xref: /openbmc/linux/drivers/net/ethernet/intel/igbvf/vf.c (revision 02c83791)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
3 
4 #include <linux/etherdevice.h>
5 
6 #include "vf.h"
7 
8 static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
9 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
10 				     u16 *duplex);
11 static s32 e1000_init_hw_vf(struct e1000_hw *hw);
12 static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
13 
14 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
15 					 u32, u32, u32);
16 static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
17 static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
18 static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr);
19 static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
20 
21 /**
22  *  e1000_init_mac_params_vf - Inits MAC params
23  *  @hw: pointer to the HW structure
24  **/
e1000_init_mac_params_vf(struct e1000_hw * hw)25 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
26 {
27 	struct e1000_mac_info *mac = &hw->mac;
28 
29 	/* VF's have no MTA Registers - PF feature only */
30 	mac->mta_reg_count = 128;
31 	/* VF's have no access to RAR entries  */
32 	mac->rar_entry_count = 1;
33 
34 	/* Function pointers */
35 	/* reset */
36 	mac->ops.reset_hw = e1000_reset_hw_vf;
37 	/* hw initialization */
38 	mac->ops.init_hw = e1000_init_hw_vf;
39 	/* check for link */
40 	mac->ops.check_for_link = e1000_check_for_link_vf;
41 	/* link info */
42 	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
43 	/* multicast address update */
44 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
45 	/* set mac address */
46 	mac->ops.rar_set = e1000_rar_set_vf;
47 	/* read mac address */
48 	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
49 	/* set mac filter */
50 	mac->ops.set_uc_addr = e1000_set_uc_addr_vf;
51 	/* set vlan filter table array */
52 	mac->ops.set_vfta = e1000_set_vfta_vf;
53 
54 	return E1000_SUCCESS;
55 }
56 
57 /**
58  *  e1000_init_function_pointers_vf - Inits function pointers
59  *  @hw: pointer to the HW structure
60  **/
e1000_init_function_pointers_vf(struct e1000_hw * hw)61 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
62 {
63 	hw->mac.ops.init_params = e1000_init_mac_params_vf;
64 	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
65 }
66 
67 /**
68  *  e1000_get_link_up_info_vf - Gets link info.
69  *  @hw: pointer to the HW structure
70  *  @speed: pointer to 16 bit value to store link speed.
71  *  @duplex: pointer to 16 bit value to store duplex.
72  *
73  *  Since we cannot read the PHY and get accurate link info, we must rely upon
74  *  the status register's data which is often stale and inaccurate.
75  **/
e1000_get_link_up_info_vf(struct e1000_hw * hw,u16 * speed,u16 * duplex)76 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
77 				     u16 *duplex)
78 {
79 	s32 status;
80 
81 	status = er32(STATUS);
82 	if (status & E1000_STATUS_SPEED_1000)
83 		*speed = SPEED_1000;
84 	else if (status & E1000_STATUS_SPEED_100)
85 		*speed = SPEED_100;
86 	else
87 		*speed = SPEED_10;
88 
89 	if (status & E1000_STATUS_FD)
90 		*duplex = FULL_DUPLEX;
91 	else
92 		*duplex = HALF_DUPLEX;
93 
94 	return E1000_SUCCESS;
95 }
96 
97 /**
98  *  e1000_reset_hw_vf - Resets the HW
99  *  @hw: pointer to the HW structure
100  *
101  *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
102  *  This is all the reset we can perform on a VF.
103  **/
e1000_reset_hw_vf(struct e1000_hw * hw)104 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
105 {
106 	struct e1000_mbx_info *mbx = &hw->mbx;
107 	u32 timeout = E1000_VF_INIT_TIMEOUT;
108 	u32 ret_val = -E1000_ERR_MAC_INIT;
109 	u32 msgbuf[3];
110 	u8 *addr = (u8 *)(&msgbuf[1]);
111 	u32 ctrl;
112 
113 	/* assert VF queue/interrupt reset */
114 	ctrl = er32(CTRL);
115 	ew32(CTRL, ctrl | E1000_CTRL_RST);
116 
117 	/* we cannot initialize while the RSTI / RSTD bits are asserted */
118 	while (!mbx->ops.check_for_rst(hw) && timeout) {
119 		timeout--;
120 		udelay(5);
121 	}
122 
123 	if (timeout) {
124 		/* mailbox timeout can now become active */
125 		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
126 
127 		/* notify PF of VF reset completion */
128 		msgbuf[0] = E1000_VF_RESET;
129 		mbx->ops.write_posted(hw, msgbuf, 1);
130 
131 		mdelay(10);
132 
133 		/* set our "perm_addr" based on info provided by PF */
134 		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
135 		if (!ret_val) {
136 			switch (msgbuf[0]) {
137 			case E1000_VF_RESET | E1000_VT_MSGTYPE_ACK:
138 				memcpy(hw->mac.perm_addr, addr, ETH_ALEN);
139 				break;
140 			case E1000_VF_RESET | E1000_VT_MSGTYPE_NACK:
141 				eth_zero_addr(hw->mac.perm_addr);
142 				break;
143 			default:
144 				ret_val = -E1000_ERR_MAC_INIT;
145 			}
146 		}
147 	}
148 
149 	return ret_val;
150 }
151 
152 /**
153  *  e1000_init_hw_vf - Inits the HW
154  *  @hw: pointer to the HW structure
155  *
156  *  Not much to do here except clear the PF Reset indication if there is one.
157  **/
e1000_init_hw_vf(struct e1000_hw * hw)158 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
159 {
160 	/* attempt to set and restore our mac address */
161 	e1000_rar_set_vf(hw, hw->mac.addr, 0);
162 
163 	return E1000_SUCCESS;
164 }
165 
166 /**
167  *  e1000_hash_mc_addr_vf - Generate a multicast hash value
168  *  @hw: pointer to the HW structure
169  *  @mc_addr: pointer to a multicast address
170  *
171  *  Generates a multicast address hash value which is used to determine
172  *  the multicast filter table array address and new table value.  See
173  *  e1000_mta_set_generic()
174  **/
e1000_hash_mc_addr_vf(struct e1000_hw * hw,u8 * mc_addr)175 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
176 {
177 	u32 hash_value, hash_mask;
178 	u8 bit_shift = 0;
179 
180 	/* Register count multiplied by bits per register */
181 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
182 
183 	/* The bit_shift is the number of left-shifts
184 	 * where 0xFF would still fall within the hash mask.
185 	 */
186 	while (hash_mask >> bit_shift != 0xFF)
187 		bit_shift++;
188 
189 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
190 				  (((u16)mc_addr[5]) << bit_shift)));
191 
192 	return hash_value;
193 }
194 
195 /**
196  *  e1000_update_mc_addr_list_vf - Update Multicast addresses
197  *  @hw: pointer to the HW structure
198  *  @mc_addr_list: array of multicast addresses to program
199  *  @mc_addr_count: number of multicast addresses to program
200  *  @rar_used_count: the first RAR register free to program
201  *  @rar_count: total number of supported Receive Address Registers
202  *
203  *  Updates the Receive Address Registers and Multicast Table Array.
204  *  The caller must have a packed mc_addr_list of multicast addresses.
205  *  The parameter rar_count will usually be hw->mac.rar_entry_count
206  *  unless there are workarounds that change this.
207  **/
e1000_update_mc_addr_list_vf(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count,u32 rar_used_count,u32 rar_count)208 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
209 					 u8 *mc_addr_list, u32 mc_addr_count,
210 					 u32 rar_used_count, u32 rar_count)
211 {
212 	struct e1000_mbx_info *mbx = &hw->mbx;
213 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
214 	u16 *hash_list = (u16 *)&msgbuf[1];
215 	u32 hash_value;
216 	u32 cnt, i;
217 	s32 ret_val;
218 
219 	/* Each entry in the list uses 1 16 bit word.  We have 30
220 	 * 16 bit words available in our HW msg buffer (minus 1 for the
221 	 * msg type).  That's 30 hash values if we pack 'em right.  If
222 	 * there are more than 30 MC addresses to add then punt the
223 	 * extras for now and then add code to handle more than 30 later.
224 	 * It would be unusual for a server to request that many multi-cast
225 	 * addresses except for in large enterprise network environments.
226 	 */
227 
228 	cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
229 	msgbuf[0] = E1000_VF_SET_MULTICAST;
230 	msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
231 
232 	for (i = 0; i < cnt; i++) {
233 		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
234 		hash_list[i] = hash_value & 0x0FFFF;
235 		mc_addr_list += ETH_ALEN;
236 	}
237 
238 	ret_val = mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
239 	if (!ret_val)
240 		mbx->ops.read_posted(hw, msgbuf, 1);
241 }
242 
243 /**
244  *  e1000_set_vfta_vf - Set/Unset vlan filter table address
245  *  @hw: pointer to the HW structure
246  *  @vid: determines the vfta register and bit to set/unset
247  *  @set: if true then set bit, else clear bit
248  **/
e1000_set_vfta_vf(struct e1000_hw * hw,u16 vid,bool set)249 static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
250 {
251 	struct e1000_mbx_info *mbx = &hw->mbx;
252 	u32 msgbuf[2];
253 	s32 err;
254 
255 	msgbuf[0] = E1000_VF_SET_VLAN;
256 	msgbuf[1] = vid;
257 	/* Setting the 8 bit field MSG INFO to true indicates "add" */
258 	if (set)
259 		msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT);
260 
261 	mbx->ops.write_posted(hw, msgbuf, 2);
262 
263 	err = mbx->ops.read_posted(hw, msgbuf, 2);
264 
265 	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
266 
267 	/* if nacked the vlan was rejected */
268 	if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
269 		err = -E1000_ERR_MAC_INIT;
270 
271 	return err;
272 }
273 
274 /**
275  *  e1000_rlpml_set_vf - Set the maximum receive packet length
276  *  @hw: pointer to the HW structure
277  *  @max_size: value to assign to max frame size
278  **/
e1000_rlpml_set_vf(struct e1000_hw * hw,u16 max_size)279 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
280 {
281 	struct e1000_mbx_info *mbx = &hw->mbx;
282 	u32 msgbuf[2];
283 	s32 ret_val;
284 
285 	msgbuf[0] = E1000_VF_SET_LPE;
286 	msgbuf[1] = max_size;
287 
288 	ret_val = mbx->ops.write_posted(hw, msgbuf, 2);
289 	if (!ret_val)
290 		mbx->ops.read_posted(hw, msgbuf, 1);
291 }
292 
293 /**
294  *  e1000_rar_set_vf - set device MAC address
295  *  @hw: pointer to the HW structure
296  *  @addr: pointer to the receive address
297  *  @index: receive address array register
298  **/
e1000_rar_set_vf(struct e1000_hw * hw,u8 * addr,u32 index)299 static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index)
300 {
301 	struct e1000_mbx_info *mbx = &hw->mbx;
302 	u32 msgbuf[3];
303 	u8 *msg_addr = (u8 *)(&msgbuf[1]);
304 	s32 ret_val;
305 
306 	memset(msgbuf, 0, 12);
307 	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
308 	memcpy(msg_addr, addr, ETH_ALEN);
309 	ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
310 
311 	if (!ret_val)
312 		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
313 
314 	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
315 
316 	/* if nacked the address was rejected, use "perm_addr" */
317 	if (!ret_val &&
318 	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
319 		e1000_read_mac_addr_vf(hw);
320 }
321 
322 /**
323  *  e1000_read_mac_addr_vf - Read device MAC address
324  *  @hw: pointer to the HW structure
325  **/
e1000_read_mac_addr_vf(struct e1000_hw * hw)326 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
327 {
328 	memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN);
329 
330 	return E1000_SUCCESS;
331 }
332 
333 /**
334  *  e1000_set_uc_addr_vf - Set or clear unicast filters
335  *  @hw: pointer to the HW structure
336  *  @sub_cmd: add or clear filters
337  *  @addr: pointer to the filter MAC address
338  **/
e1000_set_uc_addr_vf(struct e1000_hw * hw,u32 sub_cmd,u8 * addr)339 static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr)
340 {
341 	struct e1000_mbx_info *mbx = &hw->mbx;
342 	u32 msgbuf[3], msgbuf_chk;
343 	u8 *msg_addr = (u8 *)(&msgbuf[1]);
344 	s32 ret_val;
345 
346 	memset(msgbuf, 0, sizeof(msgbuf));
347 	msgbuf[0] |= sub_cmd;
348 	msgbuf[0] |= E1000_VF_SET_MAC_ADDR;
349 	msgbuf_chk = msgbuf[0];
350 
351 	if (addr)
352 		memcpy(msg_addr, addr, ETH_ALEN);
353 
354 	ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
355 
356 	if (!ret_val)
357 		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
358 
359 	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
360 
361 	if (!ret_val) {
362 		msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
363 
364 		if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK))
365 			return -ENOSPC;
366 	}
367 
368 	return ret_val;
369 }
370 
371 /**
372  *  e1000_check_for_link_vf - Check for link for a virtual interface
373  *  @hw: pointer to the HW structure
374  *
375  *  Checks to see if the underlying PF is still talking to the VF and
376  *  if it is then it reports the link state to the hardware, otherwise
377  *  it reports link down and returns an error.
378  **/
e1000_check_for_link_vf(struct e1000_hw * hw)379 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
380 {
381 	struct e1000_mbx_info *mbx = &hw->mbx;
382 	struct e1000_mac_info *mac = &hw->mac;
383 	s32 ret_val = E1000_SUCCESS;
384 	u32 in_msg = 0;
385 
386 	/* We only want to run this if there has been a rst asserted.
387 	 * in this case that could mean a link change, device reset,
388 	 * or a virtual function reset
389 	 */
390 
391 	/* If we were hit with a reset or timeout drop the link */
392 	if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
393 		mac->get_link_status = true;
394 
395 	if (!mac->get_link_status)
396 		goto out;
397 
398 	/* if link status is down no point in checking to see if PF is up */
399 	if (!(er32(STATUS) & E1000_STATUS_LU))
400 		goto out;
401 
402 	/* if the read failed it could just be a mailbox collision, best wait
403 	 * until we are called again and don't report an error
404 	 */
405 	if (mbx->ops.read(hw, &in_msg, 1))
406 		goto out;
407 
408 	/* if incoming message isn't clear to send we are waiting on response */
409 	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
410 		/* msg is not CTS and is NACK we must have lost CTS status */
411 		if (in_msg & E1000_VT_MSGTYPE_NACK)
412 			ret_val = -E1000_ERR_MAC_INIT;
413 		goto out;
414 	}
415 
416 	/* the PF is talking, if we timed out in the past we reinit */
417 	if (!mbx->timeout) {
418 		ret_val = -E1000_ERR_MAC_INIT;
419 		goto out;
420 	}
421 
422 	/* if we passed all the tests above then the link is up and we no
423 	 * longer need to check for link
424 	 */
425 	mac->get_link_status = false;
426 
427 out:
428 	return ret_val;
429 }
430 
431