1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102 #include <linux/tick.h>
103
104 #include <asm/pgalloc.h>
105 #include <linux/uaccess.h>
106 #include <asm/mmu_context.h>
107 #include <asm/cacheflush.h>
108 #include <asm/tlbflush.h>
109
110 #include <trace/events/sched.h>
111
112 #define CREATE_TRACE_POINTS
113 #include <trace/events/task.h>
114
115 /*
116 * Minimum number of threads to boot the kernel
117 */
118 #define MIN_THREADS 20
119
120 /*
121 * Maximum number of threads
122 */
123 #define MAX_THREADS FUTEX_TID_MASK
124
125 /*
126 * Protected counters by write_lock_irq(&tasklist_lock)
127 */
128 unsigned long total_forks; /* Handle normal Linux uptimes. */
129 int nr_threads; /* The idle threads do not count.. */
130
131 static int max_threads; /* tunable limit on nr_threads */
132
133 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
134
135 static const char * const resident_page_types[] = {
136 NAMED_ARRAY_INDEX(MM_FILEPAGES),
137 NAMED_ARRAY_INDEX(MM_ANONPAGES),
138 NAMED_ARRAY_INDEX(MM_SWAPENTS),
139 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
140 };
141
142 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
143
144 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
145
146 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)147 int lockdep_tasklist_lock_is_held(void)
148 {
149 return lockdep_is_held(&tasklist_lock);
150 }
151 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
152 #endif /* #ifdef CONFIG_PROVE_RCU */
153
nr_processes(void)154 int nr_processes(void)
155 {
156 int cpu;
157 int total = 0;
158
159 for_each_possible_cpu(cpu)
160 total += per_cpu(process_counts, cpu);
161
162 return total;
163 }
164
arch_release_task_struct(struct task_struct * tsk)165 void __weak arch_release_task_struct(struct task_struct *tsk)
166 {
167 }
168
169 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
170 static struct kmem_cache *task_struct_cachep;
171
alloc_task_struct_node(int node)172 static inline struct task_struct *alloc_task_struct_node(int node)
173 {
174 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
175 }
176
free_task_struct(struct task_struct * tsk)177 static inline void free_task_struct(struct task_struct *tsk)
178 {
179 kmem_cache_free(task_struct_cachep, tsk);
180 }
181 #endif
182
183 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
184
185 /*
186 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
187 * kmemcache based allocator.
188 */
189 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
190
191 # ifdef CONFIG_VMAP_STACK
192 /*
193 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
194 * flush. Try to minimize the number of calls by caching stacks.
195 */
196 #define NR_CACHED_STACKS 2
197 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
198
199 struct vm_stack {
200 struct rcu_head rcu;
201 struct vm_struct *stack_vm_area;
202 };
203
try_release_thread_stack_to_cache(struct vm_struct * vm)204 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
205 {
206 unsigned int i;
207
208 for (i = 0; i < NR_CACHED_STACKS; i++) {
209 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
210 continue;
211 return true;
212 }
213 return false;
214 }
215
thread_stack_free_rcu(struct rcu_head * rh)216 static void thread_stack_free_rcu(struct rcu_head *rh)
217 {
218 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
219
220 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
221 return;
222
223 vfree(vm_stack);
224 }
225
thread_stack_delayed_free(struct task_struct * tsk)226 static void thread_stack_delayed_free(struct task_struct *tsk)
227 {
228 struct vm_stack *vm_stack = tsk->stack;
229
230 vm_stack->stack_vm_area = tsk->stack_vm_area;
231 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
232 }
233
free_vm_stack_cache(unsigned int cpu)234 static int free_vm_stack_cache(unsigned int cpu)
235 {
236 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
237 int i;
238
239 for (i = 0; i < NR_CACHED_STACKS; i++) {
240 struct vm_struct *vm_stack = cached_vm_stacks[i];
241
242 if (!vm_stack)
243 continue;
244
245 vfree(vm_stack->addr);
246 cached_vm_stacks[i] = NULL;
247 }
248
249 return 0;
250 }
251
memcg_charge_kernel_stack(struct vm_struct * vm)252 static int memcg_charge_kernel_stack(struct vm_struct *vm)
253 {
254 int i;
255 int ret;
256 int nr_charged = 0;
257
258 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
259
260 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
261 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
262 if (ret)
263 goto err;
264 nr_charged++;
265 }
266 return 0;
267 err:
268 for (i = 0; i < nr_charged; i++)
269 memcg_kmem_uncharge_page(vm->pages[i], 0);
270 return ret;
271 }
272
alloc_thread_stack_node(struct task_struct * tsk,int node)273 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
274 {
275 struct vm_struct *vm;
276 void *stack;
277 int i;
278
279 for (i = 0; i < NR_CACHED_STACKS; i++) {
280 struct vm_struct *s;
281
282 s = this_cpu_xchg(cached_stacks[i], NULL);
283
284 if (!s)
285 continue;
286
287 /* Reset stack metadata. */
288 kasan_unpoison_range(s->addr, THREAD_SIZE);
289
290 stack = kasan_reset_tag(s->addr);
291
292 /* Clear stale pointers from reused stack. */
293 memset(stack, 0, THREAD_SIZE);
294
295 if (memcg_charge_kernel_stack(s)) {
296 vfree(s->addr);
297 return -ENOMEM;
298 }
299
300 tsk->stack_vm_area = s;
301 tsk->stack = stack;
302 return 0;
303 }
304
305 /*
306 * Allocated stacks are cached and later reused by new threads,
307 * so memcg accounting is performed manually on assigning/releasing
308 * stacks to tasks. Drop __GFP_ACCOUNT.
309 */
310 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
311 VMALLOC_START, VMALLOC_END,
312 THREADINFO_GFP & ~__GFP_ACCOUNT,
313 PAGE_KERNEL,
314 0, node, __builtin_return_address(0));
315 if (!stack)
316 return -ENOMEM;
317
318 vm = find_vm_area(stack);
319 if (memcg_charge_kernel_stack(vm)) {
320 vfree(stack);
321 return -ENOMEM;
322 }
323 /*
324 * We can't call find_vm_area() in interrupt context, and
325 * free_thread_stack() can be called in interrupt context,
326 * so cache the vm_struct.
327 */
328 tsk->stack_vm_area = vm;
329 stack = kasan_reset_tag(stack);
330 tsk->stack = stack;
331 return 0;
332 }
333
free_thread_stack(struct task_struct * tsk)334 static void free_thread_stack(struct task_struct *tsk)
335 {
336 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
337 thread_stack_delayed_free(tsk);
338
339 tsk->stack = NULL;
340 tsk->stack_vm_area = NULL;
341 }
342
343 # else /* !CONFIG_VMAP_STACK */
344
thread_stack_free_rcu(struct rcu_head * rh)345 static void thread_stack_free_rcu(struct rcu_head *rh)
346 {
347 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
348 }
349
thread_stack_delayed_free(struct task_struct * tsk)350 static void thread_stack_delayed_free(struct task_struct *tsk)
351 {
352 struct rcu_head *rh = tsk->stack;
353
354 call_rcu(rh, thread_stack_free_rcu);
355 }
356
alloc_thread_stack_node(struct task_struct * tsk,int node)357 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
358 {
359 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
360 THREAD_SIZE_ORDER);
361
362 if (likely(page)) {
363 tsk->stack = kasan_reset_tag(page_address(page));
364 return 0;
365 }
366 return -ENOMEM;
367 }
368
free_thread_stack(struct task_struct * tsk)369 static void free_thread_stack(struct task_struct *tsk)
370 {
371 thread_stack_delayed_free(tsk);
372 tsk->stack = NULL;
373 }
374
375 # endif /* CONFIG_VMAP_STACK */
376 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
377
378 static struct kmem_cache *thread_stack_cache;
379
thread_stack_free_rcu(struct rcu_head * rh)380 static void thread_stack_free_rcu(struct rcu_head *rh)
381 {
382 kmem_cache_free(thread_stack_cache, rh);
383 }
384
thread_stack_delayed_free(struct task_struct * tsk)385 static void thread_stack_delayed_free(struct task_struct *tsk)
386 {
387 struct rcu_head *rh = tsk->stack;
388
389 call_rcu(rh, thread_stack_free_rcu);
390 }
391
alloc_thread_stack_node(struct task_struct * tsk,int node)392 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
393 {
394 unsigned long *stack;
395 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
396 stack = kasan_reset_tag(stack);
397 tsk->stack = stack;
398 return stack ? 0 : -ENOMEM;
399 }
400
free_thread_stack(struct task_struct * tsk)401 static void free_thread_stack(struct task_struct *tsk)
402 {
403 thread_stack_delayed_free(tsk);
404 tsk->stack = NULL;
405 }
406
thread_stack_cache_init(void)407 void thread_stack_cache_init(void)
408 {
409 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
410 THREAD_SIZE, THREAD_SIZE, 0, 0,
411 THREAD_SIZE, NULL);
412 BUG_ON(thread_stack_cache == NULL);
413 }
414
415 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
416 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
417
alloc_thread_stack_node(struct task_struct * tsk,int node)418 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
419 {
420 unsigned long *stack;
421
422 stack = arch_alloc_thread_stack_node(tsk, node);
423 tsk->stack = stack;
424 return stack ? 0 : -ENOMEM;
425 }
426
free_thread_stack(struct task_struct * tsk)427 static void free_thread_stack(struct task_struct *tsk)
428 {
429 arch_free_thread_stack(tsk);
430 tsk->stack = NULL;
431 }
432
433 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
434
435 /* SLAB cache for signal_struct structures (tsk->signal) */
436 static struct kmem_cache *signal_cachep;
437
438 /* SLAB cache for sighand_struct structures (tsk->sighand) */
439 struct kmem_cache *sighand_cachep;
440
441 /* SLAB cache for files_struct structures (tsk->files) */
442 struct kmem_cache *files_cachep;
443
444 /* SLAB cache for fs_struct structures (tsk->fs) */
445 struct kmem_cache *fs_cachep;
446
447 /* SLAB cache for vm_area_struct structures */
448 static struct kmem_cache *vm_area_cachep;
449
450 /* SLAB cache for mm_struct structures (tsk->mm) */
451 static struct kmem_cache *mm_cachep;
452
453 #ifdef CONFIG_PER_VMA_LOCK
454
455 /* SLAB cache for vm_area_struct.lock */
456 static struct kmem_cache *vma_lock_cachep;
457
vma_lock_alloc(struct vm_area_struct * vma)458 static bool vma_lock_alloc(struct vm_area_struct *vma)
459 {
460 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
461 if (!vma->vm_lock)
462 return false;
463
464 init_rwsem(&vma->vm_lock->lock);
465 vma->vm_lock_seq = -1;
466
467 return true;
468 }
469
vma_lock_free(struct vm_area_struct * vma)470 static inline void vma_lock_free(struct vm_area_struct *vma)
471 {
472 kmem_cache_free(vma_lock_cachep, vma->vm_lock);
473 }
474
475 #else /* CONFIG_PER_VMA_LOCK */
476
vma_lock_alloc(struct vm_area_struct * vma)477 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)478 static inline void vma_lock_free(struct vm_area_struct *vma) {}
479
480 #endif /* CONFIG_PER_VMA_LOCK */
481
vm_area_alloc(struct mm_struct * mm)482 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
483 {
484 struct vm_area_struct *vma;
485
486 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
487 if (!vma)
488 return NULL;
489
490 vma_init(vma, mm);
491 if (!vma_lock_alloc(vma)) {
492 kmem_cache_free(vm_area_cachep, vma);
493 return NULL;
494 }
495
496 return vma;
497 }
498
vm_area_dup(struct vm_area_struct * orig)499 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
500 {
501 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
502
503 if (!new)
504 return NULL;
505
506 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
507 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
508 /*
509 * orig->shared.rb may be modified concurrently, but the clone
510 * will be reinitialized.
511 */
512 data_race(memcpy(new, orig, sizeof(*new)));
513 if (!vma_lock_alloc(new)) {
514 kmem_cache_free(vm_area_cachep, new);
515 return NULL;
516 }
517 INIT_LIST_HEAD(&new->anon_vma_chain);
518 vma_numab_state_init(new);
519 dup_anon_vma_name(orig, new);
520
521 /* track_pfn_copy() will later take care of copying internal state. */
522 if (unlikely(new->vm_flags & VM_PFNMAP))
523 untrack_pfn_clear(new);
524
525 return new;
526 }
527
__vm_area_free(struct vm_area_struct * vma)528 void __vm_area_free(struct vm_area_struct *vma)
529 {
530 vma_numab_state_free(vma);
531 free_anon_vma_name(vma);
532 vma_lock_free(vma);
533 kmem_cache_free(vm_area_cachep, vma);
534 }
535
536 #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)537 static void vm_area_free_rcu_cb(struct rcu_head *head)
538 {
539 struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
540 vm_rcu);
541
542 /* The vma should not be locked while being destroyed. */
543 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
544 __vm_area_free(vma);
545 }
546 #endif
547
vm_area_free(struct vm_area_struct * vma)548 void vm_area_free(struct vm_area_struct *vma)
549 {
550 #ifdef CONFIG_PER_VMA_LOCK
551 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
552 #else
553 __vm_area_free(vma);
554 #endif
555 }
556
account_kernel_stack(struct task_struct * tsk,int account)557 static void account_kernel_stack(struct task_struct *tsk, int account)
558 {
559 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
560 struct vm_struct *vm = task_stack_vm_area(tsk);
561 int i;
562
563 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
564 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
565 account * (PAGE_SIZE / 1024));
566 } else {
567 void *stack = task_stack_page(tsk);
568
569 /* All stack pages are in the same node. */
570 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
571 account * (THREAD_SIZE / 1024));
572 }
573 }
574
exit_task_stack_account(struct task_struct * tsk)575 void exit_task_stack_account(struct task_struct *tsk)
576 {
577 account_kernel_stack(tsk, -1);
578
579 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
580 struct vm_struct *vm;
581 int i;
582
583 vm = task_stack_vm_area(tsk);
584 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
585 memcg_kmem_uncharge_page(vm->pages[i], 0);
586 }
587 }
588
release_task_stack(struct task_struct * tsk)589 static void release_task_stack(struct task_struct *tsk)
590 {
591 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
592 return; /* Better to leak the stack than to free prematurely */
593
594 free_thread_stack(tsk);
595 }
596
597 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)598 void put_task_stack(struct task_struct *tsk)
599 {
600 if (refcount_dec_and_test(&tsk->stack_refcount))
601 release_task_stack(tsk);
602 }
603 #endif
604
free_task(struct task_struct * tsk)605 void free_task(struct task_struct *tsk)
606 {
607 #ifdef CONFIG_SECCOMP
608 WARN_ON_ONCE(tsk->seccomp.filter);
609 #endif
610 release_user_cpus_ptr(tsk);
611 scs_release(tsk);
612
613 #ifndef CONFIG_THREAD_INFO_IN_TASK
614 /*
615 * The task is finally done with both the stack and thread_info,
616 * so free both.
617 */
618 release_task_stack(tsk);
619 #else
620 /*
621 * If the task had a separate stack allocation, it should be gone
622 * by now.
623 */
624 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
625 #endif
626 rt_mutex_debug_task_free(tsk);
627 ftrace_graph_exit_task(tsk);
628 arch_release_task_struct(tsk);
629 if (tsk->flags & PF_KTHREAD)
630 free_kthread_struct(tsk);
631 bpf_task_storage_free(tsk);
632 free_task_struct(tsk);
633 }
634 EXPORT_SYMBOL(free_task);
635
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)636 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
637 {
638 struct file *exe_file;
639
640 exe_file = get_mm_exe_file(oldmm);
641 RCU_INIT_POINTER(mm->exe_file, exe_file);
642 /*
643 * We depend on the oldmm having properly denied write access to the
644 * exe_file already.
645 */
646 if (exe_file && deny_write_access(exe_file))
647 pr_warn_once("deny_write_access() failed in %s\n", __func__);
648 }
649
650 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)651 static __latent_entropy int dup_mmap(struct mm_struct *mm,
652 struct mm_struct *oldmm)
653 {
654 struct vm_area_struct *mpnt, *tmp;
655 int retval;
656 unsigned long charge = 0;
657 LIST_HEAD(uf);
658 VMA_ITERATOR(old_vmi, oldmm, 0);
659 VMA_ITERATOR(vmi, mm, 0);
660
661 uprobe_start_dup_mmap();
662 if (mmap_write_lock_killable(oldmm)) {
663 retval = -EINTR;
664 goto fail_uprobe_end;
665 }
666 flush_cache_dup_mm(oldmm);
667 uprobe_dup_mmap(oldmm, mm);
668 /*
669 * Not linked in yet - no deadlock potential:
670 */
671 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
672
673 /* No ordering required: file already has been exposed. */
674 dup_mm_exe_file(mm, oldmm);
675
676 mm->total_vm = oldmm->total_vm;
677 mm->data_vm = oldmm->data_vm;
678 mm->exec_vm = oldmm->exec_vm;
679 mm->stack_vm = oldmm->stack_vm;
680
681 retval = ksm_fork(mm, oldmm);
682 if (retval)
683 goto out;
684 khugepaged_fork(mm, oldmm);
685
686 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
687 if (retval)
688 goto out;
689
690 mt_clear_in_rcu(vmi.mas.tree);
691 for_each_vma(old_vmi, mpnt) {
692 struct file *file;
693
694 vma_start_write(mpnt);
695 if (mpnt->vm_flags & VM_DONTCOPY) {
696 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
697 continue;
698 }
699 charge = 0;
700 /*
701 * Don't duplicate many vmas if we've been oom-killed (for
702 * example)
703 */
704 if (fatal_signal_pending(current)) {
705 retval = -EINTR;
706 goto loop_out;
707 }
708 if (mpnt->vm_flags & VM_ACCOUNT) {
709 unsigned long len = vma_pages(mpnt);
710
711 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
712 goto fail_nomem;
713 charge = len;
714 }
715 tmp = vm_area_dup(mpnt);
716 if (!tmp)
717 goto fail_nomem;
718 retval = vma_dup_policy(mpnt, tmp);
719 if (retval)
720 goto fail_nomem_policy;
721 tmp->vm_mm = mm;
722 retval = dup_userfaultfd(tmp, &uf);
723 if (retval)
724 goto fail_nomem_anon_vma_fork;
725 if (tmp->vm_flags & VM_WIPEONFORK) {
726 /*
727 * VM_WIPEONFORK gets a clean slate in the child.
728 * Don't prepare anon_vma until fault since we don't
729 * copy page for current vma.
730 */
731 tmp->anon_vma = NULL;
732 } else if (anon_vma_fork(tmp, mpnt))
733 goto fail_nomem_anon_vma_fork;
734 vm_flags_clear(tmp, VM_LOCKED_MASK);
735 file = tmp->vm_file;
736 if (file) {
737 struct address_space *mapping = file->f_mapping;
738
739 get_file(file);
740 i_mmap_lock_write(mapping);
741 if (tmp->vm_flags & VM_SHARED)
742 mapping_allow_writable(mapping);
743 flush_dcache_mmap_lock(mapping);
744 /* insert tmp into the share list, just after mpnt */
745 vma_interval_tree_insert_after(tmp, mpnt,
746 &mapping->i_mmap);
747 flush_dcache_mmap_unlock(mapping);
748 i_mmap_unlock_write(mapping);
749 }
750
751 /*
752 * Copy/update hugetlb private vma information.
753 */
754 if (is_vm_hugetlb_page(tmp))
755 hugetlb_dup_vma_private(tmp);
756
757 /* Link the vma into the MT */
758 if (vma_iter_bulk_store(&vmi, tmp))
759 goto fail_nomem_vmi_store;
760
761 mm->map_count++;
762 if (!(tmp->vm_flags & VM_WIPEONFORK))
763 retval = copy_page_range(tmp, mpnt);
764
765 if (tmp->vm_ops && tmp->vm_ops->open)
766 tmp->vm_ops->open(tmp);
767
768 if (retval)
769 goto loop_out;
770 }
771 /* a new mm has just been created */
772 retval = arch_dup_mmap(oldmm, mm);
773 loop_out:
774 vma_iter_free(&vmi);
775 if (!retval)
776 mt_set_in_rcu(vmi.mas.tree);
777 out:
778 mmap_write_unlock(mm);
779 flush_tlb_mm(oldmm);
780 mmap_write_unlock(oldmm);
781 dup_userfaultfd_complete(&uf);
782 fail_uprobe_end:
783 uprobe_end_dup_mmap();
784 return retval;
785
786 fail_nomem_vmi_store:
787 unlink_anon_vmas(tmp);
788 fail_nomem_anon_vma_fork:
789 mpol_put(vma_policy(tmp));
790 fail_nomem_policy:
791 vm_area_free(tmp);
792 fail_nomem:
793 retval = -ENOMEM;
794 vm_unacct_memory(charge);
795 goto loop_out;
796 }
797
mm_alloc_pgd(struct mm_struct * mm)798 static inline int mm_alloc_pgd(struct mm_struct *mm)
799 {
800 mm->pgd = pgd_alloc(mm);
801 if (unlikely(!mm->pgd))
802 return -ENOMEM;
803 return 0;
804 }
805
mm_free_pgd(struct mm_struct * mm)806 static inline void mm_free_pgd(struct mm_struct *mm)
807 {
808 pgd_free(mm, mm->pgd);
809 }
810 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)811 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
812 {
813 mmap_write_lock(oldmm);
814 dup_mm_exe_file(mm, oldmm);
815 mmap_write_unlock(oldmm);
816 return 0;
817 }
818 #define mm_alloc_pgd(mm) (0)
819 #define mm_free_pgd(mm)
820 #endif /* CONFIG_MMU */
821
check_mm(struct mm_struct * mm)822 static void check_mm(struct mm_struct *mm)
823 {
824 int i;
825
826 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
827 "Please make sure 'struct resident_page_types[]' is updated as well");
828
829 for (i = 0; i < NR_MM_COUNTERS; i++) {
830 long x = percpu_counter_sum(&mm->rss_stat[i]);
831
832 if (unlikely(x))
833 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
834 mm, resident_page_types[i], x);
835 }
836
837 if (mm_pgtables_bytes(mm))
838 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
839 mm_pgtables_bytes(mm));
840
841 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
842 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
843 #endif
844 }
845
846 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
847 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
848
do_check_lazy_tlb(void * arg)849 static void do_check_lazy_tlb(void *arg)
850 {
851 struct mm_struct *mm = arg;
852
853 WARN_ON_ONCE(current->active_mm == mm);
854 }
855
do_shoot_lazy_tlb(void * arg)856 static void do_shoot_lazy_tlb(void *arg)
857 {
858 struct mm_struct *mm = arg;
859
860 if (current->active_mm == mm) {
861 WARN_ON_ONCE(current->mm);
862 current->active_mm = &init_mm;
863 switch_mm(mm, &init_mm, current);
864 }
865 }
866
cleanup_lazy_tlbs(struct mm_struct * mm)867 static void cleanup_lazy_tlbs(struct mm_struct *mm)
868 {
869 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
870 /*
871 * In this case, lazy tlb mms are refounted and would not reach
872 * __mmdrop until all CPUs have switched away and mmdrop()ed.
873 */
874 return;
875 }
876
877 /*
878 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
879 * requires lazy mm users to switch to another mm when the refcount
880 * drops to zero, before the mm is freed. This requires IPIs here to
881 * switch kernel threads to init_mm.
882 *
883 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
884 * switch with the final userspace teardown TLB flush which leaves the
885 * mm lazy on this CPU but no others, reducing the need for additional
886 * IPIs here. There are cases where a final IPI is still required here,
887 * such as the final mmdrop being performed on a different CPU than the
888 * one exiting, or kernel threads using the mm when userspace exits.
889 *
890 * IPI overheads have not found to be expensive, but they could be
891 * reduced in a number of possible ways, for example (roughly
892 * increasing order of complexity):
893 * - The last lazy reference created by exit_mm() could instead switch
894 * to init_mm, however it's probable this will run on the same CPU
895 * immediately afterwards, so this may not reduce IPIs much.
896 * - A batch of mms requiring IPIs could be gathered and freed at once.
897 * - CPUs store active_mm where it can be remotely checked without a
898 * lock, to filter out false-positives in the cpumask.
899 * - After mm_users or mm_count reaches zero, switching away from the
900 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
901 * with some batching or delaying of the final IPIs.
902 * - A delayed freeing and RCU-like quiescing sequence based on mm
903 * switching to avoid IPIs completely.
904 */
905 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
906 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
907 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
908 }
909
910 /*
911 * Called when the last reference to the mm
912 * is dropped: either by a lazy thread or by
913 * mmput. Free the page directory and the mm.
914 */
__mmdrop(struct mm_struct * mm)915 void __mmdrop(struct mm_struct *mm)
916 {
917 BUG_ON(mm == &init_mm);
918 WARN_ON_ONCE(mm == current->mm);
919
920 /* Ensure no CPUs are using this as their lazy tlb mm */
921 cleanup_lazy_tlbs(mm);
922
923 WARN_ON_ONCE(mm == current->active_mm);
924 mm_free_pgd(mm);
925 destroy_context(mm);
926 mmu_notifier_subscriptions_destroy(mm);
927 check_mm(mm);
928 put_user_ns(mm->user_ns);
929 mm_pasid_drop(mm);
930 mm_destroy_cid(mm);
931 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
932
933 free_mm(mm);
934 }
935 EXPORT_SYMBOL_GPL(__mmdrop);
936
mmdrop_async_fn(struct work_struct * work)937 static void mmdrop_async_fn(struct work_struct *work)
938 {
939 struct mm_struct *mm;
940
941 mm = container_of(work, struct mm_struct, async_put_work);
942 __mmdrop(mm);
943 }
944
mmdrop_async(struct mm_struct * mm)945 static void mmdrop_async(struct mm_struct *mm)
946 {
947 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
948 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
949 schedule_work(&mm->async_put_work);
950 }
951 }
952
free_signal_struct(struct signal_struct * sig)953 static inline void free_signal_struct(struct signal_struct *sig)
954 {
955 taskstats_tgid_free(sig);
956 sched_autogroup_exit(sig);
957 /*
958 * __mmdrop is not safe to call from softirq context on x86 due to
959 * pgd_dtor so postpone it to the async context
960 */
961 if (sig->oom_mm)
962 mmdrop_async(sig->oom_mm);
963 kmem_cache_free(signal_cachep, sig);
964 }
965
put_signal_struct(struct signal_struct * sig)966 static inline void put_signal_struct(struct signal_struct *sig)
967 {
968 if (refcount_dec_and_test(&sig->sigcnt))
969 free_signal_struct(sig);
970 }
971
__put_task_struct(struct task_struct * tsk)972 void __put_task_struct(struct task_struct *tsk)
973 {
974 WARN_ON(!tsk->exit_state);
975 WARN_ON(refcount_read(&tsk->usage));
976 WARN_ON(tsk == current);
977
978 io_uring_free(tsk);
979 cgroup_free(tsk);
980 task_numa_free(tsk, true);
981 security_task_free(tsk);
982 exit_creds(tsk);
983 delayacct_tsk_free(tsk);
984 put_signal_struct(tsk->signal);
985 sched_core_free(tsk);
986 free_task(tsk);
987 }
988 EXPORT_SYMBOL_GPL(__put_task_struct);
989
__put_task_struct_rcu_cb(struct rcu_head * rhp)990 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
991 {
992 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
993
994 __put_task_struct(task);
995 }
996 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
997
arch_task_cache_init(void)998 void __init __weak arch_task_cache_init(void) { }
999
1000 /*
1001 * set_max_threads
1002 */
set_max_threads(unsigned int max_threads_suggested)1003 static void set_max_threads(unsigned int max_threads_suggested)
1004 {
1005 u64 threads;
1006 unsigned long nr_pages = totalram_pages();
1007
1008 /*
1009 * The number of threads shall be limited such that the thread
1010 * structures may only consume a small part of the available memory.
1011 */
1012 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1013 threads = MAX_THREADS;
1014 else
1015 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1016 (u64) THREAD_SIZE * 8UL);
1017
1018 if (threads > max_threads_suggested)
1019 threads = max_threads_suggested;
1020
1021 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1022 }
1023
1024 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1025 /* Initialized by the architecture: */
1026 int arch_task_struct_size __read_mostly;
1027 #endif
1028
1029 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)1030 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1031 {
1032 /* Fetch thread_struct whitelist for the architecture. */
1033 arch_thread_struct_whitelist(offset, size);
1034
1035 /*
1036 * Handle zero-sized whitelist or empty thread_struct, otherwise
1037 * adjust offset to position of thread_struct in task_struct.
1038 */
1039 if (unlikely(*size == 0))
1040 *offset = 0;
1041 else
1042 *offset += offsetof(struct task_struct, thread);
1043 }
1044 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1045
fork_init(void)1046 void __init fork_init(void)
1047 {
1048 int i;
1049 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1050 #ifndef ARCH_MIN_TASKALIGN
1051 #define ARCH_MIN_TASKALIGN 0
1052 #endif
1053 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1054 unsigned long useroffset, usersize;
1055
1056 /* create a slab on which task_structs can be allocated */
1057 task_struct_whitelist(&useroffset, &usersize);
1058 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1059 arch_task_struct_size, align,
1060 SLAB_PANIC|SLAB_ACCOUNT,
1061 useroffset, usersize, NULL);
1062 #endif
1063
1064 /* do the arch specific task caches init */
1065 arch_task_cache_init();
1066
1067 set_max_threads(MAX_THREADS);
1068
1069 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1070 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1071 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1072 init_task.signal->rlim[RLIMIT_NPROC];
1073
1074 for (i = 0; i < UCOUNT_COUNTS; i++)
1075 init_user_ns.ucount_max[i] = max_threads/2;
1076
1077 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1078 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1079 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1080 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
1081
1082 #ifdef CONFIG_VMAP_STACK
1083 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1084 NULL, free_vm_stack_cache);
1085 #endif
1086
1087 scs_init();
1088
1089 lockdep_init_task(&init_task);
1090 uprobes_init();
1091 }
1092
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1093 int __weak arch_dup_task_struct(struct task_struct *dst,
1094 struct task_struct *src)
1095 {
1096 *dst = *src;
1097 return 0;
1098 }
1099
set_task_stack_end_magic(struct task_struct * tsk)1100 void set_task_stack_end_magic(struct task_struct *tsk)
1101 {
1102 unsigned long *stackend;
1103
1104 stackend = end_of_stack(tsk);
1105 *stackend = STACK_END_MAGIC; /* for overflow detection */
1106 }
1107
dup_task_struct(struct task_struct * orig,int node)1108 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1109 {
1110 struct task_struct *tsk;
1111 int err;
1112
1113 if (node == NUMA_NO_NODE)
1114 node = tsk_fork_get_node(orig);
1115 tsk = alloc_task_struct_node(node);
1116 if (!tsk)
1117 return NULL;
1118
1119 err = arch_dup_task_struct(tsk, orig);
1120 if (err)
1121 goto free_tsk;
1122
1123 err = alloc_thread_stack_node(tsk, node);
1124 if (err)
1125 goto free_tsk;
1126
1127 #ifdef CONFIG_THREAD_INFO_IN_TASK
1128 refcount_set(&tsk->stack_refcount, 1);
1129 #endif
1130 account_kernel_stack(tsk, 1);
1131
1132 err = scs_prepare(tsk, node);
1133 if (err)
1134 goto free_stack;
1135
1136 #ifdef CONFIG_SECCOMP
1137 /*
1138 * We must handle setting up seccomp filters once we're under
1139 * the sighand lock in case orig has changed between now and
1140 * then. Until then, filter must be NULL to avoid messing up
1141 * the usage counts on the error path calling free_task.
1142 */
1143 tsk->seccomp.filter = NULL;
1144 #endif
1145
1146 setup_thread_stack(tsk, orig);
1147 clear_user_return_notifier(tsk);
1148 clear_tsk_need_resched(tsk);
1149 set_task_stack_end_magic(tsk);
1150 clear_syscall_work_syscall_user_dispatch(tsk);
1151
1152 #ifdef CONFIG_STACKPROTECTOR
1153 tsk->stack_canary = get_random_canary();
1154 #endif
1155 if (orig->cpus_ptr == &orig->cpus_mask)
1156 tsk->cpus_ptr = &tsk->cpus_mask;
1157 dup_user_cpus_ptr(tsk, orig, node);
1158
1159 /*
1160 * One for the user space visible state that goes away when reaped.
1161 * One for the scheduler.
1162 */
1163 refcount_set(&tsk->rcu_users, 2);
1164 /* One for the rcu users */
1165 refcount_set(&tsk->usage, 1);
1166 #ifdef CONFIG_BLK_DEV_IO_TRACE
1167 tsk->btrace_seq = 0;
1168 #endif
1169 tsk->splice_pipe = NULL;
1170 tsk->task_frag.page = NULL;
1171 tsk->wake_q.next = NULL;
1172 tsk->worker_private = NULL;
1173
1174 kcov_task_init(tsk);
1175 kmsan_task_create(tsk);
1176 kmap_local_fork(tsk);
1177
1178 #ifdef CONFIG_FAULT_INJECTION
1179 tsk->fail_nth = 0;
1180 #endif
1181
1182 #ifdef CONFIG_BLK_CGROUP
1183 tsk->throttle_disk = NULL;
1184 tsk->use_memdelay = 0;
1185 #endif
1186
1187 #ifdef CONFIG_IOMMU_SVA
1188 tsk->pasid_activated = 0;
1189 #endif
1190
1191 #ifdef CONFIG_MEMCG
1192 tsk->active_memcg = NULL;
1193 #endif
1194
1195 #ifdef CONFIG_CPU_SUP_INTEL
1196 tsk->reported_split_lock = 0;
1197 #endif
1198
1199 #ifdef CONFIG_SCHED_MM_CID
1200 tsk->mm_cid = -1;
1201 tsk->last_mm_cid = -1;
1202 tsk->mm_cid_active = 0;
1203 tsk->migrate_from_cpu = -1;
1204 #endif
1205 return tsk;
1206
1207 free_stack:
1208 exit_task_stack_account(tsk);
1209 free_thread_stack(tsk);
1210 free_tsk:
1211 free_task_struct(tsk);
1212 return NULL;
1213 }
1214
1215 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1216
1217 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1218
coredump_filter_setup(char * s)1219 static int __init coredump_filter_setup(char *s)
1220 {
1221 default_dump_filter =
1222 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1223 MMF_DUMP_FILTER_MASK;
1224 return 1;
1225 }
1226
1227 __setup("coredump_filter=", coredump_filter_setup);
1228
1229 #include <linux/init_task.h>
1230
mm_init_aio(struct mm_struct * mm)1231 static void mm_init_aio(struct mm_struct *mm)
1232 {
1233 #ifdef CONFIG_AIO
1234 spin_lock_init(&mm->ioctx_lock);
1235 mm->ioctx_table = NULL;
1236 #endif
1237 }
1238
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1239 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1240 struct task_struct *p)
1241 {
1242 #ifdef CONFIG_MEMCG
1243 if (mm->owner == p)
1244 WRITE_ONCE(mm->owner, NULL);
1245 #endif
1246 }
1247
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1248 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1249 {
1250 #ifdef CONFIG_MEMCG
1251 mm->owner = p;
1252 #endif
1253 }
1254
mm_init_uprobes_state(struct mm_struct * mm)1255 static void mm_init_uprobes_state(struct mm_struct *mm)
1256 {
1257 #ifdef CONFIG_UPROBES
1258 mm->uprobes_state.xol_area = NULL;
1259 #endif
1260 }
1261
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1262 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1263 struct user_namespace *user_ns)
1264 {
1265 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1266 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1267 atomic_set(&mm->mm_users, 1);
1268 atomic_set(&mm->mm_count, 1);
1269 seqcount_init(&mm->write_protect_seq);
1270 mmap_init_lock(mm);
1271 INIT_LIST_HEAD(&mm->mmlist);
1272 #ifdef CONFIG_PER_VMA_LOCK
1273 mm->mm_lock_seq = 0;
1274 #endif
1275 mm_pgtables_bytes_init(mm);
1276 mm->map_count = 0;
1277 mm->locked_vm = 0;
1278 atomic64_set(&mm->pinned_vm, 0);
1279 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1280 spin_lock_init(&mm->page_table_lock);
1281 spin_lock_init(&mm->arg_lock);
1282 mm_init_cpumask(mm);
1283 mm_init_aio(mm);
1284 mm_init_owner(mm, p);
1285 mm_pasid_init(mm);
1286 RCU_INIT_POINTER(mm->exe_file, NULL);
1287 mmu_notifier_subscriptions_init(mm);
1288 init_tlb_flush_pending(mm);
1289 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1290 mm->pmd_huge_pte = NULL;
1291 #endif
1292 mm_init_uprobes_state(mm);
1293 hugetlb_count_init(mm);
1294
1295 if (current->mm) {
1296 mm->flags = mmf_init_flags(current->mm->flags);
1297 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1298 } else {
1299 mm->flags = default_dump_filter;
1300 mm->def_flags = 0;
1301 }
1302
1303 if (mm_alloc_pgd(mm))
1304 goto fail_nopgd;
1305
1306 if (init_new_context(p, mm))
1307 goto fail_nocontext;
1308
1309 if (mm_alloc_cid(mm))
1310 goto fail_cid;
1311
1312 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1313 NR_MM_COUNTERS))
1314 goto fail_pcpu;
1315
1316 mm->user_ns = get_user_ns(user_ns);
1317 lru_gen_init_mm(mm);
1318 return mm;
1319
1320 fail_pcpu:
1321 mm_destroy_cid(mm);
1322 fail_cid:
1323 destroy_context(mm);
1324 fail_nocontext:
1325 mm_free_pgd(mm);
1326 fail_nopgd:
1327 free_mm(mm);
1328 return NULL;
1329 }
1330
1331 /*
1332 * Allocate and initialize an mm_struct.
1333 */
mm_alloc(void)1334 struct mm_struct *mm_alloc(void)
1335 {
1336 struct mm_struct *mm;
1337
1338 mm = allocate_mm();
1339 if (!mm)
1340 return NULL;
1341
1342 memset(mm, 0, sizeof(*mm));
1343 return mm_init(mm, current, current_user_ns());
1344 }
1345
__mmput(struct mm_struct * mm)1346 static inline void __mmput(struct mm_struct *mm)
1347 {
1348 VM_BUG_ON(atomic_read(&mm->mm_users));
1349
1350 uprobe_clear_state(mm);
1351 exit_aio(mm);
1352 ksm_exit(mm);
1353 khugepaged_exit(mm); /* must run before exit_mmap */
1354 exit_mmap(mm);
1355 mm_put_huge_zero_page(mm);
1356 set_mm_exe_file(mm, NULL);
1357 if (!list_empty(&mm->mmlist)) {
1358 spin_lock(&mmlist_lock);
1359 list_del(&mm->mmlist);
1360 spin_unlock(&mmlist_lock);
1361 }
1362 if (mm->binfmt)
1363 module_put(mm->binfmt->module);
1364 lru_gen_del_mm(mm);
1365 mmdrop(mm);
1366 }
1367
1368 /*
1369 * Decrement the use count and release all resources for an mm.
1370 */
mmput(struct mm_struct * mm)1371 void mmput(struct mm_struct *mm)
1372 {
1373 might_sleep();
1374
1375 if (atomic_dec_and_test(&mm->mm_users))
1376 __mmput(mm);
1377 }
1378 EXPORT_SYMBOL_GPL(mmput);
1379
1380 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1381 static void mmput_async_fn(struct work_struct *work)
1382 {
1383 struct mm_struct *mm = container_of(work, struct mm_struct,
1384 async_put_work);
1385
1386 __mmput(mm);
1387 }
1388
mmput_async(struct mm_struct * mm)1389 void mmput_async(struct mm_struct *mm)
1390 {
1391 if (atomic_dec_and_test(&mm->mm_users)) {
1392 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1393 schedule_work(&mm->async_put_work);
1394 }
1395 }
1396 EXPORT_SYMBOL_GPL(mmput_async);
1397 #endif
1398
1399 /**
1400 * set_mm_exe_file - change a reference to the mm's executable file
1401 *
1402 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1403 *
1404 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1405 * invocations: in mmput() nobody alive left, in execve it happens before
1406 * the new mm is made visible to anyone.
1407 *
1408 * Can only fail if new_exe_file != NULL.
1409 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1410 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1411 {
1412 struct file *old_exe_file;
1413
1414 /*
1415 * It is safe to dereference the exe_file without RCU as
1416 * this function is only called if nobody else can access
1417 * this mm -- see comment above for justification.
1418 */
1419 old_exe_file = rcu_dereference_raw(mm->exe_file);
1420
1421 if (new_exe_file) {
1422 /*
1423 * We expect the caller (i.e., sys_execve) to already denied
1424 * write access, so this is unlikely to fail.
1425 */
1426 if (unlikely(deny_write_access(new_exe_file)))
1427 return -EACCES;
1428 get_file(new_exe_file);
1429 }
1430 rcu_assign_pointer(mm->exe_file, new_exe_file);
1431 if (old_exe_file) {
1432 allow_write_access(old_exe_file);
1433 fput(old_exe_file);
1434 }
1435 return 0;
1436 }
1437
1438 /**
1439 * replace_mm_exe_file - replace a reference to the mm's executable file
1440 *
1441 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1442 *
1443 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1444 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1445 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1446 {
1447 struct vm_area_struct *vma;
1448 struct file *old_exe_file;
1449 int ret = 0;
1450
1451 /* Forbid mm->exe_file change if old file still mapped. */
1452 old_exe_file = get_mm_exe_file(mm);
1453 if (old_exe_file) {
1454 VMA_ITERATOR(vmi, mm, 0);
1455 mmap_read_lock(mm);
1456 for_each_vma(vmi, vma) {
1457 if (!vma->vm_file)
1458 continue;
1459 if (path_equal(&vma->vm_file->f_path,
1460 &old_exe_file->f_path)) {
1461 ret = -EBUSY;
1462 break;
1463 }
1464 }
1465 mmap_read_unlock(mm);
1466 fput(old_exe_file);
1467 if (ret)
1468 return ret;
1469 }
1470
1471 ret = deny_write_access(new_exe_file);
1472 if (ret)
1473 return -EACCES;
1474 get_file(new_exe_file);
1475
1476 /* set the new file */
1477 mmap_write_lock(mm);
1478 old_exe_file = rcu_dereference_raw(mm->exe_file);
1479 rcu_assign_pointer(mm->exe_file, new_exe_file);
1480 mmap_write_unlock(mm);
1481
1482 if (old_exe_file) {
1483 allow_write_access(old_exe_file);
1484 fput(old_exe_file);
1485 }
1486 return 0;
1487 }
1488
1489 /**
1490 * get_mm_exe_file - acquire a reference to the mm's executable file
1491 *
1492 * Returns %NULL if mm has no associated executable file.
1493 * User must release file via fput().
1494 */
get_mm_exe_file(struct mm_struct * mm)1495 struct file *get_mm_exe_file(struct mm_struct *mm)
1496 {
1497 struct file *exe_file;
1498
1499 rcu_read_lock();
1500 exe_file = rcu_dereference(mm->exe_file);
1501 if (exe_file && !get_file_rcu(exe_file))
1502 exe_file = NULL;
1503 rcu_read_unlock();
1504 return exe_file;
1505 }
1506
1507 /**
1508 * get_task_exe_file - acquire a reference to the task's executable file
1509 *
1510 * Returns %NULL if task's mm (if any) has no associated executable file or
1511 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1512 * User must release file via fput().
1513 */
get_task_exe_file(struct task_struct * task)1514 struct file *get_task_exe_file(struct task_struct *task)
1515 {
1516 struct file *exe_file = NULL;
1517 struct mm_struct *mm;
1518
1519 task_lock(task);
1520 mm = task->mm;
1521 if (mm) {
1522 if (!(task->flags & PF_KTHREAD))
1523 exe_file = get_mm_exe_file(mm);
1524 }
1525 task_unlock(task);
1526 return exe_file;
1527 }
1528
1529 /**
1530 * get_task_mm - acquire a reference to the task's mm
1531 *
1532 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1533 * this kernel workthread has transiently adopted a user mm with use_mm,
1534 * to do its AIO) is not set and if so returns a reference to it, after
1535 * bumping up the use count. User must release the mm via mmput()
1536 * after use. Typically used by /proc and ptrace.
1537 */
get_task_mm(struct task_struct * task)1538 struct mm_struct *get_task_mm(struct task_struct *task)
1539 {
1540 struct mm_struct *mm;
1541
1542 task_lock(task);
1543 mm = task->mm;
1544 if (mm) {
1545 if (task->flags & PF_KTHREAD)
1546 mm = NULL;
1547 else
1548 mmget(mm);
1549 }
1550 task_unlock(task);
1551 return mm;
1552 }
1553 EXPORT_SYMBOL_GPL(get_task_mm);
1554
mm_access(struct task_struct * task,unsigned int mode)1555 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1556 {
1557 struct mm_struct *mm;
1558 int err;
1559
1560 err = down_read_killable(&task->signal->exec_update_lock);
1561 if (err)
1562 return ERR_PTR(err);
1563
1564 mm = get_task_mm(task);
1565 if (mm && mm != current->mm &&
1566 !ptrace_may_access(task, mode)) {
1567 mmput(mm);
1568 mm = ERR_PTR(-EACCES);
1569 }
1570 up_read(&task->signal->exec_update_lock);
1571
1572 return mm;
1573 }
1574
complete_vfork_done(struct task_struct * tsk)1575 static void complete_vfork_done(struct task_struct *tsk)
1576 {
1577 struct completion *vfork;
1578
1579 task_lock(tsk);
1580 vfork = tsk->vfork_done;
1581 if (likely(vfork)) {
1582 tsk->vfork_done = NULL;
1583 complete(vfork);
1584 }
1585 task_unlock(tsk);
1586 }
1587
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1588 static int wait_for_vfork_done(struct task_struct *child,
1589 struct completion *vfork)
1590 {
1591 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1592 int killed;
1593
1594 cgroup_enter_frozen();
1595 killed = wait_for_completion_state(vfork, state);
1596 cgroup_leave_frozen(false);
1597
1598 if (killed) {
1599 task_lock(child);
1600 child->vfork_done = NULL;
1601 task_unlock(child);
1602 }
1603
1604 put_task_struct(child);
1605 return killed;
1606 }
1607
1608 /* Please note the differences between mmput and mm_release.
1609 * mmput is called whenever we stop holding onto a mm_struct,
1610 * error success whatever.
1611 *
1612 * mm_release is called after a mm_struct has been removed
1613 * from the current process.
1614 *
1615 * This difference is important for error handling, when we
1616 * only half set up a mm_struct for a new process and need to restore
1617 * the old one. Because we mmput the new mm_struct before
1618 * restoring the old one. . .
1619 * Eric Biederman 10 January 1998
1620 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1621 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1622 {
1623 uprobe_free_utask(tsk);
1624
1625 /* Get rid of any cached register state */
1626 deactivate_mm(tsk, mm);
1627
1628 /*
1629 * Signal userspace if we're not exiting with a core dump
1630 * because we want to leave the value intact for debugging
1631 * purposes.
1632 */
1633 if (tsk->clear_child_tid) {
1634 if (atomic_read(&mm->mm_users) > 1) {
1635 /*
1636 * We don't check the error code - if userspace has
1637 * not set up a proper pointer then tough luck.
1638 */
1639 put_user(0, tsk->clear_child_tid);
1640 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1641 1, NULL, NULL, 0, 0);
1642 }
1643 tsk->clear_child_tid = NULL;
1644 }
1645
1646 /*
1647 * All done, finally we can wake up parent and return this mm to him.
1648 * Also kthread_stop() uses this completion for synchronization.
1649 */
1650 if (tsk->vfork_done)
1651 complete_vfork_done(tsk);
1652 }
1653
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1654 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1655 {
1656 futex_exit_release(tsk);
1657 mm_release(tsk, mm);
1658 }
1659
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1660 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1661 {
1662 futex_exec_release(tsk);
1663 mm_release(tsk, mm);
1664 }
1665
1666 /**
1667 * dup_mm() - duplicates an existing mm structure
1668 * @tsk: the task_struct with which the new mm will be associated.
1669 * @oldmm: the mm to duplicate.
1670 *
1671 * Allocates a new mm structure and duplicates the provided @oldmm structure
1672 * content into it.
1673 *
1674 * Return: the duplicated mm or NULL on failure.
1675 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1676 static struct mm_struct *dup_mm(struct task_struct *tsk,
1677 struct mm_struct *oldmm)
1678 {
1679 struct mm_struct *mm;
1680 int err;
1681
1682 mm = allocate_mm();
1683 if (!mm)
1684 goto fail_nomem;
1685
1686 memcpy(mm, oldmm, sizeof(*mm));
1687
1688 if (!mm_init(mm, tsk, mm->user_ns))
1689 goto fail_nomem;
1690
1691 err = dup_mmap(mm, oldmm);
1692 if (err)
1693 goto free_pt;
1694
1695 mm->hiwater_rss = get_mm_rss(mm);
1696 mm->hiwater_vm = mm->total_vm;
1697
1698 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1699 goto free_pt;
1700
1701 return mm;
1702
1703 free_pt:
1704 /* don't put binfmt in mmput, we haven't got module yet */
1705 mm->binfmt = NULL;
1706 mm_init_owner(mm, NULL);
1707 mmput(mm);
1708
1709 fail_nomem:
1710 return NULL;
1711 }
1712
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1713 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1714 {
1715 struct mm_struct *mm, *oldmm;
1716
1717 tsk->min_flt = tsk->maj_flt = 0;
1718 tsk->nvcsw = tsk->nivcsw = 0;
1719 #ifdef CONFIG_DETECT_HUNG_TASK
1720 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1721 tsk->last_switch_time = 0;
1722 #endif
1723
1724 tsk->mm = NULL;
1725 tsk->active_mm = NULL;
1726
1727 /*
1728 * Are we cloning a kernel thread?
1729 *
1730 * We need to steal a active VM for that..
1731 */
1732 oldmm = current->mm;
1733 if (!oldmm)
1734 return 0;
1735
1736 if (clone_flags & CLONE_VM) {
1737 mmget(oldmm);
1738 mm = oldmm;
1739 } else {
1740 mm = dup_mm(tsk, current->mm);
1741 if (!mm)
1742 return -ENOMEM;
1743 }
1744
1745 tsk->mm = mm;
1746 tsk->active_mm = mm;
1747 sched_mm_cid_fork(tsk);
1748 return 0;
1749 }
1750
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1751 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1752 {
1753 struct fs_struct *fs = current->fs;
1754 if (clone_flags & CLONE_FS) {
1755 /* tsk->fs is already what we want */
1756 spin_lock(&fs->lock);
1757 if (fs->in_exec) {
1758 spin_unlock(&fs->lock);
1759 return -EAGAIN;
1760 }
1761 fs->users++;
1762 spin_unlock(&fs->lock);
1763 return 0;
1764 }
1765 tsk->fs = copy_fs_struct(fs);
1766 if (!tsk->fs)
1767 return -ENOMEM;
1768 return 0;
1769 }
1770
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1771 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1772 int no_files)
1773 {
1774 struct files_struct *oldf, *newf;
1775
1776 /*
1777 * A background process may not have any files ...
1778 */
1779 oldf = current->files;
1780 if (!oldf)
1781 return 0;
1782
1783 if (no_files) {
1784 tsk->files = NULL;
1785 return 0;
1786 }
1787
1788 if (clone_flags & CLONE_FILES) {
1789 atomic_inc(&oldf->count);
1790 return 0;
1791 }
1792
1793 newf = dup_fd(oldf, NULL);
1794 if (IS_ERR(newf))
1795 return PTR_ERR(newf);
1796
1797 tsk->files = newf;
1798 return 0;
1799 }
1800
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1801 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1802 {
1803 struct sighand_struct *sig;
1804
1805 if (clone_flags & CLONE_SIGHAND) {
1806 refcount_inc(¤t->sighand->count);
1807 return 0;
1808 }
1809 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1810 RCU_INIT_POINTER(tsk->sighand, sig);
1811 if (!sig)
1812 return -ENOMEM;
1813
1814 refcount_set(&sig->count, 1);
1815 spin_lock_irq(¤t->sighand->siglock);
1816 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1817 spin_unlock_irq(¤t->sighand->siglock);
1818
1819 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1820 if (clone_flags & CLONE_CLEAR_SIGHAND)
1821 flush_signal_handlers(tsk, 0);
1822
1823 return 0;
1824 }
1825
__cleanup_sighand(struct sighand_struct * sighand)1826 void __cleanup_sighand(struct sighand_struct *sighand)
1827 {
1828 if (refcount_dec_and_test(&sighand->count)) {
1829 signalfd_cleanup(sighand);
1830 /*
1831 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1832 * without an RCU grace period, see __lock_task_sighand().
1833 */
1834 kmem_cache_free(sighand_cachep, sighand);
1835 }
1836 }
1837
1838 /*
1839 * Initialize POSIX timer handling for a thread group.
1840 */
posix_cpu_timers_init_group(struct signal_struct * sig)1841 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1842 {
1843 struct posix_cputimers *pct = &sig->posix_cputimers;
1844 unsigned long cpu_limit;
1845
1846 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1847 posix_cputimers_group_init(pct, cpu_limit);
1848 }
1849
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1850 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1851 {
1852 struct signal_struct *sig;
1853
1854 if (clone_flags & CLONE_THREAD)
1855 return 0;
1856
1857 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1858 tsk->signal = sig;
1859 if (!sig)
1860 return -ENOMEM;
1861
1862 sig->nr_threads = 1;
1863 sig->quick_threads = 1;
1864 atomic_set(&sig->live, 1);
1865 refcount_set(&sig->sigcnt, 1);
1866
1867 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1868 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1869 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1870
1871 init_waitqueue_head(&sig->wait_chldexit);
1872 sig->curr_target = tsk;
1873 init_sigpending(&sig->shared_pending);
1874 INIT_HLIST_HEAD(&sig->multiprocess);
1875 seqlock_init(&sig->stats_lock);
1876 prev_cputime_init(&sig->prev_cputime);
1877
1878 #ifdef CONFIG_POSIX_TIMERS
1879 INIT_LIST_HEAD(&sig->posix_timers);
1880 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1881 sig->real_timer.function = it_real_fn;
1882 #endif
1883
1884 task_lock(current->group_leader);
1885 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1886 task_unlock(current->group_leader);
1887
1888 posix_cpu_timers_init_group(sig);
1889
1890 tty_audit_fork(sig);
1891 sched_autogroup_fork(sig);
1892
1893 sig->oom_score_adj = current->signal->oom_score_adj;
1894 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1895
1896 mutex_init(&sig->cred_guard_mutex);
1897 init_rwsem(&sig->exec_update_lock);
1898
1899 return 0;
1900 }
1901
copy_seccomp(struct task_struct * p)1902 static void copy_seccomp(struct task_struct *p)
1903 {
1904 #ifdef CONFIG_SECCOMP
1905 /*
1906 * Must be called with sighand->lock held, which is common to
1907 * all threads in the group. Holding cred_guard_mutex is not
1908 * needed because this new task is not yet running and cannot
1909 * be racing exec.
1910 */
1911 assert_spin_locked(¤t->sighand->siglock);
1912
1913 /* Ref-count the new filter user, and assign it. */
1914 get_seccomp_filter(current);
1915 p->seccomp = current->seccomp;
1916
1917 /*
1918 * Explicitly enable no_new_privs here in case it got set
1919 * between the task_struct being duplicated and holding the
1920 * sighand lock. The seccomp state and nnp must be in sync.
1921 */
1922 if (task_no_new_privs(current))
1923 task_set_no_new_privs(p);
1924
1925 /*
1926 * If the parent gained a seccomp mode after copying thread
1927 * flags and between before we held the sighand lock, we have
1928 * to manually enable the seccomp thread flag here.
1929 */
1930 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1931 set_task_syscall_work(p, SECCOMP);
1932 #endif
1933 }
1934
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1935 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1936 {
1937 current->clear_child_tid = tidptr;
1938
1939 return task_pid_vnr(current);
1940 }
1941
rt_mutex_init_task(struct task_struct * p)1942 static void rt_mutex_init_task(struct task_struct *p)
1943 {
1944 raw_spin_lock_init(&p->pi_lock);
1945 #ifdef CONFIG_RT_MUTEXES
1946 p->pi_waiters = RB_ROOT_CACHED;
1947 p->pi_top_task = NULL;
1948 p->pi_blocked_on = NULL;
1949 #endif
1950 }
1951
init_task_pid_links(struct task_struct * task)1952 static inline void init_task_pid_links(struct task_struct *task)
1953 {
1954 enum pid_type type;
1955
1956 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1957 INIT_HLIST_NODE(&task->pid_links[type]);
1958 }
1959
1960 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1961 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1962 {
1963 if (type == PIDTYPE_PID)
1964 task->thread_pid = pid;
1965 else
1966 task->signal->pids[type] = pid;
1967 }
1968
rcu_copy_process(struct task_struct * p)1969 static inline void rcu_copy_process(struct task_struct *p)
1970 {
1971 #ifdef CONFIG_PREEMPT_RCU
1972 p->rcu_read_lock_nesting = 0;
1973 p->rcu_read_unlock_special.s = 0;
1974 p->rcu_blocked_node = NULL;
1975 INIT_LIST_HEAD(&p->rcu_node_entry);
1976 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1977 #ifdef CONFIG_TASKS_RCU
1978 p->rcu_tasks_holdout = false;
1979 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1980 p->rcu_tasks_idle_cpu = -1;
1981 INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1982 #endif /* #ifdef CONFIG_TASKS_RCU */
1983 #ifdef CONFIG_TASKS_TRACE_RCU
1984 p->trc_reader_nesting = 0;
1985 p->trc_reader_special.s = 0;
1986 INIT_LIST_HEAD(&p->trc_holdout_list);
1987 INIT_LIST_HEAD(&p->trc_blkd_node);
1988 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1989 }
1990
pidfd_pid(const struct file * file)1991 struct pid *pidfd_pid(const struct file *file)
1992 {
1993 if (file->f_op == &pidfd_fops)
1994 return file->private_data;
1995
1996 return ERR_PTR(-EBADF);
1997 }
1998
pidfd_release(struct inode * inode,struct file * file)1999 static int pidfd_release(struct inode *inode, struct file *file)
2000 {
2001 struct pid *pid = file->private_data;
2002
2003 file->private_data = NULL;
2004 put_pid(pid);
2005 return 0;
2006 }
2007
2008 #ifdef CONFIG_PROC_FS
2009 /**
2010 * pidfd_show_fdinfo - print information about a pidfd
2011 * @m: proc fdinfo file
2012 * @f: file referencing a pidfd
2013 *
2014 * Pid:
2015 * This function will print the pid that a given pidfd refers to in the
2016 * pid namespace of the procfs instance.
2017 * If the pid namespace of the process is not a descendant of the pid
2018 * namespace of the procfs instance 0 will be shown as its pid. This is
2019 * similar to calling getppid() on a process whose parent is outside of
2020 * its pid namespace.
2021 *
2022 * NSpid:
2023 * If pid namespaces are supported then this function will also print
2024 * the pid of a given pidfd refers to for all descendant pid namespaces
2025 * starting from the current pid namespace of the instance, i.e. the
2026 * Pid field and the first entry in the NSpid field will be identical.
2027 * If the pid namespace of the process is not a descendant of the pid
2028 * namespace of the procfs instance 0 will be shown as its first NSpid
2029 * entry and no others will be shown.
2030 * Note that this differs from the Pid and NSpid fields in
2031 * /proc/<pid>/status where Pid and NSpid are always shown relative to
2032 * the pid namespace of the procfs instance. The difference becomes
2033 * obvious when sending around a pidfd between pid namespaces from a
2034 * different branch of the tree, i.e. where no ancestral relation is
2035 * present between the pid namespaces:
2036 * - create two new pid namespaces ns1 and ns2 in the initial pid
2037 * namespace (also take care to create new mount namespaces in the
2038 * new pid namespace and mount procfs)
2039 * - create a process with a pidfd in ns1
2040 * - send pidfd from ns1 to ns2
2041 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2042 * have exactly one entry, which is 0
2043 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)2044 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2045 {
2046 struct pid *pid = f->private_data;
2047 struct pid_namespace *ns;
2048 pid_t nr = -1;
2049
2050 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2051 ns = proc_pid_ns(file_inode(m->file)->i_sb);
2052 nr = pid_nr_ns(pid, ns);
2053 }
2054
2055 seq_put_decimal_ll(m, "Pid:\t", nr);
2056
2057 #ifdef CONFIG_PID_NS
2058 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2059 if (nr > 0) {
2060 int i;
2061
2062 /* If nr is non-zero it means that 'pid' is valid and that
2063 * ns, i.e. the pid namespace associated with the procfs
2064 * instance, is in the pid namespace hierarchy of pid.
2065 * Start at one below the already printed level.
2066 */
2067 for (i = ns->level + 1; i <= pid->level; i++)
2068 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2069 }
2070 #endif
2071 seq_putc(m, '\n');
2072 }
2073 #endif
2074
2075 /*
2076 * Poll support for process exit notification.
2077 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)2078 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2079 {
2080 struct pid *pid = file->private_data;
2081 __poll_t poll_flags = 0;
2082
2083 poll_wait(file, &pid->wait_pidfd, pts);
2084
2085 /*
2086 * Inform pollers only when the whole thread group exits.
2087 * If the thread group leader exits before all other threads in the
2088 * group, then poll(2) should block, similar to the wait(2) family.
2089 */
2090 if (thread_group_exited(pid))
2091 poll_flags = EPOLLIN | EPOLLRDNORM;
2092
2093 return poll_flags;
2094 }
2095
2096 const struct file_operations pidfd_fops = {
2097 .release = pidfd_release,
2098 .poll = pidfd_poll,
2099 #ifdef CONFIG_PROC_FS
2100 .show_fdinfo = pidfd_show_fdinfo,
2101 #endif
2102 };
2103
2104 /**
2105 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2106 * @pid: the struct pid for which to create a pidfd
2107 * @flags: flags of the new @pidfd
2108 * @pidfd: the pidfd to return
2109 *
2110 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2111 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2112
2113 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2114 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2115 * pidfd file are prepared.
2116 *
2117 * If this function returns successfully the caller is responsible to either
2118 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2119 * order to install the pidfd into its file descriptor table or they must use
2120 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2121 * respectively.
2122 *
2123 * This function is useful when a pidfd must already be reserved but there
2124 * might still be points of failure afterwards and the caller wants to ensure
2125 * that no pidfd is leaked into its file descriptor table.
2126 *
2127 * Return: On success, a reserved pidfd is returned from the function and a new
2128 * pidfd file is returned in the last argument to the function. On
2129 * error, a negative error code is returned from the function and the
2130 * last argument remains unchanged.
2131 */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2132 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2133 {
2134 int pidfd;
2135 struct file *pidfd_file;
2136
2137 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2138 return -EINVAL;
2139
2140 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2141 if (pidfd < 0)
2142 return pidfd;
2143
2144 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2145 flags | O_RDWR | O_CLOEXEC);
2146 if (IS_ERR(pidfd_file)) {
2147 put_unused_fd(pidfd);
2148 return PTR_ERR(pidfd_file);
2149 }
2150 get_pid(pid); /* held by pidfd_file now */
2151 *ret = pidfd_file;
2152 return pidfd;
2153 }
2154
2155 /**
2156 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2157 * @pid: the struct pid for which to create a pidfd
2158 * @flags: flags of the new @pidfd
2159 * @pidfd: the pidfd to return
2160 *
2161 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2162 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2163 *
2164 * The helper verifies that @pid is used as a thread group leader.
2165 *
2166 * If this function returns successfully the caller is responsible to either
2167 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2168 * order to install the pidfd into its file descriptor table or they must use
2169 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2170 * respectively.
2171 *
2172 * This function is useful when a pidfd must already be reserved but there
2173 * might still be points of failure afterwards and the caller wants to ensure
2174 * that no pidfd is leaked into its file descriptor table.
2175 *
2176 * Return: On success, a reserved pidfd is returned from the function and a new
2177 * pidfd file is returned in the last argument to the function. On
2178 * error, a negative error code is returned from the function and the
2179 * last argument remains unchanged.
2180 */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2181 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2182 {
2183 if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2184 return -EINVAL;
2185
2186 return __pidfd_prepare(pid, flags, ret);
2187 }
2188
__delayed_free_task(struct rcu_head * rhp)2189 static void __delayed_free_task(struct rcu_head *rhp)
2190 {
2191 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2192
2193 free_task(tsk);
2194 }
2195
delayed_free_task(struct task_struct * tsk)2196 static __always_inline void delayed_free_task(struct task_struct *tsk)
2197 {
2198 if (IS_ENABLED(CONFIG_MEMCG))
2199 call_rcu(&tsk->rcu, __delayed_free_task);
2200 else
2201 free_task(tsk);
2202 }
2203
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2204 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2205 {
2206 /* Skip if kernel thread */
2207 if (!tsk->mm)
2208 return;
2209
2210 /* Skip if spawning a thread or using vfork */
2211 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2212 return;
2213
2214 /* We need to synchronize with __set_oom_adj */
2215 mutex_lock(&oom_adj_mutex);
2216 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2217 /* Update the values in case they were changed after copy_signal */
2218 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2219 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2220 mutex_unlock(&oom_adj_mutex);
2221 }
2222
2223 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2224 static void rv_task_fork(struct task_struct *p)
2225 {
2226 int i;
2227
2228 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2229 p->rv[i].da_mon.monitoring = false;
2230 }
2231 #else
2232 #define rv_task_fork(p) do {} while (0)
2233 #endif
2234
2235 /*
2236 * This creates a new process as a copy of the old one,
2237 * but does not actually start it yet.
2238 *
2239 * It copies the registers, and all the appropriate
2240 * parts of the process environment (as per the clone
2241 * flags). The actual kick-off is left to the caller.
2242 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2243 __latent_entropy struct task_struct *copy_process(
2244 struct pid *pid,
2245 int trace,
2246 int node,
2247 struct kernel_clone_args *args)
2248 {
2249 int pidfd = -1, retval;
2250 struct task_struct *p;
2251 struct multiprocess_signals delayed;
2252 struct file *pidfile = NULL;
2253 const u64 clone_flags = args->flags;
2254 struct nsproxy *nsp = current->nsproxy;
2255
2256 /*
2257 * Don't allow sharing the root directory with processes in a different
2258 * namespace
2259 */
2260 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2261 return ERR_PTR(-EINVAL);
2262
2263 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2264 return ERR_PTR(-EINVAL);
2265
2266 /*
2267 * Thread groups must share signals as well, and detached threads
2268 * can only be started up within the thread group.
2269 */
2270 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2271 return ERR_PTR(-EINVAL);
2272
2273 /*
2274 * Shared signal handlers imply shared VM. By way of the above,
2275 * thread groups also imply shared VM. Blocking this case allows
2276 * for various simplifications in other code.
2277 */
2278 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2279 return ERR_PTR(-EINVAL);
2280
2281 /*
2282 * Siblings of global init remain as zombies on exit since they are
2283 * not reaped by their parent (swapper). To solve this and to avoid
2284 * multi-rooted process trees, prevent global and container-inits
2285 * from creating siblings.
2286 */
2287 if ((clone_flags & CLONE_PARENT) &&
2288 current->signal->flags & SIGNAL_UNKILLABLE)
2289 return ERR_PTR(-EINVAL);
2290
2291 /*
2292 * If the new process will be in a different pid or user namespace
2293 * do not allow it to share a thread group with the forking task.
2294 */
2295 if (clone_flags & CLONE_THREAD) {
2296 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2297 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2298 return ERR_PTR(-EINVAL);
2299 }
2300
2301 if (clone_flags & CLONE_PIDFD) {
2302 /*
2303 * - CLONE_DETACHED is blocked so that we can potentially
2304 * reuse it later for CLONE_PIDFD.
2305 * - CLONE_THREAD is blocked until someone really needs it.
2306 */
2307 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2308 return ERR_PTR(-EINVAL);
2309 }
2310
2311 /*
2312 * Force any signals received before this point to be delivered
2313 * before the fork happens. Collect up signals sent to multiple
2314 * processes that happen during the fork and delay them so that
2315 * they appear to happen after the fork.
2316 */
2317 sigemptyset(&delayed.signal);
2318 INIT_HLIST_NODE(&delayed.node);
2319
2320 spin_lock_irq(¤t->sighand->siglock);
2321 if (!(clone_flags & CLONE_THREAD))
2322 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2323 recalc_sigpending();
2324 spin_unlock_irq(¤t->sighand->siglock);
2325 retval = -ERESTARTNOINTR;
2326 if (task_sigpending(current))
2327 goto fork_out;
2328
2329 retval = -ENOMEM;
2330 p = dup_task_struct(current, node);
2331 if (!p)
2332 goto fork_out;
2333 p->flags &= ~PF_KTHREAD;
2334 if (args->kthread)
2335 p->flags |= PF_KTHREAD;
2336 if (args->user_worker) {
2337 /*
2338 * Mark us a user worker, and block any signal that isn't
2339 * fatal or STOP
2340 */
2341 p->flags |= PF_USER_WORKER;
2342 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2343 }
2344 if (args->io_thread)
2345 p->flags |= PF_IO_WORKER;
2346
2347 if (args->name)
2348 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2349
2350 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2351 /*
2352 * Clear TID on mm_release()?
2353 */
2354 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2355
2356 ftrace_graph_init_task(p);
2357
2358 rt_mutex_init_task(p);
2359
2360 lockdep_assert_irqs_enabled();
2361 #ifdef CONFIG_PROVE_LOCKING
2362 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2363 #endif
2364 retval = copy_creds(p, clone_flags);
2365 if (retval < 0)
2366 goto bad_fork_free;
2367
2368 retval = -EAGAIN;
2369 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2370 if (p->real_cred->user != INIT_USER &&
2371 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2372 goto bad_fork_cleanup_count;
2373 }
2374 current->flags &= ~PF_NPROC_EXCEEDED;
2375
2376 /*
2377 * If multiple threads are within copy_process(), then this check
2378 * triggers too late. This doesn't hurt, the check is only there
2379 * to stop root fork bombs.
2380 */
2381 retval = -EAGAIN;
2382 if (data_race(nr_threads >= max_threads))
2383 goto bad_fork_cleanup_count;
2384
2385 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2386 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2387 p->flags |= PF_FORKNOEXEC;
2388 INIT_LIST_HEAD(&p->children);
2389 INIT_LIST_HEAD(&p->sibling);
2390 rcu_copy_process(p);
2391 p->vfork_done = NULL;
2392 spin_lock_init(&p->alloc_lock);
2393
2394 init_sigpending(&p->pending);
2395
2396 p->utime = p->stime = p->gtime = 0;
2397 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2398 p->utimescaled = p->stimescaled = 0;
2399 #endif
2400 prev_cputime_init(&p->prev_cputime);
2401
2402 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2403 seqcount_init(&p->vtime.seqcount);
2404 p->vtime.starttime = 0;
2405 p->vtime.state = VTIME_INACTIVE;
2406 #endif
2407
2408 #ifdef CONFIG_IO_URING
2409 p->io_uring = NULL;
2410 #endif
2411
2412 #if defined(SPLIT_RSS_COUNTING)
2413 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2414 #endif
2415
2416 p->default_timer_slack_ns = current->timer_slack_ns;
2417
2418 #ifdef CONFIG_PSI
2419 p->psi_flags = 0;
2420 #endif
2421
2422 task_io_accounting_init(&p->ioac);
2423 acct_clear_integrals(p);
2424
2425 posix_cputimers_init(&p->posix_cputimers);
2426 tick_dep_init_task(p);
2427
2428 p->io_context = NULL;
2429 audit_set_context(p, NULL);
2430 cgroup_fork(p);
2431 if (args->kthread) {
2432 if (!set_kthread_struct(p))
2433 goto bad_fork_cleanup_delayacct;
2434 }
2435 #ifdef CONFIG_NUMA
2436 p->mempolicy = mpol_dup(p->mempolicy);
2437 if (IS_ERR(p->mempolicy)) {
2438 retval = PTR_ERR(p->mempolicy);
2439 p->mempolicy = NULL;
2440 goto bad_fork_cleanup_delayacct;
2441 }
2442 #endif
2443 #ifdef CONFIG_CPUSETS
2444 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2445 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2446 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2447 #endif
2448 #ifdef CONFIG_TRACE_IRQFLAGS
2449 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2450 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2451 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2452 p->softirqs_enabled = 1;
2453 p->softirq_context = 0;
2454 #endif
2455
2456 p->pagefault_disabled = 0;
2457
2458 #ifdef CONFIG_LOCKDEP
2459 lockdep_init_task(p);
2460 #endif
2461
2462 #ifdef CONFIG_DEBUG_MUTEXES
2463 p->blocked_on = NULL; /* not blocked yet */
2464 #endif
2465 #ifdef CONFIG_BCACHE
2466 p->sequential_io = 0;
2467 p->sequential_io_avg = 0;
2468 #endif
2469 #ifdef CONFIG_BPF_SYSCALL
2470 RCU_INIT_POINTER(p->bpf_storage, NULL);
2471 p->bpf_ctx = NULL;
2472 #endif
2473
2474 /* Perform scheduler related setup. Assign this task to a CPU. */
2475 retval = sched_fork(clone_flags, p);
2476 if (retval)
2477 goto bad_fork_cleanup_policy;
2478
2479 retval = perf_event_init_task(p, clone_flags);
2480 if (retval)
2481 goto bad_fork_cleanup_policy;
2482 retval = audit_alloc(p);
2483 if (retval)
2484 goto bad_fork_cleanup_perf;
2485 /* copy all the process information */
2486 shm_init_task(p);
2487 retval = security_task_alloc(p, clone_flags);
2488 if (retval)
2489 goto bad_fork_cleanup_audit;
2490 retval = copy_semundo(clone_flags, p);
2491 if (retval)
2492 goto bad_fork_cleanup_security;
2493 retval = copy_files(clone_flags, p, args->no_files);
2494 if (retval)
2495 goto bad_fork_cleanup_semundo;
2496 retval = copy_fs(clone_flags, p);
2497 if (retval)
2498 goto bad_fork_cleanup_files;
2499 retval = copy_sighand(clone_flags, p);
2500 if (retval)
2501 goto bad_fork_cleanup_fs;
2502 retval = copy_signal(clone_flags, p);
2503 if (retval)
2504 goto bad_fork_cleanup_sighand;
2505 retval = copy_mm(clone_flags, p);
2506 if (retval)
2507 goto bad_fork_cleanup_signal;
2508 retval = copy_namespaces(clone_flags, p);
2509 if (retval)
2510 goto bad_fork_cleanup_mm;
2511 retval = copy_io(clone_flags, p);
2512 if (retval)
2513 goto bad_fork_cleanup_namespaces;
2514 retval = copy_thread(p, args);
2515 if (retval)
2516 goto bad_fork_cleanup_io;
2517
2518 stackleak_task_init(p);
2519
2520 if (pid != &init_struct_pid) {
2521 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2522 args->set_tid_size);
2523 if (IS_ERR(pid)) {
2524 retval = PTR_ERR(pid);
2525 goto bad_fork_cleanup_thread;
2526 }
2527 }
2528
2529 /*
2530 * This has to happen after we've potentially unshared the file
2531 * descriptor table (so that the pidfd doesn't leak into the child
2532 * if the fd table isn't shared).
2533 */
2534 if (clone_flags & CLONE_PIDFD) {
2535 /* Note that no task has been attached to @pid yet. */
2536 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2537 if (retval < 0)
2538 goto bad_fork_free_pid;
2539 pidfd = retval;
2540
2541 retval = put_user(pidfd, args->pidfd);
2542 if (retval)
2543 goto bad_fork_put_pidfd;
2544 }
2545
2546 #ifdef CONFIG_BLOCK
2547 p->plug = NULL;
2548 #endif
2549 futex_init_task(p);
2550
2551 /*
2552 * sigaltstack should be cleared when sharing the same VM
2553 */
2554 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2555 sas_ss_reset(p);
2556
2557 /*
2558 * Syscall tracing and stepping should be turned off in the
2559 * child regardless of CLONE_PTRACE.
2560 */
2561 user_disable_single_step(p);
2562 clear_task_syscall_work(p, SYSCALL_TRACE);
2563 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2564 clear_task_syscall_work(p, SYSCALL_EMU);
2565 #endif
2566 clear_tsk_latency_tracing(p);
2567
2568 /* ok, now we should be set up.. */
2569 p->pid = pid_nr(pid);
2570 if (clone_flags & CLONE_THREAD) {
2571 p->group_leader = current->group_leader;
2572 p->tgid = current->tgid;
2573 } else {
2574 p->group_leader = p;
2575 p->tgid = p->pid;
2576 }
2577
2578 p->nr_dirtied = 0;
2579 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2580 p->dirty_paused_when = 0;
2581
2582 p->pdeath_signal = 0;
2583 INIT_LIST_HEAD(&p->thread_group);
2584 p->task_works = NULL;
2585 clear_posix_cputimers_work(p);
2586
2587 #ifdef CONFIG_KRETPROBES
2588 p->kretprobe_instances.first = NULL;
2589 #endif
2590 #ifdef CONFIG_RETHOOK
2591 p->rethooks.first = NULL;
2592 #endif
2593
2594 /*
2595 * Ensure that the cgroup subsystem policies allow the new process to be
2596 * forked. It should be noted that the new process's css_set can be changed
2597 * between here and cgroup_post_fork() if an organisation operation is in
2598 * progress.
2599 */
2600 retval = cgroup_can_fork(p, args);
2601 if (retval)
2602 goto bad_fork_put_pidfd;
2603
2604 /*
2605 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2606 * the new task on the correct runqueue. All this *before* the task
2607 * becomes visible.
2608 *
2609 * This isn't part of ->can_fork() because while the re-cloning is
2610 * cgroup specific, it unconditionally needs to place the task on a
2611 * runqueue.
2612 */
2613 sched_cgroup_fork(p, args);
2614
2615 /*
2616 * From this point on we must avoid any synchronous user-space
2617 * communication until we take the tasklist-lock. In particular, we do
2618 * not want user-space to be able to predict the process start-time by
2619 * stalling fork(2) after we recorded the start_time but before it is
2620 * visible to the system.
2621 */
2622
2623 p->start_time = ktime_get_ns();
2624 p->start_boottime = ktime_get_boottime_ns();
2625
2626 /*
2627 * Make it visible to the rest of the system, but dont wake it up yet.
2628 * Need tasklist lock for parent etc handling!
2629 */
2630 write_lock_irq(&tasklist_lock);
2631
2632 /* CLONE_PARENT re-uses the old parent */
2633 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2634 p->real_parent = current->real_parent;
2635 p->parent_exec_id = current->parent_exec_id;
2636 if (clone_flags & CLONE_THREAD)
2637 p->exit_signal = -1;
2638 else
2639 p->exit_signal = current->group_leader->exit_signal;
2640 } else {
2641 p->real_parent = current;
2642 p->parent_exec_id = current->self_exec_id;
2643 p->exit_signal = args->exit_signal;
2644 }
2645
2646 klp_copy_process(p);
2647
2648 sched_core_fork(p);
2649
2650 spin_lock(¤t->sighand->siglock);
2651
2652 rv_task_fork(p);
2653
2654 rseq_fork(p, clone_flags);
2655
2656 /* Don't start children in a dying pid namespace */
2657 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2658 retval = -ENOMEM;
2659 goto bad_fork_cancel_cgroup;
2660 }
2661
2662 /* Let kill terminate clone/fork in the middle */
2663 if (fatal_signal_pending(current)) {
2664 retval = -EINTR;
2665 goto bad_fork_cancel_cgroup;
2666 }
2667
2668 /* No more failure paths after this point. */
2669
2670 /*
2671 * Copy seccomp details explicitly here, in case they were changed
2672 * before holding sighand lock.
2673 */
2674 copy_seccomp(p);
2675
2676 init_task_pid_links(p);
2677 if (likely(p->pid)) {
2678 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2679
2680 init_task_pid(p, PIDTYPE_PID, pid);
2681 if (thread_group_leader(p)) {
2682 init_task_pid(p, PIDTYPE_TGID, pid);
2683 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2684 init_task_pid(p, PIDTYPE_SID, task_session(current));
2685
2686 if (is_child_reaper(pid)) {
2687 ns_of_pid(pid)->child_reaper = p;
2688 p->signal->flags |= SIGNAL_UNKILLABLE;
2689 }
2690 p->signal->shared_pending.signal = delayed.signal;
2691 p->signal->tty = tty_kref_get(current->signal->tty);
2692 /*
2693 * Inherit has_child_subreaper flag under the same
2694 * tasklist_lock with adding child to the process tree
2695 * for propagate_has_child_subreaper optimization.
2696 */
2697 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2698 p->real_parent->signal->is_child_subreaper;
2699 list_add_tail(&p->sibling, &p->real_parent->children);
2700 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2701 attach_pid(p, PIDTYPE_TGID);
2702 attach_pid(p, PIDTYPE_PGID);
2703 attach_pid(p, PIDTYPE_SID);
2704 __this_cpu_inc(process_counts);
2705 } else {
2706 current->signal->nr_threads++;
2707 current->signal->quick_threads++;
2708 atomic_inc(¤t->signal->live);
2709 refcount_inc(¤t->signal->sigcnt);
2710 task_join_group_stop(p);
2711 list_add_tail_rcu(&p->thread_group,
2712 &p->group_leader->thread_group);
2713 list_add_tail_rcu(&p->thread_node,
2714 &p->signal->thread_head);
2715 }
2716 attach_pid(p, PIDTYPE_PID);
2717 nr_threads++;
2718 }
2719 total_forks++;
2720 hlist_del_init(&delayed.node);
2721 spin_unlock(¤t->sighand->siglock);
2722 syscall_tracepoint_update(p);
2723 write_unlock_irq(&tasklist_lock);
2724
2725 if (pidfile)
2726 fd_install(pidfd, pidfile);
2727
2728 proc_fork_connector(p);
2729 sched_post_fork(p);
2730 cgroup_post_fork(p, args);
2731 perf_event_fork(p);
2732
2733 trace_task_newtask(p, clone_flags);
2734 uprobe_copy_process(p, clone_flags);
2735 user_events_fork(p, clone_flags);
2736
2737 copy_oom_score_adj(clone_flags, p);
2738
2739 return p;
2740
2741 bad_fork_cancel_cgroup:
2742 sched_core_free(p);
2743 spin_unlock(¤t->sighand->siglock);
2744 write_unlock_irq(&tasklist_lock);
2745 cgroup_cancel_fork(p, args);
2746 bad_fork_put_pidfd:
2747 if (clone_flags & CLONE_PIDFD) {
2748 fput(pidfile);
2749 put_unused_fd(pidfd);
2750 }
2751 bad_fork_free_pid:
2752 if (pid != &init_struct_pid)
2753 free_pid(pid);
2754 bad_fork_cleanup_thread:
2755 exit_thread(p);
2756 bad_fork_cleanup_io:
2757 if (p->io_context)
2758 exit_io_context(p);
2759 bad_fork_cleanup_namespaces:
2760 exit_task_namespaces(p);
2761 bad_fork_cleanup_mm:
2762 if (p->mm) {
2763 mm_clear_owner(p->mm, p);
2764 mmput(p->mm);
2765 }
2766 bad_fork_cleanup_signal:
2767 if (!(clone_flags & CLONE_THREAD))
2768 free_signal_struct(p->signal);
2769 bad_fork_cleanup_sighand:
2770 __cleanup_sighand(p->sighand);
2771 bad_fork_cleanup_fs:
2772 exit_fs(p); /* blocking */
2773 bad_fork_cleanup_files:
2774 exit_files(p); /* blocking */
2775 bad_fork_cleanup_semundo:
2776 exit_sem(p);
2777 bad_fork_cleanup_security:
2778 security_task_free(p);
2779 bad_fork_cleanup_audit:
2780 audit_free(p);
2781 bad_fork_cleanup_perf:
2782 perf_event_free_task(p);
2783 bad_fork_cleanup_policy:
2784 lockdep_free_task(p);
2785 #ifdef CONFIG_NUMA
2786 mpol_put(p->mempolicy);
2787 #endif
2788 bad_fork_cleanup_delayacct:
2789 delayacct_tsk_free(p);
2790 bad_fork_cleanup_count:
2791 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2792 exit_creds(p);
2793 bad_fork_free:
2794 WRITE_ONCE(p->__state, TASK_DEAD);
2795 exit_task_stack_account(p);
2796 put_task_stack(p);
2797 delayed_free_task(p);
2798 fork_out:
2799 spin_lock_irq(¤t->sighand->siglock);
2800 hlist_del_init(&delayed.node);
2801 spin_unlock_irq(¤t->sighand->siglock);
2802 return ERR_PTR(retval);
2803 }
2804
init_idle_pids(struct task_struct * idle)2805 static inline void init_idle_pids(struct task_struct *idle)
2806 {
2807 enum pid_type type;
2808
2809 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2810 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2811 init_task_pid(idle, type, &init_struct_pid);
2812 }
2813 }
2814
idle_dummy(void * dummy)2815 static int idle_dummy(void *dummy)
2816 {
2817 /* This function is never called */
2818 return 0;
2819 }
2820
fork_idle(int cpu)2821 struct task_struct * __init fork_idle(int cpu)
2822 {
2823 struct task_struct *task;
2824 struct kernel_clone_args args = {
2825 .flags = CLONE_VM,
2826 .fn = &idle_dummy,
2827 .fn_arg = NULL,
2828 .kthread = 1,
2829 .idle = 1,
2830 };
2831
2832 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2833 if (!IS_ERR(task)) {
2834 init_idle_pids(task);
2835 init_idle(task, cpu);
2836 }
2837
2838 return task;
2839 }
2840
2841 /*
2842 * This is like kernel_clone(), but shaved down and tailored to just
2843 * creating io_uring workers. It returns a created task, or an error pointer.
2844 * The returned task is inactive, and the caller must fire it up through
2845 * wake_up_new_task(p). All signals are blocked in the created task.
2846 */
create_io_thread(int (* fn)(void *),void * arg,int node)2847 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2848 {
2849 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2850 CLONE_IO;
2851 struct kernel_clone_args args = {
2852 .flags = ((lower_32_bits(flags) | CLONE_VM |
2853 CLONE_UNTRACED) & ~CSIGNAL),
2854 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2855 .fn = fn,
2856 .fn_arg = arg,
2857 .io_thread = 1,
2858 .user_worker = 1,
2859 };
2860
2861 return copy_process(NULL, 0, node, &args);
2862 }
2863
2864 /*
2865 * Ok, this is the main fork-routine.
2866 *
2867 * It copies the process, and if successful kick-starts
2868 * it and waits for it to finish using the VM if required.
2869 *
2870 * args->exit_signal is expected to be checked for sanity by the caller.
2871 */
kernel_clone(struct kernel_clone_args * args)2872 pid_t kernel_clone(struct kernel_clone_args *args)
2873 {
2874 u64 clone_flags = args->flags;
2875 struct completion vfork;
2876 struct pid *pid;
2877 struct task_struct *p;
2878 int trace = 0;
2879 pid_t nr;
2880
2881 /*
2882 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2883 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2884 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2885 * field in struct clone_args and it still doesn't make sense to have
2886 * them both point at the same memory location. Performing this check
2887 * here has the advantage that we don't need to have a separate helper
2888 * to check for legacy clone().
2889 */
2890 if ((args->flags & CLONE_PIDFD) &&
2891 (args->flags & CLONE_PARENT_SETTID) &&
2892 (args->pidfd == args->parent_tid))
2893 return -EINVAL;
2894
2895 /*
2896 * Determine whether and which event to report to ptracer. When
2897 * called from kernel_thread or CLONE_UNTRACED is explicitly
2898 * requested, no event is reported; otherwise, report if the event
2899 * for the type of forking is enabled.
2900 */
2901 if (!(clone_flags & CLONE_UNTRACED)) {
2902 if (clone_flags & CLONE_VFORK)
2903 trace = PTRACE_EVENT_VFORK;
2904 else if (args->exit_signal != SIGCHLD)
2905 trace = PTRACE_EVENT_CLONE;
2906 else
2907 trace = PTRACE_EVENT_FORK;
2908
2909 if (likely(!ptrace_event_enabled(current, trace)))
2910 trace = 0;
2911 }
2912
2913 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2914 add_latent_entropy();
2915
2916 if (IS_ERR(p))
2917 return PTR_ERR(p);
2918
2919 /*
2920 * Do this prior waking up the new thread - the thread pointer
2921 * might get invalid after that point, if the thread exits quickly.
2922 */
2923 trace_sched_process_fork(current, p);
2924
2925 pid = get_task_pid(p, PIDTYPE_PID);
2926 nr = pid_vnr(pid);
2927
2928 if (clone_flags & CLONE_PARENT_SETTID)
2929 put_user(nr, args->parent_tid);
2930
2931 if (clone_flags & CLONE_VFORK) {
2932 p->vfork_done = &vfork;
2933 init_completion(&vfork);
2934 get_task_struct(p);
2935 }
2936
2937 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2938 /* lock the task to synchronize with memcg migration */
2939 task_lock(p);
2940 lru_gen_add_mm(p->mm);
2941 task_unlock(p);
2942 }
2943
2944 wake_up_new_task(p);
2945
2946 /* forking complete and child started to run, tell ptracer */
2947 if (unlikely(trace))
2948 ptrace_event_pid(trace, pid);
2949
2950 if (clone_flags & CLONE_VFORK) {
2951 if (!wait_for_vfork_done(p, &vfork))
2952 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2953 }
2954
2955 put_pid(pid);
2956 return nr;
2957 }
2958
2959 /*
2960 * Create a kernel thread.
2961 */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2962 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2963 unsigned long flags)
2964 {
2965 struct kernel_clone_args args = {
2966 .flags = ((lower_32_bits(flags) | CLONE_VM |
2967 CLONE_UNTRACED) & ~CSIGNAL),
2968 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2969 .fn = fn,
2970 .fn_arg = arg,
2971 .name = name,
2972 .kthread = 1,
2973 };
2974
2975 return kernel_clone(&args);
2976 }
2977
2978 /*
2979 * Create a user mode thread.
2980 */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2981 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2982 {
2983 struct kernel_clone_args args = {
2984 .flags = ((lower_32_bits(flags) | CLONE_VM |
2985 CLONE_UNTRACED) & ~CSIGNAL),
2986 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2987 .fn = fn,
2988 .fn_arg = arg,
2989 };
2990
2991 return kernel_clone(&args);
2992 }
2993
2994 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2995 SYSCALL_DEFINE0(fork)
2996 {
2997 #ifdef CONFIG_MMU
2998 struct kernel_clone_args args = {
2999 .exit_signal = SIGCHLD,
3000 };
3001
3002 return kernel_clone(&args);
3003 #else
3004 /* can not support in nommu mode */
3005 return -EINVAL;
3006 #endif
3007 }
3008 #endif
3009
3010 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)3011 SYSCALL_DEFINE0(vfork)
3012 {
3013 struct kernel_clone_args args = {
3014 .flags = CLONE_VFORK | CLONE_VM,
3015 .exit_signal = SIGCHLD,
3016 };
3017
3018 return kernel_clone(&args);
3019 }
3020 #endif
3021
3022 #ifdef __ARCH_WANT_SYS_CLONE
3023 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)3024 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3025 int __user *, parent_tidptr,
3026 unsigned long, tls,
3027 int __user *, child_tidptr)
3028 #elif defined(CONFIG_CLONE_BACKWARDS2)
3029 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3030 int __user *, parent_tidptr,
3031 int __user *, child_tidptr,
3032 unsigned long, tls)
3033 #elif defined(CONFIG_CLONE_BACKWARDS3)
3034 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3035 int, stack_size,
3036 int __user *, parent_tidptr,
3037 int __user *, child_tidptr,
3038 unsigned long, tls)
3039 #else
3040 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3041 int __user *, parent_tidptr,
3042 int __user *, child_tidptr,
3043 unsigned long, tls)
3044 #endif
3045 {
3046 struct kernel_clone_args args = {
3047 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
3048 .pidfd = parent_tidptr,
3049 .child_tid = child_tidptr,
3050 .parent_tid = parent_tidptr,
3051 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
3052 .stack = newsp,
3053 .tls = tls,
3054 };
3055
3056 return kernel_clone(&args);
3057 }
3058 #endif
3059
3060 #ifdef __ARCH_WANT_SYS_CLONE3
3061
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)3062 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3063 struct clone_args __user *uargs,
3064 size_t usize)
3065 {
3066 int err;
3067 struct clone_args args;
3068 pid_t *kset_tid = kargs->set_tid;
3069
3070 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3071 CLONE_ARGS_SIZE_VER0);
3072 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3073 CLONE_ARGS_SIZE_VER1);
3074 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3075 CLONE_ARGS_SIZE_VER2);
3076 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3077
3078 if (unlikely(usize > PAGE_SIZE))
3079 return -E2BIG;
3080 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3081 return -EINVAL;
3082
3083 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3084 if (err)
3085 return err;
3086
3087 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3088 return -EINVAL;
3089
3090 if (unlikely(!args.set_tid && args.set_tid_size > 0))
3091 return -EINVAL;
3092
3093 if (unlikely(args.set_tid && args.set_tid_size == 0))
3094 return -EINVAL;
3095
3096 /*
3097 * Verify that higher 32bits of exit_signal are unset and that
3098 * it is a valid signal
3099 */
3100 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3101 !valid_signal(args.exit_signal)))
3102 return -EINVAL;
3103
3104 if ((args.flags & CLONE_INTO_CGROUP) &&
3105 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3106 return -EINVAL;
3107
3108 *kargs = (struct kernel_clone_args){
3109 .flags = args.flags,
3110 .pidfd = u64_to_user_ptr(args.pidfd),
3111 .child_tid = u64_to_user_ptr(args.child_tid),
3112 .parent_tid = u64_to_user_ptr(args.parent_tid),
3113 .exit_signal = args.exit_signal,
3114 .stack = args.stack,
3115 .stack_size = args.stack_size,
3116 .tls = args.tls,
3117 .set_tid_size = args.set_tid_size,
3118 .cgroup = args.cgroup,
3119 };
3120
3121 if (args.set_tid &&
3122 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3123 (kargs->set_tid_size * sizeof(pid_t))))
3124 return -EFAULT;
3125
3126 kargs->set_tid = kset_tid;
3127
3128 return 0;
3129 }
3130
3131 /**
3132 * clone3_stack_valid - check and prepare stack
3133 * @kargs: kernel clone args
3134 *
3135 * Verify that the stack arguments userspace gave us are sane.
3136 * In addition, set the stack direction for userspace since it's easy for us to
3137 * determine.
3138 */
clone3_stack_valid(struct kernel_clone_args * kargs)3139 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3140 {
3141 if (kargs->stack == 0) {
3142 if (kargs->stack_size > 0)
3143 return false;
3144 } else {
3145 if (kargs->stack_size == 0)
3146 return false;
3147
3148 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3149 return false;
3150
3151 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3152 kargs->stack += kargs->stack_size;
3153 #endif
3154 }
3155
3156 return true;
3157 }
3158
clone3_args_valid(struct kernel_clone_args * kargs)3159 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3160 {
3161 /* Verify that no unknown flags are passed along. */
3162 if (kargs->flags &
3163 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3164 return false;
3165
3166 /*
3167 * - make the CLONE_DETACHED bit reusable for clone3
3168 * - make the CSIGNAL bits reusable for clone3
3169 */
3170 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3171 return false;
3172
3173 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3174 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3175 return false;
3176
3177 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3178 kargs->exit_signal)
3179 return false;
3180
3181 if (!clone3_stack_valid(kargs))
3182 return false;
3183
3184 return true;
3185 }
3186
3187 /**
3188 * clone3 - create a new process with specific properties
3189 * @uargs: argument structure
3190 * @size: size of @uargs
3191 *
3192 * clone3() is the extensible successor to clone()/clone2().
3193 * It takes a struct as argument that is versioned by its size.
3194 *
3195 * Return: On success, a positive PID for the child process.
3196 * On error, a negative errno number.
3197 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3198 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3199 {
3200 int err;
3201
3202 struct kernel_clone_args kargs;
3203 pid_t set_tid[MAX_PID_NS_LEVEL];
3204
3205 kargs.set_tid = set_tid;
3206
3207 err = copy_clone_args_from_user(&kargs, uargs, size);
3208 if (err)
3209 return err;
3210
3211 if (!clone3_args_valid(&kargs))
3212 return -EINVAL;
3213
3214 return kernel_clone(&kargs);
3215 }
3216 #endif
3217
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3218 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3219 {
3220 struct task_struct *leader, *parent, *child;
3221 int res;
3222
3223 read_lock(&tasklist_lock);
3224 leader = top = top->group_leader;
3225 down:
3226 for_each_thread(leader, parent) {
3227 list_for_each_entry(child, &parent->children, sibling) {
3228 res = visitor(child, data);
3229 if (res) {
3230 if (res < 0)
3231 goto out;
3232 leader = child;
3233 goto down;
3234 }
3235 up:
3236 ;
3237 }
3238 }
3239
3240 if (leader != top) {
3241 child = leader;
3242 parent = child->real_parent;
3243 leader = parent->group_leader;
3244 goto up;
3245 }
3246 out:
3247 read_unlock(&tasklist_lock);
3248 }
3249
3250 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3251 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3252 #endif
3253
sighand_ctor(void * data)3254 static void sighand_ctor(void *data)
3255 {
3256 struct sighand_struct *sighand = data;
3257
3258 spin_lock_init(&sighand->siglock);
3259 init_waitqueue_head(&sighand->signalfd_wqh);
3260 }
3261
mm_cache_init(void)3262 void __init mm_cache_init(void)
3263 {
3264 unsigned int mm_size;
3265
3266 /*
3267 * The mm_cpumask is located at the end of mm_struct, and is
3268 * dynamically sized based on the maximum CPU number this system
3269 * can have, taking hotplug into account (nr_cpu_ids).
3270 */
3271 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3272
3273 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3274 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3275 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3276 offsetof(struct mm_struct, saved_auxv),
3277 sizeof_field(struct mm_struct, saved_auxv),
3278 NULL);
3279 }
3280
proc_caches_init(void)3281 void __init proc_caches_init(void)
3282 {
3283 sighand_cachep = kmem_cache_create("sighand_cache",
3284 sizeof(struct sighand_struct), 0,
3285 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3286 SLAB_ACCOUNT, sighand_ctor);
3287 signal_cachep = kmem_cache_create("signal_cache",
3288 sizeof(struct signal_struct), 0,
3289 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3290 NULL);
3291 files_cachep = kmem_cache_create("files_cache",
3292 sizeof(struct files_struct), 0,
3293 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3294 NULL);
3295 fs_cachep = kmem_cache_create("fs_cache",
3296 sizeof(struct fs_struct), 0,
3297 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3298 NULL);
3299
3300 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3301 #ifdef CONFIG_PER_VMA_LOCK
3302 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3303 #endif
3304 mmap_init();
3305 nsproxy_cache_init();
3306 }
3307
3308 /*
3309 * Check constraints on flags passed to the unshare system call.
3310 */
check_unshare_flags(unsigned long unshare_flags)3311 static int check_unshare_flags(unsigned long unshare_flags)
3312 {
3313 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3314 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3315 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3316 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3317 CLONE_NEWTIME))
3318 return -EINVAL;
3319 /*
3320 * Not implemented, but pretend it works if there is nothing
3321 * to unshare. Note that unsharing the address space or the
3322 * signal handlers also need to unshare the signal queues (aka
3323 * CLONE_THREAD).
3324 */
3325 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3326 if (!thread_group_empty(current))
3327 return -EINVAL;
3328 }
3329 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3330 if (refcount_read(¤t->sighand->count) > 1)
3331 return -EINVAL;
3332 }
3333 if (unshare_flags & CLONE_VM) {
3334 if (!current_is_single_threaded())
3335 return -EINVAL;
3336 }
3337
3338 return 0;
3339 }
3340
3341 /*
3342 * Unshare the filesystem structure if it is being shared
3343 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3344 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3345 {
3346 struct fs_struct *fs = current->fs;
3347
3348 if (!(unshare_flags & CLONE_FS) || !fs)
3349 return 0;
3350
3351 /* don't need lock here; in the worst case we'll do useless copy */
3352 if (fs->users == 1)
3353 return 0;
3354
3355 *new_fsp = copy_fs_struct(fs);
3356 if (!*new_fsp)
3357 return -ENOMEM;
3358
3359 return 0;
3360 }
3361
3362 /*
3363 * Unshare file descriptor table if it is being shared
3364 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3365 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3366 {
3367 struct files_struct *fd = current->files;
3368
3369 if ((unshare_flags & CLONE_FILES) &&
3370 (fd && atomic_read(&fd->count) > 1)) {
3371 fd = dup_fd(fd, NULL);
3372 if (IS_ERR(fd))
3373 return PTR_ERR(fd);
3374 *new_fdp = fd;
3375 }
3376
3377 return 0;
3378 }
3379
3380 /*
3381 * unshare allows a process to 'unshare' part of the process
3382 * context which was originally shared using clone. copy_*
3383 * functions used by kernel_clone() cannot be used here directly
3384 * because they modify an inactive task_struct that is being
3385 * constructed. Here we are modifying the current, active,
3386 * task_struct.
3387 */
ksys_unshare(unsigned long unshare_flags)3388 int ksys_unshare(unsigned long unshare_flags)
3389 {
3390 struct fs_struct *fs, *new_fs = NULL;
3391 struct files_struct *new_fd = NULL;
3392 struct cred *new_cred = NULL;
3393 struct nsproxy *new_nsproxy = NULL;
3394 int do_sysvsem = 0;
3395 int err;
3396
3397 /*
3398 * If unsharing a user namespace must also unshare the thread group
3399 * and unshare the filesystem root and working directories.
3400 */
3401 if (unshare_flags & CLONE_NEWUSER)
3402 unshare_flags |= CLONE_THREAD | CLONE_FS;
3403 /*
3404 * If unsharing vm, must also unshare signal handlers.
3405 */
3406 if (unshare_flags & CLONE_VM)
3407 unshare_flags |= CLONE_SIGHAND;
3408 /*
3409 * If unsharing a signal handlers, must also unshare the signal queues.
3410 */
3411 if (unshare_flags & CLONE_SIGHAND)
3412 unshare_flags |= CLONE_THREAD;
3413 /*
3414 * If unsharing namespace, must also unshare filesystem information.
3415 */
3416 if (unshare_flags & CLONE_NEWNS)
3417 unshare_flags |= CLONE_FS;
3418
3419 err = check_unshare_flags(unshare_flags);
3420 if (err)
3421 goto bad_unshare_out;
3422 /*
3423 * CLONE_NEWIPC must also detach from the undolist: after switching
3424 * to a new ipc namespace, the semaphore arrays from the old
3425 * namespace are unreachable.
3426 */
3427 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3428 do_sysvsem = 1;
3429 err = unshare_fs(unshare_flags, &new_fs);
3430 if (err)
3431 goto bad_unshare_out;
3432 err = unshare_fd(unshare_flags, &new_fd);
3433 if (err)
3434 goto bad_unshare_cleanup_fs;
3435 err = unshare_userns(unshare_flags, &new_cred);
3436 if (err)
3437 goto bad_unshare_cleanup_fd;
3438 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3439 new_cred, new_fs);
3440 if (err)
3441 goto bad_unshare_cleanup_cred;
3442
3443 if (new_cred) {
3444 err = set_cred_ucounts(new_cred);
3445 if (err)
3446 goto bad_unshare_cleanup_cred;
3447 }
3448
3449 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3450 if (do_sysvsem) {
3451 /*
3452 * CLONE_SYSVSEM is equivalent to sys_exit().
3453 */
3454 exit_sem(current);
3455 }
3456 if (unshare_flags & CLONE_NEWIPC) {
3457 /* Orphan segments in old ns (see sem above). */
3458 exit_shm(current);
3459 shm_init_task(current);
3460 }
3461
3462 if (new_nsproxy)
3463 switch_task_namespaces(current, new_nsproxy);
3464
3465 task_lock(current);
3466
3467 if (new_fs) {
3468 fs = current->fs;
3469 spin_lock(&fs->lock);
3470 current->fs = new_fs;
3471 if (--fs->users)
3472 new_fs = NULL;
3473 else
3474 new_fs = fs;
3475 spin_unlock(&fs->lock);
3476 }
3477
3478 if (new_fd)
3479 swap(current->files, new_fd);
3480
3481 task_unlock(current);
3482
3483 if (new_cred) {
3484 /* Install the new user namespace */
3485 commit_creds(new_cred);
3486 new_cred = NULL;
3487 }
3488 }
3489
3490 perf_event_namespaces(current);
3491
3492 bad_unshare_cleanup_cred:
3493 if (new_cred)
3494 put_cred(new_cred);
3495 bad_unshare_cleanup_fd:
3496 if (new_fd)
3497 put_files_struct(new_fd);
3498
3499 bad_unshare_cleanup_fs:
3500 if (new_fs)
3501 free_fs_struct(new_fs);
3502
3503 bad_unshare_out:
3504 return err;
3505 }
3506
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3507 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3508 {
3509 return ksys_unshare(unshare_flags);
3510 }
3511
3512 /*
3513 * Helper to unshare the files of the current task.
3514 * We don't want to expose copy_files internals to
3515 * the exec layer of the kernel.
3516 */
3517
unshare_files(void)3518 int unshare_files(void)
3519 {
3520 struct task_struct *task = current;
3521 struct files_struct *old, *copy = NULL;
3522 int error;
3523
3524 error = unshare_fd(CLONE_FILES, ©);
3525 if (error || !copy)
3526 return error;
3527
3528 old = task->files;
3529 task_lock(task);
3530 task->files = copy;
3531 task_unlock(task);
3532 put_files_struct(old);
3533 return 0;
3534 }
3535
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3536 int sysctl_max_threads(struct ctl_table *table, int write,
3537 void *buffer, size_t *lenp, loff_t *ppos)
3538 {
3539 struct ctl_table t;
3540 int ret;
3541 int threads = max_threads;
3542 int min = 1;
3543 int max = MAX_THREADS;
3544
3545 t = *table;
3546 t.data = &threads;
3547 t.extra1 = &min;
3548 t.extra2 = &max;
3549
3550 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3551 if (ret || !write)
3552 return ret;
3553
3554 max_threads = threads;
3555
3556 return 0;
3557 }
3558