1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
5 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
6 */
7
8 #include "e1000.h"
9
10 /* A table for the GG82563 cable length where the range is defined
11 * with a lower bound at "index" and the upper bound at
12 * "index + 5".
13 */
14 static const u16 e1000_gg82563_cable_length_table[] = {
15 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
16 };
17
18 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
19 ARRAY_SIZE(e1000_gg82563_cable_length_table)
20
21 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
22 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
23 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
24 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
25 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
26 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
27 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
28 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
29 u16 *data);
30 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
31 u16 data);
32 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
33
34 /**
35 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
36 * @hw: pointer to the HW structure
37 **/
e1000_init_phy_params_80003es2lan(struct e1000_hw * hw)38 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
39 {
40 struct e1000_phy_info *phy = &hw->phy;
41 s32 ret_val;
42
43 if (hw->phy.media_type != e1000_media_type_copper) {
44 phy->type = e1000_phy_none;
45 return 0;
46 } else {
47 phy->ops.power_up = e1000_power_up_phy_copper;
48 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
49 }
50
51 phy->addr = 1;
52 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
53 phy->reset_delay_us = 100;
54 phy->type = e1000_phy_gg82563;
55
56 /* This can only be done after all function pointers are setup. */
57 ret_val = e1000e_get_phy_id(hw);
58
59 /* Verify phy id */
60 if (phy->id != GG82563_E_PHY_ID)
61 return -E1000_ERR_PHY;
62
63 return ret_val;
64 }
65
66 /**
67 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
68 * @hw: pointer to the HW structure
69 **/
e1000_init_nvm_params_80003es2lan(struct e1000_hw * hw)70 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
71 {
72 struct e1000_nvm_info *nvm = &hw->nvm;
73 u32 eecd = er32(EECD);
74 u16 size;
75
76 nvm->opcode_bits = 8;
77 nvm->delay_usec = 1;
78 switch (nvm->override) {
79 case e1000_nvm_override_spi_large:
80 nvm->page_size = 32;
81 nvm->address_bits = 16;
82 break;
83 case e1000_nvm_override_spi_small:
84 nvm->page_size = 8;
85 nvm->address_bits = 8;
86 break;
87 default:
88 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
89 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
90 break;
91 }
92
93 nvm->type = e1000_nvm_eeprom_spi;
94
95 size = (u16)FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd);
96
97 /* Added to a constant, "size" becomes the left-shift value
98 * for setting word_size.
99 */
100 size += NVM_WORD_SIZE_BASE_SHIFT;
101
102 /* EEPROM access above 16k is unsupported */
103 if (size > 14)
104 size = 14;
105 nvm->word_size = BIT(size);
106
107 return 0;
108 }
109
110 /**
111 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
112 * @hw: pointer to the HW structure
113 **/
e1000_init_mac_params_80003es2lan(struct e1000_hw * hw)114 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
115 {
116 struct e1000_mac_info *mac = &hw->mac;
117
118 /* Set media type and media-dependent function pointers */
119 switch (hw->adapter->pdev->device) {
120 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
121 hw->phy.media_type = e1000_media_type_internal_serdes;
122 mac->ops.check_for_link = e1000e_check_for_serdes_link;
123 mac->ops.setup_physical_interface =
124 e1000e_setup_fiber_serdes_link;
125 break;
126 default:
127 hw->phy.media_type = e1000_media_type_copper;
128 mac->ops.check_for_link = e1000e_check_for_copper_link;
129 mac->ops.setup_physical_interface =
130 e1000_setup_copper_link_80003es2lan;
131 break;
132 }
133
134 /* Set mta register count */
135 mac->mta_reg_count = 128;
136 /* Set rar entry count */
137 mac->rar_entry_count = E1000_RAR_ENTRIES;
138 /* FWSM register */
139 mac->has_fwsm = true;
140 /* ARC supported; valid only if manageability features are enabled. */
141 mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
142 /* Adaptive IFS not supported */
143 mac->adaptive_ifs = false;
144
145 /* set lan id for port to determine which phy lock to use */
146 hw->mac.ops.set_lan_id(hw);
147
148 return 0;
149 }
150
e1000_get_variants_80003es2lan(struct e1000_adapter * adapter)151 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
152 {
153 struct e1000_hw *hw = &adapter->hw;
154 s32 rc;
155
156 rc = e1000_init_mac_params_80003es2lan(hw);
157 if (rc)
158 return rc;
159
160 rc = e1000_init_nvm_params_80003es2lan(hw);
161 if (rc)
162 return rc;
163
164 rc = e1000_init_phy_params_80003es2lan(hw);
165 if (rc)
166 return rc;
167
168 return 0;
169 }
170
171 /**
172 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
173 * @hw: pointer to the HW structure
174 *
175 * A wrapper to acquire access rights to the correct PHY.
176 **/
e1000_acquire_phy_80003es2lan(struct e1000_hw * hw)177 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
178 {
179 u16 mask;
180
181 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
182 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
183 }
184
185 /**
186 * e1000_release_phy_80003es2lan - Release rights to access PHY
187 * @hw: pointer to the HW structure
188 *
189 * A wrapper to release access rights to the correct PHY.
190 **/
e1000_release_phy_80003es2lan(struct e1000_hw * hw)191 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
192 {
193 u16 mask;
194
195 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
196 e1000_release_swfw_sync_80003es2lan(hw, mask);
197 }
198
199 /**
200 * e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
201 * @hw: pointer to the HW structure
202 *
203 * Acquire the semaphore to access the Kumeran interface.
204 *
205 **/
e1000_acquire_mac_csr_80003es2lan(struct e1000_hw * hw)206 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
207 {
208 u16 mask;
209
210 mask = E1000_SWFW_CSR_SM;
211
212 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
213 }
214
215 /**
216 * e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
217 * @hw: pointer to the HW structure
218 *
219 * Release the semaphore used to access the Kumeran interface
220 **/
e1000_release_mac_csr_80003es2lan(struct e1000_hw * hw)221 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
222 {
223 u16 mask;
224
225 mask = E1000_SWFW_CSR_SM;
226
227 e1000_release_swfw_sync_80003es2lan(hw, mask);
228 }
229
230 /**
231 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
232 * @hw: pointer to the HW structure
233 *
234 * Acquire the semaphore to access the EEPROM.
235 **/
e1000_acquire_nvm_80003es2lan(struct e1000_hw * hw)236 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
237 {
238 s32 ret_val;
239
240 ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
241 if (ret_val)
242 return ret_val;
243
244 ret_val = e1000e_acquire_nvm(hw);
245
246 if (ret_val)
247 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
248
249 return ret_val;
250 }
251
252 /**
253 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
254 * @hw: pointer to the HW structure
255 *
256 * Release the semaphore used to access the EEPROM.
257 **/
e1000_release_nvm_80003es2lan(struct e1000_hw * hw)258 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
259 {
260 e1000e_release_nvm(hw);
261 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
262 }
263
264 /**
265 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
266 * @hw: pointer to the HW structure
267 * @mask: specifies which semaphore to acquire
268 *
269 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
270 * will also specify which port we're acquiring the lock for.
271 **/
e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw * hw,u16 mask)272 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
273 {
274 u32 swfw_sync;
275 u32 swmask = mask;
276 u32 fwmask = mask << 16;
277 s32 i = 0;
278 s32 timeout = 50;
279
280 while (i < timeout) {
281 if (e1000e_get_hw_semaphore(hw))
282 return -E1000_ERR_SWFW_SYNC;
283
284 swfw_sync = er32(SW_FW_SYNC);
285 if (!(swfw_sync & (fwmask | swmask)))
286 break;
287
288 /* Firmware currently using resource (fwmask)
289 * or other software thread using resource (swmask)
290 */
291 e1000e_put_hw_semaphore(hw);
292 mdelay(5);
293 i++;
294 }
295
296 if (i == timeout) {
297 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
298 return -E1000_ERR_SWFW_SYNC;
299 }
300
301 swfw_sync |= swmask;
302 ew32(SW_FW_SYNC, swfw_sync);
303
304 e1000e_put_hw_semaphore(hw);
305
306 return 0;
307 }
308
309 /**
310 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
311 * @hw: pointer to the HW structure
312 * @mask: specifies which semaphore to acquire
313 *
314 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
315 * will also specify which port we're releasing the lock for.
316 **/
e1000_release_swfw_sync_80003es2lan(struct e1000_hw * hw,u16 mask)317 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
318 {
319 u32 swfw_sync;
320
321 while (e1000e_get_hw_semaphore(hw) != 0)
322 ; /* Empty */
323
324 swfw_sync = er32(SW_FW_SYNC);
325 swfw_sync &= ~mask;
326 ew32(SW_FW_SYNC, swfw_sync);
327
328 e1000e_put_hw_semaphore(hw);
329 }
330
331 /**
332 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
333 * @hw: pointer to the HW structure
334 * @offset: offset of the register to read
335 * @data: pointer to the data returned from the operation
336 *
337 * Read the GG82563 PHY register.
338 **/
e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw * hw,u32 offset,u16 * data)339 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
340 u32 offset, u16 *data)
341 {
342 s32 ret_val;
343 u32 page_select;
344 u16 temp;
345
346 ret_val = e1000_acquire_phy_80003es2lan(hw);
347 if (ret_val)
348 return ret_val;
349
350 /* Select Configuration Page */
351 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
352 page_select = GG82563_PHY_PAGE_SELECT;
353 } else {
354 /* Use Alternative Page Select register to access
355 * registers 30 and 31
356 */
357 page_select = GG82563_PHY_PAGE_SELECT_ALT;
358 }
359
360 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
361 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
362 if (ret_val) {
363 e1000_release_phy_80003es2lan(hw);
364 return ret_val;
365 }
366
367 if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
368 /* The "ready" bit in the MDIC register may be incorrectly set
369 * before the device has completed the "Page Select" MDI
370 * transaction. So we wait 200us after each MDI command...
371 */
372 usleep_range(200, 400);
373
374 /* ...and verify the command was successful. */
375 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
376
377 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
378 e1000_release_phy_80003es2lan(hw);
379 return -E1000_ERR_PHY;
380 }
381
382 usleep_range(200, 400);
383
384 ret_val = e1000e_read_phy_reg_mdic(hw,
385 MAX_PHY_REG_ADDRESS & offset,
386 data);
387
388 usleep_range(200, 400);
389 } else {
390 ret_val = e1000e_read_phy_reg_mdic(hw,
391 MAX_PHY_REG_ADDRESS & offset,
392 data);
393 }
394
395 e1000_release_phy_80003es2lan(hw);
396
397 return ret_val;
398 }
399
400 /**
401 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
402 * @hw: pointer to the HW structure
403 * @offset: offset of the register to read
404 * @data: value to write to the register
405 *
406 * Write to the GG82563 PHY register.
407 **/
e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw * hw,u32 offset,u16 data)408 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
409 u32 offset, u16 data)
410 {
411 s32 ret_val;
412 u32 page_select;
413 u16 temp;
414
415 ret_val = e1000_acquire_phy_80003es2lan(hw);
416 if (ret_val)
417 return ret_val;
418
419 /* Select Configuration Page */
420 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
421 page_select = GG82563_PHY_PAGE_SELECT;
422 } else {
423 /* Use Alternative Page Select register to access
424 * registers 30 and 31
425 */
426 page_select = GG82563_PHY_PAGE_SELECT_ALT;
427 }
428
429 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
430 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
431 if (ret_val) {
432 e1000_release_phy_80003es2lan(hw);
433 return ret_val;
434 }
435
436 if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
437 /* The "ready" bit in the MDIC register may be incorrectly set
438 * before the device has completed the "Page Select" MDI
439 * transaction. So we wait 200us after each MDI command...
440 */
441 usleep_range(200, 400);
442
443 /* ...and verify the command was successful. */
444 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
445
446 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
447 e1000_release_phy_80003es2lan(hw);
448 return -E1000_ERR_PHY;
449 }
450
451 usleep_range(200, 400);
452
453 ret_val = e1000e_write_phy_reg_mdic(hw,
454 MAX_PHY_REG_ADDRESS &
455 offset, data);
456
457 usleep_range(200, 400);
458 } else {
459 ret_val = e1000e_write_phy_reg_mdic(hw,
460 MAX_PHY_REG_ADDRESS &
461 offset, data);
462 }
463
464 e1000_release_phy_80003es2lan(hw);
465
466 return ret_val;
467 }
468
469 /**
470 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
471 * @hw: pointer to the HW structure
472 * @offset: offset of the register to read
473 * @words: number of words to write
474 * @data: buffer of data to write to the NVM
475 *
476 * Write "words" of data to the ESB2 NVM.
477 **/
e1000_write_nvm_80003es2lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)478 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
479 u16 words, u16 *data)
480 {
481 return e1000e_write_nvm_spi(hw, offset, words, data);
482 }
483
484 /**
485 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
486 * @hw: pointer to the HW structure
487 *
488 * Wait a specific amount of time for manageability processes to complete.
489 * This is a function pointer entry point called by the phy module.
490 **/
e1000_get_cfg_done_80003es2lan(struct e1000_hw * hw)491 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
492 {
493 s32 timeout = PHY_CFG_TIMEOUT;
494 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
495
496 if (hw->bus.func == 1)
497 mask = E1000_NVM_CFG_DONE_PORT_1;
498
499 while (timeout) {
500 if (er32(EEMNGCTL) & mask)
501 break;
502 usleep_range(1000, 2000);
503 timeout--;
504 }
505 if (!timeout) {
506 e_dbg("MNG configuration cycle has not completed.\n");
507 return -E1000_ERR_RESET;
508 }
509
510 return 0;
511 }
512
513 /**
514 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
515 * @hw: pointer to the HW structure
516 *
517 * Force the speed and duplex settings onto the PHY. This is a
518 * function pointer entry point called by the phy module.
519 **/
e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw * hw)520 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
521 {
522 s32 ret_val;
523 u16 phy_data;
524 bool link;
525
526 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
527 * forced whenever speed and duplex are forced.
528 */
529 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
530 if (ret_val)
531 return ret_val;
532
533 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
534 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
535 if (ret_val)
536 return ret_val;
537
538 e_dbg("GG82563 PSCR: %X\n", phy_data);
539
540 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
541 if (ret_val)
542 return ret_val;
543
544 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
545
546 /* Reset the phy to commit changes. */
547 phy_data |= BMCR_RESET;
548
549 ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
550 if (ret_val)
551 return ret_val;
552
553 udelay(1);
554
555 if (hw->phy.autoneg_wait_to_complete) {
556 e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
557
558 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
559 100000, &link);
560 if (ret_val)
561 return ret_val;
562
563 if (!link) {
564 /* We didn't get link.
565 * Reset the DSP and cross our fingers.
566 */
567 ret_val = e1000e_phy_reset_dsp(hw);
568 if (ret_val)
569 return ret_val;
570 }
571
572 /* Try once more */
573 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
574 100000, &link);
575 if (ret_val)
576 return ret_val;
577 }
578
579 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
580 if (ret_val)
581 return ret_val;
582
583 /* Resetting the phy means we need to verify the TX_CLK corresponds
584 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
585 */
586 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
587 if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
588 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
589 else
590 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
591
592 /* In addition, we must re-enable CRS on Tx for both half and full
593 * duplex.
594 */
595 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
596 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
597
598 return ret_val;
599 }
600
601 /**
602 * e1000_get_cable_length_80003es2lan - Set approximate cable length
603 * @hw: pointer to the HW structure
604 *
605 * Find the approximate cable length as measured by the GG82563 PHY.
606 * This is a function pointer entry point called by the phy module.
607 **/
e1000_get_cable_length_80003es2lan(struct e1000_hw * hw)608 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
609 {
610 struct e1000_phy_info *phy = &hw->phy;
611 s32 ret_val;
612 u16 phy_data, index;
613
614 ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
615 if (ret_val)
616 return ret_val;
617
618 index = phy_data & GG82563_DSPD_CABLE_LENGTH;
619
620 if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
621 return -E1000_ERR_PHY;
622
623 phy->min_cable_length = e1000_gg82563_cable_length_table[index];
624 phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
625
626 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
627
628 return 0;
629 }
630
631 /**
632 * e1000_get_link_up_info_80003es2lan - Report speed and duplex
633 * @hw: pointer to the HW structure
634 * @speed: pointer to speed buffer
635 * @duplex: pointer to duplex buffer
636 *
637 * Retrieve the current speed and duplex configuration.
638 **/
e1000_get_link_up_info_80003es2lan(struct e1000_hw * hw,u16 * speed,u16 * duplex)639 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
640 u16 *duplex)
641 {
642 s32 ret_val;
643
644 if (hw->phy.media_type == e1000_media_type_copper) {
645 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
646 hw->phy.ops.cfg_on_link_up(hw);
647 } else {
648 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
649 speed,
650 duplex);
651 }
652
653 return ret_val;
654 }
655
656 /**
657 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
658 * @hw: pointer to the HW structure
659 *
660 * Perform a global reset to the ESB2 controller.
661 **/
e1000_reset_hw_80003es2lan(struct e1000_hw * hw)662 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
663 {
664 u32 ctrl;
665 s32 ret_val;
666 u16 kum_reg_data;
667
668 /* Prevent the PCI-E bus from sticking if there is no TLP connection
669 * on the last TLP read/write transaction when MAC is reset.
670 */
671 ret_val = e1000e_disable_pcie_master(hw);
672 if (ret_val)
673 e_dbg("PCI-E Master disable polling has failed.\n");
674
675 e_dbg("Masking off all interrupts\n");
676 ew32(IMC, 0xffffffff);
677
678 ew32(RCTL, 0);
679 ew32(TCTL, E1000_TCTL_PSP);
680 e1e_flush();
681
682 usleep_range(10000, 11000);
683
684 ctrl = er32(CTRL);
685
686 ret_val = e1000_acquire_phy_80003es2lan(hw);
687 if (ret_val)
688 return ret_val;
689
690 e_dbg("Issuing a global reset to MAC\n");
691 ew32(CTRL, ctrl | E1000_CTRL_RST);
692 e1000_release_phy_80003es2lan(hw);
693
694 /* Disable IBIST slave mode (far-end loopback) */
695 ret_val =
696 e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
697 &kum_reg_data);
698 if (!ret_val) {
699 kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
700 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
701 E1000_KMRNCTRLSTA_INBAND_PARAM,
702 kum_reg_data);
703 if (ret_val)
704 e_dbg("Error disabling far-end loopback\n");
705 } else {
706 e_dbg("Error disabling far-end loopback\n");
707 }
708
709 ret_val = e1000e_get_auto_rd_done(hw);
710 if (ret_val)
711 /* We don't want to continue accessing MAC registers. */
712 return ret_val;
713
714 /* Clear any pending interrupt events. */
715 ew32(IMC, 0xffffffff);
716 er32(ICR);
717
718 return e1000_check_alt_mac_addr_generic(hw);
719 }
720
721 /**
722 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
723 * @hw: pointer to the HW structure
724 *
725 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
726 **/
e1000_init_hw_80003es2lan(struct e1000_hw * hw)727 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
728 {
729 struct e1000_mac_info *mac = &hw->mac;
730 u32 reg_data;
731 s32 ret_val;
732 u16 kum_reg_data;
733 u16 i;
734
735 e1000_initialize_hw_bits_80003es2lan(hw);
736
737 /* Initialize identification LED */
738 ret_val = mac->ops.id_led_init(hw);
739 /* An error is not fatal and we should not stop init due to this */
740 if (ret_val)
741 e_dbg("Error initializing identification LED\n");
742
743 /* Disabling VLAN filtering */
744 e_dbg("Initializing the IEEE VLAN\n");
745 mac->ops.clear_vfta(hw);
746
747 /* Setup the receive address. */
748 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
749
750 /* Zero out the Multicast HASH table */
751 e_dbg("Zeroing the MTA\n");
752 for (i = 0; i < mac->mta_reg_count; i++)
753 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
754
755 /* Setup link and flow control */
756 ret_val = mac->ops.setup_link(hw);
757 if (ret_val)
758 return ret_val;
759
760 /* Disable IBIST slave mode (far-end loopback) */
761 ret_val =
762 e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
763 &kum_reg_data);
764 if (!ret_val) {
765 kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
766 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
767 E1000_KMRNCTRLSTA_INBAND_PARAM,
768 kum_reg_data);
769 if (ret_val)
770 e_dbg("Error disabling far-end loopback\n");
771 } else {
772 e_dbg("Error disabling far-end loopback\n");
773 }
774
775 /* Set the transmit descriptor write-back policy */
776 reg_data = er32(TXDCTL(0));
777 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
778 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
779 ew32(TXDCTL(0), reg_data);
780
781 /* ...for both queues. */
782 reg_data = er32(TXDCTL(1));
783 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
784 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
785 ew32(TXDCTL(1), reg_data);
786
787 /* Enable retransmit on late collisions */
788 reg_data = er32(TCTL);
789 reg_data |= E1000_TCTL_RTLC;
790 ew32(TCTL, reg_data);
791
792 /* Configure Gigabit Carry Extend Padding */
793 reg_data = er32(TCTL_EXT);
794 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
795 reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
796 ew32(TCTL_EXT, reg_data);
797
798 /* Configure Transmit Inter-Packet Gap */
799 reg_data = er32(TIPG);
800 reg_data &= ~E1000_TIPG_IPGT_MASK;
801 reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
802 ew32(TIPG, reg_data);
803
804 reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
805 reg_data &= ~0x00100000;
806 E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
807
808 /* default to true to enable the MDIC W/A */
809 hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
810
811 ret_val =
812 e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
813 E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
814 if (!ret_val) {
815 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
816 E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
817 hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
818 }
819
820 /* Clear all of the statistics registers (clear on read). It is
821 * important that we do this after we have tried to establish link
822 * because the symbol error count will increment wildly if there
823 * is no link.
824 */
825 e1000_clear_hw_cntrs_80003es2lan(hw);
826
827 return ret_val;
828 }
829
830 /**
831 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
832 * @hw: pointer to the HW structure
833 *
834 * Initializes required hardware-dependent bits needed for normal operation.
835 **/
e1000_initialize_hw_bits_80003es2lan(struct e1000_hw * hw)836 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
837 {
838 u32 reg;
839
840 /* Transmit Descriptor Control 0 */
841 reg = er32(TXDCTL(0));
842 reg |= BIT(22);
843 ew32(TXDCTL(0), reg);
844
845 /* Transmit Descriptor Control 1 */
846 reg = er32(TXDCTL(1));
847 reg |= BIT(22);
848 ew32(TXDCTL(1), reg);
849
850 /* Transmit Arbitration Control 0 */
851 reg = er32(TARC(0));
852 reg &= ~(0xF << 27); /* 30:27 */
853 if (hw->phy.media_type != e1000_media_type_copper)
854 reg &= ~BIT(20);
855 ew32(TARC(0), reg);
856
857 /* Transmit Arbitration Control 1 */
858 reg = er32(TARC(1));
859 if (er32(TCTL) & E1000_TCTL_MULR)
860 reg &= ~BIT(28);
861 else
862 reg |= BIT(28);
863 ew32(TARC(1), reg);
864
865 /* Disable IPv6 extension header parsing because some malformed
866 * IPv6 headers can hang the Rx.
867 */
868 reg = er32(RFCTL);
869 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
870 ew32(RFCTL, reg);
871 }
872
873 /**
874 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
875 * @hw: pointer to the HW structure
876 *
877 * Setup some GG82563 PHY registers for obtaining link
878 **/
e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw * hw)879 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
880 {
881 struct e1000_phy_info *phy = &hw->phy;
882 s32 ret_val;
883 u32 reg;
884 u16 data;
885
886 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
887 if (ret_val)
888 return ret_val;
889
890 data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
891 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
892 data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
893
894 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
895 if (ret_val)
896 return ret_val;
897
898 /* Options:
899 * MDI/MDI-X = 0 (default)
900 * 0 - Auto for all speeds
901 * 1 - MDI mode
902 * 2 - MDI-X mode
903 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
904 */
905 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
906 if (ret_val)
907 return ret_val;
908
909 data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
910
911 switch (phy->mdix) {
912 case 1:
913 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
914 break;
915 case 2:
916 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
917 break;
918 case 0:
919 default:
920 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
921 break;
922 }
923
924 /* Options:
925 * disable_polarity_correction = 0 (default)
926 * Automatic Correction for Reversed Cable Polarity
927 * 0 - Disabled
928 * 1 - Enabled
929 */
930 data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
931 if (phy->disable_polarity_correction)
932 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
933
934 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
935 if (ret_val)
936 return ret_val;
937
938 /* SW Reset the PHY so all changes take effect */
939 ret_val = hw->phy.ops.commit(hw);
940 if (ret_val) {
941 e_dbg("Error Resetting the PHY\n");
942 return ret_val;
943 }
944
945 /* Bypass Rx and Tx FIFO's */
946 reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
947 data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
948 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
949 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
950 if (ret_val)
951 return ret_val;
952
953 reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
954 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
955 if (ret_val)
956 return ret_val;
957 data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
958 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
959 if (ret_val)
960 return ret_val;
961
962 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
963 if (ret_val)
964 return ret_val;
965
966 data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
967 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
968 if (ret_val)
969 return ret_val;
970
971 reg = er32(CTRL_EXT);
972 reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
973 ew32(CTRL_EXT, reg);
974
975 ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
976 if (ret_val)
977 return ret_val;
978
979 /* Do not init these registers when the HW is in IAMT mode, since the
980 * firmware will have already initialized them. We only initialize
981 * them if the HW is not in IAMT mode.
982 */
983 if (!hw->mac.ops.check_mng_mode(hw)) {
984 /* Enable Electrical Idle on the PHY */
985 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
986 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
987 if (ret_val)
988 return ret_val;
989
990 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
991 if (ret_val)
992 return ret_val;
993
994 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
995 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
996 if (ret_val)
997 return ret_val;
998 }
999
1000 /* Workaround: Disable padding in Kumeran interface in the MAC
1001 * and in the PHY to avoid CRC errors.
1002 */
1003 ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1004 if (ret_val)
1005 return ret_val;
1006
1007 data |= GG82563_ICR_DIS_PADDING;
1008 ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1009 if (ret_val)
1010 return ret_val;
1011
1012 return 0;
1013 }
1014
1015 /**
1016 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1017 * @hw: pointer to the HW structure
1018 *
1019 * Essentially a wrapper for setting up all things "copper" related.
1020 * This is a function pointer entry point called by the mac module.
1021 **/
e1000_setup_copper_link_80003es2lan(struct e1000_hw * hw)1022 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1023 {
1024 u32 ctrl;
1025 s32 ret_val;
1026 u16 reg_data;
1027
1028 ctrl = er32(CTRL);
1029 ctrl |= E1000_CTRL_SLU;
1030 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1031 ew32(CTRL, ctrl);
1032
1033 /* Set the mac to wait the maximum time between each
1034 * iteration and increase the max iterations when
1035 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1036 */
1037 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1038 0xFFFF);
1039 if (ret_val)
1040 return ret_val;
1041 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1042 ®_data);
1043 if (ret_val)
1044 return ret_val;
1045 reg_data |= 0x3F;
1046 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1047 reg_data);
1048 if (ret_val)
1049 return ret_val;
1050 ret_val =
1051 e1000_read_kmrn_reg_80003es2lan(hw,
1052 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1053 ®_data);
1054 if (ret_val)
1055 return ret_val;
1056 reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1057 ret_val =
1058 e1000_write_kmrn_reg_80003es2lan(hw,
1059 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1060 reg_data);
1061 if (ret_val)
1062 return ret_val;
1063
1064 ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1065 if (ret_val)
1066 return ret_val;
1067
1068 return e1000e_setup_copper_link(hw);
1069 }
1070
1071 /**
1072 * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1073 * @hw: pointer to the HW structure
1074 *
1075 * Configure the KMRN interface by applying last minute quirks for
1076 * 10/100 operation.
1077 **/
e1000_cfg_on_link_up_80003es2lan(struct e1000_hw * hw)1078 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1079 {
1080 s32 ret_val = 0;
1081 u16 speed;
1082 u16 duplex;
1083
1084 if (hw->phy.media_type == e1000_media_type_copper) {
1085 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1086 &duplex);
1087 if (ret_val)
1088 return ret_val;
1089
1090 if (speed == SPEED_1000)
1091 ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1092 else
1093 ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1094 }
1095
1096 return ret_val;
1097 }
1098
1099 /**
1100 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1101 * @hw: pointer to the HW structure
1102 * @duplex: current duplex setting
1103 *
1104 * Configure the KMRN interface by applying last minute quirks for
1105 * 10/100 operation.
1106 **/
e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw * hw,u16 duplex)1107 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1108 {
1109 s32 ret_val;
1110 u32 tipg;
1111 u32 i = 0;
1112 u16 reg_data, reg_data2;
1113
1114 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1115 ret_val =
1116 e1000_write_kmrn_reg_80003es2lan(hw,
1117 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1118 reg_data);
1119 if (ret_val)
1120 return ret_val;
1121
1122 /* Configure Transmit Inter-Packet Gap */
1123 tipg = er32(TIPG);
1124 tipg &= ~E1000_TIPG_IPGT_MASK;
1125 tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1126 ew32(TIPG, tipg);
1127
1128 do {
1129 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
1130 if (ret_val)
1131 return ret_val;
1132
1133 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2);
1134 if (ret_val)
1135 return ret_val;
1136 i++;
1137 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1138
1139 if (duplex == HALF_DUPLEX)
1140 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1141 else
1142 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1143
1144 return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1145 }
1146
1147 /**
1148 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1149 * @hw: pointer to the HW structure
1150 *
1151 * Configure the KMRN interface by applying last minute quirks for
1152 * gigabit operation.
1153 **/
e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw * hw)1154 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1155 {
1156 s32 ret_val;
1157 u16 reg_data, reg_data2;
1158 u32 tipg;
1159 u32 i = 0;
1160
1161 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1162 ret_val =
1163 e1000_write_kmrn_reg_80003es2lan(hw,
1164 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1165 reg_data);
1166 if (ret_val)
1167 return ret_val;
1168
1169 /* Configure Transmit Inter-Packet Gap */
1170 tipg = er32(TIPG);
1171 tipg &= ~E1000_TIPG_IPGT_MASK;
1172 tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1173 ew32(TIPG, tipg);
1174
1175 do {
1176 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
1177 if (ret_val)
1178 return ret_val;
1179
1180 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2);
1181 if (ret_val)
1182 return ret_val;
1183 i++;
1184 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1185
1186 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1187
1188 return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1189 }
1190
1191 /**
1192 * e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1193 * @hw: pointer to the HW structure
1194 * @offset: register offset to be read
1195 * @data: pointer to the read data
1196 *
1197 * Acquire semaphore, then read the PHY register at offset
1198 * using the kumeran interface. The information retrieved is stored in data.
1199 * Release the semaphore before exiting.
1200 **/
e1000_read_kmrn_reg_80003es2lan(struct e1000_hw * hw,u32 offset,u16 * data)1201 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1202 u16 *data)
1203 {
1204 u32 kmrnctrlsta;
1205 s32 ret_val;
1206
1207 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1208 if (ret_val)
1209 return ret_val;
1210
1211 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1212 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1213 ew32(KMRNCTRLSTA, kmrnctrlsta);
1214 e1e_flush();
1215
1216 udelay(2);
1217
1218 kmrnctrlsta = er32(KMRNCTRLSTA);
1219 *data = (u16)kmrnctrlsta;
1220
1221 e1000_release_mac_csr_80003es2lan(hw);
1222
1223 return ret_val;
1224 }
1225
1226 /**
1227 * e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1228 * @hw: pointer to the HW structure
1229 * @offset: register offset to write to
1230 * @data: data to write at register offset
1231 *
1232 * Acquire semaphore, then write the data to PHY register
1233 * at the offset using the kumeran interface. Release semaphore
1234 * before exiting.
1235 **/
e1000_write_kmrn_reg_80003es2lan(struct e1000_hw * hw,u32 offset,u16 data)1236 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1237 u16 data)
1238 {
1239 u32 kmrnctrlsta;
1240 s32 ret_val;
1241
1242 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1243 if (ret_val)
1244 return ret_val;
1245
1246 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1247 E1000_KMRNCTRLSTA_OFFSET) | data;
1248 ew32(KMRNCTRLSTA, kmrnctrlsta);
1249 e1e_flush();
1250
1251 udelay(2);
1252
1253 e1000_release_mac_csr_80003es2lan(hw);
1254
1255 return ret_val;
1256 }
1257
1258 /**
1259 * e1000_read_mac_addr_80003es2lan - Read device MAC address
1260 * @hw: pointer to the HW structure
1261 **/
e1000_read_mac_addr_80003es2lan(struct e1000_hw * hw)1262 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1263 {
1264 s32 ret_val;
1265
1266 /* If there's an alternate MAC address place it in RAR0
1267 * so that it will override the Si installed default perm
1268 * address.
1269 */
1270 ret_val = e1000_check_alt_mac_addr_generic(hw);
1271 if (ret_val)
1272 return ret_val;
1273
1274 return e1000_read_mac_addr_generic(hw);
1275 }
1276
1277 /**
1278 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1279 * @hw: pointer to the HW structure
1280 *
1281 * In the case of a PHY power down to save power, or to turn off link during a
1282 * driver unload, or wake on lan is not enabled, remove the link.
1283 **/
e1000_power_down_phy_copper_80003es2lan(struct e1000_hw * hw)1284 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1285 {
1286 /* If the management interface is not enabled, then power down */
1287 if (!(hw->mac.ops.check_mng_mode(hw) ||
1288 hw->phy.ops.check_reset_block(hw)))
1289 e1000_power_down_phy_copper(hw);
1290 }
1291
1292 /**
1293 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1294 * @hw: pointer to the HW structure
1295 *
1296 * Clears the hardware counters by reading the counter registers.
1297 **/
e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw * hw)1298 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1299 {
1300 e1000e_clear_hw_cntrs_base(hw);
1301
1302 er32(PRC64);
1303 er32(PRC127);
1304 er32(PRC255);
1305 er32(PRC511);
1306 er32(PRC1023);
1307 er32(PRC1522);
1308 er32(PTC64);
1309 er32(PTC127);
1310 er32(PTC255);
1311 er32(PTC511);
1312 er32(PTC1023);
1313 er32(PTC1522);
1314
1315 er32(ALGNERRC);
1316 er32(RXERRC);
1317 er32(TNCRS);
1318 er32(CEXTERR);
1319 er32(TSCTC);
1320 er32(TSCTFC);
1321
1322 er32(MGTPRC);
1323 er32(MGTPDC);
1324 er32(MGTPTC);
1325
1326 er32(IAC);
1327 er32(ICRXOC);
1328
1329 er32(ICRXPTC);
1330 er32(ICRXATC);
1331 er32(ICTXPTC);
1332 er32(ICTXATC);
1333 er32(ICTXQEC);
1334 er32(ICTXQMTC);
1335 er32(ICRXDMTC);
1336 }
1337
1338 static const struct e1000_mac_operations es2_mac_ops = {
1339 .read_mac_addr = e1000_read_mac_addr_80003es2lan,
1340 .id_led_init = e1000e_id_led_init_generic,
1341 .blink_led = e1000e_blink_led_generic,
1342 .check_mng_mode = e1000e_check_mng_mode_generic,
1343 /* check_for_link dependent on media type */
1344 .cleanup_led = e1000e_cleanup_led_generic,
1345 .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
1346 .get_bus_info = e1000e_get_bus_info_pcie,
1347 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1348 .get_link_up_info = e1000_get_link_up_info_80003es2lan,
1349 .led_on = e1000e_led_on_generic,
1350 .led_off = e1000e_led_off_generic,
1351 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1352 .write_vfta = e1000_write_vfta_generic,
1353 .clear_vfta = e1000_clear_vfta_generic,
1354 .reset_hw = e1000_reset_hw_80003es2lan,
1355 .init_hw = e1000_init_hw_80003es2lan,
1356 .setup_link = e1000e_setup_link_generic,
1357 /* setup_physical_interface dependent on media type */
1358 .setup_led = e1000e_setup_led_generic,
1359 .config_collision_dist = e1000e_config_collision_dist_generic,
1360 .rar_set = e1000e_rar_set_generic,
1361 .rar_get_count = e1000e_rar_get_count_generic,
1362 };
1363
1364 static const struct e1000_phy_operations es2_phy_ops = {
1365 .acquire = e1000_acquire_phy_80003es2lan,
1366 .check_polarity = e1000_check_polarity_m88,
1367 .check_reset_block = e1000e_check_reset_block_generic,
1368 .commit = e1000e_phy_sw_reset,
1369 .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
1370 .get_cfg_done = e1000_get_cfg_done_80003es2lan,
1371 .get_cable_length = e1000_get_cable_length_80003es2lan,
1372 .get_info = e1000e_get_phy_info_m88,
1373 .read_reg = e1000_read_phy_reg_gg82563_80003es2lan,
1374 .release = e1000_release_phy_80003es2lan,
1375 .reset = e1000e_phy_hw_reset_generic,
1376 .set_d0_lplu_state = NULL,
1377 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1378 .write_reg = e1000_write_phy_reg_gg82563_80003es2lan,
1379 .cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan,
1380 };
1381
1382 static const struct e1000_nvm_operations es2_nvm_ops = {
1383 .acquire = e1000_acquire_nvm_80003es2lan,
1384 .read = e1000e_read_nvm_eerd,
1385 .release = e1000_release_nvm_80003es2lan,
1386 .reload = e1000e_reload_nvm_generic,
1387 .update = e1000e_update_nvm_checksum_generic,
1388 .valid_led_default = e1000e_valid_led_default,
1389 .validate = e1000e_validate_nvm_checksum_generic,
1390 .write = e1000_write_nvm_80003es2lan,
1391 };
1392
1393 const struct e1000_info e1000_es2_info = {
1394 .mac = e1000_80003es2lan,
1395 .flags = FLAG_HAS_HW_VLAN_FILTER
1396 | FLAG_HAS_JUMBO_FRAMES
1397 | FLAG_HAS_WOL
1398 | FLAG_APME_IN_CTRL3
1399 | FLAG_HAS_CTRLEXT_ON_LOAD
1400 | FLAG_RX_NEEDS_RESTART /* errata */
1401 | FLAG_TARC_SET_BIT_ZERO /* errata */
1402 | FLAG_APME_CHECK_PORT_B
1403 | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1404 .flags2 = FLAG2_DMA_BURST,
1405 .pba = 38,
1406 .max_hw_frame_size = DEFAULT_JUMBO,
1407 .get_variants = e1000_get_variants_80003es2lan,
1408 .mac_ops = &es2_mac_ops,
1409 .phy_ops = &es2_phy_ops,
1410 .nvm_ops = &es2_nvm_ops,
1411 };
1412