1 // SPDX-License-Identifier: GPL-2.0+
2 /**************************************************************************
3 Intel Pro 1000 for ppcboot/das-u-boot
4 Drivers are port from Intel's Linux driver e1000-4.3.15
5 and from Etherboot pro 1000 driver by mrakes at vivato dot net
6 tested on both gig copper and gig fiber boards
7 ***************************************************************************/
8 /*******************************************************************************
9
10
11 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
12
13
14 Contact Information:
15 Linux NICS <linux.nics@intel.com>
16 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18 *******************************************************************************/
19 /*
20 * Copyright (C) Archway Digital Solutions.
21 *
22 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23 * 2/9/2002
24 *
25 * Copyright (C) Linux Networx.
26 * Massive upgrade to work with the new intel gigabit NICs.
27 * <ebiederman at lnxi dot com>
28 *
29 * Copyright 2011 Freescale Semiconductor, Inc.
30 */
31
32 #include <common.h>
33 #include <dm.h>
34 #include <errno.h>
35 #include <memalign.h>
36 #include <pci.h>
37 #include "e1000.h"
38
39 #define TOUT_LOOP 100000
40
41 #ifdef CONFIG_DM_ETH
42 #define virt_to_bus(devno, v) dm_pci_virt_to_mem(devno, (void *) (v))
43 #define bus_to_phys(devno, a) dm_pci_mem_to_phys(devno, a)
44 #else
45 #define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
46 #define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
47 #endif
48
49 #define E1000_DEFAULT_PCI_PBA 0x00000030
50 #define E1000_DEFAULT_PCIE_PBA 0x000a0026
51
52 /* NIC specific static variables go here */
53
54 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
55 #define E1000_BUFFER_ALIGN 128
56
57 /*
58 * TODO(sjg@chromium.org): Even with driver model we share these buffers.
59 * Concurrent receiving on multiple active Ethernet devices will not work.
60 * Normally U-Boot does not support this anyway. To fix it in this driver,
61 * move these buffers and the tx/rx pointers to struct e1000_hw.
62 */
63 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
64 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
65 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
66
67 static int tx_tail;
68 static int rx_tail, rx_last;
69 #ifdef CONFIG_DM_ETH
70 static int num_cards; /* Number of E1000 devices seen so far */
71 #endif
72
73 static struct pci_device_id e1000_supported[] = {
74 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
75 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
76 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
77 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
78 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
79 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
80 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
81 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
82 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
83 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
84 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
85 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
86 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
87 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
88 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
89 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
90 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
91 /* E1000 PCIe card */
92 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
93 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
94 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
95 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
96 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
97 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
98 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
99 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
100 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
101 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
102 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
103 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
104 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
105 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
106 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
107 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
108 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
109 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
110 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
111 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
112 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
113 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
114 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
115 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
116 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
117 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
118 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
119 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
120 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
121 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
122
123 {}
124 };
125
126 /* Function forward declarations */
127 static int e1000_setup_link(struct e1000_hw *hw);
128 static int e1000_setup_fiber_link(struct e1000_hw *hw);
129 static int e1000_setup_copper_link(struct e1000_hw *hw);
130 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
131 static void e1000_config_collision_dist(struct e1000_hw *hw);
132 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
133 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
134 static int e1000_check_for_link(struct e1000_hw *hw);
135 static int e1000_wait_autoneg(struct e1000_hw *hw);
136 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
137 uint16_t * duplex);
138 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
139 uint16_t * phy_data);
140 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
141 uint16_t phy_data);
142 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
143 static int e1000_phy_reset(struct e1000_hw *hw);
144 static int e1000_detect_gig_phy(struct e1000_hw *hw);
145 static void e1000_set_media_type(struct e1000_hw *hw);
146
147 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
148 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
149 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
150
151 #ifndef CONFIG_E1000_NO_NVM
152 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
153 static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
154 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
155 uint16_t words,
156 uint16_t *data);
157 /******************************************************************************
158 * Raises the EEPROM's clock input.
159 *
160 * hw - Struct containing variables accessed by shared code
161 * eecd - EECD's current value
162 *****************************************************************************/
e1000_raise_ee_clk(struct e1000_hw * hw,uint32_t * eecd)163 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
164 {
165 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
166 * wait 50 microseconds.
167 */
168 *eecd = *eecd | E1000_EECD_SK;
169 E1000_WRITE_REG(hw, EECD, *eecd);
170 E1000_WRITE_FLUSH(hw);
171 udelay(50);
172 }
173
174 /******************************************************************************
175 * Lowers the EEPROM's clock input.
176 *
177 * hw - Struct containing variables accessed by shared code
178 * eecd - EECD's current value
179 *****************************************************************************/
e1000_lower_ee_clk(struct e1000_hw * hw,uint32_t * eecd)180 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
181 {
182 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
183 * wait 50 microseconds.
184 */
185 *eecd = *eecd & ~E1000_EECD_SK;
186 E1000_WRITE_REG(hw, EECD, *eecd);
187 E1000_WRITE_FLUSH(hw);
188 udelay(50);
189 }
190
191 /******************************************************************************
192 * Shift data bits out to the EEPROM.
193 *
194 * hw - Struct containing variables accessed by shared code
195 * data - data to send to the EEPROM
196 * count - number of bits to shift out
197 *****************************************************************************/
198 static void
e1000_shift_out_ee_bits(struct e1000_hw * hw,uint16_t data,uint16_t count)199 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
200 {
201 uint32_t eecd;
202 uint32_t mask;
203
204 /* We need to shift "count" bits out to the EEPROM. So, value in the
205 * "data" parameter will be shifted out to the EEPROM one bit at a time.
206 * In order to do this, "data" must be broken down into bits.
207 */
208 mask = 0x01 << (count - 1);
209 eecd = E1000_READ_REG(hw, EECD);
210 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
211 do {
212 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
213 * and then raising and then lowering the clock (the SK bit controls
214 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
215 * by setting "DI" to "0" and then raising and then lowering the clock.
216 */
217 eecd &= ~E1000_EECD_DI;
218
219 if (data & mask)
220 eecd |= E1000_EECD_DI;
221
222 E1000_WRITE_REG(hw, EECD, eecd);
223 E1000_WRITE_FLUSH(hw);
224
225 udelay(50);
226
227 e1000_raise_ee_clk(hw, &eecd);
228 e1000_lower_ee_clk(hw, &eecd);
229
230 mask = mask >> 1;
231
232 } while (mask);
233
234 /* We leave the "DI" bit set to "0" when we leave this routine. */
235 eecd &= ~E1000_EECD_DI;
236 E1000_WRITE_REG(hw, EECD, eecd);
237 }
238
239 /******************************************************************************
240 * Shift data bits in from the EEPROM
241 *
242 * hw - Struct containing variables accessed by shared code
243 *****************************************************************************/
244 static uint16_t
e1000_shift_in_ee_bits(struct e1000_hw * hw,uint16_t count)245 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
246 {
247 uint32_t eecd;
248 uint32_t i;
249 uint16_t data;
250
251 /* In order to read a register from the EEPROM, we need to shift 'count'
252 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
253 * input to the EEPROM (setting the SK bit), and then reading the
254 * value of the "DO" bit. During this "shifting in" process the
255 * "DI" bit should always be clear.
256 */
257
258 eecd = E1000_READ_REG(hw, EECD);
259
260 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
261 data = 0;
262
263 for (i = 0; i < count; i++) {
264 data = data << 1;
265 e1000_raise_ee_clk(hw, &eecd);
266
267 eecd = E1000_READ_REG(hw, EECD);
268
269 eecd &= ~(E1000_EECD_DI);
270 if (eecd & E1000_EECD_DO)
271 data |= 1;
272
273 e1000_lower_ee_clk(hw, &eecd);
274 }
275
276 return data;
277 }
278
279 /******************************************************************************
280 * Returns EEPROM to a "standby" state
281 *
282 * hw - Struct containing variables accessed by shared code
283 *****************************************************************************/
e1000_standby_eeprom(struct e1000_hw * hw)284 void e1000_standby_eeprom(struct e1000_hw *hw)
285 {
286 struct e1000_eeprom_info *eeprom = &hw->eeprom;
287 uint32_t eecd;
288
289 eecd = E1000_READ_REG(hw, EECD);
290
291 if (eeprom->type == e1000_eeprom_microwire) {
292 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
293 E1000_WRITE_REG(hw, EECD, eecd);
294 E1000_WRITE_FLUSH(hw);
295 udelay(eeprom->delay_usec);
296
297 /* Clock high */
298 eecd |= E1000_EECD_SK;
299 E1000_WRITE_REG(hw, EECD, eecd);
300 E1000_WRITE_FLUSH(hw);
301 udelay(eeprom->delay_usec);
302
303 /* Select EEPROM */
304 eecd |= E1000_EECD_CS;
305 E1000_WRITE_REG(hw, EECD, eecd);
306 E1000_WRITE_FLUSH(hw);
307 udelay(eeprom->delay_usec);
308
309 /* Clock low */
310 eecd &= ~E1000_EECD_SK;
311 E1000_WRITE_REG(hw, EECD, eecd);
312 E1000_WRITE_FLUSH(hw);
313 udelay(eeprom->delay_usec);
314 } else if (eeprom->type == e1000_eeprom_spi) {
315 /* Toggle CS to flush commands */
316 eecd |= E1000_EECD_CS;
317 E1000_WRITE_REG(hw, EECD, eecd);
318 E1000_WRITE_FLUSH(hw);
319 udelay(eeprom->delay_usec);
320 eecd &= ~E1000_EECD_CS;
321 E1000_WRITE_REG(hw, EECD, eecd);
322 E1000_WRITE_FLUSH(hw);
323 udelay(eeprom->delay_usec);
324 }
325 }
326
327 /***************************************************************************
328 * Description: Determines if the onboard NVM is FLASH or EEPROM.
329 *
330 * hw - Struct containing variables accessed by shared code
331 ****************************************************************************/
e1000_is_onboard_nvm_eeprom(struct e1000_hw * hw)332 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
333 {
334 uint32_t eecd = 0;
335
336 DEBUGFUNC();
337
338 if (hw->mac_type == e1000_ich8lan)
339 return false;
340
341 if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
342 eecd = E1000_READ_REG(hw, EECD);
343
344 /* Isolate bits 15 & 16 */
345 eecd = ((eecd >> 15) & 0x03);
346
347 /* If both bits are set, device is Flash type */
348 if (eecd == 0x03)
349 return false;
350 }
351 return true;
352 }
353
354 /******************************************************************************
355 * Prepares EEPROM for access
356 *
357 * hw - Struct containing variables accessed by shared code
358 *
359 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
360 * function should be called before issuing a command to the EEPROM.
361 *****************************************************************************/
e1000_acquire_eeprom(struct e1000_hw * hw)362 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
363 {
364 struct e1000_eeprom_info *eeprom = &hw->eeprom;
365 uint32_t eecd, i = 0;
366
367 DEBUGFUNC();
368
369 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
370 return -E1000_ERR_SWFW_SYNC;
371 eecd = E1000_READ_REG(hw, EECD);
372
373 if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
374 /* Request EEPROM Access */
375 if (hw->mac_type > e1000_82544) {
376 eecd |= E1000_EECD_REQ;
377 E1000_WRITE_REG(hw, EECD, eecd);
378 eecd = E1000_READ_REG(hw, EECD);
379 while ((!(eecd & E1000_EECD_GNT)) &&
380 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
381 i++;
382 udelay(5);
383 eecd = E1000_READ_REG(hw, EECD);
384 }
385 if (!(eecd & E1000_EECD_GNT)) {
386 eecd &= ~E1000_EECD_REQ;
387 E1000_WRITE_REG(hw, EECD, eecd);
388 DEBUGOUT("Could not acquire EEPROM grant\n");
389 return -E1000_ERR_EEPROM;
390 }
391 }
392 }
393
394 /* Setup EEPROM for Read/Write */
395
396 if (eeprom->type == e1000_eeprom_microwire) {
397 /* Clear SK and DI */
398 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
399 E1000_WRITE_REG(hw, EECD, eecd);
400
401 /* Set CS */
402 eecd |= E1000_EECD_CS;
403 E1000_WRITE_REG(hw, EECD, eecd);
404 } else if (eeprom->type == e1000_eeprom_spi) {
405 /* Clear SK and CS */
406 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
407 E1000_WRITE_REG(hw, EECD, eecd);
408 udelay(1);
409 }
410
411 return E1000_SUCCESS;
412 }
413
414 /******************************************************************************
415 * Sets up eeprom variables in the hw struct. Must be called after mac_type
416 * is configured. Additionally, if this is ICH8, the flash controller GbE
417 * registers must be mapped, or this will crash.
418 *
419 * hw - Struct containing variables accessed by shared code
420 *****************************************************************************/
e1000_init_eeprom_params(struct e1000_hw * hw)421 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
422 {
423 struct e1000_eeprom_info *eeprom = &hw->eeprom;
424 uint32_t eecd;
425 int32_t ret_val = E1000_SUCCESS;
426 uint16_t eeprom_size;
427
428 if (hw->mac_type == e1000_igb)
429 eecd = E1000_READ_REG(hw, I210_EECD);
430 else
431 eecd = E1000_READ_REG(hw, EECD);
432
433 DEBUGFUNC();
434
435 switch (hw->mac_type) {
436 case e1000_82542_rev2_0:
437 case e1000_82542_rev2_1:
438 case e1000_82543:
439 case e1000_82544:
440 eeprom->type = e1000_eeprom_microwire;
441 eeprom->word_size = 64;
442 eeprom->opcode_bits = 3;
443 eeprom->address_bits = 6;
444 eeprom->delay_usec = 50;
445 eeprom->use_eerd = false;
446 eeprom->use_eewr = false;
447 break;
448 case e1000_82540:
449 case e1000_82545:
450 case e1000_82545_rev_3:
451 case e1000_82546:
452 case e1000_82546_rev_3:
453 eeprom->type = e1000_eeprom_microwire;
454 eeprom->opcode_bits = 3;
455 eeprom->delay_usec = 50;
456 if (eecd & E1000_EECD_SIZE) {
457 eeprom->word_size = 256;
458 eeprom->address_bits = 8;
459 } else {
460 eeprom->word_size = 64;
461 eeprom->address_bits = 6;
462 }
463 eeprom->use_eerd = false;
464 eeprom->use_eewr = false;
465 break;
466 case e1000_82541:
467 case e1000_82541_rev_2:
468 case e1000_82547:
469 case e1000_82547_rev_2:
470 if (eecd & E1000_EECD_TYPE) {
471 eeprom->type = e1000_eeprom_spi;
472 eeprom->opcode_bits = 8;
473 eeprom->delay_usec = 1;
474 if (eecd & E1000_EECD_ADDR_BITS) {
475 eeprom->page_size = 32;
476 eeprom->address_bits = 16;
477 } else {
478 eeprom->page_size = 8;
479 eeprom->address_bits = 8;
480 }
481 } else {
482 eeprom->type = e1000_eeprom_microwire;
483 eeprom->opcode_bits = 3;
484 eeprom->delay_usec = 50;
485 if (eecd & E1000_EECD_ADDR_BITS) {
486 eeprom->word_size = 256;
487 eeprom->address_bits = 8;
488 } else {
489 eeprom->word_size = 64;
490 eeprom->address_bits = 6;
491 }
492 }
493 eeprom->use_eerd = false;
494 eeprom->use_eewr = false;
495 break;
496 case e1000_82571:
497 case e1000_82572:
498 eeprom->type = e1000_eeprom_spi;
499 eeprom->opcode_bits = 8;
500 eeprom->delay_usec = 1;
501 if (eecd & E1000_EECD_ADDR_BITS) {
502 eeprom->page_size = 32;
503 eeprom->address_bits = 16;
504 } else {
505 eeprom->page_size = 8;
506 eeprom->address_bits = 8;
507 }
508 eeprom->use_eerd = false;
509 eeprom->use_eewr = false;
510 break;
511 case e1000_82573:
512 case e1000_82574:
513 eeprom->type = e1000_eeprom_spi;
514 eeprom->opcode_bits = 8;
515 eeprom->delay_usec = 1;
516 if (eecd & E1000_EECD_ADDR_BITS) {
517 eeprom->page_size = 32;
518 eeprom->address_bits = 16;
519 } else {
520 eeprom->page_size = 8;
521 eeprom->address_bits = 8;
522 }
523 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
524 eeprom->use_eerd = true;
525 eeprom->use_eewr = true;
526
527 eeprom->type = e1000_eeprom_flash;
528 eeprom->word_size = 2048;
529
530 /* Ensure that the Autonomous FLASH update bit is cleared due to
531 * Flash update issue on parts which use a FLASH for NVM. */
532 eecd &= ~E1000_EECD_AUPDEN;
533 E1000_WRITE_REG(hw, EECD, eecd);
534 }
535 break;
536 case e1000_80003es2lan:
537 eeprom->type = e1000_eeprom_spi;
538 eeprom->opcode_bits = 8;
539 eeprom->delay_usec = 1;
540 if (eecd & E1000_EECD_ADDR_BITS) {
541 eeprom->page_size = 32;
542 eeprom->address_bits = 16;
543 } else {
544 eeprom->page_size = 8;
545 eeprom->address_bits = 8;
546 }
547 eeprom->use_eerd = true;
548 eeprom->use_eewr = false;
549 break;
550 case e1000_igb:
551 /* i210 has 4k of iNVM mapped as EEPROM */
552 eeprom->type = e1000_eeprom_invm;
553 eeprom->opcode_bits = 8;
554 eeprom->delay_usec = 1;
555 eeprom->page_size = 32;
556 eeprom->address_bits = 16;
557 eeprom->use_eerd = true;
558 eeprom->use_eewr = false;
559 break;
560 default:
561 break;
562 }
563
564 if (eeprom->type == e1000_eeprom_spi ||
565 eeprom->type == e1000_eeprom_invm) {
566 /* eeprom_size will be an enum [0..8] that maps
567 * to eeprom sizes 128B to
568 * 32KB (incremented by powers of 2).
569 */
570 if (hw->mac_type <= e1000_82547_rev_2) {
571 /* Set to default value for initial eeprom read. */
572 eeprom->word_size = 64;
573 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
574 &eeprom_size);
575 if (ret_val)
576 return ret_val;
577 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
578 >> EEPROM_SIZE_SHIFT;
579 /* 256B eeprom size was not supported in earlier
580 * hardware, so we bump eeprom_size up one to
581 * ensure that "1" (which maps to 256B) is never
582 * the result used in the shifting logic below. */
583 if (eeprom_size)
584 eeprom_size++;
585 } else {
586 eeprom_size = (uint16_t)((eecd &
587 E1000_EECD_SIZE_EX_MASK) >>
588 E1000_EECD_SIZE_EX_SHIFT);
589 }
590
591 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
592 }
593 return ret_val;
594 }
595
596 /******************************************************************************
597 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
598 *
599 * hw - Struct containing variables accessed by shared code
600 *****************************************************************************/
601 static int32_t
e1000_poll_eerd_eewr_done(struct e1000_hw * hw,int eerd)602 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
603 {
604 uint32_t attempts = 100000;
605 uint32_t i, reg = 0;
606 int32_t done = E1000_ERR_EEPROM;
607
608 for (i = 0; i < attempts; i++) {
609 if (eerd == E1000_EEPROM_POLL_READ) {
610 if (hw->mac_type == e1000_igb)
611 reg = E1000_READ_REG(hw, I210_EERD);
612 else
613 reg = E1000_READ_REG(hw, EERD);
614 } else {
615 if (hw->mac_type == e1000_igb)
616 reg = E1000_READ_REG(hw, I210_EEWR);
617 else
618 reg = E1000_READ_REG(hw, EEWR);
619 }
620
621 if (reg & E1000_EEPROM_RW_REG_DONE) {
622 done = E1000_SUCCESS;
623 break;
624 }
625 udelay(5);
626 }
627
628 return done;
629 }
630
631 /******************************************************************************
632 * Reads a 16 bit word from the EEPROM using the EERD register.
633 *
634 * hw - Struct containing variables accessed by shared code
635 * offset - offset of word in the EEPROM to read
636 * data - word read from the EEPROM
637 * words - number of words to read
638 *****************************************************************************/
639 static int32_t
e1000_read_eeprom_eerd(struct e1000_hw * hw,uint16_t offset,uint16_t words,uint16_t * data)640 e1000_read_eeprom_eerd(struct e1000_hw *hw,
641 uint16_t offset,
642 uint16_t words,
643 uint16_t *data)
644 {
645 uint32_t i, eerd = 0;
646 int32_t error = 0;
647
648 for (i = 0; i < words; i++) {
649 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
650 E1000_EEPROM_RW_REG_START;
651
652 if (hw->mac_type == e1000_igb)
653 E1000_WRITE_REG(hw, I210_EERD, eerd);
654 else
655 E1000_WRITE_REG(hw, EERD, eerd);
656
657 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
658
659 if (error)
660 break;
661
662 if (hw->mac_type == e1000_igb) {
663 data[i] = (E1000_READ_REG(hw, I210_EERD) >>
664 E1000_EEPROM_RW_REG_DATA);
665 } else {
666 data[i] = (E1000_READ_REG(hw, EERD) >>
667 E1000_EEPROM_RW_REG_DATA);
668 }
669
670 }
671
672 return error;
673 }
674
e1000_release_eeprom(struct e1000_hw * hw)675 void e1000_release_eeprom(struct e1000_hw *hw)
676 {
677 uint32_t eecd;
678
679 DEBUGFUNC();
680
681 eecd = E1000_READ_REG(hw, EECD);
682
683 if (hw->eeprom.type == e1000_eeprom_spi) {
684 eecd |= E1000_EECD_CS; /* Pull CS high */
685 eecd &= ~E1000_EECD_SK; /* Lower SCK */
686
687 E1000_WRITE_REG(hw, EECD, eecd);
688
689 udelay(hw->eeprom.delay_usec);
690 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
691 /* cleanup eeprom */
692
693 /* CS on Microwire is active-high */
694 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
695
696 E1000_WRITE_REG(hw, EECD, eecd);
697
698 /* Rising edge of clock */
699 eecd |= E1000_EECD_SK;
700 E1000_WRITE_REG(hw, EECD, eecd);
701 E1000_WRITE_FLUSH(hw);
702 udelay(hw->eeprom.delay_usec);
703
704 /* Falling edge of clock */
705 eecd &= ~E1000_EECD_SK;
706 E1000_WRITE_REG(hw, EECD, eecd);
707 E1000_WRITE_FLUSH(hw);
708 udelay(hw->eeprom.delay_usec);
709 }
710
711 /* Stop requesting EEPROM access */
712 if (hw->mac_type > e1000_82544) {
713 eecd &= ~E1000_EECD_REQ;
714 E1000_WRITE_REG(hw, EECD, eecd);
715 }
716
717 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
718 }
719
720 /******************************************************************************
721 * Reads a 16 bit word from the EEPROM.
722 *
723 * hw - Struct containing variables accessed by shared code
724 *****************************************************************************/
725 static int32_t
e1000_spi_eeprom_ready(struct e1000_hw * hw)726 e1000_spi_eeprom_ready(struct e1000_hw *hw)
727 {
728 uint16_t retry_count = 0;
729 uint8_t spi_stat_reg;
730
731 DEBUGFUNC();
732
733 /* Read "Status Register" repeatedly until the LSB is cleared. The
734 * EEPROM will signal that the command has been completed by clearing
735 * bit 0 of the internal status register. If it's not cleared within
736 * 5 milliseconds, then error out.
737 */
738 retry_count = 0;
739 do {
740 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
741 hw->eeprom.opcode_bits);
742 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
743 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
744 break;
745
746 udelay(5);
747 retry_count += 5;
748
749 e1000_standby_eeprom(hw);
750 } while (retry_count < EEPROM_MAX_RETRY_SPI);
751
752 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
753 * only 0-5mSec on 5V devices)
754 */
755 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
756 DEBUGOUT("SPI EEPROM Status error\n");
757 return -E1000_ERR_EEPROM;
758 }
759
760 return E1000_SUCCESS;
761 }
762
763 /******************************************************************************
764 * Reads a 16 bit word from the EEPROM.
765 *
766 * hw - Struct containing variables accessed by shared code
767 * offset - offset of word in the EEPROM to read
768 * data - word read from the EEPROM
769 *****************************************************************************/
770 static int32_t
e1000_read_eeprom(struct e1000_hw * hw,uint16_t offset,uint16_t words,uint16_t * data)771 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
772 uint16_t words, uint16_t *data)
773 {
774 struct e1000_eeprom_info *eeprom = &hw->eeprom;
775 uint32_t i = 0;
776
777 DEBUGFUNC();
778
779 /* If eeprom is not yet detected, do so now */
780 if (eeprom->word_size == 0)
781 e1000_init_eeprom_params(hw);
782
783 /* A check for invalid values: offset too large, too many words,
784 * and not enough words.
785 */
786 if ((offset >= eeprom->word_size) ||
787 (words > eeprom->word_size - offset) ||
788 (words == 0)) {
789 DEBUGOUT("\"words\" parameter out of bounds."
790 "Words = %d, size = %d\n", offset, eeprom->word_size);
791 return -E1000_ERR_EEPROM;
792 }
793
794 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
795 * directly. In this case, we need to acquire the EEPROM so that
796 * FW or other port software does not interrupt.
797 */
798 if (e1000_is_onboard_nvm_eeprom(hw) == true &&
799 hw->eeprom.use_eerd == false) {
800
801 /* Prepare the EEPROM for bit-bang reading */
802 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
803 return -E1000_ERR_EEPROM;
804 }
805
806 /* Eerd register EEPROM access requires no eeprom aquire/release */
807 if (eeprom->use_eerd == true)
808 return e1000_read_eeprom_eerd(hw, offset, words, data);
809
810 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
811 * acquired the EEPROM at this point, so any returns should relase it */
812 if (eeprom->type == e1000_eeprom_spi) {
813 uint16_t word_in;
814 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
815
816 if (e1000_spi_eeprom_ready(hw)) {
817 e1000_release_eeprom(hw);
818 return -E1000_ERR_EEPROM;
819 }
820
821 e1000_standby_eeprom(hw);
822
823 /* Some SPI eeproms use the 8th address bit embedded in
824 * the opcode */
825 if ((eeprom->address_bits == 8) && (offset >= 128))
826 read_opcode |= EEPROM_A8_OPCODE_SPI;
827
828 /* Send the READ command (opcode + addr) */
829 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
830 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
831 eeprom->address_bits);
832
833 /* Read the data. The address of the eeprom internally
834 * increments with each byte (spi) being read, saving on the
835 * overhead of eeprom setup and tear-down. The address
836 * counter will roll over if reading beyond the size of
837 * the eeprom, thus allowing the entire memory to be read
838 * starting from any offset. */
839 for (i = 0; i < words; i++) {
840 word_in = e1000_shift_in_ee_bits(hw, 16);
841 data[i] = (word_in >> 8) | (word_in << 8);
842 }
843 } else if (eeprom->type == e1000_eeprom_microwire) {
844 for (i = 0; i < words; i++) {
845 /* Send the READ command (opcode + addr) */
846 e1000_shift_out_ee_bits(hw,
847 EEPROM_READ_OPCODE_MICROWIRE,
848 eeprom->opcode_bits);
849 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
850 eeprom->address_bits);
851
852 /* Read the data. For microwire, each word requires
853 * the overhead of eeprom setup and tear-down. */
854 data[i] = e1000_shift_in_ee_bits(hw, 16);
855 e1000_standby_eeprom(hw);
856 }
857 }
858
859 /* End this read operation */
860 e1000_release_eeprom(hw);
861
862 return E1000_SUCCESS;
863 }
864
865 #ifndef CONFIG_DM_ETH
866 /******************************************************************************
867 * e1000_write_eeprom_srwr - Write to Shadow Ram using EEWR
868 * @hw: pointer to the HW structure
869 * @offset: offset within the Shadow Ram to be written to
870 * @words: number of words to write
871 * @data: 16 bit word(s) to be written to the Shadow Ram
872 *
873 * Writes data to Shadow Ram at offset using EEWR register.
874 *
875 * If e1000_update_eeprom_checksum_i210 is not called after this function, the
876 * Shadow Ram will most likely contain an invalid checksum.
877 *****************************************************************************/
e1000_write_eeprom_srwr(struct e1000_hw * hw,uint16_t offset,uint16_t words,uint16_t * data)878 static int32_t e1000_write_eeprom_srwr(struct e1000_hw *hw, uint16_t offset,
879 uint16_t words, uint16_t *data)
880 {
881 struct e1000_eeprom_info *eeprom = &hw->eeprom;
882 uint32_t i, k, eewr = 0;
883 uint32_t attempts = 100000;
884 int32_t ret_val = 0;
885
886 /* A check for invalid values: offset too large, too many words,
887 * too many words for the offset, and not enough words.
888 */
889 if ((offset >= eeprom->word_size) ||
890 (words > (eeprom->word_size - offset)) || (words == 0)) {
891 DEBUGOUT("nvm parameter(s) out of bounds\n");
892 ret_val = -E1000_ERR_EEPROM;
893 goto out;
894 }
895
896 for (i = 0; i < words; i++) {
897 eewr = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT)
898 | (data[i] << E1000_EEPROM_RW_REG_DATA) |
899 E1000_EEPROM_RW_REG_START;
900
901 E1000_WRITE_REG(hw, I210_EEWR, eewr);
902
903 for (k = 0; k < attempts; k++) {
904 if (E1000_EEPROM_RW_REG_DONE &
905 E1000_READ_REG(hw, I210_EEWR)) {
906 ret_val = 0;
907 break;
908 }
909 udelay(5);
910 }
911
912 if (ret_val) {
913 DEBUGOUT("Shadow RAM write EEWR timed out\n");
914 break;
915 }
916 }
917
918 out:
919 return ret_val;
920 }
921
922 /******************************************************************************
923 * e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
924 * @hw: pointer to the HW structure
925 *
926 *****************************************************************************/
e1000_pool_flash_update_done_i210(struct e1000_hw * hw)927 static int32_t e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
928 {
929 int32_t ret_val = -E1000_ERR_EEPROM;
930 uint32_t i, reg;
931
932 for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
933 reg = E1000_READ_REG(hw, EECD);
934 if (reg & E1000_EECD_FLUDONE_I210) {
935 ret_val = 0;
936 break;
937 }
938 udelay(5);
939 }
940
941 return ret_val;
942 }
943
944 /******************************************************************************
945 * e1000_update_flash_i210 - Commit EEPROM to the flash
946 * @hw: pointer to the HW structure
947 *
948 *****************************************************************************/
e1000_update_flash_i210(struct e1000_hw * hw)949 static int32_t e1000_update_flash_i210(struct e1000_hw *hw)
950 {
951 int32_t ret_val = 0;
952 uint32_t flup;
953
954 ret_val = e1000_pool_flash_update_done_i210(hw);
955 if (ret_val == -E1000_ERR_EEPROM) {
956 DEBUGOUT("Flash update time out\n");
957 goto out;
958 }
959
960 flup = E1000_READ_REG(hw, EECD) | E1000_EECD_FLUPD_I210;
961 E1000_WRITE_REG(hw, EECD, flup);
962
963 ret_val = e1000_pool_flash_update_done_i210(hw);
964 if (ret_val)
965 DEBUGOUT("Flash update time out\n");
966 else
967 DEBUGOUT("Flash update complete\n");
968
969 out:
970 return ret_val;
971 }
972
973 /******************************************************************************
974 * e1000_update_eeprom_checksum_i210 - Update EEPROM checksum
975 * @hw: pointer to the HW structure
976 *
977 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
978 * up to the checksum. Then calculates the EEPROM checksum and writes the
979 * value to the EEPROM. Next commit EEPROM data onto the Flash.
980 *****************************************************************************/
e1000_update_eeprom_checksum_i210(struct e1000_hw * hw)981 static int32_t e1000_update_eeprom_checksum_i210(struct e1000_hw *hw)
982 {
983 int32_t ret_val = 0;
984 uint16_t checksum = 0;
985 uint16_t i, nvm_data;
986
987 /* Read the first word from the EEPROM. If this times out or fails, do
988 * not continue or we could be in for a very long wait while every
989 * EEPROM read fails
990 */
991 ret_val = e1000_read_eeprom_eerd(hw, 0, 1, &nvm_data);
992 if (ret_val) {
993 DEBUGOUT("EEPROM read failed\n");
994 goto out;
995 }
996
997 if (!(e1000_get_hw_eeprom_semaphore(hw))) {
998 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
999 * because we do not want to take the synchronization
1000 * semaphores twice here.
1001 */
1002
1003 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
1004 ret_val = e1000_read_eeprom_eerd(hw, i, 1, &nvm_data);
1005 if (ret_val) {
1006 e1000_put_hw_eeprom_semaphore(hw);
1007 DEBUGOUT("EEPROM Read Error while updating checksum.\n");
1008 goto out;
1009 }
1010 checksum += nvm_data;
1011 }
1012 checksum = (uint16_t)EEPROM_SUM - checksum;
1013 ret_val = e1000_write_eeprom_srwr(hw, EEPROM_CHECKSUM_REG, 1,
1014 &checksum);
1015 if (ret_val) {
1016 e1000_put_hw_eeprom_semaphore(hw);
1017 DEBUGOUT("EEPROM Write Error while updating checksum.\n");
1018 goto out;
1019 }
1020
1021 e1000_put_hw_eeprom_semaphore(hw);
1022
1023 ret_val = e1000_update_flash_i210(hw);
1024 } else {
1025 ret_val = -E1000_ERR_SWFW_SYNC;
1026 }
1027
1028 out:
1029 return ret_val;
1030 }
1031 #endif
1032
1033 /******************************************************************************
1034 * Verifies that the EEPROM has a valid checksum
1035 *
1036 * hw - Struct containing variables accessed by shared code
1037 *
1038 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
1039 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
1040 * valid.
1041 *****************************************************************************/
e1000_validate_eeprom_checksum(struct e1000_hw * hw)1042 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
1043 {
1044 uint16_t i, checksum, checksum_reg, *buf;
1045
1046 DEBUGFUNC();
1047
1048 /* Allocate a temporary buffer */
1049 buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
1050 if (!buf) {
1051 E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
1052 return -E1000_ERR_EEPROM;
1053 }
1054
1055 /* Read the EEPROM */
1056 if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
1057 E1000_ERR(hw, "Unable to read EEPROM!\n");
1058 return -E1000_ERR_EEPROM;
1059 }
1060
1061 /* Compute the checksum */
1062 checksum = 0;
1063 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
1064 checksum += buf[i];
1065 checksum = ((uint16_t)EEPROM_SUM) - checksum;
1066 checksum_reg = buf[i];
1067
1068 /* Verify it! */
1069 if (checksum == checksum_reg)
1070 return 0;
1071
1072 /* Hrm, verification failed, print an error */
1073 E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
1074 E1000_ERR(hw, " ...register was 0x%04hx, calculated 0x%04hx\n",
1075 checksum_reg, checksum);
1076
1077 return -E1000_ERR_EEPROM;
1078 }
1079 #endif /* CONFIG_E1000_NO_NVM */
1080
1081 /*****************************************************************************
1082 * Set PHY to class A mode
1083 * Assumes the following operations will follow to enable the new class mode.
1084 * 1. Do a PHY soft reset
1085 * 2. Restart auto-negotiation or force link.
1086 *
1087 * hw - Struct containing variables accessed by shared code
1088 ****************************************************************************/
1089 static int32_t
e1000_set_phy_mode(struct e1000_hw * hw)1090 e1000_set_phy_mode(struct e1000_hw *hw)
1091 {
1092 #ifndef CONFIG_E1000_NO_NVM
1093 int32_t ret_val;
1094 uint16_t eeprom_data;
1095
1096 DEBUGFUNC();
1097
1098 if ((hw->mac_type == e1000_82545_rev_3) &&
1099 (hw->media_type == e1000_media_type_copper)) {
1100 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
1101 1, &eeprom_data);
1102 if (ret_val)
1103 return ret_val;
1104
1105 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
1106 (eeprom_data & EEPROM_PHY_CLASS_A)) {
1107 ret_val = e1000_write_phy_reg(hw,
1108 M88E1000_PHY_PAGE_SELECT, 0x000B);
1109 if (ret_val)
1110 return ret_val;
1111 ret_val = e1000_write_phy_reg(hw,
1112 M88E1000_PHY_GEN_CONTROL, 0x8104);
1113 if (ret_val)
1114 return ret_val;
1115
1116 hw->phy_reset_disable = false;
1117 }
1118 }
1119 #endif
1120 return E1000_SUCCESS;
1121 }
1122
1123 #ifndef CONFIG_E1000_NO_NVM
1124 /***************************************************************************
1125 *
1126 * Obtaining software semaphore bit (SMBI) before resetting PHY.
1127 *
1128 * hw: Struct containing variables accessed by shared code
1129 *
1130 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
1131 * E1000_SUCCESS at any other case.
1132 *
1133 ***************************************************************************/
1134 static int32_t
e1000_get_software_semaphore(struct e1000_hw * hw)1135 e1000_get_software_semaphore(struct e1000_hw *hw)
1136 {
1137 int32_t timeout = hw->eeprom.word_size + 1;
1138 uint32_t swsm;
1139
1140 DEBUGFUNC();
1141
1142 if (hw->mac_type != e1000_80003es2lan && hw->mac_type != e1000_igb)
1143 return E1000_SUCCESS;
1144
1145 while (timeout) {
1146 swsm = E1000_READ_REG(hw, SWSM);
1147 /* If SMBI bit cleared, it is now set and we hold
1148 * the semaphore */
1149 if (!(swsm & E1000_SWSM_SMBI))
1150 break;
1151 mdelay(1);
1152 timeout--;
1153 }
1154
1155 if (!timeout) {
1156 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1157 return -E1000_ERR_RESET;
1158 }
1159
1160 return E1000_SUCCESS;
1161 }
1162 #endif
1163
1164 /***************************************************************************
1165 * This function clears HW semaphore bits.
1166 *
1167 * hw: Struct containing variables accessed by shared code
1168 *
1169 * returns: - None.
1170 *
1171 ***************************************************************************/
1172 static void
e1000_put_hw_eeprom_semaphore(struct e1000_hw * hw)1173 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1174 {
1175 #ifndef CONFIG_E1000_NO_NVM
1176 uint32_t swsm;
1177
1178 DEBUGFUNC();
1179
1180 if (!hw->eeprom_semaphore_present)
1181 return;
1182
1183 swsm = E1000_READ_REG(hw, SWSM);
1184 if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
1185 /* Release both semaphores. */
1186 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1187 } else
1188 swsm &= ~(E1000_SWSM_SWESMBI);
1189 E1000_WRITE_REG(hw, SWSM, swsm);
1190 #endif
1191 }
1192
1193 /***************************************************************************
1194 *
1195 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1196 * adapter or Eeprom access.
1197 *
1198 * hw: Struct containing variables accessed by shared code
1199 *
1200 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1201 * E1000_SUCCESS at any other case.
1202 *
1203 ***************************************************************************/
1204 static int32_t
e1000_get_hw_eeprom_semaphore(struct e1000_hw * hw)1205 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1206 {
1207 #ifndef CONFIG_E1000_NO_NVM
1208 int32_t timeout;
1209 uint32_t swsm;
1210
1211 DEBUGFUNC();
1212
1213 if (!hw->eeprom_semaphore_present)
1214 return E1000_SUCCESS;
1215
1216 if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
1217 /* Get the SW semaphore. */
1218 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1219 return -E1000_ERR_EEPROM;
1220 }
1221
1222 /* Get the FW semaphore. */
1223 timeout = hw->eeprom.word_size + 1;
1224 while (timeout) {
1225 swsm = E1000_READ_REG(hw, SWSM);
1226 swsm |= E1000_SWSM_SWESMBI;
1227 E1000_WRITE_REG(hw, SWSM, swsm);
1228 /* if we managed to set the bit we got the semaphore. */
1229 swsm = E1000_READ_REG(hw, SWSM);
1230 if (swsm & E1000_SWSM_SWESMBI)
1231 break;
1232
1233 udelay(50);
1234 timeout--;
1235 }
1236
1237 if (!timeout) {
1238 /* Release semaphores */
1239 e1000_put_hw_eeprom_semaphore(hw);
1240 DEBUGOUT("Driver can't access the Eeprom - "
1241 "SWESMBI bit is set.\n");
1242 return -E1000_ERR_EEPROM;
1243 }
1244 #endif
1245 return E1000_SUCCESS;
1246 }
1247
1248 /* Take ownership of the PHY */
1249 static int32_t
e1000_swfw_sync_acquire(struct e1000_hw * hw,uint16_t mask)1250 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1251 {
1252 uint32_t swfw_sync = 0;
1253 uint32_t swmask = mask;
1254 uint32_t fwmask = mask << 16;
1255 int32_t timeout = 200;
1256
1257 DEBUGFUNC();
1258 while (timeout) {
1259 if (e1000_get_hw_eeprom_semaphore(hw))
1260 return -E1000_ERR_SWFW_SYNC;
1261
1262 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1263 if (!(swfw_sync & (fwmask | swmask)))
1264 break;
1265
1266 /* firmware currently using resource (fwmask) */
1267 /* or other software thread currently using resource (swmask) */
1268 e1000_put_hw_eeprom_semaphore(hw);
1269 mdelay(5);
1270 timeout--;
1271 }
1272
1273 if (!timeout) {
1274 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1275 return -E1000_ERR_SWFW_SYNC;
1276 }
1277
1278 swfw_sync |= swmask;
1279 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1280
1281 e1000_put_hw_eeprom_semaphore(hw);
1282 return E1000_SUCCESS;
1283 }
1284
e1000_swfw_sync_release(struct e1000_hw * hw,uint16_t mask)1285 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1286 {
1287 uint32_t swfw_sync = 0;
1288
1289 DEBUGFUNC();
1290 while (e1000_get_hw_eeprom_semaphore(hw))
1291 ; /* Empty */
1292
1293 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1294 swfw_sync &= ~mask;
1295 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1296
1297 e1000_put_hw_eeprom_semaphore(hw);
1298 }
1299
e1000_is_second_port(struct e1000_hw * hw)1300 static bool e1000_is_second_port(struct e1000_hw *hw)
1301 {
1302 switch (hw->mac_type) {
1303 case e1000_80003es2lan:
1304 case e1000_82546:
1305 case e1000_82571:
1306 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1307 return true;
1308 /* Fallthrough */
1309 default:
1310 return false;
1311 }
1312 }
1313
1314 #ifndef CONFIG_E1000_NO_NVM
1315 /******************************************************************************
1316 * Reads the adapter's MAC address from the EEPROM
1317 *
1318 * hw - Struct containing variables accessed by shared code
1319 * enetaddr - buffering where the MAC address will be stored
1320 *****************************************************************************/
e1000_read_mac_addr_from_eeprom(struct e1000_hw * hw,unsigned char enetaddr[6])1321 static int e1000_read_mac_addr_from_eeprom(struct e1000_hw *hw,
1322 unsigned char enetaddr[6])
1323 {
1324 uint16_t offset;
1325 uint16_t eeprom_data;
1326 int i;
1327
1328 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1329 offset = i >> 1;
1330 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1331 DEBUGOUT("EEPROM Read Error\n");
1332 return -E1000_ERR_EEPROM;
1333 }
1334 enetaddr[i] = eeprom_data & 0xff;
1335 enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1336 }
1337
1338 return 0;
1339 }
1340
1341 /******************************************************************************
1342 * Reads the adapter's MAC address from the RAL/RAH registers
1343 *
1344 * hw - Struct containing variables accessed by shared code
1345 * enetaddr - buffering where the MAC address will be stored
1346 *****************************************************************************/
e1000_read_mac_addr_from_regs(struct e1000_hw * hw,unsigned char enetaddr[6])1347 static int e1000_read_mac_addr_from_regs(struct e1000_hw *hw,
1348 unsigned char enetaddr[6])
1349 {
1350 uint16_t offset, tmp;
1351 uint32_t reg_data = 0;
1352 int i;
1353
1354 if (hw->mac_type != e1000_igb)
1355 return -E1000_ERR_MAC_TYPE;
1356
1357 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1358 offset = i >> 1;
1359
1360 if (offset == 0)
1361 reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1362 else if (offset == 1)
1363 reg_data >>= 16;
1364 else if (offset == 2)
1365 reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1366 tmp = reg_data & 0xffff;
1367
1368 enetaddr[i] = tmp & 0xff;
1369 enetaddr[i + 1] = (tmp >> 8) & 0xff;
1370 }
1371
1372 return 0;
1373 }
1374
1375 /******************************************************************************
1376 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1377 * second function of dual function devices
1378 *
1379 * hw - Struct containing variables accessed by shared code
1380 * enetaddr - buffering where the MAC address will be stored
1381 *****************************************************************************/
e1000_read_mac_addr(struct e1000_hw * hw,unsigned char enetaddr[6])1382 static int e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
1383 {
1384 int ret_val;
1385
1386 if (hw->mac_type == e1000_igb) {
1387 /* i210 preloads MAC address into RAL/RAH registers */
1388 ret_val = e1000_read_mac_addr_from_regs(hw, enetaddr);
1389 } else {
1390 ret_val = e1000_read_mac_addr_from_eeprom(hw, enetaddr);
1391 }
1392 if (ret_val)
1393 return ret_val;
1394
1395 /* Invert the last bit if this is the second device */
1396 if (e1000_is_second_port(hw))
1397 enetaddr[5] ^= 1;
1398
1399 return 0;
1400 }
1401 #endif
1402
1403 /******************************************************************************
1404 * Initializes receive address filters.
1405 *
1406 * hw - Struct containing variables accessed by shared code
1407 *
1408 * Places the MAC address in receive address register 0 and clears the rest
1409 * of the receive addresss registers. Clears the multicast table. Assumes
1410 * the receiver is in reset when the routine is called.
1411 *****************************************************************************/
1412 static void
e1000_init_rx_addrs(struct e1000_hw * hw,unsigned char enetaddr[6])1413 e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
1414 {
1415 uint32_t i;
1416 uint32_t addr_low;
1417 uint32_t addr_high;
1418
1419 DEBUGFUNC();
1420
1421 /* Setup the receive address. */
1422 DEBUGOUT("Programming MAC Address into RAR[0]\n");
1423 addr_low = (enetaddr[0] |
1424 (enetaddr[1] << 8) |
1425 (enetaddr[2] << 16) | (enetaddr[3] << 24));
1426
1427 addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
1428
1429 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1430 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1431
1432 /* Zero out the other 15 receive addresses. */
1433 DEBUGOUT("Clearing RAR[1-15]\n");
1434 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1435 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1436 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1437 }
1438 }
1439
1440 /******************************************************************************
1441 * Clears the VLAN filer table
1442 *
1443 * hw - Struct containing variables accessed by shared code
1444 *****************************************************************************/
1445 static void
e1000_clear_vfta(struct e1000_hw * hw)1446 e1000_clear_vfta(struct e1000_hw *hw)
1447 {
1448 uint32_t offset;
1449
1450 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1451 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1452 }
1453
1454 /******************************************************************************
1455 * Set the mac type member in the hw struct.
1456 *
1457 * hw - Struct containing variables accessed by shared code
1458 *****************************************************************************/
1459 int32_t
e1000_set_mac_type(struct e1000_hw * hw)1460 e1000_set_mac_type(struct e1000_hw *hw)
1461 {
1462 DEBUGFUNC();
1463
1464 switch (hw->device_id) {
1465 case E1000_DEV_ID_82542:
1466 switch (hw->revision_id) {
1467 case E1000_82542_2_0_REV_ID:
1468 hw->mac_type = e1000_82542_rev2_0;
1469 break;
1470 case E1000_82542_2_1_REV_ID:
1471 hw->mac_type = e1000_82542_rev2_1;
1472 break;
1473 default:
1474 /* Invalid 82542 revision ID */
1475 return -E1000_ERR_MAC_TYPE;
1476 }
1477 break;
1478 case E1000_DEV_ID_82543GC_FIBER:
1479 case E1000_DEV_ID_82543GC_COPPER:
1480 hw->mac_type = e1000_82543;
1481 break;
1482 case E1000_DEV_ID_82544EI_COPPER:
1483 case E1000_DEV_ID_82544EI_FIBER:
1484 case E1000_DEV_ID_82544GC_COPPER:
1485 case E1000_DEV_ID_82544GC_LOM:
1486 hw->mac_type = e1000_82544;
1487 break;
1488 case E1000_DEV_ID_82540EM:
1489 case E1000_DEV_ID_82540EM_LOM:
1490 case E1000_DEV_ID_82540EP:
1491 case E1000_DEV_ID_82540EP_LOM:
1492 case E1000_DEV_ID_82540EP_LP:
1493 hw->mac_type = e1000_82540;
1494 break;
1495 case E1000_DEV_ID_82545EM_COPPER:
1496 case E1000_DEV_ID_82545EM_FIBER:
1497 hw->mac_type = e1000_82545;
1498 break;
1499 case E1000_DEV_ID_82545GM_COPPER:
1500 case E1000_DEV_ID_82545GM_FIBER:
1501 case E1000_DEV_ID_82545GM_SERDES:
1502 hw->mac_type = e1000_82545_rev_3;
1503 break;
1504 case E1000_DEV_ID_82546EB_COPPER:
1505 case E1000_DEV_ID_82546EB_FIBER:
1506 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1507 hw->mac_type = e1000_82546;
1508 break;
1509 case E1000_DEV_ID_82546GB_COPPER:
1510 case E1000_DEV_ID_82546GB_FIBER:
1511 case E1000_DEV_ID_82546GB_SERDES:
1512 case E1000_DEV_ID_82546GB_PCIE:
1513 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1514 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1515 hw->mac_type = e1000_82546_rev_3;
1516 break;
1517 case E1000_DEV_ID_82541EI:
1518 case E1000_DEV_ID_82541EI_MOBILE:
1519 case E1000_DEV_ID_82541ER_LOM:
1520 hw->mac_type = e1000_82541;
1521 break;
1522 case E1000_DEV_ID_82541ER:
1523 case E1000_DEV_ID_82541GI:
1524 case E1000_DEV_ID_82541GI_LF:
1525 case E1000_DEV_ID_82541GI_MOBILE:
1526 hw->mac_type = e1000_82541_rev_2;
1527 break;
1528 case E1000_DEV_ID_82547EI:
1529 case E1000_DEV_ID_82547EI_MOBILE:
1530 hw->mac_type = e1000_82547;
1531 break;
1532 case E1000_DEV_ID_82547GI:
1533 hw->mac_type = e1000_82547_rev_2;
1534 break;
1535 case E1000_DEV_ID_82571EB_COPPER:
1536 case E1000_DEV_ID_82571EB_FIBER:
1537 case E1000_DEV_ID_82571EB_SERDES:
1538 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1539 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1540 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1541 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1542 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1543 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1544 hw->mac_type = e1000_82571;
1545 break;
1546 case E1000_DEV_ID_82572EI_COPPER:
1547 case E1000_DEV_ID_82572EI_FIBER:
1548 case E1000_DEV_ID_82572EI_SERDES:
1549 case E1000_DEV_ID_82572EI:
1550 hw->mac_type = e1000_82572;
1551 break;
1552 case E1000_DEV_ID_82573E:
1553 case E1000_DEV_ID_82573E_IAMT:
1554 case E1000_DEV_ID_82573L:
1555 hw->mac_type = e1000_82573;
1556 break;
1557 case E1000_DEV_ID_82574L:
1558 hw->mac_type = e1000_82574;
1559 break;
1560 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1561 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1562 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1563 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1564 hw->mac_type = e1000_80003es2lan;
1565 break;
1566 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1567 case E1000_DEV_ID_ICH8_IGP_AMT:
1568 case E1000_DEV_ID_ICH8_IGP_C:
1569 case E1000_DEV_ID_ICH8_IFE:
1570 case E1000_DEV_ID_ICH8_IFE_GT:
1571 case E1000_DEV_ID_ICH8_IFE_G:
1572 case E1000_DEV_ID_ICH8_IGP_M:
1573 hw->mac_type = e1000_ich8lan;
1574 break;
1575 case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1576 case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
1577 case PCI_DEVICE_ID_INTEL_I210_COPPER:
1578 case PCI_DEVICE_ID_INTEL_I211_COPPER:
1579 case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1580 case PCI_DEVICE_ID_INTEL_I210_SERDES:
1581 case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1582 case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1583 hw->mac_type = e1000_igb;
1584 break;
1585 default:
1586 /* Should never have loaded on this device */
1587 return -E1000_ERR_MAC_TYPE;
1588 }
1589 return E1000_SUCCESS;
1590 }
1591
1592 /******************************************************************************
1593 * Reset the transmit and receive units; mask and clear all interrupts.
1594 *
1595 * hw - Struct containing variables accessed by shared code
1596 *****************************************************************************/
1597 void
e1000_reset_hw(struct e1000_hw * hw)1598 e1000_reset_hw(struct e1000_hw *hw)
1599 {
1600 uint32_t ctrl;
1601 uint32_t ctrl_ext;
1602 uint32_t manc;
1603 uint32_t pba = 0;
1604 uint32_t reg;
1605
1606 DEBUGFUNC();
1607
1608 /* get the correct pba value for both PCI and PCIe*/
1609 if (hw->mac_type < e1000_82571)
1610 pba = E1000_DEFAULT_PCI_PBA;
1611 else
1612 pba = E1000_DEFAULT_PCIE_PBA;
1613
1614 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1615 if (hw->mac_type == e1000_82542_rev2_0) {
1616 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1617 #ifdef CONFIG_DM_ETH
1618 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1619 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1620 #else
1621 pci_write_config_word(hw->pdev, PCI_COMMAND,
1622 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1623 #endif
1624 }
1625
1626 /* Clear interrupt mask to stop board from generating interrupts */
1627 DEBUGOUT("Masking off all interrupts\n");
1628 if (hw->mac_type == e1000_igb)
1629 E1000_WRITE_REG(hw, I210_IAM, 0);
1630 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1631
1632 /* Disable the Transmit and Receive units. Then delay to allow
1633 * any pending transactions to complete before we hit the MAC with
1634 * the global reset.
1635 */
1636 E1000_WRITE_REG(hw, RCTL, 0);
1637 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1638 E1000_WRITE_FLUSH(hw);
1639
1640 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1641 hw->tbi_compatibility_on = false;
1642
1643 /* Delay to allow any outstanding PCI transactions to complete before
1644 * resetting the device
1645 */
1646 mdelay(10);
1647
1648 /* Issue a global reset to the MAC. This will reset the chip's
1649 * transmit, receive, DMA, and link units. It will not effect
1650 * the current PCI configuration. The global reset bit is self-
1651 * clearing, and should clear within a microsecond.
1652 */
1653 DEBUGOUT("Issuing a global reset to MAC\n");
1654 ctrl = E1000_READ_REG(hw, CTRL);
1655
1656 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1657
1658 /* Force a reload from the EEPROM if necessary */
1659 if (hw->mac_type == e1000_igb) {
1660 mdelay(20);
1661 reg = E1000_READ_REG(hw, STATUS);
1662 if (reg & E1000_STATUS_PF_RST_DONE)
1663 DEBUGOUT("PF OK\n");
1664 reg = E1000_READ_REG(hw, I210_EECD);
1665 if (reg & E1000_EECD_AUTO_RD)
1666 DEBUGOUT("EEC OK\n");
1667 } else if (hw->mac_type < e1000_82540) {
1668 /* Wait for reset to complete */
1669 udelay(10);
1670 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1671 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1672 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1673 E1000_WRITE_FLUSH(hw);
1674 /* Wait for EEPROM reload */
1675 mdelay(2);
1676 } else {
1677 /* Wait for EEPROM reload (it happens automatically) */
1678 mdelay(4);
1679 /* Dissable HW ARPs on ASF enabled adapters */
1680 manc = E1000_READ_REG(hw, MANC);
1681 manc &= ~(E1000_MANC_ARP_EN);
1682 E1000_WRITE_REG(hw, MANC, manc);
1683 }
1684
1685 /* Clear interrupt mask to stop board from generating interrupts */
1686 DEBUGOUT("Masking off all interrupts\n");
1687 if (hw->mac_type == e1000_igb)
1688 E1000_WRITE_REG(hw, I210_IAM, 0);
1689 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1690
1691 /* Clear any pending interrupt events. */
1692 E1000_READ_REG(hw, ICR);
1693
1694 /* If MWI was previously enabled, reenable it. */
1695 if (hw->mac_type == e1000_82542_rev2_0) {
1696 #ifdef CONFIG_DM_ETH
1697 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1698 #else
1699 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1700 #endif
1701 }
1702 if (hw->mac_type != e1000_igb)
1703 E1000_WRITE_REG(hw, PBA, pba);
1704 }
1705
1706 /******************************************************************************
1707 *
1708 * Initialize a number of hardware-dependent bits
1709 *
1710 * hw: Struct containing variables accessed by shared code
1711 *
1712 * This function contains hardware limitation workarounds for PCI-E adapters
1713 *
1714 *****************************************************************************/
1715 static void
e1000_initialize_hardware_bits(struct e1000_hw * hw)1716 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1717 {
1718 if ((hw->mac_type >= e1000_82571) &&
1719 (!hw->initialize_hw_bits_disable)) {
1720 /* Settings common to all PCI-express silicon */
1721 uint32_t reg_ctrl, reg_ctrl_ext;
1722 uint32_t reg_tarc0, reg_tarc1;
1723 uint32_t reg_tctl;
1724 uint32_t reg_txdctl, reg_txdctl1;
1725
1726 /* link autonegotiation/sync workarounds */
1727 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1728 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1729
1730 /* Enable not-done TX descriptor counting */
1731 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1732 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1733 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1734
1735 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1736 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1737 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1738
1739
1740 switch (hw->mac_type) {
1741 case e1000_igb: /* IGB is cool */
1742 return;
1743 case e1000_82571:
1744 case e1000_82572:
1745 /* Clear PHY TX compatible mode bits */
1746 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1747 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1748
1749 /* link autonegotiation/sync workarounds */
1750 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1751
1752 /* TX ring control fixes */
1753 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1754
1755 /* Multiple read bit is reversed polarity */
1756 reg_tctl = E1000_READ_REG(hw, TCTL);
1757 if (reg_tctl & E1000_TCTL_MULR)
1758 reg_tarc1 &= ~(1 << 28);
1759 else
1760 reg_tarc1 |= (1 << 28);
1761
1762 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1763 break;
1764 case e1000_82573:
1765 case e1000_82574:
1766 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1767 reg_ctrl_ext &= ~(1 << 23);
1768 reg_ctrl_ext |= (1 << 22);
1769
1770 /* TX byte count fix */
1771 reg_ctrl = E1000_READ_REG(hw, CTRL);
1772 reg_ctrl &= ~(1 << 29);
1773
1774 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1775 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1776 break;
1777 case e1000_80003es2lan:
1778 /* improve small packet performace for fiber/serdes */
1779 if ((hw->media_type == e1000_media_type_fiber)
1780 || (hw->media_type ==
1781 e1000_media_type_internal_serdes)) {
1782 reg_tarc0 &= ~(1 << 20);
1783 }
1784
1785 /* Multiple read bit is reversed polarity */
1786 reg_tctl = E1000_READ_REG(hw, TCTL);
1787 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1788 if (reg_tctl & E1000_TCTL_MULR)
1789 reg_tarc1 &= ~(1 << 28);
1790 else
1791 reg_tarc1 |= (1 << 28);
1792
1793 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1794 break;
1795 case e1000_ich8lan:
1796 /* Reduce concurrent DMA requests to 3 from 4 */
1797 if ((hw->revision_id < 3) ||
1798 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1799 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1800 reg_tarc0 |= ((1 << 29)|(1 << 28));
1801
1802 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1803 reg_ctrl_ext |= (1 << 22);
1804 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1805
1806 /* workaround TX hang with TSO=on */
1807 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1808
1809 /* Multiple read bit is reversed polarity */
1810 reg_tctl = E1000_READ_REG(hw, TCTL);
1811 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1812 if (reg_tctl & E1000_TCTL_MULR)
1813 reg_tarc1 &= ~(1 << 28);
1814 else
1815 reg_tarc1 |= (1 << 28);
1816
1817 /* workaround TX hang with TSO=on */
1818 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1819
1820 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1821 break;
1822 default:
1823 break;
1824 }
1825
1826 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1827 }
1828 }
1829
1830 /******************************************************************************
1831 * Performs basic configuration of the adapter.
1832 *
1833 * hw - Struct containing variables accessed by shared code
1834 *
1835 * Assumes that the controller has previously been reset and is in a
1836 * post-reset uninitialized state. Initializes the receive address registers,
1837 * multicast table, and VLAN filter table. Calls routines to setup link
1838 * configuration and flow control settings. Clears all on-chip counters. Leaves
1839 * the transmit and receive units disabled and uninitialized.
1840 *****************************************************************************/
1841 static int
e1000_init_hw(struct e1000_hw * hw,unsigned char enetaddr[6])1842 e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
1843 {
1844 uint32_t ctrl;
1845 uint32_t i;
1846 int32_t ret_val;
1847 uint16_t pcix_cmd_word;
1848 uint16_t pcix_stat_hi_word;
1849 uint16_t cmd_mmrbc;
1850 uint16_t stat_mmrbc;
1851 uint32_t mta_size;
1852 uint32_t reg_data;
1853 uint32_t ctrl_ext;
1854 DEBUGFUNC();
1855 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1856 if ((hw->mac_type == e1000_ich8lan) &&
1857 ((hw->revision_id < 3) ||
1858 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1859 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1860 reg_data = E1000_READ_REG(hw, STATUS);
1861 reg_data &= ~0x80000000;
1862 E1000_WRITE_REG(hw, STATUS, reg_data);
1863 }
1864 /* Do not need initialize Identification LED */
1865
1866 /* Set the media type and TBI compatibility */
1867 e1000_set_media_type(hw);
1868
1869 /* Must be called after e1000_set_media_type
1870 * because media_type is used */
1871 e1000_initialize_hardware_bits(hw);
1872
1873 /* Disabling VLAN filtering. */
1874 DEBUGOUT("Initializing the IEEE VLAN\n");
1875 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1876 if (hw->mac_type != e1000_ich8lan) {
1877 if (hw->mac_type < e1000_82545_rev_3)
1878 E1000_WRITE_REG(hw, VET, 0);
1879 e1000_clear_vfta(hw);
1880 }
1881
1882 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1883 if (hw->mac_type == e1000_82542_rev2_0) {
1884 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1885 #ifdef CONFIG_DM_ETH
1886 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1887 hw->
1888 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1889 #else
1890 pci_write_config_word(hw->pdev, PCI_COMMAND,
1891 hw->
1892 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1893 #endif
1894 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1895 E1000_WRITE_FLUSH(hw);
1896 mdelay(5);
1897 }
1898
1899 /* Setup the receive address. This involves initializing all of the Receive
1900 * Address Registers (RARs 0 - 15).
1901 */
1902 e1000_init_rx_addrs(hw, enetaddr);
1903
1904 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1905 if (hw->mac_type == e1000_82542_rev2_0) {
1906 E1000_WRITE_REG(hw, RCTL, 0);
1907 E1000_WRITE_FLUSH(hw);
1908 mdelay(1);
1909 #ifdef CONFIG_DM_ETH
1910 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1911 #else
1912 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1913 #endif
1914 }
1915
1916 /* Zero out the Multicast HASH table */
1917 DEBUGOUT("Zeroing the MTA\n");
1918 mta_size = E1000_MC_TBL_SIZE;
1919 if (hw->mac_type == e1000_ich8lan)
1920 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1921 for (i = 0; i < mta_size; i++) {
1922 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1923 /* use write flush to prevent Memory Write Block (MWB) from
1924 * occuring when accessing our register space */
1925 E1000_WRITE_FLUSH(hw);
1926 }
1927
1928 switch (hw->mac_type) {
1929 case e1000_82545_rev_3:
1930 case e1000_82546_rev_3:
1931 case e1000_igb:
1932 break;
1933 default:
1934 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1935 if (hw->bus_type == e1000_bus_type_pcix) {
1936 #ifdef CONFIG_DM_ETH
1937 dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1938 &pcix_cmd_word);
1939 dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI,
1940 &pcix_stat_hi_word);
1941 #else
1942 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1943 &pcix_cmd_word);
1944 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1945 &pcix_stat_hi_word);
1946 #endif
1947 cmd_mmrbc =
1948 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1949 PCIX_COMMAND_MMRBC_SHIFT;
1950 stat_mmrbc =
1951 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1952 PCIX_STATUS_HI_MMRBC_SHIFT;
1953 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1954 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1955 if (cmd_mmrbc > stat_mmrbc) {
1956 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1957 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1958 #ifdef CONFIG_DM_ETH
1959 dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1960 pcix_cmd_word);
1961 #else
1962 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1963 pcix_cmd_word);
1964 #endif
1965 }
1966 }
1967 break;
1968 }
1969
1970 /* More time needed for PHY to initialize */
1971 if (hw->mac_type == e1000_ich8lan)
1972 mdelay(15);
1973 if (hw->mac_type == e1000_igb)
1974 mdelay(15);
1975
1976 /* Call a subroutine to configure the link and setup flow control. */
1977 ret_val = e1000_setup_link(hw);
1978
1979 /* Set the transmit descriptor write-back policy */
1980 if (hw->mac_type > e1000_82544) {
1981 ctrl = E1000_READ_REG(hw, TXDCTL);
1982 ctrl =
1983 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1984 E1000_TXDCTL_FULL_TX_DESC_WB;
1985 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1986 }
1987
1988 /* Set the receive descriptor write back policy */
1989 if (hw->mac_type >= e1000_82571) {
1990 ctrl = E1000_READ_REG(hw, RXDCTL);
1991 ctrl =
1992 (ctrl & ~E1000_RXDCTL_WTHRESH) |
1993 E1000_RXDCTL_FULL_RX_DESC_WB;
1994 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1995 }
1996
1997 switch (hw->mac_type) {
1998 default:
1999 break;
2000 case e1000_80003es2lan:
2001 /* Enable retransmit on late collisions */
2002 reg_data = E1000_READ_REG(hw, TCTL);
2003 reg_data |= E1000_TCTL_RTLC;
2004 E1000_WRITE_REG(hw, TCTL, reg_data);
2005
2006 /* Configure Gigabit Carry Extend Padding */
2007 reg_data = E1000_READ_REG(hw, TCTL_EXT);
2008 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
2009 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
2010 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
2011
2012 /* Configure Transmit Inter-Packet Gap */
2013 reg_data = E1000_READ_REG(hw, TIPG);
2014 reg_data &= ~E1000_TIPG_IPGT_MASK;
2015 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2016 E1000_WRITE_REG(hw, TIPG, reg_data);
2017
2018 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
2019 reg_data &= ~0x00100000;
2020 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
2021 /* Fall through */
2022 case e1000_82571:
2023 case e1000_82572:
2024 case e1000_ich8lan:
2025 ctrl = E1000_READ_REG(hw, TXDCTL1);
2026 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
2027 | E1000_TXDCTL_FULL_TX_DESC_WB;
2028 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
2029 break;
2030 case e1000_82573:
2031 case e1000_82574:
2032 reg_data = E1000_READ_REG(hw, GCR);
2033 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
2034 E1000_WRITE_REG(hw, GCR, reg_data);
2035 case e1000_igb:
2036 break;
2037 }
2038
2039 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
2040 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
2041 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2042 /* Relaxed ordering must be disabled to avoid a parity
2043 * error crash in a PCI slot. */
2044 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2045 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2046 }
2047
2048 return ret_val;
2049 }
2050
2051 /******************************************************************************
2052 * Configures flow control and link settings.
2053 *
2054 * hw - Struct containing variables accessed by shared code
2055 *
2056 * Determines which flow control settings to use. Calls the apropriate media-
2057 * specific link configuration function. Configures the flow control settings.
2058 * Assuming the adapter has a valid link partner, a valid link should be
2059 * established. Assumes the hardware has previously been reset and the
2060 * transmitter and receiver are not enabled.
2061 *****************************************************************************/
2062 static int
e1000_setup_link(struct e1000_hw * hw)2063 e1000_setup_link(struct e1000_hw *hw)
2064 {
2065 int32_t ret_val;
2066 #ifndef CONFIG_E1000_NO_NVM
2067 uint32_t ctrl_ext;
2068 uint16_t eeprom_data;
2069 #endif
2070
2071 DEBUGFUNC();
2072
2073 /* In the case of the phy reset being blocked, we already have a link.
2074 * We do not have to set it up again. */
2075 if (e1000_check_phy_reset_block(hw))
2076 return E1000_SUCCESS;
2077
2078 #ifndef CONFIG_E1000_NO_NVM
2079 /* Read and store word 0x0F of the EEPROM. This word contains bits
2080 * that determine the hardware's default PAUSE (flow control) mode,
2081 * a bit that determines whether the HW defaults to enabling or
2082 * disabling auto-negotiation, and the direction of the
2083 * SW defined pins. If there is no SW over-ride of the flow
2084 * control setting, then the variable hw->fc will
2085 * be initialized based on a value in the EEPROM.
2086 */
2087 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
2088 &eeprom_data) < 0) {
2089 DEBUGOUT("EEPROM Read Error\n");
2090 return -E1000_ERR_EEPROM;
2091 }
2092 #endif
2093 if (hw->fc == e1000_fc_default) {
2094 switch (hw->mac_type) {
2095 case e1000_ich8lan:
2096 case e1000_82573:
2097 case e1000_82574:
2098 case e1000_igb:
2099 hw->fc = e1000_fc_full;
2100 break;
2101 default:
2102 #ifndef CONFIG_E1000_NO_NVM
2103 ret_val = e1000_read_eeprom(hw,
2104 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
2105 if (ret_val) {
2106 DEBUGOUT("EEPROM Read Error\n");
2107 return -E1000_ERR_EEPROM;
2108 }
2109 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
2110 hw->fc = e1000_fc_none;
2111 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
2112 EEPROM_WORD0F_ASM_DIR)
2113 hw->fc = e1000_fc_tx_pause;
2114 else
2115 #endif
2116 hw->fc = e1000_fc_full;
2117 break;
2118 }
2119 }
2120
2121 /* We want to save off the original Flow Control configuration just
2122 * in case we get disconnected and then reconnected into a different
2123 * hub or switch with different Flow Control capabilities.
2124 */
2125 if (hw->mac_type == e1000_82542_rev2_0)
2126 hw->fc &= (~e1000_fc_tx_pause);
2127
2128 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
2129 hw->fc &= (~e1000_fc_rx_pause);
2130
2131 hw->original_fc = hw->fc;
2132
2133 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
2134
2135 #ifndef CONFIG_E1000_NO_NVM
2136 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
2137 * polarity value for the SW controlled pins, and setup the
2138 * Extended Device Control reg with that info.
2139 * This is needed because one of the SW controlled pins is used for
2140 * signal detection. So this should be done before e1000_setup_pcs_link()
2141 * or e1000_phy_setup() is called.
2142 */
2143 if (hw->mac_type == e1000_82543) {
2144 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
2145 SWDPIO__EXT_SHIFT);
2146 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2147 }
2148 #endif
2149
2150 /* Call the necessary subroutine to configure the link. */
2151 ret_val = (hw->media_type == e1000_media_type_fiber) ?
2152 e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
2153 if (ret_val < 0) {
2154 return ret_val;
2155 }
2156
2157 /* Initialize the flow control address, type, and PAUSE timer
2158 * registers to their default values. This is done even if flow
2159 * control is disabled, because it does not hurt anything to
2160 * initialize these registers.
2161 */
2162 DEBUGOUT("Initializing the Flow Control address, type"
2163 "and timer regs\n");
2164
2165 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
2166 if (hw->mac_type != e1000_ich8lan) {
2167 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
2168 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
2169 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
2170 }
2171
2172 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
2173
2174 /* Set the flow control receive threshold registers. Normally,
2175 * these registers will be set to a default threshold that may be
2176 * adjusted later by the driver's runtime code. However, if the
2177 * ability to transmit pause frames in not enabled, then these
2178 * registers will be set to 0.
2179 */
2180 if (!(hw->fc & e1000_fc_tx_pause)) {
2181 E1000_WRITE_REG(hw, FCRTL, 0);
2182 E1000_WRITE_REG(hw, FCRTH, 0);
2183 } else {
2184 /* We need to set up the Receive Threshold high and low water marks
2185 * as well as (optionally) enabling the transmission of XON frames.
2186 */
2187 if (hw->fc_send_xon) {
2188 E1000_WRITE_REG(hw, FCRTL,
2189 (hw->fc_low_water | E1000_FCRTL_XONE));
2190 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2191 } else {
2192 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
2193 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2194 }
2195 }
2196 return ret_val;
2197 }
2198
2199 /******************************************************************************
2200 * Sets up link for a fiber based adapter
2201 *
2202 * hw - Struct containing variables accessed by shared code
2203 *
2204 * Manipulates Physical Coding Sublayer functions in order to configure
2205 * link. Assumes the hardware has been previously reset and the transmitter
2206 * and receiver are not enabled.
2207 *****************************************************************************/
2208 static int
e1000_setup_fiber_link(struct e1000_hw * hw)2209 e1000_setup_fiber_link(struct e1000_hw *hw)
2210 {
2211 uint32_t ctrl;
2212 uint32_t status;
2213 uint32_t txcw = 0;
2214 uint32_t i;
2215 uint32_t signal;
2216 int32_t ret_val;
2217
2218 DEBUGFUNC();
2219 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2220 * set when the optics detect a signal. On older adapters, it will be
2221 * cleared when there is a signal
2222 */
2223 ctrl = E1000_READ_REG(hw, CTRL);
2224 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2225 signal = E1000_CTRL_SWDPIN1;
2226 else
2227 signal = 0;
2228
2229 printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
2230 ctrl);
2231 /* Take the link out of reset */
2232 ctrl &= ~(E1000_CTRL_LRST);
2233
2234 e1000_config_collision_dist(hw);
2235
2236 /* Check for a software override of the flow control settings, and setup
2237 * the device accordingly. If auto-negotiation is enabled, then software
2238 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2239 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
2240 * auto-negotiation is disabled, then software will have to manually
2241 * configure the two flow control enable bits in the CTRL register.
2242 *
2243 * The possible values of the "fc" parameter are:
2244 * 0: Flow control is completely disabled
2245 * 1: Rx flow control is enabled (we can receive pause frames, but
2246 * not send pause frames).
2247 * 2: Tx flow control is enabled (we can send pause frames but we do
2248 * not support receiving pause frames).
2249 * 3: Both Rx and TX flow control (symmetric) are enabled.
2250 */
2251 switch (hw->fc) {
2252 case e1000_fc_none:
2253 /* Flow control is completely disabled by a software over-ride. */
2254 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2255 break;
2256 case e1000_fc_rx_pause:
2257 /* RX Flow control is enabled and TX Flow control is disabled by a
2258 * software over-ride. Since there really isn't a way to advertise
2259 * that we are capable of RX Pause ONLY, we will advertise that we
2260 * support both symmetric and asymmetric RX PAUSE. Later, we will
2261 * disable the adapter's ability to send PAUSE frames.
2262 */
2263 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2264 break;
2265 case e1000_fc_tx_pause:
2266 /* TX Flow control is enabled, and RX Flow control is disabled, by a
2267 * software over-ride.
2268 */
2269 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2270 break;
2271 case e1000_fc_full:
2272 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2273 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2274 break;
2275 default:
2276 DEBUGOUT("Flow control param set incorrectly\n");
2277 return -E1000_ERR_CONFIG;
2278 break;
2279 }
2280
2281 /* Since auto-negotiation is enabled, take the link out of reset (the link
2282 * will be in reset, because we previously reset the chip). This will
2283 * restart auto-negotiation. If auto-neogtiation is successful then the
2284 * link-up status bit will be set and the flow control enable bits (RFCE
2285 * and TFCE) will be set according to their negotiated value.
2286 */
2287 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2288
2289 E1000_WRITE_REG(hw, TXCW, txcw);
2290 E1000_WRITE_REG(hw, CTRL, ctrl);
2291 E1000_WRITE_FLUSH(hw);
2292
2293 hw->txcw = txcw;
2294 mdelay(1);
2295
2296 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2297 * indication in the Device Status Register. Time-out if a link isn't
2298 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2299 * less than 500 milliseconds even if the other end is doing it in SW).
2300 */
2301 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2302 DEBUGOUT("Looking for Link\n");
2303 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2304 mdelay(10);
2305 status = E1000_READ_REG(hw, STATUS);
2306 if (status & E1000_STATUS_LU)
2307 break;
2308 }
2309 if (i == (LINK_UP_TIMEOUT / 10)) {
2310 /* AutoNeg failed to achieve a link, so we'll call
2311 * e1000_check_for_link. This routine will force the link up if we
2312 * detect a signal. This will allow us to communicate with
2313 * non-autonegotiating link partners.
2314 */
2315 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2316 hw->autoneg_failed = 1;
2317 ret_val = e1000_check_for_link(hw);
2318 if (ret_val < 0) {
2319 DEBUGOUT("Error while checking for link\n");
2320 return ret_val;
2321 }
2322 hw->autoneg_failed = 0;
2323 } else {
2324 hw->autoneg_failed = 0;
2325 DEBUGOUT("Valid Link Found\n");
2326 }
2327 } else {
2328 DEBUGOUT("No Signal Detected\n");
2329 return -E1000_ERR_NOLINK;
2330 }
2331 return 0;
2332 }
2333
2334 /******************************************************************************
2335 * Make sure we have a valid PHY and change PHY mode before link setup.
2336 *
2337 * hw - Struct containing variables accessed by shared code
2338 ******************************************************************************/
2339 static int32_t
e1000_copper_link_preconfig(struct e1000_hw * hw)2340 e1000_copper_link_preconfig(struct e1000_hw *hw)
2341 {
2342 uint32_t ctrl;
2343 int32_t ret_val;
2344 uint16_t phy_data;
2345
2346 DEBUGFUNC();
2347
2348 ctrl = E1000_READ_REG(hw, CTRL);
2349 /* With 82543, we need to force speed and duplex on the MAC equal to what
2350 * the PHY speed and duplex configuration is. In addition, we need to
2351 * perform a hardware reset on the PHY to take it out of reset.
2352 */
2353 if (hw->mac_type > e1000_82543) {
2354 ctrl |= E1000_CTRL_SLU;
2355 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2356 E1000_WRITE_REG(hw, CTRL, ctrl);
2357 } else {
2358 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2359 | E1000_CTRL_SLU);
2360 E1000_WRITE_REG(hw, CTRL, ctrl);
2361 ret_val = e1000_phy_hw_reset(hw);
2362 if (ret_val)
2363 return ret_val;
2364 }
2365
2366 /* Make sure we have a valid PHY */
2367 ret_val = e1000_detect_gig_phy(hw);
2368 if (ret_val) {
2369 DEBUGOUT("Error, did not detect valid phy.\n");
2370 return ret_val;
2371 }
2372 DEBUGOUT("Phy ID = %x\n", hw->phy_id);
2373
2374 /* Set PHY to class A mode (if necessary) */
2375 ret_val = e1000_set_phy_mode(hw);
2376 if (ret_val)
2377 return ret_val;
2378 if ((hw->mac_type == e1000_82545_rev_3) ||
2379 (hw->mac_type == e1000_82546_rev_3)) {
2380 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2381 &phy_data);
2382 phy_data |= 0x00000008;
2383 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2384 phy_data);
2385 }
2386
2387 if (hw->mac_type <= e1000_82543 ||
2388 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2389 hw->mac_type == e1000_82541_rev_2
2390 || hw->mac_type == e1000_82547_rev_2)
2391 hw->phy_reset_disable = false;
2392
2393 return E1000_SUCCESS;
2394 }
2395
2396 /*****************************************************************************
2397 *
2398 * This function sets the lplu state according to the active flag. When
2399 * activating lplu this function also disables smart speed and vise versa.
2400 * lplu will not be activated unless the device autonegotiation advertisment
2401 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2402 * hw: Struct containing variables accessed by shared code
2403 * active - true to enable lplu false to disable lplu.
2404 *
2405 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2406 * E1000_SUCCESS at any other case.
2407 *
2408 ****************************************************************************/
2409
2410 static int32_t
e1000_set_d3_lplu_state(struct e1000_hw * hw,bool active)2411 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2412 {
2413 uint32_t phy_ctrl = 0;
2414 int32_t ret_val;
2415 uint16_t phy_data;
2416 DEBUGFUNC();
2417
2418 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2419 && hw->phy_type != e1000_phy_igp_3)
2420 return E1000_SUCCESS;
2421
2422 /* During driver activity LPLU should not be used or it will attain link
2423 * from the lowest speeds starting from 10Mbps. The capability is used
2424 * for Dx transitions and states */
2425 if (hw->mac_type == e1000_82541_rev_2
2426 || hw->mac_type == e1000_82547_rev_2) {
2427 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2428 &phy_data);
2429 if (ret_val)
2430 return ret_val;
2431 } else if (hw->mac_type == e1000_ich8lan) {
2432 /* MAC writes into PHY register based on the state transition
2433 * and start auto-negotiation. SW driver can overwrite the
2434 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2435 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2436 } else {
2437 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2438 &phy_data);
2439 if (ret_val)
2440 return ret_val;
2441 }
2442
2443 if (!active) {
2444 if (hw->mac_type == e1000_82541_rev_2 ||
2445 hw->mac_type == e1000_82547_rev_2) {
2446 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2447 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2448 phy_data);
2449 if (ret_val)
2450 return ret_val;
2451 } else {
2452 if (hw->mac_type == e1000_ich8lan) {
2453 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2454 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2455 } else {
2456 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2457 ret_val = e1000_write_phy_reg(hw,
2458 IGP02E1000_PHY_POWER_MGMT, phy_data);
2459 if (ret_val)
2460 return ret_val;
2461 }
2462 }
2463
2464 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2465 * Dx states where the power conservation is most important. During
2466 * driver activity we should enable SmartSpeed, so performance is
2467 * maintained. */
2468 if (hw->smart_speed == e1000_smart_speed_on) {
2469 ret_val = e1000_read_phy_reg(hw,
2470 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2471 if (ret_val)
2472 return ret_val;
2473
2474 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2475 ret_val = e1000_write_phy_reg(hw,
2476 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2477 if (ret_val)
2478 return ret_val;
2479 } else if (hw->smart_speed == e1000_smart_speed_off) {
2480 ret_val = e1000_read_phy_reg(hw,
2481 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2482 if (ret_val)
2483 return ret_val;
2484
2485 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2486 ret_val = e1000_write_phy_reg(hw,
2487 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2488 if (ret_val)
2489 return ret_val;
2490 }
2491
2492 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2493 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2494 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2495
2496 if (hw->mac_type == e1000_82541_rev_2 ||
2497 hw->mac_type == e1000_82547_rev_2) {
2498 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2499 ret_val = e1000_write_phy_reg(hw,
2500 IGP01E1000_GMII_FIFO, phy_data);
2501 if (ret_val)
2502 return ret_val;
2503 } else {
2504 if (hw->mac_type == e1000_ich8lan) {
2505 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2506 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2507 } else {
2508 phy_data |= IGP02E1000_PM_D3_LPLU;
2509 ret_val = e1000_write_phy_reg(hw,
2510 IGP02E1000_PHY_POWER_MGMT, phy_data);
2511 if (ret_val)
2512 return ret_val;
2513 }
2514 }
2515
2516 /* When LPLU is enabled we should disable SmartSpeed */
2517 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2518 &phy_data);
2519 if (ret_val)
2520 return ret_val;
2521
2522 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2523 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2524 phy_data);
2525 if (ret_val)
2526 return ret_val;
2527 }
2528 return E1000_SUCCESS;
2529 }
2530
2531 /*****************************************************************************
2532 *
2533 * This function sets the lplu d0 state according to the active flag. When
2534 * activating lplu this function also disables smart speed and vise versa.
2535 * lplu will not be activated unless the device autonegotiation advertisment
2536 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2537 * hw: Struct containing variables accessed by shared code
2538 * active - true to enable lplu false to disable lplu.
2539 *
2540 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2541 * E1000_SUCCESS at any other case.
2542 *
2543 ****************************************************************************/
2544
2545 static int32_t
e1000_set_d0_lplu_state(struct e1000_hw * hw,bool active)2546 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2547 {
2548 uint32_t phy_ctrl = 0;
2549 int32_t ret_val;
2550 uint16_t phy_data;
2551 DEBUGFUNC();
2552
2553 if (hw->mac_type <= e1000_82547_rev_2)
2554 return E1000_SUCCESS;
2555
2556 if (hw->mac_type == e1000_ich8lan) {
2557 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2558 } else if (hw->mac_type == e1000_igb) {
2559 phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2560 } else {
2561 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2562 &phy_data);
2563 if (ret_val)
2564 return ret_val;
2565 }
2566
2567 if (!active) {
2568 if (hw->mac_type == e1000_ich8lan) {
2569 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2570 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2571 } else if (hw->mac_type == e1000_igb) {
2572 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2573 E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2574 } else {
2575 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2576 ret_val = e1000_write_phy_reg(hw,
2577 IGP02E1000_PHY_POWER_MGMT, phy_data);
2578 if (ret_val)
2579 return ret_val;
2580 }
2581
2582 if (hw->mac_type == e1000_igb)
2583 return E1000_SUCCESS;
2584
2585 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2586 * Dx states where the power conservation is most important. During
2587 * driver activity we should enable SmartSpeed, so performance is
2588 * maintained. */
2589 if (hw->smart_speed == e1000_smart_speed_on) {
2590 ret_val = e1000_read_phy_reg(hw,
2591 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2592 if (ret_val)
2593 return ret_val;
2594
2595 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2596 ret_val = e1000_write_phy_reg(hw,
2597 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2598 if (ret_val)
2599 return ret_val;
2600 } else if (hw->smart_speed == e1000_smart_speed_off) {
2601 ret_val = e1000_read_phy_reg(hw,
2602 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2603 if (ret_val)
2604 return ret_val;
2605
2606 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2607 ret_val = e1000_write_phy_reg(hw,
2608 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2609 if (ret_val)
2610 return ret_val;
2611 }
2612
2613
2614 } else {
2615
2616 if (hw->mac_type == e1000_ich8lan) {
2617 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2618 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2619 } else if (hw->mac_type == e1000_igb) {
2620 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2621 E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2622 } else {
2623 phy_data |= IGP02E1000_PM_D0_LPLU;
2624 ret_val = e1000_write_phy_reg(hw,
2625 IGP02E1000_PHY_POWER_MGMT, phy_data);
2626 if (ret_val)
2627 return ret_val;
2628 }
2629
2630 if (hw->mac_type == e1000_igb)
2631 return E1000_SUCCESS;
2632
2633 /* When LPLU is enabled we should disable SmartSpeed */
2634 ret_val = e1000_read_phy_reg(hw,
2635 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2636 if (ret_val)
2637 return ret_val;
2638
2639 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2640 ret_val = e1000_write_phy_reg(hw,
2641 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2642 if (ret_val)
2643 return ret_val;
2644
2645 }
2646 return E1000_SUCCESS;
2647 }
2648
2649 /********************************************************************
2650 * Copper link setup for e1000_phy_igp series.
2651 *
2652 * hw - Struct containing variables accessed by shared code
2653 *********************************************************************/
2654 static int32_t
e1000_copper_link_igp_setup(struct e1000_hw * hw)2655 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2656 {
2657 uint32_t led_ctrl;
2658 int32_t ret_val;
2659 uint16_t phy_data;
2660
2661 DEBUGFUNC();
2662
2663 if (hw->phy_reset_disable)
2664 return E1000_SUCCESS;
2665
2666 ret_val = e1000_phy_reset(hw);
2667 if (ret_val) {
2668 DEBUGOUT("Error Resetting the PHY\n");
2669 return ret_val;
2670 }
2671
2672 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2673 mdelay(15);
2674 if (hw->mac_type != e1000_ich8lan) {
2675 /* Configure activity LED after PHY reset */
2676 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2677 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2678 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2679 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2680 }
2681
2682 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2683 if (hw->phy_type == e1000_phy_igp) {
2684 /* disable lplu d3 during driver init */
2685 ret_val = e1000_set_d3_lplu_state(hw, false);
2686 if (ret_val) {
2687 DEBUGOUT("Error Disabling LPLU D3\n");
2688 return ret_val;
2689 }
2690 }
2691
2692 /* disable lplu d0 during driver init */
2693 ret_val = e1000_set_d0_lplu_state(hw, false);
2694 if (ret_val) {
2695 DEBUGOUT("Error Disabling LPLU D0\n");
2696 return ret_val;
2697 }
2698 /* Configure mdi-mdix settings */
2699 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2700 if (ret_val)
2701 return ret_val;
2702
2703 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2704 hw->dsp_config_state = e1000_dsp_config_disabled;
2705 /* Force MDI for earlier revs of the IGP PHY */
2706 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2707 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2708 hw->mdix = 1;
2709
2710 } else {
2711 hw->dsp_config_state = e1000_dsp_config_enabled;
2712 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2713
2714 switch (hw->mdix) {
2715 case 1:
2716 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2717 break;
2718 case 2:
2719 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2720 break;
2721 case 0:
2722 default:
2723 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2724 break;
2725 }
2726 }
2727 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2728 if (ret_val)
2729 return ret_val;
2730
2731 /* set auto-master slave resolution settings */
2732 if (hw->autoneg) {
2733 e1000_ms_type phy_ms_setting = hw->master_slave;
2734
2735 if (hw->ffe_config_state == e1000_ffe_config_active)
2736 hw->ffe_config_state = e1000_ffe_config_enabled;
2737
2738 if (hw->dsp_config_state == e1000_dsp_config_activated)
2739 hw->dsp_config_state = e1000_dsp_config_enabled;
2740
2741 /* when autonegotiation advertisment is only 1000Mbps then we
2742 * should disable SmartSpeed and enable Auto MasterSlave
2743 * resolution as hardware default. */
2744 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2745 /* Disable SmartSpeed */
2746 ret_val = e1000_read_phy_reg(hw,
2747 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2748 if (ret_val)
2749 return ret_val;
2750 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2751 ret_val = e1000_write_phy_reg(hw,
2752 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2753 if (ret_val)
2754 return ret_val;
2755 /* Set auto Master/Slave resolution process */
2756 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2757 &phy_data);
2758 if (ret_val)
2759 return ret_val;
2760 phy_data &= ~CR_1000T_MS_ENABLE;
2761 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2762 phy_data);
2763 if (ret_val)
2764 return ret_val;
2765 }
2766
2767 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2768 if (ret_val)
2769 return ret_val;
2770
2771 /* load defaults for future use */
2772 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2773 ((phy_data & CR_1000T_MS_VALUE) ?
2774 e1000_ms_force_master :
2775 e1000_ms_force_slave) :
2776 e1000_ms_auto;
2777
2778 switch (phy_ms_setting) {
2779 case e1000_ms_force_master:
2780 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2781 break;
2782 case e1000_ms_force_slave:
2783 phy_data |= CR_1000T_MS_ENABLE;
2784 phy_data &= ~(CR_1000T_MS_VALUE);
2785 break;
2786 case e1000_ms_auto:
2787 phy_data &= ~CR_1000T_MS_ENABLE;
2788 default:
2789 break;
2790 }
2791 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2792 if (ret_val)
2793 return ret_val;
2794 }
2795
2796 return E1000_SUCCESS;
2797 }
2798
2799 /*****************************************************************************
2800 * This function checks the mode of the firmware.
2801 *
2802 * returns - true when the mode is IAMT or false.
2803 ****************************************************************************/
2804 bool
e1000_check_mng_mode(struct e1000_hw * hw)2805 e1000_check_mng_mode(struct e1000_hw *hw)
2806 {
2807 uint32_t fwsm;
2808 DEBUGFUNC();
2809
2810 fwsm = E1000_READ_REG(hw, FWSM);
2811
2812 if (hw->mac_type == e1000_ich8lan) {
2813 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2814 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2815 return true;
2816 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2817 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2818 return true;
2819
2820 return false;
2821 }
2822
2823 static int32_t
e1000_write_kmrn_reg(struct e1000_hw * hw,uint32_t reg_addr,uint16_t data)2824 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2825 {
2826 uint16_t swfw = E1000_SWFW_PHY0_SM;
2827 uint32_t reg_val;
2828 DEBUGFUNC();
2829
2830 if (e1000_is_second_port(hw))
2831 swfw = E1000_SWFW_PHY1_SM;
2832
2833 if (e1000_swfw_sync_acquire(hw, swfw))
2834 return -E1000_ERR_SWFW_SYNC;
2835
2836 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2837 & E1000_KUMCTRLSTA_OFFSET) | data;
2838 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2839 udelay(2);
2840
2841 return E1000_SUCCESS;
2842 }
2843
2844 static int32_t
e1000_read_kmrn_reg(struct e1000_hw * hw,uint32_t reg_addr,uint16_t * data)2845 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2846 {
2847 uint16_t swfw = E1000_SWFW_PHY0_SM;
2848 uint32_t reg_val;
2849 DEBUGFUNC();
2850
2851 if (e1000_is_second_port(hw))
2852 swfw = E1000_SWFW_PHY1_SM;
2853
2854 if (e1000_swfw_sync_acquire(hw, swfw)) {
2855 debug("%s[%i]\n", __func__, __LINE__);
2856 return -E1000_ERR_SWFW_SYNC;
2857 }
2858
2859 /* Write register address */
2860 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2861 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2862 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2863 udelay(2);
2864
2865 /* Read the data returned */
2866 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2867 *data = (uint16_t)reg_val;
2868
2869 return E1000_SUCCESS;
2870 }
2871
2872 /********************************************************************
2873 * Copper link setup for e1000_phy_gg82563 series.
2874 *
2875 * hw - Struct containing variables accessed by shared code
2876 *********************************************************************/
2877 static int32_t
e1000_copper_link_ggp_setup(struct e1000_hw * hw)2878 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2879 {
2880 int32_t ret_val;
2881 uint16_t phy_data;
2882 uint32_t reg_data;
2883
2884 DEBUGFUNC();
2885
2886 if (!hw->phy_reset_disable) {
2887 /* Enable CRS on TX for half-duplex operation. */
2888 ret_val = e1000_read_phy_reg(hw,
2889 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2890 if (ret_val)
2891 return ret_val;
2892
2893 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2894 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2895 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2896
2897 ret_val = e1000_write_phy_reg(hw,
2898 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2899 if (ret_val)
2900 return ret_val;
2901
2902 /* Options:
2903 * MDI/MDI-X = 0 (default)
2904 * 0 - Auto for all speeds
2905 * 1 - MDI mode
2906 * 2 - MDI-X mode
2907 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2908 */
2909 ret_val = e1000_read_phy_reg(hw,
2910 GG82563_PHY_SPEC_CTRL, &phy_data);
2911 if (ret_val)
2912 return ret_val;
2913
2914 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2915
2916 switch (hw->mdix) {
2917 case 1:
2918 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2919 break;
2920 case 2:
2921 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2922 break;
2923 case 0:
2924 default:
2925 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2926 break;
2927 }
2928
2929 /* Options:
2930 * disable_polarity_correction = 0 (default)
2931 * Automatic Correction for Reversed Cable Polarity
2932 * 0 - Disabled
2933 * 1 - Enabled
2934 */
2935 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2936 ret_val = e1000_write_phy_reg(hw,
2937 GG82563_PHY_SPEC_CTRL, phy_data);
2938
2939 if (ret_val)
2940 return ret_val;
2941
2942 /* SW Reset the PHY so all changes take effect */
2943 ret_val = e1000_phy_reset(hw);
2944 if (ret_val) {
2945 DEBUGOUT("Error Resetting the PHY\n");
2946 return ret_val;
2947 }
2948 } /* phy_reset_disable */
2949
2950 if (hw->mac_type == e1000_80003es2lan) {
2951 /* Bypass RX and TX FIFO's */
2952 ret_val = e1000_write_kmrn_reg(hw,
2953 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2954 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2955 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2956 if (ret_val)
2957 return ret_val;
2958
2959 ret_val = e1000_read_phy_reg(hw,
2960 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2961 if (ret_val)
2962 return ret_val;
2963
2964 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2965 ret_val = e1000_write_phy_reg(hw,
2966 GG82563_PHY_SPEC_CTRL_2, phy_data);
2967
2968 if (ret_val)
2969 return ret_val;
2970
2971 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2972 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2973 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2974
2975 ret_val = e1000_read_phy_reg(hw,
2976 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2977 if (ret_val)
2978 return ret_val;
2979
2980 /* Do not init these registers when the HW is in IAMT mode, since the
2981 * firmware will have already initialized them. We only initialize
2982 * them if the HW is not in IAMT mode.
2983 */
2984 if (e1000_check_mng_mode(hw) == false) {
2985 /* Enable Electrical Idle on the PHY */
2986 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2987 ret_val = e1000_write_phy_reg(hw,
2988 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2989 if (ret_val)
2990 return ret_val;
2991
2992 ret_val = e1000_read_phy_reg(hw,
2993 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2994 if (ret_val)
2995 return ret_val;
2996
2997 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2998 ret_val = e1000_write_phy_reg(hw,
2999 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
3000
3001 if (ret_val)
3002 return ret_val;
3003 }
3004
3005 /* Workaround: Disable padding in Kumeran interface in the MAC
3006 * and in the PHY to avoid CRC errors.
3007 */
3008 ret_val = e1000_read_phy_reg(hw,
3009 GG82563_PHY_INBAND_CTRL, &phy_data);
3010 if (ret_val)
3011 return ret_val;
3012 phy_data |= GG82563_ICR_DIS_PADDING;
3013 ret_val = e1000_write_phy_reg(hw,
3014 GG82563_PHY_INBAND_CTRL, phy_data);
3015 if (ret_val)
3016 return ret_val;
3017 }
3018 return E1000_SUCCESS;
3019 }
3020
3021 /********************************************************************
3022 * Copper link setup for e1000_phy_m88 series.
3023 *
3024 * hw - Struct containing variables accessed by shared code
3025 *********************************************************************/
3026 static int32_t
e1000_copper_link_mgp_setup(struct e1000_hw * hw)3027 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
3028 {
3029 int32_t ret_val;
3030 uint16_t phy_data;
3031
3032 DEBUGFUNC();
3033
3034 if (hw->phy_reset_disable)
3035 return E1000_SUCCESS;
3036
3037 /* Enable CRS on TX. This must be set for half-duplex operation. */
3038 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3039 if (ret_val)
3040 return ret_val;
3041
3042 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
3043
3044 /* Options:
3045 * MDI/MDI-X = 0 (default)
3046 * 0 - Auto for all speeds
3047 * 1 - MDI mode
3048 * 2 - MDI-X mode
3049 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
3050 */
3051 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
3052
3053 switch (hw->mdix) {
3054 case 1:
3055 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
3056 break;
3057 case 2:
3058 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
3059 break;
3060 case 3:
3061 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
3062 break;
3063 case 0:
3064 default:
3065 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
3066 break;
3067 }
3068
3069 /* Options:
3070 * disable_polarity_correction = 0 (default)
3071 * Automatic Correction for Reversed Cable Polarity
3072 * 0 - Disabled
3073 * 1 - Enabled
3074 */
3075 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
3076 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
3077 if (ret_val)
3078 return ret_val;
3079
3080 if (hw->phy_revision < M88E1011_I_REV_4) {
3081 /* Force TX_CLK in the Extended PHY Specific Control Register
3082 * to 25MHz clock.
3083 */
3084 ret_val = e1000_read_phy_reg(hw,
3085 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
3086 if (ret_val)
3087 return ret_val;
3088
3089 phy_data |= M88E1000_EPSCR_TX_CLK_25;
3090
3091 if ((hw->phy_revision == E1000_REVISION_2) &&
3092 (hw->phy_id == M88E1111_I_PHY_ID)) {
3093 /* Vidalia Phy, set the downshift counter to 5x */
3094 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
3095 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
3096 ret_val = e1000_write_phy_reg(hw,
3097 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
3098 if (ret_val)
3099 return ret_val;
3100 } else {
3101 /* Configure Master and Slave downshift values */
3102 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
3103 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
3104 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
3105 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
3106 ret_val = e1000_write_phy_reg(hw,
3107 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
3108 if (ret_val)
3109 return ret_val;
3110 }
3111 }
3112
3113 /* SW Reset the PHY so all changes take effect */
3114 ret_val = e1000_phy_reset(hw);
3115 if (ret_val) {
3116 DEBUGOUT("Error Resetting the PHY\n");
3117 return ret_val;
3118 }
3119
3120 return E1000_SUCCESS;
3121 }
3122
3123 /********************************************************************
3124 * Setup auto-negotiation and flow control advertisements,
3125 * and then perform auto-negotiation.
3126 *
3127 * hw - Struct containing variables accessed by shared code
3128 *********************************************************************/
3129 static int32_t
e1000_copper_link_autoneg(struct e1000_hw * hw)3130 e1000_copper_link_autoneg(struct e1000_hw *hw)
3131 {
3132 int32_t ret_val;
3133 uint16_t phy_data;
3134
3135 DEBUGFUNC();
3136
3137 /* Perform some bounds checking on the hw->autoneg_advertised
3138 * parameter. If this variable is zero, then set it to the default.
3139 */
3140 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
3141
3142 /* If autoneg_advertised is zero, we assume it was not defaulted
3143 * by the calling code so we set to advertise full capability.
3144 */
3145 if (hw->autoneg_advertised == 0)
3146 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
3147
3148 /* IFE phy only supports 10/100 */
3149 if (hw->phy_type == e1000_phy_ife)
3150 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
3151
3152 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
3153 ret_val = e1000_phy_setup_autoneg(hw);
3154 if (ret_val) {
3155 DEBUGOUT("Error Setting up Auto-Negotiation\n");
3156 return ret_val;
3157 }
3158 DEBUGOUT("Restarting Auto-Neg\n");
3159
3160 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
3161 * the Auto Neg Restart bit in the PHY control register.
3162 */
3163 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3164 if (ret_val)
3165 return ret_val;
3166
3167 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
3168 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3169 if (ret_val)
3170 return ret_val;
3171
3172 /* Does the user want to wait for Auto-Neg to complete here, or
3173 * check at a later time (for example, callback routine).
3174 */
3175 /* If we do not wait for autonegtation to complete I
3176 * do not see a valid link status.
3177 * wait_autoneg_complete = 1 .
3178 */
3179 if (hw->wait_autoneg_complete) {
3180 ret_val = e1000_wait_autoneg(hw);
3181 if (ret_val) {
3182 DEBUGOUT("Error while waiting for autoneg"
3183 "to complete\n");
3184 return ret_val;
3185 }
3186 }
3187
3188 hw->get_link_status = true;
3189
3190 return E1000_SUCCESS;
3191 }
3192
3193 /******************************************************************************
3194 * Config the MAC and the PHY after link is up.
3195 * 1) Set up the MAC to the current PHY speed/duplex
3196 * if we are on 82543. If we
3197 * are on newer silicon, we only need to configure
3198 * collision distance in the Transmit Control Register.
3199 * 2) Set up flow control on the MAC to that established with
3200 * the link partner.
3201 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
3202 *
3203 * hw - Struct containing variables accessed by shared code
3204 ******************************************************************************/
3205 static int32_t
e1000_copper_link_postconfig(struct e1000_hw * hw)3206 e1000_copper_link_postconfig(struct e1000_hw *hw)
3207 {
3208 int32_t ret_val;
3209 DEBUGFUNC();
3210
3211 if (hw->mac_type >= e1000_82544) {
3212 e1000_config_collision_dist(hw);
3213 } else {
3214 ret_val = e1000_config_mac_to_phy(hw);
3215 if (ret_val) {
3216 DEBUGOUT("Error configuring MAC to PHY settings\n");
3217 return ret_val;
3218 }
3219 }
3220 ret_val = e1000_config_fc_after_link_up(hw);
3221 if (ret_val) {
3222 DEBUGOUT("Error Configuring Flow Control\n");
3223 return ret_val;
3224 }
3225 return E1000_SUCCESS;
3226 }
3227
3228 /******************************************************************************
3229 * Detects which PHY is present and setup the speed and duplex
3230 *
3231 * hw - Struct containing variables accessed by shared code
3232 ******************************************************************************/
3233 static int
e1000_setup_copper_link(struct e1000_hw * hw)3234 e1000_setup_copper_link(struct e1000_hw *hw)
3235 {
3236 int32_t ret_val;
3237 uint16_t i;
3238 uint16_t phy_data;
3239 uint16_t reg_data;
3240
3241 DEBUGFUNC();
3242
3243 switch (hw->mac_type) {
3244 case e1000_80003es2lan:
3245 case e1000_ich8lan:
3246 /* Set the mac to wait the maximum time between each
3247 * iteration and increase the max iterations when
3248 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3249 ret_val = e1000_write_kmrn_reg(hw,
3250 GG82563_REG(0x34, 4), 0xFFFF);
3251 if (ret_val)
3252 return ret_val;
3253 ret_val = e1000_read_kmrn_reg(hw,
3254 GG82563_REG(0x34, 9), ®_data);
3255 if (ret_val)
3256 return ret_val;
3257 reg_data |= 0x3F;
3258 ret_val = e1000_write_kmrn_reg(hw,
3259 GG82563_REG(0x34, 9), reg_data);
3260 if (ret_val)
3261 return ret_val;
3262 default:
3263 break;
3264 }
3265
3266 /* Check if it is a valid PHY and set PHY mode if necessary. */
3267 ret_val = e1000_copper_link_preconfig(hw);
3268 if (ret_val)
3269 return ret_val;
3270 switch (hw->mac_type) {
3271 case e1000_80003es2lan:
3272 /* Kumeran registers are written-only */
3273 reg_data =
3274 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3275 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3276 ret_val = e1000_write_kmrn_reg(hw,
3277 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3278 if (ret_val)
3279 return ret_val;
3280 break;
3281 default:
3282 break;
3283 }
3284
3285 if (hw->phy_type == e1000_phy_igp ||
3286 hw->phy_type == e1000_phy_igp_3 ||
3287 hw->phy_type == e1000_phy_igp_2) {
3288 ret_val = e1000_copper_link_igp_setup(hw);
3289 if (ret_val)
3290 return ret_val;
3291 } else if (hw->phy_type == e1000_phy_m88 ||
3292 hw->phy_type == e1000_phy_igb) {
3293 ret_val = e1000_copper_link_mgp_setup(hw);
3294 if (ret_val)
3295 return ret_val;
3296 } else if (hw->phy_type == e1000_phy_gg82563) {
3297 ret_val = e1000_copper_link_ggp_setup(hw);
3298 if (ret_val)
3299 return ret_val;
3300 }
3301
3302 /* always auto */
3303 /* Setup autoneg and flow control advertisement
3304 * and perform autonegotiation */
3305 ret_val = e1000_copper_link_autoneg(hw);
3306 if (ret_val)
3307 return ret_val;
3308
3309 /* Check link status. Wait up to 100 microseconds for link to become
3310 * valid.
3311 */
3312 for (i = 0; i < 10; i++) {
3313 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3314 if (ret_val)
3315 return ret_val;
3316 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3317 if (ret_val)
3318 return ret_val;
3319
3320 if (phy_data & MII_SR_LINK_STATUS) {
3321 /* Config the MAC and PHY after link is up */
3322 ret_val = e1000_copper_link_postconfig(hw);
3323 if (ret_val)
3324 return ret_val;
3325
3326 DEBUGOUT("Valid link established!!!\n");
3327 return E1000_SUCCESS;
3328 }
3329 udelay(10);
3330 }
3331
3332 DEBUGOUT("Unable to establish link!!!\n");
3333 return E1000_SUCCESS;
3334 }
3335
3336 /******************************************************************************
3337 * Configures PHY autoneg and flow control advertisement settings
3338 *
3339 * hw - Struct containing variables accessed by shared code
3340 ******************************************************************************/
3341 int32_t
e1000_phy_setup_autoneg(struct e1000_hw * hw)3342 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3343 {
3344 int32_t ret_val;
3345 uint16_t mii_autoneg_adv_reg;
3346 uint16_t mii_1000t_ctrl_reg;
3347
3348 DEBUGFUNC();
3349
3350 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3351 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3352 if (ret_val)
3353 return ret_val;
3354
3355 if (hw->phy_type != e1000_phy_ife) {
3356 /* Read the MII 1000Base-T Control Register (Address 9). */
3357 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3358 &mii_1000t_ctrl_reg);
3359 if (ret_val)
3360 return ret_val;
3361 } else
3362 mii_1000t_ctrl_reg = 0;
3363
3364 /* Need to parse both autoneg_advertised and fc and set up
3365 * the appropriate PHY registers. First we will parse for
3366 * autoneg_advertised software override. Since we can advertise
3367 * a plethora of combinations, we need to check each bit
3368 * individually.
3369 */
3370
3371 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3372 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3373 * the 1000Base-T Control Register (Address 9).
3374 */
3375 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3376 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3377
3378 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3379
3380 /* Do we want to advertise 10 Mb Half Duplex? */
3381 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3382 DEBUGOUT("Advertise 10mb Half duplex\n");
3383 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3384 }
3385
3386 /* Do we want to advertise 10 Mb Full Duplex? */
3387 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3388 DEBUGOUT("Advertise 10mb Full duplex\n");
3389 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3390 }
3391
3392 /* Do we want to advertise 100 Mb Half Duplex? */
3393 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3394 DEBUGOUT("Advertise 100mb Half duplex\n");
3395 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3396 }
3397
3398 /* Do we want to advertise 100 Mb Full Duplex? */
3399 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3400 DEBUGOUT("Advertise 100mb Full duplex\n");
3401 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3402 }
3403
3404 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3405 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3406 DEBUGOUT
3407 ("Advertise 1000mb Half duplex requested, request denied!\n");
3408 }
3409
3410 /* Do we want to advertise 1000 Mb Full Duplex? */
3411 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3412 DEBUGOUT("Advertise 1000mb Full duplex\n");
3413 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3414 }
3415
3416 /* Check for a software override of the flow control settings, and
3417 * setup the PHY advertisement registers accordingly. If
3418 * auto-negotiation is enabled, then software will have to set the
3419 * "PAUSE" bits to the correct value in the Auto-Negotiation
3420 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3421 *
3422 * The possible values of the "fc" parameter are:
3423 * 0: Flow control is completely disabled
3424 * 1: Rx flow control is enabled (we can receive pause frames
3425 * but not send pause frames).
3426 * 2: Tx flow control is enabled (we can send pause frames
3427 * but we do not support receiving pause frames).
3428 * 3: Both Rx and TX flow control (symmetric) are enabled.
3429 * other: No software override. The flow control configuration
3430 * in the EEPROM is used.
3431 */
3432 switch (hw->fc) {
3433 case e1000_fc_none: /* 0 */
3434 /* Flow control (RX & TX) is completely disabled by a
3435 * software over-ride.
3436 */
3437 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3438 break;
3439 case e1000_fc_rx_pause: /* 1 */
3440 /* RX Flow control is enabled, and TX Flow control is
3441 * disabled, by a software over-ride.
3442 */
3443 /* Since there really isn't a way to advertise that we are
3444 * capable of RX Pause ONLY, we will advertise that we
3445 * support both symmetric and asymmetric RX PAUSE. Later
3446 * (in e1000_config_fc_after_link_up) we will disable the
3447 *hw's ability to send PAUSE frames.
3448 */
3449 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3450 break;
3451 case e1000_fc_tx_pause: /* 2 */
3452 /* TX Flow control is enabled, and RX Flow control is
3453 * disabled, by a software over-ride.
3454 */
3455 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3456 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3457 break;
3458 case e1000_fc_full: /* 3 */
3459 /* Flow control (both RX and TX) is enabled by a software
3460 * over-ride.
3461 */
3462 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3463 break;
3464 default:
3465 DEBUGOUT("Flow control param set incorrectly\n");
3466 return -E1000_ERR_CONFIG;
3467 }
3468
3469 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3470 if (ret_val)
3471 return ret_val;
3472
3473 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3474
3475 if (hw->phy_type != e1000_phy_ife) {
3476 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3477 mii_1000t_ctrl_reg);
3478 if (ret_val)
3479 return ret_val;
3480 }
3481
3482 return E1000_SUCCESS;
3483 }
3484
3485 /******************************************************************************
3486 * Sets the collision distance in the Transmit Control register
3487 *
3488 * hw - Struct containing variables accessed by shared code
3489 *
3490 * Link should have been established previously. Reads the speed and duplex
3491 * information from the Device Status register.
3492 ******************************************************************************/
3493 static void
e1000_config_collision_dist(struct e1000_hw * hw)3494 e1000_config_collision_dist(struct e1000_hw *hw)
3495 {
3496 uint32_t tctl, coll_dist;
3497
3498 DEBUGFUNC();
3499
3500 if (hw->mac_type < e1000_82543)
3501 coll_dist = E1000_COLLISION_DISTANCE_82542;
3502 else
3503 coll_dist = E1000_COLLISION_DISTANCE;
3504
3505 tctl = E1000_READ_REG(hw, TCTL);
3506
3507 tctl &= ~E1000_TCTL_COLD;
3508 tctl |= coll_dist << E1000_COLD_SHIFT;
3509
3510 E1000_WRITE_REG(hw, TCTL, tctl);
3511 E1000_WRITE_FLUSH(hw);
3512 }
3513
3514 /******************************************************************************
3515 * Sets MAC speed and duplex settings to reflect the those in the PHY
3516 *
3517 * hw - Struct containing variables accessed by shared code
3518 * mii_reg - data to write to the MII control register
3519 *
3520 * The contents of the PHY register containing the needed information need to
3521 * be passed in.
3522 ******************************************************************************/
3523 static int
e1000_config_mac_to_phy(struct e1000_hw * hw)3524 e1000_config_mac_to_phy(struct e1000_hw *hw)
3525 {
3526 uint32_t ctrl;
3527 uint16_t phy_data;
3528
3529 DEBUGFUNC();
3530
3531 /* Read the Device Control Register and set the bits to Force Speed
3532 * and Duplex.
3533 */
3534 ctrl = E1000_READ_REG(hw, CTRL);
3535 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3536 ctrl &= ~(E1000_CTRL_ILOS);
3537 ctrl |= (E1000_CTRL_SPD_SEL);
3538
3539 /* Set up duplex in the Device Control and Transmit Control
3540 * registers depending on negotiated values.
3541 */
3542 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3543 DEBUGOUT("PHY Read Error\n");
3544 return -E1000_ERR_PHY;
3545 }
3546 if (phy_data & M88E1000_PSSR_DPLX)
3547 ctrl |= E1000_CTRL_FD;
3548 else
3549 ctrl &= ~E1000_CTRL_FD;
3550
3551 e1000_config_collision_dist(hw);
3552
3553 /* Set up speed in the Device Control register depending on
3554 * negotiated values.
3555 */
3556 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3557 ctrl |= E1000_CTRL_SPD_1000;
3558 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3559 ctrl |= E1000_CTRL_SPD_100;
3560 /* Write the configured values back to the Device Control Reg. */
3561 E1000_WRITE_REG(hw, CTRL, ctrl);
3562 return 0;
3563 }
3564
3565 /******************************************************************************
3566 * Forces the MAC's flow control settings.
3567 *
3568 * hw - Struct containing variables accessed by shared code
3569 *
3570 * Sets the TFCE and RFCE bits in the device control register to reflect
3571 * the adapter settings. TFCE and RFCE need to be explicitly set by
3572 * software when a Copper PHY is used because autonegotiation is managed
3573 * by the PHY rather than the MAC. Software must also configure these
3574 * bits when link is forced on a fiber connection.
3575 *****************************************************************************/
3576 static int
e1000_force_mac_fc(struct e1000_hw * hw)3577 e1000_force_mac_fc(struct e1000_hw *hw)
3578 {
3579 uint32_t ctrl;
3580
3581 DEBUGFUNC();
3582
3583 /* Get the current configuration of the Device Control Register */
3584 ctrl = E1000_READ_REG(hw, CTRL);
3585
3586 /* Because we didn't get link via the internal auto-negotiation
3587 * mechanism (we either forced link or we got link via PHY
3588 * auto-neg), we have to manually enable/disable transmit an
3589 * receive flow control.
3590 *
3591 * The "Case" statement below enables/disable flow control
3592 * according to the "hw->fc" parameter.
3593 *
3594 * The possible values of the "fc" parameter are:
3595 * 0: Flow control is completely disabled
3596 * 1: Rx flow control is enabled (we can receive pause
3597 * frames but not send pause frames).
3598 * 2: Tx flow control is enabled (we can send pause frames
3599 * frames but we do not receive pause frames).
3600 * 3: Both Rx and TX flow control (symmetric) is enabled.
3601 * other: No other values should be possible at this point.
3602 */
3603
3604 switch (hw->fc) {
3605 case e1000_fc_none:
3606 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3607 break;
3608 case e1000_fc_rx_pause:
3609 ctrl &= (~E1000_CTRL_TFCE);
3610 ctrl |= E1000_CTRL_RFCE;
3611 break;
3612 case e1000_fc_tx_pause:
3613 ctrl &= (~E1000_CTRL_RFCE);
3614 ctrl |= E1000_CTRL_TFCE;
3615 break;
3616 case e1000_fc_full:
3617 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3618 break;
3619 default:
3620 DEBUGOUT("Flow control param set incorrectly\n");
3621 return -E1000_ERR_CONFIG;
3622 }
3623
3624 /* Disable TX Flow Control for 82542 (rev 2.0) */
3625 if (hw->mac_type == e1000_82542_rev2_0)
3626 ctrl &= (~E1000_CTRL_TFCE);
3627
3628 E1000_WRITE_REG(hw, CTRL, ctrl);
3629 return 0;
3630 }
3631
3632 /******************************************************************************
3633 * Configures flow control settings after link is established
3634 *
3635 * hw - Struct containing variables accessed by shared code
3636 *
3637 * Should be called immediately after a valid link has been established.
3638 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3639 * and autonegotiation is enabled, the MAC flow control settings will be set
3640 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3641 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3642 *****************************************************************************/
3643 static int32_t
e1000_config_fc_after_link_up(struct e1000_hw * hw)3644 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3645 {
3646 int32_t ret_val;
3647 uint16_t mii_status_reg;
3648 uint16_t mii_nway_adv_reg;
3649 uint16_t mii_nway_lp_ability_reg;
3650 uint16_t speed;
3651 uint16_t duplex;
3652
3653 DEBUGFUNC();
3654
3655 /* Check for the case where we have fiber media and auto-neg failed
3656 * so we had to force link. In this case, we need to force the
3657 * configuration of the MAC to match the "fc" parameter.
3658 */
3659 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3660 || ((hw->media_type == e1000_media_type_internal_serdes)
3661 && (hw->autoneg_failed))
3662 || ((hw->media_type == e1000_media_type_copper)
3663 && (!hw->autoneg))) {
3664 ret_val = e1000_force_mac_fc(hw);
3665 if (ret_val < 0) {
3666 DEBUGOUT("Error forcing flow control settings\n");
3667 return ret_val;
3668 }
3669 }
3670
3671 /* Check for the case where we have copper media and auto-neg is
3672 * enabled. In this case, we need to check and see if Auto-Neg
3673 * has completed, and if so, how the PHY and link partner has
3674 * flow control configured.
3675 */
3676 if (hw->media_type == e1000_media_type_copper) {
3677 /* Read the MII Status Register and check to see if AutoNeg
3678 * has completed. We read this twice because this reg has
3679 * some "sticky" (latched) bits.
3680 */
3681 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3682 DEBUGOUT("PHY Read Error\n");
3683 return -E1000_ERR_PHY;
3684 }
3685 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3686 DEBUGOUT("PHY Read Error\n");
3687 return -E1000_ERR_PHY;
3688 }
3689
3690 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3691 /* The AutoNeg process has completed, so we now need to
3692 * read both the Auto Negotiation Advertisement Register
3693 * (Address 4) and the Auto_Negotiation Base Page Ability
3694 * Register (Address 5) to determine how flow control was
3695 * negotiated.
3696 */
3697 if (e1000_read_phy_reg
3698 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3699 DEBUGOUT("PHY Read Error\n");
3700 return -E1000_ERR_PHY;
3701 }
3702 if (e1000_read_phy_reg
3703 (hw, PHY_LP_ABILITY,
3704 &mii_nway_lp_ability_reg) < 0) {
3705 DEBUGOUT("PHY Read Error\n");
3706 return -E1000_ERR_PHY;
3707 }
3708
3709 /* Two bits in the Auto Negotiation Advertisement Register
3710 * (Address 4) and two bits in the Auto Negotiation Base
3711 * Page Ability Register (Address 5) determine flow control
3712 * for both the PHY and the link partner. The following
3713 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3714 * 1999, describes these PAUSE resolution bits and how flow
3715 * control is determined based upon these settings.
3716 * NOTE: DC = Don't Care
3717 *
3718 * LOCAL DEVICE | LINK PARTNER
3719 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3720 *-------|---------|-------|---------|--------------------
3721 * 0 | 0 | DC | DC | e1000_fc_none
3722 * 0 | 1 | 0 | DC | e1000_fc_none
3723 * 0 | 1 | 1 | 0 | e1000_fc_none
3724 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3725 * 1 | 0 | 0 | DC | e1000_fc_none
3726 * 1 | DC | 1 | DC | e1000_fc_full
3727 * 1 | 1 | 0 | 0 | e1000_fc_none
3728 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
3729 *
3730 */
3731 /* Are both PAUSE bits set to 1? If so, this implies
3732 * Symmetric Flow Control is enabled at both ends. The
3733 * ASM_DIR bits are irrelevant per the spec.
3734 *
3735 * For Symmetric Flow Control:
3736 *
3737 * LOCAL DEVICE | LINK PARTNER
3738 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3739 *-------|---------|-------|---------|--------------------
3740 * 1 | DC | 1 | DC | e1000_fc_full
3741 *
3742 */
3743 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3744 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3745 /* Now we need to check if the user selected RX ONLY
3746 * of pause frames. In this case, we had to advertise
3747 * FULL flow control because we could not advertise RX
3748 * ONLY. Hence, we must now check to see if we need to
3749 * turn OFF the TRANSMISSION of PAUSE frames.
3750 */
3751 if (hw->original_fc == e1000_fc_full) {
3752 hw->fc = e1000_fc_full;
3753 DEBUGOUT("Flow Control = FULL.\r\n");
3754 } else {
3755 hw->fc = e1000_fc_rx_pause;
3756 DEBUGOUT
3757 ("Flow Control = RX PAUSE frames only.\r\n");
3758 }
3759 }
3760 /* For receiving PAUSE frames ONLY.
3761 *
3762 * LOCAL DEVICE | LINK PARTNER
3763 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3764 *-------|---------|-------|---------|--------------------
3765 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3766 *
3767 */
3768 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3769 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3770 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3771 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3772 {
3773 hw->fc = e1000_fc_tx_pause;
3774 DEBUGOUT
3775 ("Flow Control = TX PAUSE frames only.\r\n");
3776 }
3777 /* For transmitting PAUSE frames ONLY.
3778 *
3779 * LOCAL DEVICE | LINK PARTNER
3780 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3781 *-------|---------|-------|---------|--------------------
3782 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
3783 *
3784 */
3785 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3786 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3787 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3788 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3789 {
3790 hw->fc = e1000_fc_rx_pause;
3791 DEBUGOUT
3792 ("Flow Control = RX PAUSE frames only.\r\n");
3793 }
3794 /* Per the IEEE spec, at this point flow control should be
3795 * disabled. However, we want to consider that we could
3796 * be connected to a legacy switch that doesn't advertise
3797 * desired flow control, but can be forced on the link
3798 * partner. So if we advertised no flow control, that is
3799 * what we will resolve to. If we advertised some kind of
3800 * receive capability (Rx Pause Only or Full Flow Control)
3801 * and the link partner advertised none, we will configure
3802 * ourselves to enable Rx Flow Control only. We can do
3803 * this safely for two reasons: If the link partner really
3804 * didn't want flow control enabled, and we enable Rx, no
3805 * harm done since we won't be receiving any PAUSE frames
3806 * anyway. If the intent on the link partner was to have
3807 * flow control enabled, then by us enabling RX only, we
3808 * can at least receive pause frames and process them.
3809 * This is a good idea because in most cases, since we are
3810 * predominantly a server NIC, more times than not we will
3811 * be asked to delay transmission of packets than asking
3812 * our link partner to pause transmission of frames.
3813 */
3814 else if (hw->original_fc == e1000_fc_none ||
3815 hw->original_fc == e1000_fc_tx_pause) {
3816 hw->fc = e1000_fc_none;
3817 DEBUGOUT("Flow Control = NONE.\r\n");
3818 } else {
3819 hw->fc = e1000_fc_rx_pause;
3820 DEBUGOUT
3821 ("Flow Control = RX PAUSE frames only.\r\n");
3822 }
3823
3824 /* Now we need to do one last check... If we auto-
3825 * negotiated to HALF DUPLEX, flow control should not be
3826 * enabled per IEEE 802.3 spec.
3827 */
3828 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3829
3830 if (duplex == HALF_DUPLEX)
3831 hw->fc = e1000_fc_none;
3832
3833 /* Now we call a subroutine to actually force the MAC
3834 * controller to use the correct flow control settings.
3835 */
3836 ret_val = e1000_force_mac_fc(hw);
3837 if (ret_val < 0) {
3838 DEBUGOUT
3839 ("Error forcing flow control settings\n");
3840 return ret_val;
3841 }
3842 } else {
3843 DEBUGOUT
3844 ("Copper PHY and Auto Neg has not completed.\r\n");
3845 }
3846 }
3847 return E1000_SUCCESS;
3848 }
3849
3850 /******************************************************************************
3851 * Checks to see if the link status of the hardware has changed.
3852 *
3853 * hw - Struct containing variables accessed by shared code
3854 *
3855 * Called by any function that needs to check the link status of the adapter.
3856 *****************************************************************************/
3857 static int
e1000_check_for_link(struct e1000_hw * hw)3858 e1000_check_for_link(struct e1000_hw *hw)
3859 {
3860 uint32_t rxcw;
3861 uint32_t ctrl;
3862 uint32_t status;
3863 uint32_t rctl;
3864 uint32_t signal;
3865 int32_t ret_val;
3866 uint16_t phy_data;
3867 uint16_t lp_capability;
3868
3869 DEBUGFUNC();
3870
3871 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3872 * set when the optics detect a signal. On older adapters, it will be
3873 * cleared when there is a signal
3874 */
3875 ctrl = E1000_READ_REG(hw, CTRL);
3876 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3877 signal = E1000_CTRL_SWDPIN1;
3878 else
3879 signal = 0;
3880
3881 status = E1000_READ_REG(hw, STATUS);
3882 rxcw = E1000_READ_REG(hw, RXCW);
3883 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3884
3885 /* If we have a copper PHY then we only want to go out to the PHY
3886 * registers to see if Auto-Neg has completed and/or if our link
3887 * status has changed. The get_link_status flag will be set if we
3888 * receive a Link Status Change interrupt or we have Rx Sequence
3889 * Errors.
3890 */
3891 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3892 /* First we want to see if the MII Status Register reports
3893 * link. If so, then we want to get the current speed/duplex
3894 * of the PHY.
3895 * Read the register twice since the link bit is sticky.
3896 */
3897 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3898 DEBUGOUT("PHY Read Error\n");
3899 return -E1000_ERR_PHY;
3900 }
3901 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3902 DEBUGOUT("PHY Read Error\n");
3903 return -E1000_ERR_PHY;
3904 }
3905
3906 if (phy_data & MII_SR_LINK_STATUS) {
3907 hw->get_link_status = false;
3908 } else {
3909 /* No link detected */
3910 return -E1000_ERR_NOLINK;
3911 }
3912
3913 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3914 * have Si on board that is 82544 or newer, Auto
3915 * Speed Detection takes care of MAC speed/duplex
3916 * configuration. So we only need to configure Collision
3917 * Distance in the MAC. Otherwise, we need to force
3918 * speed/duplex on the MAC to the current PHY speed/duplex
3919 * settings.
3920 */
3921 if (hw->mac_type >= e1000_82544)
3922 e1000_config_collision_dist(hw);
3923 else {
3924 ret_val = e1000_config_mac_to_phy(hw);
3925 if (ret_val < 0) {
3926 DEBUGOUT
3927 ("Error configuring MAC to PHY settings\n");
3928 return ret_val;
3929 }
3930 }
3931
3932 /* Configure Flow Control now that Auto-Neg has completed. First, we
3933 * need to restore the desired flow control settings because we may
3934 * have had to re-autoneg with a different link partner.
3935 */
3936 ret_val = e1000_config_fc_after_link_up(hw);
3937 if (ret_val < 0) {
3938 DEBUGOUT("Error configuring flow control\n");
3939 return ret_val;
3940 }
3941
3942 /* At this point we know that we are on copper and we have
3943 * auto-negotiated link. These are conditions for checking the link
3944 * parter capability register. We use the link partner capability to
3945 * determine if TBI Compatibility needs to be turned on or off. If
3946 * the link partner advertises any speed in addition to Gigabit, then
3947 * we assume that they are GMII-based, and TBI compatibility is not
3948 * needed. If no other speeds are advertised, we assume the link
3949 * partner is TBI-based, and we turn on TBI Compatibility.
3950 */
3951 if (hw->tbi_compatibility_en) {
3952 if (e1000_read_phy_reg
3953 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3954 DEBUGOUT("PHY Read Error\n");
3955 return -E1000_ERR_PHY;
3956 }
3957 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3958 NWAY_LPAR_10T_FD_CAPS |
3959 NWAY_LPAR_100TX_HD_CAPS |
3960 NWAY_LPAR_100TX_FD_CAPS |
3961 NWAY_LPAR_100T4_CAPS)) {
3962 /* If our link partner advertises anything in addition to
3963 * gigabit, we do not need to enable TBI compatibility.
3964 */
3965 if (hw->tbi_compatibility_on) {
3966 /* If we previously were in the mode, turn it off. */
3967 rctl = E1000_READ_REG(hw, RCTL);
3968 rctl &= ~E1000_RCTL_SBP;
3969 E1000_WRITE_REG(hw, RCTL, rctl);
3970 hw->tbi_compatibility_on = false;
3971 }
3972 } else {
3973 /* If TBI compatibility is was previously off, turn it on. For
3974 * compatibility with a TBI link partner, we will store bad
3975 * packets. Some frames have an additional byte on the end and
3976 * will look like CRC errors to to the hardware.
3977 */
3978 if (!hw->tbi_compatibility_on) {
3979 hw->tbi_compatibility_on = true;
3980 rctl = E1000_READ_REG(hw, RCTL);
3981 rctl |= E1000_RCTL_SBP;
3982 E1000_WRITE_REG(hw, RCTL, rctl);
3983 }
3984 }
3985 }
3986 }
3987 /* If we don't have link (auto-negotiation failed or link partner cannot
3988 * auto-negotiate), the cable is plugged in (we have signal), and our
3989 * link partner is not trying to auto-negotiate with us (we are receiving
3990 * idles or data), we need to force link up. We also need to give
3991 * auto-negotiation time to complete, in case the cable was just plugged
3992 * in. The autoneg_failed flag does this.
3993 */
3994 else if ((hw->media_type == e1000_media_type_fiber) &&
3995 (!(status & E1000_STATUS_LU)) &&
3996 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3997 (!(rxcw & E1000_RXCW_C))) {
3998 if (hw->autoneg_failed == 0) {
3999 hw->autoneg_failed = 1;
4000 return 0;
4001 }
4002 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
4003
4004 /* Disable auto-negotiation in the TXCW register */
4005 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
4006
4007 /* Force link-up and also force full-duplex. */
4008 ctrl = E1000_READ_REG(hw, CTRL);
4009 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
4010 E1000_WRITE_REG(hw, CTRL, ctrl);
4011
4012 /* Configure Flow Control after forcing link up. */
4013 ret_val = e1000_config_fc_after_link_up(hw);
4014 if (ret_val < 0) {
4015 DEBUGOUT("Error configuring flow control\n");
4016 return ret_val;
4017 }
4018 }
4019 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
4020 * auto-negotiation in the TXCW register and disable forced link in the
4021 * Device Control register in an attempt to auto-negotiate with our link
4022 * partner.
4023 */
4024 else if ((hw->media_type == e1000_media_type_fiber) &&
4025 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
4026 DEBUGOUT
4027 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
4028 E1000_WRITE_REG(hw, TXCW, hw->txcw);
4029 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
4030 }
4031 return 0;
4032 }
4033
4034 /******************************************************************************
4035 * Configure the MAC-to-PHY interface for 10/100Mbps
4036 *
4037 * hw - Struct containing variables accessed by shared code
4038 ******************************************************************************/
4039 static int32_t
e1000_configure_kmrn_for_10_100(struct e1000_hw * hw,uint16_t duplex)4040 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
4041 {
4042 int32_t ret_val = E1000_SUCCESS;
4043 uint32_t tipg;
4044 uint16_t reg_data;
4045
4046 DEBUGFUNC();
4047
4048 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
4049 ret_val = e1000_write_kmrn_reg(hw,
4050 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
4051 if (ret_val)
4052 return ret_val;
4053
4054 /* Configure Transmit Inter-Packet Gap */
4055 tipg = E1000_READ_REG(hw, TIPG);
4056 tipg &= ~E1000_TIPG_IPGT_MASK;
4057 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
4058 E1000_WRITE_REG(hw, TIPG, tipg);
4059
4060 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
4061
4062 if (ret_val)
4063 return ret_val;
4064
4065 if (duplex == HALF_DUPLEX)
4066 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
4067 else
4068 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
4069
4070 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
4071
4072 return ret_val;
4073 }
4074
4075 static int32_t
e1000_configure_kmrn_for_1000(struct e1000_hw * hw)4076 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
4077 {
4078 int32_t ret_val = E1000_SUCCESS;
4079 uint16_t reg_data;
4080 uint32_t tipg;
4081
4082 DEBUGFUNC();
4083
4084 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
4085 ret_val = e1000_write_kmrn_reg(hw,
4086 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
4087 if (ret_val)
4088 return ret_val;
4089
4090 /* Configure Transmit Inter-Packet Gap */
4091 tipg = E1000_READ_REG(hw, TIPG);
4092 tipg &= ~E1000_TIPG_IPGT_MASK;
4093 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
4094 E1000_WRITE_REG(hw, TIPG, tipg);
4095
4096 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
4097
4098 if (ret_val)
4099 return ret_val;
4100
4101 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
4102 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
4103
4104 return ret_val;
4105 }
4106
4107 /******************************************************************************
4108 * Detects the current speed and duplex settings of the hardware.
4109 *
4110 * hw - Struct containing variables accessed by shared code
4111 * speed - Speed of the connection
4112 * duplex - Duplex setting of the connection
4113 *****************************************************************************/
4114 static int
e1000_get_speed_and_duplex(struct e1000_hw * hw,uint16_t * speed,uint16_t * duplex)4115 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
4116 uint16_t *duplex)
4117 {
4118 uint32_t status;
4119 int32_t ret_val;
4120 uint16_t phy_data;
4121
4122 DEBUGFUNC();
4123
4124 if (hw->mac_type >= e1000_82543) {
4125 status = E1000_READ_REG(hw, STATUS);
4126 if (status & E1000_STATUS_SPEED_1000) {
4127 *speed = SPEED_1000;
4128 DEBUGOUT("1000 Mbs, ");
4129 } else if (status & E1000_STATUS_SPEED_100) {
4130 *speed = SPEED_100;
4131 DEBUGOUT("100 Mbs, ");
4132 } else {
4133 *speed = SPEED_10;
4134 DEBUGOUT("10 Mbs, ");
4135 }
4136
4137 if (status & E1000_STATUS_FD) {
4138 *duplex = FULL_DUPLEX;
4139 DEBUGOUT("Full Duplex\r\n");
4140 } else {
4141 *duplex = HALF_DUPLEX;
4142 DEBUGOUT(" Half Duplex\r\n");
4143 }
4144 } else {
4145 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
4146 *speed = SPEED_1000;
4147 *duplex = FULL_DUPLEX;
4148 }
4149
4150 /* IGP01 PHY may advertise full duplex operation after speed downgrade
4151 * even if it is operating at half duplex. Here we set the duplex
4152 * settings to match the duplex in the link partner's capabilities.
4153 */
4154 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
4155 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
4156 if (ret_val)
4157 return ret_val;
4158
4159 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
4160 *duplex = HALF_DUPLEX;
4161 else {
4162 ret_val = e1000_read_phy_reg(hw,
4163 PHY_LP_ABILITY, &phy_data);
4164 if (ret_val)
4165 return ret_val;
4166 if ((*speed == SPEED_100 &&
4167 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
4168 || (*speed == SPEED_10
4169 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
4170 *duplex = HALF_DUPLEX;
4171 }
4172 }
4173
4174 if ((hw->mac_type == e1000_80003es2lan) &&
4175 (hw->media_type == e1000_media_type_copper)) {
4176 if (*speed == SPEED_1000)
4177 ret_val = e1000_configure_kmrn_for_1000(hw);
4178 else
4179 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
4180 if (ret_val)
4181 return ret_val;
4182 }
4183 return E1000_SUCCESS;
4184 }
4185
4186 /******************************************************************************
4187 * Blocks until autoneg completes or times out (~4.5 seconds)
4188 *
4189 * hw - Struct containing variables accessed by shared code
4190 ******************************************************************************/
4191 static int
e1000_wait_autoneg(struct e1000_hw * hw)4192 e1000_wait_autoneg(struct e1000_hw *hw)
4193 {
4194 uint16_t i;
4195 uint16_t phy_data;
4196
4197 DEBUGFUNC();
4198 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4199
4200 /* We will wait for autoneg to complete or timeout to expire. */
4201 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4202 /* Read the MII Status Register and wait for Auto-Neg
4203 * Complete bit to be set.
4204 */
4205 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4206 DEBUGOUT("PHY Read Error\n");
4207 return -E1000_ERR_PHY;
4208 }
4209 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4210 DEBUGOUT("PHY Read Error\n");
4211 return -E1000_ERR_PHY;
4212 }
4213 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4214 DEBUGOUT("Auto-Neg complete.\n");
4215 return 0;
4216 }
4217 mdelay(100);
4218 }
4219 DEBUGOUT("Auto-Neg timedout.\n");
4220 return -E1000_ERR_TIMEOUT;
4221 }
4222
4223 /******************************************************************************
4224 * Raises the Management Data Clock
4225 *
4226 * hw - Struct containing variables accessed by shared code
4227 * ctrl - Device control register's current value
4228 ******************************************************************************/
4229 static void
e1000_raise_mdi_clk(struct e1000_hw * hw,uint32_t * ctrl)4230 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4231 {
4232 /* Raise the clock input to the Management Data Clock (by setting the MDC
4233 * bit), and then delay 2 microseconds.
4234 */
4235 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4236 E1000_WRITE_FLUSH(hw);
4237 udelay(2);
4238 }
4239
4240 /******************************************************************************
4241 * Lowers the Management Data Clock
4242 *
4243 * hw - Struct containing variables accessed by shared code
4244 * ctrl - Device control register's current value
4245 ******************************************************************************/
4246 static void
e1000_lower_mdi_clk(struct e1000_hw * hw,uint32_t * ctrl)4247 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4248 {
4249 /* Lower the clock input to the Management Data Clock (by clearing the MDC
4250 * bit), and then delay 2 microseconds.
4251 */
4252 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4253 E1000_WRITE_FLUSH(hw);
4254 udelay(2);
4255 }
4256
4257 /******************************************************************************
4258 * Shifts data bits out to the PHY
4259 *
4260 * hw - Struct containing variables accessed by shared code
4261 * data - Data to send out to the PHY
4262 * count - Number of bits to shift out
4263 *
4264 * Bits are shifted out in MSB to LSB order.
4265 ******************************************************************************/
4266 static void
e1000_shift_out_mdi_bits(struct e1000_hw * hw,uint32_t data,uint16_t count)4267 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4268 {
4269 uint32_t ctrl;
4270 uint32_t mask;
4271
4272 /* We need to shift "count" number of bits out to the PHY. So, the value
4273 * in the "data" parameter will be shifted out to the PHY one bit at a
4274 * time. In order to do this, "data" must be broken down into bits.
4275 */
4276 mask = 0x01;
4277 mask <<= (count - 1);
4278
4279 ctrl = E1000_READ_REG(hw, CTRL);
4280
4281 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4282 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4283
4284 while (mask) {
4285 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4286 * then raising and lowering the Management Data Clock. A "0" is
4287 * shifted out to the PHY by setting the MDIO bit to "0" and then
4288 * raising and lowering the clock.
4289 */
4290 if (data & mask)
4291 ctrl |= E1000_CTRL_MDIO;
4292 else
4293 ctrl &= ~E1000_CTRL_MDIO;
4294
4295 E1000_WRITE_REG(hw, CTRL, ctrl);
4296 E1000_WRITE_FLUSH(hw);
4297
4298 udelay(2);
4299
4300 e1000_raise_mdi_clk(hw, &ctrl);
4301 e1000_lower_mdi_clk(hw, &ctrl);
4302
4303 mask = mask >> 1;
4304 }
4305 }
4306
4307 /******************************************************************************
4308 * Shifts data bits in from the PHY
4309 *
4310 * hw - Struct containing variables accessed by shared code
4311 *
4312 * Bits are shifted in in MSB to LSB order.
4313 ******************************************************************************/
4314 static uint16_t
e1000_shift_in_mdi_bits(struct e1000_hw * hw)4315 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4316 {
4317 uint32_t ctrl;
4318 uint16_t data = 0;
4319 uint8_t i;
4320
4321 /* In order to read a register from the PHY, we need to shift in a total
4322 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4323 * to avoid contention on the MDIO pin when a read operation is performed.
4324 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4325 * by raising the input to the Management Data Clock (setting the MDC bit),
4326 * and then reading the value of the MDIO bit.
4327 */
4328 ctrl = E1000_READ_REG(hw, CTRL);
4329
4330 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4331 ctrl &= ~E1000_CTRL_MDIO_DIR;
4332 ctrl &= ~E1000_CTRL_MDIO;
4333
4334 E1000_WRITE_REG(hw, CTRL, ctrl);
4335 E1000_WRITE_FLUSH(hw);
4336
4337 /* Raise and Lower the clock before reading in the data. This accounts for
4338 * the turnaround bits. The first clock occurred when we clocked out the
4339 * last bit of the Register Address.
4340 */
4341 e1000_raise_mdi_clk(hw, &ctrl);
4342 e1000_lower_mdi_clk(hw, &ctrl);
4343
4344 for (data = 0, i = 0; i < 16; i++) {
4345 data = data << 1;
4346 e1000_raise_mdi_clk(hw, &ctrl);
4347 ctrl = E1000_READ_REG(hw, CTRL);
4348 /* Check to see if we shifted in a "1". */
4349 if (ctrl & E1000_CTRL_MDIO)
4350 data |= 1;
4351 e1000_lower_mdi_clk(hw, &ctrl);
4352 }
4353
4354 e1000_raise_mdi_clk(hw, &ctrl);
4355 e1000_lower_mdi_clk(hw, &ctrl);
4356
4357 return data;
4358 }
4359
4360 /*****************************************************************************
4361 * Reads the value from a PHY register
4362 *
4363 * hw - Struct containing variables accessed by shared code
4364 * reg_addr - address of the PHY register to read
4365 ******************************************************************************/
4366 static int
e1000_read_phy_reg(struct e1000_hw * hw,uint32_t reg_addr,uint16_t * phy_data)4367 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4368 {
4369 uint32_t i;
4370 uint32_t mdic = 0;
4371 const uint32_t phy_addr = 1;
4372
4373 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4374 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4375 return -E1000_ERR_PARAM;
4376 }
4377
4378 if (hw->mac_type > e1000_82543) {
4379 /* Set up Op-code, Phy Address, and register address in the MDI
4380 * Control register. The MAC will take care of interfacing with the
4381 * PHY to retrieve the desired data.
4382 */
4383 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4384 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4385 (E1000_MDIC_OP_READ));
4386
4387 E1000_WRITE_REG(hw, MDIC, mdic);
4388
4389 /* Poll the ready bit to see if the MDI read completed */
4390 for (i = 0; i < 64; i++) {
4391 udelay(10);
4392 mdic = E1000_READ_REG(hw, MDIC);
4393 if (mdic & E1000_MDIC_READY)
4394 break;
4395 }
4396 if (!(mdic & E1000_MDIC_READY)) {
4397 DEBUGOUT("MDI Read did not complete\n");
4398 return -E1000_ERR_PHY;
4399 }
4400 if (mdic & E1000_MDIC_ERROR) {
4401 DEBUGOUT("MDI Error\n");
4402 return -E1000_ERR_PHY;
4403 }
4404 *phy_data = (uint16_t) mdic;
4405 } else {
4406 /* We must first send a preamble through the MDIO pin to signal the
4407 * beginning of an MII instruction. This is done by sending 32
4408 * consecutive "1" bits.
4409 */
4410 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4411
4412 /* Now combine the next few fields that are required for a read
4413 * operation. We use this method instead of calling the
4414 * e1000_shift_out_mdi_bits routine five different times. The format of
4415 * a MII read instruction consists of a shift out of 14 bits and is
4416 * defined as follows:
4417 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4418 * followed by a shift in of 18 bits. This first two bits shifted in
4419 * are TurnAround bits used to avoid contention on the MDIO pin when a
4420 * READ operation is performed. These two bits are thrown away
4421 * followed by a shift in of 16 bits which contains the desired data.
4422 */
4423 mdic = ((reg_addr) | (phy_addr << 5) |
4424 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4425
4426 e1000_shift_out_mdi_bits(hw, mdic, 14);
4427
4428 /* Now that we've shifted out the read command to the MII, we need to
4429 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4430 * register address.
4431 */
4432 *phy_data = e1000_shift_in_mdi_bits(hw);
4433 }
4434 return 0;
4435 }
4436
4437 /******************************************************************************
4438 * Writes a value to a PHY register
4439 *
4440 * hw - Struct containing variables accessed by shared code
4441 * reg_addr - address of the PHY register to write
4442 * data - data to write to the PHY
4443 ******************************************************************************/
4444 static int
e1000_write_phy_reg(struct e1000_hw * hw,uint32_t reg_addr,uint16_t phy_data)4445 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4446 {
4447 uint32_t i;
4448 uint32_t mdic = 0;
4449 const uint32_t phy_addr = 1;
4450
4451 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4452 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4453 return -E1000_ERR_PARAM;
4454 }
4455
4456 if (hw->mac_type > e1000_82543) {
4457 /* Set up Op-code, Phy Address, register address, and data intended
4458 * for the PHY register in the MDI Control register. The MAC will take
4459 * care of interfacing with the PHY to send the desired data.
4460 */
4461 mdic = (((uint32_t) phy_data) |
4462 (reg_addr << E1000_MDIC_REG_SHIFT) |
4463 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4464 (E1000_MDIC_OP_WRITE));
4465
4466 E1000_WRITE_REG(hw, MDIC, mdic);
4467
4468 /* Poll the ready bit to see if the MDI read completed */
4469 for (i = 0; i < 64; i++) {
4470 udelay(10);
4471 mdic = E1000_READ_REG(hw, MDIC);
4472 if (mdic & E1000_MDIC_READY)
4473 break;
4474 }
4475 if (!(mdic & E1000_MDIC_READY)) {
4476 DEBUGOUT("MDI Write did not complete\n");
4477 return -E1000_ERR_PHY;
4478 }
4479 } else {
4480 /* We'll need to use the SW defined pins to shift the write command
4481 * out to the PHY. We first send a preamble to the PHY to signal the
4482 * beginning of the MII instruction. This is done by sending 32
4483 * consecutive "1" bits.
4484 */
4485 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4486
4487 /* Now combine the remaining required fields that will indicate a
4488 * write operation. We use this method instead of calling the
4489 * e1000_shift_out_mdi_bits routine for each field in the command. The
4490 * format of a MII write instruction is as follows:
4491 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4492 */
4493 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4494 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4495 mdic <<= 16;
4496 mdic |= (uint32_t) phy_data;
4497
4498 e1000_shift_out_mdi_bits(hw, mdic, 32);
4499 }
4500 return 0;
4501 }
4502
4503 /******************************************************************************
4504 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4505 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4506 * the caller to figure out how to deal with it.
4507 *
4508 * hw - Struct containing variables accessed by shared code
4509 *
4510 * returns: - E1000_BLK_PHY_RESET
4511 * E1000_SUCCESS
4512 *
4513 *****************************************************************************/
4514 int32_t
e1000_check_phy_reset_block(struct e1000_hw * hw)4515 e1000_check_phy_reset_block(struct e1000_hw *hw)
4516 {
4517 uint32_t manc = 0;
4518 uint32_t fwsm = 0;
4519
4520 if (hw->mac_type == e1000_ich8lan) {
4521 fwsm = E1000_READ_REG(hw, FWSM);
4522 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4523 : E1000_BLK_PHY_RESET;
4524 }
4525
4526 if (hw->mac_type > e1000_82547_rev_2)
4527 manc = E1000_READ_REG(hw, MANC);
4528 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4529 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4530 }
4531
4532 /***************************************************************************
4533 * Checks if the PHY configuration is done
4534 *
4535 * hw: Struct containing variables accessed by shared code
4536 *
4537 * returns: - E1000_ERR_RESET if fail to reset MAC
4538 * E1000_SUCCESS at any other case.
4539 *
4540 ***************************************************************************/
4541 static int32_t
e1000_get_phy_cfg_done(struct e1000_hw * hw)4542 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4543 {
4544 int32_t timeout = PHY_CFG_TIMEOUT;
4545 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4546
4547 DEBUGFUNC();
4548
4549 switch (hw->mac_type) {
4550 default:
4551 mdelay(10);
4552 break;
4553
4554 case e1000_80003es2lan:
4555 /* Separate *_CFG_DONE_* bit for each port */
4556 if (e1000_is_second_port(hw))
4557 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4558 /* Fall Through */
4559
4560 case e1000_82571:
4561 case e1000_82572:
4562 case e1000_igb:
4563 while (timeout) {
4564 if (hw->mac_type == e1000_igb) {
4565 if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4566 break;
4567 } else {
4568 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4569 break;
4570 }
4571 mdelay(1);
4572 timeout--;
4573 }
4574 if (!timeout) {
4575 DEBUGOUT("MNG configuration cycle has not "
4576 "completed.\n");
4577 return -E1000_ERR_RESET;
4578 }
4579 break;
4580 }
4581
4582 return E1000_SUCCESS;
4583 }
4584
4585 /******************************************************************************
4586 * Returns the PHY to the power-on reset state
4587 *
4588 * hw - Struct containing variables accessed by shared code
4589 ******************************************************************************/
4590 int32_t
e1000_phy_hw_reset(struct e1000_hw * hw)4591 e1000_phy_hw_reset(struct e1000_hw *hw)
4592 {
4593 uint16_t swfw = E1000_SWFW_PHY0_SM;
4594 uint32_t ctrl, ctrl_ext;
4595 uint32_t led_ctrl;
4596 int32_t ret_val;
4597
4598 DEBUGFUNC();
4599
4600 /* In the case of the phy reset being blocked, it's not an error, we
4601 * simply return success without performing the reset. */
4602 ret_val = e1000_check_phy_reset_block(hw);
4603 if (ret_val)
4604 return E1000_SUCCESS;
4605
4606 DEBUGOUT("Resetting Phy...\n");
4607
4608 if (hw->mac_type > e1000_82543) {
4609 if (e1000_is_second_port(hw))
4610 swfw = E1000_SWFW_PHY1_SM;
4611
4612 if (e1000_swfw_sync_acquire(hw, swfw)) {
4613 DEBUGOUT("Unable to acquire swfw sync\n");
4614 return -E1000_ERR_SWFW_SYNC;
4615 }
4616
4617 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4618 * bit. Then, take it out of reset.
4619 */
4620 ctrl = E1000_READ_REG(hw, CTRL);
4621 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4622 E1000_WRITE_FLUSH(hw);
4623
4624 if (hw->mac_type < e1000_82571)
4625 udelay(10);
4626 else
4627 udelay(100);
4628
4629 E1000_WRITE_REG(hw, CTRL, ctrl);
4630 E1000_WRITE_FLUSH(hw);
4631
4632 if (hw->mac_type >= e1000_82571)
4633 mdelay(10);
4634
4635 } else {
4636 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4637 * bit to put the PHY into reset. Then, take it out of reset.
4638 */
4639 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4640 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4641 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4642 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4643 E1000_WRITE_FLUSH(hw);
4644 mdelay(10);
4645 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4646 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4647 E1000_WRITE_FLUSH(hw);
4648 }
4649 udelay(150);
4650
4651 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4652 /* Configure activity LED after PHY reset */
4653 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4654 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4655 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4656 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4657 }
4658
4659 e1000_swfw_sync_release(hw, swfw);
4660
4661 /* Wait for FW to finish PHY configuration. */
4662 ret_val = e1000_get_phy_cfg_done(hw);
4663 if (ret_val != E1000_SUCCESS)
4664 return ret_val;
4665
4666 return ret_val;
4667 }
4668
4669 /******************************************************************************
4670 * IGP phy init script - initializes the GbE PHY
4671 *
4672 * hw - Struct containing variables accessed by shared code
4673 *****************************************************************************/
4674 static void
e1000_phy_init_script(struct e1000_hw * hw)4675 e1000_phy_init_script(struct e1000_hw *hw)
4676 {
4677 uint32_t ret_val;
4678 uint16_t phy_saved_data;
4679 DEBUGFUNC();
4680
4681 if (hw->phy_init_script) {
4682 mdelay(20);
4683
4684 /* Save off the current value of register 0x2F5B to be
4685 * restored at the end of this routine. */
4686 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4687
4688 /* Disabled the PHY transmitter */
4689 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4690
4691 mdelay(20);
4692
4693 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4694
4695 mdelay(5);
4696
4697 switch (hw->mac_type) {
4698 case e1000_82541:
4699 case e1000_82547:
4700 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4701
4702 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4703
4704 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4705
4706 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4707
4708 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4709
4710 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4711
4712 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4713
4714 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4715
4716 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4717 break;
4718
4719 case e1000_82541_rev_2:
4720 case e1000_82547_rev_2:
4721 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4722 break;
4723 default:
4724 break;
4725 }
4726
4727 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4728
4729 mdelay(20);
4730
4731 /* Now enable the transmitter */
4732 if (!ret_val)
4733 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4734
4735 if (hw->mac_type == e1000_82547) {
4736 uint16_t fused, fine, coarse;
4737
4738 /* Move to analog registers page */
4739 e1000_read_phy_reg(hw,
4740 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4741
4742 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4743 e1000_read_phy_reg(hw,
4744 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4745
4746 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4747 coarse = fused
4748 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4749
4750 if (coarse >
4751 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4752 coarse -=
4753 IGP01E1000_ANALOG_FUSE_COARSE_10;
4754 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4755 } else if (coarse
4756 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4757 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4758
4759 fused = (fused
4760 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4761 (fine
4762 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4763 (coarse
4764 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4765
4766 e1000_write_phy_reg(hw,
4767 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4768 e1000_write_phy_reg(hw,
4769 IGP01E1000_ANALOG_FUSE_BYPASS,
4770 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4771 }
4772 }
4773 }
4774 }
4775
4776 /******************************************************************************
4777 * Resets the PHY
4778 *
4779 * hw - Struct containing variables accessed by shared code
4780 *
4781 * Sets bit 15 of the MII Control register
4782 ******************************************************************************/
4783 int32_t
e1000_phy_reset(struct e1000_hw * hw)4784 e1000_phy_reset(struct e1000_hw *hw)
4785 {
4786 int32_t ret_val;
4787 uint16_t phy_data;
4788
4789 DEBUGFUNC();
4790
4791 /* In the case of the phy reset being blocked, it's not an error, we
4792 * simply return success without performing the reset. */
4793 ret_val = e1000_check_phy_reset_block(hw);
4794 if (ret_val)
4795 return E1000_SUCCESS;
4796
4797 switch (hw->phy_type) {
4798 case e1000_phy_igp:
4799 case e1000_phy_igp_2:
4800 case e1000_phy_igp_3:
4801 case e1000_phy_ife:
4802 case e1000_phy_igb:
4803 ret_val = e1000_phy_hw_reset(hw);
4804 if (ret_val)
4805 return ret_val;
4806 break;
4807 default:
4808 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4809 if (ret_val)
4810 return ret_val;
4811
4812 phy_data |= MII_CR_RESET;
4813 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4814 if (ret_val)
4815 return ret_val;
4816
4817 udelay(1);
4818 break;
4819 }
4820
4821 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4822 e1000_phy_init_script(hw);
4823
4824 return E1000_SUCCESS;
4825 }
4826
e1000_set_phy_type(struct e1000_hw * hw)4827 static int e1000_set_phy_type (struct e1000_hw *hw)
4828 {
4829 DEBUGFUNC ();
4830
4831 if (hw->mac_type == e1000_undefined)
4832 return -E1000_ERR_PHY_TYPE;
4833
4834 switch (hw->phy_id) {
4835 case M88E1000_E_PHY_ID:
4836 case M88E1000_I_PHY_ID:
4837 case M88E1011_I_PHY_ID:
4838 case M88E1111_I_PHY_ID:
4839 hw->phy_type = e1000_phy_m88;
4840 break;
4841 case IGP01E1000_I_PHY_ID:
4842 if (hw->mac_type == e1000_82541 ||
4843 hw->mac_type == e1000_82541_rev_2 ||
4844 hw->mac_type == e1000_82547 ||
4845 hw->mac_type == e1000_82547_rev_2) {
4846 hw->phy_type = e1000_phy_igp;
4847 break;
4848 }
4849 case IGP03E1000_E_PHY_ID:
4850 hw->phy_type = e1000_phy_igp_3;
4851 break;
4852 case IFE_E_PHY_ID:
4853 case IFE_PLUS_E_PHY_ID:
4854 case IFE_C_E_PHY_ID:
4855 hw->phy_type = e1000_phy_ife;
4856 break;
4857 case GG82563_E_PHY_ID:
4858 if (hw->mac_type == e1000_80003es2lan) {
4859 hw->phy_type = e1000_phy_gg82563;
4860 break;
4861 }
4862 case BME1000_E_PHY_ID:
4863 hw->phy_type = e1000_phy_bm;
4864 break;
4865 case I210_I_PHY_ID:
4866 hw->phy_type = e1000_phy_igb;
4867 break;
4868 /* Fall Through */
4869 default:
4870 /* Should never have loaded on this device */
4871 hw->phy_type = e1000_phy_undefined;
4872 return -E1000_ERR_PHY_TYPE;
4873 }
4874
4875 return E1000_SUCCESS;
4876 }
4877
4878 /******************************************************************************
4879 * Probes the expected PHY address for known PHY IDs
4880 *
4881 * hw - Struct containing variables accessed by shared code
4882 ******************************************************************************/
4883 static int32_t
e1000_detect_gig_phy(struct e1000_hw * hw)4884 e1000_detect_gig_phy(struct e1000_hw *hw)
4885 {
4886 int32_t phy_init_status, ret_val;
4887 uint16_t phy_id_high, phy_id_low;
4888 bool match = false;
4889
4890 DEBUGFUNC();
4891
4892 /* The 82571 firmware may still be configuring the PHY. In this
4893 * case, we cannot access the PHY until the configuration is done. So
4894 * we explicitly set the PHY values. */
4895 if (hw->mac_type == e1000_82571 ||
4896 hw->mac_type == e1000_82572) {
4897 hw->phy_id = IGP01E1000_I_PHY_ID;
4898 hw->phy_type = e1000_phy_igp_2;
4899 return E1000_SUCCESS;
4900 }
4901
4902 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4903 * work- around that forces PHY page 0 to be set or the reads fail.
4904 * The rest of the code in this routine uses e1000_read_phy_reg to
4905 * read the PHY ID. So for ESB-2 we need to have this set so our
4906 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4907 * the routines below will figure this out as well. */
4908 if (hw->mac_type == e1000_80003es2lan)
4909 hw->phy_type = e1000_phy_gg82563;
4910
4911 /* Read the PHY ID Registers to identify which PHY is onboard. */
4912 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4913 if (ret_val)
4914 return ret_val;
4915
4916 hw->phy_id = (uint32_t) (phy_id_high << 16);
4917 udelay(20);
4918 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4919 if (ret_val)
4920 return ret_val;
4921
4922 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4923 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4924
4925 switch (hw->mac_type) {
4926 case e1000_82543:
4927 if (hw->phy_id == M88E1000_E_PHY_ID)
4928 match = true;
4929 break;
4930 case e1000_82544:
4931 if (hw->phy_id == M88E1000_I_PHY_ID)
4932 match = true;
4933 break;
4934 case e1000_82540:
4935 case e1000_82545:
4936 case e1000_82545_rev_3:
4937 case e1000_82546:
4938 case e1000_82546_rev_3:
4939 if (hw->phy_id == M88E1011_I_PHY_ID)
4940 match = true;
4941 break;
4942 case e1000_82541:
4943 case e1000_82541_rev_2:
4944 case e1000_82547:
4945 case e1000_82547_rev_2:
4946 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4947 match = true;
4948
4949 break;
4950 case e1000_82573:
4951 if (hw->phy_id == M88E1111_I_PHY_ID)
4952 match = true;
4953 break;
4954 case e1000_82574:
4955 if (hw->phy_id == BME1000_E_PHY_ID)
4956 match = true;
4957 break;
4958 case e1000_80003es2lan:
4959 if (hw->phy_id == GG82563_E_PHY_ID)
4960 match = true;
4961 break;
4962 case e1000_ich8lan:
4963 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4964 match = true;
4965 if (hw->phy_id == IFE_E_PHY_ID)
4966 match = true;
4967 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4968 match = true;
4969 if (hw->phy_id == IFE_C_E_PHY_ID)
4970 match = true;
4971 break;
4972 case e1000_igb:
4973 if (hw->phy_id == I210_I_PHY_ID)
4974 match = true;
4975 break;
4976 default:
4977 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4978 return -E1000_ERR_CONFIG;
4979 }
4980
4981 phy_init_status = e1000_set_phy_type(hw);
4982
4983 if ((match) && (phy_init_status == E1000_SUCCESS)) {
4984 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4985 return 0;
4986 }
4987 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4988 return -E1000_ERR_PHY;
4989 }
4990
4991 /*****************************************************************************
4992 * Set media type and TBI compatibility.
4993 *
4994 * hw - Struct containing variables accessed by shared code
4995 * **************************************************************************/
4996 void
e1000_set_media_type(struct e1000_hw * hw)4997 e1000_set_media_type(struct e1000_hw *hw)
4998 {
4999 uint32_t status;
5000
5001 DEBUGFUNC();
5002
5003 if (hw->mac_type != e1000_82543) {
5004 /* tbi_compatibility is only valid on 82543 */
5005 hw->tbi_compatibility_en = false;
5006 }
5007
5008 switch (hw->device_id) {
5009 case E1000_DEV_ID_82545GM_SERDES:
5010 case E1000_DEV_ID_82546GB_SERDES:
5011 case E1000_DEV_ID_82571EB_SERDES:
5012 case E1000_DEV_ID_82571EB_SERDES_DUAL:
5013 case E1000_DEV_ID_82571EB_SERDES_QUAD:
5014 case E1000_DEV_ID_82572EI_SERDES:
5015 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
5016 hw->media_type = e1000_media_type_internal_serdes;
5017 break;
5018 default:
5019 switch (hw->mac_type) {
5020 case e1000_82542_rev2_0:
5021 case e1000_82542_rev2_1:
5022 hw->media_type = e1000_media_type_fiber;
5023 break;
5024 case e1000_ich8lan:
5025 case e1000_82573:
5026 case e1000_82574:
5027 case e1000_igb:
5028 /* The STATUS_TBIMODE bit is reserved or reused
5029 * for the this device.
5030 */
5031 hw->media_type = e1000_media_type_copper;
5032 break;
5033 default:
5034 status = E1000_READ_REG(hw, STATUS);
5035 if (status & E1000_STATUS_TBIMODE) {
5036 hw->media_type = e1000_media_type_fiber;
5037 /* tbi_compatibility not valid on fiber */
5038 hw->tbi_compatibility_en = false;
5039 } else {
5040 hw->media_type = e1000_media_type_copper;
5041 }
5042 break;
5043 }
5044 }
5045 }
5046
5047 /**
5048 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
5049 *
5050 * e1000_sw_init initializes the Adapter private data structure.
5051 * Fields are initialized based on PCI device information and
5052 * OS network device settings (MTU size).
5053 **/
5054
5055 static int
e1000_sw_init(struct e1000_hw * hw)5056 e1000_sw_init(struct e1000_hw *hw)
5057 {
5058 int result;
5059
5060 /* PCI config space info */
5061 #ifdef CONFIG_DM_ETH
5062 dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
5063 dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
5064 dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
5065 &hw->subsystem_vendor_id);
5066 dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
5067
5068 dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
5069 dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
5070 #else
5071 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
5072 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
5073 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
5074 &hw->subsystem_vendor_id);
5075 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
5076
5077 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
5078 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
5079 #endif
5080
5081 /* identify the MAC */
5082 result = e1000_set_mac_type(hw);
5083 if (result) {
5084 E1000_ERR(hw, "Unknown MAC Type\n");
5085 return result;
5086 }
5087
5088 switch (hw->mac_type) {
5089 default:
5090 break;
5091 case e1000_82541:
5092 case e1000_82547:
5093 case e1000_82541_rev_2:
5094 case e1000_82547_rev_2:
5095 hw->phy_init_script = 1;
5096 break;
5097 }
5098
5099 /* flow control settings */
5100 hw->fc_high_water = E1000_FC_HIGH_THRESH;
5101 hw->fc_low_water = E1000_FC_LOW_THRESH;
5102 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
5103 hw->fc_send_xon = 1;
5104
5105 /* Media type - copper or fiber */
5106 hw->tbi_compatibility_en = true;
5107 e1000_set_media_type(hw);
5108
5109 if (hw->mac_type >= e1000_82543) {
5110 uint32_t status = E1000_READ_REG(hw, STATUS);
5111
5112 if (status & E1000_STATUS_TBIMODE) {
5113 DEBUGOUT("fiber interface\n");
5114 hw->media_type = e1000_media_type_fiber;
5115 } else {
5116 DEBUGOUT("copper interface\n");
5117 hw->media_type = e1000_media_type_copper;
5118 }
5119 } else {
5120 hw->media_type = e1000_media_type_fiber;
5121 }
5122
5123 hw->wait_autoneg_complete = true;
5124 if (hw->mac_type < e1000_82543)
5125 hw->report_tx_early = 0;
5126 else
5127 hw->report_tx_early = 1;
5128
5129 return E1000_SUCCESS;
5130 }
5131
5132 void
fill_rx(struct e1000_hw * hw)5133 fill_rx(struct e1000_hw *hw)
5134 {
5135 struct e1000_rx_desc *rd;
5136 unsigned long flush_start, flush_end;
5137
5138 rx_last = rx_tail;
5139 rd = rx_base + rx_tail;
5140 rx_tail = (rx_tail + 1) % 8;
5141 memset(rd, 0, 16);
5142 rd->buffer_addr = cpu_to_le64((unsigned long)packet);
5143
5144 /*
5145 * Make sure there are no stale data in WB over this area, which
5146 * might get written into the memory while the e1000 also writes
5147 * into the same memory area.
5148 */
5149 invalidate_dcache_range((unsigned long)packet,
5150 (unsigned long)packet + 4096);
5151 /* Dump the DMA descriptor into RAM. */
5152 flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5153 flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5154 flush_dcache_range(flush_start, flush_end);
5155
5156 E1000_WRITE_REG(hw, RDT, rx_tail);
5157 }
5158
5159 /**
5160 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
5161 * @adapter: board private structure
5162 *
5163 * Configure the Tx unit of the MAC after a reset.
5164 **/
5165
5166 static void
e1000_configure_tx(struct e1000_hw * hw)5167 e1000_configure_tx(struct e1000_hw *hw)
5168 {
5169 unsigned long tctl;
5170 unsigned long tipg, tarc;
5171 uint32_t ipgr1, ipgr2;
5172
5173 E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
5174 E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));
5175
5176 E1000_WRITE_REG(hw, TDLEN, 128);
5177
5178 /* Setup the HW Tx Head and Tail descriptor pointers */
5179 E1000_WRITE_REG(hw, TDH, 0);
5180 E1000_WRITE_REG(hw, TDT, 0);
5181 tx_tail = 0;
5182
5183 /* Set the default values for the Tx Inter Packet Gap timer */
5184 if (hw->mac_type <= e1000_82547_rev_2 &&
5185 (hw->media_type == e1000_media_type_fiber ||
5186 hw->media_type == e1000_media_type_internal_serdes))
5187 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
5188 else
5189 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
5190
5191 /* Set the default values for the Tx Inter Packet Gap timer */
5192 switch (hw->mac_type) {
5193 case e1000_82542_rev2_0:
5194 case e1000_82542_rev2_1:
5195 tipg = DEFAULT_82542_TIPG_IPGT;
5196 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
5197 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
5198 break;
5199 case e1000_80003es2lan:
5200 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5201 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
5202 break;
5203 default:
5204 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5205 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
5206 break;
5207 }
5208 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
5209 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
5210 E1000_WRITE_REG(hw, TIPG, tipg);
5211 /* Program the Transmit Control Register */
5212 tctl = E1000_READ_REG(hw, TCTL);
5213 tctl &= ~E1000_TCTL_CT;
5214 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5215 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
5216
5217 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5218 tarc = E1000_READ_REG(hw, TARC0);
5219 /* set the speed mode bit, we'll clear it if we're not at
5220 * gigabit link later */
5221 /* git bit can be set to 1*/
5222 } else if (hw->mac_type == e1000_80003es2lan) {
5223 tarc = E1000_READ_REG(hw, TARC0);
5224 tarc |= 1;
5225 E1000_WRITE_REG(hw, TARC0, tarc);
5226 tarc = E1000_READ_REG(hw, TARC1);
5227 tarc |= 1;
5228 E1000_WRITE_REG(hw, TARC1, tarc);
5229 }
5230
5231
5232 e1000_config_collision_dist(hw);
5233 /* Setup Transmit Descriptor Settings for eop descriptor */
5234 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
5235
5236 /* Need to set up RS bit */
5237 if (hw->mac_type < e1000_82543)
5238 hw->txd_cmd |= E1000_TXD_CMD_RPS;
5239 else
5240 hw->txd_cmd |= E1000_TXD_CMD_RS;
5241
5242
5243 if (hw->mac_type == e1000_igb) {
5244 E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5245
5246 uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5247 reg_txdctl |= 1 << 25;
5248 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5249 mdelay(20);
5250 }
5251
5252
5253
5254 E1000_WRITE_REG(hw, TCTL, tctl);
5255
5256
5257 }
5258
5259 /**
5260 * e1000_setup_rctl - configure the receive control register
5261 * @adapter: Board private structure
5262 **/
5263 static void
e1000_setup_rctl(struct e1000_hw * hw)5264 e1000_setup_rctl(struct e1000_hw *hw)
5265 {
5266 uint32_t rctl;
5267
5268 rctl = E1000_READ_REG(hw, RCTL);
5269
5270 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5271
5272 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5273 | E1000_RCTL_RDMTS_HALF; /* |
5274 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5275
5276 if (hw->tbi_compatibility_on == 1)
5277 rctl |= E1000_RCTL_SBP;
5278 else
5279 rctl &= ~E1000_RCTL_SBP;
5280
5281 rctl &= ~(E1000_RCTL_SZ_4096);
5282 rctl |= E1000_RCTL_SZ_2048;
5283 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5284 E1000_WRITE_REG(hw, RCTL, rctl);
5285 }
5286
5287 /**
5288 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5289 * @adapter: board private structure
5290 *
5291 * Configure the Rx unit of the MAC after a reset.
5292 **/
5293 static void
e1000_configure_rx(struct e1000_hw * hw)5294 e1000_configure_rx(struct e1000_hw *hw)
5295 {
5296 unsigned long rctl, ctrl_ext;
5297 rx_tail = 0;
5298
5299 /* make sure receives are disabled while setting up the descriptors */
5300 rctl = E1000_READ_REG(hw, RCTL);
5301 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5302 if (hw->mac_type >= e1000_82540) {
5303 /* Set the interrupt throttling rate. Value is calculated
5304 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5305 #define MAX_INTS_PER_SEC 8000
5306 #define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
5307 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5308 }
5309
5310 if (hw->mac_type >= e1000_82571) {
5311 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5312 /* Reset delay timers after every interrupt */
5313 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5314 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5315 E1000_WRITE_FLUSH(hw);
5316 }
5317 /* Setup the Base and Length of the Rx Descriptor Ring */
5318 E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
5319 E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));
5320
5321 E1000_WRITE_REG(hw, RDLEN, 128);
5322
5323 /* Setup the HW Rx Head and Tail Descriptor Pointers */
5324 E1000_WRITE_REG(hw, RDH, 0);
5325 E1000_WRITE_REG(hw, RDT, 0);
5326 /* Enable Receives */
5327
5328 if (hw->mac_type == e1000_igb) {
5329
5330 uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5331 reg_rxdctl |= 1 << 25;
5332 E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5333 mdelay(20);
5334 }
5335
5336 E1000_WRITE_REG(hw, RCTL, rctl);
5337
5338 fill_rx(hw);
5339 }
5340
5341 /**************************************************************************
5342 POLL - Wait for a frame
5343 ***************************************************************************/
5344 static int
_e1000_poll(struct e1000_hw * hw)5345 _e1000_poll(struct e1000_hw *hw)
5346 {
5347 struct e1000_rx_desc *rd;
5348 unsigned long inval_start, inval_end;
5349 uint32_t len;
5350
5351 /* return true if there's an ethernet packet ready to read */
5352 rd = rx_base + rx_last;
5353
5354 /* Re-load the descriptor from RAM. */
5355 inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5356 inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5357 invalidate_dcache_range(inval_start, inval_end);
5358
5359 if (!(rd->status & E1000_RXD_STAT_DD))
5360 return 0;
5361 /* DEBUGOUT("recv: packet len=%d\n", rd->length); */
5362 /* Packet received, make sure the data are re-loaded from RAM. */
5363 len = le16_to_cpu(rd->length);
5364 invalidate_dcache_range((unsigned long)packet,
5365 (unsigned long)packet +
5366 roundup(len, ARCH_DMA_MINALIGN));
5367 return len;
5368 }
5369
_e1000_transmit(struct e1000_hw * hw,void * txpacket,int length)5370 static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
5371 {
5372 void *nv_packet = (void *)txpacket;
5373 struct e1000_tx_desc *txp;
5374 int i = 0;
5375 unsigned long flush_start, flush_end;
5376
5377 txp = tx_base + tx_tail;
5378 tx_tail = (tx_tail + 1) % 8;
5379
5380 txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5381 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5382 txp->upper.data = 0;
5383
5384 /* Dump the packet into RAM so e1000 can pick them. */
5385 flush_dcache_range((unsigned long)nv_packet,
5386 (unsigned long)nv_packet +
5387 roundup(length, ARCH_DMA_MINALIGN));
5388 /* Dump the descriptor into RAM as well. */
5389 flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
5390 flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5391 flush_dcache_range(flush_start, flush_end);
5392
5393 E1000_WRITE_REG(hw, TDT, tx_tail);
5394
5395 E1000_WRITE_FLUSH(hw);
5396 while (1) {
5397 invalidate_dcache_range(flush_start, flush_end);
5398 if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5399 break;
5400 if (i++ > TOUT_LOOP) {
5401 DEBUGOUT("e1000: tx timeout\n");
5402 return 0;
5403 }
5404 udelay(10); /* give the nic a chance to write to the register */
5405 }
5406 return 1;
5407 }
5408
5409 static void
_e1000_disable(struct e1000_hw * hw)5410 _e1000_disable(struct e1000_hw *hw)
5411 {
5412 /* Turn off the ethernet interface */
5413 E1000_WRITE_REG(hw, RCTL, 0);
5414 E1000_WRITE_REG(hw, TCTL, 0);
5415
5416 /* Clear the transmit ring */
5417 E1000_WRITE_REG(hw, TDH, 0);
5418 E1000_WRITE_REG(hw, TDT, 0);
5419
5420 /* Clear the receive ring */
5421 E1000_WRITE_REG(hw, RDH, 0);
5422 E1000_WRITE_REG(hw, RDT, 0);
5423
5424 mdelay(10);
5425 }
5426
5427 /*reset function*/
5428 static inline int
e1000_reset(struct e1000_hw * hw,unsigned char enetaddr[6])5429 e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
5430 {
5431 e1000_reset_hw(hw);
5432 if (hw->mac_type >= e1000_82544)
5433 E1000_WRITE_REG(hw, WUC, 0);
5434
5435 return e1000_init_hw(hw, enetaddr);
5436 }
5437
5438 static int
_e1000_init(struct e1000_hw * hw,unsigned char enetaddr[6])5439 _e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
5440 {
5441 int ret_val = 0;
5442
5443 ret_val = e1000_reset(hw, enetaddr);
5444 if (ret_val < 0) {
5445 if ((ret_val == -E1000_ERR_NOLINK) ||
5446 (ret_val == -E1000_ERR_TIMEOUT)) {
5447 E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
5448 } else {
5449 E1000_ERR(hw, "Hardware Initialization Failed\n");
5450 }
5451 return ret_val;
5452 }
5453 e1000_configure_tx(hw);
5454 e1000_setup_rctl(hw);
5455 e1000_configure_rx(hw);
5456 return 0;
5457 }
5458
5459 /******************************************************************************
5460 * Gets the current PCI bus type of hardware
5461 *
5462 * hw - Struct containing variables accessed by shared code
5463 *****************************************************************************/
e1000_get_bus_type(struct e1000_hw * hw)5464 void e1000_get_bus_type(struct e1000_hw *hw)
5465 {
5466 uint32_t status;
5467
5468 switch (hw->mac_type) {
5469 case e1000_82542_rev2_0:
5470 case e1000_82542_rev2_1:
5471 hw->bus_type = e1000_bus_type_pci;
5472 break;
5473 case e1000_82571:
5474 case e1000_82572:
5475 case e1000_82573:
5476 case e1000_82574:
5477 case e1000_80003es2lan:
5478 case e1000_ich8lan:
5479 case e1000_igb:
5480 hw->bus_type = e1000_bus_type_pci_express;
5481 break;
5482 default:
5483 status = E1000_READ_REG(hw, STATUS);
5484 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5485 e1000_bus_type_pcix : e1000_bus_type_pci;
5486 break;
5487 }
5488 }
5489
5490 #ifndef CONFIG_DM_ETH
5491 /* A list of all registered e1000 devices */
5492 static LIST_HEAD(e1000_hw_list);
5493 #endif
5494
5495 #ifdef CONFIG_DM_ETH
e1000_init_one(struct e1000_hw * hw,int cardnum,struct udevice * devno,unsigned char enetaddr[6])5496 static int e1000_init_one(struct e1000_hw *hw, int cardnum,
5497 struct udevice *devno, unsigned char enetaddr[6])
5498 #else
5499 static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
5500 unsigned char enetaddr[6])
5501 #endif
5502 {
5503 u32 val;
5504
5505 /* Assign the passed-in values */
5506 #ifdef CONFIG_DM_ETH
5507 hw->pdev = devno;
5508 #else
5509 hw->pdev = devno;
5510 #endif
5511 hw->cardnum = cardnum;
5512
5513 /* Print a debug message with the IO base address */
5514 #ifdef CONFIG_DM_ETH
5515 dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val);
5516 #else
5517 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5518 #endif
5519 E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
5520
5521 /* Try to enable I/O accesses and bus-mastering */
5522 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5523 #ifdef CONFIG_DM_ETH
5524 dm_pci_write_config32(devno, PCI_COMMAND, val);
5525 #else
5526 pci_write_config_dword(devno, PCI_COMMAND, val);
5527 #endif
5528
5529 /* Make sure it worked */
5530 #ifdef CONFIG_DM_ETH
5531 dm_pci_read_config32(devno, PCI_COMMAND, &val);
5532 #else
5533 pci_read_config_dword(devno, PCI_COMMAND, &val);
5534 #endif
5535 if (!(val & PCI_COMMAND_MEMORY)) {
5536 E1000_ERR(hw, "Can't enable I/O memory\n");
5537 return -ENOSPC;
5538 }
5539 if (!(val & PCI_COMMAND_MASTER)) {
5540 E1000_ERR(hw, "Can't enable bus-mastering\n");
5541 return -EPERM;
5542 }
5543
5544 /* Are these variables needed? */
5545 hw->fc = e1000_fc_default;
5546 hw->original_fc = e1000_fc_default;
5547 hw->autoneg_failed = 0;
5548 hw->autoneg = 1;
5549 hw->get_link_status = true;
5550 #ifndef CONFIG_E1000_NO_NVM
5551 hw->eeprom_semaphore_present = true;
5552 #endif
5553 #ifdef CONFIG_DM_ETH
5554 hw->hw_addr = dm_pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5555 PCI_REGION_MEM);
5556 #else
5557 hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5558 PCI_REGION_MEM);
5559 #endif
5560 hw->mac_type = e1000_undefined;
5561
5562 /* MAC and Phy settings */
5563 if (e1000_sw_init(hw) < 0) {
5564 E1000_ERR(hw, "Software init failed\n");
5565 return -EIO;
5566 }
5567 if (e1000_check_phy_reset_block(hw))
5568 E1000_ERR(hw, "PHY Reset is blocked!\n");
5569
5570 /* Basic init was OK, reset the hardware and allow SPI access */
5571 e1000_reset_hw(hw);
5572
5573 #ifndef CONFIG_E1000_NO_NVM
5574 /* Validate the EEPROM and get chipset information */
5575 if (e1000_init_eeprom_params(hw)) {
5576 E1000_ERR(hw, "EEPROM is invalid!\n");
5577 return -EINVAL;
5578 }
5579 if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5580 e1000_validate_eeprom_checksum(hw))
5581 return -ENXIO;
5582 e1000_read_mac_addr(hw, enetaddr);
5583 #endif
5584 e1000_get_bus_type(hw);
5585
5586 #ifndef CONFIG_E1000_NO_NVM
5587 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ",
5588 enetaddr[0], enetaddr[1], enetaddr[2],
5589 enetaddr[3], enetaddr[4], enetaddr[5]);
5590 #else
5591 memset(enetaddr, 0, 6);
5592 printf("e1000: no NVM\n");
5593 #endif
5594
5595 return 0;
5596 }
5597
5598 /* Put the name of a device in a string */
e1000_name(char * str,int cardnum)5599 static void e1000_name(char *str, int cardnum)
5600 {
5601 sprintf(str, "e1000#%u", cardnum);
5602 }
5603
5604 #ifndef CONFIG_DM_ETH
5605 /**************************************************************************
5606 TRANSMIT - Transmit a frame
5607 ***************************************************************************/
e1000_transmit(struct eth_device * nic,void * txpacket,int length)5608 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5609 {
5610 struct e1000_hw *hw = nic->priv;
5611
5612 return _e1000_transmit(hw, txpacket, length);
5613 }
5614
5615 /**************************************************************************
5616 DISABLE - Turn off ethernet interface
5617 ***************************************************************************/
5618 static void
e1000_disable(struct eth_device * nic)5619 e1000_disable(struct eth_device *nic)
5620 {
5621 struct e1000_hw *hw = nic->priv;
5622
5623 _e1000_disable(hw);
5624 }
5625
5626 /**************************************************************************
5627 INIT - set up ethernet interface(s)
5628 ***************************************************************************/
5629 static int
e1000_init(struct eth_device * nic,bd_t * bis)5630 e1000_init(struct eth_device *nic, bd_t *bis)
5631 {
5632 struct e1000_hw *hw = nic->priv;
5633
5634 return _e1000_init(hw, nic->enetaddr);
5635 }
5636
5637 static int
e1000_poll(struct eth_device * nic)5638 e1000_poll(struct eth_device *nic)
5639 {
5640 struct e1000_hw *hw = nic->priv;
5641 int len;
5642
5643 len = _e1000_poll(hw);
5644 if (len) {
5645 net_process_received_packet((uchar *)packet, len);
5646 fill_rx(hw);
5647 }
5648
5649 return len ? 1 : 0;
5650 }
5651
e1000_write_hwaddr(struct eth_device * dev)5652 static int e1000_write_hwaddr(struct eth_device *dev)
5653 {
5654 #ifndef CONFIG_E1000_NO_NVM
5655 unsigned char *mac = dev->enetaddr;
5656 unsigned char current_mac[6];
5657 struct e1000_hw *hw = dev->priv;
5658 uint16_t data[3];
5659 int ret_val, i;
5660
5661 DEBUGOUT("%s: mac=%pM\n", __func__, mac);
5662
5663 memset(current_mac, 0, 6);
5664
5665 /* Read from EEPROM, not from registers, to make sure
5666 * the address is persistently configured
5667 */
5668 ret_val = e1000_read_mac_addr_from_eeprom(hw, current_mac);
5669 DEBUGOUT("%s: current mac=%pM\n", __func__, current_mac);
5670
5671 /* Only write to EEPROM if the given address is different or
5672 * reading the current address failed
5673 */
5674 if (!ret_val && memcmp(current_mac, mac, 6) == 0)
5675 return 0;
5676
5677 for (i = 0; i < 3; ++i)
5678 data[i] = mac[i * 2 + 1] << 8 | mac[i * 2];
5679
5680 ret_val = e1000_write_eeprom_srwr(hw, 0x0, 3, data);
5681
5682 if (!ret_val)
5683 ret_val = e1000_update_eeprom_checksum_i210(hw);
5684
5685 return ret_val;
5686 #else
5687 return 0;
5688 #endif
5689 }
5690
5691 /**************************************************************************
5692 PROBE - Look for an adapter, this routine's visible to the outside
5693 You should omit the last argument struct pci_device * for a non-PCI NIC
5694 ***************************************************************************/
5695 int
e1000_initialize(bd_t * bis)5696 e1000_initialize(bd_t * bis)
5697 {
5698 unsigned int i;
5699 pci_dev_t devno;
5700 int ret;
5701
5702 DEBUGFUNC();
5703
5704 /* Find and probe all the matching PCI devices */
5705 for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5706 /*
5707 * These will never get freed due to errors, this allows us to
5708 * perform SPI EEPROM programming from U-Boot, for example.
5709 */
5710 struct eth_device *nic = malloc(sizeof(*nic));
5711 struct e1000_hw *hw = malloc(sizeof(*hw));
5712 if (!nic || !hw) {
5713 printf("e1000#%u: Out of Memory!\n", i);
5714 free(nic);
5715 free(hw);
5716 continue;
5717 }
5718
5719 /* Make sure all of the fields are initially zeroed */
5720 memset(nic, 0, sizeof(*nic));
5721 memset(hw, 0, sizeof(*hw));
5722 nic->priv = hw;
5723
5724 /* Generate a card name */
5725 e1000_name(nic->name, i);
5726 hw->name = nic->name;
5727
5728 ret = e1000_init_one(hw, i, devno, nic->enetaddr);
5729 if (ret)
5730 continue;
5731 list_add_tail(&hw->list_node, &e1000_hw_list);
5732
5733 hw->nic = nic;
5734
5735 /* Set up the function pointers and register the device */
5736 nic->init = e1000_init;
5737 nic->recv = e1000_poll;
5738 nic->send = e1000_transmit;
5739 nic->halt = e1000_disable;
5740 nic->write_hwaddr = e1000_write_hwaddr;
5741 eth_register(nic);
5742 }
5743
5744 return i;
5745 }
5746
e1000_find_card(unsigned int cardnum)5747 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5748 {
5749 struct e1000_hw *hw;
5750
5751 list_for_each_entry(hw, &e1000_hw_list, list_node)
5752 if (hw->cardnum == cardnum)
5753 return hw;
5754
5755 return NULL;
5756 }
5757 #endif /* !CONFIG_DM_ETH */
5758
5759 #ifdef CONFIG_CMD_E1000
do_e1000(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])5760 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5761 int argc, char * const argv[])
5762 {
5763 unsigned char *mac = NULL;
5764 #ifdef CONFIG_DM_ETH
5765 struct eth_pdata *plat;
5766 struct udevice *dev;
5767 char name[30];
5768 int ret;
5769 #endif
5770 #if !defined(CONFIG_DM_ETH) || defined(CONFIG_E1000_SPI)
5771 struct e1000_hw *hw;
5772 #endif
5773 int cardnum;
5774
5775 if (argc < 3) {
5776 cmd_usage(cmdtp);
5777 return 1;
5778 }
5779
5780 /* Make sure we can find the requested e1000 card */
5781 cardnum = simple_strtoul(argv[1], NULL, 10);
5782 #ifdef CONFIG_DM_ETH
5783 e1000_name(name, cardnum);
5784 ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
5785 if (!ret) {
5786 plat = dev_get_platdata(dev);
5787 mac = plat->enetaddr;
5788 }
5789 #else
5790 hw = e1000_find_card(cardnum);
5791 if (hw)
5792 mac = hw->nic->enetaddr;
5793 #endif
5794 if (!mac) {
5795 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5796 return 1;
5797 }
5798
5799 if (!strcmp(argv[2], "print-mac-address")) {
5800 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5801 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5802 return 0;
5803 }
5804
5805 #ifdef CONFIG_E1000_SPI
5806 #ifdef CONFIG_DM_ETH
5807 hw = dev_get_priv(dev);
5808 #endif
5809 /* Handle the "SPI" subcommand */
5810 if (!strcmp(argv[2], "spi"))
5811 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5812 #endif
5813
5814 cmd_usage(cmdtp);
5815 return 1;
5816 }
5817
5818 U_BOOT_CMD(
5819 e1000, 7, 0, do_e1000,
5820 "Intel e1000 controller management",
5821 /* */"<card#> print-mac-address\n"
5822 #ifdef CONFIG_E1000_SPI
5823 "e1000 <card#> spi show [<offset> [<length>]]\n"
5824 "e1000 <card#> spi dump <addr> <offset> <length>\n"
5825 "e1000 <card#> spi program <addr> <offset> <length>\n"
5826 "e1000 <card#> spi checksum [update]\n"
5827 #endif
5828 " - Manage the Intel E1000 PCI device"
5829 );
5830 #endif /* not CONFIG_CMD_E1000 */
5831
5832 #ifdef CONFIG_DM_ETH
e1000_eth_start(struct udevice * dev)5833 static int e1000_eth_start(struct udevice *dev)
5834 {
5835 struct eth_pdata *plat = dev_get_platdata(dev);
5836 struct e1000_hw *hw = dev_get_priv(dev);
5837
5838 return _e1000_init(hw, plat->enetaddr);
5839 }
5840
e1000_eth_stop(struct udevice * dev)5841 static void e1000_eth_stop(struct udevice *dev)
5842 {
5843 struct e1000_hw *hw = dev_get_priv(dev);
5844
5845 _e1000_disable(hw);
5846 }
5847
e1000_eth_send(struct udevice * dev,void * packet,int length)5848 static int e1000_eth_send(struct udevice *dev, void *packet, int length)
5849 {
5850 struct e1000_hw *hw = dev_get_priv(dev);
5851 int ret;
5852
5853 ret = _e1000_transmit(hw, packet, length);
5854
5855 return ret ? 0 : -ETIMEDOUT;
5856 }
5857
e1000_eth_recv(struct udevice * dev,int flags,uchar ** packetp)5858 static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
5859 {
5860 struct e1000_hw *hw = dev_get_priv(dev);
5861 int len;
5862
5863 len = _e1000_poll(hw);
5864 if (len)
5865 *packetp = packet;
5866
5867 return len ? len : -EAGAIN;
5868 }
5869
e1000_free_pkt(struct udevice * dev,uchar * packet,int length)5870 static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
5871 {
5872 struct e1000_hw *hw = dev_get_priv(dev);
5873
5874 fill_rx(hw);
5875
5876 return 0;
5877 }
5878
e1000_eth_probe(struct udevice * dev)5879 static int e1000_eth_probe(struct udevice *dev)
5880 {
5881 struct eth_pdata *plat = dev_get_platdata(dev);
5882 struct e1000_hw *hw = dev_get_priv(dev);
5883 int ret;
5884
5885 hw->name = dev->name;
5886 ret = e1000_init_one(hw, trailing_strtol(dev->name),
5887 dev, plat->enetaddr);
5888 if (ret < 0) {
5889 printf(pr_fmt("failed to initialize card: %d\n"), ret);
5890 return ret;
5891 }
5892
5893 return 0;
5894 }
5895
e1000_eth_bind(struct udevice * dev)5896 static int e1000_eth_bind(struct udevice *dev)
5897 {
5898 char name[20];
5899
5900 /*
5901 * A simple way to number the devices. When device tree is used this
5902 * is unnecessary, but when the device is just discovered on the PCI
5903 * bus we need a name. We could instead have the uclass figure out
5904 * which devices are different and number them.
5905 */
5906 e1000_name(name, num_cards++);
5907
5908 return device_set_name(dev, name);
5909 }
5910
5911 static const struct eth_ops e1000_eth_ops = {
5912 .start = e1000_eth_start,
5913 .send = e1000_eth_send,
5914 .recv = e1000_eth_recv,
5915 .stop = e1000_eth_stop,
5916 .free_pkt = e1000_free_pkt,
5917 };
5918
5919 static const struct udevice_id e1000_eth_ids[] = {
5920 { .compatible = "intel,e1000" },
5921 { }
5922 };
5923
5924 U_BOOT_DRIVER(eth_e1000) = {
5925 .name = "eth_e1000",
5926 .id = UCLASS_ETH,
5927 .of_match = e1000_eth_ids,
5928 .bind = e1000_eth_bind,
5929 .probe = e1000_eth_probe,
5930 .ops = &e1000_eth_ops,
5931 .priv_auto_alloc_size = sizeof(struct e1000_hw),
5932 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
5933 };
5934
5935 U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
5936 #endif
5937