xref: /openbmc/linux/drivers/gpu/drm/msm/dsi/phy/dsi_phy.c (revision 78a1eb10)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/clk-provider.h>
7 #include <linux/platform_device.h>
8 #include <dt-bindings/phy/phy.h>
9 
10 #include "dsi_phy.h"
11 
12 #define S_DIV_ROUND_UP(n, d)	\
13 	(((n) >= 0) ? (((n) + (d) - 1) / (d)) : (((n) - (d) + 1) / (d)))
14 
linear_inter(s32 tmax,s32 tmin,s32 percent,s32 min_result,bool even)15 static inline s32 linear_inter(s32 tmax, s32 tmin, s32 percent,
16 				s32 min_result, bool even)
17 {
18 	s32 v;
19 
20 	v = (tmax - tmin) * percent;
21 	v = S_DIV_ROUND_UP(v, 100) + tmin;
22 	if (even && (v & 0x1))
23 		return max_t(s32, min_result, v - 1);
24 	else
25 		return max_t(s32, min_result, v);
26 }
27 
dsi_dphy_timing_calc_clk_zero(struct msm_dsi_dphy_timing * timing,s32 ui,s32 coeff,s32 pcnt)28 static void dsi_dphy_timing_calc_clk_zero(struct msm_dsi_dphy_timing *timing,
29 					s32 ui, s32 coeff, s32 pcnt)
30 {
31 	s32 tmax, tmin, clk_z;
32 	s32 temp;
33 
34 	/* reset */
35 	temp = 300 * coeff - ((timing->clk_prepare >> 1) + 1) * 2 * ui;
36 	tmin = S_DIV_ROUND_UP(temp, ui) - 2;
37 	if (tmin > 255) {
38 		tmax = 511;
39 		clk_z = linear_inter(2 * tmin, tmin, pcnt, 0, true);
40 	} else {
41 		tmax = 255;
42 		clk_z = linear_inter(tmax, tmin, pcnt, 0, true);
43 	}
44 
45 	/* adjust */
46 	temp = (timing->hs_rqst + timing->clk_prepare + clk_z) & 0x7;
47 	timing->clk_zero = clk_z + 8 - temp;
48 }
49 
msm_dsi_dphy_timing_calc(struct msm_dsi_dphy_timing * timing,struct msm_dsi_phy_clk_request * clk_req)50 int msm_dsi_dphy_timing_calc(struct msm_dsi_dphy_timing *timing,
51 			     struct msm_dsi_phy_clk_request *clk_req)
52 {
53 	const unsigned long bit_rate = clk_req->bitclk_rate;
54 	const unsigned long esc_rate = clk_req->escclk_rate;
55 	s32 ui, lpx;
56 	s32 tmax, tmin;
57 	s32 pcnt0 = 10;
58 	s32 pcnt1 = (bit_rate > 1200000000) ? 15 : 10;
59 	s32 pcnt2 = 10;
60 	s32 pcnt3 = (bit_rate > 180000000) ? 10 : 40;
61 	s32 coeff = 1000; /* Precision, should avoid overflow */
62 	s32 temp;
63 
64 	if (!bit_rate || !esc_rate)
65 		return -EINVAL;
66 
67 	ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
68 	lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000);
69 
70 	tmax = S_DIV_ROUND_UP(95 * coeff, ui) - 2;
71 	tmin = S_DIV_ROUND_UP(38 * coeff, ui) - 2;
72 	timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, true);
73 
74 	temp = lpx / ui;
75 	if (temp & 0x1)
76 		timing->hs_rqst = temp;
77 	else
78 		timing->hs_rqst = max_t(s32, 0, temp - 2);
79 
80 	/* Calculate clk_zero after clk_prepare and hs_rqst */
81 	dsi_dphy_timing_calc_clk_zero(timing, ui, coeff, pcnt2);
82 
83 	temp = 105 * coeff + 12 * ui - 20 * coeff;
84 	tmax = S_DIV_ROUND_UP(temp, ui) - 2;
85 	tmin = S_DIV_ROUND_UP(60 * coeff, ui) - 2;
86 	timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, true);
87 
88 	temp = 85 * coeff + 6 * ui;
89 	tmax = S_DIV_ROUND_UP(temp, ui) - 2;
90 	temp = 40 * coeff + 4 * ui;
91 	tmin = S_DIV_ROUND_UP(temp, ui) - 2;
92 	timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, true);
93 
94 	tmax = 255;
95 	temp = ((timing->hs_prepare >> 1) + 1) * 2 * ui + 2 * ui;
96 	temp = 145 * coeff + 10 * ui - temp;
97 	tmin = S_DIV_ROUND_UP(temp, ui) - 2;
98 	timing->hs_zero = linear_inter(tmax, tmin, pcnt2, 24, true);
99 
100 	temp = 105 * coeff + 12 * ui - 20 * coeff;
101 	tmax = S_DIV_ROUND_UP(temp, ui) - 2;
102 	temp = 60 * coeff + 4 * ui;
103 	tmin = DIV_ROUND_UP(temp, ui) - 2;
104 	timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, true);
105 
106 	tmax = 255;
107 	tmin = S_DIV_ROUND_UP(100 * coeff, ui) - 2;
108 	timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, true);
109 
110 	tmax = 63;
111 	temp = ((timing->hs_exit >> 1) + 1) * 2 * ui;
112 	temp = 60 * coeff + 52 * ui - 24 * ui - temp;
113 	tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1;
114 	timing->shared_timings.clk_post = linear_inter(tmax, tmin, pcnt2, 0,
115 						       false);
116 	tmax = 63;
117 	temp = ((timing->clk_prepare >> 1) + 1) * 2 * ui;
118 	temp += ((timing->clk_zero >> 1) + 1) * 2 * ui;
119 	temp += 8 * ui + lpx;
120 	tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1;
121 	if (tmin > tmax) {
122 		temp = linear_inter(2 * tmax, tmin, pcnt2, 0, false);
123 		timing->shared_timings.clk_pre = temp >> 1;
124 		timing->shared_timings.clk_pre_inc_by_2 = true;
125 	} else {
126 		timing->shared_timings.clk_pre =
127 				linear_inter(tmax, tmin, pcnt2, 0, false);
128 		timing->shared_timings.clk_pre_inc_by_2 = false;
129 	}
130 
131 	timing->ta_go = 3;
132 	timing->ta_sure = 0;
133 	timing->ta_get = 4;
134 
135 	DBG("PHY timings: %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
136 		timing->shared_timings.clk_pre, timing->shared_timings.clk_post,
137 		timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero,
138 		timing->clk_trail, timing->clk_prepare, timing->hs_exit,
139 		timing->hs_zero, timing->hs_prepare, timing->hs_trail,
140 		timing->hs_rqst);
141 
142 	return 0;
143 }
144 
msm_dsi_dphy_timing_calc_v2(struct msm_dsi_dphy_timing * timing,struct msm_dsi_phy_clk_request * clk_req)145 int msm_dsi_dphy_timing_calc_v2(struct msm_dsi_dphy_timing *timing,
146 				struct msm_dsi_phy_clk_request *clk_req)
147 {
148 	const unsigned long bit_rate = clk_req->bitclk_rate;
149 	const unsigned long esc_rate = clk_req->escclk_rate;
150 	s32 ui, ui_x8;
151 	s32 tmax, tmin;
152 	s32 pcnt0 = 50;
153 	s32 pcnt1 = 50;
154 	s32 pcnt2 = 10;
155 	s32 pcnt3 = 30;
156 	s32 pcnt4 = 10;
157 	s32 pcnt5 = 2;
158 	s32 coeff = 1000; /* Precision, should avoid overflow */
159 	s32 hb_en, hb_en_ckln, pd_ckln, pd;
160 	s32 val, val_ckln;
161 	s32 temp;
162 
163 	if (!bit_rate || !esc_rate)
164 		return -EINVAL;
165 
166 	timing->hs_halfbyte_en = 0;
167 	hb_en = 0;
168 	timing->hs_halfbyte_en_ckln = 0;
169 	hb_en_ckln = 0;
170 	timing->hs_prep_dly_ckln = (bit_rate > 100000000) ? 0 : 3;
171 	pd_ckln = timing->hs_prep_dly_ckln;
172 	timing->hs_prep_dly = (bit_rate > 120000000) ? 0 : 1;
173 	pd = timing->hs_prep_dly;
174 
175 	val = (hb_en << 2) + (pd << 1);
176 	val_ckln = (hb_en_ckln << 2) + (pd_ckln << 1);
177 
178 	ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
179 	ui_x8 = ui << 3;
180 
181 	temp = S_DIV_ROUND_UP(38 * coeff - val_ckln * ui, ui_x8);
182 	tmin = max_t(s32, temp, 0);
183 	temp = (95 * coeff - val_ckln * ui) / ui_x8;
184 	tmax = max_t(s32, temp, 0);
185 	timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false);
186 
187 	temp = 300 * coeff - ((timing->clk_prepare << 3) + val_ckln) * ui;
188 	tmin = S_DIV_ROUND_UP(temp - 11 * ui, ui_x8) - 3;
189 	tmax = (tmin > 255) ? 511 : 255;
190 	timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false);
191 
192 	tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8);
193 	temp = 105 * coeff + 12 * ui - 20 * coeff;
194 	tmax = (temp + 3 * ui) / ui_x8;
195 	timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
196 
197 	temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui - val * ui, ui_x8);
198 	tmin = max_t(s32, temp, 0);
199 	temp = (85 * coeff + 6 * ui - val * ui) / ui_x8;
200 	tmax = max_t(s32, temp, 0);
201 	timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false);
202 
203 	temp = 145 * coeff + 10 * ui - ((timing->hs_prepare << 3) + val) * ui;
204 	tmin = S_DIV_ROUND_UP(temp - 11 * ui, ui_x8) - 3;
205 	tmax = 255;
206 	timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false);
207 
208 	tmin = DIV_ROUND_UP(60 * coeff + 4 * ui + 3 * ui, ui_x8);
209 	temp = 105 * coeff + 12 * ui - 20 * coeff;
210 	tmax = (temp + 3 * ui) / ui_x8;
211 	timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
212 
213 	temp = 50 * coeff + ((hb_en << 2) - 8) * ui;
214 	timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8);
215 
216 	tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1;
217 	tmax = 255;
218 	timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false);
219 
220 	temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui;
221 	timing->hs_rqst_ckln = S_DIV_ROUND_UP(temp, ui_x8);
222 
223 	temp = 60 * coeff + 52 * ui - 43 * ui;
224 	tmin = DIV_ROUND_UP(temp, ui_x8) - 1;
225 	tmax = 63;
226 	timing->shared_timings.clk_post =
227 				linear_inter(tmax, tmin, pcnt2, 0, false);
228 
229 	temp = 8 * ui + ((timing->clk_prepare << 3) + val_ckln) * ui;
230 	temp += (((timing->clk_zero + 3) << 3) + 11 - (pd_ckln << 1)) * ui;
231 	temp += hb_en_ckln ? (((timing->hs_rqst_ckln << 3) + 4) * ui) :
232 				(((timing->hs_rqst_ckln << 3) + 8) * ui);
233 	tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
234 	tmax = 63;
235 	if (tmin > tmax) {
236 		temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false);
237 		timing->shared_timings.clk_pre = temp >> 1;
238 		timing->shared_timings.clk_pre_inc_by_2 = 1;
239 	} else {
240 		timing->shared_timings.clk_pre =
241 				linear_inter(tmax, tmin, pcnt2, 0, false);
242 		timing->shared_timings.clk_pre_inc_by_2 = 0;
243 	}
244 
245 	timing->ta_go = 3;
246 	timing->ta_sure = 0;
247 	timing->ta_get = 4;
248 
249 	DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
250 	    timing->shared_timings.clk_pre, timing->shared_timings.clk_post,
251 	    timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero,
252 	    timing->clk_trail, timing->clk_prepare, timing->hs_exit,
253 	    timing->hs_zero, timing->hs_prepare, timing->hs_trail,
254 	    timing->hs_rqst, timing->hs_rqst_ckln, timing->hs_halfbyte_en,
255 	    timing->hs_halfbyte_en_ckln, timing->hs_prep_dly,
256 	    timing->hs_prep_dly_ckln);
257 
258 	return 0;
259 }
260 
msm_dsi_dphy_timing_calc_v3(struct msm_dsi_dphy_timing * timing,struct msm_dsi_phy_clk_request * clk_req)261 int msm_dsi_dphy_timing_calc_v3(struct msm_dsi_dphy_timing *timing,
262 	struct msm_dsi_phy_clk_request *clk_req)
263 {
264 	const unsigned long bit_rate = clk_req->bitclk_rate;
265 	const unsigned long esc_rate = clk_req->escclk_rate;
266 	s32 ui, ui_x8;
267 	s32 tmax, tmin;
268 	s32 pcnt0 = 50;
269 	s32 pcnt1 = 50;
270 	s32 pcnt2 = 10;
271 	s32 pcnt3 = 30;
272 	s32 pcnt4 = 10;
273 	s32 pcnt5 = 2;
274 	s32 coeff = 1000; /* Precision, should avoid overflow */
275 	s32 hb_en, hb_en_ckln;
276 	s32 temp;
277 
278 	if (!bit_rate || !esc_rate)
279 		return -EINVAL;
280 
281 	timing->hs_halfbyte_en = 0;
282 	hb_en = 0;
283 	timing->hs_halfbyte_en_ckln = 0;
284 	hb_en_ckln = 0;
285 
286 	ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
287 	ui_x8 = ui << 3;
288 
289 	temp = S_DIV_ROUND_UP(38 * coeff, ui_x8);
290 	tmin = max_t(s32, temp, 0);
291 	temp = (95 * coeff) / ui_x8;
292 	tmax = max_t(s32, temp, 0);
293 	timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false);
294 
295 	temp = 300 * coeff - (timing->clk_prepare << 3) * ui;
296 	tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
297 	tmax = (tmin > 255) ? 511 : 255;
298 	timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false);
299 
300 	tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8);
301 	temp = 105 * coeff + 12 * ui - 20 * coeff;
302 	tmax = (temp + 3 * ui) / ui_x8;
303 	timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
304 
305 	temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui, ui_x8);
306 	tmin = max_t(s32, temp, 0);
307 	temp = (85 * coeff + 6 * ui) / ui_x8;
308 	tmax = max_t(s32, temp, 0);
309 	timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false);
310 
311 	temp = 145 * coeff + 10 * ui - (timing->hs_prepare << 3) * ui;
312 	tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
313 	tmax = 255;
314 	timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false);
315 
316 	tmin = DIV_ROUND_UP(60 * coeff + 4 * ui, ui_x8) - 1;
317 	temp = 105 * coeff + 12 * ui - 20 * coeff;
318 	tmax = (temp / ui_x8) - 1;
319 	timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
320 
321 	temp = 50 * coeff + ((hb_en << 2) - 8) * ui;
322 	timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8);
323 
324 	tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1;
325 	tmax = 255;
326 	timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false);
327 
328 	temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui;
329 	timing->hs_rqst_ckln = S_DIV_ROUND_UP(temp, ui_x8);
330 
331 	temp = 60 * coeff + 52 * ui - 43 * ui;
332 	tmin = DIV_ROUND_UP(temp, ui_x8) - 1;
333 	tmax = 63;
334 	timing->shared_timings.clk_post =
335 		linear_inter(tmax, tmin, pcnt2, 0, false);
336 
337 	temp = 8 * ui + (timing->clk_prepare << 3) * ui;
338 	temp += (((timing->clk_zero + 3) << 3) + 11) * ui;
339 	temp += hb_en_ckln ? (((timing->hs_rqst_ckln << 3) + 4) * ui) :
340 		(((timing->hs_rqst_ckln << 3) + 8) * ui);
341 	tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
342 	tmax = 63;
343 	if (tmin > tmax) {
344 		temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false);
345 		timing->shared_timings.clk_pre = temp >> 1;
346 		timing->shared_timings.clk_pre_inc_by_2 = 1;
347 	} else {
348 		timing->shared_timings.clk_pre =
349 			linear_inter(tmax, tmin, pcnt2, 0, false);
350 		timing->shared_timings.clk_pre_inc_by_2 = 0;
351 	}
352 
353 	timing->shared_timings.byte_intf_clk_div_2 = true;
354 
355 	timing->ta_go = 3;
356 	timing->ta_sure = 0;
357 	timing->ta_get = 4;
358 
359 	DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
360 		timing->shared_timings.clk_pre, timing->shared_timings.clk_post,
361 		timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero,
362 		timing->clk_trail, timing->clk_prepare, timing->hs_exit,
363 		timing->hs_zero, timing->hs_prepare, timing->hs_trail,
364 		timing->hs_rqst, timing->hs_rqst_ckln, timing->hs_halfbyte_en,
365 		timing->hs_halfbyte_en_ckln, timing->hs_prep_dly,
366 		timing->hs_prep_dly_ckln);
367 
368 	return 0;
369 }
370 
msm_dsi_dphy_timing_calc_v4(struct msm_dsi_dphy_timing * timing,struct msm_dsi_phy_clk_request * clk_req)371 int msm_dsi_dphy_timing_calc_v4(struct msm_dsi_dphy_timing *timing,
372 	struct msm_dsi_phy_clk_request *clk_req)
373 {
374 	const unsigned long bit_rate = clk_req->bitclk_rate;
375 	const unsigned long esc_rate = clk_req->escclk_rate;
376 	s32 ui, ui_x8;
377 	s32 tmax, tmin;
378 	s32 pcnt_clk_prep = 50;
379 	s32 pcnt_clk_zero = 2;
380 	s32 pcnt_clk_trail = 30;
381 	s32 pcnt_hs_prep = 50;
382 	s32 pcnt_hs_zero = 10;
383 	s32 pcnt_hs_trail = 30;
384 	s32 pcnt_hs_exit = 10;
385 	s32 coeff = 1000; /* Precision, should avoid overflow */
386 	s32 hb_en;
387 	s32 temp;
388 
389 	if (!bit_rate || !esc_rate)
390 		return -EINVAL;
391 
392 	hb_en = 0;
393 
394 	ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
395 	ui_x8 = ui << 3;
396 
397 	/* TODO: verify these calculations against latest downstream driver
398 	 * everything except clk_post/clk_pre uses calculations from v3 based
399 	 * on the downstream driver having the same calculations for v3 and v4
400 	 */
401 
402 	temp = S_DIV_ROUND_UP(38 * coeff, ui_x8);
403 	tmin = max_t(s32, temp, 0);
404 	temp = (95 * coeff) / ui_x8;
405 	tmax = max_t(s32, temp, 0);
406 	timing->clk_prepare = linear_inter(tmax, tmin, pcnt_clk_prep, 0, false);
407 
408 	temp = 300 * coeff - (timing->clk_prepare << 3) * ui;
409 	tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
410 	tmax = (tmin > 255) ? 511 : 255;
411 	timing->clk_zero = linear_inter(tmax, tmin, pcnt_clk_zero, 0, false);
412 
413 	tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8);
414 	temp = 105 * coeff + 12 * ui - 20 * coeff;
415 	tmax = (temp + 3 * ui) / ui_x8;
416 	timing->clk_trail = linear_inter(tmax, tmin, pcnt_clk_trail, 0, false);
417 
418 	temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui, ui_x8);
419 	tmin = max_t(s32, temp, 0);
420 	temp = (85 * coeff + 6 * ui) / ui_x8;
421 	tmax = max_t(s32, temp, 0);
422 	timing->hs_prepare = linear_inter(tmax, tmin, pcnt_hs_prep, 0, false);
423 
424 	temp = 145 * coeff + 10 * ui - (timing->hs_prepare << 3) * ui;
425 	tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
426 	tmax = 255;
427 	timing->hs_zero = linear_inter(tmax, tmin, pcnt_hs_zero, 0, false);
428 
429 	tmin = DIV_ROUND_UP(60 * coeff + 4 * ui, ui_x8) - 1;
430 	temp = 105 * coeff + 12 * ui - 20 * coeff;
431 	tmax = (temp / ui_x8) - 1;
432 	timing->hs_trail = linear_inter(tmax, tmin, pcnt_hs_trail, 0, false);
433 
434 	temp = 50 * coeff + ((hb_en << 2) - 8) * ui;
435 	timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8);
436 
437 	tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1;
438 	tmax = 255;
439 	timing->hs_exit = linear_inter(tmax, tmin, pcnt_hs_exit, 0, false);
440 
441 	/* recommended min
442 	 * = roundup((mipi_min_ns + t_hs_trail_ns)/(16*bit_clk_ns), 0) - 1
443 	 */
444 	temp = 60 * coeff + 52 * ui + + (timing->hs_trail + 1) * ui_x8;
445 	tmin = DIV_ROUND_UP(temp, 16 * ui) - 1;
446 	tmax = 255;
447 	timing->shared_timings.clk_post = linear_inter(tmax, tmin, 5, 0, false);
448 
449 	/* recommended min
450 	 * val1 = (tlpx_ns + clk_prepare_ns + clk_zero_ns + hs_rqst_ns)
451 	 * val2 = (16 * bit_clk_ns)
452 	 * final = roundup(val1/val2, 0) - 1
453 	 */
454 	temp = 52 * coeff + (timing->clk_prepare + timing->clk_zero + 1) * ui_x8 + 54 * coeff;
455 	tmin = DIV_ROUND_UP(temp, 16 * ui) - 1;
456 	tmax = 255;
457 	timing->shared_timings.clk_pre = DIV_ROUND_UP((tmax - tmin) * 125, 10000) + tmin;
458 
459 	timing->shared_timings.byte_intf_clk_div_2 = true;
460 
461 	DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
462 		timing->shared_timings.clk_pre, timing->shared_timings.clk_post,
463 		timing->clk_zero, timing->clk_trail, timing->clk_prepare, timing->hs_exit,
464 		timing->hs_zero, timing->hs_prepare, timing->hs_trail, timing->hs_rqst);
465 
466 	return 0;
467 }
468 
msm_dsi_cphy_timing_calc_v4(struct msm_dsi_dphy_timing * timing,struct msm_dsi_phy_clk_request * clk_req)469 int msm_dsi_cphy_timing_calc_v4(struct msm_dsi_dphy_timing *timing,
470 	struct msm_dsi_phy_clk_request *clk_req)
471 {
472 	const unsigned long bit_rate = clk_req->bitclk_rate;
473 	const unsigned long esc_rate = clk_req->escclk_rate;
474 	s32 ui, ui_x7;
475 	s32 tmax, tmin;
476 	s32 coeff = 1000; /* Precision, should avoid overflow */
477 	s32 temp;
478 
479 	if (!bit_rate || !esc_rate)
480 		return -EINVAL;
481 
482 	ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
483 	ui_x7 = ui * 7;
484 
485 	temp = S_DIV_ROUND_UP(38 * coeff, ui_x7);
486 	tmin = max_t(s32, temp, 0);
487 	temp = (95 * coeff) / ui_x7;
488 	tmax = max_t(s32, temp, 0);
489 	timing->clk_prepare = linear_inter(tmax, tmin, 50, 0, false);
490 
491 	tmin = DIV_ROUND_UP(50 * coeff, ui_x7);
492 	tmax = 255;
493 	timing->hs_rqst = linear_inter(tmax, tmin, 1, 0, false);
494 
495 	tmin = DIV_ROUND_UP(100 * coeff, ui_x7) - 1;
496 	tmax = 255;
497 	timing->hs_exit = linear_inter(tmax, tmin, 10, 0, false);
498 
499 	tmin = 1;
500 	tmax = 32;
501 	timing->shared_timings.clk_post = linear_inter(tmax, tmin, 80, 0, false);
502 
503 	tmin = min_t(s32, 64, S_DIV_ROUND_UP(262 * coeff, ui_x7) - 1);
504 	tmax = 64;
505 	timing->shared_timings.clk_pre = linear_inter(tmax, tmin, 20, 0, false);
506 
507 	DBG("%d, %d, %d, %d, %d",
508 		timing->shared_timings.clk_pre, timing->shared_timings.clk_post,
509 		timing->clk_prepare, timing->hs_exit, timing->hs_rqst);
510 
511 	return 0;
512 }
513 
dsi_phy_enable_resource(struct msm_dsi_phy * phy)514 static int dsi_phy_enable_resource(struct msm_dsi_phy *phy)
515 {
516 	struct device *dev = &phy->pdev->dev;
517 	int ret;
518 
519 	ret = pm_runtime_resume_and_get(dev);
520 	if (ret)
521 		return ret;
522 
523 	ret = clk_prepare_enable(phy->ahb_clk);
524 	if (ret) {
525 		DRM_DEV_ERROR(dev, "%s: can't enable ahb clk, %d\n", __func__, ret);
526 		pm_runtime_put_sync(dev);
527 	}
528 
529 	return ret;
530 }
531 
dsi_phy_disable_resource(struct msm_dsi_phy * phy)532 static void dsi_phy_disable_resource(struct msm_dsi_phy *phy)
533 {
534 	clk_disable_unprepare(phy->ahb_clk);
535 	pm_runtime_put(&phy->pdev->dev);
536 }
537 
538 static const struct of_device_id dsi_phy_dt_match[] = {
539 #ifdef CONFIG_DRM_MSM_DSI_28NM_PHY
540 	{ .compatible = "qcom,dsi-phy-28nm-hpm",
541 	  .data = &dsi_phy_28nm_hpm_cfgs },
542 	{ .compatible = "qcom,dsi-phy-28nm-hpm-fam-b",
543 	  .data = &dsi_phy_28nm_hpm_famb_cfgs },
544 	{ .compatible = "qcom,dsi-phy-28nm-lp",
545 	  .data = &dsi_phy_28nm_lp_cfgs },
546 	{ .compatible = "qcom,dsi-phy-28nm-8226",
547 	  .data = &dsi_phy_28nm_8226_cfgs },
548 #endif
549 #ifdef CONFIG_DRM_MSM_DSI_20NM_PHY
550 	{ .compatible = "qcom,dsi-phy-20nm",
551 	  .data = &dsi_phy_20nm_cfgs },
552 #endif
553 #ifdef CONFIG_DRM_MSM_DSI_28NM_8960_PHY
554 	{ .compatible = "qcom,dsi-phy-28nm-8960",
555 	  .data = &dsi_phy_28nm_8960_cfgs },
556 #endif
557 #ifdef CONFIG_DRM_MSM_DSI_14NM_PHY
558 	{ .compatible = "qcom,dsi-phy-14nm",
559 	  .data = &dsi_phy_14nm_cfgs },
560 	{ .compatible = "qcom,dsi-phy-14nm-2290",
561 	  .data = &dsi_phy_14nm_2290_cfgs },
562 	{ .compatible = "qcom,dsi-phy-14nm-660",
563 	  .data = &dsi_phy_14nm_660_cfgs },
564 	{ .compatible = "qcom,dsi-phy-14nm-8953",
565 	  .data = &dsi_phy_14nm_8953_cfgs },
566 	{ .compatible = "qcom,sm6125-dsi-phy-14nm",
567 	  .data = &dsi_phy_14nm_2290_cfgs },
568 #endif
569 #ifdef CONFIG_DRM_MSM_DSI_10NM_PHY
570 	{ .compatible = "qcom,dsi-phy-10nm",
571 	  .data = &dsi_phy_10nm_cfgs },
572 	{ .compatible = "qcom,dsi-phy-10nm-8998",
573 	  .data = &dsi_phy_10nm_8998_cfgs },
574 #endif
575 #ifdef CONFIG_DRM_MSM_DSI_7NM_PHY
576 	{ .compatible = "qcom,dsi-phy-7nm",
577 	  .data = &dsi_phy_7nm_cfgs },
578 	{ .compatible = "qcom,dsi-phy-7nm-8150",
579 	  .data = &dsi_phy_7nm_8150_cfgs },
580 	{ .compatible = "qcom,sc7280-dsi-phy-7nm",
581 	  .data = &dsi_phy_7nm_7280_cfgs },
582 	{ .compatible = "qcom,sm6375-dsi-phy-7nm",
583 	  .data = &dsi_phy_7nm_6375_cfgs },
584 	{ .compatible = "qcom,sm8350-dsi-phy-5nm",
585 	  .data = &dsi_phy_5nm_8350_cfgs },
586 	{ .compatible = "qcom,sm8450-dsi-phy-5nm",
587 	  .data = &dsi_phy_5nm_8450_cfgs },
588 	{ .compatible = "qcom,sm8550-dsi-phy-4nm",
589 	  .data = &dsi_phy_4nm_8550_cfgs },
590 #endif
591 	{}
592 };
593 
594 /*
595  * Currently, we only support one SoC for each PHY type. When we have multiple
596  * SoCs for the same PHY, we can try to make the index searching a bit more
597  * clever.
598  */
dsi_phy_get_id(struct msm_dsi_phy * phy)599 static int dsi_phy_get_id(struct msm_dsi_phy *phy)
600 {
601 	struct platform_device *pdev = phy->pdev;
602 	const struct msm_dsi_phy_cfg *cfg = phy->cfg;
603 	struct resource *res;
604 	int i;
605 
606 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_phy");
607 	if (!res)
608 		return -EINVAL;
609 
610 	for (i = 0; i < cfg->num_dsi_phy; i++) {
611 		if (cfg->io_start[i] == res->start)
612 			return i;
613 	}
614 
615 	return -EINVAL;
616 }
617 
dsi_phy_driver_probe(struct platform_device * pdev)618 static int dsi_phy_driver_probe(struct platform_device *pdev)
619 {
620 	struct msm_dsi_phy *phy;
621 	struct device *dev = &pdev->dev;
622 	u32 phy_type;
623 	int ret;
624 
625 	phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
626 	if (!phy)
627 		return -ENOMEM;
628 
629 	phy->provided_clocks = devm_kzalloc(dev,
630 			struct_size(phy->provided_clocks, hws, NUM_PROVIDED_CLKS),
631 			GFP_KERNEL);
632 	if (!phy->provided_clocks)
633 		return -ENOMEM;
634 
635 	phy->provided_clocks->num = NUM_PROVIDED_CLKS;
636 
637 	phy->cfg = of_device_get_match_data(&pdev->dev);
638 	if (!phy->cfg)
639 		return -ENODEV;
640 
641 	phy->pdev = pdev;
642 
643 	phy->id = dsi_phy_get_id(phy);
644 	if (phy->id < 0)
645 		return dev_err_probe(dev, phy->id,
646 				     "Couldn't identify PHY index\n");
647 
648 	phy->regulator_ldo_mode = of_property_read_bool(dev->of_node,
649 				"qcom,dsi-phy-regulator-ldo-mode");
650 	if (!of_property_read_u32(dev->of_node, "phy-type", &phy_type))
651 		phy->cphy_mode = (phy_type == PHY_TYPE_CPHY);
652 
653 	phy->base = msm_ioremap_size(pdev, "dsi_phy", &phy->base_size);
654 	if (IS_ERR(phy->base))
655 		return dev_err_probe(dev, PTR_ERR(phy->base),
656 				     "Failed to map phy base\n");
657 
658 	phy->pll_base = msm_ioremap_size(pdev, "dsi_pll", &phy->pll_size);
659 	if (IS_ERR(phy->pll_base))
660 		return dev_err_probe(dev, PTR_ERR(phy->pll_base),
661 				     "Failed to map pll base\n");
662 
663 	if (phy->cfg->has_phy_lane) {
664 		phy->lane_base = msm_ioremap_size(pdev, "dsi_phy_lane", &phy->lane_size);
665 		if (IS_ERR(phy->lane_base))
666 			return dev_err_probe(dev, PTR_ERR(phy->lane_base),
667 					     "Failed to map phy lane base\n");
668 	}
669 
670 	if (phy->cfg->has_phy_regulator) {
671 		phy->reg_base = msm_ioremap_size(pdev, "dsi_phy_regulator", &phy->reg_size);
672 		if (IS_ERR(phy->reg_base))
673 			return dev_err_probe(dev, PTR_ERR(phy->reg_base),
674 					     "Failed to map phy regulator base\n");
675 	}
676 
677 	if (phy->cfg->ops.parse_dt_properties) {
678 		ret = phy->cfg->ops.parse_dt_properties(phy);
679 		if (ret)
680 			return ret;
681 	}
682 
683 	ret = devm_regulator_bulk_get_const(dev, phy->cfg->num_regulators,
684 					    phy->cfg->regulator_data,
685 					    &phy->supplies);
686 	if (ret)
687 		return ret;
688 
689 	phy->ahb_clk = msm_clk_get(pdev, "iface");
690 	if (IS_ERR(phy->ahb_clk))
691 		return dev_err_probe(dev, PTR_ERR(phy->ahb_clk),
692 				     "Unable to get ahb clk\n");
693 
694 	ret = devm_pm_runtime_enable(&pdev->dev);
695 	if (ret)
696 		return ret;
697 
698 	/* PLL init will call into clk_register which requires
699 	 * register access, so we need to enable power and ahb clock.
700 	 */
701 	ret = dsi_phy_enable_resource(phy);
702 	if (ret)
703 		return ret;
704 
705 	if (phy->cfg->ops.pll_init) {
706 		ret = phy->cfg->ops.pll_init(phy);
707 		if (ret)
708 			return dev_err_probe(dev, ret,
709 					     "PLL init failed; need separate clk driver\n");
710 	}
711 
712 	ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get,
713 				     phy->provided_clocks);
714 	if (ret)
715 		return dev_err_probe(dev, ret,
716 				     "Failed to register clk provider\n");
717 
718 	dsi_phy_disable_resource(phy);
719 
720 	platform_set_drvdata(pdev, phy);
721 
722 	return 0;
723 }
724 
725 static struct platform_driver dsi_phy_platform_driver = {
726 	.probe      = dsi_phy_driver_probe,
727 	.driver     = {
728 		.name   = "msm_dsi_phy",
729 		.of_match_table = dsi_phy_dt_match,
730 	},
731 };
732 
msm_dsi_phy_driver_register(void)733 void __init msm_dsi_phy_driver_register(void)
734 {
735 	platform_driver_register(&dsi_phy_platform_driver);
736 }
737 
msm_dsi_phy_driver_unregister(void)738 void __exit msm_dsi_phy_driver_unregister(void)
739 {
740 	platform_driver_unregister(&dsi_phy_platform_driver);
741 }
742 
msm_dsi_phy_enable(struct msm_dsi_phy * phy,struct msm_dsi_phy_clk_request * clk_req,struct msm_dsi_phy_shared_timings * shared_timings)743 int msm_dsi_phy_enable(struct msm_dsi_phy *phy,
744 			struct msm_dsi_phy_clk_request *clk_req,
745 			struct msm_dsi_phy_shared_timings *shared_timings)
746 {
747 	struct device *dev;
748 	int ret;
749 
750 	if (!phy || !phy->cfg->ops.enable)
751 		return -EINVAL;
752 
753 	dev = &phy->pdev->dev;
754 
755 	ret = dsi_phy_enable_resource(phy);
756 	if (ret) {
757 		DRM_DEV_ERROR(dev, "%s: resource enable failed, %d\n",
758 			__func__, ret);
759 		goto res_en_fail;
760 	}
761 
762 	ret = regulator_bulk_enable(phy->cfg->num_regulators, phy->supplies);
763 	if (ret) {
764 		DRM_DEV_ERROR(dev, "%s: regulator enable failed, %d\n",
765 			__func__, ret);
766 		goto reg_en_fail;
767 	}
768 
769 	ret = phy->cfg->ops.enable(phy, clk_req);
770 	if (ret) {
771 		DRM_DEV_ERROR(dev, "%s: phy enable failed, %d\n", __func__, ret);
772 		goto phy_en_fail;
773 	}
774 
775 	memcpy(shared_timings, &phy->timing.shared_timings,
776 	       sizeof(*shared_timings));
777 
778 	/*
779 	 * Resetting DSI PHY silently changes its PLL registers to reset status,
780 	 * which will confuse clock driver and result in wrong output rate of
781 	 * link clocks. Restore PLL status if its PLL is being used as clock
782 	 * source.
783 	 */
784 	if (phy->usecase != MSM_DSI_PHY_SLAVE) {
785 		ret = msm_dsi_phy_pll_restore_state(phy);
786 		if (ret) {
787 			DRM_DEV_ERROR(dev, "%s: failed to restore phy state, %d\n",
788 				__func__, ret);
789 			goto pll_restor_fail;
790 		}
791 	}
792 
793 	return 0;
794 
795 pll_restor_fail:
796 	if (phy->cfg->ops.disable)
797 		phy->cfg->ops.disable(phy);
798 phy_en_fail:
799 	regulator_bulk_disable(phy->cfg->num_regulators, phy->supplies);
800 reg_en_fail:
801 	dsi_phy_disable_resource(phy);
802 res_en_fail:
803 	return ret;
804 }
805 
msm_dsi_phy_disable(struct msm_dsi_phy * phy)806 void msm_dsi_phy_disable(struct msm_dsi_phy *phy)
807 {
808 	if (!phy || !phy->cfg->ops.disable)
809 		return;
810 
811 	phy->cfg->ops.disable(phy);
812 
813 	regulator_bulk_disable(phy->cfg->num_regulators, phy->supplies);
814 	dsi_phy_disable_resource(phy);
815 }
816 
msm_dsi_phy_set_usecase(struct msm_dsi_phy * phy,enum msm_dsi_phy_usecase uc)817 void msm_dsi_phy_set_usecase(struct msm_dsi_phy *phy,
818 			     enum msm_dsi_phy_usecase uc)
819 {
820 	if (phy)
821 		phy->usecase = uc;
822 }
823 
824 /* Returns true if we have to clear DSI_LANE_CTRL.HS_REQ_SEL_PHY */
msm_dsi_phy_set_continuous_clock(struct msm_dsi_phy * phy,bool enable)825 bool msm_dsi_phy_set_continuous_clock(struct msm_dsi_phy *phy, bool enable)
826 {
827 	if (!phy || !phy->cfg->ops.set_continuous_clock)
828 		return false;
829 
830 	return phy->cfg->ops.set_continuous_clock(phy, enable);
831 }
832 
msm_dsi_phy_pll_save_state(struct msm_dsi_phy * phy)833 void msm_dsi_phy_pll_save_state(struct msm_dsi_phy *phy)
834 {
835 	if (phy->cfg->ops.save_pll_state) {
836 		phy->cfg->ops.save_pll_state(phy);
837 		phy->state_saved = true;
838 	}
839 }
840 
msm_dsi_phy_pll_restore_state(struct msm_dsi_phy * phy)841 int msm_dsi_phy_pll_restore_state(struct msm_dsi_phy *phy)
842 {
843 	int ret;
844 
845 	if (phy->cfg->ops.restore_pll_state && phy->state_saved) {
846 		ret = phy->cfg->ops.restore_pll_state(phy);
847 		if (ret)
848 			return ret;
849 
850 		phy->state_saved = false;
851 	}
852 
853 	return 0;
854 }
855 
msm_dsi_phy_snapshot(struct msm_disp_state * disp_state,struct msm_dsi_phy * phy)856 void msm_dsi_phy_snapshot(struct msm_disp_state *disp_state, struct msm_dsi_phy *phy)
857 {
858 	msm_disp_snapshot_add_block(disp_state,
859 			phy->base_size, phy->base,
860 			"dsi%d_phy", phy->id);
861 
862 	/* Do not try accessing PLL registers if it is switched off */
863 	if (phy->pll_on)
864 		msm_disp_snapshot_add_block(disp_state,
865 			phy->pll_size, phy->pll_base,
866 			"dsi%d_pll", phy->id);
867 
868 	if (phy->lane_base)
869 		msm_disp_snapshot_add_block(disp_state,
870 			phy->lane_size, phy->lane_base,
871 			"dsi%d_lane", phy->id);
872 
873 	if (phy->reg_base)
874 		msm_disp_snapshot_add_block(disp_state,
875 			phy->reg_size, phy->reg_base,
876 			"dsi%d_reg", phy->id);
877 }
878