xref: /openbmc/qemu/hw/net/e1000e_core.c (revision a84e2e04e8b03c47ee9304d9b5158b212d11183a)
1 /*
2  * Core code for QEMU e1000e emulation
3  *
4  * Software developer's manuals:
5  * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6  *
7  * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8  * Developed by Daynix Computing LTD (http://www.daynix.com)
9  *
10  * Authors:
11  * Dmitry Fleytman <dmitry@daynix.com>
12  * Leonid Bloch <leonid@daynix.com>
13  * Yan Vugenfirer <yan@daynix.com>
14  *
15  * Based on work done by:
16  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17  * Copyright (c) 2008 Qumranet
18  * Based on work done by:
19  * Copyright (c) 2007 Dan Aloni
20  * Copyright (c) 2004 Antony T Curtis
21  *
22  * This library is free software; you can redistribute it and/or
23  * modify it under the terms of the GNU Lesser General Public
24  * License as published by the Free Software Foundation; either
25  * version 2.1 of the License, or (at your option) any later version.
26  *
27  * This library is distributed in the hope that it will be useful,
28  * but WITHOUT ANY WARRANTY; without even the implied warranty of
29  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30  * Lesser General Public License for more details.
31  *
32  * You should have received a copy of the GNU Lesser General Public
33  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
34  */
35 
36 #include "qemu/osdep.h"
37 #include "qemu/log.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/net/mii.h"
41 #include "hw/pci/msi.h"
42 #include "hw/pci/msix.h"
43 #include "system/runstate.h"
44 
45 #include "net_tx_pkt.h"
46 #include "net_rx_pkt.h"
47 
48 #include "e1000_common.h"
49 #include "e1000x_common.h"
50 #include "e1000e_core.h"
51 
52 #include "trace.h"
53 
54 /* No more then 7813 interrupts per second according to spec 10.2.4.2 */
55 #define E1000E_MIN_XITR     (500)
56 
57 #define E1000E_MAX_TX_FRAGS (64)
58 
59 union e1000_rx_desc_union {
60     struct e1000_rx_desc legacy;
61     union e1000_rx_desc_extended extended;
62     union e1000_rx_desc_packet_split packet_split;
63 };
64 
65 static ssize_t
66 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
67                         bool has_vnet);
68 
69 static inline void
70 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
71 
72 static void e1000e_reset(E1000ECore *core, bool sw);
73 
74 static inline void
e1000e_process_ts_option(E1000ECore * core,struct e1000_tx_desc * dp)75 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
76 {
77     if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
78         trace_e1000e_wrn_no_ts_support();
79     }
80 }
81 
82 static inline void
e1000e_process_snap_option(E1000ECore * core,uint32_t cmd_and_length)83 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
84 {
85     if (cmd_and_length & E1000_TXD_CMD_SNAP) {
86         trace_e1000e_wrn_no_snap_support();
87     }
88 }
89 
90 static inline void
e1000e_raise_legacy_irq(E1000ECore * core)91 e1000e_raise_legacy_irq(E1000ECore *core)
92 {
93     trace_e1000e_irq_legacy_notify(true);
94     e1000x_inc_reg_if_not_full(core->mac, IAC);
95     pci_set_irq(core->owner, 1);
96 }
97 
98 static inline void
e1000e_lower_legacy_irq(E1000ECore * core)99 e1000e_lower_legacy_irq(E1000ECore *core)
100 {
101     trace_e1000e_irq_legacy_notify(false);
102     pci_set_irq(core->owner, 0);
103 }
104 
105 static inline void
e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer * timer)106 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
107 {
108     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
109                                  timer->delay_resolution_ns;
110 
111     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
112 
113     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
114 
115     timer->running = true;
116 }
117 
118 static void
e1000e_intmgr_timer_resume(E1000IntrDelayTimer * timer)119 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
120 {
121     if (timer->running) {
122         e1000e_intrmgr_rearm_timer(timer);
123     }
124 }
125 
126 static inline void
e1000e_intrmgr_stop_timer(E1000IntrDelayTimer * timer)127 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
128 {
129     if (timer->running) {
130         timer_del(timer->timer);
131         timer->running = false;
132     }
133 }
134 
135 static inline void
e1000e_intrmgr_fire_delayed_interrupts(E1000ECore * core)136 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
137 {
138     trace_e1000e_irq_fire_delayed_interrupts();
139     e1000e_set_interrupt_cause(core, 0);
140 }
141 
142 static void
e1000e_intrmgr_on_timer(void * opaque)143 e1000e_intrmgr_on_timer(void *opaque)
144 {
145     E1000IntrDelayTimer *timer = opaque;
146 
147     trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
148 
149     timer->running = false;
150     e1000e_intrmgr_fire_delayed_interrupts(timer->core);
151 }
152 
153 static void
e1000e_intrmgr_on_throttling_timer(void * opaque)154 e1000e_intrmgr_on_throttling_timer(void *opaque)
155 {
156     E1000IntrDelayTimer *timer = opaque;
157 
158     timer->running = false;
159 
160     if (timer->core->mac[IMS] & timer->core->mac[ICR]) {
161         if (msi_enabled(timer->core->owner)) {
162             trace_e1000e_irq_msi_notify_postponed();
163             msi_notify(timer->core->owner, 0);
164         } else {
165             trace_e1000e_irq_legacy_notify_postponed();
166             e1000e_raise_legacy_irq(timer->core);
167         }
168     }
169 }
170 
171 static void
e1000e_intrmgr_on_msix_throttling_timer(void * opaque)172 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
173 {
174     E1000IntrDelayTimer *timer = opaque;
175     int idx = timer - &timer->core->eitr[0];
176 
177     timer->running = false;
178 
179     trace_e1000e_irq_msix_notify_postponed_vec(idx);
180     msix_notify(timer->core->owner, idx);
181 }
182 
183 static void
e1000e_intrmgr_initialize_all_timers(E1000ECore * core,bool create)184 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
185 {
186     int i;
187 
188     core->radv.delay_reg = RADV;
189     core->rdtr.delay_reg = RDTR;
190     core->raid.delay_reg = RAID;
191     core->tadv.delay_reg = TADV;
192     core->tidv.delay_reg = TIDV;
193 
194     core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
195     core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
196     core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
197     core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
198     core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
199 
200     core->radv.core = core;
201     core->rdtr.core = core;
202     core->raid.core = core;
203     core->tadv.core = core;
204     core->tidv.core = core;
205 
206     core->itr.core = core;
207     core->itr.delay_reg = ITR;
208     core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
209 
210     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
211         core->eitr[i].core = core;
212         core->eitr[i].delay_reg = EITR + i;
213         core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
214     }
215 
216     if (!create) {
217         return;
218     }
219 
220     core->radv.timer =
221         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
222     core->rdtr.timer =
223         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
224     core->raid.timer =
225         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
226 
227     core->tadv.timer =
228         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
229     core->tidv.timer =
230         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
231 
232     core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
233                                    e1000e_intrmgr_on_throttling_timer,
234                                    &core->itr);
235 
236     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
237         core->eitr[i].timer =
238             timer_new_ns(QEMU_CLOCK_VIRTUAL,
239                          e1000e_intrmgr_on_msix_throttling_timer,
240                          &core->eitr[i]);
241     }
242 }
243 
244 static inline void
e1000e_intrmgr_stop_delay_timers(E1000ECore * core)245 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
246 {
247     e1000e_intrmgr_stop_timer(&core->radv);
248     e1000e_intrmgr_stop_timer(&core->rdtr);
249     e1000e_intrmgr_stop_timer(&core->raid);
250     e1000e_intrmgr_stop_timer(&core->tidv);
251     e1000e_intrmgr_stop_timer(&core->tadv);
252 }
253 
254 static bool
e1000e_intrmgr_delay_rx_causes(E1000ECore * core,uint32_t * causes)255 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
256 {
257     uint32_t delayable_causes;
258     uint32_t rdtr = core->mac[RDTR];
259     uint32_t radv = core->mac[RADV];
260     uint32_t raid = core->mac[RAID];
261 
262     if (msix_enabled(core->owner)) {
263         return false;
264     }
265 
266     delayable_causes = E1000_ICR_RXQ0 |
267                        E1000_ICR_RXQ1 |
268                        E1000_ICR_RXT0;
269 
270     if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
271         delayable_causes |= E1000_ICR_ACK;
272     }
273 
274     /* Clean up all causes that may be delayed */
275     core->delayed_causes |= *causes & delayable_causes;
276     *causes &= ~delayable_causes;
277 
278     /*
279      * Check if delayed RX interrupts disabled by client
280      * or if there are causes that cannot be delayed
281      */
282     if ((rdtr == 0) || (*causes != 0)) {
283         return false;
284     }
285 
286     /*
287      * Check if delayed RX ACK interrupts disabled by client
288      * and there is an ACK packet received
289      */
290     if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
291         return false;
292     }
293 
294     /* All causes delayed */
295     e1000e_intrmgr_rearm_timer(&core->rdtr);
296 
297     if (!core->radv.running && (radv != 0)) {
298         e1000e_intrmgr_rearm_timer(&core->radv);
299     }
300 
301     if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
302         e1000e_intrmgr_rearm_timer(&core->raid);
303     }
304 
305     return true;
306 }
307 
308 static bool
e1000e_intrmgr_delay_tx_causes(E1000ECore * core,uint32_t * causes)309 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
310 {
311     static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
312                                              E1000_ICR_TXQ1 |
313                                              E1000_ICR_TXQE |
314                                              E1000_ICR_TXDW;
315 
316     if (msix_enabled(core->owner)) {
317         return false;
318     }
319 
320     /* Clean up all causes that may be delayed */
321     core->delayed_causes |= *causes & delayable_causes;
322     *causes &= ~delayable_causes;
323 
324     /* If there are causes that cannot be delayed */
325     if (*causes != 0) {
326         return false;
327     }
328 
329     /* All causes delayed */
330     e1000e_intrmgr_rearm_timer(&core->tidv);
331 
332     if (!core->tadv.running && (core->mac[TADV] != 0)) {
333         e1000e_intrmgr_rearm_timer(&core->tadv);
334     }
335 
336     return true;
337 }
338 
339 static uint32_t
e1000e_intmgr_collect_delayed_causes(E1000ECore * core)340 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
341 {
342     uint32_t res;
343 
344     res = core->delayed_causes;
345     core->delayed_causes = 0;
346 
347     e1000e_intrmgr_stop_delay_timers(core);
348 
349     return res;
350 }
351 
352 static void
e1000e_intrmgr_fire_all_timers(E1000ECore * core)353 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
354 {
355     int i;
356 
357     if (core->itr.running) {
358         timer_del(core->itr.timer);
359         e1000e_intrmgr_on_throttling_timer(&core->itr);
360     }
361 
362     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
363         if (core->eitr[i].running) {
364             timer_del(core->eitr[i].timer);
365             e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
366         }
367     }
368 }
369 
370 static void
e1000e_intrmgr_resume(E1000ECore * core)371 e1000e_intrmgr_resume(E1000ECore *core)
372 {
373     int i;
374 
375     e1000e_intmgr_timer_resume(&core->radv);
376     e1000e_intmgr_timer_resume(&core->rdtr);
377     e1000e_intmgr_timer_resume(&core->raid);
378     e1000e_intmgr_timer_resume(&core->tidv);
379     e1000e_intmgr_timer_resume(&core->tadv);
380 
381     e1000e_intmgr_timer_resume(&core->itr);
382 
383     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
384         e1000e_intmgr_timer_resume(&core->eitr[i]);
385     }
386 }
387 
388 static void
e1000e_intrmgr_reset(E1000ECore * core)389 e1000e_intrmgr_reset(E1000ECore *core)
390 {
391     int i;
392 
393     core->delayed_causes = 0;
394 
395     e1000e_intrmgr_stop_delay_timers(core);
396 
397     e1000e_intrmgr_stop_timer(&core->itr);
398 
399     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
400         e1000e_intrmgr_stop_timer(&core->eitr[i]);
401     }
402 }
403 
404 static void
e1000e_intrmgr_pci_unint(E1000ECore * core)405 e1000e_intrmgr_pci_unint(E1000ECore *core)
406 {
407     int i;
408 
409     timer_free(core->radv.timer);
410     timer_free(core->rdtr.timer);
411     timer_free(core->raid.timer);
412 
413     timer_free(core->tadv.timer);
414     timer_free(core->tidv.timer);
415 
416     timer_free(core->itr.timer);
417 
418     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
419         timer_free(core->eitr[i].timer);
420     }
421 }
422 
423 static void
e1000e_intrmgr_pci_realize(E1000ECore * core)424 e1000e_intrmgr_pci_realize(E1000ECore *core)
425 {
426     e1000e_intrmgr_initialize_all_timers(core, true);
427 }
428 
429 static inline bool
e1000e_rx_csum_enabled(E1000ECore * core)430 e1000e_rx_csum_enabled(E1000ECore *core)
431 {
432     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
433 }
434 
435 static inline bool
e1000e_rx_use_legacy_descriptor(E1000ECore * core)436 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
437 {
438     return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
439 }
440 
441 static inline bool
e1000e_rx_use_ps_descriptor(E1000ECore * core)442 e1000e_rx_use_ps_descriptor(E1000ECore *core)
443 {
444     return !e1000e_rx_use_legacy_descriptor(core) &&
445            (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
446 }
447 
448 static inline bool
e1000e_rss_enabled(E1000ECore * core)449 e1000e_rss_enabled(E1000ECore *core)
450 {
451     return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
452            !e1000e_rx_csum_enabled(core) &&
453            !e1000e_rx_use_legacy_descriptor(core);
454 }
455 
456 typedef struct E1000E_RSSInfo_st {
457     bool enabled;
458     uint32_t hash;
459     uint32_t queue;
460     uint32_t type;
461 } E1000E_RSSInfo;
462 
463 static uint32_t
e1000e_rss_get_hash_type(E1000ECore * core,struct NetRxPkt * pkt)464 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
465 {
466     bool hasip4, hasip6;
467     EthL4HdrProto l4hdr_proto;
468 
469     assert(e1000e_rss_enabled(core));
470 
471     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
472 
473     if (hasip4) {
474         trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
475                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
476                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
477 
478         if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
479             E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
480             return E1000_MRQ_RSS_TYPE_IPV4TCP;
481         }
482 
483         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
484             return E1000_MRQ_RSS_TYPE_IPV4;
485         }
486     } else if (hasip6) {
487         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
488 
489         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
490         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
491 
492         /*
493          * Following two traces must not be combined because resulting
494          * event will have 11 arguments totally and some trace backends
495          * (at least "ust") have limitation of maximum 10 arguments per
496          * event. Events with more arguments fail to compile for
497          * backends like these.
498          */
499         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
500         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
501                                 ip6info->has_ext_hdrs,
502                                 ip6info->rss_ex_dst_valid,
503                                 ip6info->rss_ex_src_valid,
504                                 core->mac[MRQC],
505                                 E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC]),
506                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
507                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
508 
509         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
510             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
511                               ip6info->rss_ex_src_valid))) {
512 
513             if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
514                 E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC])) {
515                 return E1000_MRQ_RSS_TYPE_IPV6TCPEX;
516             }
517 
518             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
519                 return E1000_MRQ_RSS_TYPE_IPV6EX;
520             }
521 
522         }
523 
524         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
525             return E1000_MRQ_RSS_TYPE_IPV6;
526         }
527 
528     }
529 
530     return E1000_MRQ_RSS_TYPE_NONE;
531 }
532 
533 static uint32_t
e1000e_rss_calc_hash(E1000ECore * core,struct NetRxPkt * pkt,E1000E_RSSInfo * info)534 e1000e_rss_calc_hash(E1000ECore *core,
535                      struct NetRxPkt *pkt,
536                      E1000E_RSSInfo *info)
537 {
538     NetRxPktRssType type;
539 
540     assert(e1000e_rss_enabled(core));
541 
542     switch (info->type) {
543     case E1000_MRQ_RSS_TYPE_IPV4:
544         type = NetPktRssIpV4;
545         break;
546     case E1000_MRQ_RSS_TYPE_IPV4TCP:
547         type = NetPktRssIpV4Tcp;
548         break;
549     case E1000_MRQ_RSS_TYPE_IPV6TCPEX:
550         type = NetPktRssIpV6TcpEx;
551         break;
552     case E1000_MRQ_RSS_TYPE_IPV6:
553         type = NetPktRssIpV6;
554         break;
555     case E1000_MRQ_RSS_TYPE_IPV6EX:
556         type = NetPktRssIpV6Ex;
557         break;
558     default:
559         g_assert_not_reached();
560     }
561 
562     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
563 }
564 
565 static void
e1000e_rss_parse_packet(E1000ECore * core,struct NetRxPkt * pkt,E1000E_RSSInfo * info)566 e1000e_rss_parse_packet(E1000ECore *core,
567                         struct NetRxPkt *pkt,
568                         E1000E_RSSInfo *info)
569 {
570     trace_e1000e_rx_rss_started();
571 
572     if (!e1000e_rss_enabled(core)) {
573         info->enabled = false;
574         info->hash = 0;
575         info->queue = 0;
576         info->type = 0;
577         trace_e1000e_rx_rss_disabled();
578         return;
579     }
580 
581     info->enabled = true;
582 
583     info->type = e1000e_rss_get_hash_type(core, pkt);
584 
585     trace_e1000e_rx_rss_type(info->type);
586 
587     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
588         info->hash = 0;
589         info->queue = 0;
590         return;
591     }
592 
593     info->hash = e1000e_rss_calc_hash(core, pkt, info);
594     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
595 }
596 
597 static bool
e1000e_setup_tx_offloads(E1000ECore * core,struct e1000e_tx * tx)598 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
599 {
600     if (tx->props.tse && tx->cptse) {
601         if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss)) {
602             return false;
603         }
604 
605         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
606         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
607         return true;
608     }
609 
610     if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
611         if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) {
612             return false;
613         }
614     }
615 
616     if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
617         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
618     }
619 
620     return true;
621 }
622 
e1000e_tx_pkt_callback(void * core,const struct iovec * iov,int iovcnt,const struct iovec * virt_iov,int virt_iovcnt)623 static void e1000e_tx_pkt_callback(void *core,
624                                    const struct iovec *iov,
625                                    int iovcnt,
626                                    const struct iovec *virt_iov,
627                                    int virt_iovcnt)
628 {
629     e1000e_receive_internal(core, virt_iov, virt_iovcnt, true);
630 }
631 
632 static bool
e1000e_tx_pkt_send(E1000ECore * core,struct e1000e_tx * tx,int queue_index)633 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
634 {
635     int target_queue = MIN(core->max_queue_num, queue_index);
636     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
637 
638     if (!e1000e_setup_tx_offloads(core, tx)) {
639         return false;
640     }
641 
642     net_tx_pkt_dump(tx->tx_pkt);
643 
644     if ((core->phy[0][MII_BMCR] & MII_BMCR_LOOPBACK) ||
645         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
646         return net_tx_pkt_send_custom(tx->tx_pkt, false,
647                                       e1000e_tx_pkt_callback, core);
648     } else {
649         return net_tx_pkt_send(tx->tx_pkt, queue);
650     }
651 }
652 
653 static void
e1000e_on_tx_done_update_stats(E1000ECore * core,struct NetTxPkt * tx_pkt)654 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
655 {
656     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
657                                     PTC1023, PTC1522 };
658 
659     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
660 
661     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
662     e1000x_inc_reg_if_not_full(core->mac, TPT);
663     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
664 
665     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
666     case ETH_PKT_BCAST:
667         e1000x_inc_reg_if_not_full(core->mac, BPTC);
668         break;
669     case ETH_PKT_MCAST:
670         e1000x_inc_reg_if_not_full(core->mac, MPTC);
671         break;
672     case ETH_PKT_UCAST:
673         break;
674     default:
675         g_assert_not_reached();
676     }
677 
678     e1000x_inc_reg_if_not_full(core->mac, GPTC);
679     e1000x_grow_8reg_if_not_full(core->mac, GOTCL, tot_len);
680 }
681 
682 static void
e1000e_process_tx_desc(E1000ECore * core,struct e1000e_tx * tx,struct e1000_tx_desc * dp,int queue_index)683 e1000e_process_tx_desc(E1000ECore *core,
684                        struct e1000e_tx *tx,
685                        struct e1000_tx_desc *dp,
686                        int queue_index)
687 {
688     uint32_t txd_lower = le32_to_cpu(dp->lower.data);
689     uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
690     unsigned int split_size = txd_lower & 0xffff;
691     uint64_t addr;
692     struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
693     bool eop = txd_lower & E1000_TXD_CMD_EOP;
694 
695     if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
696         e1000x_read_tx_ctx_descr(xp, &tx->props);
697         e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
698         return;
699     } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
700         /* data descriptor */
701         tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
702         tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
703         e1000e_process_ts_option(core, dp);
704     } else {
705         /* legacy descriptor */
706         e1000e_process_ts_option(core, dp);
707         tx->cptse = 0;
708     }
709 
710     addr = le64_to_cpu(dp->buffer_addr);
711 
712     if (!tx->skip_cp) {
713         if (!net_tx_pkt_add_raw_fragment_pci(tx->tx_pkt, core->owner,
714                                              addr, split_size)) {
715             tx->skip_cp = true;
716         }
717     }
718 
719     if (eop) {
720         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
721             if (e1000x_vlan_enabled(core->mac) &&
722                 e1000x_is_vlan_txd(txd_lower)) {
723                 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
724                     le16_to_cpu(dp->upper.fields.special), core->mac[VET]);
725             }
726             if (e1000e_tx_pkt_send(core, tx, queue_index)) {
727                 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
728             }
729         }
730 
731         tx->skip_cp = false;
732         net_tx_pkt_reset(tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner);
733 
734         tx->sum_needed = 0;
735         tx->cptse = 0;
736     }
737 }
738 
739 static inline uint32_t
e1000e_tx_wb_interrupt_cause(E1000ECore * core,int queue_idx)740 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
741 {
742     if (!msix_enabled(core->owner)) {
743         return E1000_ICR_TXDW;
744     }
745 
746     return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
747 }
748 
749 static inline uint32_t
e1000e_rx_wb_interrupt_cause(E1000ECore * core,int queue_idx,bool min_threshold_hit)750 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
751                              bool min_threshold_hit)
752 {
753     if (!msix_enabled(core->owner)) {
754         return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
755     }
756 
757     return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
758 }
759 
760 static uint32_t
e1000e_txdesc_writeback(E1000ECore * core,dma_addr_t base,struct e1000_tx_desc * dp,bool * ide,int queue_idx)761 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
762                         struct e1000_tx_desc *dp, bool *ide, int queue_idx)
763 {
764     uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
765 
766     if (!(txd_lower & E1000_TXD_CMD_RS) &&
767         !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
768         return 0;
769     }
770 
771     *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
772 
773     txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
774 
775     dp->upper.data = cpu_to_le32(txd_upper);
776     pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
777                   &dp->upper, sizeof(dp->upper));
778     return e1000e_tx_wb_interrupt_cause(core, queue_idx);
779 }
780 
781 typedef struct E1000ERingInfo {
782     int dbah;
783     int dbal;
784     int dlen;
785     int dh;
786     int dt;
787     int idx;
788 } E1000ERingInfo;
789 
790 static inline bool
e1000e_ring_empty(E1000ECore * core,const E1000ERingInfo * r)791 e1000e_ring_empty(E1000ECore *core, const E1000ERingInfo *r)
792 {
793     return core->mac[r->dh] == core->mac[r->dt] ||
794                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
795 }
796 
797 static inline uint64_t
e1000e_ring_base(E1000ECore * core,const E1000ERingInfo * r)798 e1000e_ring_base(E1000ECore *core, const E1000ERingInfo *r)
799 {
800     uint64_t bah = core->mac[r->dbah];
801     uint64_t bal = core->mac[r->dbal];
802 
803     return (bah << 32) + bal;
804 }
805 
806 static inline uint64_t
e1000e_ring_head_descr(E1000ECore * core,const E1000ERingInfo * r)807 e1000e_ring_head_descr(E1000ECore *core, const E1000ERingInfo *r)
808 {
809     return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
810 }
811 
812 static inline void
e1000e_ring_advance(E1000ECore * core,const E1000ERingInfo * r,uint32_t count)813 e1000e_ring_advance(E1000ECore *core, const E1000ERingInfo *r, uint32_t count)
814 {
815     core->mac[r->dh] += count;
816 
817     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
818         core->mac[r->dh] = 0;
819     }
820 }
821 
822 static inline uint32_t
e1000e_ring_free_descr_num(E1000ECore * core,const E1000ERingInfo * r)823 e1000e_ring_free_descr_num(E1000ECore *core, const E1000ERingInfo *r)
824 {
825     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
826                                  core->mac[r->dh],  core->mac[r->dt]);
827 
828     if (core->mac[r->dh] <= core->mac[r->dt]) {
829         return core->mac[r->dt] - core->mac[r->dh];
830     }
831 
832     if (core->mac[r->dh] > core->mac[r->dt]) {
833         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
834                core->mac[r->dt] - core->mac[r->dh];
835     }
836 
837     g_assert_not_reached();
838 }
839 
840 static inline bool
e1000e_ring_enabled(E1000ECore * core,const E1000ERingInfo * r)841 e1000e_ring_enabled(E1000ECore *core, const E1000ERingInfo *r)
842 {
843     return core->mac[r->dlen] > 0;
844 }
845 
846 static inline uint32_t
e1000e_ring_len(E1000ECore * core,const E1000ERingInfo * r)847 e1000e_ring_len(E1000ECore *core, const E1000ERingInfo *r)
848 {
849     return core->mac[r->dlen];
850 }
851 
852 typedef struct E1000E_TxRing_st {
853     const E1000ERingInfo *i;
854     struct e1000e_tx *tx;
855 } E1000E_TxRing;
856 
857 static inline int
e1000e_mq_queue_idx(int base_reg_idx,int reg_idx)858 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
859 {
860     return (reg_idx - base_reg_idx) / (0x100 >> 2);
861 }
862 
863 static inline void
e1000e_tx_ring_init(E1000ECore * core,E1000E_TxRing * txr,int idx)864 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
865 {
866     static const E1000ERingInfo i[E1000E_NUM_QUEUES] = {
867         { TDBAH,  TDBAL,  TDLEN,  TDH,  TDT, 0 },
868         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
869     };
870 
871     assert(idx < ARRAY_SIZE(i));
872 
873     txr->i     = &i[idx];
874     txr->tx    = &core->tx[idx];
875 }
876 
877 typedef struct E1000E_RxRing_st {
878     const E1000ERingInfo *i;
879 } E1000E_RxRing;
880 
881 static inline void
e1000e_rx_ring_init(E1000ECore * core,E1000E_RxRing * rxr,int idx)882 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
883 {
884     static const E1000ERingInfo i[E1000E_NUM_QUEUES] = {
885         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
886         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
887     };
888 
889     assert(idx < ARRAY_SIZE(i));
890 
891     rxr->i      = &i[idx];
892 }
893 
894 static void
e1000e_start_xmit(E1000ECore * core,const E1000E_TxRing * txr)895 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
896 {
897     dma_addr_t base;
898     struct e1000_tx_desc desc;
899     bool ide = false;
900     const E1000ERingInfo *txi = txr->i;
901     uint32_t cause = E1000_ICS_TXQE;
902 
903     if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
904         trace_e1000e_tx_disabled();
905         return;
906     }
907 
908     while (!e1000e_ring_empty(core, txi)) {
909         base = e1000e_ring_head_descr(core, txi);
910 
911         pci_dma_read(core->owner, base, &desc, sizeof(desc));
912 
913         trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
914                               desc.lower.data, desc.upper.data);
915 
916         e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
917         cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
918 
919         e1000e_ring_advance(core, txi, 1);
920     }
921 
922     if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
923         e1000e_set_interrupt_cause(core, cause);
924     }
925 
926     net_tx_pkt_reset(txr->tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner);
927 }
928 
929 static bool
e1000e_has_rxbufs(E1000ECore * core,const E1000ERingInfo * r,size_t total_size)930 e1000e_has_rxbufs(E1000ECore *core, const E1000ERingInfo *r,
931                   size_t total_size)
932 {
933     uint32_t bufs = e1000e_ring_free_descr_num(core, r);
934 
935     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
936                                 core->rx_desc_buf_size);
937 
938     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
939                          core->rx_desc_buf_size;
940 }
941 
942 void
e1000e_start_recv(E1000ECore * core)943 e1000e_start_recv(E1000ECore *core)
944 {
945     int i;
946 
947     trace_e1000e_rx_start_recv();
948 
949     for (i = 0; i <= core->max_queue_num; i++) {
950         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
951     }
952 }
953 
954 bool
e1000e_can_receive(E1000ECore * core)955 e1000e_can_receive(E1000ECore *core)
956 {
957     int i;
958 
959     if (!e1000x_rx_ready(core->owner, core->mac)) {
960         return false;
961     }
962 
963     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
964         E1000E_RxRing rxr;
965 
966         e1000e_rx_ring_init(core, &rxr, i);
967         if (e1000e_ring_enabled(core, rxr.i) &&
968             e1000e_has_rxbufs(core, rxr.i, 1)) {
969             trace_e1000e_rx_can_recv();
970             return true;
971         }
972     }
973 
974     trace_e1000e_rx_can_recv_rings_full();
975     return false;
976 }
977 
978 ssize_t
e1000e_receive(E1000ECore * core,const uint8_t * buf,size_t size)979 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
980 {
981     const struct iovec iov = {
982         .iov_base = (uint8_t *)buf,
983         .iov_len = size
984     };
985 
986     return e1000e_receive_iov(core, &iov, 1);
987 }
988 
989 static inline bool
e1000e_rx_l3_cso_enabled(E1000ECore * core)990 e1000e_rx_l3_cso_enabled(E1000ECore *core)
991 {
992     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
993 }
994 
995 static inline bool
e1000e_rx_l4_cso_enabled(E1000ECore * core)996 e1000e_rx_l4_cso_enabled(E1000ECore *core)
997 {
998     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
999 }
1000 
1001 static bool
e1000e_receive_filter(E1000ECore * core,const void * buf)1002 e1000e_receive_filter(E1000ECore *core, const void *buf)
1003 {
1004     return (!e1000x_is_vlan_packet(buf, core->mac[VET]) ||
1005             e1000x_rx_vlan_filter(core->mac, PKT_GET_VLAN_HDR(buf))) &&
1006            e1000x_rx_group_filter(core->mac, buf);
1007 }
1008 
1009 static inline void
e1000e_read_lgcy_rx_descr(E1000ECore * core,struct e1000_rx_desc * desc,hwaddr * buff_addr)1010 e1000e_read_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1011                           hwaddr *buff_addr)
1012 {
1013     *buff_addr = le64_to_cpu(desc->buffer_addr);
1014 }
1015 
1016 static inline void
e1000e_read_ext_rx_descr(E1000ECore * core,union e1000_rx_desc_extended * desc,hwaddr * buff_addr)1017 e1000e_read_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1018                          hwaddr *buff_addr)
1019 {
1020     *buff_addr = le64_to_cpu(desc->read.buffer_addr);
1021 }
1022 
1023 static inline void
e1000e_read_ps_rx_descr(E1000ECore * core,union e1000_rx_desc_packet_split * desc,hwaddr buff_addr[MAX_PS_BUFFERS])1024 e1000e_read_ps_rx_descr(E1000ECore *core,
1025                         union e1000_rx_desc_packet_split *desc,
1026                         hwaddr buff_addr[MAX_PS_BUFFERS])
1027 {
1028     int i;
1029 
1030     for (i = 0; i < MAX_PS_BUFFERS; i++) {
1031         buff_addr[i] = le64_to_cpu(desc->read.buffer_addr[i]);
1032     }
1033 
1034     trace_e1000e_rx_desc_ps_read(buff_addr[0], buff_addr[1],
1035                                  buff_addr[2], buff_addr[3]);
1036 }
1037 
1038 static inline void
e1000e_read_rx_descr(E1000ECore * core,union e1000_rx_desc_union * desc,hwaddr buff_addr[MAX_PS_BUFFERS])1039 e1000e_read_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1040                      hwaddr buff_addr[MAX_PS_BUFFERS])
1041 {
1042     if (e1000e_rx_use_legacy_descriptor(core)) {
1043         e1000e_read_lgcy_rx_descr(core, &desc->legacy, &buff_addr[0]);
1044         buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1045     } else {
1046         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1047             e1000e_read_ps_rx_descr(core, &desc->packet_split, buff_addr);
1048         } else {
1049             e1000e_read_ext_rx_descr(core, &desc->extended, &buff_addr[0]);
1050             buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1051         }
1052     }
1053 }
1054 
1055 static void
e1000e_verify_csum_in_sw(E1000ECore * core,struct NetRxPkt * pkt,uint32_t * status_flags,EthL4HdrProto l4hdr_proto)1056 e1000e_verify_csum_in_sw(E1000ECore *core,
1057                          struct NetRxPkt *pkt,
1058                          uint32_t *status_flags,
1059                          EthL4HdrProto l4hdr_proto)
1060 {
1061     bool csum_valid;
1062     uint32_t csum_error;
1063 
1064     if (e1000e_rx_l3_cso_enabled(core)) {
1065         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1066             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1067         } else {
1068             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1069             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1070         }
1071     } else {
1072         trace_e1000e_rx_metadata_l3_cso_disabled();
1073     }
1074 
1075     if (!e1000e_rx_l4_cso_enabled(core)) {
1076         trace_e1000e_rx_metadata_l4_cso_disabled();
1077         return;
1078     }
1079 
1080     if (l4hdr_proto != ETH_L4_HDR_PROTO_TCP &&
1081         l4hdr_proto != ETH_L4_HDR_PROTO_UDP) {
1082         return;
1083     }
1084 
1085     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1086         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1087         return;
1088     }
1089 
1090     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1091     *status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
1092 
1093     if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1094         *status_flags |= E1000_RXD_STAT_UDPCS;
1095     }
1096 }
1097 
1098 static inline bool
e1000e_is_tcp_ack(E1000ECore * core,struct NetRxPkt * rx_pkt)1099 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1100 {
1101     if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1102         return false;
1103     }
1104 
1105     if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1106         return !net_rx_pkt_has_tcp_data(rx_pkt);
1107     }
1108 
1109     return true;
1110 }
1111 
1112 static void
e1000e_build_rx_metadata(E1000ECore * core,struct NetRxPkt * pkt,bool is_eop,const E1000E_RSSInfo * rss_info,uint32_t * rss,uint32_t * mrq,uint32_t * status_flags,uint16_t * ip_id,uint16_t * vlan_tag)1113 e1000e_build_rx_metadata(E1000ECore *core,
1114                          struct NetRxPkt *pkt,
1115                          bool is_eop,
1116                          const E1000E_RSSInfo *rss_info,
1117                          uint32_t *rss, uint32_t *mrq,
1118                          uint32_t *status_flags,
1119                          uint16_t *ip_id,
1120                          uint16_t *vlan_tag)
1121 {
1122     struct virtio_net_hdr *vhdr;
1123     bool hasip4, hasip6;
1124     EthL4HdrProto l4hdr_proto;
1125     uint32_t pkt_type;
1126 
1127     *status_flags = E1000_RXD_STAT_DD;
1128 
1129     /* No additional metadata needed for non-EOP descriptors */
1130     if (!is_eop) {
1131         goto func_exit;
1132     }
1133 
1134     *status_flags |= E1000_RXD_STAT_EOP;
1135 
1136     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1137     trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
1138 
1139     /* VLAN state */
1140     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1141         *status_flags |= E1000_RXD_STAT_VP;
1142         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1143         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1144     }
1145 
1146     /* Packet parsing results */
1147     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1148         if (rss_info->enabled) {
1149             *rss = cpu_to_le32(rss_info->hash);
1150             *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1151             trace_e1000e_rx_metadata_rss(*rss, *mrq);
1152         }
1153     } else if (hasip4) {
1154             *status_flags |= E1000_RXD_STAT_IPIDV;
1155             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1156             trace_e1000e_rx_metadata_ip_id(*ip_id);
1157     }
1158 
1159     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && e1000e_is_tcp_ack(core, pkt)) {
1160         *status_flags |= E1000_RXD_STAT_ACK;
1161         trace_e1000e_rx_metadata_ack();
1162     }
1163 
1164     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1165         trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1166         pkt_type = E1000_RXD_PKT_MAC;
1167     } else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1168                l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1169         pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1170     } else if (hasip4 || hasip6) {
1171         pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1172     } else {
1173         pkt_type = E1000_RXD_PKT_MAC;
1174     }
1175 
1176     *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1177     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1178 
1179     /* RX CSO information */
1180     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1181         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1182         goto func_exit;
1183     }
1184 
1185     vhdr = net_rx_pkt_get_vhdr(pkt);
1186 
1187     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1188         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1189         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1190         e1000e_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
1191         goto func_exit;
1192     }
1193 
1194     if (e1000e_rx_l3_cso_enabled(core)) {
1195         *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
1196     } else {
1197         trace_e1000e_rx_metadata_l3_cso_disabled();
1198     }
1199 
1200     if (e1000e_rx_l4_cso_enabled(core)) {
1201         switch (l4hdr_proto) {
1202         case ETH_L4_HDR_PROTO_TCP:
1203             *status_flags |= E1000_RXD_STAT_TCPCS;
1204             break;
1205 
1206         case ETH_L4_HDR_PROTO_UDP:
1207             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1208             break;
1209 
1210         default:
1211             break;
1212         }
1213     } else {
1214         trace_e1000e_rx_metadata_l4_cso_disabled();
1215     }
1216 
1217 func_exit:
1218     trace_e1000e_rx_metadata_status_flags(*status_flags);
1219     *status_flags = cpu_to_le32(*status_flags);
1220 }
1221 
1222 static inline void
e1000e_write_lgcy_rx_descr(E1000ECore * core,struct e1000_rx_desc * desc,struct NetRxPkt * pkt,const E1000E_RSSInfo * rss_info,uint16_t length)1223 e1000e_write_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1224                            struct NetRxPkt *pkt,
1225                            const E1000E_RSSInfo *rss_info,
1226                            uint16_t length)
1227 {
1228     uint32_t status_flags, rss, mrq;
1229     uint16_t ip_id;
1230 
1231     assert(!rss_info->enabled);
1232 
1233     desc->length = cpu_to_le16(length);
1234     desc->csum = 0;
1235 
1236     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1237                              rss_info,
1238                              &rss, &mrq,
1239                              &status_flags, &ip_id,
1240                              &desc->special);
1241     desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1242     desc->status = (uint8_t) le32_to_cpu(status_flags);
1243 }
1244 
1245 static inline void
e1000e_write_ext_rx_descr(E1000ECore * core,union e1000_rx_desc_extended * desc,struct NetRxPkt * pkt,const E1000E_RSSInfo * rss_info,uint16_t length)1246 e1000e_write_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1247                           struct NetRxPkt *pkt,
1248                           const E1000E_RSSInfo *rss_info,
1249                           uint16_t length)
1250 {
1251     memset(&desc->wb, 0, sizeof(desc->wb));
1252 
1253     desc->wb.upper.length = cpu_to_le16(length);
1254 
1255     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1256                              rss_info,
1257                              &desc->wb.lower.hi_dword.rss,
1258                              &desc->wb.lower.mrq,
1259                              &desc->wb.upper.status_error,
1260                              &desc->wb.lower.hi_dword.csum_ip.ip_id,
1261                              &desc->wb.upper.vlan);
1262 }
1263 
1264 static inline void
e1000e_write_ps_rx_descr(E1000ECore * core,union e1000_rx_desc_packet_split * desc,struct NetRxPkt * pkt,const E1000E_RSSInfo * rss_info,size_t ps_hdr_len,uint16_t (* written)[MAX_PS_BUFFERS])1265 e1000e_write_ps_rx_descr(E1000ECore *core,
1266                          union e1000_rx_desc_packet_split *desc,
1267                          struct NetRxPkt *pkt,
1268                          const E1000E_RSSInfo *rss_info,
1269                          size_t ps_hdr_len,
1270                          uint16_t(*written)[MAX_PS_BUFFERS])
1271 {
1272     int i;
1273 
1274     memset(&desc->wb, 0, sizeof(desc->wb));
1275 
1276     desc->wb.middle.length0 = cpu_to_le16((*written)[0]);
1277 
1278     for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1279         desc->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1280     }
1281 
1282     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1283                              rss_info,
1284                              &desc->wb.lower.hi_dword.rss,
1285                              &desc->wb.lower.mrq,
1286                              &desc->wb.middle.status_error,
1287                              &desc->wb.lower.hi_dword.csum_ip.ip_id,
1288                              &desc->wb.middle.vlan);
1289 
1290     desc->wb.upper.header_status =
1291         cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1292 
1293     trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1294                                   (*written)[2], (*written)[3]);
1295 }
1296 
1297 static inline void
e1000e_write_rx_descr(E1000ECore * core,union e1000_rx_desc_union * desc,struct NetRxPkt * pkt,const E1000E_RSSInfo * rss_info,size_t ps_hdr_len,uint16_t (* written)[MAX_PS_BUFFERS])1298 e1000e_write_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1299 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1300     size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1301 {
1302     if (e1000e_rx_use_legacy_descriptor(core)) {
1303         assert(ps_hdr_len == 0);
1304         e1000e_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info,
1305                                    (*written)[0]);
1306     } else {
1307         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1308             e1000e_write_ps_rx_descr(core, &desc->packet_split, pkt, rss_info,
1309                                       ps_hdr_len, written);
1310         } else {
1311             assert(ps_hdr_len == 0);
1312             e1000e_write_ext_rx_descr(core, &desc->extended, pkt, rss_info,
1313                                        (*written)[0]);
1314         }
1315     }
1316 }
1317 
1318 static inline void
e1000e_pci_dma_write_rx_desc(E1000ECore * core,dma_addr_t addr,union e1000_rx_desc_union * desc,dma_addr_t len)1319 e1000e_pci_dma_write_rx_desc(E1000ECore *core, dma_addr_t addr,
1320                              union e1000_rx_desc_union *desc, dma_addr_t len)
1321 {
1322     PCIDevice *dev = core->owner;
1323 
1324     if (e1000e_rx_use_legacy_descriptor(core)) {
1325         struct e1000_rx_desc *d = &desc->legacy;
1326         size_t offset = offsetof(struct e1000_rx_desc, status);
1327         uint8_t status = d->status;
1328 
1329         d->status &= ~E1000_RXD_STAT_DD;
1330         pci_dma_write(dev, addr, desc, len);
1331 
1332         if (status & E1000_RXD_STAT_DD) {
1333             d->status = status;
1334             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1335         }
1336     } else {
1337         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1338             union e1000_rx_desc_packet_split *d = &desc->packet_split;
1339             size_t offset = offsetof(union e1000_rx_desc_packet_split,
1340                 wb.middle.status_error);
1341             uint32_t status = d->wb.middle.status_error;
1342 
1343             d->wb.middle.status_error &= ~E1000_RXD_STAT_DD;
1344             pci_dma_write(dev, addr, desc, len);
1345 
1346             if (status & E1000_RXD_STAT_DD) {
1347                 d->wb.middle.status_error = status;
1348                 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1349             }
1350         } else {
1351             union e1000_rx_desc_extended *d = &desc->extended;
1352             size_t offset = offsetof(union e1000_rx_desc_extended,
1353                 wb.upper.status_error);
1354             uint32_t status = d->wb.upper.status_error;
1355 
1356             d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1357             pci_dma_write(dev, addr, desc, len);
1358 
1359             if (status & E1000_RXD_STAT_DD) {
1360                 d->wb.upper.status_error = status;
1361                 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1362             }
1363         }
1364     }
1365 }
1366 
1367 typedef struct E1000EBAState {
1368     uint16_t written[MAX_PS_BUFFERS];
1369     uint8_t cur_idx;
1370 } E1000EBAState;
1371 
1372 static inline void
e1000e_write_hdr_frag_to_rx_buffers(E1000ECore * core,hwaddr ba[MAX_PS_BUFFERS],E1000EBAState * bastate,const char * data,dma_addr_t data_len)1373 e1000e_write_hdr_frag_to_rx_buffers(E1000ECore *core,
1374                                     hwaddr ba[MAX_PS_BUFFERS],
1375                                     E1000EBAState *bastate,
1376                                     const char *data,
1377                                     dma_addr_t data_len)
1378 {
1379     assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1380 
1381     pci_dma_write(core->owner, ba[0] + bastate->written[0], data, data_len);
1382     bastate->written[0] += data_len;
1383 
1384     bastate->cur_idx = 1;
1385 }
1386 
1387 static void
e1000e_write_payload_frag_to_rx_buffers(E1000ECore * core,hwaddr ba[MAX_PS_BUFFERS],E1000EBAState * bastate,const char * data,dma_addr_t data_len)1388 e1000e_write_payload_frag_to_rx_buffers(E1000ECore *core,
1389                                         hwaddr ba[MAX_PS_BUFFERS],
1390                                         E1000EBAState *bastate,
1391                                         const char *data,
1392                                         dma_addr_t data_len)
1393 {
1394     while (data_len > 0) {
1395         uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1396         uint32_t cur_buf_bytes_left = cur_buf_len -
1397                                       bastate->written[bastate->cur_idx];
1398         uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1399 
1400         trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1401                                         ba[bastate->cur_idx],
1402                                         bastate->written[bastate->cur_idx],
1403                                         data,
1404                                         bytes_to_write);
1405 
1406         pci_dma_write(core->owner,
1407             ba[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1408             data, bytes_to_write);
1409 
1410         bastate->written[bastate->cur_idx] += bytes_to_write;
1411         data += bytes_to_write;
1412         data_len -= bytes_to_write;
1413 
1414         if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1415             bastate->cur_idx++;
1416         }
1417 
1418         assert(bastate->cur_idx < MAX_PS_BUFFERS);
1419     }
1420 }
1421 
1422 static void
e1000e_update_rx_stats(E1000ECore * core,size_t pkt_size,size_t pkt_fcs_size)1423 e1000e_update_rx_stats(E1000ECore *core, size_t pkt_size, size_t pkt_fcs_size)
1424 {
1425     eth_pkt_types_e pkt_type = net_rx_pkt_get_packet_type(core->rx_pkt);
1426     e1000x_update_rx_total_stats(core->mac, pkt_type, pkt_size, pkt_fcs_size);
1427 }
1428 
1429 static inline bool
e1000e_rx_descr_threshold_hit(E1000ECore * core,const E1000ERingInfo * rxi)1430 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000ERingInfo *rxi)
1431 {
1432     return e1000e_ring_free_descr_num(core, rxi) ==
1433            e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1434 }
1435 
1436 static bool
e1000e_do_ps(E1000ECore * core,struct NetRxPkt * pkt,size_t * hdr_len)1437 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1438 {
1439     bool hasip4, hasip6;
1440     EthL4HdrProto l4hdr_proto;
1441     bool fragment;
1442 
1443     if (!e1000e_rx_use_ps_descriptor(core)) {
1444         return false;
1445     }
1446 
1447     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1448 
1449     if (hasip4) {
1450         fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1451     } else if (hasip6) {
1452         fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1453     } else {
1454         return false;
1455     }
1456 
1457     if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1458         return false;
1459     }
1460 
1461     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1462         l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1463         *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1464     } else {
1465         *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1466     }
1467 
1468     if ((*hdr_len > core->rxbuf_sizes[0]) ||
1469         (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1470         return false;
1471     }
1472 
1473     return true;
1474 }
1475 
1476 static void
e1000e_write_packet_to_guest(E1000ECore * core,struct NetRxPkt * pkt,const E1000E_RxRing * rxr,const E1000E_RSSInfo * rss_info)1477 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1478                              const E1000E_RxRing *rxr,
1479                              const E1000E_RSSInfo *rss_info)
1480 {
1481     PCIDevice *d = core->owner;
1482     dma_addr_t base;
1483     union e1000_rx_desc_union desc;
1484     size_t desc_size;
1485     size_t desc_offset = 0;
1486     size_t iov_ofs = 0;
1487 
1488     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1489     size_t size = net_rx_pkt_get_total_len(pkt);
1490     size_t total_size = size + e1000x_fcs_len(core->mac);
1491     const E1000ERingInfo *rxi;
1492     size_t ps_hdr_len = 0;
1493     bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1494     bool is_first = true;
1495 
1496     rxi = rxr->i;
1497 
1498     do {
1499         hwaddr ba[MAX_PS_BUFFERS];
1500         E1000EBAState bastate = { { 0 } };
1501         bool is_last = false;
1502 
1503         desc_size = total_size - desc_offset;
1504 
1505         if (desc_size > core->rx_desc_buf_size) {
1506             desc_size = core->rx_desc_buf_size;
1507         }
1508 
1509         if (e1000e_ring_empty(core, rxi)) {
1510             return;
1511         }
1512 
1513         base = e1000e_ring_head_descr(core, rxi);
1514 
1515         pci_dma_read(d, base, &desc, core->rx_desc_len);
1516 
1517         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1518 
1519         e1000e_read_rx_descr(core, &desc, ba);
1520 
1521         if (ba[0]) {
1522             if (desc_offset < size) {
1523                 static const uint32_t fcs_pad;
1524                 size_t iov_copy;
1525                 size_t copy_size = size - desc_offset;
1526                 if (copy_size > core->rx_desc_buf_size) {
1527                     copy_size = core->rx_desc_buf_size;
1528                 }
1529 
1530                 /* For PS mode copy the packet header first */
1531                 if (do_ps) {
1532                     if (is_first) {
1533                         size_t ps_hdr_copied = 0;
1534                         do {
1535                             iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1536                                            iov->iov_len - iov_ofs);
1537 
1538                             e1000e_write_hdr_frag_to_rx_buffers(core, ba,
1539                                                                 &bastate,
1540                                                                 iov->iov_base,
1541                                                                 iov_copy);
1542 
1543                             copy_size -= iov_copy;
1544                             ps_hdr_copied += iov_copy;
1545 
1546                             iov_ofs += iov_copy;
1547                             if (iov_ofs == iov->iov_len) {
1548                                 iov++;
1549                                 iov_ofs = 0;
1550                             }
1551                         } while (ps_hdr_copied < ps_hdr_len);
1552 
1553                         is_first = false;
1554                     } else {
1555                         /* Leave buffer 0 of each descriptor except first */
1556                         /* empty as per spec 7.1.5.1                      */
1557                         e1000e_write_hdr_frag_to_rx_buffers(core, ba, &bastate,
1558                                                             NULL, 0);
1559                     }
1560                 }
1561 
1562                 /* Copy packet payload */
1563                 while (copy_size) {
1564                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1565 
1566                     e1000e_write_payload_frag_to_rx_buffers(core, ba, &bastate,
1567                                                             iov->iov_base +
1568                                                             iov_ofs,
1569                                                             iov_copy);
1570 
1571                     copy_size -= iov_copy;
1572                     iov_ofs += iov_copy;
1573                     if (iov_ofs == iov->iov_len) {
1574                         iov++;
1575                         iov_ofs = 0;
1576                     }
1577                 }
1578 
1579                 if (desc_offset + desc_size >= total_size) {
1580                     /* Simulate FCS checksum presence in the last descriptor */
1581                     e1000e_write_payload_frag_to_rx_buffers(core, ba, &bastate,
1582                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1583                 }
1584             }
1585         } else { /* as per intel docs; skip descriptors with null buf addr */
1586             trace_e1000e_rx_null_descriptor();
1587         }
1588         desc_offset += desc_size;
1589         if (desc_offset >= total_size) {
1590             is_last = true;
1591         }
1592 
1593         e1000e_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL,
1594                            rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1595         e1000e_pci_dma_write_rx_desc(core, base, &desc, core->rx_desc_len);
1596 
1597         e1000e_ring_advance(core, rxi,
1598                             core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1599 
1600     } while (desc_offset < total_size);
1601 
1602     e1000e_update_rx_stats(core, size, total_size);
1603 }
1604 
1605 static inline void
e1000e_rx_fix_l4_csum(E1000ECore * core,struct NetRxPkt * pkt)1606 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1607 {
1608     struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1609 
1610     if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1611         net_rx_pkt_fix_l4_csum(pkt);
1612     }
1613 }
1614 
1615 ssize_t
e1000e_receive_iov(E1000ECore * core,const struct iovec * iov,int iovcnt)1616 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1617 {
1618     return e1000e_receive_internal(core, iov, iovcnt, core->has_vnet);
1619 }
1620 
1621 static ssize_t
e1000e_receive_internal(E1000ECore * core,const struct iovec * iov,int iovcnt,bool has_vnet)1622 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
1623                         bool has_vnet)
1624 {
1625     uint32_t causes = 0;
1626     uint8_t buf[ETH_ZLEN];
1627     struct iovec min_iov;
1628     size_t size, orig_size;
1629     size_t iov_ofs = 0;
1630     E1000E_RxRing rxr;
1631     E1000E_RSSInfo rss_info;
1632     size_t total_size;
1633     ssize_t retval;
1634     bool rdmts_hit;
1635 
1636     trace_e1000e_rx_receive_iov(iovcnt);
1637 
1638     if (!e1000x_hw_rx_enabled(core->mac)) {
1639         return -1;
1640     }
1641 
1642     /* Pull virtio header in */
1643     if (has_vnet) {
1644         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1645         iov_ofs = sizeof(struct virtio_net_hdr);
1646     } else {
1647         net_rx_pkt_unset_vhdr(core->rx_pkt);
1648     }
1649 
1650     orig_size = iov_size(iov, iovcnt);
1651     size = orig_size - iov_ofs;
1652 
1653     /* Pad to minimum Ethernet frame length */
1654     if (size < sizeof(buf)) {
1655         iov_to_buf(iov, iovcnt, iov_ofs, buf, size);
1656         memset(&buf[size], 0, sizeof(buf) - size);
1657         e1000x_inc_reg_if_not_full(core->mac, RUC);
1658         min_iov.iov_base = buf;
1659         min_iov.iov_len = size = sizeof(buf);
1660         iovcnt = 1;
1661         iov = &min_iov;
1662         iov_ofs = 0;
1663     } else {
1664         iov_to_buf(iov, iovcnt, iov_ofs, buf, ETH_HLEN + 4);
1665     }
1666 
1667     /* Discard oversized packets if !LPE and !SBP. */
1668     if (e1000x_is_oversized(core->mac, size)) {
1669         return orig_size;
1670     }
1671 
1672     net_rx_pkt_set_packet_type(core->rx_pkt,
1673         get_eth_packet_type(PKT_GET_ETH_HDR(buf)));
1674 
1675     if (!e1000e_receive_filter(core, buf)) {
1676         trace_e1000e_rx_flt_dropped();
1677         return orig_size;
1678     }
1679 
1680     net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1681                                e1000x_vlan_enabled(core->mac) ? 0 : -1,
1682                                core->mac[VET], 0);
1683 
1684     e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1685     e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1686 
1687     total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1688         e1000x_fcs_len(core->mac);
1689 
1690     if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1691         e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1692 
1693         e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1694 
1695         retval = orig_size;
1696 
1697         /* Perform small receive detection (RSRPD) */
1698         if (total_size < core->mac[RSRPD]) {
1699             causes |= E1000_ICS_SRPD;
1700         }
1701 
1702         /* Perform ACK receive detection */
1703         if  (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1704              (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1705             causes |= E1000_ICS_ACK;
1706         }
1707 
1708         /* Check if receive descriptor minimum threshold hit */
1709         rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1710         causes |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1711 
1712         trace_e1000e_rx_written_to_guest(rxr.i->idx);
1713     } else {
1714         causes |= E1000_ICS_RXO;
1715         retval = 0;
1716 
1717         trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
1718     }
1719 
1720     if (!e1000e_intrmgr_delay_rx_causes(core, &causes)) {
1721         trace_e1000e_rx_interrupt_set(causes);
1722         e1000e_set_interrupt_cause(core, causes);
1723     } else {
1724         trace_e1000e_rx_interrupt_delayed(causes);
1725     }
1726 
1727     return retval;
1728 }
1729 
1730 static inline bool
e1000e_have_autoneg(E1000ECore * core)1731 e1000e_have_autoneg(E1000ECore *core)
1732 {
1733     return core->phy[0][MII_BMCR] & MII_BMCR_AUTOEN;
1734 }
1735 
e1000e_update_flowctl_status(E1000ECore * core)1736 static void e1000e_update_flowctl_status(E1000ECore *core)
1737 {
1738     if (e1000e_have_autoneg(core) &&
1739         core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP) {
1740         trace_e1000e_link_autoneg_flowctl(true);
1741         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1742     } else {
1743         trace_e1000e_link_autoneg_flowctl(false);
1744     }
1745 }
1746 
1747 static inline void
e1000e_link_down(E1000ECore * core)1748 e1000e_link_down(E1000ECore *core)
1749 {
1750     e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1751     e1000e_update_flowctl_status(core);
1752 }
1753 
1754 static inline void
e1000e_set_phy_ctrl(E1000ECore * core,int index,uint16_t val)1755 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1756 {
1757     /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
1758     core->phy[0][MII_BMCR] = val & ~(0x3f |
1759                                      MII_BMCR_RESET |
1760                                      MII_BMCR_ANRESTART);
1761 
1762     if ((val & MII_BMCR_ANRESTART) &&
1763         e1000e_have_autoneg(core)) {
1764         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1765     }
1766 }
1767 
1768 static void
e1000e_set_phy_oem_bits(E1000ECore * core,int index,uint16_t val)1769 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1770 {
1771     core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1772 
1773     if (val & BIT(10)) {
1774         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1775     }
1776 }
1777 
1778 static void
e1000e_set_phy_page(E1000ECore * core,int index,uint16_t val)1779 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1780 {
1781     core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1782 }
1783 
1784 void
e1000e_core_set_link_status(E1000ECore * core)1785 e1000e_core_set_link_status(E1000ECore *core)
1786 {
1787     NetClientState *nc = qemu_get_queue(core->owner_nic);
1788     uint32_t old_status = core->mac[STATUS];
1789 
1790     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1791 
1792     if (nc->link_down) {
1793         e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1794     } else {
1795         if (e1000e_have_autoneg(core) &&
1796             !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
1797             e1000x_restart_autoneg(core->mac, core->phy[0],
1798                                    core->autoneg_timer);
1799         } else {
1800             e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1801             e1000e_start_recv(core);
1802         }
1803     }
1804 
1805     if (core->mac[STATUS] != old_status) {
1806         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1807     }
1808 }
1809 
1810 static void
e1000e_set_ctrl(E1000ECore * core,int index,uint32_t val)1811 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1812 {
1813     trace_e1000e_core_ctrl_write(index, val);
1814 
1815     /* RST is self clearing */
1816     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1817     core->mac[CTRL_DUP] = core->mac[CTRL];
1818 
1819     trace_e1000e_link_set_params(
1820         !!(val & E1000_CTRL_ASDE),
1821         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1822         !!(val & E1000_CTRL_FRCSPD),
1823         !!(val & E1000_CTRL_FRCDPX),
1824         !!(val & E1000_CTRL_RFCE),
1825         !!(val & E1000_CTRL_TFCE));
1826 
1827     if (val & E1000_CTRL_RST) {
1828         trace_e1000e_core_ctrl_sw_reset();
1829         e1000e_reset(core, true);
1830     }
1831 
1832     if (val & E1000_CTRL_PHY_RST) {
1833         trace_e1000e_core_ctrl_phy_reset();
1834         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1835     }
1836 }
1837 
1838 static void
e1000e_set_rfctl(E1000ECore * core,int index,uint32_t val)1839 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1840 {
1841     trace_e1000e_rx_set_rfctl(val);
1842 
1843     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1844         trace_e1000e_wrn_iscsi_filtering_not_supported();
1845     }
1846 
1847     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1848         trace_e1000e_wrn_nfsw_filtering_not_supported();
1849     }
1850 
1851     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1852         trace_e1000e_wrn_nfsr_filtering_not_supported();
1853     }
1854 
1855     core->mac[RFCTL] = val;
1856 }
1857 
1858 static void
e1000e_calc_per_desc_buf_size(E1000ECore * core)1859 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1860 {
1861     int i;
1862     core->rx_desc_buf_size = 0;
1863 
1864     for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1865         core->rx_desc_buf_size += core->rxbuf_sizes[i];
1866     }
1867 }
1868 
1869 static void
e1000e_parse_rxbufsize(E1000ECore * core)1870 e1000e_parse_rxbufsize(E1000ECore *core)
1871 {
1872     uint32_t rctl = core->mac[RCTL];
1873 
1874     memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1875 
1876     if (rctl & E1000_RCTL_DTYP_MASK) {
1877         uint32_t bsize;
1878 
1879         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1880         core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1881 
1882         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1883         core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1884 
1885         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1886         core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1887 
1888         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1889         core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1890     } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1891         int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1892         core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1893     } else {
1894         core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1895     }
1896 
1897     trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1898                                     core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1899 
1900     e1000e_calc_per_desc_buf_size(core);
1901 }
1902 
1903 static void
e1000e_calc_rxdesclen(E1000ECore * core)1904 e1000e_calc_rxdesclen(E1000ECore *core)
1905 {
1906     if (e1000e_rx_use_legacy_descriptor(core)) {
1907         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1908     } else {
1909         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1910             core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1911         } else {
1912             core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1913         }
1914     }
1915     trace_e1000e_rx_desc_len(core->rx_desc_len);
1916 }
1917 
1918 static void
e1000e_set_rx_control(E1000ECore * core,int index,uint32_t val)1919 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1920 {
1921     core->mac[RCTL] = val;
1922     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1923 
1924     if (val & E1000_RCTL_EN) {
1925         e1000e_parse_rxbufsize(core);
1926         e1000e_calc_rxdesclen(core);
1927         core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1928                                 E1000_RING_DESC_LEN_SHIFT;
1929 
1930         e1000e_start_recv(core);
1931     }
1932 }
1933 
1934 static
1935 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1936 (E1000ECore *, int, uint16_t) = {
1937     [0] = {
1938         [MII_BMCR]     = e1000e_set_phy_ctrl,
1939         [PHY_PAGE]     = e1000e_set_phy_page,
1940         [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1941     }
1942 };
1943 
1944 static inline bool
e1000e_postpone_interrupt(E1000IntrDelayTimer * timer)1945 e1000e_postpone_interrupt(E1000IntrDelayTimer *timer)
1946 {
1947     if (timer->running) {
1948         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1949 
1950         return true;
1951     }
1952 
1953     if (timer->core->mac[timer->delay_reg] != 0) {
1954         e1000e_intrmgr_rearm_timer(timer);
1955     }
1956 
1957     return false;
1958 }
1959 
1960 static inline bool
e1000e_itr_should_postpone(E1000ECore * core)1961 e1000e_itr_should_postpone(E1000ECore *core)
1962 {
1963     return e1000e_postpone_interrupt(&core->itr);
1964 }
1965 
1966 static inline bool
e1000e_eitr_should_postpone(E1000ECore * core,int idx)1967 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
1968 {
1969     return e1000e_postpone_interrupt(&core->eitr[idx]);
1970 }
1971 
1972 static void
e1000e_msix_notify_one(E1000ECore * core,uint32_t cause,uint32_t int_cfg)1973 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
1974 {
1975     uint32_t effective_eiac;
1976 
1977     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
1978         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
1979         if (vec < E1000E_MSIX_VEC_NUM) {
1980             if (!e1000e_eitr_should_postpone(core, vec)) {
1981                 trace_e1000e_irq_msix_notify_vec(vec);
1982                 msix_notify(core->owner, vec);
1983             }
1984         } else {
1985             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
1986         }
1987     } else {
1988         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
1989     }
1990 
1991     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
1992         trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
1993         core->mac[IAM] &= ~cause;
1994     }
1995 
1996     trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
1997 
1998     effective_eiac = core->mac[EIAC] & cause;
1999 
2000     core->mac[ICR] &= ~effective_eiac;
2001 
2002     if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2003         core->mac[IMS] &= ~effective_eiac;
2004     }
2005 }
2006 
2007 static void
e1000e_msix_notify(E1000ECore * core,uint32_t causes)2008 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2009 {
2010     if (causes & E1000_ICR_RXQ0) {
2011         e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2012                                E1000_IVAR_RXQ0(core->mac[IVAR]));
2013     }
2014 
2015     if (causes & E1000_ICR_RXQ1) {
2016         e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2017                                E1000_IVAR_RXQ1(core->mac[IVAR]));
2018     }
2019 
2020     if (causes & E1000_ICR_TXQ0) {
2021         e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2022                                E1000_IVAR_TXQ0(core->mac[IVAR]));
2023     }
2024 
2025     if (causes & E1000_ICR_TXQ1) {
2026         e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2027                                E1000_IVAR_TXQ1(core->mac[IVAR]));
2028     }
2029 
2030     if (causes & E1000_ICR_OTHER) {
2031         e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2032                                E1000_IVAR_OTHER(core->mac[IVAR]));
2033     }
2034 }
2035 
2036 static void
e1000e_msix_clear_one(E1000ECore * core,uint32_t cause,uint32_t int_cfg)2037 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2038 {
2039     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2040         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2041         if (vec < E1000E_MSIX_VEC_NUM) {
2042             trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2043             msix_clr_pending(core->owner, vec);
2044         } else {
2045             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2046         }
2047     } else {
2048         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2049     }
2050 }
2051 
2052 static void
e1000e_msix_clear(E1000ECore * core,uint32_t causes)2053 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2054 {
2055     if (causes & E1000_ICR_RXQ0) {
2056         e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2057                               E1000_IVAR_RXQ0(core->mac[IVAR]));
2058     }
2059 
2060     if (causes & E1000_ICR_RXQ1) {
2061         e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2062                               E1000_IVAR_RXQ1(core->mac[IVAR]));
2063     }
2064 
2065     if (causes & E1000_ICR_TXQ0) {
2066         e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2067                               E1000_IVAR_TXQ0(core->mac[IVAR]));
2068     }
2069 
2070     if (causes & E1000_ICR_TXQ1) {
2071         e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2072                               E1000_IVAR_TXQ1(core->mac[IVAR]));
2073     }
2074 
2075     if (causes & E1000_ICR_OTHER) {
2076         e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2077                               E1000_IVAR_OTHER(core->mac[IVAR]));
2078     }
2079 }
2080 
2081 static inline void
e1000e_fix_icr_asserted(E1000ECore * core)2082 e1000e_fix_icr_asserted(E1000ECore *core)
2083 {
2084     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2085     if (core->mac[ICR]) {
2086         core->mac[ICR] |= E1000_ICR_ASSERTED;
2087     }
2088 
2089     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2090 }
2091 
e1000e_raise_interrupts(E1000ECore * core,size_t index,uint32_t causes)2092 static void e1000e_raise_interrupts(E1000ECore *core,
2093                                     size_t index, uint32_t causes)
2094 {
2095     bool is_msix = msix_enabled(core->owner);
2096     uint32_t old_causes = core->mac[IMS] & core->mac[ICR];
2097     uint32_t raised_causes;
2098 
2099     trace_e1000e_irq_set(index << 2,
2100                          core->mac[index], core->mac[index] | causes);
2101 
2102     core->mac[index] |= causes;
2103 
2104     /* Set ICR[OTHER] for MSI-X */
2105     if (is_msix) {
2106         if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2107             core->mac[ICR] |= E1000_ICR_OTHER;
2108             trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2109         }
2110     }
2111 
2112     e1000e_fix_icr_asserted(core);
2113 
2114     /*
2115      * Make sure ICR and ICS registers have the same value.
2116      * The spec says that the ICS register is write-only.  However in practice,
2117      * on real hardware ICS is readable, and for reads it has the same value as
2118      * ICR (except that ICS does not have the clear on read behaviour of ICR).
2119      *
2120      * The VxWorks PRO/1000 driver uses this behaviour.
2121      */
2122     core->mac[ICS] = core->mac[ICR];
2123 
2124     trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2125                                         core->mac[ICR], core->mac[IMS]);
2126 
2127     raised_causes = core->mac[IMS] & core->mac[ICR] & ~old_causes;
2128     if (!raised_causes) {
2129         return;
2130     }
2131 
2132     if (is_msix) {
2133         e1000e_msix_notify(core, raised_causes & ~E1000_ICR_ASSERTED);
2134     } else if (!e1000e_itr_should_postpone(core)) {
2135         if (msi_enabled(core->owner)) {
2136             trace_e1000e_irq_msi_notify(raised_causes);
2137             msi_notify(core->owner, 0);
2138         } else {
2139             e1000e_raise_legacy_irq(core);
2140         }
2141     }
2142 }
2143 
e1000e_lower_interrupts(E1000ECore * core,size_t index,uint32_t causes)2144 static void e1000e_lower_interrupts(E1000ECore *core,
2145                                     size_t index, uint32_t causes)
2146 {
2147     trace_e1000e_irq_clear(index << 2,
2148                            core->mac[index], core->mac[index] & ~causes);
2149 
2150     core->mac[index] &= ~causes;
2151 
2152     /*
2153      * Make sure ICR and ICS registers have the same value.
2154      * The spec says that the ICS register is write-only.  However in practice,
2155      * on real hardware ICS is readable, and for reads it has the same value as
2156      * ICR (except that ICS does not have the clear on read behaviour of ICR).
2157      *
2158      * The VxWorks PRO/1000 driver uses this behaviour.
2159      */
2160     core->mac[ICS] = core->mac[ICR];
2161 
2162     trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2163                                         core->mac[ICR], core->mac[IMS]);
2164 
2165     if (!(core->mac[IMS] & core->mac[ICR]) &&
2166         !msix_enabled(core->owner) && !msi_enabled(core->owner)) {
2167         e1000e_lower_legacy_irq(core);
2168     }
2169 }
2170 
2171 static void
e1000e_set_interrupt_cause(E1000ECore * core,uint32_t val)2172 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2173 {
2174     val |= e1000e_intmgr_collect_delayed_causes(core);
2175     e1000e_raise_interrupts(core, ICR, val);
2176 }
2177 
2178 static inline void
e1000e_autoneg_timer(void * opaque)2179 e1000e_autoneg_timer(void *opaque)
2180 {
2181     E1000ECore *core = opaque;
2182     if (!qemu_get_queue(core->owner_nic)->link_down) {
2183         e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2184         e1000e_start_recv(core);
2185 
2186         e1000e_update_flowctl_status(core);
2187         /* signal link status change to the guest */
2188         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2189     }
2190 }
2191 
2192 static inline uint16_t
e1000e_get_reg_index_with_offset(const uint16_t * mac_reg_access,hwaddr addr)2193 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2194 {
2195     uint16_t index = (addr & 0x1ffff) >> 2;
2196     return index + (mac_reg_access[index] & 0xfffe);
2197 }
2198 
2199 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2200     [0] = {
2201         [MII_BMCR]              = PHY_ANYPAGE | PHY_RW,
2202         [MII_BMSR]              = PHY_ANYPAGE | PHY_R,
2203         [MII_PHYID1]            = PHY_ANYPAGE | PHY_R,
2204         [MII_PHYID2]            = PHY_ANYPAGE | PHY_R,
2205         [MII_ANAR]              = PHY_ANYPAGE | PHY_RW,
2206         [MII_ANLPAR]            = PHY_ANYPAGE | PHY_R,
2207         [MII_ANER]              = PHY_ANYPAGE | PHY_R,
2208         [MII_ANNP]              = PHY_ANYPAGE | PHY_RW,
2209         [MII_ANLPRNP]           = PHY_ANYPAGE | PHY_R,
2210         [MII_CTRL1000]          = PHY_ANYPAGE | PHY_RW,
2211         [MII_STAT1000]          = PHY_ANYPAGE | PHY_R,
2212         [MII_EXTSTAT]           = PHY_ANYPAGE | PHY_R,
2213         [PHY_PAGE]              = PHY_ANYPAGE | PHY_RW,
2214 
2215         [PHY_COPPER_CTRL1]      = PHY_RW,
2216         [PHY_COPPER_STAT1]      = PHY_R,
2217         [PHY_COPPER_CTRL3]      = PHY_RW,
2218         [PHY_RX_ERR_CNTR]       = PHY_R,
2219         [PHY_OEM_BITS]          = PHY_RW,
2220         [PHY_BIAS_1]            = PHY_RW,
2221         [PHY_BIAS_2]            = PHY_RW,
2222         [PHY_COPPER_INT_ENABLE] = PHY_RW,
2223         [PHY_COPPER_STAT2]      = PHY_R,
2224         [PHY_COPPER_CTRL2]      = PHY_RW
2225     },
2226     [2] = {
2227         [PHY_MAC_CTRL1]         = PHY_RW,
2228         [PHY_MAC_INT_ENABLE]    = PHY_RW,
2229         [PHY_MAC_STAT]          = PHY_R,
2230         [PHY_MAC_CTRL2]         = PHY_RW
2231     },
2232     [3] = {
2233         [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2234         [PHY_LED_03_POL_CTRL]   = PHY_RW,
2235         [PHY_LED_TIMER_CTRL]    = PHY_RW,
2236         [PHY_LED_45_CTRL]       = PHY_RW
2237     },
2238     [5] = {
2239         [PHY_1000T_SKEW]        = PHY_R,
2240         [PHY_1000T_SWAP]        = PHY_R
2241     },
2242     [6] = {
2243         [PHY_CRC_COUNTERS]      = PHY_R
2244     }
2245 };
2246 
2247 static bool
e1000e_phy_reg_check_cap(E1000ECore * core,uint32_t addr,char cap,uint8_t * page)2248 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2249                          char cap, uint8_t *page)
2250 {
2251     *page =
2252         (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2253                                                     : core->phy[0][PHY_PAGE];
2254 
2255     if (*page >= E1000E_PHY_PAGES) {
2256         return false;
2257     }
2258 
2259     return e1000e_phy_regcap[*page][addr] & cap;
2260 }
2261 
2262 static void
e1000e_phy_reg_write(E1000ECore * core,uint8_t page,uint32_t addr,uint16_t data)2263 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2264                      uint32_t addr, uint16_t data)
2265 {
2266     assert(page < E1000E_PHY_PAGES);
2267     assert(addr < E1000E_PHY_PAGE_SIZE);
2268 
2269     if (e1000e_phyreg_writeops[page][addr]) {
2270         e1000e_phyreg_writeops[page][addr](core, addr, data);
2271     } else {
2272         core->phy[page][addr] = data;
2273     }
2274 }
2275 
2276 static void
e1000e_set_mdic(E1000ECore * core,int index,uint32_t val)2277 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2278 {
2279     uint32_t data = val & E1000_MDIC_DATA_MASK;
2280     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2281     uint8_t page;
2282 
2283     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2284         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2285     } else if (val & E1000_MDIC_OP_READ) {
2286         if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2287             trace_e1000e_core_mdic_read_unhandled(page, addr);
2288             val |= E1000_MDIC_ERROR;
2289         } else {
2290             val = (val ^ data) | core->phy[page][addr];
2291             trace_e1000e_core_mdic_read(page, addr, val);
2292         }
2293     } else if (val & E1000_MDIC_OP_WRITE) {
2294         if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2295             trace_e1000e_core_mdic_write_unhandled(page, addr);
2296             val |= E1000_MDIC_ERROR;
2297         } else {
2298             trace_e1000e_core_mdic_write(page, addr, data);
2299             e1000e_phy_reg_write(core, page, addr, data);
2300         }
2301     }
2302     core->mac[MDIC] = val | E1000_MDIC_READY;
2303 
2304     if (val & E1000_MDIC_INT_EN) {
2305         e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2306     }
2307 }
2308 
2309 static void
e1000e_set_rdt(E1000ECore * core,int index,uint32_t val)2310 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2311 {
2312     core->mac[index] = val & 0xffff;
2313     trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2314     e1000e_start_recv(core);
2315 }
2316 
2317 static void
e1000e_set_status(E1000ECore * core,int index,uint32_t val)2318 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2319 {
2320     if ((val & E1000_STATUS_PHYRA) == 0) {
2321         core->mac[index] &= ~E1000_STATUS_PHYRA;
2322     }
2323 }
2324 
2325 static void
e1000e_set_ctrlext(E1000ECore * core,int index,uint32_t val)2326 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2327 {
2328     trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2329                                      !!(val & E1000_CTRL_EXT_SPD_BYPS));
2330 
2331     /* Zero self-clearing bits */
2332     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2333     core->mac[CTRL_EXT] = val;
2334 }
2335 
2336 static void
e1000e_set_pbaclr(E1000ECore * core,int index,uint32_t val)2337 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2338 {
2339     int i;
2340 
2341     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2342 
2343     if (!msix_enabled(core->owner)) {
2344         return;
2345     }
2346 
2347     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2348         if (core->mac[PBACLR] & BIT(i)) {
2349             msix_clr_pending(core->owner, i);
2350         }
2351     }
2352 }
2353 
2354 static void
e1000e_set_fcrth(E1000ECore * core,int index,uint32_t val)2355 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2356 {
2357     core->mac[FCRTH] = val & 0xFFF8;
2358 }
2359 
2360 static void
e1000e_set_fcrtl(E1000ECore * core,int index,uint32_t val)2361 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2362 {
2363     core->mac[FCRTL] = val & 0x8000FFF8;
2364 }
2365 
2366 #define E1000E_LOW_BITS_SET_FUNC(num)                                \
2367     static void                                                      \
2368     e1000e_set_##num##bit(E1000ECore *core, int index, uint32_t val) \
2369     {                                                                \
2370         core->mac[index] = val & (BIT(num) - 1);                     \
2371     }
2372 
2373 E1000E_LOW_BITS_SET_FUNC(4)
2374 E1000E_LOW_BITS_SET_FUNC(6)
2375 E1000E_LOW_BITS_SET_FUNC(11)
2376 E1000E_LOW_BITS_SET_FUNC(12)
2377 E1000E_LOW_BITS_SET_FUNC(13)
2378 E1000E_LOW_BITS_SET_FUNC(16)
2379 
2380 static void
e1000e_set_vet(E1000ECore * core,int index,uint32_t val)2381 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2382 {
2383     core->mac[VET] = val & 0xffff;
2384     trace_e1000e_vlan_vet(core->mac[VET]);
2385 }
2386 
2387 static void
e1000e_set_dlen(E1000ECore * core,int index,uint32_t val)2388 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2389 {
2390     core->mac[index] = val & E1000_XDLEN_MASK;
2391 }
2392 
2393 static void
e1000e_set_dbal(E1000ECore * core,int index,uint32_t val)2394 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2395 {
2396     core->mac[index] = val & E1000_XDBAL_MASK;
2397 }
2398 
2399 static void
e1000e_set_tctl(E1000ECore * core,int index,uint32_t val)2400 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2401 {
2402     E1000E_TxRing txr;
2403     core->mac[index] = val;
2404 
2405     if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2406         e1000e_tx_ring_init(core, &txr, 0);
2407         e1000e_start_xmit(core, &txr);
2408     }
2409 
2410     if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2411         e1000e_tx_ring_init(core, &txr, 1);
2412         e1000e_start_xmit(core, &txr);
2413     }
2414 }
2415 
2416 static void
e1000e_set_tdt(E1000ECore * core,int index,uint32_t val)2417 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2418 {
2419     E1000E_TxRing txr;
2420     int qidx = e1000e_mq_queue_idx(TDT, index);
2421     uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2422 
2423     core->mac[index] = val & 0xffff;
2424 
2425     if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2426         e1000e_tx_ring_init(core, &txr, qidx);
2427         e1000e_start_xmit(core, &txr);
2428     }
2429 }
2430 
2431 static void
e1000e_set_ics(E1000ECore * core,int index,uint32_t val)2432 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2433 {
2434     trace_e1000e_irq_write_ics(val);
2435     e1000e_set_interrupt_cause(core, val);
2436 }
2437 
2438 static void
e1000e_set_icr(E1000ECore * core,int index,uint32_t val)2439 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2440 {
2441     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2442         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2443         trace_e1000e_irq_icr_process_iame();
2444         e1000e_lower_interrupts(core, IMS, core->mac[IAM]);
2445     }
2446 
2447     /*
2448      * Windows driver expects that the "receive overrun" bit and other
2449      * ones to be cleared when the "Other" bit (#24) is cleared.
2450      */
2451     if (val & E1000_ICR_OTHER) {
2452         val |= E1000_ICR_OTHER_CAUSES;
2453     }
2454     e1000e_lower_interrupts(core, ICR, val);
2455 }
2456 
2457 static void
e1000e_set_imc(E1000ECore * core,int index,uint32_t val)2458 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2459 {
2460     trace_e1000e_irq_ims_clear_set_imc(val);
2461     e1000e_lower_interrupts(core, IMS, val);
2462 }
2463 
2464 static void
e1000e_set_ims(E1000ECore * core,int index,uint32_t val)2465 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2466 {
2467     static const uint32_t ims_ext_mask =
2468         E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2469         E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2470         E1000_IMS_OTHER;
2471 
2472     static const uint32_t ims_valid_mask =
2473         E1000_IMS_TXDW      | E1000_IMS_TXQE    | E1000_IMS_LSC  |
2474         E1000_IMS_RXDMT0    | E1000_IMS_RXO     | E1000_IMS_RXT0 |
2475         E1000_IMS_MDAC      | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2476         E1000_IMS_ACK       | E1000_IMS_MNG     | E1000_IMS_RXQ0 |
2477         E1000_IMS_RXQ1      | E1000_IMS_TXQ0    | E1000_IMS_TXQ1 |
2478         E1000_IMS_OTHER;
2479 
2480     uint32_t valid_val = val & ims_valid_mask;
2481 
2482     if ((valid_val & ims_ext_mask) &&
2483         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2484         msix_enabled(core->owner)) {
2485         e1000e_msix_clear(core, valid_val);
2486     }
2487 
2488     if ((valid_val == ims_valid_mask) &&
2489         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2490         trace_e1000e_irq_fire_all_timers(val);
2491         e1000e_intrmgr_fire_all_timers(core);
2492     }
2493 
2494     e1000e_raise_interrupts(core, IMS, valid_val);
2495 }
2496 
2497 static void
e1000e_set_rdtr(E1000ECore * core,int index,uint32_t val)2498 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2499 {
2500     e1000e_set_16bit(core, index, val);
2501 
2502     if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2503         trace_e1000e_irq_rdtr_fpd_running();
2504         e1000e_intrmgr_fire_delayed_interrupts(core);
2505     } else {
2506         trace_e1000e_irq_rdtr_fpd_not_running();
2507     }
2508 }
2509 
2510 static void
e1000e_set_tidv(E1000ECore * core,int index,uint32_t val)2511 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2512 {
2513     e1000e_set_16bit(core, index, val);
2514 
2515     if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2516         trace_e1000e_irq_tidv_fpd_running();
2517         e1000e_intrmgr_fire_delayed_interrupts(core);
2518     } else {
2519         trace_e1000e_irq_tidv_fpd_not_running();
2520     }
2521 }
2522 
2523 static uint32_t
e1000e_mac_readreg(E1000ECore * core,int index)2524 e1000e_mac_readreg(E1000ECore *core, int index)
2525 {
2526     return core->mac[index];
2527 }
2528 
2529 static uint32_t
e1000e_mac_ics_read(E1000ECore * core,int index)2530 e1000e_mac_ics_read(E1000ECore *core, int index)
2531 {
2532     trace_e1000e_irq_read_ics(core->mac[ICS]);
2533     return core->mac[ICS];
2534 }
2535 
2536 static uint32_t
e1000e_mac_ims_read(E1000ECore * core,int index)2537 e1000e_mac_ims_read(E1000ECore *core, int index)
2538 {
2539     trace_e1000e_irq_read_ims(core->mac[IMS]);
2540     return core->mac[IMS];
2541 }
2542 
2543 static uint32_t
e1000e_mac_swsm_read(E1000ECore * core,int index)2544 e1000e_mac_swsm_read(E1000ECore *core, int index)
2545 {
2546     uint32_t val = core->mac[SWSM];
2547     core->mac[SWSM] = val | E1000_SWSM_SMBI;
2548     return val;
2549 }
2550 
2551 static uint32_t
e1000e_mac_itr_read(E1000ECore * core,int index)2552 e1000e_mac_itr_read(E1000ECore *core, int index)
2553 {
2554     return core->itr_guest_value;
2555 }
2556 
2557 static uint32_t
e1000e_mac_eitr_read(E1000ECore * core,int index)2558 e1000e_mac_eitr_read(E1000ECore *core, int index)
2559 {
2560     return core->eitr_guest_value[index - EITR];
2561 }
2562 
2563 static uint32_t
e1000e_mac_icr_read(E1000ECore * core,int index)2564 e1000e_mac_icr_read(E1000ECore *core, int index)
2565 {
2566     uint32_t ret = core->mac[ICR];
2567 
2568     if (core->mac[IMS] == 0) {
2569         trace_e1000e_irq_icr_clear_zero_ims();
2570         e1000e_lower_interrupts(core, ICR, 0xffffffff);
2571     }
2572 
2573     if (!msix_enabled(core->owner)) {
2574         trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2575         e1000e_lower_interrupts(core, ICR, 0xffffffff);
2576     }
2577 
2578     if (core->mac[ICR] & E1000_ICR_ASSERTED) {
2579         if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME) {
2580             trace_e1000e_irq_icr_clear_iame();
2581             e1000e_lower_interrupts(core, ICR, 0xffffffff);
2582             trace_e1000e_irq_icr_process_iame();
2583             e1000e_lower_interrupts(core, IMS, core->mac[IAM]);
2584         }
2585 
2586         /*
2587          * The datasheet does not say what happens when interrupt was asserted
2588          * (ICR.INT_ASSERT=1) and auto mask is *not* active.
2589          * However, section of 13.3.27 the PCIe* GbE Controllers Open Source
2590          * Software Developer’s Manual, which were written for older devices,
2591          * namely 631xESB/632xESB, 82563EB/82564EB, 82571EB/82572EI &
2592          * 82573E/82573V/82573L, does say:
2593          * > If IMS = 0b, then the ICR register is always clear-on-read. If IMS
2594          * > is not 0b, but some ICR bit is set where the corresponding IMS bit
2595          * > is not set, then a read does not clear the ICR register. For
2596          * > example, if IMS = 10101010b and ICR = 01010101b, then a read to the
2597          * > ICR register does not clear it. If IMS = 10101010b and
2598          * > ICR = 0101011b, then a read to the ICR register clears it entirely
2599          * > (ICR.INT_ASSERTED = 1b).
2600          *
2601          * Linux does no longer activate auto mask since commit
2602          * 0a8047ac68e50e4ccbadcfc6b6b070805b976885 and the real hardware
2603          * clears ICR even in such a case so we also should do so.
2604          */
2605         if (core->mac[ICR] & core->mac[IMS]) {
2606             trace_e1000e_irq_icr_clear_icr_bit_ims(core->mac[ICR],
2607                                                    core->mac[IMS]);
2608             e1000e_lower_interrupts(core, ICR, 0xffffffff);
2609         }
2610     }
2611 
2612     return ret;
2613 }
2614 
2615 static uint32_t
e1000e_mac_read_clr4(E1000ECore * core,int index)2616 e1000e_mac_read_clr4(E1000ECore *core, int index)
2617 {
2618     uint32_t ret = core->mac[index];
2619 
2620     core->mac[index] = 0;
2621     return ret;
2622 }
2623 
2624 static uint32_t
e1000e_mac_read_clr8(E1000ECore * core,int index)2625 e1000e_mac_read_clr8(E1000ECore *core, int index)
2626 {
2627     uint32_t ret = core->mac[index];
2628 
2629     core->mac[index] = 0;
2630     core->mac[index - 1] = 0;
2631     return ret;
2632 }
2633 
2634 static uint32_t
e1000e_get_ctrl(E1000ECore * core,int index)2635 e1000e_get_ctrl(E1000ECore *core, int index)
2636 {
2637     uint32_t val = core->mac[CTRL];
2638 
2639     trace_e1000e_link_read_params(
2640         !!(val & E1000_CTRL_ASDE),
2641         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2642         !!(val & E1000_CTRL_FRCSPD),
2643         !!(val & E1000_CTRL_FRCDPX),
2644         !!(val & E1000_CTRL_RFCE),
2645         !!(val & E1000_CTRL_TFCE));
2646 
2647     return val;
2648 }
2649 
2650 static uint32_t
e1000e_get_status(E1000ECore * core,int index)2651 e1000e_get_status(E1000ECore *core, int index)
2652 {
2653     uint32_t res = core->mac[STATUS];
2654 
2655     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2656         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2657     }
2658 
2659     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2660         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2661     } else {
2662         res |= E1000_STATUS_FD;
2663     }
2664 
2665     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2666         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2667         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2668         case E1000_CTRL_SPD_10:
2669             res |= E1000_STATUS_SPEED_10;
2670             break;
2671         case E1000_CTRL_SPD_100:
2672             res |= E1000_STATUS_SPEED_100;
2673             break;
2674         case E1000_CTRL_SPD_1000:
2675         default:
2676             res |= E1000_STATUS_SPEED_1000;
2677             break;
2678         }
2679     } else {
2680         res |= E1000_STATUS_SPEED_1000;
2681     }
2682 
2683     trace_e1000e_link_status(
2684         !!(res & E1000_STATUS_LU),
2685         !!(res & E1000_STATUS_FD),
2686         (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2687         (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2688 
2689     return res;
2690 }
2691 
2692 static uint32_t
e1000e_get_tarc(E1000ECore * core,int index)2693 e1000e_get_tarc(E1000ECore *core, int index)
2694 {
2695     return core->mac[index] & ((BIT(11) - 1) |
2696                                 BIT(27)      |
2697                                 BIT(28)      |
2698                                 BIT(29)      |
2699                                 BIT(30));
2700 }
2701 
2702 static void
e1000e_mac_writereg(E1000ECore * core,int index,uint32_t val)2703 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2704 {
2705     core->mac[index] = val;
2706 }
2707 
2708 static void
e1000e_mac_setmacaddr(E1000ECore * core,int index,uint32_t val)2709 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2710 {
2711     uint32_t macaddr[2];
2712 
2713     core->mac[index] = val;
2714 
2715     macaddr[0] = cpu_to_le32(core->mac[RA]);
2716     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2717     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2718         (uint8_t *) macaddr);
2719 
2720     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2721 }
2722 
2723 static void
e1000e_set_eecd(E1000ECore * core,int index,uint32_t val)2724 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2725 {
2726     static const uint32_t ro_bits = E1000_EECD_PRES          |
2727                                     E1000_EECD_AUTO_RD       |
2728                                     E1000_EECD_SIZE_EX_MASK;
2729 
2730     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2731 }
2732 
2733 static void
e1000e_set_eerd(E1000ECore * core,int index,uint32_t val)2734 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2735 {
2736     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2737     uint32_t flags = 0;
2738     uint32_t data = 0;
2739 
2740     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2741         data = core->eeprom[addr];
2742         flags = E1000_EERW_DONE;
2743     }
2744 
2745     core->mac[EERD] = flags                           |
2746                       (addr << E1000_EERW_ADDR_SHIFT) |
2747                       (data << E1000_EERW_DATA_SHIFT);
2748 }
2749 
2750 static void
e1000e_set_eewr(E1000ECore * core,int index,uint32_t val)2751 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2752 {
2753     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2754     uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2755     uint32_t flags = 0;
2756 
2757     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2758         core->eeprom[addr] = data;
2759         flags = E1000_EERW_DONE;
2760     }
2761 
2762     core->mac[EERD] = flags                           |
2763                       (addr << E1000_EERW_ADDR_SHIFT) |
2764                       (data << E1000_EERW_DATA_SHIFT);
2765 }
2766 
2767 static void
e1000e_set_rxdctl(E1000ECore * core,int index,uint32_t val)2768 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2769 {
2770     core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2771 }
2772 
2773 static void
e1000e_set_itr(E1000ECore * core,int index,uint32_t val)2774 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2775 {
2776     uint32_t interval = val & 0xffff;
2777 
2778     trace_e1000e_irq_itr_set(val);
2779 
2780     core->itr_guest_value = interval;
2781     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2782 }
2783 
2784 static void
e1000e_set_eitr(E1000ECore * core,int index,uint32_t val)2785 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2786 {
2787     uint32_t interval = val & 0xffff;
2788     uint32_t eitr_num = index - EITR;
2789 
2790     trace_e1000e_irq_eitr_set(eitr_num, val);
2791 
2792     core->eitr_guest_value[eitr_num] = interval;
2793     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2794 }
2795 
2796 static void
e1000e_set_psrctl(E1000ECore * core,int index,uint32_t val)2797 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2798 {
2799     if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
2800 
2801         if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2802             qemu_log_mask(LOG_GUEST_ERROR,
2803                           "e1000e: PSRCTL.BSIZE0 cannot be zero");
2804             return;
2805         }
2806 
2807         if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2808             qemu_log_mask(LOG_GUEST_ERROR,
2809                           "e1000e: PSRCTL.BSIZE1 cannot be zero");
2810             return;
2811         }
2812     }
2813 
2814     core->mac[PSRCTL] = val;
2815 }
2816 
2817 static void
e1000e_update_rx_offloads(E1000ECore * core)2818 e1000e_update_rx_offloads(E1000ECore *core)
2819 {
2820     int cso_state = e1000e_rx_l4_cso_enabled(core);
2821 
2822     trace_e1000e_rx_set_cso(cso_state);
2823 
2824     if (core->has_vnet) {
2825         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2826                          cso_state, 0, 0, 0, 0, 0, 0);
2827     }
2828 }
2829 
2830 static void
e1000e_set_rxcsum(E1000ECore * core,int index,uint32_t val)2831 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2832 {
2833     core->mac[RXCSUM] = val;
2834     e1000e_update_rx_offloads(core);
2835 }
2836 
2837 static void
e1000e_set_gcr(E1000ECore * core,int index,uint32_t val)2838 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2839 {
2840     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2841     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2842 }
2843 
e1000e_get_systiml(E1000ECore * core,int index)2844 static uint32_t e1000e_get_systiml(E1000ECore *core, int index)
2845 {
2846     e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
2847     return core->mac[SYSTIML];
2848 }
2849 
e1000e_get_rxsatrh(E1000ECore * core,int index)2850 static uint32_t e1000e_get_rxsatrh(E1000ECore *core, int index)
2851 {
2852     core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
2853     return core->mac[RXSATRH];
2854 }
2855 
e1000e_get_txstmph(E1000ECore * core,int index)2856 static uint32_t e1000e_get_txstmph(E1000ECore *core, int index)
2857 {
2858     core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
2859     return core->mac[TXSTMPH];
2860 }
2861 
e1000e_set_timinca(E1000ECore * core,int index,uint32_t val)2862 static void e1000e_set_timinca(E1000ECore *core, int index, uint32_t val)
2863 {
2864     e1000x_set_timinca(core->mac, &core->timadj, val);
2865 }
2866 
e1000e_set_timadjh(E1000ECore * core,int index,uint32_t val)2867 static void e1000e_set_timadjh(E1000ECore *core, int index, uint32_t val)
2868 {
2869     core->mac[TIMADJH] = val;
2870     core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
2871 }
2872 
2873 #define e1000e_getreg(x)    [x] = e1000e_mac_readreg
2874 typedef uint32_t (*readops)(E1000ECore *, int);
2875 static const readops e1000e_macreg_readops[] = {
2876     e1000e_getreg(PBA),
2877     e1000e_getreg(WUFC),
2878     e1000e_getreg(MANC),
2879     e1000e_getreg(TOTL),
2880     e1000e_getreg(RDT0),
2881     e1000e_getreg(RDBAH0),
2882     e1000e_getreg(TDBAL1),
2883     e1000e_getreg(RDLEN0),
2884     e1000e_getreg(RDH1),
2885     e1000e_getreg(LATECOL),
2886     e1000e_getreg(SEQEC),
2887     e1000e_getreg(XONTXC),
2888     e1000e_getreg(AIT),
2889     e1000e_getreg(TDFH),
2890     e1000e_getreg(TDFT),
2891     e1000e_getreg(TDFHS),
2892     e1000e_getreg(TDFTS),
2893     e1000e_getreg(TDFPC),
2894     e1000e_getreg(WUS),
2895     e1000e_getreg(PBS),
2896     e1000e_getreg(RDFH),
2897     e1000e_getreg(RDFT),
2898     e1000e_getreg(RDFHS),
2899     e1000e_getreg(RDFTS),
2900     e1000e_getreg(RDFPC),
2901     e1000e_getreg(GORCL),
2902     e1000e_getreg(MGTPRC),
2903     e1000e_getreg(EERD),
2904     e1000e_getreg(EIAC),
2905     e1000e_getreg(PSRCTL),
2906     e1000e_getreg(MANC2H),
2907     e1000e_getreg(RXCSUM),
2908     e1000e_getreg(GSCL_3),
2909     e1000e_getreg(GSCN_2),
2910     e1000e_getreg(RSRPD),
2911     e1000e_getreg(RDBAL1),
2912     e1000e_getreg(FCAH),
2913     e1000e_getreg(FCRTH),
2914     e1000e_getreg(FLOP),
2915     e1000e_getreg(FLASHT),
2916     e1000e_getreg(RXSTMPH),
2917     e1000e_getreg(TXSTMPL),
2918     e1000e_getreg(TIMADJL),
2919     e1000e_getreg(TXDCTL),
2920     e1000e_getreg(RDH0),
2921     e1000e_getreg(TDT1),
2922     e1000e_getreg(TNCRS),
2923     e1000e_getreg(RJC),
2924     e1000e_getreg(IAM),
2925     e1000e_getreg(GSCL_2),
2926     e1000e_getreg(RDBAH1),
2927     e1000e_getreg(FLSWDATA),
2928     e1000e_getreg(TIPG),
2929     e1000e_getreg(FLMNGCTL),
2930     e1000e_getreg(FLMNGCNT),
2931     e1000e_getreg(TSYNCTXCTL),
2932     e1000e_getreg(EXTCNF_SIZE),
2933     e1000e_getreg(EXTCNF_CTRL),
2934     e1000e_getreg(EEMNGDATA),
2935     e1000e_getreg(CTRL_EXT),
2936     e1000e_getreg(SYSTIMH),
2937     e1000e_getreg(EEMNGCTL),
2938     e1000e_getreg(FLMNGDATA),
2939     e1000e_getreg(TSYNCRXCTL),
2940     e1000e_getreg(TDH),
2941     e1000e_getreg(LEDCTL),
2942     e1000e_getreg(TCTL),
2943     e1000e_getreg(TDBAL),
2944     e1000e_getreg(TDLEN),
2945     e1000e_getreg(TDH1),
2946     e1000e_getreg(RADV),
2947     e1000e_getreg(ECOL),
2948     e1000e_getreg(DC),
2949     e1000e_getreg(RLEC),
2950     e1000e_getreg(XOFFTXC),
2951     e1000e_getreg(RFC),
2952     e1000e_getreg(RNBC),
2953     e1000e_getreg(MGTPTC),
2954     e1000e_getreg(TIMINCA),
2955     e1000e_getreg(RXCFGL),
2956     e1000e_getreg(MFUTP01),
2957     e1000e_getreg(FACTPS),
2958     e1000e_getreg(GSCL_1),
2959     e1000e_getreg(GSCN_0),
2960     e1000e_getreg(GCR2),
2961     e1000e_getreg(RDT1),
2962     e1000e_getreg(PBACLR),
2963     e1000e_getreg(FCTTV),
2964     e1000e_getreg(EEWR),
2965     e1000e_getreg(FLSWCTL),
2966     e1000e_getreg(RXDCTL1),
2967     e1000e_getreg(RXSATRL),
2968     e1000e_getreg(RXUDP),
2969     e1000e_getreg(TORL),
2970     e1000e_getreg(TDLEN1),
2971     e1000e_getreg(MCC),
2972     e1000e_getreg(WUC),
2973     e1000e_getreg(EECD),
2974     e1000e_getreg(MFUTP23),
2975     e1000e_getreg(RAID),
2976     e1000e_getreg(FCRTV),
2977     e1000e_getreg(TXDCTL1),
2978     e1000e_getreg(RCTL),
2979     e1000e_getreg(TDT),
2980     e1000e_getreg(MDIC),
2981     e1000e_getreg(FCRUC),
2982     e1000e_getreg(VET),
2983     e1000e_getreg(RDBAL0),
2984     e1000e_getreg(TDBAH1),
2985     e1000e_getreg(RDTR),
2986     e1000e_getreg(SCC),
2987     e1000e_getreg(COLC),
2988     e1000e_getreg(CEXTERR),
2989     e1000e_getreg(XOFFRXC),
2990     e1000e_getreg(IPAV),
2991     e1000e_getreg(GOTCL),
2992     e1000e_getreg(MGTPDC),
2993     e1000e_getreg(GCR),
2994     e1000e_getreg(IVAR),
2995     e1000e_getreg(POEMB),
2996     e1000e_getreg(MFVAL),
2997     e1000e_getreg(FUNCTAG),
2998     e1000e_getreg(GSCL_4),
2999     e1000e_getreg(GSCN_3),
3000     e1000e_getreg(MRQC),
3001     e1000e_getreg(RDLEN1),
3002     e1000e_getreg(FCT),
3003     e1000e_getreg(FLA),
3004     e1000e_getreg(FLOL),
3005     e1000e_getreg(RXDCTL),
3006     e1000e_getreg(RXSTMPL),
3007     e1000e_getreg(TIMADJH),
3008     e1000e_getreg(FCRTL),
3009     e1000e_getreg(TDBAH),
3010     e1000e_getreg(TADV),
3011     e1000e_getreg(XONRXC),
3012     e1000e_getreg(TSCTFC),
3013     e1000e_getreg(RFCTL),
3014     e1000e_getreg(GSCN_1),
3015     e1000e_getreg(FCAL),
3016     e1000e_getreg(FLSWCNT),
3017 
3018     [TOTH]    = e1000e_mac_read_clr8,
3019     [GOTCH]   = e1000e_mac_read_clr8,
3020     [PRC64]   = e1000e_mac_read_clr4,
3021     [PRC255]  = e1000e_mac_read_clr4,
3022     [PRC1023] = e1000e_mac_read_clr4,
3023     [PTC64]   = e1000e_mac_read_clr4,
3024     [PTC255]  = e1000e_mac_read_clr4,
3025     [PTC1023] = e1000e_mac_read_clr4,
3026     [GPRC]    = e1000e_mac_read_clr4,
3027     [TPT]     = e1000e_mac_read_clr4,
3028     [RUC]     = e1000e_mac_read_clr4,
3029     [BPRC]    = e1000e_mac_read_clr4,
3030     [MPTC]    = e1000e_mac_read_clr4,
3031     [IAC]     = e1000e_mac_read_clr4,
3032     [ICR]     = e1000e_mac_icr_read,
3033     [STATUS]  = e1000e_get_status,
3034     [TARC0]   = e1000e_get_tarc,
3035     [ICS]     = e1000e_mac_ics_read,
3036     [TORH]    = e1000e_mac_read_clr8,
3037     [GORCH]   = e1000e_mac_read_clr8,
3038     [PRC127]  = e1000e_mac_read_clr4,
3039     [PRC511]  = e1000e_mac_read_clr4,
3040     [PRC1522] = e1000e_mac_read_clr4,
3041     [PTC127]  = e1000e_mac_read_clr4,
3042     [PTC511]  = e1000e_mac_read_clr4,
3043     [PTC1522] = e1000e_mac_read_clr4,
3044     [GPTC]    = e1000e_mac_read_clr4,
3045     [TPR]     = e1000e_mac_read_clr4,
3046     [ROC]     = e1000e_mac_read_clr4,
3047     [MPRC]    = e1000e_mac_read_clr4,
3048     [BPTC]    = e1000e_mac_read_clr4,
3049     [TSCTC]   = e1000e_mac_read_clr4,
3050     [ITR]     = e1000e_mac_itr_read,
3051     [CTRL]    = e1000e_get_ctrl,
3052     [TARC1]   = e1000e_get_tarc,
3053     [SWSM]    = e1000e_mac_swsm_read,
3054     [IMS]     = e1000e_mac_ims_read,
3055     [SYSTIML] = e1000e_get_systiml,
3056     [RXSATRH] = e1000e_get_rxsatrh,
3057     [TXSTMPH] = e1000e_get_txstmph,
3058 
3059     [CRCERRS ... MPC]      = e1000e_mac_readreg,
3060     [IP6AT ... IP6AT + 3]  = e1000e_mac_readreg,
3061     [IP4AT ... IP4AT + 6]  = e1000e_mac_readreg,
3062     [RA ... RA + 31]       = e1000e_mac_readreg,
3063     [WUPM ... WUPM + 31]   = e1000e_mac_readreg,
3064     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_readreg,
3065     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]  = e1000e_mac_readreg,
3066     [FFMT ... FFMT + 254]  = e1000e_mac_readreg,
3067     [FFVT ... FFVT + 254]  = e1000e_mac_readreg,
3068     [MDEF ... MDEF + 7]    = e1000e_mac_readreg,
3069     [FFLT ... FFLT + 10]   = e1000e_mac_readreg,
3070     [FTFT ... FTFT + 254]  = e1000e_mac_readreg,
3071     [PBM ... PBM + 10239]  = e1000e_mac_readreg,
3072     [RETA ... RETA + 31]   = e1000e_mac_readreg,
3073     [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3074     [MAVTV0 ... MAVTV3]    = e1000e_mac_readreg,
3075     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3076 };
3077 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3078 
3079 #define e1000e_putreg(x)    [x] = e1000e_mac_writereg
3080 typedef void (*writeops)(E1000ECore *, int, uint32_t);
3081 static const writeops e1000e_macreg_writeops[] = {
3082     e1000e_putreg(PBA),
3083     e1000e_putreg(SWSM),
3084     e1000e_putreg(WUFC),
3085     e1000e_putreg(RDBAH1),
3086     e1000e_putreg(TDBAH),
3087     e1000e_putreg(TXDCTL),
3088     e1000e_putreg(RDBAH0),
3089     e1000e_putreg(LEDCTL),
3090     e1000e_putreg(FCAL),
3091     e1000e_putreg(FCRUC),
3092     e1000e_putreg(WUC),
3093     e1000e_putreg(WUS),
3094     e1000e_putreg(IPAV),
3095     e1000e_putreg(TDBAH1),
3096     e1000e_putreg(IAM),
3097     e1000e_putreg(EIAC),
3098     e1000e_putreg(IVAR),
3099     e1000e_putreg(TARC0),
3100     e1000e_putreg(TARC1),
3101     e1000e_putreg(FLSWDATA),
3102     e1000e_putreg(POEMB),
3103     e1000e_putreg(MFUTP01),
3104     e1000e_putreg(MFUTP23),
3105     e1000e_putreg(MANC),
3106     e1000e_putreg(MANC2H),
3107     e1000e_putreg(MFVAL),
3108     e1000e_putreg(EXTCNF_CTRL),
3109     e1000e_putreg(FACTPS),
3110     e1000e_putreg(FUNCTAG),
3111     e1000e_putreg(GSCL_1),
3112     e1000e_putreg(GSCL_2),
3113     e1000e_putreg(GSCL_3),
3114     e1000e_putreg(GSCL_4),
3115     e1000e_putreg(GSCN_0),
3116     e1000e_putreg(GSCN_1),
3117     e1000e_putreg(GSCN_2),
3118     e1000e_putreg(GSCN_3),
3119     e1000e_putreg(GCR2),
3120     e1000e_putreg(MRQC),
3121     e1000e_putreg(FLOP),
3122     e1000e_putreg(FLOL),
3123     e1000e_putreg(FLSWCTL),
3124     e1000e_putreg(FLSWCNT),
3125     e1000e_putreg(FLA),
3126     e1000e_putreg(RXDCTL1),
3127     e1000e_putreg(TXDCTL1),
3128     e1000e_putreg(TIPG),
3129     e1000e_putreg(RXSTMPH),
3130     e1000e_putreg(RXSTMPL),
3131     e1000e_putreg(RXSATRL),
3132     e1000e_putreg(RXSATRH),
3133     e1000e_putreg(TXSTMPL),
3134     e1000e_putreg(TXSTMPH),
3135     e1000e_putreg(SYSTIML),
3136     e1000e_putreg(SYSTIMH),
3137     e1000e_putreg(TIMADJL),
3138     e1000e_putreg(RXUDP),
3139     e1000e_putreg(RXCFGL),
3140     e1000e_putreg(TSYNCRXCTL),
3141     e1000e_putreg(TSYNCTXCTL),
3142     e1000e_putreg(EXTCNF_SIZE),
3143     e1000e_putreg(EEMNGCTL),
3144     e1000e_putreg(RA),
3145 
3146     [TDH1]     = e1000e_set_16bit,
3147     [TDT1]     = e1000e_set_tdt,
3148     [TCTL]     = e1000e_set_tctl,
3149     [TDT]      = e1000e_set_tdt,
3150     [MDIC]     = e1000e_set_mdic,
3151     [ICS]      = e1000e_set_ics,
3152     [TDH]      = e1000e_set_16bit,
3153     [RDH0]     = e1000e_set_16bit,
3154     [RDT0]     = e1000e_set_rdt,
3155     [IMC]      = e1000e_set_imc,
3156     [IMS]      = e1000e_set_ims,
3157     [ICR]      = e1000e_set_icr,
3158     [EECD]     = e1000e_set_eecd,
3159     [RCTL]     = e1000e_set_rx_control,
3160     [CTRL]     = e1000e_set_ctrl,
3161     [RDTR]     = e1000e_set_rdtr,
3162     [RADV]     = e1000e_set_16bit,
3163     [TADV]     = e1000e_set_16bit,
3164     [ITR]      = e1000e_set_itr,
3165     [EERD]     = e1000e_set_eerd,
3166     [AIT]      = e1000e_set_16bit,
3167     [TDFH]     = e1000e_set_13bit,
3168     [TDFT]     = e1000e_set_13bit,
3169     [TDFHS]    = e1000e_set_13bit,
3170     [TDFTS]    = e1000e_set_13bit,
3171     [TDFPC]    = e1000e_set_13bit,
3172     [RDFH]     = e1000e_set_13bit,
3173     [RDFHS]    = e1000e_set_13bit,
3174     [RDFT]     = e1000e_set_13bit,
3175     [RDFTS]    = e1000e_set_13bit,
3176     [RDFPC]    = e1000e_set_13bit,
3177     [PBS]      = e1000e_set_6bit,
3178     [GCR]      = e1000e_set_gcr,
3179     [PSRCTL]   = e1000e_set_psrctl,
3180     [RXCSUM]   = e1000e_set_rxcsum,
3181     [RAID]     = e1000e_set_16bit,
3182     [RSRPD]    = e1000e_set_12bit,
3183     [TIDV]     = e1000e_set_tidv,
3184     [TDLEN1]   = e1000e_set_dlen,
3185     [TDLEN]    = e1000e_set_dlen,
3186     [RDLEN0]   = e1000e_set_dlen,
3187     [RDLEN1]   = e1000e_set_dlen,
3188     [TDBAL]    = e1000e_set_dbal,
3189     [TDBAL1]   = e1000e_set_dbal,
3190     [RDBAL0]   = e1000e_set_dbal,
3191     [RDBAL1]   = e1000e_set_dbal,
3192     [RDH1]     = e1000e_set_16bit,
3193     [RDT1]     = e1000e_set_rdt,
3194     [STATUS]   = e1000e_set_status,
3195     [PBACLR]   = e1000e_set_pbaclr,
3196     [CTRL_EXT] = e1000e_set_ctrlext,
3197     [FCAH]     = e1000e_set_16bit,
3198     [FCT]      = e1000e_set_16bit,
3199     [FCTTV]    = e1000e_set_16bit,
3200     [FCRTV]    = e1000e_set_16bit,
3201     [FCRTH]    = e1000e_set_fcrth,
3202     [FCRTL]    = e1000e_set_fcrtl,
3203     [VET]      = e1000e_set_vet,
3204     [RXDCTL]   = e1000e_set_rxdctl,
3205     [FLASHT]   = e1000e_set_16bit,
3206     [EEWR]     = e1000e_set_eewr,
3207     [CTRL_DUP] = e1000e_set_ctrl,
3208     [RFCTL]    = e1000e_set_rfctl,
3209     [RA + 1]   = e1000e_mac_setmacaddr,
3210     [TIMINCA]  = e1000e_set_timinca,
3211     [TIMADJH]  = e1000e_set_timadjh,
3212 
3213     [IP6AT ... IP6AT + 3]    = e1000e_mac_writereg,
3214     [IP4AT ... IP4AT + 6]    = e1000e_mac_writereg,
3215     [RA + 2 ... RA + 31]     = e1000e_mac_writereg,
3216     [WUPM ... WUPM + 31]     = e1000e_mac_writereg,
3217     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_writereg,
3218     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]    = e1000e_mac_writereg,
3219     [FFMT ... FFMT + 254]    = e1000e_set_4bit,
3220     [FFVT ... FFVT + 254]    = e1000e_mac_writereg,
3221     [PBM ... PBM + 10239]    = e1000e_mac_writereg,
3222     [MDEF ... MDEF + 7]      = e1000e_mac_writereg,
3223     [FFLT ... FFLT + 10]     = e1000e_set_11bit,
3224     [FTFT ... FTFT + 254]    = e1000e_mac_writereg,
3225     [RETA ... RETA + 31]     = e1000e_mac_writereg,
3226     [RSSRK ... RSSRK + 31]   = e1000e_mac_writereg,
3227     [MAVTV0 ... MAVTV3]      = e1000e_mac_writereg,
3228     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3229 };
3230 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3231 
3232 enum { MAC_ACCESS_PARTIAL = 1 };
3233 
3234 /*
3235  * The array below combines alias offsets of the index values for the
3236  * MAC registers that have aliases, with the indication of not fully
3237  * implemented registers (lowest bit). This combination is possible
3238  * because all of the offsets are even.
3239  */
3240 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3241     /* Alias index offsets */
3242     [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3243     [RDH0_A]  = 0x09bc, [RDT0_A]  = 0x09bc, [RDTR_A] = 0x09c6,
3244     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3245     [TDH_A]   = 0x0cf8, [TDT_A]   = 0x0cf8, [TIDV_A] = 0x0cf8,
3246     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3247     [RA_A ... RA_A + 31]      = 0x14f0,
3248     [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
3249     [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3250     [TDBAL_A ... TDLEN_A]   = 0x0cf8,
3251     /* Access options */
3252     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3253     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3254     [RDFPC] = MAC_ACCESS_PARTIAL,
3255     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3256     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3257     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3258     [PBM]   = MAC_ACCESS_PARTIAL,    [FLA]   = MAC_ACCESS_PARTIAL,
3259     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3260     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3261     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3262     [FCRTH] = MAC_ACCESS_PARTIAL,    [TXDCTL] = MAC_ACCESS_PARTIAL,
3263     [TXDCTL1] = MAC_ACCESS_PARTIAL,
3264     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3265 };
3266 
3267 void
e1000e_core_write(E1000ECore * core,hwaddr addr,uint64_t val,unsigned size)3268 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3269 {
3270     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3271 
3272     if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3273         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3274             trace_e1000e_wrn_regs_write_trivial(index << 2);
3275         }
3276         trace_e1000e_core_write(index << 2, size, val);
3277         e1000e_macreg_writeops[index](core, index, val);
3278     } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3279         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3280     } else {
3281         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3282     }
3283 }
3284 
3285 uint64_t
e1000e_core_read(E1000ECore * core,hwaddr addr,unsigned size)3286 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3287 {
3288     uint64_t val;
3289     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3290 
3291     if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3292         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3293             trace_e1000e_wrn_regs_read_trivial(index << 2);
3294         }
3295         val = e1000e_macreg_readops[index](core, index);
3296         trace_e1000e_core_read(index << 2, size, val);
3297         return val;
3298     } else {
3299         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3300     }
3301     return 0;
3302 }
3303 
3304 static void
e1000e_autoneg_resume(E1000ECore * core)3305 e1000e_autoneg_resume(E1000ECore *core)
3306 {
3307     if (e1000e_have_autoneg(core) &&
3308         !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
3309         qemu_get_queue(core->owner_nic)->link_down = false;
3310         timer_mod(core->autoneg_timer,
3311                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3312     }
3313 }
3314 
3315 void
e1000e_core_pci_realize(E1000ECore * core,const uint16_t * eeprom_templ,uint32_t eeprom_size,const uint8_t * macaddr)3316 e1000e_core_pci_realize(E1000ECore     *core,
3317                         const uint16_t *eeprom_templ,
3318                         uint32_t        eeprom_size,
3319                         const uint8_t  *macaddr)
3320 {
3321     int i;
3322 
3323     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3324                                        e1000e_autoneg_timer, core);
3325     e1000e_intrmgr_pci_realize(core);
3326 
3327     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3328         net_tx_pkt_init(&core->tx[i].tx_pkt, E1000E_MAX_TX_FRAGS);
3329     }
3330 
3331     net_rx_pkt_init(&core->rx_pkt);
3332 
3333     e1000x_core_prepare_eeprom(core->eeprom,
3334                                eeprom_templ,
3335                                eeprom_size,
3336                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3337                                macaddr);
3338     e1000e_update_rx_offloads(core);
3339 }
3340 
3341 void
e1000e_core_pci_uninit(E1000ECore * core)3342 e1000e_core_pci_uninit(E1000ECore *core)
3343 {
3344     int i;
3345 
3346     timer_free(core->autoneg_timer);
3347 
3348     e1000e_intrmgr_pci_unint(core);
3349 
3350     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3351         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3352     }
3353 
3354     net_rx_pkt_uninit(core->rx_pkt);
3355 }
3356 
3357 static const uint16_t
3358 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3359     [0] = {
3360         [MII_BMCR] = MII_BMCR_SPEED1000 |
3361                      MII_BMCR_FD        |
3362                      MII_BMCR_AUTOEN,
3363 
3364         [MII_BMSR] = MII_BMSR_EXTCAP    |
3365                      MII_BMSR_LINK_ST   |
3366                      MII_BMSR_AUTONEG   |
3367                      MII_BMSR_MFPS      |
3368                      MII_BMSR_EXTSTAT   |
3369                      MII_BMSR_10T_HD    |
3370                      MII_BMSR_10T_FD    |
3371                      MII_BMSR_100TX_HD  |
3372                      MII_BMSR_100TX_FD,
3373 
3374         [MII_PHYID1]            = 0x141,
3375         [MII_PHYID2]            = E1000_PHY_ID2_82574x,
3376         [MII_ANAR]              = MII_ANAR_CSMACD | MII_ANAR_10 |
3377                                   MII_ANAR_10FD | MII_ANAR_TX |
3378                                   MII_ANAR_TXFD | MII_ANAR_PAUSE |
3379                                   MII_ANAR_PAUSE_ASYM,
3380         [MII_ANLPAR]            = MII_ANLPAR_10 | MII_ANLPAR_10FD |
3381                                   MII_ANLPAR_TX | MII_ANLPAR_TXFD |
3382                                   MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
3383         [MII_ANER]              = MII_ANER_NP | MII_ANER_NWAY,
3384         [MII_ANNP]              = 1 | MII_ANNP_MP,
3385         [MII_CTRL1000]          = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
3386                                   MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
3387         [MII_STAT1000]          = MII_STAT1000_HALF | MII_STAT1000_FULL |
3388                                   MII_STAT1000_ROK | MII_STAT1000_LOK,
3389         [MII_EXTSTAT]           = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
3390 
3391         [PHY_COPPER_CTRL1]      = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3392                                   BIT(12) | BIT(13),
3393         [PHY_COPPER_STAT1]      = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3394     },
3395     [2] = {
3396         [PHY_MAC_CTRL1]         = BIT(3) | BIT(7),
3397         [PHY_MAC_CTRL2]         = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3398     },
3399     [3] = {
3400         [PHY_LED_TIMER_CTRL]    = BIT(0) | BIT(2) | BIT(14)
3401     }
3402 };
3403 
3404 static const uint32_t e1000e_mac_reg_init[] = {
3405     [PBA]           =     0x00140014,
3406     [LEDCTL]        =  BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3407     [EXTCNF_CTRL]   = BIT(3),
3408     [EEMNGCTL]      = BIT(31),
3409     [FLASHT]        = 0x2,
3410     [FLSWCTL]       = BIT(30) | BIT(31),
3411     [FLOL]          = BIT(0),
3412     [RXDCTL]        = BIT(16),
3413     [RXDCTL1]       = BIT(16),
3414     [TIPG]          = 0x8 | (0x8 << 10) | (0x6 << 20),
3415     [RXCFGL]        = 0x88F7,
3416     [RXUDP]         = 0x319,
3417     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3418                       E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3419                       E1000_CTRL_ADVD3WUC,
3420     [STATUS]        =  E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3421     [PSRCTL]        = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3422                       (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3423                       (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3424     [TARC0]         = 0x3 | E1000_TARC_ENABLE,
3425     [TARC1]         = 0x3 | E1000_TARC_ENABLE,
3426     [EECD]          = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3427     [EERD]          = E1000_EERW_DONE,
3428     [EEWR]          = E1000_EERW_DONE,
3429     [GCR]           = E1000_L0S_ADJUST |
3430                       E1000_L1_ENTRY_LATENCY_MSB |
3431                       E1000_L1_ENTRY_LATENCY_LSB,
3432     [TDFH]          = 0x600,
3433     [TDFT]          = 0x600,
3434     [TDFHS]         = 0x600,
3435     [TDFTS]         = 0x600,
3436     [POEMB]         = 0x30D,
3437     [PBS]           = 0x028,
3438     [MANC]          = E1000_MANC_DIS_IP_CHK_ARP,
3439     [FACTPS]        = E1000_FACTPS_LAN0_ON | 0x20000000,
3440     [SWSM]          = 1,
3441     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3442     [ITR]           = E1000E_MIN_XITR,
3443     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3444 };
3445 
e1000e_reset(E1000ECore * core,bool sw)3446 static void e1000e_reset(E1000ECore *core, bool sw)
3447 {
3448     int i;
3449 
3450     timer_del(core->autoneg_timer);
3451 
3452     e1000e_intrmgr_reset(core);
3453 
3454     memset(core->phy, 0, sizeof core->phy);
3455     memcpy(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3456 
3457     for (i = 0; i < E1000E_MAC_SIZE; i++) {
3458         if (sw && (i == PBA || i == PBS || i == FLA)) {
3459             continue;
3460         }
3461 
3462         core->mac[i] = i < ARRAY_SIZE(e1000e_mac_reg_init) ?
3463                        e1000e_mac_reg_init[i] : 0;
3464     }
3465 
3466     core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3467 
3468     if (qemu_get_queue(core->owner_nic)->link_down) {
3469         e1000e_link_down(core);
3470     }
3471 
3472     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3473 
3474     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3475         memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3476         core->tx[i].skip_cp = false;
3477     }
3478 }
3479 
3480 void
e1000e_core_reset(E1000ECore * core)3481 e1000e_core_reset(E1000ECore *core)
3482 {
3483     e1000e_reset(core, false);
3484 }
3485 
e1000e_core_pre_save(E1000ECore * core)3486 void e1000e_core_pre_save(E1000ECore *core)
3487 {
3488     int i;
3489     NetClientState *nc = qemu_get_queue(core->owner_nic);
3490 
3491     /*
3492      * If link is down and auto-negotiation is supported and ongoing,
3493      * complete auto-negotiation immediately. This allows us to look
3494      * at MII_BMSR_AN_COMP to infer link status on load.
3495      */
3496     if (nc->link_down && e1000e_have_autoneg(core)) {
3497         core->phy[0][MII_BMSR] |= MII_BMSR_AN_COMP;
3498         e1000e_update_flowctl_status(core);
3499     }
3500 
3501     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3502         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3503             core->tx[i].skip_cp = true;
3504         }
3505     }
3506 }
3507 
3508 int
e1000e_core_post_load(E1000ECore * core)3509 e1000e_core_post_load(E1000ECore *core)
3510 {
3511     NetClientState *nc = qemu_get_queue(core->owner_nic);
3512 
3513     /*
3514      * nc.link_down can't be migrated, so infer link_down according
3515      * to link status bit in core.mac[STATUS].
3516      */
3517     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3518 
3519     /*
3520      * we need to restart intrmgr timers, as an older version of
3521      * QEMU can have stopped them before migration
3522      */
3523     e1000e_intrmgr_resume(core);
3524     e1000e_autoneg_resume(core);
3525 
3526     return 0;
3527 }
3528