1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102 #include <linux/tick.h>
103
104 #include <asm/pgalloc.h>
105 #include <linux/uaccess.h>
106 #include <asm/mmu_context.h>
107 #include <asm/cacheflush.h>
108 #include <asm/tlbflush.h>
109
110 #include <trace/events/sched.h>
111
112 #define CREATE_TRACE_POINTS
113 #include <trace/events/task.h>
114
115 /*
116 * Minimum number of threads to boot the kernel
117 */
118 #define MIN_THREADS 20
119
120 /*
121 * Maximum number of threads
122 */
123 #define MAX_THREADS FUTEX_TID_MASK
124
125 /*
126 * Protected counters by write_lock_irq(&tasklist_lock)
127 */
128 unsigned long total_forks; /* Handle normal Linux uptimes. */
129 int nr_threads; /* The idle threads do not count.. */
130
131 static int max_threads; /* tunable limit on nr_threads */
132
133 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
134
135 static const char * const resident_page_types[] = {
136 NAMED_ARRAY_INDEX(MM_FILEPAGES),
137 NAMED_ARRAY_INDEX(MM_ANONPAGES),
138 NAMED_ARRAY_INDEX(MM_SWAPENTS),
139 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
140 };
141
142 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
143
144 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
145
146 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)147 int lockdep_tasklist_lock_is_held(void)
148 {
149 return lockdep_is_held(&tasklist_lock);
150 }
151 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
152 #endif /* #ifdef CONFIG_PROVE_RCU */
153
nr_processes(void)154 int nr_processes(void)
155 {
156 int cpu;
157 int total = 0;
158
159 for_each_possible_cpu(cpu)
160 total += per_cpu(process_counts, cpu);
161
162 return total;
163 }
164
arch_release_task_struct(struct task_struct * tsk)165 void __weak arch_release_task_struct(struct task_struct *tsk)
166 {
167 }
168
169 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
170 static struct kmem_cache *task_struct_cachep;
171
alloc_task_struct_node(int node)172 static inline struct task_struct *alloc_task_struct_node(int node)
173 {
174 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
175 }
176
free_task_struct(struct task_struct * tsk)177 static inline void free_task_struct(struct task_struct *tsk)
178 {
179 kmem_cache_free(task_struct_cachep, tsk);
180 }
181 #endif
182
183 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
184
185 /*
186 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
187 * kmemcache based allocator.
188 */
189 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
190
191 # ifdef CONFIG_VMAP_STACK
192 /*
193 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
194 * flush. Try to minimize the number of calls by caching stacks.
195 */
196 #define NR_CACHED_STACKS 2
197 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
198
199 struct vm_stack {
200 struct rcu_head rcu;
201 struct vm_struct *stack_vm_area;
202 };
203
try_release_thread_stack_to_cache(struct vm_struct * vm)204 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
205 {
206 unsigned int i;
207
208 for (i = 0; i < NR_CACHED_STACKS; i++) {
209 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
210 continue;
211 return true;
212 }
213 return false;
214 }
215
thread_stack_free_rcu(struct rcu_head * rh)216 static void thread_stack_free_rcu(struct rcu_head *rh)
217 {
218 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
219
220 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
221 return;
222
223 vfree(vm_stack);
224 }
225
thread_stack_delayed_free(struct task_struct * tsk)226 static void thread_stack_delayed_free(struct task_struct *tsk)
227 {
228 struct vm_stack *vm_stack = tsk->stack;
229
230 vm_stack->stack_vm_area = tsk->stack_vm_area;
231 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
232 }
233
free_vm_stack_cache(unsigned int cpu)234 static int free_vm_stack_cache(unsigned int cpu)
235 {
236 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
237 int i;
238
239 for (i = 0; i < NR_CACHED_STACKS; i++) {
240 struct vm_struct *vm_stack = cached_vm_stacks[i];
241
242 if (!vm_stack)
243 continue;
244
245 vfree(vm_stack->addr);
246 cached_vm_stacks[i] = NULL;
247 }
248
249 return 0;
250 }
251
memcg_charge_kernel_stack(struct vm_struct * vm)252 static int memcg_charge_kernel_stack(struct vm_struct *vm)
253 {
254 int i;
255 int ret;
256 int nr_charged = 0;
257
258 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
259
260 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
261 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
262 if (ret)
263 goto err;
264 nr_charged++;
265 }
266 return 0;
267 err:
268 for (i = 0; i < nr_charged; i++)
269 memcg_kmem_uncharge_page(vm->pages[i], 0);
270 return ret;
271 }
272
alloc_thread_stack_node(struct task_struct * tsk,int node)273 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
274 {
275 struct vm_struct *vm;
276 void *stack;
277 int i;
278
279 for (i = 0; i < NR_CACHED_STACKS; i++) {
280 struct vm_struct *s;
281
282 s = this_cpu_xchg(cached_stacks[i], NULL);
283
284 if (!s)
285 continue;
286
287 /* Reset stack metadata. */
288 kasan_unpoison_range(s->addr, THREAD_SIZE);
289
290 stack = kasan_reset_tag(s->addr);
291
292 /* Clear stale pointers from reused stack. */
293 memset(stack, 0, THREAD_SIZE);
294
295 if (memcg_charge_kernel_stack(s)) {
296 vfree(s->addr);
297 return -ENOMEM;
298 }
299
300 tsk->stack_vm_area = s;
301 tsk->stack = stack;
302 return 0;
303 }
304
305 /*
306 * Allocated stacks are cached and later reused by new threads,
307 * so memcg accounting is performed manually on assigning/releasing
308 * stacks to tasks. Drop __GFP_ACCOUNT.
309 */
310 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
311 VMALLOC_START, VMALLOC_END,
312 THREADINFO_GFP & ~__GFP_ACCOUNT,
313 PAGE_KERNEL,
314 0, node, __builtin_return_address(0));
315 if (!stack)
316 return -ENOMEM;
317
318 vm = find_vm_area(stack);
319 if (memcg_charge_kernel_stack(vm)) {
320 vfree(stack);
321 return -ENOMEM;
322 }
323 /*
324 * We can't call find_vm_area() in interrupt context, and
325 * free_thread_stack() can be called in interrupt context,
326 * so cache the vm_struct.
327 */
328 tsk->stack_vm_area = vm;
329 stack = kasan_reset_tag(stack);
330 tsk->stack = stack;
331 return 0;
332 }
333
free_thread_stack(struct task_struct * tsk)334 static void free_thread_stack(struct task_struct *tsk)
335 {
336 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
337 thread_stack_delayed_free(tsk);
338
339 tsk->stack = NULL;
340 tsk->stack_vm_area = NULL;
341 }
342
343 # else /* !CONFIG_VMAP_STACK */
344
thread_stack_free_rcu(struct rcu_head * rh)345 static void thread_stack_free_rcu(struct rcu_head *rh)
346 {
347 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
348 }
349
thread_stack_delayed_free(struct task_struct * tsk)350 static void thread_stack_delayed_free(struct task_struct *tsk)
351 {
352 struct rcu_head *rh = tsk->stack;
353
354 call_rcu(rh, thread_stack_free_rcu);
355 }
356
alloc_thread_stack_node(struct task_struct * tsk,int node)357 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
358 {
359 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
360 THREAD_SIZE_ORDER);
361
362 if (likely(page)) {
363 tsk->stack = kasan_reset_tag(page_address(page));
364 return 0;
365 }
366 return -ENOMEM;
367 }
368
free_thread_stack(struct task_struct * tsk)369 static void free_thread_stack(struct task_struct *tsk)
370 {
371 thread_stack_delayed_free(tsk);
372 tsk->stack = NULL;
373 }
374
375 # endif /* CONFIG_VMAP_STACK */
376 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
377
378 static struct kmem_cache *thread_stack_cache;
379
thread_stack_free_rcu(struct rcu_head * rh)380 static void thread_stack_free_rcu(struct rcu_head *rh)
381 {
382 kmem_cache_free(thread_stack_cache, rh);
383 }
384
thread_stack_delayed_free(struct task_struct * tsk)385 static void thread_stack_delayed_free(struct task_struct *tsk)
386 {
387 struct rcu_head *rh = tsk->stack;
388
389 call_rcu(rh, thread_stack_free_rcu);
390 }
391
alloc_thread_stack_node(struct task_struct * tsk,int node)392 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
393 {
394 unsigned long *stack;
395 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
396 stack = kasan_reset_tag(stack);
397 tsk->stack = stack;
398 return stack ? 0 : -ENOMEM;
399 }
400
free_thread_stack(struct task_struct * tsk)401 static void free_thread_stack(struct task_struct *tsk)
402 {
403 thread_stack_delayed_free(tsk);
404 tsk->stack = NULL;
405 }
406
thread_stack_cache_init(void)407 void thread_stack_cache_init(void)
408 {
409 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
410 THREAD_SIZE, THREAD_SIZE, 0, 0,
411 THREAD_SIZE, NULL);
412 BUG_ON(thread_stack_cache == NULL);
413 }
414
415 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
416 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
417
alloc_thread_stack_node(struct task_struct * tsk,int node)418 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
419 {
420 unsigned long *stack;
421
422 stack = arch_alloc_thread_stack_node(tsk, node);
423 tsk->stack = stack;
424 return stack ? 0 : -ENOMEM;
425 }
426
free_thread_stack(struct task_struct * tsk)427 static void free_thread_stack(struct task_struct *tsk)
428 {
429 arch_free_thread_stack(tsk);
430 tsk->stack = NULL;
431 }
432
433 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
434
435 /* SLAB cache for signal_struct structures (tsk->signal) */
436 static struct kmem_cache *signal_cachep;
437
438 /* SLAB cache for sighand_struct structures (tsk->sighand) */
439 struct kmem_cache *sighand_cachep;
440
441 /* SLAB cache for files_struct structures (tsk->files) */
442 struct kmem_cache *files_cachep;
443
444 /* SLAB cache for fs_struct structures (tsk->fs) */
445 struct kmem_cache *fs_cachep;
446
447 /* SLAB cache for vm_area_struct structures */
448 static struct kmem_cache *vm_area_cachep;
449
450 /* SLAB cache for mm_struct structures (tsk->mm) */
451 static struct kmem_cache *mm_cachep;
452
453 #ifdef CONFIG_PER_VMA_LOCK
454
455 /* SLAB cache for vm_area_struct.lock */
456 static struct kmem_cache *vma_lock_cachep;
457
vma_lock_alloc(struct vm_area_struct * vma)458 static bool vma_lock_alloc(struct vm_area_struct *vma)
459 {
460 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
461 if (!vma->vm_lock)
462 return false;
463
464 init_rwsem(&vma->vm_lock->lock);
465 vma->vm_lock_seq = -1;
466
467 return true;
468 }
469
vma_lock_free(struct vm_area_struct * vma)470 static inline void vma_lock_free(struct vm_area_struct *vma)
471 {
472 kmem_cache_free(vma_lock_cachep, vma->vm_lock);
473 }
474
475 #else /* CONFIG_PER_VMA_LOCK */
476
vma_lock_alloc(struct vm_area_struct * vma)477 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)478 static inline void vma_lock_free(struct vm_area_struct *vma) {}
479
480 #endif /* CONFIG_PER_VMA_LOCK */
481
vm_area_alloc(struct mm_struct * mm)482 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
483 {
484 struct vm_area_struct *vma;
485
486 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
487 if (!vma)
488 return NULL;
489
490 vma_init(vma, mm);
491 if (!vma_lock_alloc(vma)) {
492 kmem_cache_free(vm_area_cachep, vma);
493 return NULL;
494 }
495
496 return vma;
497 }
498
vm_area_dup(struct vm_area_struct * orig)499 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
500 {
501 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
502
503 if (!new)
504 return NULL;
505
506 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
507 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
508 /*
509 * orig->shared.rb may be modified concurrently, but the clone
510 * will be reinitialized.
511 */
512 data_race(memcpy(new, orig, sizeof(*new)));
513 if (!vma_lock_alloc(new)) {
514 kmem_cache_free(vm_area_cachep, new);
515 return NULL;
516 }
517 INIT_LIST_HEAD(&new->anon_vma_chain);
518 vma_numab_state_init(new);
519 dup_anon_vma_name(orig, new);
520
521 return new;
522 }
523
__vm_area_free(struct vm_area_struct * vma)524 void __vm_area_free(struct vm_area_struct *vma)
525 {
526 vma_numab_state_free(vma);
527 free_anon_vma_name(vma);
528 vma_lock_free(vma);
529 kmem_cache_free(vm_area_cachep, vma);
530 }
531
532 #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)533 static void vm_area_free_rcu_cb(struct rcu_head *head)
534 {
535 struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
536 vm_rcu);
537
538 /* The vma should not be locked while being destroyed. */
539 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
540 __vm_area_free(vma);
541 }
542 #endif
543
vm_area_free(struct vm_area_struct * vma)544 void vm_area_free(struct vm_area_struct *vma)
545 {
546 #ifdef CONFIG_PER_VMA_LOCK
547 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
548 #else
549 __vm_area_free(vma);
550 #endif
551 }
552
account_kernel_stack(struct task_struct * tsk,int account)553 static void account_kernel_stack(struct task_struct *tsk, int account)
554 {
555 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
556 struct vm_struct *vm = task_stack_vm_area(tsk);
557 int i;
558
559 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
560 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
561 account * (PAGE_SIZE / 1024));
562 } else {
563 void *stack = task_stack_page(tsk);
564
565 /* All stack pages are in the same node. */
566 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
567 account * (THREAD_SIZE / 1024));
568 }
569 }
570
exit_task_stack_account(struct task_struct * tsk)571 void exit_task_stack_account(struct task_struct *tsk)
572 {
573 account_kernel_stack(tsk, -1);
574
575 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
576 struct vm_struct *vm;
577 int i;
578
579 vm = task_stack_vm_area(tsk);
580 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
581 memcg_kmem_uncharge_page(vm->pages[i], 0);
582 }
583 }
584
release_task_stack(struct task_struct * tsk)585 static void release_task_stack(struct task_struct *tsk)
586 {
587 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
588 return; /* Better to leak the stack than to free prematurely */
589
590 free_thread_stack(tsk);
591 }
592
593 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)594 void put_task_stack(struct task_struct *tsk)
595 {
596 if (refcount_dec_and_test(&tsk->stack_refcount))
597 release_task_stack(tsk);
598 }
599 #endif
600
free_task(struct task_struct * tsk)601 void free_task(struct task_struct *tsk)
602 {
603 #ifdef CONFIG_SECCOMP
604 WARN_ON_ONCE(tsk->seccomp.filter);
605 #endif
606 release_user_cpus_ptr(tsk);
607 scs_release(tsk);
608
609 #ifndef CONFIG_THREAD_INFO_IN_TASK
610 /*
611 * The task is finally done with both the stack and thread_info,
612 * so free both.
613 */
614 release_task_stack(tsk);
615 #else
616 /*
617 * If the task had a separate stack allocation, it should be gone
618 * by now.
619 */
620 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
621 #endif
622 rt_mutex_debug_task_free(tsk);
623 ftrace_graph_exit_task(tsk);
624 arch_release_task_struct(tsk);
625 if (tsk->flags & PF_KTHREAD)
626 free_kthread_struct(tsk);
627 bpf_task_storage_free(tsk);
628 free_task_struct(tsk);
629 }
630 EXPORT_SYMBOL(free_task);
631
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)632 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
633 {
634 struct file *exe_file;
635
636 exe_file = get_mm_exe_file(oldmm);
637 RCU_INIT_POINTER(mm->exe_file, exe_file);
638 /*
639 * We depend on the oldmm having properly denied write access to the
640 * exe_file already.
641 */
642 if (exe_file && deny_write_access(exe_file))
643 pr_warn_once("deny_write_access() failed in %s\n", __func__);
644 }
645
646 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)647 static __latent_entropy int dup_mmap(struct mm_struct *mm,
648 struct mm_struct *oldmm)
649 {
650 struct vm_area_struct *mpnt, *tmp;
651 int retval;
652 unsigned long charge = 0;
653 LIST_HEAD(uf);
654 VMA_ITERATOR(old_vmi, oldmm, 0);
655 VMA_ITERATOR(vmi, mm, 0);
656
657 uprobe_start_dup_mmap();
658 if (mmap_write_lock_killable(oldmm)) {
659 retval = -EINTR;
660 goto fail_uprobe_end;
661 }
662 flush_cache_dup_mm(oldmm);
663 uprobe_dup_mmap(oldmm, mm);
664 /*
665 * Not linked in yet - no deadlock potential:
666 */
667 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
668
669 /* No ordering required: file already has been exposed. */
670 dup_mm_exe_file(mm, oldmm);
671
672 mm->total_vm = oldmm->total_vm;
673 mm->data_vm = oldmm->data_vm;
674 mm->exec_vm = oldmm->exec_vm;
675 mm->stack_vm = oldmm->stack_vm;
676
677 retval = ksm_fork(mm, oldmm);
678 if (retval)
679 goto out;
680 khugepaged_fork(mm, oldmm);
681
682 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
683 if (retval)
684 goto out;
685
686 mt_clear_in_rcu(vmi.mas.tree);
687 for_each_vma(old_vmi, mpnt) {
688 struct file *file;
689
690 vma_start_write(mpnt);
691 if (mpnt->vm_flags & VM_DONTCOPY) {
692 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
693 continue;
694 }
695 charge = 0;
696 /*
697 * Don't duplicate many vmas if we've been oom-killed (for
698 * example)
699 */
700 if (fatal_signal_pending(current)) {
701 retval = -EINTR;
702 goto loop_out;
703 }
704 if (mpnt->vm_flags & VM_ACCOUNT) {
705 unsigned long len = vma_pages(mpnt);
706
707 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
708 goto fail_nomem;
709 charge = len;
710 }
711 tmp = vm_area_dup(mpnt);
712 if (!tmp)
713 goto fail_nomem;
714
715 /* track_pfn_copy() will later take care of copying internal state. */
716 if (unlikely(tmp->vm_flags & VM_PFNMAP))
717 untrack_pfn_clear(tmp);
718
719 retval = vma_dup_policy(mpnt, tmp);
720 if (retval)
721 goto fail_nomem_policy;
722 tmp->vm_mm = mm;
723 retval = dup_userfaultfd(tmp, &uf);
724 if (retval)
725 goto fail_nomem_anon_vma_fork;
726 if (tmp->vm_flags & VM_WIPEONFORK) {
727 /*
728 * VM_WIPEONFORK gets a clean slate in the child.
729 * Don't prepare anon_vma until fault since we don't
730 * copy page for current vma.
731 */
732 tmp->anon_vma = NULL;
733 } else if (anon_vma_fork(tmp, mpnt))
734 goto fail_nomem_anon_vma_fork;
735 vm_flags_clear(tmp, VM_LOCKED_MASK);
736 file = tmp->vm_file;
737 if (file) {
738 struct address_space *mapping = file->f_mapping;
739
740 get_file(file);
741 i_mmap_lock_write(mapping);
742 if (tmp->vm_flags & VM_SHARED)
743 mapping_allow_writable(mapping);
744 flush_dcache_mmap_lock(mapping);
745 /* insert tmp into the share list, just after mpnt */
746 vma_interval_tree_insert_after(tmp, mpnt,
747 &mapping->i_mmap);
748 flush_dcache_mmap_unlock(mapping);
749 i_mmap_unlock_write(mapping);
750 }
751
752 /*
753 * Copy/update hugetlb private vma information.
754 */
755 if (is_vm_hugetlb_page(tmp))
756 hugetlb_dup_vma_private(tmp);
757
758 /* Link the vma into the MT */
759 if (vma_iter_bulk_store(&vmi, tmp))
760 goto fail_nomem_vmi_store;
761
762 mm->map_count++;
763 if (!(tmp->vm_flags & VM_WIPEONFORK))
764 retval = copy_page_range(tmp, mpnt);
765
766 if (tmp->vm_ops && tmp->vm_ops->open)
767 tmp->vm_ops->open(tmp);
768
769 if (retval)
770 goto loop_out;
771 }
772 /* a new mm has just been created */
773 retval = arch_dup_mmap(oldmm, mm);
774 loop_out:
775 vma_iter_free(&vmi);
776 if (!retval)
777 mt_set_in_rcu(vmi.mas.tree);
778 out:
779 mmap_write_unlock(mm);
780 flush_tlb_mm(oldmm);
781 mmap_write_unlock(oldmm);
782 dup_userfaultfd_complete(&uf);
783 fail_uprobe_end:
784 uprobe_end_dup_mmap();
785 return retval;
786
787 fail_nomem_vmi_store:
788 unlink_anon_vmas(tmp);
789 fail_nomem_anon_vma_fork:
790 mpol_put(vma_policy(tmp));
791 fail_nomem_policy:
792 vm_area_free(tmp);
793 fail_nomem:
794 retval = -ENOMEM;
795 vm_unacct_memory(charge);
796 goto loop_out;
797 }
798
mm_alloc_pgd(struct mm_struct * mm)799 static inline int mm_alloc_pgd(struct mm_struct *mm)
800 {
801 mm->pgd = pgd_alloc(mm);
802 if (unlikely(!mm->pgd))
803 return -ENOMEM;
804 return 0;
805 }
806
mm_free_pgd(struct mm_struct * mm)807 static inline void mm_free_pgd(struct mm_struct *mm)
808 {
809 pgd_free(mm, mm->pgd);
810 }
811 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)812 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
813 {
814 mmap_write_lock(oldmm);
815 dup_mm_exe_file(mm, oldmm);
816 mmap_write_unlock(oldmm);
817 return 0;
818 }
819 #define mm_alloc_pgd(mm) (0)
820 #define mm_free_pgd(mm)
821 #endif /* CONFIG_MMU */
822
check_mm(struct mm_struct * mm)823 static void check_mm(struct mm_struct *mm)
824 {
825 int i;
826
827 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
828 "Please make sure 'struct resident_page_types[]' is updated as well");
829
830 for (i = 0; i < NR_MM_COUNTERS; i++) {
831 long x = percpu_counter_sum(&mm->rss_stat[i]);
832
833 if (unlikely(x))
834 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
835 mm, resident_page_types[i], x);
836 }
837
838 if (mm_pgtables_bytes(mm))
839 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
840 mm_pgtables_bytes(mm));
841
842 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
843 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
844 #endif
845 }
846
847 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
848 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
849
do_check_lazy_tlb(void * arg)850 static void do_check_lazy_tlb(void *arg)
851 {
852 struct mm_struct *mm = arg;
853
854 WARN_ON_ONCE(current->active_mm == mm);
855 }
856
do_shoot_lazy_tlb(void * arg)857 static void do_shoot_lazy_tlb(void *arg)
858 {
859 struct mm_struct *mm = arg;
860
861 if (current->active_mm == mm) {
862 WARN_ON_ONCE(current->mm);
863 current->active_mm = &init_mm;
864 switch_mm(mm, &init_mm, current);
865 }
866 }
867
cleanup_lazy_tlbs(struct mm_struct * mm)868 static void cleanup_lazy_tlbs(struct mm_struct *mm)
869 {
870 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
871 /*
872 * In this case, lazy tlb mms are refounted and would not reach
873 * __mmdrop until all CPUs have switched away and mmdrop()ed.
874 */
875 return;
876 }
877
878 /*
879 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
880 * requires lazy mm users to switch to another mm when the refcount
881 * drops to zero, before the mm is freed. This requires IPIs here to
882 * switch kernel threads to init_mm.
883 *
884 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
885 * switch with the final userspace teardown TLB flush which leaves the
886 * mm lazy on this CPU but no others, reducing the need for additional
887 * IPIs here. There are cases where a final IPI is still required here,
888 * such as the final mmdrop being performed on a different CPU than the
889 * one exiting, or kernel threads using the mm when userspace exits.
890 *
891 * IPI overheads have not found to be expensive, but they could be
892 * reduced in a number of possible ways, for example (roughly
893 * increasing order of complexity):
894 * - The last lazy reference created by exit_mm() could instead switch
895 * to init_mm, however it's probable this will run on the same CPU
896 * immediately afterwards, so this may not reduce IPIs much.
897 * - A batch of mms requiring IPIs could be gathered and freed at once.
898 * - CPUs store active_mm where it can be remotely checked without a
899 * lock, to filter out false-positives in the cpumask.
900 * - After mm_users or mm_count reaches zero, switching away from the
901 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
902 * with some batching or delaying of the final IPIs.
903 * - A delayed freeing and RCU-like quiescing sequence based on mm
904 * switching to avoid IPIs completely.
905 */
906 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
907 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
908 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
909 }
910
911 /*
912 * Called when the last reference to the mm
913 * is dropped: either by a lazy thread or by
914 * mmput. Free the page directory and the mm.
915 */
__mmdrop(struct mm_struct * mm)916 void __mmdrop(struct mm_struct *mm)
917 {
918 BUG_ON(mm == &init_mm);
919 WARN_ON_ONCE(mm == current->mm);
920
921 /* Ensure no CPUs are using this as their lazy tlb mm */
922 cleanup_lazy_tlbs(mm);
923
924 WARN_ON_ONCE(mm == current->active_mm);
925 mm_free_pgd(mm);
926 destroy_context(mm);
927 mmu_notifier_subscriptions_destroy(mm);
928 check_mm(mm);
929 put_user_ns(mm->user_ns);
930 mm_pasid_drop(mm);
931 mm_destroy_cid(mm);
932 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
933
934 free_mm(mm);
935 }
936 EXPORT_SYMBOL_GPL(__mmdrop);
937
mmdrop_async_fn(struct work_struct * work)938 static void mmdrop_async_fn(struct work_struct *work)
939 {
940 struct mm_struct *mm;
941
942 mm = container_of(work, struct mm_struct, async_put_work);
943 __mmdrop(mm);
944 }
945
mmdrop_async(struct mm_struct * mm)946 static void mmdrop_async(struct mm_struct *mm)
947 {
948 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
949 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
950 schedule_work(&mm->async_put_work);
951 }
952 }
953
free_signal_struct(struct signal_struct * sig)954 static inline void free_signal_struct(struct signal_struct *sig)
955 {
956 taskstats_tgid_free(sig);
957 sched_autogroup_exit(sig);
958 /*
959 * __mmdrop is not safe to call from softirq context on x86 due to
960 * pgd_dtor so postpone it to the async context
961 */
962 if (sig->oom_mm)
963 mmdrop_async(sig->oom_mm);
964 kmem_cache_free(signal_cachep, sig);
965 }
966
put_signal_struct(struct signal_struct * sig)967 static inline void put_signal_struct(struct signal_struct *sig)
968 {
969 if (refcount_dec_and_test(&sig->sigcnt))
970 free_signal_struct(sig);
971 }
972
__put_task_struct(struct task_struct * tsk)973 void __put_task_struct(struct task_struct *tsk)
974 {
975 WARN_ON(!tsk->exit_state);
976 WARN_ON(refcount_read(&tsk->usage));
977 WARN_ON(tsk == current);
978
979 io_uring_free(tsk);
980 cgroup_free(tsk);
981 task_numa_free(tsk, true);
982 security_task_free(tsk);
983 exit_creds(tsk);
984 delayacct_tsk_free(tsk);
985 put_signal_struct(tsk->signal);
986 sched_core_free(tsk);
987 free_task(tsk);
988 }
989 EXPORT_SYMBOL_GPL(__put_task_struct);
990
__put_task_struct_rcu_cb(struct rcu_head * rhp)991 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
992 {
993 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
994
995 __put_task_struct(task);
996 }
997 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
998
arch_task_cache_init(void)999 void __init __weak arch_task_cache_init(void) { }
1000
1001 /*
1002 * set_max_threads
1003 */
set_max_threads(unsigned int max_threads_suggested)1004 static void set_max_threads(unsigned int max_threads_suggested)
1005 {
1006 u64 threads;
1007 unsigned long nr_pages = totalram_pages();
1008
1009 /*
1010 * The number of threads shall be limited such that the thread
1011 * structures may only consume a small part of the available memory.
1012 */
1013 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1014 threads = MAX_THREADS;
1015 else
1016 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1017 (u64) THREAD_SIZE * 8UL);
1018
1019 if (threads > max_threads_suggested)
1020 threads = max_threads_suggested;
1021
1022 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1023 }
1024
1025 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1026 /* Initialized by the architecture: */
1027 int arch_task_struct_size __read_mostly;
1028 #endif
1029
1030 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)1031 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1032 {
1033 /* Fetch thread_struct whitelist for the architecture. */
1034 arch_thread_struct_whitelist(offset, size);
1035
1036 /*
1037 * Handle zero-sized whitelist or empty thread_struct, otherwise
1038 * adjust offset to position of thread_struct in task_struct.
1039 */
1040 if (unlikely(*size == 0))
1041 *offset = 0;
1042 else
1043 *offset += offsetof(struct task_struct, thread);
1044 }
1045 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1046
fork_init(void)1047 void __init fork_init(void)
1048 {
1049 int i;
1050 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1051 #ifndef ARCH_MIN_TASKALIGN
1052 #define ARCH_MIN_TASKALIGN 0
1053 #endif
1054 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1055 unsigned long useroffset, usersize;
1056
1057 /* create a slab on which task_structs can be allocated */
1058 task_struct_whitelist(&useroffset, &usersize);
1059 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1060 arch_task_struct_size, align,
1061 SLAB_PANIC|SLAB_ACCOUNT,
1062 useroffset, usersize, NULL);
1063 #endif
1064
1065 /* do the arch specific task caches init */
1066 arch_task_cache_init();
1067
1068 set_max_threads(MAX_THREADS);
1069
1070 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1071 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1072 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1073 init_task.signal->rlim[RLIMIT_NPROC];
1074
1075 for (i = 0; i < UCOUNT_COUNTS; i++)
1076 init_user_ns.ucount_max[i] = max_threads/2;
1077
1078 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1079 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1080 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1081 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
1082
1083 #ifdef CONFIG_VMAP_STACK
1084 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1085 NULL, free_vm_stack_cache);
1086 #endif
1087
1088 scs_init();
1089
1090 lockdep_init_task(&init_task);
1091 uprobes_init();
1092 }
1093
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1094 int __weak arch_dup_task_struct(struct task_struct *dst,
1095 struct task_struct *src)
1096 {
1097 *dst = *src;
1098 return 0;
1099 }
1100
set_task_stack_end_magic(struct task_struct * tsk)1101 void set_task_stack_end_magic(struct task_struct *tsk)
1102 {
1103 unsigned long *stackend;
1104
1105 stackend = end_of_stack(tsk);
1106 *stackend = STACK_END_MAGIC; /* for overflow detection */
1107 }
1108
dup_task_struct(struct task_struct * orig,int node)1109 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1110 {
1111 struct task_struct *tsk;
1112 int err;
1113
1114 if (node == NUMA_NO_NODE)
1115 node = tsk_fork_get_node(orig);
1116 tsk = alloc_task_struct_node(node);
1117 if (!tsk)
1118 return NULL;
1119
1120 err = arch_dup_task_struct(tsk, orig);
1121 if (err)
1122 goto free_tsk;
1123
1124 err = alloc_thread_stack_node(tsk, node);
1125 if (err)
1126 goto free_tsk;
1127
1128 #ifdef CONFIG_THREAD_INFO_IN_TASK
1129 refcount_set(&tsk->stack_refcount, 1);
1130 #endif
1131 account_kernel_stack(tsk, 1);
1132
1133 err = scs_prepare(tsk, node);
1134 if (err)
1135 goto free_stack;
1136
1137 #ifdef CONFIG_SECCOMP
1138 /*
1139 * We must handle setting up seccomp filters once we're under
1140 * the sighand lock in case orig has changed between now and
1141 * then. Until then, filter must be NULL to avoid messing up
1142 * the usage counts on the error path calling free_task.
1143 */
1144 tsk->seccomp.filter = NULL;
1145 #endif
1146
1147 setup_thread_stack(tsk, orig);
1148 clear_user_return_notifier(tsk);
1149 clear_tsk_need_resched(tsk);
1150 set_task_stack_end_magic(tsk);
1151 clear_syscall_work_syscall_user_dispatch(tsk);
1152
1153 #ifdef CONFIG_STACKPROTECTOR
1154 tsk->stack_canary = get_random_canary();
1155 #endif
1156 if (orig->cpus_ptr == &orig->cpus_mask)
1157 tsk->cpus_ptr = &tsk->cpus_mask;
1158 dup_user_cpus_ptr(tsk, orig, node);
1159
1160 /*
1161 * One for the user space visible state that goes away when reaped.
1162 * One for the scheduler.
1163 */
1164 refcount_set(&tsk->rcu_users, 2);
1165 /* One for the rcu users */
1166 refcount_set(&tsk->usage, 1);
1167 #ifdef CONFIG_BLK_DEV_IO_TRACE
1168 tsk->btrace_seq = 0;
1169 #endif
1170 tsk->splice_pipe = NULL;
1171 tsk->task_frag.page = NULL;
1172 tsk->wake_q.next = NULL;
1173 tsk->worker_private = NULL;
1174
1175 kcov_task_init(tsk);
1176 kmsan_task_create(tsk);
1177 kmap_local_fork(tsk);
1178
1179 #ifdef CONFIG_FAULT_INJECTION
1180 tsk->fail_nth = 0;
1181 #endif
1182
1183 #ifdef CONFIG_BLK_CGROUP
1184 tsk->throttle_disk = NULL;
1185 tsk->use_memdelay = 0;
1186 #endif
1187
1188 #ifdef CONFIG_IOMMU_SVA
1189 tsk->pasid_activated = 0;
1190 #endif
1191
1192 #ifdef CONFIG_MEMCG
1193 tsk->active_memcg = NULL;
1194 #endif
1195
1196 #ifdef CONFIG_CPU_SUP_INTEL
1197 tsk->reported_split_lock = 0;
1198 #endif
1199
1200 #ifdef CONFIG_SCHED_MM_CID
1201 tsk->mm_cid = -1;
1202 tsk->last_mm_cid = -1;
1203 tsk->mm_cid_active = 0;
1204 tsk->migrate_from_cpu = -1;
1205 #endif
1206 return tsk;
1207
1208 free_stack:
1209 exit_task_stack_account(tsk);
1210 free_thread_stack(tsk);
1211 free_tsk:
1212 free_task_struct(tsk);
1213 return NULL;
1214 }
1215
1216 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1217
1218 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1219
coredump_filter_setup(char * s)1220 static int __init coredump_filter_setup(char *s)
1221 {
1222 default_dump_filter =
1223 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1224 MMF_DUMP_FILTER_MASK;
1225 return 1;
1226 }
1227
1228 __setup("coredump_filter=", coredump_filter_setup);
1229
1230 #include <linux/init_task.h>
1231
mm_init_aio(struct mm_struct * mm)1232 static void mm_init_aio(struct mm_struct *mm)
1233 {
1234 #ifdef CONFIG_AIO
1235 spin_lock_init(&mm->ioctx_lock);
1236 mm->ioctx_table = NULL;
1237 #endif
1238 }
1239
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1240 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1241 struct task_struct *p)
1242 {
1243 #ifdef CONFIG_MEMCG
1244 if (mm->owner == p)
1245 WRITE_ONCE(mm->owner, NULL);
1246 #endif
1247 }
1248
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1249 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1250 {
1251 #ifdef CONFIG_MEMCG
1252 mm->owner = p;
1253 #endif
1254 }
1255
mm_init_uprobes_state(struct mm_struct * mm)1256 static void mm_init_uprobes_state(struct mm_struct *mm)
1257 {
1258 #ifdef CONFIG_UPROBES
1259 mm->uprobes_state.xol_area = NULL;
1260 #endif
1261 }
1262
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1263 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1264 struct user_namespace *user_ns)
1265 {
1266 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1267 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1268 atomic_set(&mm->mm_users, 1);
1269 atomic_set(&mm->mm_count, 1);
1270 seqcount_init(&mm->write_protect_seq);
1271 mmap_init_lock(mm);
1272 INIT_LIST_HEAD(&mm->mmlist);
1273 #ifdef CONFIG_PER_VMA_LOCK
1274 mm->mm_lock_seq = 0;
1275 #endif
1276 mm_pgtables_bytes_init(mm);
1277 mm->map_count = 0;
1278 mm->locked_vm = 0;
1279 atomic64_set(&mm->pinned_vm, 0);
1280 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1281 spin_lock_init(&mm->page_table_lock);
1282 spin_lock_init(&mm->arg_lock);
1283 mm_init_cpumask(mm);
1284 mm_init_aio(mm);
1285 mm_init_owner(mm, p);
1286 mm_pasid_init(mm);
1287 RCU_INIT_POINTER(mm->exe_file, NULL);
1288 mmu_notifier_subscriptions_init(mm);
1289 init_tlb_flush_pending(mm);
1290 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1291 mm->pmd_huge_pte = NULL;
1292 #endif
1293 mm_init_uprobes_state(mm);
1294 hugetlb_count_init(mm);
1295
1296 if (current->mm) {
1297 mm->flags = mmf_init_flags(current->mm->flags);
1298 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1299 } else {
1300 mm->flags = default_dump_filter;
1301 mm->def_flags = 0;
1302 }
1303
1304 if (mm_alloc_pgd(mm))
1305 goto fail_nopgd;
1306
1307 if (init_new_context(p, mm))
1308 goto fail_nocontext;
1309
1310 if (mm_alloc_cid(mm))
1311 goto fail_cid;
1312
1313 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1314 NR_MM_COUNTERS))
1315 goto fail_pcpu;
1316
1317 mm->user_ns = get_user_ns(user_ns);
1318 lru_gen_init_mm(mm);
1319 return mm;
1320
1321 fail_pcpu:
1322 mm_destroy_cid(mm);
1323 fail_cid:
1324 destroy_context(mm);
1325 fail_nocontext:
1326 mm_free_pgd(mm);
1327 fail_nopgd:
1328 free_mm(mm);
1329 return NULL;
1330 }
1331
1332 /*
1333 * Allocate and initialize an mm_struct.
1334 */
mm_alloc(void)1335 struct mm_struct *mm_alloc(void)
1336 {
1337 struct mm_struct *mm;
1338
1339 mm = allocate_mm();
1340 if (!mm)
1341 return NULL;
1342
1343 memset(mm, 0, sizeof(*mm));
1344 return mm_init(mm, current, current_user_ns());
1345 }
1346
__mmput(struct mm_struct * mm)1347 static inline void __mmput(struct mm_struct *mm)
1348 {
1349 VM_BUG_ON(atomic_read(&mm->mm_users));
1350
1351 uprobe_clear_state(mm);
1352 exit_aio(mm);
1353 ksm_exit(mm);
1354 khugepaged_exit(mm); /* must run before exit_mmap */
1355 exit_mmap(mm);
1356 mm_put_huge_zero_page(mm);
1357 set_mm_exe_file(mm, NULL);
1358 if (!list_empty(&mm->mmlist)) {
1359 spin_lock(&mmlist_lock);
1360 list_del(&mm->mmlist);
1361 spin_unlock(&mmlist_lock);
1362 }
1363 if (mm->binfmt)
1364 module_put(mm->binfmt->module);
1365 lru_gen_del_mm(mm);
1366 mmdrop(mm);
1367 }
1368
1369 /*
1370 * Decrement the use count and release all resources for an mm.
1371 */
mmput(struct mm_struct * mm)1372 void mmput(struct mm_struct *mm)
1373 {
1374 might_sleep();
1375
1376 if (atomic_dec_and_test(&mm->mm_users))
1377 __mmput(mm);
1378 }
1379 EXPORT_SYMBOL_GPL(mmput);
1380
1381 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1382 static void mmput_async_fn(struct work_struct *work)
1383 {
1384 struct mm_struct *mm = container_of(work, struct mm_struct,
1385 async_put_work);
1386
1387 __mmput(mm);
1388 }
1389
mmput_async(struct mm_struct * mm)1390 void mmput_async(struct mm_struct *mm)
1391 {
1392 if (atomic_dec_and_test(&mm->mm_users)) {
1393 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1394 schedule_work(&mm->async_put_work);
1395 }
1396 }
1397 EXPORT_SYMBOL_GPL(mmput_async);
1398 #endif
1399
1400 /**
1401 * set_mm_exe_file - change a reference to the mm's executable file
1402 *
1403 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1404 *
1405 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1406 * invocations: in mmput() nobody alive left, in execve it happens before
1407 * the new mm is made visible to anyone.
1408 *
1409 * Can only fail if new_exe_file != NULL.
1410 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1411 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1412 {
1413 struct file *old_exe_file;
1414
1415 /*
1416 * It is safe to dereference the exe_file without RCU as
1417 * this function is only called if nobody else can access
1418 * this mm -- see comment above for justification.
1419 */
1420 old_exe_file = rcu_dereference_raw(mm->exe_file);
1421
1422 if (new_exe_file) {
1423 /*
1424 * We expect the caller (i.e., sys_execve) to already denied
1425 * write access, so this is unlikely to fail.
1426 */
1427 if (unlikely(deny_write_access(new_exe_file)))
1428 return -EACCES;
1429 get_file(new_exe_file);
1430 }
1431 rcu_assign_pointer(mm->exe_file, new_exe_file);
1432 if (old_exe_file) {
1433 allow_write_access(old_exe_file);
1434 fput(old_exe_file);
1435 }
1436 return 0;
1437 }
1438
1439 /**
1440 * replace_mm_exe_file - replace a reference to the mm's executable file
1441 *
1442 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1443 *
1444 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1445 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1446 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1447 {
1448 struct vm_area_struct *vma;
1449 struct file *old_exe_file;
1450 int ret = 0;
1451
1452 /* Forbid mm->exe_file change if old file still mapped. */
1453 old_exe_file = get_mm_exe_file(mm);
1454 if (old_exe_file) {
1455 VMA_ITERATOR(vmi, mm, 0);
1456 mmap_read_lock(mm);
1457 for_each_vma(vmi, vma) {
1458 if (!vma->vm_file)
1459 continue;
1460 if (path_equal(&vma->vm_file->f_path,
1461 &old_exe_file->f_path)) {
1462 ret = -EBUSY;
1463 break;
1464 }
1465 }
1466 mmap_read_unlock(mm);
1467 fput(old_exe_file);
1468 if (ret)
1469 return ret;
1470 }
1471
1472 ret = deny_write_access(new_exe_file);
1473 if (ret)
1474 return -EACCES;
1475 get_file(new_exe_file);
1476
1477 /* set the new file */
1478 mmap_write_lock(mm);
1479 old_exe_file = rcu_dereference_raw(mm->exe_file);
1480 rcu_assign_pointer(mm->exe_file, new_exe_file);
1481 mmap_write_unlock(mm);
1482
1483 if (old_exe_file) {
1484 allow_write_access(old_exe_file);
1485 fput(old_exe_file);
1486 }
1487 return 0;
1488 }
1489
1490 /**
1491 * get_mm_exe_file - acquire a reference to the mm's executable file
1492 *
1493 * Returns %NULL if mm has no associated executable file.
1494 * User must release file via fput().
1495 */
get_mm_exe_file(struct mm_struct * mm)1496 struct file *get_mm_exe_file(struct mm_struct *mm)
1497 {
1498 struct file *exe_file;
1499
1500 rcu_read_lock();
1501 exe_file = rcu_dereference(mm->exe_file);
1502 if (exe_file && !get_file_rcu(exe_file))
1503 exe_file = NULL;
1504 rcu_read_unlock();
1505 return exe_file;
1506 }
1507
1508 /**
1509 * get_task_exe_file - acquire a reference to the task's executable file
1510 *
1511 * Returns %NULL if task's mm (if any) has no associated executable file or
1512 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1513 * User must release file via fput().
1514 */
get_task_exe_file(struct task_struct * task)1515 struct file *get_task_exe_file(struct task_struct *task)
1516 {
1517 struct file *exe_file = NULL;
1518 struct mm_struct *mm;
1519
1520 task_lock(task);
1521 mm = task->mm;
1522 if (mm) {
1523 if (!(task->flags & PF_KTHREAD))
1524 exe_file = get_mm_exe_file(mm);
1525 }
1526 task_unlock(task);
1527 return exe_file;
1528 }
1529
1530 /**
1531 * get_task_mm - acquire a reference to the task's mm
1532 *
1533 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1534 * this kernel workthread has transiently adopted a user mm with use_mm,
1535 * to do its AIO) is not set and if so returns a reference to it, after
1536 * bumping up the use count. User must release the mm via mmput()
1537 * after use. Typically used by /proc and ptrace.
1538 */
get_task_mm(struct task_struct * task)1539 struct mm_struct *get_task_mm(struct task_struct *task)
1540 {
1541 struct mm_struct *mm;
1542
1543 task_lock(task);
1544 mm = task->mm;
1545 if (mm) {
1546 if (task->flags & PF_KTHREAD)
1547 mm = NULL;
1548 else
1549 mmget(mm);
1550 }
1551 task_unlock(task);
1552 return mm;
1553 }
1554 EXPORT_SYMBOL_GPL(get_task_mm);
1555
mm_access(struct task_struct * task,unsigned int mode)1556 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1557 {
1558 struct mm_struct *mm;
1559 int err;
1560
1561 err = down_read_killable(&task->signal->exec_update_lock);
1562 if (err)
1563 return ERR_PTR(err);
1564
1565 mm = get_task_mm(task);
1566 if (mm && mm != current->mm &&
1567 !ptrace_may_access(task, mode)) {
1568 mmput(mm);
1569 mm = ERR_PTR(-EACCES);
1570 }
1571 up_read(&task->signal->exec_update_lock);
1572
1573 return mm;
1574 }
1575
complete_vfork_done(struct task_struct * tsk)1576 static void complete_vfork_done(struct task_struct *tsk)
1577 {
1578 struct completion *vfork;
1579
1580 task_lock(tsk);
1581 vfork = tsk->vfork_done;
1582 if (likely(vfork)) {
1583 tsk->vfork_done = NULL;
1584 complete(vfork);
1585 }
1586 task_unlock(tsk);
1587 }
1588
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1589 static int wait_for_vfork_done(struct task_struct *child,
1590 struct completion *vfork)
1591 {
1592 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1593 int killed;
1594
1595 cgroup_enter_frozen();
1596 killed = wait_for_completion_state(vfork, state);
1597 cgroup_leave_frozen(false);
1598
1599 if (killed) {
1600 task_lock(child);
1601 child->vfork_done = NULL;
1602 task_unlock(child);
1603 }
1604
1605 put_task_struct(child);
1606 return killed;
1607 }
1608
1609 /* Please note the differences between mmput and mm_release.
1610 * mmput is called whenever we stop holding onto a mm_struct,
1611 * error success whatever.
1612 *
1613 * mm_release is called after a mm_struct has been removed
1614 * from the current process.
1615 *
1616 * This difference is important for error handling, when we
1617 * only half set up a mm_struct for a new process and need to restore
1618 * the old one. Because we mmput the new mm_struct before
1619 * restoring the old one. . .
1620 * Eric Biederman 10 January 1998
1621 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1622 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1623 {
1624 uprobe_free_utask(tsk);
1625
1626 /* Get rid of any cached register state */
1627 deactivate_mm(tsk, mm);
1628
1629 /*
1630 * Signal userspace if we're not exiting with a core dump
1631 * because we want to leave the value intact for debugging
1632 * purposes.
1633 */
1634 if (tsk->clear_child_tid) {
1635 if (atomic_read(&mm->mm_users) > 1) {
1636 /*
1637 * We don't check the error code - if userspace has
1638 * not set up a proper pointer then tough luck.
1639 */
1640 put_user(0, tsk->clear_child_tid);
1641 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1642 1, NULL, NULL, 0, 0);
1643 }
1644 tsk->clear_child_tid = NULL;
1645 }
1646
1647 /*
1648 * All done, finally we can wake up parent and return this mm to him.
1649 * Also kthread_stop() uses this completion for synchronization.
1650 */
1651 if (tsk->vfork_done)
1652 complete_vfork_done(tsk);
1653 }
1654
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1655 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1656 {
1657 futex_exit_release(tsk);
1658 mm_release(tsk, mm);
1659 }
1660
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1661 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1662 {
1663 futex_exec_release(tsk);
1664 mm_release(tsk, mm);
1665 }
1666
1667 /**
1668 * dup_mm() - duplicates an existing mm structure
1669 * @tsk: the task_struct with which the new mm will be associated.
1670 * @oldmm: the mm to duplicate.
1671 *
1672 * Allocates a new mm structure and duplicates the provided @oldmm structure
1673 * content into it.
1674 *
1675 * Return: the duplicated mm or NULL on failure.
1676 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1677 static struct mm_struct *dup_mm(struct task_struct *tsk,
1678 struct mm_struct *oldmm)
1679 {
1680 struct mm_struct *mm;
1681 int err;
1682
1683 mm = allocate_mm();
1684 if (!mm)
1685 goto fail_nomem;
1686
1687 memcpy(mm, oldmm, sizeof(*mm));
1688
1689 if (!mm_init(mm, tsk, mm->user_ns))
1690 goto fail_nomem;
1691
1692 err = dup_mmap(mm, oldmm);
1693 if (err)
1694 goto free_pt;
1695
1696 mm->hiwater_rss = get_mm_rss(mm);
1697 mm->hiwater_vm = mm->total_vm;
1698
1699 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1700 goto free_pt;
1701
1702 return mm;
1703
1704 free_pt:
1705 /* don't put binfmt in mmput, we haven't got module yet */
1706 mm->binfmt = NULL;
1707 mm_init_owner(mm, NULL);
1708 mmput(mm);
1709
1710 fail_nomem:
1711 return NULL;
1712 }
1713
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1714 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1715 {
1716 struct mm_struct *mm, *oldmm;
1717
1718 tsk->min_flt = tsk->maj_flt = 0;
1719 tsk->nvcsw = tsk->nivcsw = 0;
1720 #ifdef CONFIG_DETECT_HUNG_TASK
1721 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1722 tsk->last_switch_time = 0;
1723 #endif
1724
1725 tsk->mm = NULL;
1726 tsk->active_mm = NULL;
1727
1728 /*
1729 * Are we cloning a kernel thread?
1730 *
1731 * We need to steal a active VM for that..
1732 */
1733 oldmm = current->mm;
1734 if (!oldmm)
1735 return 0;
1736
1737 if (clone_flags & CLONE_VM) {
1738 mmget(oldmm);
1739 mm = oldmm;
1740 } else {
1741 mm = dup_mm(tsk, current->mm);
1742 if (!mm)
1743 return -ENOMEM;
1744 }
1745
1746 tsk->mm = mm;
1747 tsk->active_mm = mm;
1748 sched_mm_cid_fork(tsk);
1749 return 0;
1750 }
1751
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1752 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1753 {
1754 struct fs_struct *fs = current->fs;
1755 if (clone_flags & CLONE_FS) {
1756 /* tsk->fs is already what we want */
1757 spin_lock(&fs->lock);
1758 if (fs->in_exec) {
1759 spin_unlock(&fs->lock);
1760 return -EAGAIN;
1761 }
1762 fs->users++;
1763 spin_unlock(&fs->lock);
1764 return 0;
1765 }
1766 tsk->fs = copy_fs_struct(fs);
1767 if (!tsk->fs)
1768 return -ENOMEM;
1769 return 0;
1770 }
1771
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1772 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1773 int no_files)
1774 {
1775 struct files_struct *oldf, *newf;
1776
1777 /*
1778 * A background process may not have any files ...
1779 */
1780 oldf = current->files;
1781 if (!oldf)
1782 return 0;
1783
1784 if (no_files) {
1785 tsk->files = NULL;
1786 return 0;
1787 }
1788
1789 if (clone_flags & CLONE_FILES) {
1790 atomic_inc(&oldf->count);
1791 return 0;
1792 }
1793
1794 newf = dup_fd(oldf, NULL);
1795 if (IS_ERR(newf))
1796 return PTR_ERR(newf);
1797
1798 tsk->files = newf;
1799 return 0;
1800 }
1801
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1802 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1803 {
1804 struct sighand_struct *sig;
1805
1806 if (clone_flags & CLONE_SIGHAND) {
1807 refcount_inc(¤t->sighand->count);
1808 return 0;
1809 }
1810 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1811 RCU_INIT_POINTER(tsk->sighand, sig);
1812 if (!sig)
1813 return -ENOMEM;
1814
1815 refcount_set(&sig->count, 1);
1816 spin_lock_irq(¤t->sighand->siglock);
1817 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1818 spin_unlock_irq(¤t->sighand->siglock);
1819
1820 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1821 if (clone_flags & CLONE_CLEAR_SIGHAND)
1822 flush_signal_handlers(tsk, 0);
1823
1824 return 0;
1825 }
1826
__cleanup_sighand(struct sighand_struct * sighand)1827 void __cleanup_sighand(struct sighand_struct *sighand)
1828 {
1829 if (refcount_dec_and_test(&sighand->count)) {
1830 signalfd_cleanup(sighand);
1831 /*
1832 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1833 * without an RCU grace period, see __lock_task_sighand().
1834 */
1835 kmem_cache_free(sighand_cachep, sighand);
1836 }
1837 }
1838
1839 /*
1840 * Initialize POSIX timer handling for a thread group.
1841 */
posix_cpu_timers_init_group(struct signal_struct * sig)1842 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1843 {
1844 struct posix_cputimers *pct = &sig->posix_cputimers;
1845 unsigned long cpu_limit;
1846
1847 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1848 posix_cputimers_group_init(pct, cpu_limit);
1849 }
1850
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1851 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1852 {
1853 struct signal_struct *sig;
1854
1855 if (clone_flags & CLONE_THREAD)
1856 return 0;
1857
1858 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1859 tsk->signal = sig;
1860 if (!sig)
1861 return -ENOMEM;
1862
1863 sig->nr_threads = 1;
1864 sig->quick_threads = 1;
1865 atomic_set(&sig->live, 1);
1866 refcount_set(&sig->sigcnt, 1);
1867
1868 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1869 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1870 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1871
1872 init_waitqueue_head(&sig->wait_chldexit);
1873 sig->curr_target = tsk;
1874 init_sigpending(&sig->shared_pending);
1875 INIT_HLIST_HEAD(&sig->multiprocess);
1876 seqlock_init(&sig->stats_lock);
1877 prev_cputime_init(&sig->prev_cputime);
1878
1879 #ifdef CONFIG_POSIX_TIMERS
1880 INIT_LIST_HEAD(&sig->posix_timers);
1881 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1882 sig->real_timer.function = it_real_fn;
1883 #endif
1884
1885 task_lock(current->group_leader);
1886 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1887 task_unlock(current->group_leader);
1888
1889 posix_cpu_timers_init_group(sig);
1890
1891 tty_audit_fork(sig);
1892 sched_autogroup_fork(sig);
1893
1894 sig->oom_score_adj = current->signal->oom_score_adj;
1895 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1896
1897 mutex_init(&sig->cred_guard_mutex);
1898 init_rwsem(&sig->exec_update_lock);
1899
1900 return 0;
1901 }
1902
copy_seccomp(struct task_struct * p)1903 static void copy_seccomp(struct task_struct *p)
1904 {
1905 #ifdef CONFIG_SECCOMP
1906 /*
1907 * Must be called with sighand->lock held, which is common to
1908 * all threads in the group. Holding cred_guard_mutex is not
1909 * needed because this new task is not yet running and cannot
1910 * be racing exec.
1911 */
1912 assert_spin_locked(¤t->sighand->siglock);
1913
1914 /* Ref-count the new filter user, and assign it. */
1915 get_seccomp_filter(current);
1916 p->seccomp = current->seccomp;
1917
1918 /*
1919 * Explicitly enable no_new_privs here in case it got set
1920 * between the task_struct being duplicated and holding the
1921 * sighand lock. The seccomp state and nnp must be in sync.
1922 */
1923 if (task_no_new_privs(current))
1924 task_set_no_new_privs(p);
1925
1926 /*
1927 * If the parent gained a seccomp mode after copying thread
1928 * flags and between before we held the sighand lock, we have
1929 * to manually enable the seccomp thread flag here.
1930 */
1931 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1932 set_task_syscall_work(p, SECCOMP);
1933 #endif
1934 }
1935
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1936 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1937 {
1938 current->clear_child_tid = tidptr;
1939
1940 return task_pid_vnr(current);
1941 }
1942
rt_mutex_init_task(struct task_struct * p)1943 static void rt_mutex_init_task(struct task_struct *p)
1944 {
1945 raw_spin_lock_init(&p->pi_lock);
1946 #ifdef CONFIG_RT_MUTEXES
1947 p->pi_waiters = RB_ROOT_CACHED;
1948 p->pi_top_task = NULL;
1949 p->pi_blocked_on = NULL;
1950 #endif
1951 }
1952
init_task_pid_links(struct task_struct * task)1953 static inline void init_task_pid_links(struct task_struct *task)
1954 {
1955 enum pid_type type;
1956
1957 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1958 INIT_HLIST_NODE(&task->pid_links[type]);
1959 }
1960
1961 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1962 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1963 {
1964 if (type == PIDTYPE_PID)
1965 task->thread_pid = pid;
1966 else
1967 task->signal->pids[type] = pid;
1968 }
1969
rcu_copy_process(struct task_struct * p)1970 static inline void rcu_copy_process(struct task_struct *p)
1971 {
1972 #ifdef CONFIG_PREEMPT_RCU
1973 p->rcu_read_lock_nesting = 0;
1974 p->rcu_read_unlock_special.s = 0;
1975 p->rcu_blocked_node = NULL;
1976 INIT_LIST_HEAD(&p->rcu_node_entry);
1977 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1978 #ifdef CONFIG_TASKS_RCU
1979 p->rcu_tasks_holdout = false;
1980 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1981 p->rcu_tasks_idle_cpu = -1;
1982 INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1983 #endif /* #ifdef CONFIG_TASKS_RCU */
1984 #ifdef CONFIG_TASKS_TRACE_RCU
1985 p->trc_reader_nesting = 0;
1986 p->trc_reader_special.s = 0;
1987 INIT_LIST_HEAD(&p->trc_holdout_list);
1988 INIT_LIST_HEAD(&p->trc_blkd_node);
1989 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1990 }
1991
pidfd_pid(const struct file * file)1992 struct pid *pidfd_pid(const struct file *file)
1993 {
1994 if (file->f_op == &pidfd_fops)
1995 return file->private_data;
1996
1997 return ERR_PTR(-EBADF);
1998 }
1999
pidfd_release(struct inode * inode,struct file * file)2000 static int pidfd_release(struct inode *inode, struct file *file)
2001 {
2002 struct pid *pid = file->private_data;
2003
2004 file->private_data = NULL;
2005 put_pid(pid);
2006 return 0;
2007 }
2008
2009 #ifdef CONFIG_PROC_FS
2010 /**
2011 * pidfd_show_fdinfo - print information about a pidfd
2012 * @m: proc fdinfo file
2013 * @f: file referencing a pidfd
2014 *
2015 * Pid:
2016 * This function will print the pid that a given pidfd refers to in the
2017 * pid namespace of the procfs instance.
2018 * If the pid namespace of the process is not a descendant of the pid
2019 * namespace of the procfs instance 0 will be shown as its pid. This is
2020 * similar to calling getppid() on a process whose parent is outside of
2021 * its pid namespace.
2022 *
2023 * NSpid:
2024 * If pid namespaces are supported then this function will also print
2025 * the pid of a given pidfd refers to for all descendant pid namespaces
2026 * starting from the current pid namespace of the instance, i.e. the
2027 * Pid field and the first entry in the NSpid field will be identical.
2028 * If the pid namespace of the process is not a descendant of the pid
2029 * namespace of the procfs instance 0 will be shown as its first NSpid
2030 * entry and no others will be shown.
2031 * Note that this differs from the Pid and NSpid fields in
2032 * /proc/<pid>/status where Pid and NSpid are always shown relative to
2033 * the pid namespace of the procfs instance. The difference becomes
2034 * obvious when sending around a pidfd between pid namespaces from a
2035 * different branch of the tree, i.e. where no ancestral relation is
2036 * present between the pid namespaces:
2037 * - create two new pid namespaces ns1 and ns2 in the initial pid
2038 * namespace (also take care to create new mount namespaces in the
2039 * new pid namespace and mount procfs)
2040 * - create a process with a pidfd in ns1
2041 * - send pidfd from ns1 to ns2
2042 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2043 * have exactly one entry, which is 0
2044 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)2045 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2046 {
2047 struct pid *pid = f->private_data;
2048 struct pid_namespace *ns;
2049 pid_t nr = -1;
2050
2051 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2052 ns = proc_pid_ns(file_inode(m->file)->i_sb);
2053 nr = pid_nr_ns(pid, ns);
2054 }
2055
2056 seq_put_decimal_ll(m, "Pid:\t", nr);
2057
2058 #ifdef CONFIG_PID_NS
2059 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2060 if (nr > 0) {
2061 int i;
2062
2063 /* If nr is non-zero it means that 'pid' is valid and that
2064 * ns, i.e. the pid namespace associated with the procfs
2065 * instance, is in the pid namespace hierarchy of pid.
2066 * Start at one below the already printed level.
2067 */
2068 for (i = ns->level + 1; i <= pid->level; i++)
2069 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2070 }
2071 #endif
2072 seq_putc(m, '\n');
2073 }
2074 #endif
2075
2076 /*
2077 * Poll support for process exit notification.
2078 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)2079 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2080 {
2081 struct pid *pid = file->private_data;
2082 __poll_t poll_flags = 0;
2083
2084 poll_wait(file, &pid->wait_pidfd, pts);
2085
2086 /*
2087 * Inform pollers only when the whole thread group exits.
2088 * If the thread group leader exits before all other threads in the
2089 * group, then poll(2) should block, similar to the wait(2) family.
2090 */
2091 if (thread_group_exited(pid))
2092 poll_flags = EPOLLIN | EPOLLRDNORM;
2093
2094 return poll_flags;
2095 }
2096
2097 const struct file_operations pidfd_fops = {
2098 .release = pidfd_release,
2099 .poll = pidfd_poll,
2100 #ifdef CONFIG_PROC_FS
2101 .show_fdinfo = pidfd_show_fdinfo,
2102 #endif
2103 };
2104
2105 /**
2106 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2107 * @pid: the struct pid for which to create a pidfd
2108 * @flags: flags of the new @pidfd
2109 * @pidfd: the pidfd to return
2110 *
2111 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2112 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2113
2114 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2115 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2116 * pidfd file are prepared.
2117 *
2118 * If this function returns successfully the caller is responsible to either
2119 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2120 * order to install the pidfd into its file descriptor table or they must use
2121 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2122 * respectively.
2123 *
2124 * This function is useful when a pidfd must already be reserved but there
2125 * might still be points of failure afterwards and the caller wants to ensure
2126 * that no pidfd is leaked into its file descriptor table.
2127 *
2128 * Return: On success, a reserved pidfd is returned from the function and a new
2129 * pidfd file is returned in the last argument to the function. On
2130 * error, a negative error code is returned from the function and the
2131 * last argument remains unchanged.
2132 */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2133 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2134 {
2135 int pidfd;
2136 struct file *pidfd_file;
2137
2138 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2139 return -EINVAL;
2140
2141 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2142 if (pidfd < 0)
2143 return pidfd;
2144
2145 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2146 flags | O_RDWR | O_CLOEXEC);
2147 if (IS_ERR(pidfd_file)) {
2148 put_unused_fd(pidfd);
2149 return PTR_ERR(pidfd_file);
2150 }
2151 get_pid(pid); /* held by pidfd_file now */
2152 *ret = pidfd_file;
2153 return pidfd;
2154 }
2155
2156 /**
2157 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2158 * @pid: the struct pid for which to create a pidfd
2159 * @flags: flags of the new @pidfd
2160 * @pidfd: the pidfd to return
2161 *
2162 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2163 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2164 *
2165 * The helper verifies that @pid is used as a thread group leader.
2166 *
2167 * If this function returns successfully the caller is responsible to either
2168 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2169 * order to install the pidfd into its file descriptor table or they must use
2170 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2171 * respectively.
2172 *
2173 * This function is useful when a pidfd must already be reserved but there
2174 * might still be points of failure afterwards and the caller wants to ensure
2175 * that no pidfd is leaked into its file descriptor table.
2176 *
2177 * Return: On success, a reserved pidfd is returned from the function and a new
2178 * pidfd file is returned in the last argument to the function. On
2179 * error, a negative error code is returned from the function and the
2180 * last argument remains unchanged.
2181 */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2182 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2183 {
2184 if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2185 return -EINVAL;
2186
2187 return __pidfd_prepare(pid, flags, ret);
2188 }
2189
__delayed_free_task(struct rcu_head * rhp)2190 static void __delayed_free_task(struct rcu_head *rhp)
2191 {
2192 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2193
2194 free_task(tsk);
2195 }
2196
delayed_free_task(struct task_struct * tsk)2197 static __always_inline void delayed_free_task(struct task_struct *tsk)
2198 {
2199 if (IS_ENABLED(CONFIG_MEMCG))
2200 call_rcu(&tsk->rcu, __delayed_free_task);
2201 else
2202 free_task(tsk);
2203 }
2204
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2205 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2206 {
2207 /* Skip if kernel thread */
2208 if (!tsk->mm)
2209 return;
2210
2211 /* Skip if spawning a thread or using vfork */
2212 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2213 return;
2214
2215 /* We need to synchronize with __set_oom_adj */
2216 mutex_lock(&oom_adj_mutex);
2217 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2218 /* Update the values in case they were changed after copy_signal */
2219 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2220 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2221 mutex_unlock(&oom_adj_mutex);
2222 }
2223
2224 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2225 static void rv_task_fork(struct task_struct *p)
2226 {
2227 int i;
2228
2229 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2230 p->rv[i].da_mon.monitoring = false;
2231 }
2232 #else
2233 #define rv_task_fork(p) do {} while (0)
2234 #endif
2235
2236 /*
2237 * This creates a new process as a copy of the old one,
2238 * but does not actually start it yet.
2239 *
2240 * It copies the registers, and all the appropriate
2241 * parts of the process environment (as per the clone
2242 * flags). The actual kick-off is left to the caller.
2243 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2244 __latent_entropy struct task_struct *copy_process(
2245 struct pid *pid,
2246 int trace,
2247 int node,
2248 struct kernel_clone_args *args)
2249 {
2250 int pidfd = -1, retval;
2251 struct task_struct *p;
2252 struct multiprocess_signals delayed;
2253 struct file *pidfile = NULL;
2254 const u64 clone_flags = args->flags;
2255 struct nsproxy *nsp = current->nsproxy;
2256
2257 /*
2258 * Don't allow sharing the root directory with processes in a different
2259 * namespace
2260 */
2261 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2262 return ERR_PTR(-EINVAL);
2263
2264 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2265 return ERR_PTR(-EINVAL);
2266
2267 /*
2268 * Thread groups must share signals as well, and detached threads
2269 * can only be started up within the thread group.
2270 */
2271 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2272 return ERR_PTR(-EINVAL);
2273
2274 /*
2275 * Shared signal handlers imply shared VM. By way of the above,
2276 * thread groups also imply shared VM. Blocking this case allows
2277 * for various simplifications in other code.
2278 */
2279 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2280 return ERR_PTR(-EINVAL);
2281
2282 /*
2283 * Siblings of global init remain as zombies on exit since they are
2284 * not reaped by their parent (swapper). To solve this and to avoid
2285 * multi-rooted process trees, prevent global and container-inits
2286 * from creating siblings.
2287 */
2288 if ((clone_flags & CLONE_PARENT) &&
2289 current->signal->flags & SIGNAL_UNKILLABLE)
2290 return ERR_PTR(-EINVAL);
2291
2292 /*
2293 * If the new process will be in a different pid or user namespace
2294 * do not allow it to share a thread group with the forking task.
2295 */
2296 if (clone_flags & CLONE_THREAD) {
2297 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2298 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2299 return ERR_PTR(-EINVAL);
2300 }
2301
2302 if (clone_flags & CLONE_PIDFD) {
2303 /*
2304 * - CLONE_DETACHED is blocked so that we can potentially
2305 * reuse it later for CLONE_PIDFD.
2306 * - CLONE_THREAD is blocked until someone really needs it.
2307 */
2308 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2309 return ERR_PTR(-EINVAL);
2310 }
2311
2312 /*
2313 * Force any signals received before this point to be delivered
2314 * before the fork happens. Collect up signals sent to multiple
2315 * processes that happen during the fork and delay them so that
2316 * they appear to happen after the fork.
2317 */
2318 sigemptyset(&delayed.signal);
2319 INIT_HLIST_NODE(&delayed.node);
2320
2321 spin_lock_irq(¤t->sighand->siglock);
2322 if (!(clone_flags & CLONE_THREAD))
2323 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2324 recalc_sigpending();
2325 spin_unlock_irq(¤t->sighand->siglock);
2326 retval = -ERESTARTNOINTR;
2327 if (task_sigpending(current))
2328 goto fork_out;
2329
2330 retval = -ENOMEM;
2331 p = dup_task_struct(current, node);
2332 if (!p)
2333 goto fork_out;
2334 p->flags &= ~PF_KTHREAD;
2335 if (args->kthread)
2336 p->flags |= PF_KTHREAD;
2337 if (args->user_worker) {
2338 /*
2339 * Mark us a user worker, and block any signal that isn't
2340 * fatal or STOP
2341 */
2342 p->flags |= PF_USER_WORKER;
2343 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2344 }
2345 if (args->io_thread)
2346 p->flags |= PF_IO_WORKER;
2347
2348 if (args->name)
2349 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2350
2351 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2352 /*
2353 * Clear TID on mm_release()?
2354 */
2355 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2356
2357 ftrace_graph_init_task(p);
2358
2359 rt_mutex_init_task(p);
2360
2361 lockdep_assert_irqs_enabled();
2362 #ifdef CONFIG_PROVE_LOCKING
2363 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2364 #endif
2365 retval = copy_creds(p, clone_flags);
2366 if (retval < 0)
2367 goto bad_fork_free;
2368
2369 retval = -EAGAIN;
2370 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2371 if (p->real_cred->user != INIT_USER &&
2372 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2373 goto bad_fork_cleanup_count;
2374 }
2375 current->flags &= ~PF_NPROC_EXCEEDED;
2376
2377 /*
2378 * If multiple threads are within copy_process(), then this check
2379 * triggers too late. This doesn't hurt, the check is only there
2380 * to stop root fork bombs.
2381 */
2382 retval = -EAGAIN;
2383 if (data_race(nr_threads >= max_threads))
2384 goto bad_fork_cleanup_count;
2385
2386 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2387 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2388 p->flags |= PF_FORKNOEXEC;
2389 INIT_LIST_HEAD(&p->children);
2390 INIT_LIST_HEAD(&p->sibling);
2391 rcu_copy_process(p);
2392 p->vfork_done = NULL;
2393 spin_lock_init(&p->alloc_lock);
2394
2395 init_sigpending(&p->pending);
2396
2397 p->utime = p->stime = p->gtime = 0;
2398 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2399 p->utimescaled = p->stimescaled = 0;
2400 #endif
2401 prev_cputime_init(&p->prev_cputime);
2402
2403 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2404 seqcount_init(&p->vtime.seqcount);
2405 p->vtime.starttime = 0;
2406 p->vtime.state = VTIME_INACTIVE;
2407 #endif
2408
2409 #ifdef CONFIG_IO_URING
2410 p->io_uring = NULL;
2411 #endif
2412
2413 #if defined(SPLIT_RSS_COUNTING)
2414 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2415 #endif
2416
2417 p->default_timer_slack_ns = current->timer_slack_ns;
2418
2419 #ifdef CONFIG_PSI
2420 p->psi_flags = 0;
2421 #endif
2422
2423 task_io_accounting_init(&p->ioac);
2424 acct_clear_integrals(p);
2425
2426 posix_cputimers_init(&p->posix_cputimers);
2427 tick_dep_init_task(p);
2428
2429 p->io_context = NULL;
2430 audit_set_context(p, NULL);
2431 cgroup_fork(p);
2432 if (args->kthread) {
2433 if (!set_kthread_struct(p))
2434 goto bad_fork_cleanup_delayacct;
2435 }
2436 #ifdef CONFIG_NUMA
2437 p->mempolicy = mpol_dup(p->mempolicy);
2438 if (IS_ERR(p->mempolicy)) {
2439 retval = PTR_ERR(p->mempolicy);
2440 p->mempolicy = NULL;
2441 goto bad_fork_cleanup_delayacct;
2442 }
2443 #endif
2444 #ifdef CONFIG_CPUSETS
2445 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2446 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2447 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2448 #endif
2449 #ifdef CONFIG_TRACE_IRQFLAGS
2450 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2451 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2452 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2453 p->softirqs_enabled = 1;
2454 p->softirq_context = 0;
2455 #endif
2456
2457 p->pagefault_disabled = 0;
2458
2459 #ifdef CONFIG_LOCKDEP
2460 lockdep_init_task(p);
2461 #endif
2462
2463 #ifdef CONFIG_DEBUG_MUTEXES
2464 p->blocked_on = NULL; /* not blocked yet */
2465 #endif
2466 #ifdef CONFIG_BCACHE
2467 p->sequential_io = 0;
2468 p->sequential_io_avg = 0;
2469 #endif
2470 #ifdef CONFIG_BPF_SYSCALL
2471 RCU_INIT_POINTER(p->bpf_storage, NULL);
2472 p->bpf_ctx = NULL;
2473 #endif
2474
2475 /* Perform scheduler related setup. Assign this task to a CPU. */
2476 retval = sched_fork(clone_flags, p);
2477 if (retval)
2478 goto bad_fork_cleanup_policy;
2479
2480 retval = perf_event_init_task(p, clone_flags);
2481 if (retval)
2482 goto bad_fork_cleanup_policy;
2483 retval = audit_alloc(p);
2484 if (retval)
2485 goto bad_fork_cleanup_perf;
2486 /* copy all the process information */
2487 shm_init_task(p);
2488 retval = security_task_alloc(p, clone_flags);
2489 if (retval)
2490 goto bad_fork_cleanup_audit;
2491 retval = copy_semundo(clone_flags, p);
2492 if (retval)
2493 goto bad_fork_cleanup_security;
2494 retval = copy_files(clone_flags, p, args->no_files);
2495 if (retval)
2496 goto bad_fork_cleanup_semundo;
2497 retval = copy_fs(clone_flags, p);
2498 if (retval)
2499 goto bad_fork_cleanup_files;
2500 retval = copy_sighand(clone_flags, p);
2501 if (retval)
2502 goto bad_fork_cleanup_fs;
2503 retval = copy_signal(clone_flags, p);
2504 if (retval)
2505 goto bad_fork_cleanup_sighand;
2506 retval = copy_mm(clone_flags, p);
2507 if (retval)
2508 goto bad_fork_cleanup_signal;
2509 retval = copy_namespaces(clone_flags, p);
2510 if (retval)
2511 goto bad_fork_cleanup_mm;
2512 retval = copy_io(clone_flags, p);
2513 if (retval)
2514 goto bad_fork_cleanup_namespaces;
2515 retval = copy_thread(p, args);
2516 if (retval)
2517 goto bad_fork_cleanup_io;
2518
2519 stackleak_task_init(p);
2520
2521 if (pid != &init_struct_pid) {
2522 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2523 args->set_tid_size);
2524 if (IS_ERR(pid)) {
2525 retval = PTR_ERR(pid);
2526 goto bad_fork_cleanup_thread;
2527 }
2528 }
2529
2530 /*
2531 * This has to happen after we've potentially unshared the file
2532 * descriptor table (so that the pidfd doesn't leak into the child
2533 * if the fd table isn't shared).
2534 */
2535 if (clone_flags & CLONE_PIDFD) {
2536 /* Note that no task has been attached to @pid yet. */
2537 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2538 if (retval < 0)
2539 goto bad_fork_free_pid;
2540 pidfd = retval;
2541
2542 retval = put_user(pidfd, args->pidfd);
2543 if (retval)
2544 goto bad_fork_put_pidfd;
2545 }
2546
2547 #ifdef CONFIG_BLOCK
2548 p->plug = NULL;
2549 #endif
2550 futex_init_task(p);
2551
2552 /*
2553 * sigaltstack should be cleared when sharing the same VM
2554 */
2555 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2556 sas_ss_reset(p);
2557
2558 /*
2559 * Syscall tracing and stepping should be turned off in the
2560 * child regardless of CLONE_PTRACE.
2561 */
2562 user_disable_single_step(p);
2563 clear_task_syscall_work(p, SYSCALL_TRACE);
2564 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2565 clear_task_syscall_work(p, SYSCALL_EMU);
2566 #endif
2567 clear_tsk_latency_tracing(p);
2568
2569 /* ok, now we should be set up.. */
2570 p->pid = pid_nr(pid);
2571 if (clone_flags & CLONE_THREAD) {
2572 p->group_leader = current->group_leader;
2573 p->tgid = current->tgid;
2574 } else {
2575 p->group_leader = p;
2576 p->tgid = p->pid;
2577 }
2578
2579 p->nr_dirtied = 0;
2580 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2581 p->dirty_paused_when = 0;
2582
2583 p->pdeath_signal = 0;
2584 INIT_LIST_HEAD(&p->thread_group);
2585 p->task_works = NULL;
2586 clear_posix_cputimers_work(p);
2587
2588 #ifdef CONFIG_KRETPROBES
2589 p->kretprobe_instances.first = NULL;
2590 #endif
2591 #ifdef CONFIG_RETHOOK
2592 p->rethooks.first = NULL;
2593 #endif
2594
2595 /*
2596 * Ensure that the cgroup subsystem policies allow the new process to be
2597 * forked. It should be noted that the new process's css_set can be changed
2598 * between here and cgroup_post_fork() if an organisation operation is in
2599 * progress.
2600 */
2601 retval = cgroup_can_fork(p, args);
2602 if (retval)
2603 goto bad_fork_put_pidfd;
2604
2605 /*
2606 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2607 * the new task on the correct runqueue. All this *before* the task
2608 * becomes visible.
2609 *
2610 * This isn't part of ->can_fork() because while the re-cloning is
2611 * cgroup specific, it unconditionally needs to place the task on a
2612 * runqueue.
2613 */
2614 sched_cgroup_fork(p, args);
2615
2616 /*
2617 * From this point on we must avoid any synchronous user-space
2618 * communication until we take the tasklist-lock. In particular, we do
2619 * not want user-space to be able to predict the process start-time by
2620 * stalling fork(2) after we recorded the start_time but before it is
2621 * visible to the system.
2622 */
2623
2624 p->start_time = ktime_get_ns();
2625 p->start_boottime = ktime_get_boottime_ns();
2626
2627 /*
2628 * Make it visible to the rest of the system, but dont wake it up yet.
2629 * Need tasklist lock for parent etc handling!
2630 */
2631 write_lock_irq(&tasklist_lock);
2632
2633 /* CLONE_PARENT re-uses the old parent */
2634 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2635 p->real_parent = current->real_parent;
2636 p->parent_exec_id = current->parent_exec_id;
2637 if (clone_flags & CLONE_THREAD)
2638 p->exit_signal = -1;
2639 else
2640 p->exit_signal = current->group_leader->exit_signal;
2641 } else {
2642 p->real_parent = current;
2643 p->parent_exec_id = current->self_exec_id;
2644 p->exit_signal = args->exit_signal;
2645 }
2646
2647 klp_copy_process(p);
2648
2649 sched_core_fork(p);
2650
2651 spin_lock(¤t->sighand->siglock);
2652
2653 rv_task_fork(p);
2654
2655 rseq_fork(p, clone_flags);
2656
2657 /* Don't start children in a dying pid namespace */
2658 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2659 retval = -ENOMEM;
2660 goto bad_fork_cancel_cgroup;
2661 }
2662
2663 /* Let kill terminate clone/fork in the middle */
2664 if (fatal_signal_pending(current)) {
2665 retval = -EINTR;
2666 goto bad_fork_cancel_cgroup;
2667 }
2668
2669 /* No more failure paths after this point. */
2670
2671 /*
2672 * Copy seccomp details explicitly here, in case they were changed
2673 * before holding sighand lock.
2674 */
2675 copy_seccomp(p);
2676
2677 init_task_pid_links(p);
2678 if (likely(p->pid)) {
2679 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2680
2681 init_task_pid(p, PIDTYPE_PID, pid);
2682 if (thread_group_leader(p)) {
2683 init_task_pid(p, PIDTYPE_TGID, pid);
2684 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2685 init_task_pid(p, PIDTYPE_SID, task_session(current));
2686
2687 if (is_child_reaper(pid)) {
2688 ns_of_pid(pid)->child_reaper = p;
2689 p->signal->flags |= SIGNAL_UNKILLABLE;
2690 }
2691 p->signal->shared_pending.signal = delayed.signal;
2692 p->signal->tty = tty_kref_get(current->signal->tty);
2693 /*
2694 * Inherit has_child_subreaper flag under the same
2695 * tasklist_lock with adding child to the process tree
2696 * for propagate_has_child_subreaper optimization.
2697 */
2698 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2699 p->real_parent->signal->is_child_subreaper;
2700 list_add_tail(&p->sibling, &p->real_parent->children);
2701 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2702 attach_pid(p, PIDTYPE_TGID);
2703 attach_pid(p, PIDTYPE_PGID);
2704 attach_pid(p, PIDTYPE_SID);
2705 __this_cpu_inc(process_counts);
2706 } else {
2707 current->signal->nr_threads++;
2708 current->signal->quick_threads++;
2709 atomic_inc(¤t->signal->live);
2710 refcount_inc(¤t->signal->sigcnt);
2711 task_join_group_stop(p);
2712 list_add_tail_rcu(&p->thread_group,
2713 &p->group_leader->thread_group);
2714 list_add_tail_rcu(&p->thread_node,
2715 &p->signal->thread_head);
2716 }
2717 attach_pid(p, PIDTYPE_PID);
2718 nr_threads++;
2719 }
2720 total_forks++;
2721 hlist_del_init(&delayed.node);
2722 spin_unlock(¤t->sighand->siglock);
2723 syscall_tracepoint_update(p);
2724 write_unlock_irq(&tasklist_lock);
2725
2726 if (pidfile)
2727 fd_install(pidfd, pidfile);
2728
2729 proc_fork_connector(p);
2730 sched_post_fork(p);
2731 cgroup_post_fork(p, args);
2732 perf_event_fork(p);
2733
2734 trace_task_newtask(p, clone_flags);
2735 uprobe_copy_process(p, clone_flags);
2736 user_events_fork(p, clone_flags);
2737
2738 copy_oom_score_adj(clone_flags, p);
2739
2740 return p;
2741
2742 bad_fork_cancel_cgroup:
2743 sched_core_free(p);
2744 spin_unlock(¤t->sighand->siglock);
2745 write_unlock_irq(&tasklist_lock);
2746 cgroup_cancel_fork(p, args);
2747 bad_fork_put_pidfd:
2748 if (clone_flags & CLONE_PIDFD) {
2749 fput(pidfile);
2750 put_unused_fd(pidfd);
2751 }
2752 bad_fork_free_pid:
2753 if (pid != &init_struct_pid)
2754 free_pid(pid);
2755 bad_fork_cleanup_thread:
2756 exit_thread(p);
2757 bad_fork_cleanup_io:
2758 if (p->io_context)
2759 exit_io_context(p);
2760 bad_fork_cleanup_namespaces:
2761 exit_task_namespaces(p);
2762 bad_fork_cleanup_mm:
2763 if (p->mm) {
2764 mm_clear_owner(p->mm, p);
2765 mmput(p->mm);
2766 }
2767 bad_fork_cleanup_signal:
2768 if (!(clone_flags & CLONE_THREAD))
2769 free_signal_struct(p->signal);
2770 bad_fork_cleanup_sighand:
2771 __cleanup_sighand(p->sighand);
2772 bad_fork_cleanup_fs:
2773 exit_fs(p); /* blocking */
2774 bad_fork_cleanup_files:
2775 exit_files(p); /* blocking */
2776 bad_fork_cleanup_semundo:
2777 exit_sem(p);
2778 bad_fork_cleanup_security:
2779 security_task_free(p);
2780 bad_fork_cleanup_audit:
2781 audit_free(p);
2782 bad_fork_cleanup_perf:
2783 perf_event_free_task(p);
2784 bad_fork_cleanup_policy:
2785 lockdep_free_task(p);
2786 #ifdef CONFIG_NUMA
2787 mpol_put(p->mempolicy);
2788 #endif
2789 bad_fork_cleanup_delayacct:
2790 delayacct_tsk_free(p);
2791 bad_fork_cleanup_count:
2792 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2793 exit_creds(p);
2794 bad_fork_free:
2795 WRITE_ONCE(p->__state, TASK_DEAD);
2796 exit_task_stack_account(p);
2797 put_task_stack(p);
2798 delayed_free_task(p);
2799 fork_out:
2800 spin_lock_irq(¤t->sighand->siglock);
2801 hlist_del_init(&delayed.node);
2802 spin_unlock_irq(¤t->sighand->siglock);
2803 return ERR_PTR(retval);
2804 }
2805
init_idle_pids(struct task_struct * idle)2806 static inline void init_idle_pids(struct task_struct *idle)
2807 {
2808 enum pid_type type;
2809
2810 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2811 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2812 init_task_pid(idle, type, &init_struct_pid);
2813 }
2814 }
2815
idle_dummy(void * dummy)2816 static int idle_dummy(void *dummy)
2817 {
2818 /* This function is never called */
2819 return 0;
2820 }
2821
fork_idle(int cpu)2822 struct task_struct * __init fork_idle(int cpu)
2823 {
2824 struct task_struct *task;
2825 struct kernel_clone_args args = {
2826 .flags = CLONE_VM,
2827 .fn = &idle_dummy,
2828 .fn_arg = NULL,
2829 .kthread = 1,
2830 .idle = 1,
2831 };
2832
2833 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2834 if (!IS_ERR(task)) {
2835 init_idle_pids(task);
2836 init_idle(task, cpu);
2837 }
2838
2839 return task;
2840 }
2841
2842 /*
2843 * This is like kernel_clone(), but shaved down and tailored to just
2844 * creating io_uring workers. It returns a created task, or an error pointer.
2845 * The returned task is inactive, and the caller must fire it up through
2846 * wake_up_new_task(p). All signals are blocked in the created task.
2847 */
create_io_thread(int (* fn)(void *),void * arg,int node)2848 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2849 {
2850 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2851 CLONE_IO;
2852 struct kernel_clone_args args = {
2853 .flags = ((lower_32_bits(flags) | CLONE_VM |
2854 CLONE_UNTRACED) & ~CSIGNAL),
2855 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2856 .fn = fn,
2857 .fn_arg = arg,
2858 .io_thread = 1,
2859 .user_worker = 1,
2860 };
2861
2862 return copy_process(NULL, 0, node, &args);
2863 }
2864
2865 /*
2866 * Ok, this is the main fork-routine.
2867 *
2868 * It copies the process, and if successful kick-starts
2869 * it and waits for it to finish using the VM if required.
2870 *
2871 * args->exit_signal is expected to be checked for sanity by the caller.
2872 */
kernel_clone(struct kernel_clone_args * args)2873 pid_t kernel_clone(struct kernel_clone_args *args)
2874 {
2875 u64 clone_flags = args->flags;
2876 struct completion vfork;
2877 struct pid *pid;
2878 struct task_struct *p;
2879 int trace = 0;
2880 pid_t nr;
2881
2882 /*
2883 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2884 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2885 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2886 * field in struct clone_args and it still doesn't make sense to have
2887 * them both point at the same memory location. Performing this check
2888 * here has the advantage that we don't need to have a separate helper
2889 * to check for legacy clone().
2890 */
2891 if ((args->flags & CLONE_PIDFD) &&
2892 (args->flags & CLONE_PARENT_SETTID) &&
2893 (args->pidfd == args->parent_tid))
2894 return -EINVAL;
2895
2896 /*
2897 * Determine whether and which event to report to ptracer. When
2898 * called from kernel_thread or CLONE_UNTRACED is explicitly
2899 * requested, no event is reported; otherwise, report if the event
2900 * for the type of forking is enabled.
2901 */
2902 if (!(clone_flags & CLONE_UNTRACED)) {
2903 if (clone_flags & CLONE_VFORK)
2904 trace = PTRACE_EVENT_VFORK;
2905 else if (args->exit_signal != SIGCHLD)
2906 trace = PTRACE_EVENT_CLONE;
2907 else
2908 trace = PTRACE_EVENT_FORK;
2909
2910 if (likely(!ptrace_event_enabled(current, trace)))
2911 trace = 0;
2912 }
2913
2914 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2915 add_latent_entropy();
2916
2917 if (IS_ERR(p))
2918 return PTR_ERR(p);
2919
2920 /*
2921 * Do this prior waking up the new thread - the thread pointer
2922 * might get invalid after that point, if the thread exits quickly.
2923 */
2924 trace_sched_process_fork(current, p);
2925
2926 pid = get_task_pid(p, PIDTYPE_PID);
2927 nr = pid_vnr(pid);
2928
2929 if (clone_flags & CLONE_PARENT_SETTID)
2930 put_user(nr, args->parent_tid);
2931
2932 if (clone_flags & CLONE_VFORK) {
2933 p->vfork_done = &vfork;
2934 init_completion(&vfork);
2935 get_task_struct(p);
2936 }
2937
2938 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2939 /* lock the task to synchronize with memcg migration */
2940 task_lock(p);
2941 lru_gen_add_mm(p->mm);
2942 task_unlock(p);
2943 }
2944
2945 wake_up_new_task(p);
2946
2947 /* forking complete and child started to run, tell ptracer */
2948 if (unlikely(trace))
2949 ptrace_event_pid(trace, pid);
2950
2951 if (clone_flags & CLONE_VFORK) {
2952 if (!wait_for_vfork_done(p, &vfork))
2953 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2954 }
2955
2956 put_pid(pid);
2957 return nr;
2958 }
2959
2960 /*
2961 * Create a kernel thread.
2962 */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2963 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2964 unsigned long flags)
2965 {
2966 struct kernel_clone_args args = {
2967 .flags = ((lower_32_bits(flags) | CLONE_VM |
2968 CLONE_UNTRACED) & ~CSIGNAL),
2969 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2970 .fn = fn,
2971 .fn_arg = arg,
2972 .name = name,
2973 .kthread = 1,
2974 };
2975
2976 return kernel_clone(&args);
2977 }
2978
2979 /*
2980 * Create a user mode thread.
2981 */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2982 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2983 {
2984 struct kernel_clone_args args = {
2985 .flags = ((lower_32_bits(flags) | CLONE_VM |
2986 CLONE_UNTRACED) & ~CSIGNAL),
2987 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2988 .fn = fn,
2989 .fn_arg = arg,
2990 };
2991
2992 return kernel_clone(&args);
2993 }
2994
2995 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2996 SYSCALL_DEFINE0(fork)
2997 {
2998 #ifdef CONFIG_MMU
2999 struct kernel_clone_args args = {
3000 .exit_signal = SIGCHLD,
3001 };
3002
3003 return kernel_clone(&args);
3004 #else
3005 /* can not support in nommu mode */
3006 return -EINVAL;
3007 #endif
3008 }
3009 #endif
3010
3011 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)3012 SYSCALL_DEFINE0(vfork)
3013 {
3014 struct kernel_clone_args args = {
3015 .flags = CLONE_VFORK | CLONE_VM,
3016 .exit_signal = SIGCHLD,
3017 };
3018
3019 return kernel_clone(&args);
3020 }
3021 #endif
3022
3023 #ifdef __ARCH_WANT_SYS_CLONE
3024 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)3025 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3026 int __user *, parent_tidptr,
3027 unsigned long, tls,
3028 int __user *, child_tidptr)
3029 #elif defined(CONFIG_CLONE_BACKWARDS2)
3030 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3031 int __user *, parent_tidptr,
3032 int __user *, child_tidptr,
3033 unsigned long, tls)
3034 #elif defined(CONFIG_CLONE_BACKWARDS3)
3035 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3036 int, stack_size,
3037 int __user *, parent_tidptr,
3038 int __user *, child_tidptr,
3039 unsigned long, tls)
3040 #else
3041 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3042 int __user *, parent_tidptr,
3043 int __user *, child_tidptr,
3044 unsigned long, tls)
3045 #endif
3046 {
3047 struct kernel_clone_args args = {
3048 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
3049 .pidfd = parent_tidptr,
3050 .child_tid = child_tidptr,
3051 .parent_tid = parent_tidptr,
3052 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
3053 .stack = newsp,
3054 .tls = tls,
3055 };
3056
3057 return kernel_clone(&args);
3058 }
3059 #endif
3060
3061 #ifdef __ARCH_WANT_SYS_CLONE3
3062
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)3063 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3064 struct clone_args __user *uargs,
3065 size_t usize)
3066 {
3067 int err;
3068 struct clone_args args;
3069 pid_t *kset_tid = kargs->set_tid;
3070
3071 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3072 CLONE_ARGS_SIZE_VER0);
3073 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3074 CLONE_ARGS_SIZE_VER1);
3075 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3076 CLONE_ARGS_SIZE_VER2);
3077 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3078
3079 if (unlikely(usize > PAGE_SIZE))
3080 return -E2BIG;
3081 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3082 return -EINVAL;
3083
3084 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3085 if (err)
3086 return err;
3087
3088 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3089 return -EINVAL;
3090
3091 if (unlikely(!args.set_tid && args.set_tid_size > 0))
3092 return -EINVAL;
3093
3094 if (unlikely(args.set_tid && args.set_tid_size == 0))
3095 return -EINVAL;
3096
3097 /*
3098 * Verify that higher 32bits of exit_signal are unset and that
3099 * it is a valid signal
3100 */
3101 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3102 !valid_signal(args.exit_signal)))
3103 return -EINVAL;
3104
3105 if ((args.flags & CLONE_INTO_CGROUP) &&
3106 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3107 return -EINVAL;
3108
3109 *kargs = (struct kernel_clone_args){
3110 .flags = args.flags,
3111 .pidfd = u64_to_user_ptr(args.pidfd),
3112 .child_tid = u64_to_user_ptr(args.child_tid),
3113 .parent_tid = u64_to_user_ptr(args.parent_tid),
3114 .exit_signal = args.exit_signal,
3115 .stack = args.stack,
3116 .stack_size = args.stack_size,
3117 .tls = args.tls,
3118 .set_tid_size = args.set_tid_size,
3119 .cgroup = args.cgroup,
3120 };
3121
3122 if (args.set_tid &&
3123 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3124 (kargs->set_tid_size * sizeof(pid_t))))
3125 return -EFAULT;
3126
3127 kargs->set_tid = kset_tid;
3128
3129 return 0;
3130 }
3131
3132 /**
3133 * clone3_stack_valid - check and prepare stack
3134 * @kargs: kernel clone args
3135 *
3136 * Verify that the stack arguments userspace gave us are sane.
3137 * In addition, set the stack direction for userspace since it's easy for us to
3138 * determine.
3139 */
clone3_stack_valid(struct kernel_clone_args * kargs)3140 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3141 {
3142 if (kargs->stack == 0) {
3143 if (kargs->stack_size > 0)
3144 return false;
3145 } else {
3146 if (kargs->stack_size == 0)
3147 return false;
3148
3149 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3150 return false;
3151
3152 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3153 kargs->stack += kargs->stack_size;
3154 #endif
3155 }
3156
3157 return true;
3158 }
3159
clone3_args_valid(struct kernel_clone_args * kargs)3160 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3161 {
3162 /* Verify that no unknown flags are passed along. */
3163 if (kargs->flags &
3164 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3165 return false;
3166
3167 /*
3168 * - make the CLONE_DETACHED bit reusable for clone3
3169 * - make the CSIGNAL bits reusable for clone3
3170 */
3171 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3172 return false;
3173
3174 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3175 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3176 return false;
3177
3178 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3179 kargs->exit_signal)
3180 return false;
3181
3182 if (!clone3_stack_valid(kargs))
3183 return false;
3184
3185 return true;
3186 }
3187
3188 /**
3189 * clone3 - create a new process with specific properties
3190 * @uargs: argument structure
3191 * @size: size of @uargs
3192 *
3193 * clone3() is the extensible successor to clone()/clone2().
3194 * It takes a struct as argument that is versioned by its size.
3195 *
3196 * Return: On success, a positive PID for the child process.
3197 * On error, a negative errno number.
3198 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3199 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3200 {
3201 int err;
3202
3203 struct kernel_clone_args kargs;
3204 pid_t set_tid[MAX_PID_NS_LEVEL];
3205
3206 kargs.set_tid = set_tid;
3207
3208 err = copy_clone_args_from_user(&kargs, uargs, size);
3209 if (err)
3210 return err;
3211
3212 if (!clone3_args_valid(&kargs))
3213 return -EINVAL;
3214
3215 return kernel_clone(&kargs);
3216 }
3217 #endif
3218
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3219 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3220 {
3221 struct task_struct *leader, *parent, *child;
3222 int res;
3223
3224 read_lock(&tasklist_lock);
3225 leader = top = top->group_leader;
3226 down:
3227 for_each_thread(leader, parent) {
3228 list_for_each_entry(child, &parent->children, sibling) {
3229 res = visitor(child, data);
3230 if (res) {
3231 if (res < 0)
3232 goto out;
3233 leader = child;
3234 goto down;
3235 }
3236 up:
3237 ;
3238 }
3239 }
3240
3241 if (leader != top) {
3242 child = leader;
3243 parent = child->real_parent;
3244 leader = parent->group_leader;
3245 goto up;
3246 }
3247 out:
3248 read_unlock(&tasklist_lock);
3249 }
3250
3251 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3252 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3253 #endif
3254
sighand_ctor(void * data)3255 static void sighand_ctor(void *data)
3256 {
3257 struct sighand_struct *sighand = data;
3258
3259 spin_lock_init(&sighand->siglock);
3260 init_waitqueue_head(&sighand->signalfd_wqh);
3261 }
3262
mm_cache_init(void)3263 void __init mm_cache_init(void)
3264 {
3265 unsigned int mm_size;
3266
3267 /*
3268 * The mm_cpumask is located at the end of mm_struct, and is
3269 * dynamically sized based on the maximum CPU number this system
3270 * can have, taking hotplug into account (nr_cpu_ids).
3271 */
3272 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3273
3274 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3275 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3276 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3277 offsetof(struct mm_struct, saved_auxv),
3278 sizeof_field(struct mm_struct, saved_auxv),
3279 NULL);
3280 }
3281
proc_caches_init(void)3282 void __init proc_caches_init(void)
3283 {
3284 sighand_cachep = kmem_cache_create("sighand_cache",
3285 sizeof(struct sighand_struct), 0,
3286 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3287 SLAB_ACCOUNT, sighand_ctor);
3288 signal_cachep = kmem_cache_create("signal_cache",
3289 sizeof(struct signal_struct), 0,
3290 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3291 NULL);
3292 files_cachep = kmem_cache_create("files_cache",
3293 sizeof(struct files_struct), 0,
3294 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3295 NULL);
3296 fs_cachep = kmem_cache_create("fs_cache",
3297 sizeof(struct fs_struct), 0,
3298 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3299 NULL);
3300
3301 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3302 #ifdef CONFIG_PER_VMA_LOCK
3303 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3304 #endif
3305 mmap_init();
3306 nsproxy_cache_init();
3307 }
3308
3309 /*
3310 * Check constraints on flags passed to the unshare system call.
3311 */
check_unshare_flags(unsigned long unshare_flags)3312 static int check_unshare_flags(unsigned long unshare_flags)
3313 {
3314 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3315 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3316 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3317 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3318 CLONE_NEWTIME))
3319 return -EINVAL;
3320 /*
3321 * Not implemented, but pretend it works if there is nothing
3322 * to unshare. Note that unsharing the address space or the
3323 * signal handlers also need to unshare the signal queues (aka
3324 * CLONE_THREAD).
3325 */
3326 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3327 if (!thread_group_empty(current))
3328 return -EINVAL;
3329 }
3330 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3331 if (refcount_read(¤t->sighand->count) > 1)
3332 return -EINVAL;
3333 }
3334 if (unshare_flags & CLONE_VM) {
3335 if (!current_is_single_threaded())
3336 return -EINVAL;
3337 }
3338
3339 return 0;
3340 }
3341
3342 /*
3343 * Unshare the filesystem structure if it is being shared
3344 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3345 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3346 {
3347 struct fs_struct *fs = current->fs;
3348
3349 if (!(unshare_flags & CLONE_FS) || !fs)
3350 return 0;
3351
3352 /* don't need lock here; in the worst case we'll do useless copy */
3353 if (fs->users == 1)
3354 return 0;
3355
3356 *new_fsp = copy_fs_struct(fs);
3357 if (!*new_fsp)
3358 return -ENOMEM;
3359
3360 return 0;
3361 }
3362
3363 /*
3364 * Unshare file descriptor table if it is being shared
3365 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3366 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3367 {
3368 struct files_struct *fd = current->files;
3369
3370 if ((unshare_flags & CLONE_FILES) &&
3371 (fd && atomic_read(&fd->count) > 1)) {
3372 fd = dup_fd(fd, NULL);
3373 if (IS_ERR(fd))
3374 return PTR_ERR(fd);
3375 *new_fdp = fd;
3376 }
3377
3378 return 0;
3379 }
3380
3381 /*
3382 * unshare allows a process to 'unshare' part of the process
3383 * context which was originally shared using clone. copy_*
3384 * functions used by kernel_clone() cannot be used here directly
3385 * because they modify an inactive task_struct that is being
3386 * constructed. Here we are modifying the current, active,
3387 * task_struct.
3388 */
ksys_unshare(unsigned long unshare_flags)3389 int ksys_unshare(unsigned long unshare_flags)
3390 {
3391 struct fs_struct *fs, *new_fs = NULL;
3392 struct files_struct *new_fd = NULL;
3393 struct cred *new_cred = NULL;
3394 struct nsproxy *new_nsproxy = NULL;
3395 int do_sysvsem = 0;
3396 int err;
3397
3398 /*
3399 * If unsharing a user namespace must also unshare the thread group
3400 * and unshare the filesystem root and working directories.
3401 */
3402 if (unshare_flags & CLONE_NEWUSER)
3403 unshare_flags |= CLONE_THREAD | CLONE_FS;
3404 /*
3405 * If unsharing vm, must also unshare signal handlers.
3406 */
3407 if (unshare_flags & CLONE_VM)
3408 unshare_flags |= CLONE_SIGHAND;
3409 /*
3410 * If unsharing a signal handlers, must also unshare the signal queues.
3411 */
3412 if (unshare_flags & CLONE_SIGHAND)
3413 unshare_flags |= CLONE_THREAD;
3414 /*
3415 * If unsharing namespace, must also unshare filesystem information.
3416 */
3417 if (unshare_flags & CLONE_NEWNS)
3418 unshare_flags |= CLONE_FS;
3419
3420 err = check_unshare_flags(unshare_flags);
3421 if (err)
3422 goto bad_unshare_out;
3423 /*
3424 * CLONE_NEWIPC must also detach from the undolist: after switching
3425 * to a new ipc namespace, the semaphore arrays from the old
3426 * namespace are unreachable.
3427 */
3428 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3429 do_sysvsem = 1;
3430 err = unshare_fs(unshare_flags, &new_fs);
3431 if (err)
3432 goto bad_unshare_out;
3433 err = unshare_fd(unshare_flags, &new_fd);
3434 if (err)
3435 goto bad_unshare_cleanup_fs;
3436 err = unshare_userns(unshare_flags, &new_cred);
3437 if (err)
3438 goto bad_unshare_cleanup_fd;
3439 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3440 new_cred, new_fs);
3441 if (err)
3442 goto bad_unshare_cleanup_cred;
3443
3444 if (new_cred) {
3445 err = set_cred_ucounts(new_cred);
3446 if (err)
3447 goto bad_unshare_cleanup_cred;
3448 }
3449
3450 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3451 if (do_sysvsem) {
3452 /*
3453 * CLONE_SYSVSEM is equivalent to sys_exit().
3454 */
3455 exit_sem(current);
3456 }
3457 if (unshare_flags & CLONE_NEWIPC) {
3458 /* Orphan segments in old ns (see sem above). */
3459 exit_shm(current);
3460 shm_init_task(current);
3461 }
3462
3463 if (new_nsproxy)
3464 switch_task_namespaces(current, new_nsproxy);
3465
3466 task_lock(current);
3467
3468 if (new_fs) {
3469 fs = current->fs;
3470 spin_lock(&fs->lock);
3471 current->fs = new_fs;
3472 if (--fs->users)
3473 new_fs = NULL;
3474 else
3475 new_fs = fs;
3476 spin_unlock(&fs->lock);
3477 }
3478
3479 if (new_fd)
3480 swap(current->files, new_fd);
3481
3482 task_unlock(current);
3483
3484 if (new_cred) {
3485 /* Install the new user namespace */
3486 commit_creds(new_cred);
3487 new_cred = NULL;
3488 }
3489 }
3490
3491 perf_event_namespaces(current);
3492
3493 bad_unshare_cleanup_cred:
3494 if (new_cred)
3495 put_cred(new_cred);
3496 bad_unshare_cleanup_fd:
3497 if (new_fd)
3498 put_files_struct(new_fd);
3499
3500 bad_unshare_cleanup_fs:
3501 if (new_fs)
3502 free_fs_struct(new_fs);
3503
3504 bad_unshare_out:
3505 return err;
3506 }
3507
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3508 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3509 {
3510 return ksys_unshare(unshare_flags);
3511 }
3512
3513 /*
3514 * Helper to unshare the files of the current task.
3515 * We don't want to expose copy_files internals to
3516 * the exec layer of the kernel.
3517 */
3518
unshare_files(void)3519 int unshare_files(void)
3520 {
3521 struct task_struct *task = current;
3522 struct files_struct *old, *copy = NULL;
3523 int error;
3524
3525 error = unshare_fd(CLONE_FILES, ©);
3526 if (error || !copy)
3527 return error;
3528
3529 old = task->files;
3530 task_lock(task);
3531 task->files = copy;
3532 task_unlock(task);
3533 put_files_struct(old);
3534 return 0;
3535 }
3536
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3537 int sysctl_max_threads(struct ctl_table *table, int write,
3538 void *buffer, size_t *lenp, loff_t *ppos)
3539 {
3540 struct ctl_table t;
3541 int ret;
3542 int threads = max_threads;
3543 int min = 1;
3544 int max = MAX_THREADS;
3545
3546 t = *table;
3547 t.data = &threads;
3548 t.extra1 = &min;
3549 t.extra2 = &max;
3550
3551 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3552 if (ret || !write)
3553 return ret;
3554
3555 max_threads = threads;
3556
3557 return 0;
3558 }
3559