xref: /openbmc/linux/kernel/fork.c (revision b694e3c604e999343258c49e574abd7be012e726)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102 #include <linux/tick.h>
103 
104 #include <asm/pgalloc.h>
105 #include <linux/uaccess.h>
106 #include <asm/mmu_context.h>
107 #include <asm/cacheflush.h>
108 #include <asm/tlbflush.h>
109 
110 #include <trace/events/sched.h>
111 
112 #define CREATE_TRACE_POINTS
113 #include <trace/events/task.h>
114 
115 /*
116  * Minimum number of threads to boot the kernel
117  */
118 #define MIN_THREADS 20
119 
120 /*
121  * Maximum number of threads
122  */
123 #define MAX_THREADS FUTEX_TID_MASK
124 
125 /*
126  * Protected counters by write_lock_irq(&tasklist_lock)
127  */
128 unsigned long total_forks;	/* Handle normal Linux uptimes. */
129 int nr_threads;			/* The idle threads do not count.. */
130 
131 static int max_threads;		/* tunable limit on nr_threads */
132 
133 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
134 
135 static const char * const resident_page_types[] = {
136 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
137 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
138 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
139 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
140 };
141 
142 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
143 
144 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
145 
146 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)147 int lockdep_tasklist_lock_is_held(void)
148 {
149 	return lockdep_is_held(&tasklist_lock);
150 }
151 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
152 #endif /* #ifdef CONFIG_PROVE_RCU */
153 
nr_processes(void)154 int nr_processes(void)
155 {
156 	int cpu;
157 	int total = 0;
158 
159 	for_each_possible_cpu(cpu)
160 		total += per_cpu(process_counts, cpu);
161 
162 	return total;
163 }
164 
arch_release_task_struct(struct task_struct * tsk)165 void __weak arch_release_task_struct(struct task_struct *tsk)
166 {
167 }
168 
169 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
170 static struct kmem_cache *task_struct_cachep;
171 
alloc_task_struct_node(int node)172 static inline struct task_struct *alloc_task_struct_node(int node)
173 {
174 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
175 }
176 
free_task_struct(struct task_struct * tsk)177 static inline void free_task_struct(struct task_struct *tsk)
178 {
179 	kmem_cache_free(task_struct_cachep, tsk);
180 }
181 #endif
182 
183 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
184 
185 /*
186  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
187  * kmemcache based allocator.
188  */
189 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
190 
191 #  ifdef CONFIG_VMAP_STACK
192 /*
193  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
194  * flush.  Try to minimize the number of calls by caching stacks.
195  */
196 #define NR_CACHED_STACKS 2
197 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
198 
199 struct vm_stack {
200 	struct rcu_head rcu;
201 	struct vm_struct *stack_vm_area;
202 };
203 
try_release_thread_stack_to_cache(struct vm_struct * vm)204 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
205 {
206 	unsigned int i;
207 
208 	for (i = 0; i < NR_CACHED_STACKS; i++) {
209 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
210 			continue;
211 		return true;
212 	}
213 	return false;
214 }
215 
thread_stack_free_rcu(struct rcu_head * rh)216 static void thread_stack_free_rcu(struct rcu_head *rh)
217 {
218 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
219 
220 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
221 		return;
222 
223 	vfree(vm_stack);
224 }
225 
thread_stack_delayed_free(struct task_struct * tsk)226 static void thread_stack_delayed_free(struct task_struct *tsk)
227 {
228 	struct vm_stack *vm_stack = tsk->stack;
229 
230 	vm_stack->stack_vm_area = tsk->stack_vm_area;
231 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
232 }
233 
free_vm_stack_cache(unsigned int cpu)234 static int free_vm_stack_cache(unsigned int cpu)
235 {
236 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
237 	int i;
238 
239 	for (i = 0; i < NR_CACHED_STACKS; i++) {
240 		struct vm_struct *vm_stack = cached_vm_stacks[i];
241 
242 		if (!vm_stack)
243 			continue;
244 
245 		vfree(vm_stack->addr);
246 		cached_vm_stacks[i] = NULL;
247 	}
248 
249 	return 0;
250 }
251 
memcg_charge_kernel_stack(struct vm_struct * vm)252 static int memcg_charge_kernel_stack(struct vm_struct *vm)
253 {
254 	int i;
255 	int ret;
256 	int nr_charged = 0;
257 
258 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
259 
260 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
261 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
262 		if (ret)
263 			goto err;
264 		nr_charged++;
265 	}
266 	return 0;
267 err:
268 	for (i = 0; i < nr_charged; i++)
269 		memcg_kmem_uncharge_page(vm->pages[i], 0);
270 	return ret;
271 }
272 
alloc_thread_stack_node(struct task_struct * tsk,int node)273 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
274 {
275 	struct vm_struct *vm;
276 	void *stack;
277 	int i;
278 
279 	for (i = 0; i < NR_CACHED_STACKS; i++) {
280 		struct vm_struct *s;
281 
282 		s = this_cpu_xchg(cached_stacks[i], NULL);
283 
284 		if (!s)
285 			continue;
286 
287 		/* Reset stack metadata. */
288 		kasan_unpoison_range(s->addr, THREAD_SIZE);
289 
290 		stack = kasan_reset_tag(s->addr);
291 
292 		/* Clear stale pointers from reused stack. */
293 		memset(stack, 0, THREAD_SIZE);
294 
295 		if (memcg_charge_kernel_stack(s)) {
296 			vfree(s->addr);
297 			return -ENOMEM;
298 		}
299 
300 		tsk->stack_vm_area = s;
301 		tsk->stack = stack;
302 		return 0;
303 	}
304 
305 	/*
306 	 * Allocated stacks are cached and later reused by new threads,
307 	 * so memcg accounting is performed manually on assigning/releasing
308 	 * stacks to tasks. Drop __GFP_ACCOUNT.
309 	 */
310 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
311 				     VMALLOC_START, VMALLOC_END,
312 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
313 				     PAGE_KERNEL,
314 				     0, node, __builtin_return_address(0));
315 	if (!stack)
316 		return -ENOMEM;
317 
318 	vm = find_vm_area(stack);
319 	if (memcg_charge_kernel_stack(vm)) {
320 		vfree(stack);
321 		return -ENOMEM;
322 	}
323 	/*
324 	 * We can't call find_vm_area() in interrupt context, and
325 	 * free_thread_stack() can be called in interrupt context,
326 	 * so cache the vm_struct.
327 	 */
328 	tsk->stack_vm_area = vm;
329 	stack = kasan_reset_tag(stack);
330 	tsk->stack = stack;
331 	return 0;
332 }
333 
free_thread_stack(struct task_struct * tsk)334 static void free_thread_stack(struct task_struct *tsk)
335 {
336 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
337 		thread_stack_delayed_free(tsk);
338 
339 	tsk->stack = NULL;
340 	tsk->stack_vm_area = NULL;
341 }
342 
343 #  else /* !CONFIG_VMAP_STACK */
344 
thread_stack_free_rcu(struct rcu_head * rh)345 static void thread_stack_free_rcu(struct rcu_head *rh)
346 {
347 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
348 }
349 
thread_stack_delayed_free(struct task_struct * tsk)350 static void thread_stack_delayed_free(struct task_struct *tsk)
351 {
352 	struct rcu_head *rh = tsk->stack;
353 
354 	call_rcu(rh, thread_stack_free_rcu);
355 }
356 
alloc_thread_stack_node(struct task_struct * tsk,int node)357 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
358 {
359 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
360 					     THREAD_SIZE_ORDER);
361 
362 	if (likely(page)) {
363 		tsk->stack = kasan_reset_tag(page_address(page));
364 		return 0;
365 	}
366 	return -ENOMEM;
367 }
368 
free_thread_stack(struct task_struct * tsk)369 static void free_thread_stack(struct task_struct *tsk)
370 {
371 	thread_stack_delayed_free(tsk);
372 	tsk->stack = NULL;
373 }
374 
375 #  endif /* CONFIG_VMAP_STACK */
376 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
377 
378 static struct kmem_cache *thread_stack_cache;
379 
thread_stack_free_rcu(struct rcu_head * rh)380 static void thread_stack_free_rcu(struct rcu_head *rh)
381 {
382 	kmem_cache_free(thread_stack_cache, rh);
383 }
384 
thread_stack_delayed_free(struct task_struct * tsk)385 static void thread_stack_delayed_free(struct task_struct *tsk)
386 {
387 	struct rcu_head *rh = tsk->stack;
388 
389 	call_rcu(rh, thread_stack_free_rcu);
390 }
391 
alloc_thread_stack_node(struct task_struct * tsk,int node)392 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
393 {
394 	unsigned long *stack;
395 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
396 	stack = kasan_reset_tag(stack);
397 	tsk->stack = stack;
398 	return stack ? 0 : -ENOMEM;
399 }
400 
free_thread_stack(struct task_struct * tsk)401 static void free_thread_stack(struct task_struct *tsk)
402 {
403 	thread_stack_delayed_free(tsk);
404 	tsk->stack = NULL;
405 }
406 
thread_stack_cache_init(void)407 void thread_stack_cache_init(void)
408 {
409 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
410 					THREAD_SIZE, THREAD_SIZE, 0, 0,
411 					THREAD_SIZE, NULL);
412 	BUG_ON(thread_stack_cache == NULL);
413 }
414 
415 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
416 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
417 
alloc_thread_stack_node(struct task_struct * tsk,int node)418 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
419 {
420 	unsigned long *stack;
421 
422 	stack = arch_alloc_thread_stack_node(tsk, node);
423 	tsk->stack = stack;
424 	return stack ? 0 : -ENOMEM;
425 }
426 
free_thread_stack(struct task_struct * tsk)427 static void free_thread_stack(struct task_struct *tsk)
428 {
429 	arch_free_thread_stack(tsk);
430 	tsk->stack = NULL;
431 }
432 
433 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
434 
435 /* SLAB cache for signal_struct structures (tsk->signal) */
436 static struct kmem_cache *signal_cachep;
437 
438 /* SLAB cache for sighand_struct structures (tsk->sighand) */
439 struct kmem_cache *sighand_cachep;
440 
441 /* SLAB cache for files_struct structures (tsk->files) */
442 struct kmem_cache *files_cachep;
443 
444 /* SLAB cache for fs_struct structures (tsk->fs) */
445 struct kmem_cache *fs_cachep;
446 
447 /* SLAB cache for vm_area_struct structures */
448 static struct kmem_cache *vm_area_cachep;
449 
450 /* SLAB cache for mm_struct structures (tsk->mm) */
451 static struct kmem_cache *mm_cachep;
452 
453 #ifdef CONFIG_PER_VMA_LOCK
454 
455 /* SLAB cache for vm_area_struct.lock */
456 static struct kmem_cache *vma_lock_cachep;
457 
vma_lock_alloc(struct vm_area_struct * vma)458 static bool vma_lock_alloc(struct vm_area_struct *vma)
459 {
460 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
461 	if (!vma->vm_lock)
462 		return false;
463 
464 	init_rwsem(&vma->vm_lock->lock);
465 	vma->vm_lock_seq = -1;
466 
467 	return true;
468 }
469 
vma_lock_free(struct vm_area_struct * vma)470 static inline void vma_lock_free(struct vm_area_struct *vma)
471 {
472 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
473 }
474 
475 #else /* CONFIG_PER_VMA_LOCK */
476 
vma_lock_alloc(struct vm_area_struct * vma)477 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)478 static inline void vma_lock_free(struct vm_area_struct *vma) {}
479 
480 #endif /* CONFIG_PER_VMA_LOCK */
481 
vm_area_alloc(struct mm_struct * mm)482 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
483 {
484 	struct vm_area_struct *vma;
485 
486 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
487 	if (!vma)
488 		return NULL;
489 
490 	vma_init(vma, mm);
491 	if (!vma_lock_alloc(vma)) {
492 		kmem_cache_free(vm_area_cachep, vma);
493 		return NULL;
494 	}
495 
496 	return vma;
497 }
498 
vm_area_dup(struct vm_area_struct * orig)499 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
500 {
501 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
502 
503 	if (!new)
504 		return NULL;
505 
506 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
507 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
508 	/*
509 	 * orig->shared.rb may be modified concurrently, but the clone
510 	 * will be reinitialized.
511 	 */
512 	data_race(memcpy(new, orig, sizeof(*new)));
513 	if (!vma_lock_alloc(new)) {
514 		kmem_cache_free(vm_area_cachep, new);
515 		return NULL;
516 	}
517 	INIT_LIST_HEAD(&new->anon_vma_chain);
518 	vma_numab_state_init(new);
519 	dup_anon_vma_name(orig, new);
520 
521 	/* track_pfn_copy() will later take care of copying internal state. */
522 	if (unlikely(new->vm_flags & VM_PFNMAP))
523 		untrack_pfn_clear(new);
524 
525 	return new;
526 }
527 
__vm_area_free(struct vm_area_struct * vma)528 void __vm_area_free(struct vm_area_struct *vma)
529 {
530 	vma_numab_state_free(vma);
531 	free_anon_vma_name(vma);
532 	vma_lock_free(vma);
533 	kmem_cache_free(vm_area_cachep, vma);
534 }
535 
536 #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)537 static void vm_area_free_rcu_cb(struct rcu_head *head)
538 {
539 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
540 						  vm_rcu);
541 
542 	/* The vma should not be locked while being destroyed. */
543 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
544 	__vm_area_free(vma);
545 }
546 #endif
547 
vm_area_free(struct vm_area_struct * vma)548 void vm_area_free(struct vm_area_struct *vma)
549 {
550 #ifdef CONFIG_PER_VMA_LOCK
551 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
552 #else
553 	__vm_area_free(vma);
554 #endif
555 }
556 
account_kernel_stack(struct task_struct * tsk,int account)557 static void account_kernel_stack(struct task_struct *tsk, int account)
558 {
559 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
560 		struct vm_struct *vm = task_stack_vm_area(tsk);
561 		int i;
562 
563 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
564 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
565 					      account * (PAGE_SIZE / 1024));
566 	} else {
567 		void *stack = task_stack_page(tsk);
568 
569 		/* All stack pages are in the same node. */
570 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
571 				      account * (THREAD_SIZE / 1024));
572 	}
573 }
574 
exit_task_stack_account(struct task_struct * tsk)575 void exit_task_stack_account(struct task_struct *tsk)
576 {
577 	account_kernel_stack(tsk, -1);
578 
579 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
580 		struct vm_struct *vm;
581 		int i;
582 
583 		vm = task_stack_vm_area(tsk);
584 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
585 			memcg_kmem_uncharge_page(vm->pages[i], 0);
586 	}
587 }
588 
release_task_stack(struct task_struct * tsk)589 static void release_task_stack(struct task_struct *tsk)
590 {
591 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
592 		return;  /* Better to leak the stack than to free prematurely */
593 
594 	free_thread_stack(tsk);
595 }
596 
597 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)598 void put_task_stack(struct task_struct *tsk)
599 {
600 	if (refcount_dec_and_test(&tsk->stack_refcount))
601 		release_task_stack(tsk);
602 }
603 #endif
604 
free_task(struct task_struct * tsk)605 void free_task(struct task_struct *tsk)
606 {
607 #ifdef CONFIG_SECCOMP
608 	WARN_ON_ONCE(tsk->seccomp.filter);
609 #endif
610 	release_user_cpus_ptr(tsk);
611 	scs_release(tsk);
612 
613 #ifndef CONFIG_THREAD_INFO_IN_TASK
614 	/*
615 	 * The task is finally done with both the stack and thread_info,
616 	 * so free both.
617 	 */
618 	release_task_stack(tsk);
619 #else
620 	/*
621 	 * If the task had a separate stack allocation, it should be gone
622 	 * by now.
623 	 */
624 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
625 #endif
626 	rt_mutex_debug_task_free(tsk);
627 	ftrace_graph_exit_task(tsk);
628 	arch_release_task_struct(tsk);
629 	if (tsk->flags & PF_KTHREAD)
630 		free_kthread_struct(tsk);
631 	bpf_task_storage_free(tsk);
632 	free_task_struct(tsk);
633 }
634 EXPORT_SYMBOL(free_task);
635 
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)636 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
637 {
638 	struct file *exe_file;
639 
640 	exe_file = get_mm_exe_file(oldmm);
641 	RCU_INIT_POINTER(mm->exe_file, exe_file);
642 	/*
643 	 * We depend on the oldmm having properly denied write access to the
644 	 * exe_file already.
645 	 */
646 	if (exe_file && deny_write_access(exe_file))
647 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
648 }
649 
650 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)651 static __latent_entropy int dup_mmap(struct mm_struct *mm,
652 					struct mm_struct *oldmm)
653 {
654 	struct vm_area_struct *mpnt, *tmp;
655 	int retval;
656 	unsigned long charge = 0;
657 	LIST_HEAD(uf);
658 	VMA_ITERATOR(old_vmi, oldmm, 0);
659 	VMA_ITERATOR(vmi, mm, 0);
660 
661 	uprobe_start_dup_mmap();
662 	if (mmap_write_lock_killable(oldmm)) {
663 		retval = -EINTR;
664 		goto fail_uprobe_end;
665 	}
666 	flush_cache_dup_mm(oldmm);
667 	uprobe_dup_mmap(oldmm, mm);
668 	/*
669 	 * Not linked in yet - no deadlock potential:
670 	 */
671 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
672 
673 	/* No ordering required: file already has been exposed. */
674 	dup_mm_exe_file(mm, oldmm);
675 
676 	mm->total_vm = oldmm->total_vm;
677 	mm->data_vm = oldmm->data_vm;
678 	mm->exec_vm = oldmm->exec_vm;
679 	mm->stack_vm = oldmm->stack_vm;
680 
681 	retval = ksm_fork(mm, oldmm);
682 	if (retval)
683 		goto out;
684 	khugepaged_fork(mm, oldmm);
685 
686 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
687 	if (retval)
688 		goto out;
689 
690 	mt_clear_in_rcu(vmi.mas.tree);
691 	for_each_vma(old_vmi, mpnt) {
692 		struct file *file;
693 
694 		vma_start_write(mpnt);
695 		if (mpnt->vm_flags & VM_DONTCOPY) {
696 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
697 			continue;
698 		}
699 		charge = 0;
700 		/*
701 		 * Don't duplicate many vmas if we've been oom-killed (for
702 		 * example)
703 		 */
704 		if (fatal_signal_pending(current)) {
705 			retval = -EINTR;
706 			goto loop_out;
707 		}
708 		if (mpnt->vm_flags & VM_ACCOUNT) {
709 			unsigned long len = vma_pages(mpnt);
710 
711 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
712 				goto fail_nomem;
713 			charge = len;
714 		}
715 		tmp = vm_area_dup(mpnt);
716 		if (!tmp)
717 			goto fail_nomem;
718 		retval = vma_dup_policy(mpnt, tmp);
719 		if (retval)
720 			goto fail_nomem_policy;
721 		tmp->vm_mm = mm;
722 		retval = dup_userfaultfd(tmp, &uf);
723 		if (retval)
724 			goto fail_nomem_anon_vma_fork;
725 		if (tmp->vm_flags & VM_WIPEONFORK) {
726 			/*
727 			 * VM_WIPEONFORK gets a clean slate in the child.
728 			 * Don't prepare anon_vma until fault since we don't
729 			 * copy page for current vma.
730 			 */
731 			tmp->anon_vma = NULL;
732 		} else if (anon_vma_fork(tmp, mpnt))
733 			goto fail_nomem_anon_vma_fork;
734 		vm_flags_clear(tmp, VM_LOCKED_MASK);
735 		file = tmp->vm_file;
736 		if (file) {
737 			struct address_space *mapping = file->f_mapping;
738 
739 			get_file(file);
740 			i_mmap_lock_write(mapping);
741 			if (tmp->vm_flags & VM_SHARED)
742 				mapping_allow_writable(mapping);
743 			flush_dcache_mmap_lock(mapping);
744 			/* insert tmp into the share list, just after mpnt */
745 			vma_interval_tree_insert_after(tmp, mpnt,
746 					&mapping->i_mmap);
747 			flush_dcache_mmap_unlock(mapping);
748 			i_mmap_unlock_write(mapping);
749 		}
750 
751 		/*
752 		 * Copy/update hugetlb private vma information.
753 		 */
754 		if (is_vm_hugetlb_page(tmp))
755 			hugetlb_dup_vma_private(tmp);
756 
757 		/* Link the vma into the MT */
758 		if (vma_iter_bulk_store(&vmi, tmp))
759 			goto fail_nomem_vmi_store;
760 
761 		mm->map_count++;
762 		if (!(tmp->vm_flags & VM_WIPEONFORK))
763 			retval = copy_page_range(tmp, mpnt);
764 
765 		if (tmp->vm_ops && tmp->vm_ops->open)
766 			tmp->vm_ops->open(tmp);
767 
768 		if (retval)
769 			goto loop_out;
770 	}
771 	/* a new mm has just been created */
772 	retval = arch_dup_mmap(oldmm, mm);
773 loop_out:
774 	vma_iter_free(&vmi);
775 	if (!retval)
776 		mt_set_in_rcu(vmi.mas.tree);
777 out:
778 	mmap_write_unlock(mm);
779 	flush_tlb_mm(oldmm);
780 	mmap_write_unlock(oldmm);
781 	dup_userfaultfd_complete(&uf);
782 fail_uprobe_end:
783 	uprobe_end_dup_mmap();
784 	return retval;
785 
786 fail_nomem_vmi_store:
787 	unlink_anon_vmas(tmp);
788 fail_nomem_anon_vma_fork:
789 	mpol_put(vma_policy(tmp));
790 fail_nomem_policy:
791 	vm_area_free(tmp);
792 fail_nomem:
793 	retval = -ENOMEM;
794 	vm_unacct_memory(charge);
795 	goto loop_out;
796 }
797 
mm_alloc_pgd(struct mm_struct * mm)798 static inline int mm_alloc_pgd(struct mm_struct *mm)
799 {
800 	mm->pgd = pgd_alloc(mm);
801 	if (unlikely(!mm->pgd))
802 		return -ENOMEM;
803 	return 0;
804 }
805 
mm_free_pgd(struct mm_struct * mm)806 static inline void mm_free_pgd(struct mm_struct *mm)
807 {
808 	pgd_free(mm, mm->pgd);
809 }
810 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)811 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
812 {
813 	mmap_write_lock(oldmm);
814 	dup_mm_exe_file(mm, oldmm);
815 	mmap_write_unlock(oldmm);
816 	return 0;
817 }
818 #define mm_alloc_pgd(mm)	(0)
819 #define mm_free_pgd(mm)
820 #endif /* CONFIG_MMU */
821 
check_mm(struct mm_struct * mm)822 static void check_mm(struct mm_struct *mm)
823 {
824 	int i;
825 
826 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
827 			 "Please make sure 'struct resident_page_types[]' is updated as well");
828 
829 	for (i = 0; i < NR_MM_COUNTERS; i++) {
830 		long x = percpu_counter_sum(&mm->rss_stat[i]);
831 
832 		if (unlikely(x))
833 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
834 				 mm, resident_page_types[i], x);
835 	}
836 
837 	if (mm_pgtables_bytes(mm))
838 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
839 				mm_pgtables_bytes(mm));
840 
841 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
842 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
843 #endif
844 }
845 
846 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
847 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
848 
do_check_lazy_tlb(void * arg)849 static void do_check_lazy_tlb(void *arg)
850 {
851 	struct mm_struct *mm = arg;
852 
853 	WARN_ON_ONCE(current->active_mm == mm);
854 }
855 
do_shoot_lazy_tlb(void * arg)856 static void do_shoot_lazy_tlb(void *arg)
857 {
858 	struct mm_struct *mm = arg;
859 
860 	if (current->active_mm == mm) {
861 		WARN_ON_ONCE(current->mm);
862 		current->active_mm = &init_mm;
863 		switch_mm(mm, &init_mm, current);
864 	}
865 }
866 
cleanup_lazy_tlbs(struct mm_struct * mm)867 static void cleanup_lazy_tlbs(struct mm_struct *mm)
868 {
869 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
870 		/*
871 		 * In this case, lazy tlb mms are refounted and would not reach
872 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
873 		 */
874 		return;
875 	}
876 
877 	/*
878 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
879 	 * requires lazy mm users to switch to another mm when the refcount
880 	 * drops to zero, before the mm is freed. This requires IPIs here to
881 	 * switch kernel threads to init_mm.
882 	 *
883 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
884 	 * switch with the final userspace teardown TLB flush which leaves the
885 	 * mm lazy on this CPU but no others, reducing the need for additional
886 	 * IPIs here. There are cases where a final IPI is still required here,
887 	 * such as the final mmdrop being performed on a different CPU than the
888 	 * one exiting, or kernel threads using the mm when userspace exits.
889 	 *
890 	 * IPI overheads have not found to be expensive, but they could be
891 	 * reduced in a number of possible ways, for example (roughly
892 	 * increasing order of complexity):
893 	 * - The last lazy reference created by exit_mm() could instead switch
894 	 *   to init_mm, however it's probable this will run on the same CPU
895 	 *   immediately afterwards, so this may not reduce IPIs much.
896 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
897 	 * - CPUs store active_mm where it can be remotely checked without a
898 	 *   lock, to filter out false-positives in the cpumask.
899 	 * - After mm_users or mm_count reaches zero, switching away from the
900 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
901 	 *   with some batching or delaying of the final IPIs.
902 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
903 	 *   switching to avoid IPIs completely.
904 	 */
905 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
906 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
907 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
908 }
909 
910 /*
911  * Called when the last reference to the mm
912  * is dropped: either by a lazy thread or by
913  * mmput. Free the page directory and the mm.
914  */
__mmdrop(struct mm_struct * mm)915 void __mmdrop(struct mm_struct *mm)
916 {
917 	BUG_ON(mm == &init_mm);
918 	WARN_ON_ONCE(mm == current->mm);
919 
920 	/* Ensure no CPUs are using this as their lazy tlb mm */
921 	cleanup_lazy_tlbs(mm);
922 
923 	WARN_ON_ONCE(mm == current->active_mm);
924 	mm_free_pgd(mm);
925 	destroy_context(mm);
926 	mmu_notifier_subscriptions_destroy(mm);
927 	check_mm(mm);
928 	put_user_ns(mm->user_ns);
929 	mm_pasid_drop(mm);
930 	mm_destroy_cid(mm);
931 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
932 
933 	free_mm(mm);
934 }
935 EXPORT_SYMBOL_GPL(__mmdrop);
936 
mmdrop_async_fn(struct work_struct * work)937 static void mmdrop_async_fn(struct work_struct *work)
938 {
939 	struct mm_struct *mm;
940 
941 	mm = container_of(work, struct mm_struct, async_put_work);
942 	__mmdrop(mm);
943 }
944 
mmdrop_async(struct mm_struct * mm)945 static void mmdrop_async(struct mm_struct *mm)
946 {
947 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
948 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
949 		schedule_work(&mm->async_put_work);
950 	}
951 }
952 
free_signal_struct(struct signal_struct * sig)953 static inline void free_signal_struct(struct signal_struct *sig)
954 {
955 	taskstats_tgid_free(sig);
956 	sched_autogroup_exit(sig);
957 	/*
958 	 * __mmdrop is not safe to call from softirq context on x86 due to
959 	 * pgd_dtor so postpone it to the async context
960 	 */
961 	if (sig->oom_mm)
962 		mmdrop_async(sig->oom_mm);
963 	kmem_cache_free(signal_cachep, sig);
964 }
965 
put_signal_struct(struct signal_struct * sig)966 static inline void put_signal_struct(struct signal_struct *sig)
967 {
968 	if (refcount_dec_and_test(&sig->sigcnt))
969 		free_signal_struct(sig);
970 }
971 
__put_task_struct(struct task_struct * tsk)972 void __put_task_struct(struct task_struct *tsk)
973 {
974 	WARN_ON(!tsk->exit_state);
975 	WARN_ON(refcount_read(&tsk->usage));
976 	WARN_ON(tsk == current);
977 
978 	io_uring_free(tsk);
979 	cgroup_free(tsk);
980 	task_numa_free(tsk, true);
981 	security_task_free(tsk);
982 	exit_creds(tsk);
983 	delayacct_tsk_free(tsk);
984 	put_signal_struct(tsk->signal);
985 	sched_core_free(tsk);
986 	free_task(tsk);
987 }
988 EXPORT_SYMBOL_GPL(__put_task_struct);
989 
__put_task_struct_rcu_cb(struct rcu_head * rhp)990 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
991 {
992 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
993 
994 	__put_task_struct(task);
995 }
996 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
997 
arch_task_cache_init(void)998 void __init __weak arch_task_cache_init(void) { }
999 
1000 /*
1001  * set_max_threads
1002  */
set_max_threads(unsigned int max_threads_suggested)1003 static void set_max_threads(unsigned int max_threads_suggested)
1004 {
1005 	u64 threads;
1006 	unsigned long nr_pages = totalram_pages();
1007 
1008 	/*
1009 	 * The number of threads shall be limited such that the thread
1010 	 * structures may only consume a small part of the available memory.
1011 	 */
1012 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1013 		threads = MAX_THREADS;
1014 	else
1015 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1016 				    (u64) THREAD_SIZE * 8UL);
1017 
1018 	if (threads > max_threads_suggested)
1019 		threads = max_threads_suggested;
1020 
1021 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1022 }
1023 
1024 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1025 /* Initialized by the architecture: */
1026 int arch_task_struct_size __read_mostly;
1027 #endif
1028 
1029 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)1030 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1031 {
1032 	/* Fetch thread_struct whitelist for the architecture. */
1033 	arch_thread_struct_whitelist(offset, size);
1034 
1035 	/*
1036 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1037 	 * adjust offset to position of thread_struct in task_struct.
1038 	 */
1039 	if (unlikely(*size == 0))
1040 		*offset = 0;
1041 	else
1042 		*offset += offsetof(struct task_struct, thread);
1043 }
1044 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1045 
fork_init(void)1046 void __init fork_init(void)
1047 {
1048 	int i;
1049 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1050 #ifndef ARCH_MIN_TASKALIGN
1051 #define ARCH_MIN_TASKALIGN	0
1052 #endif
1053 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1054 	unsigned long useroffset, usersize;
1055 
1056 	/* create a slab on which task_structs can be allocated */
1057 	task_struct_whitelist(&useroffset, &usersize);
1058 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1059 			arch_task_struct_size, align,
1060 			SLAB_PANIC|SLAB_ACCOUNT,
1061 			useroffset, usersize, NULL);
1062 #endif
1063 
1064 	/* do the arch specific task caches init */
1065 	arch_task_cache_init();
1066 
1067 	set_max_threads(MAX_THREADS);
1068 
1069 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1070 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1071 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1072 		init_task.signal->rlim[RLIMIT_NPROC];
1073 
1074 	for (i = 0; i < UCOUNT_COUNTS; i++)
1075 		init_user_ns.ucount_max[i] = max_threads/2;
1076 
1077 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1078 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1079 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1080 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1081 
1082 #ifdef CONFIG_VMAP_STACK
1083 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1084 			  NULL, free_vm_stack_cache);
1085 #endif
1086 
1087 	scs_init();
1088 
1089 	lockdep_init_task(&init_task);
1090 	uprobes_init();
1091 }
1092 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1093 int __weak arch_dup_task_struct(struct task_struct *dst,
1094 					       struct task_struct *src)
1095 {
1096 	*dst = *src;
1097 	return 0;
1098 }
1099 
set_task_stack_end_magic(struct task_struct * tsk)1100 void set_task_stack_end_magic(struct task_struct *tsk)
1101 {
1102 	unsigned long *stackend;
1103 
1104 	stackend = end_of_stack(tsk);
1105 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1106 }
1107 
dup_task_struct(struct task_struct * orig,int node)1108 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1109 {
1110 	struct task_struct *tsk;
1111 	int err;
1112 
1113 	if (node == NUMA_NO_NODE)
1114 		node = tsk_fork_get_node(orig);
1115 	tsk = alloc_task_struct_node(node);
1116 	if (!tsk)
1117 		return NULL;
1118 
1119 	err = arch_dup_task_struct(tsk, orig);
1120 	if (err)
1121 		goto free_tsk;
1122 
1123 	err = alloc_thread_stack_node(tsk, node);
1124 	if (err)
1125 		goto free_tsk;
1126 
1127 #ifdef CONFIG_THREAD_INFO_IN_TASK
1128 	refcount_set(&tsk->stack_refcount, 1);
1129 #endif
1130 	account_kernel_stack(tsk, 1);
1131 
1132 	err = scs_prepare(tsk, node);
1133 	if (err)
1134 		goto free_stack;
1135 
1136 #ifdef CONFIG_SECCOMP
1137 	/*
1138 	 * We must handle setting up seccomp filters once we're under
1139 	 * the sighand lock in case orig has changed between now and
1140 	 * then. Until then, filter must be NULL to avoid messing up
1141 	 * the usage counts on the error path calling free_task.
1142 	 */
1143 	tsk->seccomp.filter = NULL;
1144 #endif
1145 
1146 	setup_thread_stack(tsk, orig);
1147 	clear_user_return_notifier(tsk);
1148 	clear_tsk_need_resched(tsk);
1149 	set_task_stack_end_magic(tsk);
1150 	clear_syscall_work_syscall_user_dispatch(tsk);
1151 
1152 #ifdef CONFIG_STACKPROTECTOR
1153 	tsk->stack_canary = get_random_canary();
1154 #endif
1155 	if (orig->cpus_ptr == &orig->cpus_mask)
1156 		tsk->cpus_ptr = &tsk->cpus_mask;
1157 	dup_user_cpus_ptr(tsk, orig, node);
1158 
1159 	/*
1160 	 * One for the user space visible state that goes away when reaped.
1161 	 * One for the scheduler.
1162 	 */
1163 	refcount_set(&tsk->rcu_users, 2);
1164 	/* One for the rcu users */
1165 	refcount_set(&tsk->usage, 1);
1166 #ifdef CONFIG_BLK_DEV_IO_TRACE
1167 	tsk->btrace_seq = 0;
1168 #endif
1169 	tsk->splice_pipe = NULL;
1170 	tsk->task_frag.page = NULL;
1171 	tsk->wake_q.next = NULL;
1172 	tsk->worker_private = NULL;
1173 
1174 	kcov_task_init(tsk);
1175 	kmsan_task_create(tsk);
1176 	kmap_local_fork(tsk);
1177 
1178 #ifdef CONFIG_FAULT_INJECTION
1179 	tsk->fail_nth = 0;
1180 #endif
1181 
1182 #ifdef CONFIG_BLK_CGROUP
1183 	tsk->throttle_disk = NULL;
1184 	tsk->use_memdelay = 0;
1185 #endif
1186 
1187 #ifdef CONFIG_IOMMU_SVA
1188 	tsk->pasid_activated = 0;
1189 #endif
1190 
1191 #ifdef CONFIG_MEMCG
1192 	tsk->active_memcg = NULL;
1193 #endif
1194 
1195 #ifdef CONFIG_CPU_SUP_INTEL
1196 	tsk->reported_split_lock = 0;
1197 #endif
1198 
1199 #ifdef CONFIG_SCHED_MM_CID
1200 	tsk->mm_cid = -1;
1201 	tsk->last_mm_cid = -1;
1202 	tsk->mm_cid_active = 0;
1203 	tsk->migrate_from_cpu = -1;
1204 #endif
1205 	return tsk;
1206 
1207 free_stack:
1208 	exit_task_stack_account(tsk);
1209 	free_thread_stack(tsk);
1210 free_tsk:
1211 	free_task_struct(tsk);
1212 	return NULL;
1213 }
1214 
1215 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1216 
1217 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1218 
coredump_filter_setup(char * s)1219 static int __init coredump_filter_setup(char *s)
1220 {
1221 	default_dump_filter =
1222 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1223 		MMF_DUMP_FILTER_MASK;
1224 	return 1;
1225 }
1226 
1227 __setup("coredump_filter=", coredump_filter_setup);
1228 
1229 #include <linux/init_task.h>
1230 
mm_init_aio(struct mm_struct * mm)1231 static void mm_init_aio(struct mm_struct *mm)
1232 {
1233 #ifdef CONFIG_AIO
1234 	spin_lock_init(&mm->ioctx_lock);
1235 	mm->ioctx_table = NULL;
1236 #endif
1237 }
1238 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1239 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1240 					   struct task_struct *p)
1241 {
1242 #ifdef CONFIG_MEMCG
1243 	if (mm->owner == p)
1244 		WRITE_ONCE(mm->owner, NULL);
1245 #endif
1246 }
1247 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1248 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1249 {
1250 #ifdef CONFIG_MEMCG
1251 	mm->owner = p;
1252 #endif
1253 }
1254 
mm_init_uprobes_state(struct mm_struct * mm)1255 static void mm_init_uprobes_state(struct mm_struct *mm)
1256 {
1257 #ifdef CONFIG_UPROBES
1258 	mm->uprobes_state.xol_area = NULL;
1259 #endif
1260 }
1261 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1262 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1263 	struct user_namespace *user_ns)
1264 {
1265 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1266 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1267 	atomic_set(&mm->mm_users, 1);
1268 	atomic_set(&mm->mm_count, 1);
1269 	seqcount_init(&mm->write_protect_seq);
1270 	mmap_init_lock(mm);
1271 	INIT_LIST_HEAD(&mm->mmlist);
1272 #ifdef CONFIG_PER_VMA_LOCK
1273 	mm->mm_lock_seq = 0;
1274 #endif
1275 	mm_pgtables_bytes_init(mm);
1276 	mm->map_count = 0;
1277 	mm->locked_vm = 0;
1278 	atomic64_set(&mm->pinned_vm, 0);
1279 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1280 	spin_lock_init(&mm->page_table_lock);
1281 	spin_lock_init(&mm->arg_lock);
1282 	mm_init_cpumask(mm);
1283 	mm_init_aio(mm);
1284 	mm_init_owner(mm, p);
1285 	mm_pasid_init(mm);
1286 	RCU_INIT_POINTER(mm->exe_file, NULL);
1287 	mmu_notifier_subscriptions_init(mm);
1288 	init_tlb_flush_pending(mm);
1289 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1290 	mm->pmd_huge_pte = NULL;
1291 #endif
1292 	mm_init_uprobes_state(mm);
1293 	hugetlb_count_init(mm);
1294 
1295 	if (current->mm) {
1296 		mm->flags = mmf_init_flags(current->mm->flags);
1297 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1298 	} else {
1299 		mm->flags = default_dump_filter;
1300 		mm->def_flags = 0;
1301 	}
1302 
1303 	if (mm_alloc_pgd(mm))
1304 		goto fail_nopgd;
1305 
1306 	if (init_new_context(p, mm))
1307 		goto fail_nocontext;
1308 
1309 	if (mm_alloc_cid(mm))
1310 		goto fail_cid;
1311 
1312 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1313 				     NR_MM_COUNTERS))
1314 		goto fail_pcpu;
1315 
1316 	mm->user_ns = get_user_ns(user_ns);
1317 	lru_gen_init_mm(mm);
1318 	return mm;
1319 
1320 fail_pcpu:
1321 	mm_destroy_cid(mm);
1322 fail_cid:
1323 	destroy_context(mm);
1324 fail_nocontext:
1325 	mm_free_pgd(mm);
1326 fail_nopgd:
1327 	free_mm(mm);
1328 	return NULL;
1329 }
1330 
1331 /*
1332  * Allocate and initialize an mm_struct.
1333  */
mm_alloc(void)1334 struct mm_struct *mm_alloc(void)
1335 {
1336 	struct mm_struct *mm;
1337 
1338 	mm = allocate_mm();
1339 	if (!mm)
1340 		return NULL;
1341 
1342 	memset(mm, 0, sizeof(*mm));
1343 	return mm_init(mm, current, current_user_ns());
1344 }
1345 
__mmput(struct mm_struct * mm)1346 static inline void __mmput(struct mm_struct *mm)
1347 {
1348 	VM_BUG_ON(atomic_read(&mm->mm_users));
1349 
1350 	uprobe_clear_state(mm);
1351 	exit_aio(mm);
1352 	ksm_exit(mm);
1353 	khugepaged_exit(mm); /* must run before exit_mmap */
1354 	exit_mmap(mm);
1355 	mm_put_huge_zero_page(mm);
1356 	set_mm_exe_file(mm, NULL);
1357 	if (!list_empty(&mm->mmlist)) {
1358 		spin_lock(&mmlist_lock);
1359 		list_del(&mm->mmlist);
1360 		spin_unlock(&mmlist_lock);
1361 	}
1362 	if (mm->binfmt)
1363 		module_put(mm->binfmt->module);
1364 	lru_gen_del_mm(mm);
1365 	mmdrop(mm);
1366 }
1367 
1368 /*
1369  * Decrement the use count and release all resources for an mm.
1370  */
mmput(struct mm_struct * mm)1371 void mmput(struct mm_struct *mm)
1372 {
1373 	might_sleep();
1374 
1375 	if (atomic_dec_and_test(&mm->mm_users))
1376 		__mmput(mm);
1377 }
1378 EXPORT_SYMBOL_GPL(mmput);
1379 
1380 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1381 static void mmput_async_fn(struct work_struct *work)
1382 {
1383 	struct mm_struct *mm = container_of(work, struct mm_struct,
1384 					    async_put_work);
1385 
1386 	__mmput(mm);
1387 }
1388 
mmput_async(struct mm_struct * mm)1389 void mmput_async(struct mm_struct *mm)
1390 {
1391 	if (atomic_dec_and_test(&mm->mm_users)) {
1392 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1393 		schedule_work(&mm->async_put_work);
1394 	}
1395 }
1396 EXPORT_SYMBOL_GPL(mmput_async);
1397 #endif
1398 
1399 /**
1400  * set_mm_exe_file - change a reference to the mm's executable file
1401  *
1402  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1403  *
1404  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1405  * invocations: in mmput() nobody alive left, in execve it happens before
1406  * the new mm is made visible to anyone.
1407  *
1408  * Can only fail if new_exe_file != NULL.
1409  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1410 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1411 {
1412 	struct file *old_exe_file;
1413 
1414 	/*
1415 	 * It is safe to dereference the exe_file without RCU as
1416 	 * this function is only called if nobody else can access
1417 	 * this mm -- see comment above for justification.
1418 	 */
1419 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1420 
1421 	if (new_exe_file) {
1422 		/*
1423 		 * We expect the caller (i.e., sys_execve) to already denied
1424 		 * write access, so this is unlikely to fail.
1425 		 */
1426 		if (unlikely(deny_write_access(new_exe_file)))
1427 			return -EACCES;
1428 		get_file(new_exe_file);
1429 	}
1430 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1431 	if (old_exe_file) {
1432 		allow_write_access(old_exe_file);
1433 		fput(old_exe_file);
1434 	}
1435 	return 0;
1436 }
1437 
1438 /**
1439  * replace_mm_exe_file - replace a reference to the mm's executable file
1440  *
1441  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1442  *
1443  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1444  */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1445 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1446 {
1447 	struct vm_area_struct *vma;
1448 	struct file *old_exe_file;
1449 	int ret = 0;
1450 
1451 	/* Forbid mm->exe_file change if old file still mapped. */
1452 	old_exe_file = get_mm_exe_file(mm);
1453 	if (old_exe_file) {
1454 		VMA_ITERATOR(vmi, mm, 0);
1455 		mmap_read_lock(mm);
1456 		for_each_vma(vmi, vma) {
1457 			if (!vma->vm_file)
1458 				continue;
1459 			if (path_equal(&vma->vm_file->f_path,
1460 				       &old_exe_file->f_path)) {
1461 				ret = -EBUSY;
1462 				break;
1463 			}
1464 		}
1465 		mmap_read_unlock(mm);
1466 		fput(old_exe_file);
1467 		if (ret)
1468 			return ret;
1469 	}
1470 
1471 	ret = deny_write_access(new_exe_file);
1472 	if (ret)
1473 		return -EACCES;
1474 	get_file(new_exe_file);
1475 
1476 	/* set the new file */
1477 	mmap_write_lock(mm);
1478 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1479 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1480 	mmap_write_unlock(mm);
1481 
1482 	if (old_exe_file) {
1483 		allow_write_access(old_exe_file);
1484 		fput(old_exe_file);
1485 	}
1486 	return 0;
1487 }
1488 
1489 /**
1490  * get_mm_exe_file - acquire a reference to the mm's executable file
1491  *
1492  * Returns %NULL if mm has no associated executable file.
1493  * User must release file via fput().
1494  */
get_mm_exe_file(struct mm_struct * mm)1495 struct file *get_mm_exe_file(struct mm_struct *mm)
1496 {
1497 	struct file *exe_file;
1498 
1499 	rcu_read_lock();
1500 	exe_file = rcu_dereference(mm->exe_file);
1501 	if (exe_file && !get_file_rcu(exe_file))
1502 		exe_file = NULL;
1503 	rcu_read_unlock();
1504 	return exe_file;
1505 }
1506 
1507 /**
1508  * get_task_exe_file - acquire a reference to the task's executable file
1509  *
1510  * Returns %NULL if task's mm (if any) has no associated executable file or
1511  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1512  * User must release file via fput().
1513  */
get_task_exe_file(struct task_struct * task)1514 struct file *get_task_exe_file(struct task_struct *task)
1515 {
1516 	struct file *exe_file = NULL;
1517 	struct mm_struct *mm;
1518 
1519 	task_lock(task);
1520 	mm = task->mm;
1521 	if (mm) {
1522 		if (!(task->flags & PF_KTHREAD))
1523 			exe_file = get_mm_exe_file(mm);
1524 	}
1525 	task_unlock(task);
1526 	return exe_file;
1527 }
1528 
1529 /**
1530  * get_task_mm - acquire a reference to the task's mm
1531  *
1532  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1533  * this kernel workthread has transiently adopted a user mm with use_mm,
1534  * to do its AIO) is not set and if so returns a reference to it, after
1535  * bumping up the use count.  User must release the mm via mmput()
1536  * after use.  Typically used by /proc and ptrace.
1537  */
get_task_mm(struct task_struct * task)1538 struct mm_struct *get_task_mm(struct task_struct *task)
1539 {
1540 	struct mm_struct *mm;
1541 
1542 	task_lock(task);
1543 	mm = task->mm;
1544 	if (mm) {
1545 		if (task->flags & PF_KTHREAD)
1546 			mm = NULL;
1547 		else
1548 			mmget(mm);
1549 	}
1550 	task_unlock(task);
1551 	return mm;
1552 }
1553 EXPORT_SYMBOL_GPL(get_task_mm);
1554 
mm_access(struct task_struct * task,unsigned int mode)1555 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1556 {
1557 	struct mm_struct *mm;
1558 	int err;
1559 
1560 	err =  down_read_killable(&task->signal->exec_update_lock);
1561 	if (err)
1562 		return ERR_PTR(err);
1563 
1564 	mm = get_task_mm(task);
1565 	if (mm && mm != current->mm &&
1566 			!ptrace_may_access(task, mode)) {
1567 		mmput(mm);
1568 		mm = ERR_PTR(-EACCES);
1569 	}
1570 	up_read(&task->signal->exec_update_lock);
1571 
1572 	return mm;
1573 }
1574 
complete_vfork_done(struct task_struct * tsk)1575 static void complete_vfork_done(struct task_struct *tsk)
1576 {
1577 	struct completion *vfork;
1578 
1579 	task_lock(tsk);
1580 	vfork = tsk->vfork_done;
1581 	if (likely(vfork)) {
1582 		tsk->vfork_done = NULL;
1583 		complete(vfork);
1584 	}
1585 	task_unlock(tsk);
1586 }
1587 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1588 static int wait_for_vfork_done(struct task_struct *child,
1589 				struct completion *vfork)
1590 {
1591 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1592 	int killed;
1593 
1594 	cgroup_enter_frozen();
1595 	killed = wait_for_completion_state(vfork, state);
1596 	cgroup_leave_frozen(false);
1597 
1598 	if (killed) {
1599 		task_lock(child);
1600 		child->vfork_done = NULL;
1601 		task_unlock(child);
1602 	}
1603 
1604 	put_task_struct(child);
1605 	return killed;
1606 }
1607 
1608 /* Please note the differences between mmput and mm_release.
1609  * mmput is called whenever we stop holding onto a mm_struct,
1610  * error success whatever.
1611  *
1612  * mm_release is called after a mm_struct has been removed
1613  * from the current process.
1614  *
1615  * This difference is important for error handling, when we
1616  * only half set up a mm_struct for a new process and need to restore
1617  * the old one.  Because we mmput the new mm_struct before
1618  * restoring the old one. . .
1619  * Eric Biederman 10 January 1998
1620  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1621 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1622 {
1623 	uprobe_free_utask(tsk);
1624 
1625 	/* Get rid of any cached register state */
1626 	deactivate_mm(tsk, mm);
1627 
1628 	/*
1629 	 * Signal userspace if we're not exiting with a core dump
1630 	 * because we want to leave the value intact for debugging
1631 	 * purposes.
1632 	 */
1633 	if (tsk->clear_child_tid) {
1634 		if (atomic_read(&mm->mm_users) > 1) {
1635 			/*
1636 			 * We don't check the error code - if userspace has
1637 			 * not set up a proper pointer then tough luck.
1638 			 */
1639 			put_user(0, tsk->clear_child_tid);
1640 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1641 					1, NULL, NULL, 0, 0);
1642 		}
1643 		tsk->clear_child_tid = NULL;
1644 	}
1645 
1646 	/*
1647 	 * All done, finally we can wake up parent and return this mm to him.
1648 	 * Also kthread_stop() uses this completion for synchronization.
1649 	 */
1650 	if (tsk->vfork_done)
1651 		complete_vfork_done(tsk);
1652 }
1653 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1654 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1655 {
1656 	futex_exit_release(tsk);
1657 	mm_release(tsk, mm);
1658 }
1659 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1660 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1661 {
1662 	futex_exec_release(tsk);
1663 	mm_release(tsk, mm);
1664 }
1665 
1666 /**
1667  * dup_mm() - duplicates an existing mm structure
1668  * @tsk: the task_struct with which the new mm will be associated.
1669  * @oldmm: the mm to duplicate.
1670  *
1671  * Allocates a new mm structure and duplicates the provided @oldmm structure
1672  * content into it.
1673  *
1674  * Return: the duplicated mm or NULL on failure.
1675  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1676 static struct mm_struct *dup_mm(struct task_struct *tsk,
1677 				struct mm_struct *oldmm)
1678 {
1679 	struct mm_struct *mm;
1680 	int err;
1681 
1682 	mm = allocate_mm();
1683 	if (!mm)
1684 		goto fail_nomem;
1685 
1686 	memcpy(mm, oldmm, sizeof(*mm));
1687 
1688 	if (!mm_init(mm, tsk, mm->user_ns))
1689 		goto fail_nomem;
1690 
1691 	err = dup_mmap(mm, oldmm);
1692 	if (err)
1693 		goto free_pt;
1694 
1695 	mm->hiwater_rss = get_mm_rss(mm);
1696 	mm->hiwater_vm = mm->total_vm;
1697 
1698 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1699 		goto free_pt;
1700 
1701 	return mm;
1702 
1703 free_pt:
1704 	/* don't put binfmt in mmput, we haven't got module yet */
1705 	mm->binfmt = NULL;
1706 	mm_init_owner(mm, NULL);
1707 	mmput(mm);
1708 
1709 fail_nomem:
1710 	return NULL;
1711 }
1712 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1713 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1714 {
1715 	struct mm_struct *mm, *oldmm;
1716 
1717 	tsk->min_flt = tsk->maj_flt = 0;
1718 	tsk->nvcsw = tsk->nivcsw = 0;
1719 #ifdef CONFIG_DETECT_HUNG_TASK
1720 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1721 	tsk->last_switch_time = 0;
1722 #endif
1723 
1724 	tsk->mm = NULL;
1725 	tsk->active_mm = NULL;
1726 
1727 	/*
1728 	 * Are we cloning a kernel thread?
1729 	 *
1730 	 * We need to steal a active VM for that..
1731 	 */
1732 	oldmm = current->mm;
1733 	if (!oldmm)
1734 		return 0;
1735 
1736 	if (clone_flags & CLONE_VM) {
1737 		mmget(oldmm);
1738 		mm = oldmm;
1739 	} else {
1740 		mm = dup_mm(tsk, current->mm);
1741 		if (!mm)
1742 			return -ENOMEM;
1743 	}
1744 
1745 	tsk->mm = mm;
1746 	tsk->active_mm = mm;
1747 	sched_mm_cid_fork(tsk);
1748 	return 0;
1749 }
1750 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1751 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1752 {
1753 	struct fs_struct *fs = current->fs;
1754 	if (clone_flags & CLONE_FS) {
1755 		/* tsk->fs is already what we want */
1756 		spin_lock(&fs->lock);
1757 		if (fs->in_exec) {
1758 			spin_unlock(&fs->lock);
1759 			return -EAGAIN;
1760 		}
1761 		fs->users++;
1762 		spin_unlock(&fs->lock);
1763 		return 0;
1764 	}
1765 	tsk->fs = copy_fs_struct(fs);
1766 	if (!tsk->fs)
1767 		return -ENOMEM;
1768 	return 0;
1769 }
1770 
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1771 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1772 		      int no_files)
1773 {
1774 	struct files_struct *oldf, *newf;
1775 
1776 	/*
1777 	 * A background process may not have any files ...
1778 	 */
1779 	oldf = current->files;
1780 	if (!oldf)
1781 		return 0;
1782 
1783 	if (no_files) {
1784 		tsk->files = NULL;
1785 		return 0;
1786 	}
1787 
1788 	if (clone_flags & CLONE_FILES) {
1789 		atomic_inc(&oldf->count);
1790 		return 0;
1791 	}
1792 
1793 	newf = dup_fd(oldf, NULL);
1794 	if (IS_ERR(newf))
1795 		return PTR_ERR(newf);
1796 
1797 	tsk->files = newf;
1798 	return 0;
1799 }
1800 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1801 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1802 {
1803 	struct sighand_struct *sig;
1804 
1805 	if (clone_flags & CLONE_SIGHAND) {
1806 		refcount_inc(&current->sighand->count);
1807 		return 0;
1808 	}
1809 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1810 	RCU_INIT_POINTER(tsk->sighand, sig);
1811 	if (!sig)
1812 		return -ENOMEM;
1813 
1814 	refcount_set(&sig->count, 1);
1815 	spin_lock_irq(&current->sighand->siglock);
1816 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1817 	spin_unlock_irq(&current->sighand->siglock);
1818 
1819 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1820 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1821 		flush_signal_handlers(tsk, 0);
1822 
1823 	return 0;
1824 }
1825 
__cleanup_sighand(struct sighand_struct * sighand)1826 void __cleanup_sighand(struct sighand_struct *sighand)
1827 {
1828 	if (refcount_dec_and_test(&sighand->count)) {
1829 		signalfd_cleanup(sighand);
1830 		/*
1831 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1832 		 * without an RCU grace period, see __lock_task_sighand().
1833 		 */
1834 		kmem_cache_free(sighand_cachep, sighand);
1835 	}
1836 }
1837 
1838 /*
1839  * Initialize POSIX timer handling for a thread group.
1840  */
posix_cpu_timers_init_group(struct signal_struct * sig)1841 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1842 {
1843 	struct posix_cputimers *pct = &sig->posix_cputimers;
1844 	unsigned long cpu_limit;
1845 
1846 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1847 	posix_cputimers_group_init(pct, cpu_limit);
1848 }
1849 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1850 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1851 {
1852 	struct signal_struct *sig;
1853 
1854 	if (clone_flags & CLONE_THREAD)
1855 		return 0;
1856 
1857 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1858 	tsk->signal = sig;
1859 	if (!sig)
1860 		return -ENOMEM;
1861 
1862 	sig->nr_threads = 1;
1863 	sig->quick_threads = 1;
1864 	atomic_set(&sig->live, 1);
1865 	refcount_set(&sig->sigcnt, 1);
1866 
1867 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1868 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1869 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1870 
1871 	init_waitqueue_head(&sig->wait_chldexit);
1872 	sig->curr_target = tsk;
1873 	init_sigpending(&sig->shared_pending);
1874 	INIT_HLIST_HEAD(&sig->multiprocess);
1875 	seqlock_init(&sig->stats_lock);
1876 	prev_cputime_init(&sig->prev_cputime);
1877 
1878 #ifdef CONFIG_POSIX_TIMERS
1879 	INIT_LIST_HEAD(&sig->posix_timers);
1880 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1881 	sig->real_timer.function = it_real_fn;
1882 #endif
1883 
1884 	task_lock(current->group_leader);
1885 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1886 	task_unlock(current->group_leader);
1887 
1888 	posix_cpu_timers_init_group(sig);
1889 
1890 	tty_audit_fork(sig);
1891 	sched_autogroup_fork(sig);
1892 
1893 	sig->oom_score_adj = current->signal->oom_score_adj;
1894 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1895 
1896 	mutex_init(&sig->cred_guard_mutex);
1897 	init_rwsem(&sig->exec_update_lock);
1898 
1899 	return 0;
1900 }
1901 
copy_seccomp(struct task_struct * p)1902 static void copy_seccomp(struct task_struct *p)
1903 {
1904 #ifdef CONFIG_SECCOMP
1905 	/*
1906 	 * Must be called with sighand->lock held, which is common to
1907 	 * all threads in the group. Holding cred_guard_mutex is not
1908 	 * needed because this new task is not yet running and cannot
1909 	 * be racing exec.
1910 	 */
1911 	assert_spin_locked(&current->sighand->siglock);
1912 
1913 	/* Ref-count the new filter user, and assign it. */
1914 	get_seccomp_filter(current);
1915 	p->seccomp = current->seccomp;
1916 
1917 	/*
1918 	 * Explicitly enable no_new_privs here in case it got set
1919 	 * between the task_struct being duplicated and holding the
1920 	 * sighand lock. The seccomp state and nnp must be in sync.
1921 	 */
1922 	if (task_no_new_privs(current))
1923 		task_set_no_new_privs(p);
1924 
1925 	/*
1926 	 * If the parent gained a seccomp mode after copying thread
1927 	 * flags and between before we held the sighand lock, we have
1928 	 * to manually enable the seccomp thread flag here.
1929 	 */
1930 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1931 		set_task_syscall_work(p, SECCOMP);
1932 #endif
1933 }
1934 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1935 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1936 {
1937 	current->clear_child_tid = tidptr;
1938 
1939 	return task_pid_vnr(current);
1940 }
1941 
rt_mutex_init_task(struct task_struct * p)1942 static void rt_mutex_init_task(struct task_struct *p)
1943 {
1944 	raw_spin_lock_init(&p->pi_lock);
1945 #ifdef CONFIG_RT_MUTEXES
1946 	p->pi_waiters = RB_ROOT_CACHED;
1947 	p->pi_top_task = NULL;
1948 	p->pi_blocked_on = NULL;
1949 #endif
1950 }
1951 
init_task_pid_links(struct task_struct * task)1952 static inline void init_task_pid_links(struct task_struct *task)
1953 {
1954 	enum pid_type type;
1955 
1956 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1957 		INIT_HLIST_NODE(&task->pid_links[type]);
1958 }
1959 
1960 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1961 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1962 {
1963 	if (type == PIDTYPE_PID)
1964 		task->thread_pid = pid;
1965 	else
1966 		task->signal->pids[type] = pid;
1967 }
1968 
rcu_copy_process(struct task_struct * p)1969 static inline void rcu_copy_process(struct task_struct *p)
1970 {
1971 #ifdef CONFIG_PREEMPT_RCU
1972 	p->rcu_read_lock_nesting = 0;
1973 	p->rcu_read_unlock_special.s = 0;
1974 	p->rcu_blocked_node = NULL;
1975 	INIT_LIST_HEAD(&p->rcu_node_entry);
1976 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1977 #ifdef CONFIG_TASKS_RCU
1978 	p->rcu_tasks_holdout = false;
1979 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1980 	p->rcu_tasks_idle_cpu = -1;
1981 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1982 #endif /* #ifdef CONFIG_TASKS_RCU */
1983 #ifdef CONFIG_TASKS_TRACE_RCU
1984 	p->trc_reader_nesting = 0;
1985 	p->trc_reader_special.s = 0;
1986 	INIT_LIST_HEAD(&p->trc_holdout_list);
1987 	INIT_LIST_HEAD(&p->trc_blkd_node);
1988 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1989 }
1990 
pidfd_pid(const struct file * file)1991 struct pid *pidfd_pid(const struct file *file)
1992 {
1993 	if (file->f_op == &pidfd_fops)
1994 		return file->private_data;
1995 
1996 	return ERR_PTR(-EBADF);
1997 }
1998 
pidfd_release(struct inode * inode,struct file * file)1999 static int pidfd_release(struct inode *inode, struct file *file)
2000 {
2001 	struct pid *pid = file->private_data;
2002 
2003 	file->private_data = NULL;
2004 	put_pid(pid);
2005 	return 0;
2006 }
2007 
2008 #ifdef CONFIG_PROC_FS
2009 /**
2010  * pidfd_show_fdinfo - print information about a pidfd
2011  * @m: proc fdinfo file
2012  * @f: file referencing a pidfd
2013  *
2014  * Pid:
2015  * This function will print the pid that a given pidfd refers to in the
2016  * pid namespace of the procfs instance.
2017  * If the pid namespace of the process is not a descendant of the pid
2018  * namespace of the procfs instance 0 will be shown as its pid. This is
2019  * similar to calling getppid() on a process whose parent is outside of
2020  * its pid namespace.
2021  *
2022  * NSpid:
2023  * If pid namespaces are supported then this function will also print
2024  * the pid of a given pidfd refers to for all descendant pid namespaces
2025  * starting from the current pid namespace of the instance, i.e. the
2026  * Pid field and the first entry in the NSpid field will be identical.
2027  * If the pid namespace of the process is not a descendant of the pid
2028  * namespace of the procfs instance 0 will be shown as its first NSpid
2029  * entry and no others will be shown.
2030  * Note that this differs from the Pid and NSpid fields in
2031  * /proc/<pid>/status where Pid and NSpid are always shown relative to
2032  * the  pid namespace of the procfs instance. The difference becomes
2033  * obvious when sending around a pidfd between pid namespaces from a
2034  * different branch of the tree, i.e. where no ancestral relation is
2035  * present between the pid namespaces:
2036  * - create two new pid namespaces ns1 and ns2 in the initial pid
2037  *   namespace (also take care to create new mount namespaces in the
2038  *   new pid namespace and mount procfs)
2039  * - create a process with a pidfd in ns1
2040  * - send pidfd from ns1 to ns2
2041  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2042  *   have exactly one entry, which is 0
2043  */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)2044 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2045 {
2046 	struct pid *pid = f->private_data;
2047 	struct pid_namespace *ns;
2048 	pid_t nr = -1;
2049 
2050 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2051 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2052 		nr = pid_nr_ns(pid, ns);
2053 	}
2054 
2055 	seq_put_decimal_ll(m, "Pid:\t", nr);
2056 
2057 #ifdef CONFIG_PID_NS
2058 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2059 	if (nr > 0) {
2060 		int i;
2061 
2062 		/* If nr is non-zero it means that 'pid' is valid and that
2063 		 * ns, i.e. the pid namespace associated with the procfs
2064 		 * instance, is in the pid namespace hierarchy of pid.
2065 		 * Start at one below the already printed level.
2066 		 */
2067 		for (i = ns->level + 1; i <= pid->level; i++)
2068 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2069 	}
2070 #endif
2071 	seq_putc(m, '\n');
2072 }
2073 #endif
2074 
2075 /*
2076  * Poll support for process exit notification.
2077  */
pidfd_poll(struct file * file,struct poll_table_struct * pts)2078 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2079 {
2080 	struct pid *pid = file->private_data;
2081 	__poll_t poll_flags = 0;
2082 
2083 	poll_wait(file, &pid->wait_pidfd, pts);
2084 
2085 	/*
2086 	 * Inform pollers only when the whole thread group exits.
2087 	 * If the thread group leader exits before all other threads in the
2088 	 * group, then poll(2) should block, similar to the wait(2) family.
2089 	 */
2090 	if (thread_group_exited(pid))
2091 		poll_flags = EPOLLIN | EPOLLRDNORM;
2092 
2093 	return poll_flags;
2094 }
2095 
2096 const struct file_operations pidfd_fops = {
2097 	.release = pidfd_release,
2098 	.poll = pidfd_poll,
2099 #ifdef CONFIG_PROC_FS
2100 	.show_fdinfo = pidfd_show_fdinfo,
2101 #endif
2102 };
2103 
2104 /**
2105  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2106  * @pid:   the struct pid for which to create a pidfd
2107  * @flags: flags of the new @pidfd
2108  * @pidfd: the pidfd to return
2109  *
2110  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2111  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2112 
2113  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2114  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2115  * pidfd file are prepared.
2116  *
2117  * If this function returns successfully the caller is responsible to either
2118  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2119  * order to install the pidfd into its file descriptor table or they must use
2120  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2121  * respectively.
2122  *
2123  * This function is useful when a pidfd must already be reserved but there
2124  * might still be points of failure afterwards and the caller wants to ensure
2125  * that no pidfd is leaked into its file descriptor table.
2126  *
2127  * Return: On success, a reserved pidfd is returned from the function and a new
2128  *         pidfd file is returned in the last argument to the function. On
2129  *         error, a negative error code is returned from the function and the
2130  *         last argument remains unchanged.
2131  */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2132 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2133 {
2134 	int pidfd;
2135 	struct file *pidfd_file;
2136 
2137 	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2138 		return -EINVAL;
2139 
2140 	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2141 	if (pidfd < 0)
2142 		return pidfd;
2143 
2144 	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2145 					flags | O_RDWR | O_CLOEXEC);
2146 	if (IS_ERR(pidfd_file)) {
2147 		put_unused_fd(pidfd);
2148 		return PTR_ERR(pidfd_file);
2149 	}
2150 	get_pid(pid); /* held by pidfd_file now */
2151 	*ret = pidfd_file;
2152 	return pidfd;
2153 }
2154 
2155 /**
2156  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2157  * @pid:   the struct pid for which to create a pidfd
2158  * @flags: flags of the new @pidfd
2159  * @pidfd: the pidfd to return
2160  *
2161  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2162  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2163  *
2164  * The helper verifies that @pid is used as a thread group leader.
2165  *
2166  * If this function returns successfully the caller is responsible to either
2167  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2168  * order to install the pidfd into its file descriptor table or they must use
2169  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2170  * respectively.
2171  *
2172  * This function is useful when a pidfd must already be reserved but there
2173  * might still be points of failure afterwards and the caller wants to ensure
2174  * that no pidfd is leaked into its file descriptor table.
2175  *
2176  * Return: On success, a reserved pidfd is returned from the function and a new
2177  *         pidfd file is returned in the last argument to the function. On
2178  *         error, a negative error code is returned from the function and the
2179  *         last argument remains unchanged.
2180  */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2181 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2182 {
2183 	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2184 		return -EINVAL;
2185 
2186 	return __pidfd_prepare(pid, flags, ret);
2187 }
2188 
__delayed_free_task(struct rcu_head * rhp)2189 static void __delayed_free_task(struct rcu_head *rhp)
2190 {
2191 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2192 
2193 	free_task(tsk);
2194 }
2195 
delayed_free_task(struct task_struct * tsk)2196 static __always_inline void delayed_free_task(struct task_struct *tsk)
2197 {
2198 	if (IS_ENABLED(CONFIG_MEMCG))
2199 		call_rcu(&tsk->rcu, __delayed_free_task);
2200 	else
2201 		free_task(tsk);
2202 }
2203 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2204 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2205 {
2206 	/* Skip if kernel thread */
2207 	if (!tsk->mm)
2208 		return;
2209 
2210 	/* Skip if spawning a thread or using vfork */
2211 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2212 		return;
2213 
2214 	/* We need to synchronize with __set_oom_adj */
2215 	mutex_lock(&oom_adj_mutex);
2216 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2217 	/* Update the values in case they were changed after copy_signal */
2218 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2219 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2220 	mutex_unlock(&oom_adj_mutex);
2221 }
2222 
2223 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2224 static void rv_task_fork(struct task_struct *p)
2225 {
2226 	int i;
2227 
2228 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2229 		p->rv[i].da_mon.monitoring = false;
2230 }
2231 #else
2232 #define rv_task_fork(p) do {} while (0)
2233 #endif
2234 
2235 /*
2236  * This creates a new process as a copy of the old one,
2237  * but does not actually start it yet.
2238  *
2239  * It copies the registers, and all the appropriate
2240  * parts of the process environment (as per the clone
2241  * flags). The actual kick-off is left to the caller.
2242  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2243 __latent_entropy struct task_struct *copy_process(
2244 					struct pid *pid,
2245 					int trace,
2246 					int node,
2247 					struct kernel_clone_args *args)
2248 {
2249 	int pidfd = -1, retval;
2250 	struct task_struct *p;
2251 	struct multiprocess_signals delayed;
2252 	struct file *pidfile = NULL;
2253 	const u64 clone_flags = args->flags;
2254 	struct nsproxy *nsp = current->nsproxy;
2255 
2256 	/*
2257 	 * Don't allow sharing the root directory with processes in a different
2258 	 * namespace
2259 	 */
2260 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2261 		return ERR_PTR(-EINVAL);
2262 
2263 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2264 		return ERR_PTR(-EINVAL);
2265 
2266 	/*
2267 	 * Thread groups must share signals as well, and detached threads
2268 	 * can only be started up within the thread group.
2269 	 */
2270 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2271 		return ERR_PTR(-EINVAL);
2272 
2273 	/*
2274 	 * Shared signal handlers imply shared VM. By way of the above,
2275 	 * thread groups also imply shared VM. Blocking this case allows
2276 	 * for various simplifications in other code.
2277 	 */
2278 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2279 		return ERR_PTR(-EINVAL);
2280 
2281 	/*
2282 	 * Siblings of global init remain as zombies on exit since they are
2283 	 * not reaped by their parent (swapper). To solve this and to avoid
2284 	 * multi-rooted process trees, prevent global and container-inits
2285 	 * from creating siblings.
2286 	 */
2287 	if ((clone_flags & CLONE_PARENT) &&
2288 				current->signal->flags & SIGNAL_UNKILLABLE)
2289 		return ERR_PTR(-EINVAL);
2290 
2291 	/*
2292 	 * If the new process will be in a different pid or user namespace
2293 	 * do not allow it to share a thread group with the forking task.
2294 	 */
2295 	if (clone_flags & CLONE_THREAD) {
2296 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2297 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2298 			return ERR_PTR(-EINVAL);
2299 	}
2300 
2301 	if (clone_flags & CLONE_PIDFD) {
2302 		/*
2303 		 * - CLONE_DETACHED is blocked so that we can potentially
2304 		 *   reuse it later for CLONE_PIDFD.
2305 		 * - CLONE_THREAD is blocked until someone really needs it.
2306 		 */
2307 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2308 			return ERR_PTR(-EINVAL);
2309 	}
2310 
2311 	/*
2312 	 * Force any signals received before this point to be delivered
2313 	 * before the fork happens.  Collect up signals sent to multiple
2314 	 * processes that happen during the fork and delay them so that
2315 	 * they appear to happen after the fork.
2316 	 */
2317 	sigemptyset(&delayed.signal);
2318 	INIT_HLIST_NODE(&delayed.node);
2319 
2320 	spin_lock_irq(&current->sighand->siglock);
2321 	if (!(clone_flags & CLONE_THREAD))
2322 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2323 	recalc_sigpending();
2324 	spin_unlock_irq(&current->sighand->siglock);
2325 	retval = -ERESTARTNOINTR;
2326 	if (task_sigpending(current))
2327 		goto fork_out;
2328 
2329 	retval = -ENOMEM;
2330 	p = dup_task_struct(current, node);
2331 	if (!p)
2332 		goto fork_out;
2333 	p->flags &= ~PF_KTHREAD;
2334 	if (args->kthread)
2335 		p->flags |= PF_KTHREAD;
2336 	if (args->user_worker) {
2337 		/*
2338 		 * Mark us a user worker, and block any signal that isn't
2339 		 * fatal or STOP
2340 		 */
2341 		p->flags |= PF_USER_WORKER;
2342 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2343 	}
2344 	if (args->io_thread)
2345 		p->flags |= PF_IO_WORKER;
2346 
2347 	if (args->name)
2348 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2349 
2350 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2351 	/*
2352 	 * Clear TID on mm_release()?
2353 	 */
2354 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2355 
2356 	ftrace_graph_init_task(p);
2357 
2358 	rt_mutex_init_task(p);
2359 
2360 	lockdep_assert_irqs_enabled();
2361 #ifdef CONFIG_PROVE_LOCKING
2362 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2363 #endif
2364 	retval = copy_creds(p, clone_flags);
2365 	if (retval < 0)
2366 		goto bad_fork_free;
2367 
2368 	retval = -EAGAIN;
2369 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2370 		if (p->real_cred->user != INIT_USER &&
2371 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2372 			goto bad_fork_cleanup_count;
2373 	}
2374 	current->flags &= ~PF_NPROC_EXCEEDED;
2375 
2376 	/*
2377 	 * If multiple threads are within copy_process(), then this check
2378 	 * triggers too late. This doesn't hurt, the check is only there
2379 	 * to stop root fork bombs.
2380 	 */
2381 	retval = -EAGAIN;
2382 	if (data_race(nr_threads >= max_threads))
2383 		goto bad_fork_cleanup_count;
2384 
2385 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2386 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2387 	p->flags |= PF_FORKNOEXEC;
2388 	INIT_LIST_HEAD(&p->children);
2389 	INIT_LIST_HEAD(&p->sibling);
2390 	rcu_copy_process(p);
2391 	p->vfork_done = NULL;
2392 	spin_lock_init(&p->alloc_lock);
2393 
2394 	init_sigpending(&p->pending);
2395 
2396 	p->utime = p->stime = p->gtime = 0;
2397 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2398 	p->utimescaled = p->stimescaled = 0;
2399 #endif
2400 	prev_cputime_init(&p->prev_cputime);
2401 
2402 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2403 	seqcount_init(&p->vtime.seqcount);
2404 	p->vtime.starttime = 0;
2405 	p->vtime.state = VTIME_INACTIVE;
2406 #endif
2407 
2408 #ifdef CONFIG_IO_URING
2409 	p->io_uring = NULL;
2410 #endif
2411 
2412 #if defined(SPLIT_RSS_COUNTING)
2413 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2414 #endif
2415 
2416 	p->default_timer_slack_ns = current->timer_slack_ns;
2417 
2418 #ifdef CONFIG_PSI
2419 	p->psi_flags = 0;
2420 #endif
2421 
2422 	task_io_accounting_init(&p->ioac);
2423 	acct_clear_integrals(p);
2424 
2425 	posix_cputimers_init(&p->posix_cputimers);
2426 	tick_dep_init_task(p);
2427 
2428 	p->io_context = NULL;
2429 	audit_set_context(p, NULL);
2430 	cgroup_fork(p);
2431 	if (args->kthread) {
2432 		if (!set_kthread_struct(p))
2433 			goto bad_fork_cleanup_delayacct;
2434 	}
2435 #ifdef CONFIG_NUMA
2436 	p->mempolicy = mpol_dup(p->mempolicy);
2437 	if (IS_ERR(p->mempolicy)) {
2438 		retval = PTR_ERR(p->mempolicy);
2439 		p->mempolicy = NULL;
2440 		goto bad_fork_cleanup_delayacct;
2441 	}
2442 #endif
2443 #ifdef CONFIG_CPUSETS
2444 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2445 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2446 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2447 #endif
2448 #ifdef CONFIG_TRACE_IRQFLAGS
2449 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2450 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2451 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2452 	p->softirqs_enabled		= 1;
2453 	p->softirq_context		= 0;
2454 #endif
2455 
2456 	p->pagefault_disabled = 0;
2457 
2458 #ifdef CONFIG_LOCKDEP
2459 	lockdep_init_task(p);
2460 #endif
2461 
2462 #ifdef CONFIG_DEBUG_MUTEXES
2463 	p->blocked_on = NULL; /* not blocked yet */
2464 #endif
2465 #ifdef CONFIG_BCACHE
2466 	p->sequential_io	= 0;
2467 	p->sequential_io_avg	= 0;
2468 #endif
2469 #ifdef CONFIG_BPF_SYSCALL
2470 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2471 	p->bpf_ctx = NULL;
2472 #endif
2473 
2474 	/* Perform scheduler related setup. Assign this task to a CPU. */
2475 	retval = sched_fork(clone_flags, p);
2476 	if (retval)
2477 		goto bad_fork_cleanup_policy;
2478 
2479 	retval = perf_event_init_task(p, clone_flags);
2480 	if (retval)
2481 		goto bad_fork_cleanup_policy;
2482 	retval = audit_alloc(p);
2483 	if (retval)
2484 		goto bad_fork_cleanup_perf;
2485 	/* copy all the process information */
2486 	shm_init_task(p);
2487 	retval = security_task_alloc(p, clone_flags);
2488 	if (retval)
2489 		goto bad_fork_cleanup_audit;
2490 	retval = copy_semundo(clone_flags, p);
2491 	if (retval)
2492 		goto bad_fork_cleanup_security;
2493 	retval = copy_files(clone_flags, p, args->no_files);
2494 	if (retval)
2495 		goto bad_fork_cleanup_semundo;
2496 	retval = copy_fs(clone_flags, p);
2497 	if (retval)
2498 		goto bad_fork_cleanup_files;
2499 	retval = copy_sighand(clone_flags, p);
2500 	if (retval)
2501 		goto bad_fork_cleanup_fs;
2502 	retval = copy_signal(clone_flags, p);
2503 	if (retval)
2504 		goto bad_fork_cleanup_sighand;
2505 	retval = copy_mm(clone_flags, p);
2506 	if (retval)
2507 		goto bad_fork_cleanup_signal;
2508 	retval = copy_namespaces(clone_flags, p);
2509 	if (retval)
2510 		goto bad_fork_cleanup_mm;
2511 	retval = copy_io(clone_flags, p);
2512 	if (retval)
2513 		goto bad_fork_cleanup_namespaces;
2514 	retval = copy_thread(p, args);
2515 	if (retval)
2516 		goto bad_fork_cleanup_io;
2517 
2518 	stackleak_task_init(p);
2519 
2520 	if (pid != &init_struct_pid) {
2521 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2522 				args->set_tid_size);
2523 		if (IS_ERR(pid)) {
2524 			retval = PTR_ERR(pid);
2525 			goto bad_fork_cleanup_thread;
2526 		}
2527 	}
2528 
2529 	/*
2530 	 * This has to happen after we've potentially unshared the file
2531 	 * descriptor table (so that the pidfd doesn't leak into the child
2532 	 * if the fd table isn't shared).
2533 	 */
2534 	if (clone_flags & CLONE_PIDFD) {
2535 		/* Note that no task has been attached to @pid yet. */
2536 		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2537 		if (retval < 0)
2538 			goto bad_fork_free_pid;
2539 		pidfd = retval;
2540 
2541 		retval = put_user(pidfd, args->pidfd);
2542 		if (retval)
2543 			goto bad_fork_put_pidfd;
2544 	}
2545 
2546 #ifdef CONFIG_BLOCK
2547 	p->plug = NULL;
2548 #endif
2549 	futex_init_task(p);
2550 
2551 	/*
2552 	 * sigaltstack should be cleared when sharing the same VM
2553 	 */
2554 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2555 		sas_ss_reset(p);
2556 
2557 	/*
2558 	 * Syscall tracing and stepping should be turned off in the
2559 	 * child regardless of CLONE_PTRACE.
2560 	 */
2561 	user_disable_single_step(p);
2562 	clear_task_syscall_work(p, SYSCALL_TRACE);
2563 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2564 	clear_task_syscall_work(p, SYSCALL_EMU);
2565 #endif
2566 	clear_tsk_latency_tracing(p);
2567 
2568 	/* ok, now we should be set up.. */
2569 	p->pid = pid_nr(pid);
2570 	if (clone_flags & CLONE_THREAD) {
2571 		p->group_leader = current->group_leader;
2572 		p->tgid = current->tgid;
2573 	} else {
2574 		p->group_leader = p;
2575 		p->tgid = p->pid;
2576 	}
2577 
2578 	p->nr_dirtied = 0;
2579 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2580 	p->dirty_paused_when = 0;
2581 
2582 	p->pdeath_signal = 0;
2583 	INIT_LIST_HEAD(&p->thread_group);
2584 	p->task_works = NULL;
2585 	clear_posix_cputimers_work(p);
2586 
2587 #ifdef CONFIG_KRETPROBES
2588 	p->kretprobe_instances.first = NULL;
2589 #endif
2590 #ifdef CONFIG_RETHOOK
2591 	p->rethooks.first = NULL;
2592 #endif
2593 
2594 	/*
2595 	 * Ensure that the cgroup subsystem policies allow the new process to be
2596 	 * forked. It should be noted that the new process's css_set can be changed
2597 	 * between here and cgroup_post_fork() if an organisation operation is in
2598 	 * progress.
2599 	 */
2600 	retval = cgroup_can_fork(p, args);
2601 	if (retval)
2602 		goto bad_fork_put_pidfd;
2603 
2604 	/*
2605 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2606 	 * the new task on the correct runqueue. All this *before* the task
2607 	 * becomes visible.
2608 	 *
2609 	 * This isn't part of ->can_fork() because while the re-cloning is
2610 	 * cgroup specific, it unconditionally needs to place the task on a
2611 	 * runqueue.
2612 	 */
2613 	sched_cgroup_fork(p, args);
2614 
2615 	/*
2616 	 * From this point on we must avoid any synchronous user-space
2617 	 * communication until we take the tasklist-lock. In particular, we do
2618 	 * not want user-space to be able to predict the process start-time by
2619 	 * stalling fork(2) after we recorded the start_time but before it is
2620 	 * visible to the system.
2621 	 */
2622 
2623 	p->start_time = ktime_get_ns();
2624 	p->start_boottime = ktime_get_boottime_ns();
2625 
2626 	/*
2627 	 * Make it visible to the rest of the system, but dont wake it up yet.
2628 	 * Need tasklist lock for parent etc handling!
2629 	 */
2630 	write_lock_irq(&tasklist_lock);
2631 
2632 	/* CLONE_PARENT re-uses the old parent */
2633 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2634 		p->real_parent = current->real_parent;
2635 		p->parent_exec_id = current->parent_exec_id;
2636 		if (clone_flags & CLONE_THREAD)
2637 			p->exit_signal = -1;
2638 		else
2639 			p->exit_signal = current->group_leader->exit_signal;
2640 	} else {
2641 		p->real_parent = current;
2642 		p->parent_exec_id = current->self_exec_id;
2643 		p->exit_signal = args->exit_signal;
2644 	}
2645 
2646 	klp_copy_process(p);
2647 
2648 	sched_core_fork(p);
2649 
2650 	spin_lock(&current->sighand->siglock);
2651 
2652 	rv_task_fork(p);
2653 
2654 	rseq_fork(p, clone_flags);
2655 
2656 	/* Don't start children in a dying pid namespace */
2657 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2658 		retval = -ENOMEM;
2659 		goto bad_fork_cancel_cgroup;
2660 	}
2661 
2662 	/* Let kill terminate clone/fork in the middle */
2663 	if (fatal_signal_pending(current)) {
2664 		retval = -EINTR;
2665 		goto bad_fork_cancel_cgroup;
2666 	}
2667 
2668 	/* No more failure paths after this point. */
2669 
2670 	/*
2671 	 * Copy seccomp details explicitly here, in case they were changed
2672 	 * before holding sighand lock.
2673 	 */
2674 	copy_seccomp(p);
2675 
2676 	init_task_pid_links(p);
2677 	if (likely(p->pid)) {
2678 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2679 
2680 		init_task_pid(p, PIDTYPE_PID, pid);
2681 		if (thread_group_leader(p)) {
2682 			init_task_pid(p, PIDTYPE_TGID, pid);
2683 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2684 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2685 
2686 			if (is_child_reaper(pid)) {
2687 				ns_of_pid(pid)->child_reaper = p;
2688 				p->signal->flags |= SIGNAL_UNKILLABLE;
2689 			}
2690 			p->signal->shared_pending.signal = delayed.signal;
2691 			p->signal->tty = tty_kref_get(current->signal->tty);
2692 			/*
2693 			 * Inherit has_child_subreaper flag under the same
2694 			 * tasklist_lock with adding child to the process tree
2695 			 * for propagate_has_child_subreaper optimization.
2696 			 */
2697 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2698 							 p->real_parent->signal->is_child_subreaper;
2699 			list_add_tail(&p->sibling, &p->real_parent->children);
2700 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2701 			attach_pid(p, PIDTYPE_TGID);
2702 			attach_pid(p, PIDTYPE_PGID);
2703 			attach_pid(p, PIDTYPE_SID);
2704 			__this_cpu_inc(process_counts);
2705 		} else {
2706 			current->signal->nr_threads++;
2707 			current->signal->quick_threads++;
2708 			atomic_inc(&current->signal->live);
2709 			refcount_inc(&current->signal->sigcnt);
2710 			task_join_group_stop(p);
2711 			list_add_tail_rcu(&p->thread_group,
2712 					  &p->group_leader->thread_group);
2713 			list_add_tail_rcu(&p->thread_node,
2714 					  &p->signal->thread_head);
2715 		}
2716 		attach_pid(p, PIDTYPE_PID);
2717 		nr_threads++;
2718 	}
2719 	total_forks++;
2720 	hlist_del_init(&delayed.node);
2721 	spin_unlock(&current->sighand->siglock);
2722 	syscall_tracepoint_update(p);
2723 	write_unlock_irq(&tasklist_lock);
2724 
2725 	if (pidfile)
2726 		fd_install(pidfd, pidfile);
2727 
2728 	proc_fork_connector(p);
2729 	sched_post_fork(p);
2730 	cgroup_post_fork(p, args);
2731 	perf_event_fork(p);
2732 
2733 	trace_task_newtask(p, clone_flags);
2734 	uprobe_copy_process(p, clone_flags);
2735 	user_events_fork(p, clone_flags);
2736 
2737 	copy_oom_score_adj(clone_flags, p);
2738 
2739 	return p;
2740 
2741 bad_fork_cancel_cgroup:
2742 	sched_core_free(p);
2743 	spin_unlock(&current->sighand->siglock);
2744 	write_unlock_irq(&tasklist_lock);
2745 	cgroup_cancel_fork(p, args);
2746 bad_fork_put_pidfd:
2747 	if (clone_flags & CLONE_PIDFD) {
2748 		fput(pidfile);
2749 		put_unused_fd(pidfd);
2750 	}
2751 bad_fork_free_pid:
2752 	if (pid != &init_struct_pid)
2753 		free_pid(pid);
2754 bad_fork_cleanup_thread:
2755 	exit_thread(p);
2756 bad_fork_cleanup_io:
2757 	if (p->io_context)
2758 		exit_io_context(p);
2759 bad_fork_cleanup_namespaces:
2760 	exit_task_namespaces(p);
2761 bad_fork_cleanup_mm:
2762 	if (p->mm) {
2763 		mm_clear_owner(p->mm, p);
2764 		mmput(p->mm);
2765 	}
2766 bad_fork_cleanup_signal:
2767 	if (!(clone_flags & CLONE_THREAD))
2768 		free_signal_struct(p->signal);
2769 bad_fork_cleanup_sighand:
2770 	__cleanup_sighand(p->sighand);
2771 bad_fork_cleanup_fs:
2772 	exit_fs(p); /* blocking */
2773 bad_fork_cleanup_files:
2774 	exit_files(p); /* blocking */
2775 bad_fork_cleanup_semundo:
2776 	exit_sem(p);
2777 bad_fork_cleanup_security:
2778 	security_task_free(p);
2779 bad_fork_cleanup_audit:
2780 	audit_free(p);
2781 bad_fork_cleanup_perf:
2782 	perf_event_free_task(p);
2783 bad_fork_cleanup_policy:
2784 	lockdep_free_task(p);
2785 #ifdef CONFIG_NUMA
2786 	mpol_put(p->mempolicy);
2787 #endif
2788 bad_fork_cleanup_delayacct:
2789 	delayacct_tsk_free(p);
2790 bad_fork_cleanup_count:
2791 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2792 	exit_creds(p);
2793 bad_fork_free:
2794 	WRITE_ONCE(p->__state, TASK_DEAD);
2795 	exit_task_stack_account(p);
2796 	put_task_stack(p);
2797 	delayed_free_task(p);
2798 fork_out:
2799 	spin_lock_irq(&current->sighand->siglock);
2800 	hlist_del_init(&delayed.node);
2801 	spin_unlock_irq(&current->sighand->siglock);
2802 	return ERR_PTR(retval);
2803 }
2804 
init_idle_pids(struct task_struct * idle)2805 static inline void init_idle_pids(struct task_struct *idle)
2806 {
2807 	enum pid_type type;
2808 
2809 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2810 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2811 		init_task_pid(idle, type, &init_struct_pid);
2812 	}
2813 }
2814 
idle_dummy(void * dummy)2815 static int idle_dummy(void *dummy)
2816 {
2817 	/* This function is never called */
2818 	return 0;
2819 }
2820 
fork_idle(int cpu)2821 struct task_struct * __init fork_idle(int cpu)
2822 {
2823 	struct task_struct *task;
2824 	struct kernel_clone_args args = {
2825 		.flags		= CLONE_VM,
2826 		.fn		= &idle_dummy,
2827 		.fn_arg		= NULL,
2828 		.kthread	= 1,
2829 		.idle		= 1,
2830 	};
2831 
2832 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2833 	if (!IS_ERR(task)) {
2834 		init_idle_pids(task);
2835 		init_idle(task, cpu);
2836 	}
2837 
2838 	return task;
2839 }
2840 
2841 /*
2842  * This is like kernel_clone(), but shaved down and tailored to just
2843  * creating io_uring workers. It returns a created task, or an error pointer.
2844  * The returned task is inactive, and the caller must fire it up through
2845  * wake_up_new_task(p). All signals are blocked in the created task.
2846  */
create_io_thread(int (* fn)(void *),void * arg,int node)2847 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2848 {
2849 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2850 				CLONE_IO;
2851 	struct kernel_clone_args args = {
2852 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2853 				    CLONE_UNTRACED) & ~CSIGNAL),
2854 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2855 		.fn		= fn,
2856 		.fn_arg		= arg,
2857 		.io_thread	= 1,
2858 		.user_worker	= 1,
2859 	};
2860 
2861 	return copy_process(NULL, 0, node, &args);
2862 }
2863 
2864 /*
2865  *  Ok, this is the main fork-routine.
2866  *
2867  * It copies the process, and if successful kick-starts
2868  * it and waits for it to finish using the VM if required.
2869  *
2870  * args->exit_signal is expected to be checked for sanity by the caller.
2871  */
kernel_clone(struct kernel_clone_args * args)2872 pid_t kernel_clone(struct kernel_clone_args *args)
2873 {
2874 	u64 clone_flags = args->flags;
2875 	struct completion vfork;
2876 	struct pid *pid;
2877 	struct task_struct *p;
2878 	int trace = 0;
2879 	pid_t nr;
2880 
2881 	/*
2882 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2883 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2884 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2885 	 * field in struct clone_args and it still doesn't make sense to have
2886 	 * them both point at the same memory location. Performing this check
2887 	 * here has the advantage that we don't need to have a separate helper
2888 	 * to check for legacy clone().
2889 	 */
2890 	if ((args->flags & CLONE_PIDFD) &&
2891 	    (args->flags & CLONE_PARENT_SETTID) &&
2892 	    (args->pidfd == args->parent_tid))
2893 		return -EINVAL;
2894 
2895 	/*
2896 	 * Determine whether and which event to report to ptracer.  When
2897 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2898 	 * requested, no event is reported; otherwise, report if the event
2899 	 * for the type of forking is enabled.
2900 	 */
2901 	if (!(clone_flags & CLONE_UNTRACED)) {
2902 		if (clone_flags & CLONE_VFORK)
2903 			trace = PTRACE_EVENT_VFORK;
2904 		else if (args->exit_signal != SIGCHLD)
2905 			trace = PTRACE_EVENT_CLONE;
2906 		else
2907 			trace = PTRACE_EVENT_FORK;
2908 
2909 		if (likely(!ptrace_event_enabled(current, trace)))
2910 			trace = 0;
2911 	}
2912 
2913 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2914 	add_latent_entropy();
2915 
2916 	if (IS_ERR(p))
2917 		return PTR_ERR(p);
2918 
2919 	/*
2920 	 * Do this prior waking up the new thread - the thread pointer
2921 	 * might get invalid after that point, if the thread exits quickly.
2922 	 */
2923 	trace_sched_process_fork(current, p);
2924 
2925 	pid = get_task_pid(p, PIDTYPE_PID);
2926 	nr = pid_vnr(pid);
2927 
2928 	if (clone_flags & CLONE_PARENT_SETTID)
2929 		put_user(nr, args->parent_tid);
2930 
2931 	if (clone_flags & CLONE_VFORK) {
2932 		p->vfork_done = &vfork;
2933 		init_completion(&vfork);
2934 		get_task_struct(p);
2935 	}
2936 
2937 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2938 		/* lock the task to synchronize with memcg migration */
2939 		task_lock(p);
2940 		lru_gen_add_mm(p->mm);
2941 		task_unlock(p);
2942 	}
2943 
2944 	wake_up_new_task(p);
2945 
2946 	/* forking complete and child started to run, tell ptracer */
2947 	if (unlikely(trace))
2948 		ptrace_event_pid(trace, pid);
2949 
2950 	if (clone_flags & CLONE_VFORK) {
2951 		if (!wait_for_vfork_done(p, &vfork))
2952 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2953 	}
2954 
2955 	put_pid(pid);
2956 	return nr;
2957 }
2958 
2959 /*
2960  * Create a kernel thread.
2961  */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2962 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2963 		    unsigned long flags)
2964 {
2965 	struct kernel_clone_args args = {
2966 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2967 				    CLONE_UNTRACED) & ~CSIGNAL),
2968 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2969 		.fn		= fn,
2970 		.fn_arg		= arg,
2971 		.name		= name,
2972 		.kthread	= 1,
2973 	};
2974 
2975 	return kernel_clone(&args);
2976 }
2977 
2978 /*
2979  * Create a user mode thread.
2980  */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2981 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2982 {
2983 	struct kernel_clone_args args = {
2984 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2985 				    CLONE_UNTRACED) & ~CSIGNAL),
2986 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2987 		.fn		= fn,
2988 		.fn_arg		= arg,
2989 	};
2990 
2991 	return kernel_clone(&args);
2992 }
2993 
2994 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2995 SYSCALL_DEFINE0(fork)
2996 {
2997 #ifdef CONFIG_MMU
2998 	struct kernel_clone_args args = {
2999 		.exit_signal = SIGCHLD,
3000 	};
3001 
3002 	return kernel_clone(&args);
3003 #else
3004 	/* can not support in nommu mode */
3005 	return -EINVAL;
3006 #endif
3007 }
3008 #endif
3009 
3010 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)3011 SYSCALL_DEFINE0(vfork)
3012 {
3013 	struct kernel_clone_args args = {
3014 		.flags		= CLONE_VFORK | CLONE_VM,
3015 		.exit_signal	= SIGCHLD,
3016 	};
3017 
3018 	return kernel_clone(&args);
3019 }
3020 #endif
3021 
3022 #ifdef __ARCH_WANT_SYS_CLONE
3023 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)3024 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3025 		 int __user *, parent_tidptr,
3026 		 unsigned long, tls,
3027 		 int __user *, child_tidptr)
3028 #elif defined(CONFIG_CLONE_BACKWARDS2)
3029 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3030 		 int __user *, parent_tidptr,
3031 		 int __user *, child_tidptr,
3032 		 unsigned long, tls)
3033 #elif defined(CONFIG_CLONE_BACKWARDS3)
3034 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3035 		int, stack_size,
3036 		int __user *, parent_tidptr,
3037 		int __user *, child_tidptr,
3038 		unsigned long, tls)
3039 #else
3040 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3041 		 int __user *, parent_tidptr,
3042 		 int __user *, child_tidptr,
3043 		 unsigned long, tls)
3044 #endif
3045 {
3046 	struct kernel_clone_args args = {
3047 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
3048 		.pidfd		= parent_tidptr,
3049 		.child_tid	= child_tidptr,
3050 		.parent_tid	= parent_tidptr,
3051 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
3052 		.stack		= newsp,
3053 		.tls		= tls,
3054 	};
3055 
3056 	return kernel_clone(&args);
3057 }
3058 #endif
3059 
3060 #ifdef __ARCH_WANT_SYS_CLONE3
3061 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)3062 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3063 					      struct clone_args __user *uargs,
3064 					      size_t usize)
3065 {
3066 	int err;
3067 	struct clone_args args;
3068 	pid_t *kset_tid = kargs->set_tid;
3069 
3070 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3071 		     CLONE_ARGS_SIZE_VER0);
3072 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3073 		     CLONE_ARGS_SIZE_VER1);
3074 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3075 		     CLONE_ARGS_SIZE_VER2);
3076 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3077 
3078 	if (unlikely(usize > PAGE_SIZE))
3079 		return -E2BIG;
3080 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3081 		return -EINVAL;
3082 
3083 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3084 	if (err)
3085 		return err;
3086 
3087 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3088 		return -EINVAL;
3089 
3090 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3091 		return -EINVAL;
3092 
3093 	if (unlikely(args.set_tid && args.set_tid_size == 0))
3094 		return -EINVAL;
3095 
3096 	/*
3097 	 * Verify that higher 32bits of exit_signal are unset and that
3098 	 * it is a valid signal
3099 	 */
3100 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3101 		     !valid_signal(args.exit_signal)))
3102 		return -EINVAL;
3103 
3104 	if ((args.flags & CLONE_INTO_CGROUP) &&
3105 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3106 		return -EINVAL;
3107 
3108 	*kargs = (struct kernel_clone_args){
3109 		.flags		= args.flags,
3110 		.pidfd		= u64_to_user_ptr(args.pidfd),
3111 		.child_tid	= u64_to_user_ptr(args.child_tid),
3112 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3113 		.exit_signal	= args.exit_signal,
3114 		.stack		= args.stack,
3115 		.stack_size	= args.stack_size,
3116 		.tls		= args.tls,
3117 		.set_tid_size	= args.set_tid_size,
3118 		.cgroup		= args.cgroup,
3119 	};
3120 
3121 	if (args.set_tid &&
3122 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3123 			(kargs->set_tid_size * sizeof(pid_t))))
3124 		return -EFAULT;
3125 
3126 	kargs->set_tid = kset_tid;
3127 
3128 	return 0;
3129 }
3130 
3131 /**
3132  * clone3_stack_valid - check and prepare stack
3133  * @kargs: kernel clone args
3134  *
3135  * Verify that the stack arguments userspace gave us are sane.
3136  * In addition, set the stack direction for userspace since it's easy for us to
3137  * determine.
3138  */
clone3_stack_valid(struct kernel_clone_args * kargs)3139 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3140 {
3141 	if (kargs->stack == 0) {
3142 		if (kargs->stack_size > 0)
3143 			return false;
3144 	} else {
3145 		if (kargs->stack_size == 0)
3146 			return false;
3147 
3148 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3149 			return false;
3150 
3151 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3152 		kargs->stack += kargs->stack_size;
3153 #endif
3154 	}
3155 
3156 	return true;
3157 }
3158 
clone3_args_valid(struct kernel_clone_args * kargs)3159 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3160 {
3161 	/* Verify that no unknown flags are passed along. */
3162 	if (kargs->flags &
3163 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3164 		return false;
3165 
3166 	/*
3167 	 * - make the CLONE_DETACHED bit reusable for clone3
3168 	 * - make the CSIGNAL bits reusable for clone3
3169 	 */
3170 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3171 		return false;
3172 
3173 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3174 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3175 		return false;
3176 
3177 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3178 	    kargs->exit_signal)
3179 		return false;
3180 
3181 	if (!clone3_stack_valid(kargs))
3182 		return false;
3183 
3184 	return true;
3185 }
3186 
3187 /**
3188  * clone3 - create a new process with specific properties
3189  * @uargs: argument structure
3190  * @size:  size of @uargs
3191  *
3192  * clone3() is the extensible successor to clone()/clone2().
3193  * It takes a struct as argument that is versioned by its size.
3194  *
3195  * Return: On success, a positive PID for the child process.
3196  *         On error, a negative errno number.
3197  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3198 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3199 {
3200 	int err;
3201 
3202 	struct kernel_clone_args kargs;
3203 	pid_t set_tid[MAX_PID_NS_LEVEL];
3204 
3205 	kargs.set_tid = set_tid;
3206 
3207 	err = copy_clone_args_from_user(&kargs, uargs, size);
3208 	if (err)
3209 		return err;
3210 
3211 	if (!clone3_args_valid(&kargs))
3212 		return -EINVAL;
3213 
3214 	return kernel_clone(&kargs);
3215 }
3216 #endif
3217 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3218 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3219 {
3220 	struct task_struct *leader, *parent, *child;
3221 	int res;
3222 
3223 	read_lock(&tasklist_lock);
3224 	leader = top = top->group_leader;
3225 down:
3226 	for_each_thread(leader, parent) {
3227 		list_for_each_entry(child, &parent->children, sibling) {
3228 			res = visitor(child, data);
3229 			if (res) {
3230 				if (res < 0)
3231 					goto out;
3232 				leader = child;
3233 				goto down;
3234 			}
3235 up:
3236 			;
3237 		}
3238 	}
3239 
3240 	if (leader != top) {
3241 		child = leader;
3242 		parent = child->real_parent;
3243 		leader = parent->group_leader;
3244 		goto up;
3245 	}
3246 out:
3247 	read_unlock(&tasklist_lock);
3248 }
3249 
3250 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3251 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3252 #endif
3253 
sighand_ctor(void * data)3254 static void sighand_ctor(void *data)
3255 {
3256 	struct sighand_struct *sighand = data;
3257 
3258 	spin_lock_init(&sighand->siglock);
3259 	init_waitqueue_head(&sighand->signalfd_wqh);
3260 }
3261 
mm_cache_init(void)3262 void __init mm_cache_init(void)
3263 {
3264 	unsigned int mm_size;
3265 
3266 	/*
3267 	 * The mm_cpumask is located at the end of mm_struct, and is
3268 	 * dynamically sized based on the maximum CPU number this system
3269 	 * can have, taking hotplug into account (nr_cpu_ids).
3270 	 */
3271 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3272 
3273 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3274 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3275 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3276 			offsetof(struct mm_struct, saved_auxv),
3277 			sizeof_field(struct mm_struct, saved_auxv),
3278 			NULL);
3279 }
3280 
proc_caches_init(void)3281 void __init proc_caches_init(void)
3282 {
3283 	sighand_cachep = kmem_cache_create("sighand_cache",
3284 			sizeof(struct sighand_struct), 0,
3285 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3286 			SLAB_ACCOUNT, sighand_ctor);
3287 	signal_cachep = kmem_cache_create("signal_cache",
3288 			sizeof(struct signal_struct), 0,
3289 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3290 			NULL);
3291 	files_cachep = kmem_cache_create("files_cache",
3292 			sizeof(struct files_struct), 0,
3293 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3294 			NULL);
3295 	fs_cachep = kmem_cache_create("fs_cache",
3296 			sizeof(struct fs_struct), 0,
3297 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3298 			NULL);
3299 
3300 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3301 #ifdef CONFIG_PER_VMA_LOCK
3302 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3303 #endif
3304 	mmap_init();
3305 	nsproxy_cache_init();
3306 }
3307 
3308 /*
3309  * Check constraints on flags passed to the unshare system call.
3310  */
check_unshare_flags(unsigned long unshare_flags)3311 static int check_unshare_flags(unsigned long unshare_flags)
3312 {
3313 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3314 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3315 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3316 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3317 				CLONE_NEWTIME))
3318 		return -EINVAL;
3319 	/*
3320 	 * Not implemented, but pretend it works if there is nothing
3321 	 * to unshare.  Note that unsharing the address space or the
3322 	 * signal handlers also need to unshare the signal queues (aka
3323 	 * CLONE_THREAD).
3324 	 */
3325 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3326 		if (!thread_group_empty(current))
3327 			return -EINVAL;
3328 	}
3329 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3330 		if (refcount_read(&current->sighand->count) > 1)
3331 			return -EINVAL;
3332 	}
3333 	if (unshare_flags & CLONE_VM) {
3334 		if (!current_is_single_threaded())
3335 			return -EINVAL;
3336 	}
3337 
3338 	return 0;
3339 }
3340 
3341 /*
3342  * Unshare the filesystem structure if it is being shared
3343  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3344 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3345 {
3346 	struct fs_struct *fs = current->fs;
3347 
3348 	if (!(unshare_flags & CLONE_FS) || !fs)
3349 		return 0;
3350 
3351 	/* don't need lock here; in the worst case we'll do useless copy */
3352 	if (fs->users == 1)
3353 		return 0;
3354 
3355 	*new_fsp = copy_fs_struct(fs);
3356 	if (!*new_fsp)
3357 		return -ENOMEM;
3358 
3359 	return 0;
3360 }
3361 
3362 /*
3363  * Unshare file descriptor table if it is being shared
3364  */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3365 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3366 {
3367 	struct files_struct *fd = current->files;
3368 
3369 	if ((unshare_flags & CLONE_FILES) &&
3370 	    (fd && atomic_read(&fd->count) > 1)) {
3371 		fd = dup_fd(fd, NULL);
3372 		if (IS_ERR(fd))
3373 			return PTR_ERR(fd);
3374 		*new_fdp = fd;
3375 	}
3376 
3377 	return 0;
3378 }
3379 
3380 /*
3381  * unshare allows a process to 'unshare' part of the process
3382  * context which was originally shared using clone.  copy_*
3383  * functions used by kernel_clone() cannot be used here directly
3384  * because they modify an inactive task_struct that is being
3385  * constructed. Here we are modifying the current, active,
3386  * task_struct.
3387  */
ksys_unshare(unsigned long unshare_flags)3388 int ksys_unshare(unsigned long unshare_flags)
3389 {
3390 	struct fs_struct *fs, *new_fs = NULL;
3391 	struct files_struct *new_fd = NULL;
3392 	struct cred *new_cred = NULL;
3393 	struct nsproxy *new_nsproxy = NULL;
3394 	int do_sysvsem = 0;
3395 	int err;
3396 
3397 	/*
3398 	 * If unsharing a user namespace must also unshare the thread group
3399 	 * and unshare the filesystem root and working directories.
3400 	 */
3401 	if (unshare_flags & CLONE_NEWUSER)
3402 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3403 	/*
3404 	 * If unsharing vm, must also unshare signal handlers.
3405 	 */
3406 	if (unshare_flags & CLONE_VM)
3407 		unshare_flags |= CLONE_SIGHAND;
3408 	/*
3409 	 * If unsharing a signal handlers, must also unshare the signal queues.
3410 	 */
3411 	if (unshare_flags & CLONE_SIGHAND)
3412 		unshare_flags |= CLONE_THREAD;
3413 	/*
3414 	 * If unsharing namespace, must also unshare filesystem information.
3415 	 */
3416 	if (unshare_flags & CLONE_NEWNS)
3417 		unshare_flags |= CLONE_FS;
3418 
3419 	err = check_unshare_flags(unshare_flags);
3420 	if (err)
3421 		goto bad_unshare_out;
3422 	/*
3423 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3424 	 * to a new ipc namespace, the semaphore arrays from the old
3425 	 * namespace are unreachable.
3426 	 */
3427 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3428 		do_sysvsem = 1;
3429 	err = unshare_fs(unshare_flags, &new_fs);
3430 	if (err)
3431 		goto bad_unshare_out;
3432 	err = unshare_fd(unshare_flags, &new_fd);
3433 	if (err)
3434 		goto bad_unshare_cleanup_fs;
3435 	err = unshare_userns(unshare_flags, &new_cred);
3436 	if (err)
3437 		goto bad_unshare_cleanup_fd;
3438 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3439 					 new_cred, new_fs);
3440 	if (err)
3441 		goto bad_unshare_cleanup_cred;
3442 
3443 	if (new_cred) {
3444 		err = set_cred_ucounts(new_cred);
3445 		if (err)
3446 			goto bad_unshare_cleanup_cred;
3447 	}
3448 
3449 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3450 		if (do_sysvsem) {
3451 			/*
3452 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3453 			 */
3454 			exit_sem(current);
3455 		}
3456 		if (unshare_flags & CLONE_NEWIPC) {
3457 			/* Orphan segments in old ns (see sem above). */
3458 			exit_shm(current);
3459 			shm_init_task(current);
3460 		}
3461 
3462 		if (new_nsproxy)
3463 			switch_task_namespaces(current, new_nsproxy);
3464 
3465 		task_lock(current);
3466 
3467 		if (new_fs) {
3468 			fs = current->fs;
3469 			spin_lock(&fs->lock);
3470 			current->fs = new_fs;
3471 			if (--fs->users)
3472 				new_fs = NULL;
3473 			else
3474 				new_fs = fs;
3475 			spin_unlock(&fs->lock);
3476 		}
3477 
3478 		if (new_fd)
3479 			swap(current->files, new_fd);
3480 
3481 		task_unlock(current);
3482 
3483 		if (new_cred) {
3484 			/* Install the new user namespace */
3485 			commit_creds(new_cred);
3486 			new_cred = NULL;
3487 		}
3488 	}
3489 
3490 	perf_event_namespaces(current);
3491 
3492 bad_unshare_cleanup_cred:
3493 	if (new_cred)
3494 		put_cred(new_cred);
3495 bad_unshare_cleanup_fd:
3496 	if (new_fd)
3497 		put_files_struct(new_fd);
3498 
3499 bad_unshare_cleanup_fs:
3500 	if (new_fs)
3501 		free_fs_struct(new_fs);
3502 
3503 bad_unshare_out:
3504 	return err;
3505 }
3506 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3507 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3508 {
3509 	return ksys_unshare(unshare_flags);
3510 }
3511 
3512 /*
3513  *	Helper to unshare the files of the current task.
3514  *	We don't want to expose copy_files internals to
3515  *	the exec layer of the kernel.
3516  */
3517 
unshare_files(void)3518 int unshare_files(void)
3519 {
3520 	struct task_struct *task = current;
3521 	struct files_struct *old, *copy = NULL;
3522 	int error;
3523 
3524 	error = unshare_fd(CLONE_FILES, &copy);
3525 	if (error || !copy)
3526 		return error;
3527 
3528 	old = task->files;
3529 	task_lock(task);
3530 	task->files = copy;
3531 	task_unlock(task);
3532 	put_files_struct(old);
3533 	return 0;
3534 }
3535 
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3536 int sysctl_max_threads(struct ctl_table *table, int write,
3537 		       void *buffer, size_t *lenp, loff_t *ppos)
3538 {
3539 	struct ctl_table t;
3540 	int ret;
3541 	int threads = max_threads;
3542 	int min = 1;
3543 	int max = MAX_THREADS;
3544 
3545 	t = *table;
3546 	t.data = &threads;
3547 	t.extra1 = &min;
3548 	t.extra2 = &max;
3549 
3550 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3551 	if (ret || !write)
3552 		return ret;
3553 
3554 	max_threads = threads;
3555 
3556 	return 0;
3557 }
3558