xref: /openbmc/qemu/hw/net/rtl8139.c (revision e452053097371880910c744a5d42ae2df058a4a7)
1 /**
2  * QEMU RTL8139 emulation
3  *
4  * Copyright (c) 2006 Igor Kovalenko
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23 
24  * Modifications:
25  *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26  *
27  *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28  *                                  HW revision ID changes for FreeBSD driver
29  *
30  *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31  *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32  *                                  Rearranged debugging print statements
33  *                                  Implemented PCI timer interrupt (disabled by default)
34  *                                  Implemented Tally Counters, increased VM load/save version
35  *                                  Implemented IP/TCP/UDP checksum task offloading
36  *
37  *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38  *                                  Fixed MTU=1500 for produced ethernet frames
39  *
40  *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41  *                                  segmentation offloading
42  *                                  Removed slirp.h dependency
43  *                                  Added rx/tx buffer reset when enabling rx/tx operation
44  *
45  *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46  *                                  when strictly needed (required for
47  *                                  Darwin)
48  *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49  */
50 
51 #include "qemu/osdep.h"
52 #include <zlib.h> /* for crc32 */
53 
54 #include "hw/pci/pci_device.h"
55 #include "hw/qdev-properties.h"
56 #include "migration/vmstate.h"
57 #include "system/dma.h"
58 #include "qemu/module.h"
59 #include "qemu/timer.h"
60 #include "qemu/bswap.h"
61 #include "net/net.h"
62 #include "net/eth.h"
63 #include "system/system.h"
64 #include "qom/object.h"
65 
66 /* debug RTL8139 card */
67 //#define DEBUG_RTL8139 1
68 
69 #define PCI_PERIOD 30    /* 30 ns period = 33.333333 Mhz frequency */
70 
71 #define SET_MASKED(input, mask, curr) \
72     ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
73 
74 /* arg % size for size which is a power of 2 */
75 #define MOD2(input, size) \
76     ( ( input ) & ( size - 1 )  )
77 
78 #define ETHER_TYPE_LEN 2
79 
80 #define VLAN_TCI_LEN 2
81 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
82 
83 #if defined (DEBUG_RTL8139)
84 #  define DPRINTF(fmt, ...) \
85     do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
86 #else
DPRINTF(const char * fmt,...)87 static inline G_GNUC_PRINTF(1, 2) int DPRINTF(const char *fmt, ...)
88 {
89     return 0;
90 }
91 #endif
92 
93 #define TYPE_RTL8139 "rtl8139"
94 
95 OBJECT_DECLARE_SIMPLE_TYPE(RTL8139State, RTL8139)
96 
97 /* Symbolic offsets to registers. */
98 enum RTL8139_registers {
99     MAC0 = 0,        /* Ethernet hardware address. */
100     MAR0 = 8,        /* Multicast filter. */
101     TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
102                      /* Dump Tally Counter control register(64bit). C+ mode only */
103     TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
104     RxBuf = 0x30,
105     ChipCmd = 0x37,
106     RxBufPtr = 0x38,
107     RxBufAddr = 0x3A,
108     IntrMask = 0x3C,
109     IntrStatus = 0x3E,
110     TxConfig = 0x40,
111     RxConfig = 0x44,
112     Timer = 0x48,        /* A general-purpose counter. */
113     RxMissed = 0x4C,    /* 24 bits valid, write clears. */
114     Cfg9346 = 0x50,
115     Config0 = 0x51,
116     Config1 = 0x52,
117     FlashReg = 0x54,
118     MediaStatus = 0x58,
119     Config3 = 0x59,
120     Config4 = 0x5A,        /* absent on RTL-8139A */
121     HltClk = 0x5B,
122     MultiIntr = 0x5C,
123     PCIRevisionID = 0x5E,
124     TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
125     BasicModeCtrl = 0x62,
126     BasicModeStatus = 0x64,
127     NWayAdvert = 0x66,
128     NWayLPAR = 0x68,
129     NWayExpansion = 0x6A,
130     /* Undocumented registers, but required for proper operation. */
131     FIFOTMS = 0x70,        /* FIFO Control and test. */
132     CSCR = 0x74,        /* Chip Status and Configuration Register. */
133     PARA78 = 0x78,
134     PARA7c = 0x7c,        /* Magic transceiver parameter register. */
135     Config5 = 0xD8,        /* absent on RTL-8139A */
136     /* C+ mode */
137     TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
138     RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
139     CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
140     IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
141     RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
142     RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
143     TxThresh    = 0xEC, /* Early Tx threshold */
144 };
145 
146 enum ClearBitMasks {
147     MultiIntrClear = 0xF000,
148     ChipCmdClear = 0xE2,
149     Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
150 };
151 
152 enum ChipCmdBits {
153     CmdReset = 0x10,
154     CmdRxEnb = 0x08,
155     CmdTxEnb = 0x04,
156     RxBufEmpty = 0x01,
157 };
158 
159 /* C+ mode */
160 enum CplusCmdBits {
161     CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
162     CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
163     CPlusRxEnb    = 0x0002,
164     CPlusTxEnb    = 0x0001,
165 };
166 
167 /* Interrupt register bits, using my own meaningful names. */
168 enum IntrStatusBits {
169     PCIErr = 0x8000,
170     PCSTimeout = 0x4000,
171     RxFIFOOver = 0x40,
172     RxUnderrun = 0x20, /* Packet Underrun / Link Change */
173     RxOverflow = 0x10,
174     TxErr = 0x08,
175     TxOK = 0x04,
176     RxErr = 0x02,
177     RxOK = 0x01,
178 
179     RxAckBits = RxFIFOOver | RxOverflow | RxOK,
180 };
181 
182 enum TxStatusBits {
183     TxHostOwns = 0x2000,
184     TxUnderrun = 0x4000,
185     TxStatOK = 0x8000,
186     TxOutOfWindow = 0x20000000,
187     TxAborted = 0x40000000,
188     TxCarrierLost = 0x80000000,
189 };
190 enum RxStatusBits {
191     RxMulticast = 0x8000,
192     RxPhysical = 0x4000,
193     RxBroadcast = 0x2000,
194     RxBadSymbol = 0x0020,
195     RxRunt = 0x0010,
196     RxTooLong = 0x0008,
197     RxCRCErr = 0x0004,
198     RxBadAlign = 0x0002,
199     RxStatusOK = 0x0001,
200 };
201 
202 /* Bits in RxConfig. */
203 enum rx_mode_bits {
204     AcceptErr = 0x20,
205     AcceptRunt = 0x10,
206     AcceptBroadcast = 0x08,
207     AcceptMulticast = 0x04,
208     AcceptMyPhys = 0x02,
209     AcceptAllPhys = 0x01,
210 };
211 
212 /* Bits in TxConfig. */
213 enum tx_config_bits {
214 
215         /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
216         TxIFGShift = 24,
217         TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
218         TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
219         TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
220         TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
221 
222     TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
223     TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
224     TxClearAbt = (1 << 0),    /* Clear abort (WO) */
225     TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
226     TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
227 
228     TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
229 };
230 
231 
232 /* Transmit Status of All Descriptors (TSAD) Register */
233 enum TSAD_bits {
234  TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
235  TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
236  TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
237  TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
238  TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
239  TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
240  TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
241  TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
242  TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
243  TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
244  TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
245  TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
246  TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
247  TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
248  TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
249  TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
250 };
251 
252 
253 /* Bits in Config1 */
254 enum Config1Bits {
255     Cfg1_PM_Enable = 0x01,
256     Cfg1_VPD_Enable = 0x02,
257     Cfg1_PIO = 0x04,
258     Cfg1_MMIO = 0x08,
259     LWAKE = 0x10,        /* not on 8139, 8139A */
260     Cfg1_Driver_Load = 0x20,
261     Cfg1_LED0 = 0x40,
262     Cfg1_LED1 = 0x80,
263     SLEEP = (1 << 1),    /* only on 8139, 8139A */
264     PWRDN = (1 << 0),    /* only on 8139, 8139A */
265 };
266 
267 /* Bits in Config3 */
268 enum Config3Bits {
269     Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
270     Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
271     Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
272     Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
273     Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
274     Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
275     Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
276     Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
277 };
278 
279 /* Bits in Config4 */
280 enum Config4Bits {
281     LWPTN = (1 << 2),    /* not on 8139, 8139A */
282 };
283 
284 /* Bits in Config5 */
285 enum Config5Bits {
286     Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
287     Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
288     Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
289     Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
290     Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
291     Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
292     Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
293 };
294 
295 enum RxConfigBits {
296     /* rx fifo threshold */
297     RxCfgFIFOShift = 13,
298     RxCfgFIFONone = (7 << RxCfgFIFOShift),
299 
300     /* Max DMA burst */
301     RxCfgDMAShift = 8,
302     RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
303 
304     /* rx ring buffer length */
305     RxCfgRcv8K = 0,
306     RxCfgRcv16K = (1 << 11),
307     RxCfgRcv32K = (1 << 12),
308     RxCfgRcv64K = (1 << 11) | (1 << 12),
309 
310     /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
311     RxNoWrap = (1 << 7),
312 };
313 
314 /* Twister tuning parameters from RealTek.
315    Completely undocumented, but required to tune bad links on some boards. */
316 /*
317 enum CSCRBits {
318     CSCR_LinkOKBit = 0x0400,
319     CSCR_LinkChangeBit = 0x0800,
320     CSCR_LinkStatusBits = 0x0f000,
321     CSCR_LinkDownOffCmd = 0x003c0,
322     CSCR_LinkDownCmd = 0x0f3c0,
323 */
324 enum CSCRBits {
325     CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
326     CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
327     CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
328     CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
329     CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
330     CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
331     CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
332     CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
333     CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
334 };
335 
336 enum Cfg9346Bits {
337     Cfg9346_Normal = 0x00,
338     Cfg9346_Autoload = 0x40,
339     Cfg9346_Programming = 0x80,
340     Cfg9346_ConfigWrite = 0xC0,
341 };
342 
343 typedef enum {
344     CH_8139 = 0,
345     CH_8139_K,
346     CH_8139A,
347     CH_8139A_G,
348     CH_8139B,
349     CH_8130,
350     CH_8139C,
351     CH_8100,
352     CH_8100B_8139D,
353     CH_8101,
354 } chip_t;
355 
356 enum chip_flags {
357     HasHltClk = (1 << 0),
358     HasLWake = (1 << 1),
359 };
360 
361 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
362     (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
363 #define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
364 
365 #define RTL8139_PCI_REVID_8139      0x10
366 #define RTL8139_PCI_REVID_8139CPLUS 0x20
367 
368 #define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
369 
370 /* Size is 64 * 16bit words */
371 #define EEPROM_9346_ADDR_BITS 6
372 #define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
373 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
374 
375 enum Chip9346Operation
376 {
377     Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
378     Chip9346_op_read = 0x80,          /* 10 AAAAAA */
379     Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
380     Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
381     Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
382     Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
383     Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
384 };
385 
386 enum Chip9346Mode
387 {
388     Chip9346_none = 0,
389     Chip9346_enter_command_mode,
390     Chip9346_read_command,
391     Chip9346_data_read,      /* from output register */
392     Chip9346_data_write,     /* to input register, then to contents at specified address */
393     Chip9346_data_write_all, /* to input register, then filling contents */
394 };
395 
396 typedef struct EEprom9346
397 {
398     uint16_t contents[EEPROM_9346_SIZE];
399     int      mode;
400     uint32_t tick;
401     uint8_t  address;
402     uint16_t input;
403     uint16_t output;
404 
405     uint8_t eecs;
406     uint8_t eesk;
407     uint8_t eedi;
408     uint8_t eedo;
409 } EEprom9346;
410 
411 typedef struct RTL8139TallyCounters
412 {
413     /* Tally counters */
414     uint64_t   TxOk;
415     uint64_t   RxOk;
416     uint64_t   TxERR;
417     uint32_t   RxERR;
418     uint16_t   MissPkt;
419     uint16_t   FAE;
420     uint32_t   Tx1Col;
421     uint32_t   TxMCol;
422     uint64_t   RxOkPhy;
423     uint64_t   RxOkBrd;
424     uint32_t   RxOkMul;
425     uint16_t   TxAbt;
426     uint16_t   TxUndrn;
427 } RTL8139TallyCounters;
428 
429 /* Clears all tally counters */
430 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
431 
432 struct RTL8139State {
433     /*< private >*/
434     PCIDevice parent_obj;
435     /*< public >*/
436 
437     uint8_t phys[8]; /* mac address */
438     uint8_t mult[8]; /* multicast mask array */
439 
440     uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
441     uint32_t TxAddr[4];   /* TxAddr0 */
442     uint32_t RxBuf;       /* Receive buffer */
443     uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
444     uint32_t RxBufPtr;
445     uint32_t RxBufAddr;
446 
447     uint16_t IntrStatus;
448     uint16_t IntrMask;
449 
450     uint32_t TxConfig;
451     uint32_t RxConfig;
452     uint32_t RxMissed;
453 
454     uint16_t CSCR;
455 
456     uint8_t  Cfg9346;
457     uint8_t  Config0;
458     uint8_t  Config1;
459     uint8_t  Config3;
460     uint8_t  Config4;
461     uint8_t  Config5;
462 
463     uint8_t  clock_enabled;
464     uint8_t  bChipCmdState;
465 
466     uint16_t MultiIntr;
467 
468     uint16_t BasicModeCtrl;
469     uint16_t BasicModeStatus;
470     uint16_t NWayAdvert;
471     uint16_t NWayLPAR;
472     uint16_t NWayExpansion;
473 
474     uint16_t CpCmd;
475     uint8_t  TxThresh;
476 
477     NICState *nic;
478     NICConf conf;
479 
480     /* C ring mode */
481     uint32_t   currTxDesc;
482 
483     /* C+ mode */
484     uint32_t   cplus_enabled;
485 
486     uint32_t   currCPlusRxDesc;
487     uint32_t   currCPlusTxDesc;
488 
489     uint32_t   RxRingAddrLO;
490     uint32_t   RxRingAddrHI;
491 
492     EEprom9346 eeprom;
493 
494     uint32_t   TCTR;
495     uint32_t   TimerInt;
496     int64_t    TCTR_base;
497 
498     /* Tally counters */
499     RTL8139TallyCounters tally_counters;
500 
501     /* Non-persistent data */
502     uint8_t   *cplus_txbuffer;
503     int        cplus_txbuffer_len;
504     int        cplus_txbuffer_offset;
505 
506     /* PCI interrupt timer */
507     QEMUTimer *timer;
508 
509     MemoryRegion bar_io;
510     MemoryRegion bar_mem;
511 
512     /* Support migration to/from old versions */
513     int rtl8139_mmio_io_addr_dummy;
514 };
515 
516 /* Writes tally counters to memory via DMA */
517 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
518 
519 static void rtl8139_set_next_tctr_time(RTL8139State *s);
520 
prom9346_decode_command(EEprom9346 * eeprom,uint8_t command)521 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
522 {
523     DPRINTF("eeprom command 0x%02x\n", command);
524 
525     switch (command & Chip9346_op_mask)
526     {
527         case Chip9346_op_read:
528         {
529             eeprom->address = command & EEPROM_9346_ADDR_MASK;
530             eeprom->output = eeprom->contents[eeprom->address];
531             eeprom->eedo = 0;
532             eeprom->tick = 0;
533             eeprom->mode = Chip9346_data_read;
534             DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
535                 eeprom->address, eeprom->output);
536         }
537         break;
538 
539         case Chip9346_op_write:
540         {
541             eeprom->address = command & EEPROM_9346_ADDR_MASK;
542             eeprom->input = 0;
543             eeprom->tick = 0;
544             eeprom->mode = Chip9346_none; /* Chip9346_data_write */
545             DPRINTF("eeprom begin write to address 0x%02x\n",
546                 eeprom->address);
547         }
548         break;
549         default:
550             eeprom->mode = Chip9346_none;
551             switch (command & Chip9346_op_ext_mask)
552             {
553                 case Chip9346_op_write_enable:
554                     DPRINTF("eeprom write enabled\n");
555                     break;
556                 case Chip9346_op_write_all:
557                     DPRINTF("eeprom begin write all\n");
558                     break;
559                 case Chip9346_op_write_disable:
560                     DPRINTF("eeprom write disabled\n");
561                     break;
562             }
563             break;
564     }
565 }
566 
prom9346_shift_clock(EEprom9346 * eeprom)567 static void prom9346_shift_clock(EEprom9346 *eeprom)
568 {
569     int bit = eeprom->eedi?1:0;
570 
571     ++ eeprom->tick;
572 
573     DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
574         eeprom->eedo);
575 
576     switch (eeprom->mode)
577     {
578         case Chip9346_enter_command_mode:
579             if (bit)
580             {
581                 eeprom->mode = Chip9346_read_command;
582                 eeprom->tick = 0;
583                 eeprom->input = 0;
584                 DPRINTF("eeprom: +++ synchronized, begin command read\n");
585             }
586             break;
587 
588         case Chip9346_read_command:
589             eeprom->input = (eeprom->input << 1) | (bit & 1);
590             if (eeprom->tick == 8)
591             {
592                 prom9346_decode_command(eeprom, eeprom->input & 0xff);
593             }
594             break;
595 
596         case Chip9346_data_read:
597             eeprom->eedo = (eeprom->output & 0x8000)?1:0;
598             eeprom->output <<= 1;
599             if (eeprom->tick == 16)
600             {
601 #if 1
602         // the FreeBSD drivers (rl and re) don't explicitly toggle
603         // CS between reads (or does setting Cfg9346 to 0 count too?),
604         // so we need to enter wait-for-command state here
605                 eeprom->mode = Chip9346_enter_command_mode;
606                 eeprom->input = 0;
607                 eeprom->tick = 0;
608 
609                 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
610 #else
611         // original behaviour
612                 ++eeprom->address;
613                 eeprom->address &= EEPROM_9346_ADDR_MASK;
614                 eeprom->output = eeprom->contents[eeprom->address];
615                 eeprom->tick = 0;
616 
617                 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
618                     eeprom->address, eeprom->output);
619 #endif
620             }
621             break;
622 
623         case Chip9346_data_write:
624             eeprom->input = (eeprom->input << 1) | (bit & 1);
625             if (eeprom->tick == 16)
626             {
627                 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
628                     eeprom->address, eeprom->input);
629 
630                 eeprom->contents[eeprom->address] = eeprom->input;
631                 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
632                 eeprom->tick = 0;
633                 eeprom->input = 0;
634             }
635             break;
636 
637         case Chip9346_data_write_all:
638             eeprom->input = (eeprom->input << 1) | (bit & 1);
639             if (eeprom->tick == 16)
640             {
641                 int i;
642                 for (i = 0; i < EEPROM_9346_SIZE; i++)
643                 {
644                     eeprom->contents[i] = eeprom->input;
645                 }
646                 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
647 
648                 eeprom->mode = Chip9346_enter_command_mode;
649                 eeprom->tick = 0;
650                 eeprom->input = 0;
651             }
652             break;
653 
654         default:
655             break;
656     }
657 }
658 
prom9346_get_wire(RTL8139State * s)659 static int prom9346_get_wire(RTL8139State *s)
660 {
661     EEprom9346 *eeprom = &s->eeprom;
662     if (!eeprom->eecs)
663         return 0;
664 
665     return eeprom->eedo;
666 }
667 
668 /* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
prom9346_set_wire(RTL8139State * s,int eecs,int eesk,int eedi)669 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
670 {
671     EEprom9346 *eeprom = &s->eeprom;
672     uint8_t old_eecs = eeprom->eecs;
673     uint8_t old_eesk = eeprom->eesk;
674 
675     eeprom->eecs = eecs;
676     eeprom->eesk = eesk;
677     eeprom->eedi = eedi;
678 
679     DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
680         eeprom->eesk, eeprom->eedi, eeprom->eedo);
681 
682     if (!old_eecs && eecs)
683     {
684         /* Synchronize start */
685         eeprom->tick = 0;
686         eeprom->input = 0;
687         eeprom->output = 0;
688         eeprom->mode = Chip9346_enter_command_mode;
689 
690         DPRINTF("=== eeprom: begin access, enter command mode\n");
691     }
692 
693     if (!eecs)
694     {
695         DPRINTF("=== eeprom: end access\n");
696         return;
697     }
698 
699     if (!old_eesk && eesk)
700     {
701         /* SK front rules */
702         prom9346_shift_clock(eeprom);
703     }
704 }
705 
rtl8139_update_irq(RTL8139State * s)706 static void rtl8139_update_irq(RTL8139State *s)
707 {
708     PCIDevice *d = PCI_DEVICE(s);
709     int isr;
710     isr = (s->IntrStatus & s->IntrMask) & 0xffff;
711 
712     DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
713         s->IntrMask);
714 
715     pci_set_irq(d, (isr != 0));
716 }
717 
rtl8139_RxWrap(RTL8139State * s)718 static int rtl8139_RxWrap(RTL8139State *s)
719 {
720     /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
721     return (s->RxConfig & (1 << 7));
722 }
723 
rtl8139_receiver_enabled(RTL8139State * s)724 static int rtl8139_receiver_enabled(RTL8139State *s)
725 {
726     return s->bChipCmdState & CmdRxEnb;
727 }
728 
rtl8139_transmitter_enabled(RTL8139State * s)729 static int rtl8139_transmitter_enabled(RTL8139State *s)
730 {
731     return s->bChipCmdState & CmdTxEnb;
732 }
733 
rtl8139_cp_receiver_enabled(RTL8139State * s)734 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
735 {
736     return s->CpCmd & CPlusRxEnb;
737 }
738 
rtl8139_cp_transmitter_enabled(RTL8139State * s)739 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
740 {
741     return s->CpCmd & CPlusTxEnb;
742 }
743 
rtl8139_write_buffer(RTL8139State * s,const void * buf,int size)744 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
745 {
746     PCIDevice *d = PCI_DEVICE(s);
747 
748     if (s->RxBufAddr + size > s->RxBufferSize)
749     {
750         int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
751 
752         /* write packet data */
753         if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
754         {
755             DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
756 
757             if (size > wrapped)
758             {
759                 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
760                               buf, size-wrapped);
761             }
762 
763             /* reset buffer pointer */
764             s->RxBufAddr = 0;
765 
766             pci_dma_write(d, s->RxBuf + s->RxBufAddr,
767                           buf + (size-wrapped), wrapped);
768 
769             s->RxBufAddr = wrapped;
770 
771             return;
772         }
773     }
774 
775     /* non-wrapping path or overwrapping enabled */
776     pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
777 
778     s->RxBufAddr += size;
779 }
780 
781 #define MIN_BUF_SIZE 60
rtl8139_addr64(uint32_t low,uint32_t high)782 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
783 {
784     return low | ((uint64_t)high << 32);
785 }
786 
787 /* Workaround for buggy guest driver such as linux who allocates rx
788  * rings after the receiver were enabled. */
rtl8139_cp_rx_valid(RTL8139State * s)789 static bool rtl8139_cp_rx_valid(RTL8139State *s)
790 {
791     return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
792 }
793 
rtl8139_can_receive(NetClientState * nc)794 static bool rtl8139_can_receive(NetClientState *nc)
795 {
796     RTL8139State *s = qemu_get_nic_opaque(nc);
797     int avail;
798 
799     /* Receive (drop) packets if card is disabled.  */
800     if (!s->clock_enabled) {
801         return true;
802     }
803     if (!rtl8139_receiver_enabled(s)) {
804         return true;
805     }
806 
807     if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
808         /* ??? Flow control not implemented in c+ mode.
809            This is a hack to work around slirp deficiencies anyway.  */
810         return true;
811     }
812 
813     avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
814                  s->RxBufferSize);
815     return avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow);
816 }
817 
rtl8139_do_receive(NetClientState * nc,const uint8_t * buf,size_t size_,int do_interrupt)818 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
819 {
820     RTL8139State *s = qemu_get_nic_opaque(nc);
821     PCIDevice *d = PCI_DEVICE(s);
822     /* size is the length of the buffer passed to the driver */
823     size_t size = size_;
824     const uint8_t *dot1q_buf = NULL;
825 
826     uint32_t packet_header = 0;
827 
828     static const uint8_t broadcast_macaddr[6] =
829         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
830 
831     DPRINTF(">>> received len=%zu\n", size);
832 
833     /* test if board clock is stopped */
834     if (!s->clock_enabled)
835     {
836         DPRINTF("stopped ==========================\n");
837         return -1;
838     }
839 
840     /* first check if receiver is enabled */
841 
842     if (!rtl8139_receiver_enabled(s))
843     {
844         DPRINTF("receiver disabled ================\n");
845         return -1;
846     }
847 
848     /* XXX: check this */
849     if (s->RxConfig & AcceptAllPhys) {
850         /* promiscuous: receive all */
851         DPRINTF(">>> packet received in promiscuous mode\n");
852 
853     } else {
854         if (!memcmp(buf,  broadcast_macaddr, 6)) {
855             /* broadcast address */
856             if (!(s->RxConfig & AcceptBroadcast))
857             {
858                 DPRINTF(">>> broadcast packet rejected\n");
859 
860                 /* update tally counter */
861                 ++s->tally_counters.RxERR;
862 
863                 return size;
864             }
865 
866             packet_header |= RxBroadcast;
867 
868             DPRINTF(">>> broadcast packet received\n");
869 
870             /* update tally counter */
871             ++s->tally_counters.RxOkBrd;
872 
873         } else if (buf[0] & 0x01) {
874             /* multicast */
875             if (!(s->RxConfig & AcceptMulticast))
876             {
877                 DPRINTF(">>> multicast packet rejected\n");
878 
879                 /* update tally counter */
880                 ++s->tally_counters.RxERR;
881 
882                 return size;
883             }
884 
885             int mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
886 
887             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
888             {
889                 DPRINTF(">>> multicast address mismatch\n");
890 
891                 /* update tally counter */
892                 ++s->tally_counters.RxERR;
893 
894                 return size;
895             }
896 
897             packet_header |= RxMulticast;
898 
899             DPRINTF(">>> multicast packet received\n");
900 
901             /* update tally counter */
902             ++s->tally_counters.RxOkMul;
903 
904         } else if (s->phys[0] == buf[0] &&
905                    s->phys[1] == buf[1] &&
906                    s->phys[2] == buf[2] &&
907                    s->phys[3] == buf[3] &&
908                    s->phys[4] == buf[4] &&
909                    s->phys[5] == buf[5]) {
910             /* match */
911             if (!(s->RxConfig & AcceptMyPhys))
912             {
913                 DPRINTF(">>> rejecting physical address matching packet\n");
914 
915                 /* update tally counter */
916                 ++s->tally_counters.RxERR;
917 
918                 return size;
919             }
920 
921             packet_header |= RxPhysical;
922 
923             DPRINTF(">>> physical address matching packet received\n");
924 
925             /* update tally counter */
926             ++s->tally_counters.RxOkPhy;
927 
928         } else {
929 
930             DPRINTF(">>> unknown packet\n");
931 
932             /* update tally counter */
933             ++s->tally_counters.RxERR;
934 
935             return size;
936         }
937     }
938 
939     if (rtl8139_cp_receiver_enabled(s))
940     {
941         if (!rtl8139_cp_rx_valid(s)) {
942             return size;
943         }
944 
945         DPRINTF("in C+ Rx mode ================\n");
946 
947         /* begin C+ receiver mode */
948 
949 /* w0 ownership flag */
950 #define CP_RX_OWN (1<<31)
951 /* w0 end of ring flag */
952 #define CP_RX_EOR (1<<30)
953 /* w0 bits 0...12 : buffer size */
954 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
955 /* w1 tag available flag */
956 #define CP_RX_TAVA (1<<16)
957 /* w1 bits 0...15 : VLAN tag */
958 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
959 /* w2 low  32bit of Rx buffer ptr */
960 /* w3 high 32bit of Rx buffer ptr */
961 
962         int descriptor = s->currCPlusRxDesc;
963         dma_addr_t cplus_rx_ring_desc;
964 
965         cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
966         cplus_rx_ring_desc += 16 * descriptor;
967 
968         DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
969             "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
970             s->RxRingAddrLO, cplus_rx_ring_desc);
971 
972         uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
973 
974         pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
975         rxdw0 = le32_to_cpu(val);
976         pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
977         rxdw1 = le32_to_cpu(val);
978         pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
979         rxbufLO = le32_to_cpu(val);
980         pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
981         rxbufHI = le32_to_cpu(val);
982 
983         DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
984             descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
985 
986         if (!(rxdw0 & CP_RX_OWN))
987         {
988             DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
989                 descriptor);
990 
991             s->IntrStatus |= RxOverflow;
992             ++s->RxMissed;
993 
994             /* update tally counter */
995             ++s->tally_counters.RxERR;
996             ++s->tally_counters.MissPkt;
997 
998             rtl8139_update_irq(s);
999             return size_;
1000         }
1001 
1002         uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1003 
1004         /* write VLAN info to descriptor variables. */
1005         if (s->CpCmd & CPlusRxVLAN &&
1006             lduw_be_p(&buf[ETH_ALEN * 2]) == ETH_P_VLAN) {
1007             dot1q_buf = &buf[ETH_ALEN * 2];
1008             size -= VLAN_HLEN;
1009             /* if too small buffer, use the tailroom added duing expansion */
1010             if (size < MIN_BUF_SIZE) {
1011                 size = MIN_BUF_SIZE;
1012             }
1013 
1014             rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1015             /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1016             rxdw1 |= CP_RX_TAVA | lduw_le_p(&dot1q_buf[ETHER_TYPE_LEN]);
1017 
1018             DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1019                 lduw_be_p(&dot1q_buf[ETHER_TYPE_LEN]));
1020         } else {
1021             /* reset VLAN tag flag */
1022             rxdw1 &= ~CP_RX_TAVA;
1023         }
1024 
1025         /* TODO: scatter the packet over available receive ring descriptors space */
1026 
1027         if (size+4 > rx_space)
1028         {
1029             DPRINTF("C+ Rx mode : descriptor %d size %d received %zu + 4\n",
1030                 descriptor, rx_space, size);
1031 
1032             s->IntrStatus |= RxOverflow;
1033             ++s->RxMissed;
1034 
1035             /* update tally counter */
1036             ++s->tally_counters.RxERR;
1037             ++s->tally_counters.MissPkt;
1038 
1039             rtl8139_update_irq(s);
1040             return size_;
1041         }
1042 
1043         dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1044 
1045         /* receive/copy to target memory */
1046         if (dot1q_buf) {
1047             pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN);
1048             pci_dma_write(d, rx_addr + 2 * ETH_ALEN,
1049                           buf + 2 * ETH_ALEN + VLAN_HLEN,
1050                           size - 2 * ETH_ALEN);
1051         } else {
1052             pci_dma_write(d, rx_addr, buf, size);
1053         }
1054 
1055         if (s->CpCmd & CPlusRxChkSum)
1056         {
1057             /* do some packet checksumming */
1058         }
1059 
1060         /* write checksum */
1061         val = cpu_to_le32(crc32(0, buf, size_));
1062         pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1063 
1064 /* first segment of received packet flag */
1065 #define CP_RX_STATUS_FS (1<<29)
1066 /* last segment of received packet flag */
1067 #define CP_RX_STATUS_LS (1<<28)
1068 /* multicast packet flag */
1069 #define CP_RX_STATUS_MAR (1<<26)
1070 /* physical-matching packet flag */
1071 #define CP_RX_STATUS_PAM (1<<25)
1072 /* broadcast packet flag */
1073 #define CP_RX_STATUS_BAR (1<<24)
1074 /* runt packet flag */
1075 #define CP_RX_STATUS_RUNT (1<<19)
1076 /* crc error flag */
1077 #define CP_RX_STATUS_CRC (1<<18)
1078 /* IP checksum error flag */
1079 #define CP_RX_STATUS_IPF (1<<15)
1080 /* UDP checksum error flag */
1081 #define CP_RX_STATUS_UDPF (1<<14)
1082 /* TCP checksum error flag */
1083 #define CP_RX_STATUS_TCPF (1<<13)
1084 
1085         /* transfer ownership to target */
1086         rxdw0 &= ~CP_RX_OWN;
1087 
1088         /* set first segment bit */
1089         rxdw0 |= CP_RX_STATUS_FS;
1090 
1091         /* set last segment bit */
1092         rxdw0 |= CP_RX_STATUS_LS;
1093 
1094         /* set received packet type flags */
1095         if (packet_header & RxBroadcast)
1096             rxdw0 |= CP_RX_STATUS_BAR;
1097         if (packet_header & RxMulticast)
1098             rxdw0 |= CP_RX_STATUS_MAR;
1099         if (packet_header & RxPhysical)
1100             rxdw0 |= CP_RX_STATUS_PAM;
1101 
1102         /* set received size */
1103         rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1104         rxdw0 |= (size+4);
1105 
1106         /* update ring data */
1107         val = cpu_to_le32(rxdw0);
1108         pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1109         val = cpu_to_le32(rxdw1);
1110         pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1111 
1112         /* update tally counter */
1113         ++s->tally_counters.RxOk;
1114 
1115         /* seek to next Rx descriptor */
1116         if (rxdw0 & CP_RX_EOR)
1117         {
1118             s->currCPlusRxDesc = 0;
1119         }
1120         else
1121         {
1122             ++s->currCPlusRxDesc;
1123         }
1124 
1125         DPRINTF("done C+ Rx mode ----------------\n");
1126 
1127     }
1128     else
1129     {
1130         DPRINTF("in ring Rx mode ================\n");
1131 
1132         /* begin ring receiver mode */
1133         int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1134 
1135         /* if receiver buffer is empty then avail == 0 */
1136 
1137 #define RX_ALIGN(x) (((x) + 3) & ~0x3)
1138 
1139         if (avail != 0 && RX_ALIGN(size + 8) >= avail)
1140         {
1141             DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1142                 "read 0x%04x === available 0x%04x need 0x%04zx\n",
1143                 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1144 
1145             s->IntrStatus |= RxOverflow;
1146             ++s->RxMissed;
1147             rtl8139_update_irq(s);
1148             return 0;
1149         }
1150 
1151         packet_header |= RxStatusOK;
1152 
1153         packet_header |= (((size+4) << 16) & 0xffff0000);
1154 
1155         /* write header */
1156         uint32_t val = cpu_to_le32(packet_header);
1157 
1158         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1159 
1160         rtl8139_write_buffer(s, buf, size);
1161 
1162         /* write checksum */
1163         val = cpu_to_le32(crc32(0, buf, size));
1164         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1165 
1166         /* correct buffer write pointer */
1167         s->RxBufAddr = MOD2(RX_ALIGN(s->RxBufAddr), s->RxBufferSize);
1168 
1169         /* now we can signal we have received something */
1170 
1171         DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1172             s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1173     }
1174 
1175     s->IntrStatus |= RxOK;
1176 
1177     if (do_interrupt)
1178     {
1179         rtl8139_update_irq(s);
1180     }
1181 
1182     return size_;
1183 }
1184 
rtl8139_receive(NetClientState * nc,const uint8_t * buf,size_t size)1185 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1186 {
1187     return rtl8139_do_receive(nc, buf, size, 1);
1188 }
1189 
rtl8139_reset_rxring(RTL8139State * s,uint32_t bufferSize)1190 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1191 {
1192     s->RxBufferSize = bufferSize;
1193     s->RxBufPtr  = 0;
1194     s->RxBufAddr = 0;
1195 }
1196 
rtl8139_reset_phy(RTL8139State * s)1197 static void rtl8139_reset_phy(RTL8139State *s)
1198 {
1199     s->BasicModeStatus  = 0x7809;
1200     s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1201     /* preserve link state */
1202     s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1203 
1204     s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1205     s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1206     s->NWayExpansion = 0x0001; /* autonegotiation supported */
1207 
1208     s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1209 }
1210 
rtl8139_reset(DeviceState * d)1211 static void rtl8139_reset(DeviceState *d)
1212 {
1213     RTL8139State *s = RTL8139(d);
1214     int i;
1215 
1216     /* restore MAC address */
1217     memcpy(s->phys, s->conf.macaddr.a, 6);
1218     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1219 
1220     /* reset interrupt mask */
1221     s->IntrStatus = 0;
1222     s->IntrMask = 0;
1223 
1224     rtl8139_update_irq(s);
1225 
1226     /* mark all status registers as owned by host */
1227     for (i = 0; i < 4; ++i)
1228     {
1229         s->TxStatus[i] = TxHostOwns;
1230     }
1231 
1232     s->currTxDesc = 0;
1233     s->currCPlusRxDesc = 0;
1234     s->currCPlusTxDesc = 0;
1235 
1236     s->RxRingAddrLO = 0;
1237     s->RxRingAddrHI = 0;
1238 
1239     s->RxBuf = 0;
1240 
1241     rtl8139_reset_rxring(s, 8192);
1242 
1243     /* ACK the reset */
1244     s->TxConfig = 0;
1245 
1246 #if 0
1247 //    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1248     s->clock_enabled = 0;
1249 #else
1250     s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1251     s->clock_enabled = 1;
1252 #endif
1253 
1254     s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1255 
1256     /* set initial state data */
1257     s->Config0 = 0x0; /* No boot ROM */
1258     s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1259     s->Config3 = 0x1; /* fast back-to-back compatible */
1260     s->Config5 = 0x0;
1261 
1262     s->CpCmd   = 0x0; /* reset C+ mode */
1263     s->cplus_enabled = 0;
1264 
1265 //    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1266 //    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1267     s->BasicModeCtrl = 0x1000; // autonegotiation
1268 
1269     rtl8139_reset_phy(s);
1270 
1271     /* also reset timer and disable timer interrupt */
1272     s->TCTR = 0;
1273     s->TimerInt = 0;
1274     s->TCTR_base = 0;
1275     rtl8139_set_next_tctr_time(s);
1276 
1277     /* reset tally counters */
1278     RTL8139TallyCounters_clear(&s->tally_counters);
1279 }
1280 
RTL8139TallyCounters_clear(RTL8139TallyCounters * counters)1281 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1282 {
1283     counters->TxOk = 0;
1284     counters->RxOk = 0;
1285     counters->TxERR = 0;
1286     counters->RxERR = 0;
1287     counters->MissPkt = 0;
1288     counters->FAE = 0;
1289     counters->Tx1Col = 0;
1290     counters->TxMCol = 0;
1291     counters->RxOkPhy = 0;
1292     counters->RxOkBrd = 0;
1293     counters->RxOkMul = 0;
1294     counters->TxAbt = 0;
1295     counters->TxUndrn = 0;
1296 }
1297 
RTL8139TallyCounters_dma_write(RTL8139State * s,dma_addr_t tc_addr)1298 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1299 {
1300     PCIDevice *d = PCI_DEVICE(s);
1301     RTL8139TallyCounters *tally_counters = &s->tally_counters;
1302     uint16_t val16;
1303     uint32_t val32;
1304     uint64_t val64;
1305 
1306     val64 = cpu_to_le64(tally_counters->TxOk);
1307     pci_dma_write(d, tc_addr + 0,     (uint8_t *)&val64, 8);
1308 
1309     val64 = cpu_to_le64(tally_counters->RxOk);
1310     pci_dma_write(d, tc_addr + 8,     (uint8_t *)&val64, 8);
1311 
1312     val64 = cpu_to_le64(tally_counters->TxERR);
1313     pci_dma_write(d, tc_addr + 16,    (uint8_t *)&val64, 8);
1314 
1315     val32 = cpu_to_le32(tally_counters->RxERR);
1316     pci_dma_write(d, tc_addr + 24,    (uint8_t *)&val32, 4);
1317 
1318     val16 = cpu_to_le16(tally_counters->MissPkt);
1319     pci_dma_write(d, tc_addr + 28,    (uint8_t *)&val16, 2);
1320 
1321     val16 = cpu_to_le16(tally_counters->FAE);
1322     pci_dma_write(d, tc_addr + 30,    (uint8_t *)&val16, 2);
1323 
1324     val32 = cpu_to_le32(tally_counters->Tx1Col);
1325     pci_dma_write(d, tc_addr + 32,    (uint8_t *)&val32, 4);
1326 
1327     val32 = cpu_to_le32(tally_counters->TxMCol);
1328     pci_dma_write(d, tc_addr + 36,    (uint8_t *)&val32, 4);
1329 
1330     val64 = cpu_to_le64(tally_counters->RxOkPhy);
1331     pci_dma_write(d, tc_addr + 40,    (uint8_t *)&val64, 8);
1332 
1333     val64 = cpu_to_le64(tally_counters->RxOkBrd);
1334     pci_dma_write(d, tc_addr + 48,    (uint8_t *)&val64, 8);
1335 
1336     val32 = cpu_to_le32(tally_counters->RxOkMul);
1337     pci_dma_write(d, tc_addr + 56,    (uint8_t *)&val32, 4);
1338 
1339     val16 = cpu_to_le16(tally_counters->TxAbt);
1340     pci_dma_write(d, tc_addr + 60,    (uint8_t *)&val16, 2);
1341 
1342     val16 = cpu_to_le16(tally_counters->TxUndrn);
1343     pci_dma_write(d, tc_addr + 62,    (uint8_t *)&val16, 2);
1344 }
1345 
rtl8139_ChipCmd_write(RTL8139State * s,uint32_t val)1346 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1347 {
1348     DeviceState *d = DEVICE(s);
1349 
1350     val &= 0xff;
1351 
1352     DPRINTF("ChipCmd write val=0x%08x\n", val);
1353 
1354     if (val & CmdReset)
1355     {
1356         DPRINTF("ChipCmd reset\n");
1357         rtl8139_reset(d);
1358     }
1359     if (val & CmdRxEnb)
1360     {
1361         DPRINTF("ChipCmd enable receiver\n");
1362 
1363         s->currCPlusRxDesc = 0;
1364     }
1365     if (val & CmdTxEnb)
1366     {
1367         DPRINTF("ChipCmd enable transmitter\n");
1368 
1369         s->currCPlusTxDesc = 0;
1370     }
1371 
1372     /* mask unwritable bits */
1373     val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1374 
1375     /* Deassert reset pin before next read */
1376     val &= ~CmdReset;
1377 
1378     s->bChipCmdState = val;
1379 }
1380 
rtl8139_RxBufferEmpty(RTL8139State * s)1381 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1382 {
1383     int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1384 
1385     if (unread != 0)
1386     {
1387         DPRINTF("receiver buffer data available 0x%04x\n", unread);
1388         return 0;
1389     }
1390 
1391     DPRINTF("receiver buffer is empty\n");
1392 
1393     return 1;
1394 }
1395 
rtl8139_ChipCmd_read(RTL8139State * s)1396 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1397 {
1398     uint32_t ret = s->bChipCmdState;
1399 
1400     if (rtl8139_RxBufferEmpty(s))
1401         ret |= RxBufEmpty;
1402 
1403     DPRINTF("ChipCmd read val=0x%04x\n", ret);
1404 
1405     return ret;
1406 }
1407 
rtl8139_CpCmd_write(RTL8139State * s,uint32_t val)1408 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1409 {
1410     val &= 0xffff;
1411 
1412     DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1413 
1414     s->cplus_enabled = 1;
1415 
1416     /* mask unwritable bits */
1417     val = SET_MASKED(val, 0xff84, s->CpCmd);
1418 
1419     s->CpCmd = val;
1420 }
1421 
rtl8139_CpCmd_read(RTL8139State * s)1422 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1423 {
1424     uint32_t ret = s->CpCmd;
1425 
1426     DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1427 
1428     return ret;
1429 }
1430 
rtl8139_IntrMitigate_write(RTL8139State * s,uint32_t val)1431 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1432 {
1433     DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1434 }
1435 
rtl8139_IntrMitigate_read(RTL8139State * s)1436 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1437 {
1438     uint32_t ret = 0;
1439 
1440     DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1441 
1442     return ret;
1443 }
1444 
rtl8139_config_writable(RTL8139State * s)1445 static int rtl8139_config_writable(RTL8139State *s)
1446 {
1447     if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1448     {
1449         return 1;
1450     }
1451 
1452     DPRINTF("Configuration registers are write-protected\n");
1453 
1454     return 0;
1455 }
1456 
rtl8139_BasicModeCtrl_write(RTL8139State * s,uint32_t val)1457 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1458 {
1459     val &= 0xffff;
1460 
1461     DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1462 
1463     /* mask unwritable bits */
1464     uint32_t mask = 0xccff;
1465 
1466     if (1 || !rtl8139_config_writable(s))
1467     {
1468         /* Speed setting and autonegotiation enable bits are read-only */
1469         mask |= 0x3000;
1470         /* Duplex mode setting is read-only */
1471         mask |= 0x0100;
1472     }
1473 
1474     if (val & 0x8000) {
1475         /* Reset PHY */
1476         rtl8139_reset_phy(s);
1477     }
1478 
1479     val = SET_MASKED(val, mask, s->BasicModeCtrl);
1480 
1481     s->BasicModeCtrl = val;
1482 }
1483 
rtl8139_BasicModeCtrl_read(RTL8139State * s)1484 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1485 {
1486     uint32_t ret = s->BasicModeCtrl;
1487 
1488     DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1489 
1490     return ret;
1491 }
1492 
rtl8139_BasicModeStatus_write(RTL8139State * s,uint32_t val)1493 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1494 {
1495     val &= 0xffff;
1496 
1497     DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1498 
1499     /* mask unwritable bits */
1500     val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1501 
1502     s->BasicModeStatus = val;
1503 }
1504 
rtl8139_BasicModeStatus_read(RTL8139State * s)1505 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1506 {
1507     uint32_t ret = s->BasicModeStatus;
1508 
1509     DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1510 
1511     return ret;
1512 }
1513 
rtl8139_Cfg9346_write(RTL8139State * s,uint32_t val)1514 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1515 {
1516     DeviceState *d = DEVICE(s);
1517 
1518     val &= 0xff;
1519 
1520     DPRINTF("Cfg9346 write val=0x%02x\n", val);
1521 
1522     /* mask unwritable bits */
1523     val = SET_MASKED(val, 0x31, s->Cfg9346);
1524 
1525     uint32_t opmode = val & 0xc0;
1526     uint32_t eeprom_val = val & 0xf;
1527 
1528     if (opmode == 0x80) {
1529         /* eeprom access */
1530         int eecs = (eeprom_val & 0x08)?1:0;
1531         int eesk = (eeprom_val & 0x04)?1:0;
1532         int eedi = (eeprom_val & 0x02)?1:0;
1533         prom9346_set_wire(s, eecs, eesk, eedi);
1534     } else if (opmode == 0x40) {
1535         /* Reset.  */
1536         val = 0;
1537         rtl8139_reset(d);
1538     }
1539 
1540     s->Cfg9346 = val;
1541 }
1542 
rtl8139_Cfg9346_read(RTL8139State * s)1543 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1544 {
1545     uint32_t ret = s->Cfg9346;
1546 
1547     uint32_t opmode = ret & 0xc0;
1548 
1549     if (opmode == 0x80)
1550     {
1551         /* eeprom access */
1552         int eedo = prom9346_get_wire(s);
1553         if (eedo)
1554         {
1555             ret |=  0x01;
1556         }
1557         else
1558         {
1559             ret &= ~0x01;
1560         }
1561     }
1562 
1563     DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1564 
1565     return ret;
1566 }
1567 
rtl8139_Config0_write(RTL8139State * s,uint32_t val)1568 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1569 {
1570     val &= 0xff;
1571 
1572     DPRINTF("Config0 write val=0x%02x\n", val);
1573 
1574     if (!rtl8139_config_writable(s)) {
1575         return;
1576     }
1577 
1578     /* mask unwritable bits */
1579     val = SET_MASKED(val, 0xf8, s->Config0);
1580 
1581     s->Config0 = val;
1582 }
1583 
rtl8139_Config0_read(RTL8139State * s)1584 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1585 {
1586     uint32_t ret = s->Config0;
1587 
1588     DPRINTF("Config0 read val=0x%02x\n", ret);
1589 
1590     return ret;
1591 }
1592 
rtl8139_Config1_write(RTL8139State * s,uint32_t val)1593 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1594 {
1595     val &= 0xff;
1596 
1597     DPRINTF("Config1 write val=0x%02x\n", val);
1598 
1599     if (!rtl8139_config_writable(s)) {
1600         return;
1601     }
1602 
1603     /* mask unwritable bits */
1604     val = SET_MASKED(val, 0xC, s->Config1);
1605 
1606     s->Config1 = val;
1607 }
1608 
rtl8139_Config1_read(RTL8139State * s)1609 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1610 {
1611     uint32_t ret = s->Config1;
1612 
1613     DPRINTF("Config1 read val=0x%02x\n", ret);
1614 
1615     return ret;
1616 }
1617 
rtl8139_Config3_write(RTL8139State * s,uint32_t val)1618 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1619 {
1620     val &= 0xff;
1621 
1622     DPRINTF("Config3 write val=0x%02x\n", val);
1623 
1624     if (!rtl8139_config_writable(s)) {
1625         return;
1626     }
1627 
1628     /* mask unwritable bits */
1629     val = SET_MASKED(val, 0x8F, s->Config3);
1630 
1631     s->Config3 = val;
1632 }
1633 
rtl8139_Config3_read(RTL8139State * s)1634 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1635 {
1636     uint32_t ret = s->Config3;
1637 
1638     DPRINTF("Config3 read val=0x%02x\n", ret);
1639 
1640     return ret;
1641 }
1642 
rtl8139_Config4_write(RTL8139State * s,uint32_t val)1643 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1644 {
1645     val &= 0xff;
1646 
1647     DPRINTF("Config4 write val=0x%02x\n", val);
1648 
1649     if (!rtl8139_config_writable(s)) {
1650         return;
1651     }
1652 
1653     /* mask unwritable bits */
1654     val = SET_MASKED(val, 0x0a, s->Config4);
1655 
1656     s->Config4 = val;
1657 }
1658 
rtl8139_Config4_read(RTL8139State * s)1659 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1660 {
1661     uint32_t ret = s->Config4;
1662 
1663     DPRINTF("Config4 read val=0x%02x\n", ret);
1664 
1665     return ret;
1666 }
1667 
rtl8139_Config5_write(RTL8139State * s,uint32_t val)1668 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1669 {
1670     val &= 0xff;
1671 
1672     DPRINTF("Config5 write val=0x%02x\n", val);
1673 
1674     /* mask unwritable bits */
1675     val = SET_MASKED(val, 0x80, s->Config5);
1676 
1677     s->Config5 = val;
1678 }
1679 
rtl8139_Config5_read(RTL8139State * s)1680 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1681 {
1682     uint32_t ret = s->Config5;
1683 
1684     DPRINTF("Config5 read val=0x%02x\n", ret);
1685 
1686     return ret;
1687 }
1688 
rtl8139_TxConfig_write(RTL8139State * s,uint32_t val)1689 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1690 {
1691     if (!rtl8139_transmitter_enabled(s))
1692     {
1693         DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1694         return;
1695     }
1696 
1697     DPRINTF("TxConfig write val=0x%08x\n", val);
1698 
1699     val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1700 
1701     s->TxConfig = val;
1702 }
1703 
rtl8139_TxConfig_writeb(RTL8139State * s,uint32_t val)1704 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1705 {
1706     DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1707 
1708     uint32_t tc = s->TxConfig;
1709     tc &= 0xFFFFFF00;
1710     tc |= (val & 0x000000FF);
1711     rtl8139_TxConfig_write(s, tc);
1712 }
1713 
rtl8139_TxConfig_read(RTL8139State * s)1714 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1715 {
1716     uint32_t ret = s->TxConfig;
1717 
1718     DPRINTF("TxConfig read val=0x%04x\n", ret);
1719 
1720     return ret;
1721 }
1722 
rtl8139_RxConfig_write(RTL8139State * s,uint32_t val)1723 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1724 {
1725     DPRINTF("RxConfig write val=0x%08x\n", val);
1726 
1727     /* mask unwritable bits */
1728     val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1729 
1730     s->RxConfig = val;
1731 
1732     /* reset buffer size and read/write pointers */
1733     rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1734 
1735     DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1736 }
1737 
rtl8139_RxConfig_read(RTL8139State * s)1738 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1739 {
1740     uint32_t ret = s->RxConfig;
1741 
1742     DPRINTF("RxConfig read val=0x%08x\n", ret);
1743 
1744     return ret;
1745 }
1746 
rtl8139_transfer_frame(RTL8139State * s,uint8_t * buf,int size,int do_interrupt,const uint8_t * dot1q_buf)1747 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1748     int do_interrupt, const uint8_t *dot1q_buf)
1749 {
1750     struct iovec *iov = NULL;
1751     struct iovec vlan_iov[3];
1752 
1753     if (!size)
1754     {
1755         DPRINTF("+++ empty ethernet frame\n");
1756         return;
1757     }
1758 
1759     if (dot1q_buf && size >= ETH_ALEN * 2) {
1760         iov = (struct iovec[3]) {
1761             { .iov_base = buf, .iov_len = ETH_ALEN * 2 },
1762             { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1763             { .iov_base = buf + ETH_ALEN * 2,
1764                 .iov_len = size - ETH_ALEN * 2 },
1765         };
1766 
1767         memcpy(vlan_iov, iov, sizeof(vlan_iov));
1768         iov = vlan_iov;
1769     }
1770 
1771     if (TxLoopBack == (s->TxConfig & TxLoopBack))
1772     {
1773         size_t buf2_size;
1774         uint8_t *buf2;
1775 
1776         if (iov) {
1777             buf2_size = iov_size(iov, 3);
1778             buf2 = g_malloc(buf2_size);
1779             iov_to_buf(iov, 3, 0, buf2, buf2_size);
1780             buf = buf2;
1781         }
1782 
1783         DPRINTF("+++ transmit loopback mode\n");
1784         qemu_receive_packet(qemu_get_queue(s->nic), buf, size);
1785 
1786         if (iov) {
1787             g_free(buf2);
1788         }
1789     }
1790     else
1791     {
1792         if (iov) {
1793             qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1794         } else {
1795             qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1796         }
1797     }
1798 }
1799 
rtl8139_transmit_one(RTL8139State * s,int descriptor)1800 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1801 {
1802     if (!rtl8139_transmitter_enabled(s))
1803     {
1804         DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1805             "disabled\n", descriptor);
1806         return 0;
1807     }
1808 
1809     if (s->TxStatus[descriptor] & TxHostOwns)
1810     {
1811         DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1812             "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1813         return 0;
1814     }
1815 
1816     DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1817 
1818     PCIDevice *d = PCI_DEVICE(s);
1819     int txsize = s->TxStatus[descriptor] & 0x1fff;
1820     QEMU_UNINITIALIZED uint8_t txbuffer[0x2000];
1821 
1822     DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1823         txsize, s->TxAddr[descriptor]);
1824 
1825     pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1826 
1827     /* Mark descriptor as transferred */
1828     s->TxStatus[descriptor] |= TxHostOwns;
1829     s->TxStatus[descriptor] |= TxStatOK;
1830 
1831     rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1832 
1833     DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1834         descriptor);
1835 
1836     /* update interrupt */
1837     s->IntrStatus |= TxOK;
1838     rtl8139_update_irq(s);
1839 
1840     return 1;
1841 }
1842 
1843 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1844 
1845 /* produces ones' complement sum of data */
ones_complement_sum(uint8_t * data,size_t len)1846 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1847 {
1848     uint32_t result = 0;
1849 
1850     for (; len > 1; data+=2, len-=2)
1851     {
1852         result += *(uint16_t*)data;
1853     }
1854 
1855     /* add the remainder byte */
1856     if (len)
1857     {
1858         uint8_t odd[2] = {*data, 0};
1859         result += *(uint16_t*)odd;
1860     }
1861 
1862     while (result>>16)
1863         result = (result & 0xffff) + (result >> 16);
1864 
1865     return result;
1866 }
1867 
ip_checksum(void * data,size_t len)1868 static uint16_t ip_checksum(void *data, size_t len)
1869 {
1870     return ~ones_complement_sum((uint8_t*)data, len);
1871 }
1872 
rtl8139_cplus_transmit_one(RTL8139State * s)1873 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1874 {
1875     if (!rtl8139_transmitter_enabled(s))
1876     {
1877         DPRINTF("+++ C+ mode: transmitter disabled\n");
1878         return 0;
1879     }
1880 
1881     if (!rtl8139_cp_transmitter_enabled(s))
1882     {
1883         DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1884         return 0 ;
1885     }
1886 
1887     PCIDevice *d = PCI_DEVICE(s);
1888     int descriptor = s->currCPlusTxDesc;
1889 
1890     dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1891 
1892     /* Normal priority ring */
1893     cplus_tx_ring_desc += 16 * descriptor;
1894 
1895     DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1896         "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1897         s->TxAddr[0], cplus_tx_ring_desc);
1898 
1899     uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1900 
1901     pci_dma_read(d, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1902     txdw0 = le32_to_cpu(val);
1903     pci_dma_read(d, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1904     txdw1 = le32_to_cpu(val);
1905     pci_dma_read(d, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1906     txbufLO = le32_to_cpu(val);
1907     pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1908     txbufHI = le32_to_cpu(val);
1909 
1910     DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1911         txdw0, txdw1, txbufLO, txbufHI);
1912 
1913 /* w0 ownership flag */
1914 #define CP_TX_OWN (1<<31)
1915 /* w0 end of ring flag */
1916 #define CP_TX_EOR (1<<30)
1917 /* first segment of received packet flag */
1918 #define CP_TX_FS (1<<29)
1919 /* last segment of received packet flag */
1920 #define CP_TX_LS (1<<28)
1921 /* large send packet flag */
1922 #define CP_TX_LGSEN (1<<27)
1923 /* large send MSS mask, bits 16...26 */
1924 #define CP_TC_LGSEN_MSS_SHIFT 16
1925 #define CP_TC_LGSEN_MSS_MASK ((1 << 11) - 1)
1926 
1927 /* IP checksum offload flag */
1928 #define CP_TX_IPCS (1<<18)
1929 /* UDP checksum offload flag */
1930 #define CP_TX_UDPCS (1<<17)
1931 /* TCP checksum offload flag */
1932 #define CP_TX_TCPCS (1<<16)
1933 
1934 /* w0 bits 0...15 : buffer size */
1935 #define CP_TX_BUFFER_SIZE (1<<16)
1936 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1937 /* w1 add tag flag */
1938 #define CP_TX_TAGC (1<<17)
1939 /* w1 bits 0...15 : VLAN tag (big endian) */
1940 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
1941 /* w2 low  32bit of Rx buffer ptr */
1942 /* w3 high 32bit of Rx buffer ptr */
1943 
1944 /* set after transmission */
1945 /* FIFO underrun flag */
1946 #define CP_TX_STATUS_UNF (1<<25)
1947 /* transmit error summary flag, valid if set any of three below */
1948 #define CP_TX_STATUS_TES (1<<23)
1949 /* out-of-window collision flag */
1950 #define CP_TX_STATUS_OWC (1<<22)
1951 /* link failure flag */
1952 #define CP_TX_STATUS_LNKF (1<<21)
1953 /* excessive collisions flag */
1954 #define CP_TX_STATUS_EXC (1<<20)
1955 
1956     if (!(txdw0 & CP_TX_OWN))
1957     {
1958         DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
1959         return 0 ;
1960     }
1961 
1962     DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
1963 
1964     if (txdw0 & CP_TX_FS)
1965     {
1966         DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
1967             "descriptor\n", descriptor);
1968 
1969         /* reset internal buffer offset */
1970         s->cplus_txbuffer_offset = 0;
1971     }
1972 
1973     int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
1974     dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
1975 
1976     /* make sure we have enough space to assemble the packet */
1977     if (!s->cplus_txbuffer)
1978     {
1979         s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
1980         s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
1981         s->cplus_txbuffer_offset = 0;
1982 
1983         DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
1984             s->cplus_txbuffer_len);
1985     }
1986 
1987     if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
1988     {
1989         /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
1990         txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
1991         DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
1992                 "length to %d\n", txsize);
1993     }
1994 
1995     /* append more data to the packet */
1996 
1997     DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
1998             DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
1999             s->cplus_txbuffer_offset);
2000 
2001     pci_dma_read(d, tx_addr,
2002                  s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2003     s->cplus_txbuffer_offset += txsize;
2004 
2005     /* seek to next Rx descriptor */
2006     if (txdw0 & CP_TX_EOR)
2007     {
2008         s->currCPlusTxDesc = 0;
2009     }
2010     else
2011     {
2012         ++s->currCPlusTxDesc;
2013         if (s->currCPlusTxDesc >= 64)
2014             s->currCPlusTxDesc = 0;
2015     }
2016 
2017     /* Build the Tx Status Descriptor */
2018     uint32_t tx_status = txdw0;
2019 
2020     /* transfer ownership to target */
2021     tx_status &= ~CP_TX_OWN;
2022 
2023     /* reset error indicator bits */
2024     tx_status &= ~CP_TX_STATUS_UNF;
2025     tx_status &= ~CP_TX_STATUS_TES;
2026     tx_status &= ~CP_TX_STATUS_OWC;
2027     tx_status &= ~CP_TX_STATUS_LNKF;
2028     tx_status &= ~CP_TX_STATUS_EXC;
2029 
2030     /* update ring data */
2031     val = cpu_to_le32(tx_status);
2032     pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2033 
2034     /* Now decide if descriptor being processed is holding the last segment of packet */
2035     if (txdw0 & CP_TX_LS)
2036     {
2037         uint8_t dot1q_buffer_space[VLAN_HLEN];
2038         uint16_t *dot1q_buffer;
2039 
2040         DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2041             descriptor);
2042 
2043         /* can transfer fully assembled packet */
2044 
2045         uint8_t *saved_buffer  = s->cplus_txbuffer;
2046         int      saved_size    = s->cplus_txbuffer_offset;
2047         int      saved_buffer_len = s->cplus_txbuffer_len;
2048 
2049         /* create vlan tag */
2050         if (txdw1 & CP_TX_TAGC) {
2051             /* the vlan tag is in BE byte order in the descriptor
2052              * BE + le_to_cpu() + ~swap()~ = cpu */
2053             DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2054                 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2055 
2056             dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2057             dot1q_buffer[0] = cpu_to_be16(ETH_P_VLAN);
2058             /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2059             dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2060         } else {
2061             dot1q_buffer = NULL;
2062         }
2063 
2064         /* reset the card space to protect from recursive call */
2065         s->cplus_txbuffer = NULL;
2066         s->cplus_txbuffer_offset = 0;
2067         s->cplus_txbuffer_len = 0;
2068 
2069         if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2070         {
2071             DPRINTF("+++ C+ mode offloaded task checksum\n");
2072 
2073             /* Large enough for Ethernet and IP headers? */
2074             if (saved_size < ETH_HLEN + sizeof(struct ip_header)) {
2075                 goto skip_offload;
2076             }
2077 
2078             /* ip packet header */
2079             struct ip_header *ip = NULL;
2080             int hlen = 0;
2081             uint8_t  ip_protocol = 0;
2082             uint16_t ip_data_len = 0;
2083 
2084             uint8_t *eth_payload_data = NULL;
2085             size_t   eth_payload_len  = 0;
2086 
2087             int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2088             if (proto != ETH_P_IP)
2089             {
2090                 goto skip_offload;
2091             }
2092 
2093             DPRINTF("+++ C+ mode has IP packet\n");
2094 
2095             /* Note on memory alignment: eth_payload_data is 16-bit aligned
2096              * since saved_buffer is allocated with g_malloc() and ETH_HLEN is
2097              * even.  32-bit accesses must use ldl/stl wrappers to avoid
2098              * unaligned accesses.
2099              */
2100             eth_payload_data = saved_buffer + ETH_HLEN;
2101             eth_payload_len  = saved_size   - ETH_HLEN;
2102 
2103             ip = (struct ip_header*)eth_payload_data;
2104 
2105             if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2106                 DPRINTF("+++ C+ mode packet has bad IP version %d "
2107                     "expected %d\n", IP_HEADER_VERSION(ip),
2108                     IP_HEADER_VERSION_4);
2109                 goto skip_offload;
2110             }
2111 
2112             hlen = IP_HDR_GET_LEN(ip);
2113             if (hlen < sizeof(struct ip_header) || hlen > eth_payload_len) {
2114                 goto skip_offload;
2115             }
2116 
2117             ip_protocol = ip->ip_p;
2118 
2119             ip_data_len = be16_to_cpu(ip->ip_len);
2120             if (ip_data_len < hlen || ip_data_len > eth_payload_len) {
2121                 goto skip_offload;
2122             }
2123             ip_data_len -= hlen;
2124 
2125             if (!(txdw0 & CP_TX_LGSEN) && (txdw0 & CP_TX_IPCS))
2126             {
2127                 DPRINTF("+++ C+ mode need IP checksum\n");
2128 
2129                 ip->ip_sum = 0;
2130                 ip->ip_sum = ip_checksum(ip, hlen);
2131                 DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2132                     hlen, ip->ip_sum);
2133             }
2134 
2135             if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2136             {
2137                 /* Large enough for the TCP header? */
2138                 if (ip_data_len < sizeof(tcp_header)) {
2139                     goto skip_offload;
2140                 }
2141 
2142                 int large_send_mss = (txdw0 >> CP_TC_LGSEN_MSS_SHIFT) &
2143                                      CP_TC_LGSEN_MSS_MASK;
2144                 if (large_send_mss == 0) {
2145                     goto skip_offload;
2146                 }
2147 
2148                 DPRINTF("+++ C+ mode offloaded task TSO IP data %d "
2149                     "frame data %d specified MSS=%d\n",
2150                     ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2151 
2152                 int tcp_send_offset = 0;
2153 
2154                 /* maximum IP header length is 60 bytes */
2155                 uint8_t saved_ip_header[60];
2156 
2157                 /* save IP header template; data area is used in tcp checksum calculation */
2158                 memcpy(saved_ip_header, eth_payload_data, hlen);
2159 
2160                 /* a placeholder for checksum calculation routine in tcp case */
2161                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2162                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2163 
2164                 /* pointer to TCP header */
2165                 tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2166 
2167                 int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2168 
2169                 /* Invalid TCP data offset? */
2170                 if (tcp_hlen < sizeof(tcp_header) || tcp_hlen > ip_data_len) {
2171                     goto skip_offload;
2172                 }
2173 
2174                 int tcp_data_len = ip_data_len - tcp_hlen;
2175 
2176                 DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2177                     "data len %d\n", ip_data_len, tcp_hlen, tcp_data_len);
2178 
2179                 /* note the cycle below overwrites IP header data,
2180                    but restores it from saved_ip_header before sending packet */
2181 
2182                 int is_last_frame = 0;
2183 
2184                 for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += large_send_mss)
2185                 {
2186                     uint16_t chunk_size = large_send_mss;
2187 
2188                     /* check if this is the last frame */
2189                     if (tcp_send_offset + large_send_mss >= tcp_data_len)
2190                     {
2191                         is_last_frame = 1;
2192                         chunk_size = tcp_data_len - tcp_send_offset;
2193                     }
2194 
2195                     DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2196                             ldl_be_p(&p_tcp_hdr->th_seq));
2197 
2198                     /* add 4 TCP pseudoheader fields */
2199                     /* copy IP source and destination fields */
2200                     memcpy(data_to_checksum, saved_ip_header + 12, 8);
2201 
2202                     DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2203                         "packet with %d bytes data\n", tcp_hlen +
2204                         chunk_size);
2205 
2206                     if (tcp_send_offset)
2207                     {
2208                         memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2209                     }
2210 
2211                     /* keep PUSH and FIN flags only for the last frame */
2212                     if (!is_last_frame)
2213                     {
2214                         TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TH_PUSH | TH_FIN);
2215                     }
2216 
2217                     /* recalculate TCP checksum */
2218                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2219                     p_tcpip_hdr->zeros      = 0;
2220                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2221                     p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2222 
2223                     p_tcp_hdr->th_sum = 0;
2224 
2225                     int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2226                     DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2227                         tcp_checksum);
2228 
2229                     p_tcp_hdr->th_sum = tcp_checksum;
2230 
2231                     /* restore IP header */
2232                     memcpy(eth_payload_data, saved_ip_header, hlen);
2233 
2234                     /* set IP data length and recalculate IP checksum */
2235                     ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2236 
2237                     /* increment IP id for subsequent frames */
2238                     ip->ip_id = cpu_to_be16(tcp_send_offset/large_send_mss + be16_to_cpu(ip->ip_id));
2239 
2240                     ip->ip_sum = 0;
2241                     ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2242                     DPRINTF("+++ C+ mode TSO IP header len=%d "
2243                         "checksum=%04x\n", hlen, ip->ip_sum);
2244 
2245                     int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2246                     DPRINTF("+++ C+ mode TSO transferring packet size "
2247                         "%d\n", tso_send_size);
2248                     rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2249                         0, (uint8_t *) dot1q_buffer);
2250 
2251                     /* add transferred count to TCP sequence number */
2252                     stl_be_p(&p_tcp_hdr->th_seq,
2253                              chunk_size + ldl_be_p(&p_tcp_hdr->th_seq));
2254                 }
2255 
2256                 /* Stop sending this frame */
2257                 saved_size = 0;
2258             }
2259             else if (!(txdw0 & CP_TX_LGSEN) && (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS)))
2260             {
2261                 DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2262 
2263                 /* maximum IP header length is 60 bytes */
2264                 uint8_t saved_ip_header[60];
2265                 memcpy(saved_ip_header, eth_payload_data, hlen);
2266 
2267                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2268                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2269 
2270                 /* add 4 TCP pseudoheader fields */
2271                 /* copy IP source and destination fields */
2272                 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2273 
2274                 if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2275                 {
2276                     DPRINTF("+++ C+ mode calculating TCP checksum for "
2277                         "packet with %d bytes data\n", ip_data_len);
2278 
2279                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2280                     p_tcpip_hdr->zeros      = 0;
2281                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2282                     p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2283 
2284                     tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2285 
2286                     p_tcp_hdr->th_sum = 0;
2287 
2288                     int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2289                     DPRINTF("+++ C+ mode TCP checksum %04x\n",
2290                         tcp_checksum);
2291 
2292                     p_tcp_hdr->th_sum = tcp_checksum;
2293                 }
2294                 else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2295                 {
2296                     DPRINTF("+++ C+ mode calculating UDP checksum for "
2297                         "packet with %d bytes data\n", ip_data_len);
2298 
2299                     ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2300                     p_udpip_hdr->zeros      = 0;
2301                     p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2302                     p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2303 
2304                     udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2305 
2306                     p_udp_hdr->uh_sum = 0;
2307 
2308                     int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2309                     DPRINTF("+++ C+ mode UDP checksum %04x\n",
2310                         udp_checksum);
2311 
2312                     p_udp_hdr->uh_sum = udp_checksum;
2313                 }
2314 
2315                 /* restore IP header */
2316                 memcpy(eth_payload_data, saved_ip_header, hlen);
2317             }
2318         }
2319 
2320 skip_offload:
2321         /* update tally counter */
2322         ++s->tally_counters.TxOk;
2323 
2324         DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2325 
2326         rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2327             (uint8_t *) dot1q_buffer);
2328 
2329         /* restore card space if there was no recursion and reset offset */
2330         if (!s->cplus_txbuffer)
2331         {
2332             s->cplus_txbuffer        = saved_buffer;
2333             s->cplus_txbuffer_len    = saved_buffer_len;
2334             s->cplus_txbuffer_offset = 0;
2335         }
2336         else
2337         {
2338             g_free(saved_buffer);
2339         }
2340     }
2341     else
2342     {
2343         DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2344     }
2345 
2346     return 1;
2347 }
2348 
rtl8139_cplus_transmit(RTL8139State * s)2349 static void rtl8139_cplus_transmit(RTL8139State *s)
2350 {
2351     int txcount = 0;
2352 
2353     while (txcount < 64 && rtl8139_cplus_transmit_one(s))
2354     {
2355         ++txcount;
2356     }
2357 
2358     /* Mark transfer completed */
2359     if (!txcount)
2360     {
2361         DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2362             s->currCPlusTxDesc);
2363     }
2364     else
2365     {
2366         /* update interrupt status */
2367         s->IntrStatus |= TxOK;
2368         rtl8139_update_irq(s);
2369     }
2370 }
2371 
rtl8139_transmit(RTL8139State * s)2372 static void rtl8139_transmit(RTL8139State *s)
2373 {
2374     int descriptor = s->currTxDesc, txcount = 0;
2375 
2376     /*while*/
2377     if (rtl8139_transmit_one(s, descriptor))
2378     {
2379         ++s->currTxDesc;
2380         s->currTxDesc %= 4;
2381         ++txcount;
2382     }
2383 
2384     /* Mark transfer completed */
2385     if (!txcount)
2386     {
2387         DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2388             s->currTxDesc);
2389     }
2390 }
2391 
rtl8139_TxStatus_write(RTL8139State * s,uint32_t txRegOffset,uint32_t val)2392 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2393 {
2394 
2395     int descriptor = txRegOffset/4;
2396 
2397     /* handle C+ transmit mode register configuration */
2398 
2399     if (s->cplus_enabled)
2400     {
2401         DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2402             "descriptor=%d\n", txRegOffset, val, descriptor);
2403 
2404         /* handle Dump Tally Counters command */
2405         s->TxStatus[descriptor] = val;
2406 
2407         if (descriptor == 0 && (val & 0x8))
2408         {
2409             hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2410 
2411             /* dump tally counters to specified memory location */
2412             RTL8139TallyCounters_dma_write(s, tc_addr);
2413 
2414             /* mark dump completed */
2415             s->TxStatus[0] &= ~0x8;
2416         }
2417 
2418         return;
2419     }
2420 
2421     DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2422         txRegOffset, val, descriptor);
2423 
2424     /* mask only reserved bits */
2425     val &= ~0xff00c000; /* these bits are reset on write */
2426     val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2427 
2428     s->TxStatus[descriptor] = val;
2429 
2430     /* attempt to start transmission */
2431     rtl8139_transmit(s);
2432 }
2433 
rtl8139_TxStatus_TxAddr_read(RTL8139State * s,uint32_t regs[],uint32_t base,uint8_t addr,int size)2434 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2435                                              uint32_t base, uint8_t addr,
2436                                              int size)
2437 {
2438     uint32_t reg = (addr - base) / 4;
2439     uint32_t offset = addr & 0x3;
2440     uint32_t ret = 0;
2441 
2442     if (addr & (size - 1)) {
2443         DPRINTF("not implemented read for TxStatus/TxAddr "
2444                 "addr=0x%x size=0x%x\n", addr, size);
2445         return ret;
2446     }
2447 
2448     switch (size) {
2449     case 1: /* fall through */
2450     case 2: /* fall through */
2451     case 4:
2452         ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2453         DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2454                 reg, addr, size, ret);
2455         break;
2456     default:
2457         DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2458         break;
2459     }
2460 
2461     return ret;
2462 }
2463 
rtl8139_TSAD_read(RTL8139State * s)2464 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2465 {
2466     uint16_t ret = 0;
2467 
2468     /* Simulate TSAD, it is read only anyway */
2469 
2470     ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2471          |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2472          |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2473          |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2474 
2475          |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2476          |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2477          |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2478          |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2479 
2480          |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2481          |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2482          |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2483          |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2484 
2485          |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2486          |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2487          |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2488          |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2489 
2490 
2491     DPRINTF("TSAD read val=0x%04x\n", ret);
2492 
2493     return ret;
2494 }
2495 
rtl8139_CSCR_read(RTL8139State * s)2496 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2497 {
2498     uint16_t ret = s->CSCR;
2499 
2500     DPRINTF("CSCR read val=0x%04x\n", ret);
2501 
2502     return ret;
2503 }
2504 
rtl8139_TxAddr_write(RTL8139State * s,uint32_t txAddrOffset,uint32_t val)2505 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2506 {
2507     DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2508 
2509     s->TxAddr[txAddrOffset/4] = val;
2510 }
2511 
rtl8139_TxAddr_read(RTL8139State * s,uint32_t txAddrOffset)2512 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2513 {
2514     uint32_t ret = s->TxAddr[txAddrOffset/4];
2515 
2516     DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2517 
2518     return ret;
2519 }
2520 
rtl8139_RxBufPtr_write(RTL8139State * s,uint32_t val)2521 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2522 {
2523     DPRINTF("RxBufPtr write val=0x%04x\n", val);
2524 
2525     /* this value is off by 16 */
2526     s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2527 
2528     /* more buffer space may be available so try to receive */
2529     qemu_flush_queued_packets(qemu_get_queue(s->nic));
2530 
2531     DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2532         s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2533 }
2534 
rtl8139_RxBufPtr_read(RTL8139State * s)2535 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2536 {
2537     /* this value is off by 16 */
2538     uint32_t ret = s->RxBufPtr - 0x10;
2539 
2540     DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2541 
2542     return ret;
2543 }
2544 
rtl8139_RxBufAddr_read(RTL8139State * s)2545 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2546 {
2547     /* this value is NOT off by 16 */
2548     uint32_t ret = s->RxBufAddr;
2549 
2550     DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2551 
2552     return ret;
2553 }
2554 
rtl8139_RxBuf_write(RTL8139State * s,uint32_t val)2555 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2556 {
2557     DPRINTF("RxBuf write val=0x%08x\n", val);
2558 
2559     s->RxBuf = val;
2560 
2561     /* may need to reset rxring here */
2562 }
2563 
rtl8139_RxBuf_read(RTL8139State * s)2564 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2565 {
2566     uint32_t ret = s->RxBuf;
2567 
2568     DPRINTF("RxBuf read val=0x%08x\n", ret);
2569 
2570     return ret;
2571 }
2572 
rtl8139_IntrMask_write(RTL8139State * s,uint32_t val)2573 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2574 {
2575     DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2576 
2577     /* mask unwritable bits */
2578     val = SET_MASKED(val, 0x1e00, s->IntrMask);
2579 
2580     s->IntrMask = val;
2581 
2582     rtl8139_update_irq(s);
2583 
2584 }
2585 
rtl8139_IntrMask_read(RTL8139State * s)2586 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2587 {
2588     uint32_t ret = s->IntrMask;
2589 
2590     DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2591 
2592     return ret;
2593 }
2594 
rtl8139_IntrStatus_write(RTL8139State * s,uint32_t val)2595 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2596 {
2597     DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2598 
2599 #if 0
2600 
2601     /* writing to ISR has no effect */
2602 
2603     return;
2604 
2605 #else
2606     uint16_t newStatus = s->IntrStatus & ~val;
2607 
2608     /* mask unwritable bits */
2609     newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2610 
2611     /* writing 1 to interrupt status register bit clears it */
2612     s->IntrStatus = 0;
2613     rtl8139_update_irq(s);
2614 
2615     s->IntrStatus = newStatus;
2616     rtl8139_set_next_tctr_time(s);
2617     rtl8139_update_irq(s);
2618 
2619 #endif
2620 }
2621 
rtl8139_IntrStatus_read(RTL8139State * s)2622 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2623 {
2624     uint32_t ret = s->IntrStatus;
2625 
2626     DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2627 
2628 #if 0
2629 
2630     /* reading ISR clears all interrupts */
2631     s->IntrStatus = 0;
2632 
2633     rtl8139_update_irq(s);
2634 
2635 #endif
2636 
2637     return ret;
2638 }
2639 
rtl8139_MultiIntr_write(RTL8139State * s,uint32_t val)2640 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2641 {
2642     DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2643 
2644     /* mask unwritable bits */
2645     val = SET_MASKED(val, 0xf000, s->MultiIntr);
2646 
2647     s->MultiIntr = val;
2648 }
2649 
rtl8139_MultiIntr_read(RTL8139State * s)2650 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2651 {
2652     uint32_t ret = s->MultiIntr;
2653 
2654     DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2655 
2656     return ret;
2657 }
2658 
rtl8139_io_writeb(void * opaque,uint8_t addr,uint32_t val)2659 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2660 {
2661     RTL8139State *s = opaque;
2662 
2663     switch (addr)
2664     {
2665         case MAC0 ... MAC0+4:
2666             s->phys[addr - MAC0] = val;
2667             break;
2668         case MAC0+5:
2669             s->phys[addr - MAC0] = val;
2670             qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2671             break;
2672         case MAC0+6 ... MAC0+7:
2673             /* reserved */
2674             break;
2675         case MAR0 ... MAR0+7:
2676             s->mult[addr - MAR0] = val;
2677             break;
2678         case ChipCmd:
2679             rtl8139_ChipCmd_write(s, val);
2680             break;
2681         case Cfg9346:
2682             rtl8139_Cfg9346_write(s, val);
2683             break;
2684         case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2685             rtl8139_TxConfig_writeb(s, val);
2686             break;
2687         case Config0:
2688             rtl8139_Config0_write(s, val);
2689             break;
2690         case Config1:
2691             rtl8139_Config1_write(s, val);
2692             break;
2693         case Config3:
2694             rtl8139_Config3_write(s, val);
2695             break;
2696         case Config4:
2697             rtl8139_Config4_write(s, val);
2698             break;
2699         case Config5:
2700             rtl8139_Config5_write(s, val);
2701             break;
2702         case MediaStatus:
2703             /* ignore */
2704             DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2705                 val);
2706             break;
2707 
2708         case HltClk:
2709             DPRINTF("HltClk write val=0x%08x\n", val);
2710             if (val == 'R')
2711             {
2712                 s->clock_enabled = 1;
2713             }
2714             else if (val == 'H')
2715             {
2716                 s->clock_enabled = 0;
2717             }
2718             break;
2719 
2720         case TxThresh:
2721             DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2722             s->TxThresh = val;
2723             break;
2724 
2725         case TxPoll:
2726             DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2727             if (val & (1 << 7))
2728             {
2729                 DPRINTF("C+ TxPoll high priority transmission (not "
2730                     "implemented)\n");
2731                 //rtl8139_cplus_transmit(s);
2732             }
2733             if (val & (1 << 6))
2734             {
2735                 DPRINTF("C+ TxPoll normal priority transmission\n");
2736                 rtl8139_cplus_transmit(s);
2737             }
2738 
2739             break;
2740         case RxConfig:
2741             DPRINTF("RxConfig write(b) val=0x%02x\n", val);
2742             rtl8139_RxConfig_write(s,
2743                 (rtl8139_RxConfig_read(s) & 0xFFFFFF00) | val);
2744             break;
2745         default:
2746             DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2747                 val);
2748             break;
2749     }
2750 }
2751 
rtl8139_io_writew(void * opaque,uint8_t addr,uint32_t val)2752 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2753 {
2754     RTL8139State *s = opaque;
2755 
2756     switch (addr)
2757     {
2758         case IntrMask:
2759             rtl8139_IntrMask_write(s, val);
2760             break;
2761 
2762         case IntrStatus:
2763             rtl8139_IntrStatus_write(s, val);
2764             break;
2765 
2766         case MultiIntr:
2767             rtl8139_MultiIntr_write(s, val);
2768             break;
2769 
2770         case RxBufPtr:
2771             rtl8139_RxBufPtr_write(s, val);
2772             break;
2773 
2774         case BasicModeCtrl:
2775             rtl8139_BasicModeCtrl_write(s, val);
2776             break;
2777         case BasicModeStatus:
2778             rtl8139_BasicModeStatus_write(s, val);
2779             break;
2780         case NWayAdvert:
2781             DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2782             s->NWayAdvert = val;
2783             break;
2784         case NWayLPAR:
2785             DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2786             break;
2787         case NWayExpansion:
2788             DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2789             s->NWayExpansion = val;
2790             break;
2791 
2792         case CpCmd:
2793             rtl8139_CpCmd_write(s, val);
2794             break;
2795 
2796         case IntrMitigate:
2797             rtl8139_IntrMitigate_write(s, val);
2798             break;
2799 
2800         default:
2801             DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2802                 addr, val);
2803 
2804             rtl8139_io_writeb(opaque, addr, val & 0xff);
2805             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2806             break;
2807     }
2808 }
2809 
rtl8139_set_next_tctr_time(RTL8139State * s)2810 static void rtl8139_set_next_tctr_time(RTL8139State *s)
2811 {
2812     const uint64_t ns_per_period = (uint64_t)PCI_PERIOD << 32;
2813 
2814     DPRINTF("entered rtl8139_set_next_tctr_time\n");
2815 
2816     /* This function is called at least once per period, so it is a good
2817      * place to update the timer base.
2818      *
2819      * After one iteration of this loop the value in the Timer register does
2820      * not change, but the device model is counting up by 2^32 ticks (approx.
2821      * 130 seconds).
2822      */
2823     while (s->TCTR_base + ns_per_period <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2824         s->TCTR_base += ns_per_period;
2825     }
2826 
2827     if (!s->TimerInt) {
2828         timer_del(s->timer);
2829     } else {
2830         uint64_t delta = (uint64_t)s->TimerInt * PCI_PERIOD;
2831         if (s->TCTR_base + delta <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2832             delta += ns_per_period;
2833         }
2834         timer_mod(s->timer, s->TCTR_base + delta);
2835     }
2836 }
2837 
rtl8139_io_writel(void * opaque,uint8_t addr,uint32_t val)2838 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2839 {
2840     RTL8139State *s = opaque;
2841 
2842     switch (addr)
2843     {
2844         case RxMissed:
2845             DPRINTF("RxMissed clearing on write\n");
2846             s->RxMissed = 0;
2847             break;
2848 
2849         case TxConfig:
2850             rtl8139_TxConfig_write(s, val);
2851             break;
2852 
2853         case RxConfig:
2854             rtl8139_RxConfig_write(s, val);
2855             break;
2856 
2857         case TxStatus0 ... TxStatus0+4*4-1:
2858             rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2859             break;
2860 
2861         case TxAddr0 ... TxAddr0+4*4-1:
2862             rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2863             break;
2864 
2865         case RxBuf:
2866             rtl8139_RxBuf_write(s, val);
2867             break;
2868 
2869         case RxRingAddrLO:
2870             DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2871             s->RxRingAddrLO = val;
2872             break;
2873 
2874         case RxRingAddrHI:
2875             DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2876             s->RxRingAddrHI = val;
2877             break;
2878 
2879         case Timer:
2880             DPRINTF("TCTR Timer reset on write\n");
2881             s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2882             rtl8139_set_next_tctr_time(s);
2883             break;
2884 
2885         case FlashReg:
2886             DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2887             if (s->TimerInt != val) {
2888                 s->TimerInt = val;
2889                 rtl8139_set_next_tctr_time(s);
2890             }
2891             break;
2892 
2893         default:
2894             DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2895                 addr, val);
2896             rtl8139_io_writeb(opaque, addr, val & 0xff);
2897             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2898             rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2899             rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2900             break;
2901     }
2902 }
2903 
rtl8139_io_readb(void * opaque,uint8_t addr)2904 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2905 {
2906     RTL8139State *s = opaque;
2907     int ret;
2908 
2909     switch (addr)
2910     {
2911         case MAC0 ... MAC0+5:
2912             ret = s->phys[addr - MAC0];
2913             break;
2914         case MAC0+6 ... MAC0+7:
2915             ret = 0;
2916             break;
2917         case MAR0 ... MAR0+7:
2918             ret = s->mult[addr - MAR0];
2919             break;
2920         case TxStatus0 ... TxStatus0+4*4-1:
2921             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2922                                                addr, 1);
2923             break;
2924         case ChipCmd:
2925             ret = rtl8139_ChipCmd_read(s);
2926             break;
2927         case Cfg9346:
2928             ret = rtl8139_Cfg9346_read(s);
2929             break;
2930         case Config0:
2931             ret = rtl8139_Config0_read(s);
2932             break;
2933         case Config1:
2934             ret = rtl8139_Config1_read(s);
2935             break;
2936         case Config3:
2937             ret = rtl8139_Config3_read(s);
2938             break;
2939         case Config4:
2940             ret = rtl8139_Config4_read(s);
2941             break;
2942         case Config5:
2943             ret = rtl8139_Config5_read(s);
2944             break;
2945 
2946         case MediaStatus:
2947             /* The LinkDown bit of MediaStatus is inverse with link status */
2948             ret = 0xd0 | (~s->BasicModeStatus & 0x04);
2949             DPRINTF("MediaStatus read 0x%x\n", ret);
2950             break;
2951 
2952         case HltClk:
2953             ret = s->clock_enabled;
2954             DPRINTF("HltClk read 0x%x\n", ret);
2955             break;
2956 
2957         case PCIRevisionID:
2958             ret = RTL8139_PCI_REVID;
2959             DPRINTF("PCI Revision ID read 0x%x\n", ret);
2960             break;
2961 
2962         case TxThresh:
2963             ret = s->TxThresh;
2964             DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
2965             break;
2966 
2967         case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
2968             ret = s->TxConfig >> 24;
2969             DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
2970             break;
2971 
2972         default:
2973             DPRINTF("not implemented read(b) addr=0x%x\n", addr);
2974             ret = 0;
2975             break;
2976     }
2977 
2978     return ret;
2979 }
2980 
rtl8139_io_readw(void * opaque,uint8_t addr)2981 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
2982 {
2983     RTL8139State *s = opaque;
2984     uint32_t ret;
2985 
2986     switch (addr)
2987     {
2988         case TxAddr0 ... TxAddr0+4*4-1:
2989             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
2990             break;
2991         case IntrMask:
2992             ret = rtl8139_IntrMask_read(s);
2993             break;
2994 
2995         case IntrStatus:
2996             ret = rtl8139_IntrStatus_read(s);
2997             break;
2998 
2999         case MultiIntr:
3000             ret = rtl8139_MultiIntr_read(s);
3001             break;
3002 
3003         case RxBufPtr:
3004             ret = rtl8139_RxBufPtr_read(s);
3005             break;
3006 
3007         case RxBufAddr:
3008             ret = rtl8139_RxBufAddr_read(s);
3009             break;
3010 
3011         case BasicModeCtrl:
3012             ret = rtl8139_BasicModeCtrl_read(s);
3013             break;
3014         case BasicModeStatus:
3015             ret = rtl8139_BasicModeStatus_read(s);
3016             break;
3017         case NWayAdvert:
3018             ret = s->NWayAdvert;
3019             DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3020             break;
3021         case NWayLPAR:
3022             ret = s->NWayLPAR;
3023             DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3024             break;
3025         case NWayExpansion:
3026             ret = s->NWayExpansion;
3027             DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3028             break;
3029 
3030         case CpCmd:
3031             ret = rtl8139_CpCmd_read(s);
3032             break;
3033 
3034         case IntrMitigate:
3035             ret = rtl8139_IntrMitigate_read(s);
3036             break;
3037 
3038         case TxSummary:
3039             ret = rtl8139_TSAD_read(s);
3040             break;
3041 
3042         case CSCR:
3043             ret = rtl8139_CSCR_read(s);
3044             break;
3045 
3046         default:
3047             DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3048 
3049             ret  = rtl8139_io_readb(opaque, addr);
3050             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3051 
3052             DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3053             break;
3054     }
3055 
3056     return ret;
3057 }
3058 
rtl8139_io_readl(void * opaque,uint8_t addr)3059 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3060 {
3061     RTL8139State *s = opaque;
3062     uint32_t ret;
3063 
3064     switch (addr)
3065     {
3066         case RxMissed:
3067             ret = s->RxMissed;
3068 
3069             DPRINTF("RxMissed read val=0x%08x\n", ret);
3070             break;
3071 
3072         case TxConfig:
3073             ret = rtl8139_TxConfig_read(s);
3074             break;
3075 
3076         case RxConfig:
3077             ret = rtl8139_RxConfig_read(s);
3078             break;
3079 
3080         case TxStatus0 ... TxStatus0+4*4-1:
3081             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3082                                                addr, 4);
3083             break;
3084 
3085         case TxAddr0 ... TxAddr0+4*4-1:
3086             ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3087             break;
3088 
3089         case RxBuf:
3090             ret = rtl8139_RxBuf_read(s);
3091             break;
3092 
3093         case RxRingAddrLO:
3094             ret = s->RxRingAddrLO;
3095             DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3096             break;
3097 
3098         case RxRingAddrHI:
3099             ret = s->RxRingAddrHI;
3100             DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3101             break;
3102 
3103         case Timer:
3104             ret = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base) /
3105                   PCI_PERIOD;
3106             DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3107             break;
3108 
3109         case FlashReg:
3110             ret = s->TimerInt;
3111             DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3112             break;
3113 
3114         default:
3115             DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3116 
3117             ret  = rtl8139_io_readb(opaque, addr);
3118             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3119             ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3120             ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3121 
3122             DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3123             break;
3124     }
3125 
3126     return ret;
3127 }
3128 
3129 /* */
3130 
rtl8139_post_load(void * opaque,int version_id)3131 static int rtl8139_post_load(void *opaque, int version_id)
3132 {
3133     RTL8139State* s = opaque;
3134     rtl8139_set_next_tctr_time(s);
3135     if (version_id < 4) {
3136         s->cplus_enabled = s->CpCmd != 0;
3137     }
3138 
3139     /* nc.link_down can't be migrated, so infer link_down according
3140      * to link status bit in BasicModeStatus */
3141     qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3142 
3143     return 0;
3144 }
3145 
rtl8139_hotplug_ready_needed(void * opaque)3146 static bool rtl8139_hotplug_ready_needed(void *opaque)
3147 {
3148     return qdev_machine_modified();
3149 }
3150 
3151 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3152     .name = "rtl8139/hotplug_ready",
3153     .version_id = 1,
3154     .minimum_version_id = 1,
3155     .needed = rtl8139_hotplug_ready_needed,
3156     .fields = (const VMStateField[]) {
3157         VMSTATE_END_OF_LIST()
3158     }
3159 };
3160 
rtl8139_pre_save(void * opaque)3161 static int rtl8139_pre_save(void *opaque)
3162 {
3163     RTL8139State* s = opaque;
3164     int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3165 
3166     /* for migration to older versions */
3167     s->TCTR = (current_time - s->TCTR_base) / PCI_PERIOD;
3168     s->rtl8139_mmio_io_addr_dummy = 0;
3169 
3170     return 0;
3171 }
3172 
3173 static const VMStateDescription vmstate_rtl8139 = {
3174     .name = "rtl8139",
3175     .version_id = 5,
3176     .minimum_version_id = 3,
3177     .post_load = rtl8139_post_load,
3178     .pre_save  = rtl8139_pre_save,
3179     .fields = (const VMStateField[]) {
3180         VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3181         VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3182         VMSTATE_BUFFER(mult, RTL8139State),
3183         VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3184         VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3185 
3186         VMSTATE_UINT32(RxBuf, RTL8139State),
3187         VMSTATE_UINT32(RxBufferSize, RTL8139State),
3188         VMSTATE_UINT32(RxBufPtr, RTL8139State),
3189         VMSTATE_UINT32(RxBufAddr, RTL8139State),
3190 
3191         VMSTATE_UINT16(IntrStatus, RTL8139State),
3192         VMSTATE_UINT16(IntrMask, RTL8139State),
3193 
3194         VMSTATE_UINT32(TxConfig, RTL8139State),
3195         VMSTATE_UINT32(RxConfig, RTL8139State),
3196         VMSTATE_UINT32(RxMissed, RTL8139State),
3197         VMSTATE_UINT16(CSCR, RTL8139State),
3198 
3199         VMSTATE_UINT8(Cfg9346, RTL8139State),
3200         VMSTATE_UINT8(Config0, RTL8139State),
3201         VMSTATE_UINT8(Config1, RTL8139State),
3202         VMSTATE_UINT8(Config3, RTL8139State),
3203         VMSTATE_UINT8(Config4, RTL8139State),
3204         VMSTATE_UINT8(Config5, RTL8139State),
3205 
3206         VMSTATE_UINT8(clock_enabled, RTL8139State),
3207         VMSTATE_UINT8(bChipCmdState, RTL8139State),
3208 
3209         VMSTATE_UINT16(MultiIntr, RTL8139State),
3210 
3211         VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3212         VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3213         VMSTATE_UINT16(NWayAdvert, RTL8139State),
3214         VMSTATE_UINT16(NWayLPAR, RTL8139State),
3215         VMSTATE_UINT16(NWayExpansion, RTL8139State),
3216 
3217         VMSTATE_UINT16(CpCmd, RTL8139State),
3218         VMSTATE_UINT8(TxThresh, RTL8139State),
3219 
3220         VMSTATE_UNUSED(4),
3221         VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3222         VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3223 
3224         VMSTATE_UINT32(currTxDesc, RTL8139State),
3225         VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3226         VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3227         VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3228         VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3229 
3230         VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3231         VMSTATE_INT32(eeprom.mode, RTL8139State),
3232         VMSTATE_UINT32(eeprom.tick, RTL8139State),
3233         VMSTATE_UINT8(eeprom.address, RTL8139State),
3234         VMSTATE_UINT16(eeprom.input, RTL8139State),
3235         VMSTATE_UINT16(eeprom.output, RTL8139State),
3236 
3237         VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3238         VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3239         VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3240         VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3241 
3242         VMSTATE_UINT32(TCTR, RTL8139State),
3243         VMSTATE_UINT32(TimerInt, RTL8139State),
3244         VMSTATE_INT64(TCTR_base, RTL8139State),
3245 
3246         VMSTATE_UINT64(tally_counters.TxOk, RTL8139State),
3247         VMSTATE_UINT64(tally_counters.RxOk, RTL8139State),
3248         VMSTATE_UINT64(tally_counters.TxERR, RTL8139State),
3249         VMSTATE_UINT32(tally_counters.RxERR, RTL8139State),
3250         VMSTATE_UINT16(tally_counters.MissPkt, RTL8139State),
3251         VMSTATE_UINT16(tally_counters.FAE, RTL8139State),
3252         VMSTATE_UINT32(tally_counters.Tx1Col, RTL8139State),
3253         VMSTATE_UINT32(tally_counters.TxMCol, RTL8139State),
3254         VMSTATE_UINT64(tally_counters.RxOkPhy, RTL8139State),
3255         VMSTATE_UINT64(tally_counters.RxOkBrd, RTL8139State),
3256         VMSTATE_UINT32_V(tally_counters.RxOkMul, RTL8139State, 5),
3257         VMSTATE_UINT16(tally_counters.TxAbt, RTL8139State),
3258         VMSTATE_UINT16(tally_counters.TxUndrn, RTL8139State),
3259 
3260         VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3261         VMSTATE_END_OF_LIST()
3262     },
3263     .subsections = (const VMStateDescription * const []) {
3264         &vmstate_rtl8139_hotplug_ready,
3265         NULL
3266     }
3267 };
3268 
3269 /***********************************************************/
3270 /* PCI RTL8139 definitions */
3271 
rtl8139_ioport_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)3272 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3273                                  uint64_t val, unsigned size)
3274 {
3275     switch (size) {
3276     case 1:
3277         rtl8139_io_writeb(opaque, addr, val);
3278         break;
3279     case 2:
3280         rtl8139_io_writew(opaque, addr, val);
3281         break;
3282     case 4:
3283         rtl8139_io_writel(opaque, addr, val);
3284         break;
3285     }
3286 }
3287 
rtl8139_ioport_read(void * opaque,hwaddr addr,unsigned size)3288 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3289                                     unsigned size)
3290 {
3291     switch (size) {
3292     case 1:
3293         return rtl8139_io_readb(opaque, addr);
3294     case 2:
3295         return rtl8139_io_readw(opaque, addr);
3296     case 4:
3297         return rtl8139_io_readl(opaque, addr);
3298     }
3299 
3300     return -1;
3301 }
3302 
3303 static const MemoryRegionOps rtl8139_io_ops = {
3304     .read = rtl8139_ioport_read,
3305     .write = rtl8139_ioport_write,
3306     .impl = {
3307         .min_access_size = 1,
3308         .max_access_size = 4,
3309     },
3310     .endianness = DEVICE_LITTLE_ENDIAN,
3311 };
3312 
rtl8139_timer(void * opaque)3313 static void rtl8139_timer(void *opaque)
3314 {
3315     RTL8139State *s = opaque;
3316 
3317     if (!s->clock_enabled)
3318     {
3319         DPRINTF(">>> timer: clock is not running\n");
3320         return;
3321     }
3322 
3323     s->IntrStatus |= PCSTimeout;
3324     rtl8139_update_irq(s);
3325     rtl8139_set_next_tctr_time(s);
3326 }
3327 
pci_rtl8139_uninit(PCIDevice * dev)3328 static void pci_rtl8139_uninit(PCIDevice *dev)
3329 {
3330     RTL8139State *s = RTL8139(dev);
3331 
3332     g_free(s->cplus_txbuffer);
3333     s->cplus_txbuffer = NULL;
3334     timer_free(s->timer);
3335     qemu_del_nic(s->nic);
3336 }
3337 
rtl8139_set_link_status(NetClientState * nc)3338 static void rtl8139_set_link_status(NetClientState *nc)
3339 {
3340     RTL8139State *s = qemu_get_nic_opaque(nc);
3341 
3342     if (nc->link_down) {
3343         s->BasicModeStatus &= ~0x04;
3344     } else {
3345         s->BasicModeStatus |= 0x04;
3346     }
3347 
3348     s->IntrStatus |= RxUnderrun;
3349     rtl8139_update_irq(s);
3350 }
3351 
3352 static NetClientInfo net_rtl8139_info = {
3353     .type = NET_CLIENT_DRIVER_NIC,
3354     .size = sizeof(NICState),
3355     .can_receive = rtl8139_can_receive,
3356     .receive = rtl8139_receive,
3357     .link_status_changed = rtl8139_set_link_status,
3358 };
3359 
pci_rtl8139_realize(PCIDevice * dev,Error ** errp)3360 static void pci_rtl8139_realize(PCIDevice *dev, Error **errp)
3361 {
3362     RTL8139State *s = RTL8139(dev);
3363     DeviceState *d = DEVICE(dev);
3364     uint8_t *pci_conf;
3365 
3366     pci_conf = dev->config;
3367     pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3368     /* TODO: start of capability list, but no capability
3369      * list bit in status register, and offset 0xdc seems unused. */
3370     pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3371 
3372     memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3373                           "rtl8139", 0x100);
3374     memory_region_init_alias(&s->bar_mem, OBJECT(s), "rtl8139-mem", &s->bar_io,
3375                              0, 0x100);
3376 
3377     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3378     pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3379 
3380     qemu_macaddr_default_if_unset(&s->conf.macaddr);
3381 
3382     /* prepare eeprom */
3383     s->eeprom.contents[0] = 0x8129;
3384 #if 1
3385     /* PCI vendor and device ID should be mirrored here */
3386     s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3387     s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3388 #endif
3389     s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3390     s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3391     s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3392 
3393     s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3394                           object_get_typename(OBJECT(dev)), d->id,
3395                           &d->mem_reentrancy_guard, s);
3396     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3397 
3398     s->cplus_txbuffer = NULL;
3399     s->cplus_txbuffer_len = 0;
3400     s->cplus_txbuffer_offset = 0;
3401 
3402     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3403 }
3404 
rtl8139_instance_init(Object * obj)3405 static void rtl8139_instance_init(Object *obj)
3406 {
3407     RTL8139State *s = RTL8139(obj);
3408 
3409     device_add_bootindex_property(obj, &s->conf.bootindex,
3410                                   "bootindex", "/ethernet-phy@0",
3411                                   DEVICE(obj));
3412 }
3413 
3414 static const Property rtl8139_properties[] = {
3415     DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3416 };
3417 
rtl8139_class_init(ObjectClass * klass,const void * data)3418 static void rtl8139_class_init(ObjectClass *klass, const void *data)
3419 {
3420     DeviceClass *dc = DEVICE_CLASS(klass);
3421     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3422 
3423     k->realize = pci_rtl8139_realize;
3424     k->exit = pci_rtl8139_uninit;
3425     k->romfile = "efi-rtl8139.rom";
3426     k->vendor_id = PCI_VENDOR_ID_REALTEK;
3427     k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3428     k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3429     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3430     device_class_set_legacy_reset(dc, rtl8139_reset);
3431     dc->vmsd = &vmstate_rtl8139;
3432     device_class_set_props(dc, rtl8139_properties);
3433     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3434 }
3435 
3436 static const TypeInfo rtl8139_info = {
3437     .name          = TYPE_RTL8139,
3438     .parent        = TYPE_PCI_DEVICE,
3439     .instance_size = sizeof(RTL8139State),
3440     .class_init    = rtl8139_class_init,
3441     .instance_init = rtl8139_instance_init,
3442     .interfaces = (const InterfaceInfo[]) {
3443         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
3444         { },
3445     },
3446 };
3447 
rtl8139_register_types(void)3448 static void rtl8139_register_types(void)
3449 {
3450     type_register_static(&rtl8139_info);
3451 }
3452 
3453 type_init(rtl8139_register_types)
3454