);
390 efx->rx_scatter = true;
391 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
392 efx->rx_buffer_order = 0;
393 } else {
394 efx->rx_scatter = false;
395 efx->rx_buffer_order = get_order(rx_buf_len);
396 }
397
398 efx_siena_rx_config_page_split(efx);
399 if (efx->rx_buffer_order)
400 netif_dbg(efx, drv, efx->net_dev,
401 "RX buf len=%u; page order=%u batch=%u\n",
402 efx->rx_dma_len, efx->rx_buffer_order,
403 efx->rx_pages_per_batch);
404 else
405 netif_dbg(efx, drv, efx->net_dev,
406 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
407 efx->rx_dma_len, efx->rx_page_buf_step,
408 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
409
410 /* Restore previously fixed features in hw_features and remove
411 * features which are fixed now
412 */
413 efx->net_dev->hw_features |= efx->net_dev->features;
414 efx->net_dev->hw_features &= ~efx->fixed_features;
415 efx->net_dev->features |= efx->fixed_features;
416 if (efx->net_dev->features != old_features)
417 netdev_features_change(efx->net_dev);
418
419 /* RX filters may also have scatter-enabled flags */
420 if ((efx->rx_scatter != old_rx_scatter) &&
421 efx->type->filter_update_rx_scatter)
422 efx->type->filter_update_rx_scatter(efx);
423
424 /* We must keep at least one descriptor in a TX ring empty.
425 * We could avoid this when the queue size does not exactly
426 * match the hardware ring size, but it's not that important.
427 * Therefore we stop the queue when one more skb might fill
428 * the ring completely. We wake it when half way back to
429 * empty.
430 */
431 efx->txq_stop_thresh = efx->txq_entries - efx_siena_tx_max_skb_descs(efx);
432 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
433
434 /* Initialise the channels */
435 efx_siena_start_channels(efx);
436
437 efx_siena_ptp_start_datapath(efx);
438
439 if (netif_device_present(efx->net_dev))
440 netif_tx_wake_all_queues(efx->net_dev);
441 }
442
efx_stop_datapath(struct efx_nic * efx)443 static void efx_stop_datapath(struct efx_nic *efx)
444 {
445 EFX_ASSERT_RESET_SERIALISED(efx);
446 BUG_ON(efx->port_enabled);
447
448 efx_siena_ptp_stop_datapath(efx);
449
450 efx_siena_stop_channels(efx);
451 }
452
453 /**************************************************************************
454 *
455 * Port handling
456 *
457 **************************************************************************/
458
459 /* Equivalent to efx_siena_link_set_advertising with all-zeroes, except does not
460 * force the Autoneg bit on.
461 */
efx_siena_link_clear_advertising(struct efx_nic * efx)462 void efx_siena_link_clear_advertising(struct efx_nic *efx)
463 {
464 bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
465 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
466 }
467
efx_siena_link_set_wanted_fc(struct efx_nic * efx,u8 wanted_fc)468 void efx_siena_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
469 {
470 efx->wanted_fc = wanted_fc;
471 if (efx->link_advertising[0]) {
472 if (wanted_fc & EFX_FC_RX)
473 efx->link_advertising[0] |= (ADVERTISED_Pause |
474 ADVERTISED_Asym_Pause);
475 else
476 efx->link_advertising[0] &= ~(ADVERTISED_Pause |
477 ADVERTISED_Asym_Pause);
478 if (wanted_fc & EFX_FC_TX)
479 efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
480 }
481 }
482
efx_start_port(struct efx_nic * efx)483 static void efx_start_port(struct efx_nic *efx)
484 {
485 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
486 BUG_ON(efx->port_enabled);
487
488 mutex_lock(&efx->mac_lock);
489 efx->port_enabled = true;
490
491 /* Ensure MAC ingress/egress is enabled */
492 efx_siena_mac_reconfigure(efx, false);
493
494 mutex_unlock(&efx->mac_lock);
495 }
496
497 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
498 * and the async self-test, wait for them to finish and prevent them
499 * being scheduled again. This doesn't cover online resets, which
500 * should only be cancelled when removing the device.
501 */
efx_stop_port(struct efx_nic * efx)502 static void efx_stop_port(struct efx_nic *efx)
503 {
504 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
505
506 EFX_ASSERT_RESET_SERIALISED(efx);
507
508 mutex_lock(&efx->mac_lock);
509 efx->port_enabled = false;
510 mutex_unlock(&efx->mac_lock);
511
512 /* Serialise against efx_set_multicast_list() */
513 netif_addr_lock_bh(efx->net_dev);
514 netif_addr_unlock_bh(efx->net_dev);
515
516 cancel_delayed_work_sync(&efx->monitor_work);
517 efx_siena_selftest_async_cancel(efx);
518 cancel_work_sync(&efx->mac_work);
519 }
520
521 /* If the interface is supposed to be running but is not, start
522 * the hardware and software data path, regular activity for the port
523 * (MAC statistics, link polling, etc.) and schedule the port to be
524 * reconfigured. Interrupts must already be enabled. This function
525 * is safe to call multiple times, so long as the NIC is not disabled.
526 * Requires the RTNL lock.
527 */
efx_siena_start_all(struct efx_nic * efx)528 void efx_siena_start_all(struct efx_nic *efx)
529 {
530 EFX_ASSERT_RESET_SERIALISED(efx);
531 BUG_ON(efx->state == STATE_DISABLED);
532
533 /* Check that it is appropriate to restart the interface. All
534 * of these flags are safe to read under just the rtnl lock
535 */
536 if (efx->port_enabled || !netif_running(efx->net_dev) ||
537 efx->reset_pending)
538 return;
539
540 efx_start_port(efx);
541 efx_start_datapath(efx);
542
543 /* Start the hardware monitor if there is one */
544 efx_siena_start_monitor(efx);
545
546 /* Link state detection is normally event-driven; we have
547 * to poll now because we could have missed a change
548 */
549 mutex_lock(&efx->mac_lock);
550 if (efx_siena_mcdi_phy_poll(efx))
551 efx_siena_link_status_changed(efx);
552 mutex_unlock(&efx->mac_lock);
553
554 if (efx->type->start_stats) {
555 efx->type->start_stats(efx);
556 efx->type->pull_stats(efx);
557 spin_lock_bh(&efx->stats_lock);
558 efx->type->update_stats(efx, NULL, NULL);
559 spin_unlock_bh(&efx->stats_lock);
560 }
561 }
562
563 /* Quiesce the hardware and software data path, and regular activity
564 * for the port without bringing the link down. Safe to call multiple
565 * times with the NIC in almost any state, but interrupts should be
566 * enabled. Requires the RTNL lock.
567 */
efx_siena_stop_all(struct efx_nic * efx)568 void efx_siena_stop_all(struct efx_nic *efx)
569 {
570 EFX_ASSERT_RESET_SERIALISED(efx);
571
572 /* port_enabled can be read safely under the rtnl lock */
573 if (!efx->port_enabled)
574 return;
575
576 if (efx->type->update_stats) {
577 /* update stats before we go down so we can accurately count
578 * rx_nodesc_drops
579 */
580 efx->type->pull_stats(efx);
581 spin_lock_bh(&efx->stats_lock);
582 efx->type->update_stats(efx, NULL, NULL);
583 spin_unlock_bh(&efx->stats_lock);
584 efx->type->stop_stats(efx);
585 }
586
587 efx_stop_port(efx);
588
589 /* Stop the kernel transmit interface. This is only valid if
590 * the device is stopped or detached; otherwise the watchdog
591 * may fire immediately.
592 */
593 WARN_ON(netif_running(efx->net_dev) &&
594 netif_device_present(efx->net_dev));
595 netif_tx_disable(efx->net_dev);
596
597 efx_stop_datapath(efx);
598 }
599
efx_siena_update_stats_atomic(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)600 static size_t efx_siena_update_stats_atomic(struct efx_nic *efx, u64 *full_stats,
601 struct rtnl_link_stats64 *core_stats)
602 {
603 if (efx->type->update_stats_atomic)
604 return efx->type->update_stats_atomic(efx, full_stats, core_stats);
605 return efx->type->update_stats(efx, full_stats, core_stats);
606 }
607
608 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
efx_siena_net_stats(struct net_device * net_dev,struct rtnl_link_stats64 * stats)609 void efx_siena_net_stats(struct net_device *net_dev,
610 struct rtnl_link_stats64 *stats)
611 {
612 struct efx_nic *efx = netdev_priv(net_dev);
613
614 spin_lock_bh(&efx->stats_lock);
615 efx_siena_update_stats_atomic(efx, NULL, stats);
616 spin_unlock_bh(&efx->stats_lock);
617 }
618
619 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
620 * the MAC appropriately. All other PHY configuration changes are pushed
621 * through phy_op->set_settings(), and pushed asynchronously to the MAC
622 * through efx_monitor().
623 *
624 * Callers must hold the mac_lock
625 */
__efx_siena_reconfigure_port(struct efx_nic * efx)626 int __efx_siena_reconfigure_port(struct efx_nic *efx)
627 {
628 enum efx_phy_mode phy_mode;
629 int rc = 0;
630
631 WARN_ON(!mutex_is_locked(&efx->mac_lock));
632
633 /* Disable PHY transmit in mac level loopbacks */
634 phy_mode = efx->phy_mode;
635 if (LOOPBACK_INTERNAL(efx))
636 efx->phy_mode |= PHY_MODE_TX_DISABLED;
637 else
638 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
639
640 if (efx->type->reconfigure_port)
641 rc = efx->type->reconfigure_port(efx);
642
643 if (rc)
644 efx->phy_mode = phy_mode;
645
646 return rc;
647 }
648
649 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
650 * disabled.
651 */
efx_siena_reconfigure_port(struct efx_nic * efx)652 int efx_siena_reconfigure_port(struct efx_nic *efx)
653 {
654 int rc;
655
656 EFX_ASSERT_RESET_SERIALISED(efx);
657
658 mutex_lock(&efx->mac_lock);
659 rc = __efx_siena_reconfigure_port(efx);
660 mutex_unlock(&efx->mac_lock);
661
662 return rc;
663 }
664
665 /**************************************************************************
666 *
667 * Device reset and suspend
668 *
669 **************************************************************************/
670
efx_wait_for_bist_end(struct efx_nic * efx)671 static void efx_wait_for_bist_end(struct efx_nic *efx)
672 {
673 int i;
674
675 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
676 if (efx_siena_mcdi_poll_reboot(efx))
677 goto out;
678 msleep(BIST_WAIT_DELAY_MS);
679 }
680
681 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
682 out:
683 /* Either way unset the BIST flag. If we found no reboot we probably
684 * won't recover, but we should try.
685 */
686 efx->mc_bist_for_other_fn = false;
687 }
688
689 /* Try recovery mechanisms.
690 * For now only EEH is supported.
691 * Returns 0 if the recovery mechanisms are unsuccessful.
692 * Returns a non-zero value otherwise.
693 */
efx_siena_try_recovery(struct efx_nic * efx)694 int efx_siena_try_recovery(struct efx_nic *efx)
695 {
696 #ifdef CONFIG_EEH
697 /* A PCI error can occur and not be seen by EEH because nothing
698 * happens on the PCI bus. In this case the driver may fail and
699 * schedule a 'recover or reset', leading to this recovery handler.
700 * Manually call the eeh failure check function.
701 */
702 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
703 if (eeh_dev_check_failure(eehdev)) {
704 /* The EEH mechanisms will handle the error and reset the
705 * device if necessary.
706 */
707 return 1;
708 }
709 #endif
710 return 0;
711 }
712
713 /* Tears down the entire software state and most of the hardware state
714 * before reset.
715 */
efx_siena_reset_down(struct efx_nic * efx,enum reset_type method)716 void efx_siena_reset_down(struct efx_nic *efx, enum reset_type method)
717 {
718 EFX_ASSERT_RESET_SERIALISED(efx);
719
720 if (method == RESET_TYPE_MCDI_TIMEOUT)
721 efx->type->prepare_flr(efx);
722
723 efx_siena_stop_all(efx);
724 efx_siena_disable_interrupts(efx);
725
726 mutex_lock(&efx->mac_lock);
727 down_write(&efx->filter_sem);
728 mutex_lock(&efx->rss_lock);
729 efx->type->fini(efx);
730 }
731
732 /* Context: netif_tx_lock held, BHs disabled. */
efx_siena_watchdog(struct net_device * net_dev,unsigned int txqueue)733 void efx_siena_watchdog(struct net_device *net_dev, unsigned int txqueue)
734 {
735 struct efx_nic *efx = netdev_priv(net_dev);
736
737 netif_err(efx, tx_err, efx->net_dev,
738 "TX stuck with port_enabled=%d: resetting channels\n",
739 efx->port_enabled);
740
741 efx_siena_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
742 }
743
744 /* This function will always ensure that the locks acquired in
745 * efx_siena_reset_down() are released. A failure return code indicates
746 * that we were unable to reinitialise the hardware, and the
747 * driver should be disabled. If ok is false, then the rx and tx
748 * engines are not restarted, pending a RESET_DISABLE.
749 */
efx_siena_reset_up(struct efx_nic * efx,enum reset_type method,bool ok)750 int efx_siena_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
751 {
752 int rc;
753
754 EFX_ASSERT_RESET_SERIALISED(efx);
755
756 if (method == RESET_TYPE_MCDI_TIMEOUT)
757 efx->type->finish_flr(efx);
758
759 /* Ensure that SRAM is initialised even if we're disabling the device */
760 rc = efx->type->init(efx);
761 if (rc) {
762 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
763 goto fail;
764 }
765
766 if (!ok)
767 goto fail;
768
769 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
770 method != RESET_TYPE_DATAPATH) {
771 rc = efx_siena_mcdi_port_reconfigure(efx);
772 if (rc && rc != -EPERM)
773 netif_err(efx, drv, efx->net_dev,
774 "could not restore PHY settings\n");
775 }
776
777 rc = efx_siena_enable_interrupts(efx);
778 if (rc)
779 goto fail;
780
781 #ifdef CONFIG_SFC_SIENA_SRIOV
782 rc = efx->type->vswitching_restore(efx);
783 if (rc) /* not fatal; the PF will still work fine */
784 netif_warn(efx, probe, efx->net_dev,
785 "failed to restore vswitching rc=%d;"
786 " VFs may not function\n", rc);
787 #endif
788
789 if (efx->type->rx_restore_rss_contexts)
790 efx->type->rx_restore_rss_contexts(efx);
791 mutex_unlock(&efx->rss_lock);
792 efx->type->filter_table_restore(efx);
793 up_write(&efx->filter_sem);
794 if (efx->type->sriov_reset)
795 efx->type->sriov_reset(efx);
796
797 mutex_unlock(&efx->mac_lock);
798
799 efx_siena_start_all(efx);
800
801 if (efx->type->udp_tnl_push_ports)
802 efx->type->udp_tnl_push_ports(efx);
803
804 return 0;
805
806 fail:
807 efx->port_initialized = false;
808
809 mutex_unlock(&efx->rss_lock);
810 up_write(&efx->filter_sem);
811 mutex_unlock(&efx->mac_lock);
812
813 return rc;
814 }
815
816 /* Reset the NIC using the specified method. Note that the reset may
817 * fail, in which case the card will be left in an unusable state.
818 *
819 * Caller must hold the rtnl_lock.
820 */
efx_siena_reset(struct efx_nic * efx,enum reset_type method)821 int efx_siena_reset(struct efx_nic *efx, enum reset_type method)
822 {
823 int rc, rc2 = 0;
824 bool disabled;
825
826 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
827 RESET_TYPE(method));
828
829 efx_device_detach_sync(efx);
830 /* efx_siena_reset_down() grabs locks that prevent recovery on EF100.
831 * EF100 reset is handled in the efx_nic_type callback below.
832 */
833 if (efx_nic_rev(efx) != EFX_REV_EF100)
834 efx_siena_reset_down(efx, method);
835
836 rc = efx->type->reset(efx, method);
837 if (rc) {
838 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
839 goto out;
840 }
841
842 /* Clear flags for the scopes we covered. We assume the NIC and
843 * driver are now quiescent so that there is no race here.
844 */
845 if (method < RESET_TYPE_MAX_METHOD)
846 efx->reset_pending &= -(1 << (method + 1));
847 else /* it doesn't fit into the well-ordered scope hierarchy */
848 __clear_bit(method, &efx->reset_pending);
849
850 /* Reinitialise bus-mastering, which may have been turned off before
851 * the reset was scheduled. This is still appropriate, even in the
852 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
853 * can respond to requests.
854 */
855 pci_set_master(efx->pci_dev);
856
857 out:
858 /* Leave device stopped if necessary */
859 disabled = rc ||
860 method == RESET_TYPE_DISABLE ||
861 method == RESET_TYPE_RECOVER_OR_DISABLE;
862 if (efx_nic_rev(efx) != EFX_REV_EF100)
863 rc2 = efx_siena_reset_up(efx, method, !disabled);
864 if (rc2) {
865 disabled = true;
866 if (!rc)
867 rc = rc2;
868 }
869
870 if (disabled) {
871 dev_close(efx->net_dev);
872 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
873 efx->state = STATE_DISABLED;
874 } else {
875 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
876 efx_device_attach_if_not_resetting(efx);
877 }
878 return rc;
879 }
880
881 /* The worker thread exists so that code that cannot sleep can
882 * schedule a reset for later.
883 */
efx_reset_work(struct work_struct * data)884 static void efx_reset_work(struct work_struct *data)
885 {
886 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
887 unsigned long pending;
888 enum reset_type method;
889
890 pending = READ_ONCE(efx->reset_pending);
891 method = fls(pending) - 1;
892
893 if (method == RESET_TYPE_MC_BIST)
894 efx_wait_for_bist_end(efx);
895
896 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
897 method == RESET_TYPE_RECOVER_OR_ALL) &&
898 efx_siena_try_recovery(efx))
899 return;
900
901 if (!pending)
902 return;
903
904 rtnl_lock();
905
906 /* We checked the state in efx_siena_schedule_reset() but it may
907 * have changed by now. Now that we have the RTNL lock,
908 * it cannot change again.
909 */
910 if (efx->state == STATE_READY)
911 (void)efx_siena_reset(efx, method);
912
913 rtnl_unlock();
914 }
915
efx_siena_schedule_reset(struct efx_nic * efx,enum reset_type type)916 void efx_siena_schedule_reset(struct efx_nic *efx, enum reset_type type)
917 {
918 enum reset_type method;
919
920 if (efx->state == STATE_RECOVERY) {
921 netif_dbg(efx, drv, efx->net_dev,
922 "recovering: skip scheduling %s reset\n",
923 RESET_TYPE(type));
924 return;
925 }
926
927 switch (type) {
928 case RESET_TYPE_INVISIBLE:
929 case RESET_TYPE_ALL:
930 case RESET_TYPE_RECOVER_OR_ALL:
931 case RESET_TYPE_WORLD:
932 case RESET_TYPE_DISABLE:
933 case RESET_TYPE_RECOVER_OR_DISABLE:
934 case RESET_TYPE_DATAPATH:
935 case RESET_TYPE_MC_BIST:
936 case RESET_TYPE_MCDI_TIMEOUT:
937 method = type;
938 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
939 RESET_TYPE(method));
940 break;
941 default:
942 method = efx->type->map_reset_reason(type);
943 netif_dbg(efx, drv, efx->net_dev,
944 "scheduling %s reset for %s\n",
945 RESET_TYPE(method), RESET_TYPE(type));
946 break;
947 }
948
949 set_bit(method, &efx->reset_pending);
950 smp_mb(); /* ensure we change reset_pending before checking state */
951
952 /* If we're not READY then just leave the flags set as the cue
953 * to abort probing or reschedule the reset later.
954 */
955 if (READ_ONCE(efx->state) != STATE_READY)
956 return;
957
958 /* efx_process_channel() will no longer read events once a
959 * reset is scheduled. So switch back to poll'd MCDI completions.
960 */
961 efx_siena_mcdi_mode_poll(efx);
962
963 efx_siena_queue_reset_work(efx);
964 }
965
966 /**************************************************************************
967 *
968 * Dummy NIC operations
969 *
970 * Can be used for some unimplemented operations
971 * Needed so all function pointers are valid and do not have to be tested
972 * before use
973 *
974 **************************************************************************/
efx_siena_port_dummy_op_int(struct efx_nic * efx)975 int efx_siena_port_dummy_op_int(struct efx_nic *efx)
976 {
977 return 0;
978 }
979
efx_siena_port_dummy_op_void(struct efx_nic * efx)980 void efx_siena_port_dummy_op_void(struct efx_nic *efx) {}
981
982 /**************************************************************************
983 *
984 * Data housekeeping
985 *
986 **************************************************************************/
987
988 /* This zeroes out and then fills in the invariants in a struct
989 * efx_nic (including all sub-structures).
990 */
efx_siena_init_struct(struct efx_nic * efx,struct pci_dev * pci_dev,struct net_device * net_dev)991 int efx_siena_init_struct(struct efx_nic *efx,
992 struct pci_dev *pci_dev, struct net_device *net_dev)
993 {
994 int rc = -ENOMEM;
995
996 /* Initialise common structures */
997 INIT_LIST_HEAD(&efx->node);
998 INIT_LIST_HEAD(&efx->secondary_list);
999 spin_lock_init(&efx->biu_lock);
1000 #ifdef CONFIG_SFC_SIENA_MTD
1001 INIT_LIST_HEAD(&efx->mtd_list);
1002 #endif
1003 INIT_WORK(&efx->reset_work, efx_reset_work);
1004 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1005 efx_siena_selftest_async_init(efx);
1006 efx->pci_dev = pci_dev;
1007 efx->msg_enable = debug;
1008 efx->state = STATE_UNINIT;
1009 strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1010
1011 efx->net_dev = net_dev;
1012 efx->rx_prefix_size = efx->type->rx_prefix_size;
1013 efx->rx_ip_align =
1014 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
1015 efx->rx_packet_hash_offset =
1016 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
1017 efx->rx_packet_ts_offset =
1018 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
1019 INIT_LIST_HEAD(&efx->rss_context.list);
1020 efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1021 mutex_init(&efx->rss_lock);
1022 efx->vport_id = EVB_PORT_ID_ASSIGNED;
1023 spin_lock_init(&efx->stats_lock);
1024 efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
1025 efx->num_mac_stats = MC_CMD_MAC_NSTATS;
1026 BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
1027 mutex_init(&efx->mac_lock);
1028 init_rwsem(&efx->filter_sem);
1029 #ifdef CONFIG_RFS_ACCEL
1030 mutex_init(&efx->rps_mutex);
1031 spin_lock_init(&efx->rps_hash_lock);
1032 /* Failure to allocate is not fatal, but may degrade ARFS performance */
1033 efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
1034 sizeof(*efx->rps_hash_table), GFP_KERNEL);
1035 #endif
1036 efx->mdio.dev = net_dev;
1037 INIT_WORK(&efx->mac_work, efx_mac_work);
1038 init_waitqueue_head(&efx->flush_wq);
1039
1040 efx->tx_queues_per_channel = 1;
1041 efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE;
1042 efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1043
1044 efx->mem_bar = UINT_MAX;
1045
1046 rc = efx_siena_init_channels(efx);
1047 if (rc)
1048 goto fail;
1049
1050 /* Would be good to use the net_dev name, but we're too early */
1051 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1052 pci_name(pci_dev));
1053 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1054 if (!efx->workqueue) {
1055 rc = -ENOMEM;
1056 goto fail;
1057 }
1058
1059 return 0;
1060
1061 fail:
1062 efx_siena_fini_struct(efx);
1063 return rc;
1064 }
1065
efx_siena_fini_struct(struct efx_nic * efx)1066 void efx_siena_fini_struct(struct efx_nic *efx)
1067 {
1068 #ifdef CONFIG_RFS_ACCEL
1069 kfree(efx->rps_hash_table);
1070 #endif
1071
1072 efx_siena_fini_channels(efx);
1073
1074 kfree(efx->vpd_sn);
1075
1076 if (efx->workqueue) {
1077 destroy_workqueue(efx->workqueue);
1078 efx->workqueue = NULL;
1079 }
1080 }
1081
1082 /* This configures the PCI device to enable I/O and DMA. */
efx_siena_init_io(struct efx_nic * efx,int bar,dma_addr_t dma_mask,unsigned int mem_map_size)1083 int efx_siena_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask,
1084 unsigned int mem_map_size)
1085 {
1086 struct pci_dev *pci_dev = efx->pci_dev;
1087 int rc;
1088
1089 efx->mem_bar = UINT_MAX;
1090
1091 netif_dbg(efx, probe, efx->net_dev, "initialising I/O bar=%d\n", bar);
1092
1093 rc = pci_enable_device(pci_dev);
1094 if (rc) {
1095 netif_err(efx, probe, efx->net_dev,
1096 "failed to enable PCI device\n");
1097 goto fail1;
1098 }
1099
1100 pci_set_master(pci_dev);
1101
1102 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1103 if (rc) {
1104 netif_err(efx, probe, efx->net_dev,
1105 "could not find a suitable DMA mask\n");
1106 goto fail2;
1107 }
1108 netif_dbg(efx, probe, efx->net_dev,
1109 "using DMA mask %llx\n", (unsigned long long)dma_mask);
1110
1111 efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1112 if (!efx->membase_phys) {
1113 netif_err(efx, probe, efx->net_dev,
1114 "ERROR: No BAR%d mapping from the BIOS. "
1115 "Try pci=realloc on the kernel command line\n", bar);
1116 rc = -ENODEV;
1117 goto fail3;
1118 }
1119
1120 rc = pci_request_region(pci_dev, bar, "sfc");
1121 if (rc) {
1122 netif_err(efx, probe, efx->net_dev,
1123 "request for memory BAR[%d] failed\n", bar);
1124 rc = -EIO;
1125 goto fail3;
1126 }
1127 efx->mem_bar = bar;
1128 efx->membase = ioremap(efx->membase_phys, mem_map_size);
1129 if (!efx->membase) {
1130 netif_err(efx, probe, efx->net_dev,
1131 "could not map memory BAR[%d] at %llx+%x\n", bar,
1132 (unsigned long long)efx->membase_phys, mem_map_size);
1133 rc = -ENOMEM;
1134 goto fail4;
1135 }
1136 netif_dbg(efx, probe, efx->net_dev,
1137 "memory BAR[%d] at %llx+%x (virtual %p)\n", bar,
1138 (unsigned long long)efx->membase_phys, mem_map_size,
1139 efx->membase);
1140
1141 return 0;
1142
1143 fail4:
1144 pci_release_region(efx->pci_dev, bar);
1145 fail3:
1146 efx->membase_phys = 0;
1147 fail2:
1148 pci_disable_device(efx->pci_dev);
1149 fail1:
1150 return rc;
1151 }
1152
efx_siena_fini_io(struct efx_nic * efx)1153 void efx_siena_fini_io(struct efx_nic *efx)
1154 {
1155 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1156
1157 if (efx->membase) {
1158 iounmap(efx->membase);
1159 efx->membase = NULL;
1160 }
1161
1162 if (efx->membase_phys) {
1163 pci_release_region(efx->pci_dev, efx->mem_bar);
1164 efx->membase_phys = 0;
1165 efx->mem_bar = UINT_MAX;
1166 }
1167
1168 /* Don't disable bus-mastering if VFs are assigned */
1169 if (!pci_vfs_assigned(efx->pci_dev))
1170 pci_disable_device(efx->pci_dev);
1171 }
1172
1173 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
mcdi_logging_show(struct device * dev,struct device_attribute * attr,char * buf)1174 static ssize_t mcdi_logging_show(struct device *dev,
1175 struct device_attribute *attr,
1176 char *buf)
1177 {
1178 struct efx_nic *efx = dev_get_drvdata(dev);
1179 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1180
1181 return sysfs_emit(buf, "%d\n", mcdi->logging_enabled);
1182 }
1183
mcdi_logging_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1184 static ssize_t mcdi_logging_store(struct device *dev,
1185 struct device_attribute *attr,
1186 const char *buf, size_t count)
1187 {
1188 struct efx_nic *efx = dev_get_drvdata(dev);
1189 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1190 bool enable = count > 0 && *buf != '0';
1191
1192 mcdi->logging_enabled = enable;
1193 return count;
1194 }
1195
1196 static DEVICE_ATTR_RW(mcdi_logging);
1197
efx_siena_init_mcdi_logging(struct efx_nic * efx)1198 void efx_siena_init_mcdi_logging(struct efx_nic *efx)
1199 {
1200 int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1201
1202 if (rc) {
1203 netif_warn(efx, drv, efx->net_dev,
1204 "failed to init net dev attributes\n");
1205 }
1206 }
1207
efx_siena_fini_mcdi_logging(struct efx_nic * efx)1208 void efx_siena_fini_mcdi_logging(struct efx_nic *efx)
1209 {
1210 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1211 }
1212 #endif
1213
1214 /* A PCI error affecting this device was detected.
1215 * At this point MMIO and DMA may be disabled.
1216 * Stop the software path and request a slot reset.
1217 */
efx_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)1218 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
1219 pci_channel_state_t state)
1220 {
1221 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1222 struct efx_nic *efx = pci_get_drvdata(pdev);
1223
1224 if (state == pci_channel_io_perm_failure)
1225 return PCI_ERS_RESULT_DISCONNECT;
1226
1227 rtnl_lock();
1228
1229 if (efx->state != STATE_DISABLED) {
1230 efx->state = STATE_RECOVERY;
1231 efx->reset_pending = 0;
1232
1233 efx_device_detach_sync(efx);
1234
1235 efx_siena_stop_all(efx);
1236 efx_siena_disable_interrupts(efx);
1237
1238 status = PCI_ERS_RESULT_NEED_RESET;
1239 } else {
1240 /* If the interface is disabled we don't want to do anything
1241 * with it.
1242 */
1243 status = PCI_ERS_RESULT_RECOVERED;
1244 }
1245
1246 rtnl_unlock();
1247
1248 pci_disable_device(pdev);
1249
1250 return status;
1251 }
1252
1253 /* Fake a successful reset, which will be performed later in efx_io_resume. */
efx_io_slot_reset(struct pci_dev * pdev)1254 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
1255 {
1256 struct efx_nic *efx = pci_get_drvdata(pdev);
1257 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1258
1259 if (pci_enable_device(pdev)) {
1260 netif_err(efx, hw, efx->net_dev,
1261 "Cannot re-enable PCI device after reset.\n");
1262 status = PCI_ERS_RESULT_DISCONNECT;
1263 }
1264
1265 return status;
1266 }
1267
1268 /* Perform the actual reset and resume I/O operations. */
efx_io_resume(struct pci_dev * pdev)1269 static void efx_io_resume(struct pci_dev *pdev)
1270 {
1271 struct efx_nic *efx = pci_get_drvdata(pdev);
1272 int rc;
1273
1274 rtnl_lock();
1275
1276 if (efx->state == STATE_DISABLED)
1277 goto out;
1278
1279 rc = efx_siena_reset(efx, RESET_TYPE_ALL);
1280 if (rc) {
1281 netif_err(efx, hw, efx->net_dev,
1282 "efx_siena_reset failed after PCI error (%d)\n", rc);
1283 } else {
1284 efx->state = STATE_READY;
1285 netif_dbg(efx, hw, efx->net_dev,
1286 "Done resetting and resuming IO after PCI error.\n");
1287 }
1288
1289 out:
1290 rtnl_unlock();
1291 }
1292
1293 /* For simplicity and reliability, we always require a slot reset and try to
1294 * reset the hardware when a pci error affecting the device is detected.
1295 * We leave both the link_reset and mmio_enabled callback unimplemented:
1296 * with our request for slot reset the mmio_enabled callback will never be
1297 * called, and the link_reset callback is not used by AER or EEH mechanisms.
1298 */
1299 const struct pci_error_handlers efx_siena_err_handlers = {
1300 .error_detected = efx_io_error_detected,
1301 .slot_reset = efx_io_slot_reset,
1302 .resume = efx_io_resume,
1303 };
1304
1305 /* Determine whether the NIC will be able to handle TX offloads for a given
1306 * encapsulated packet.
1307 */
efx_can_encap_offloads(struct efx_nic * efx,struct sk_buff * skb)1308 static bool efx_can_encap_offloads(struct efx_nic *efx, struct sk_buff *skb)
1309 {
1310 struct gre_base_hdr *greh;
1311 __be16 dst_port;
1312 u8 ipproto;
1313
1314 /* Does the NIC support encap offloads?
1315 * If not, we should never get here, because we shouldn't have
1316 * advertised encap offload feature flags in the first place.
1317 */
1318 if (WARN_ON_ONCE(!efx->type->udp_tnl_has_port))
1319 return false;
1320
1321 /* Determine encapsulation protocol in use */
1322 switch (skb->protocol) {
1323 case htons(ETH_P_IP):
1324 ipproto = ip_hdr(skb)->protocol;
1325 break;
1326 case htons(ETH_P_IPV6):
1327 /* If there are extension headers, this will cause us to
1328 * think we can't offload something that we maybe could have.
1329 */
1330 ipproto = ipv6_hdr(skb)->nexthdr;
1331 break;
1332 default:
1333 /* Not IP, so can't offload it */
1334 return false;
1335 }
1336 switch (ipproto) {
1337 case IPPROTO_GRE:
1338 /* We support NVGRE but not IP over GRE or random gretaps.
1339 * Specifically, the NIC will accept GRE as encapsulated if
1340 * the inner protocol is Ethernet, but only handle it
1341 * correctly if the GRE header is 8 bytes long. Moreover,
1342 * it will not update the Checksum or Sequence Number fields
1343 * if they are present. (The Routing Present flag,
1344 * GRE_ROUTING, cannot be set else the header would be more
1345 * than 8 bytes long; so we don't have to worry about it.)
1346 */
1347 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER)
1348 return false;
1349 if (ntohs(skb->inner_protocol) != ETH_P_TEB)
1350 return false;
1351 if (skb_inner_mac_header(skb) - skb_transport_header(skb) != 8)
1352 return false;
1353 greh = (struct gre_base_hdr *)skb_transport_header(skb);
1354 return !(greh->flags & (GRE_CSUM | GRE_SEQ));
1355 case IPPROTO_UDP:
1356 /* If the port is registered for a UDP tunnel, we assume the
1357 * packet is for that tunnel, and the NIC will handle it as
1358 * such. If not, the NIC won't know what to do with it.
1359 */
1360 dst_port = udp_hdr(skb)->dest;
1361 return efx->type->udp_tnl_has_port(efx, dst_port);
1362 default:
1363 return false;
1364 }
1365 }
1366
efx_siena_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)1367 netdev_features_t efx_siena_features_check(struct sk_buff *skb,
1368 struct net_device *dev,
1369 netdev_features_t features)
1370 {
1371 struct efx_nic *efx = netdev_priv(dev);
1372
1373 if (skb->encapsulation) {
1374 if (features & NETIF_F_GSO_MASK)
1375 /* Hardware can only do TSO with at most 208 bytes
1376 * of headers.
1377 */
1378 if (skb_inner_transport_offset(skb) >
1379 EFX_TSO2_MAX_HDRLEN)
1380 features &= ~(NETIF_F_GSO_MASK);
1381 if (features & (NETIF_F_GSO_MASK | NETIF_F_CSUM_MASK))
1382 if (!efx_can_encap_offloads(efx, skb))
1383 features &= ~(NETIF_F_GSO_MASK |
1384 NETIF_F_CSUM_MASK);
1385 }
1386 return features;
1387 }
1388
efx_siena_get_phys_port_id(struct net_device * net_dev,struct netdev_phys_item_id * ppid)1389 int efx_siena_get_phys_port_id(struct net_device *net_dev,
1390 struct netdev_phys_item_id *ppid)
1391 {
1392 struct efx_nic *efx = netdev_priv(net_dev);
1393
1394 if (efx->type->get_phys_port_id)
1395 return efx->type->get_phys_port_id(efx, ppid);
1396 else
1397 return -EOPNOTSUPP;
1398 }
1399
efx_siena_get_phys_port_name(struct net_device * net_dev,char * name,size_t len)1400 int efx_siena_get_phys_port_name(struct net_device *net_dev,
1401 char *name, size_t len)
1402 {
1403 struct efx_nic *efx = netdev_priv(net_dev);
1404
1405 if (snprintf(name, len, "p%u", efx->port_num) >= len)
1406 return -EINVAL;
1407 return 0;
1408 }
1409