1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2012 Intel Corporation. All rights reserved.
8 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * BSD LICENSE
15 *
16 * Copyright(c) 2012 Intel Corporation. All rights reserved.
17 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * * Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * * Redistributions in binary form must reproduce the above copy
26 * notice, this list of conditions and the following disclaimer in
27 * the documentation and/or other materials provided with the
28 * distribution.
29 * * Neither the name of Intel Corporation nor the names of its
30 * contributors may be used to endorse or promote products derived
31 * from this software without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44 *
45 * PCIe NTB Transport Linux driver
46 *
47 * Contact Information:
48 * Jon Mason <jon.mason@intel.com>
49 */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64
65 #define NTB_TRANSPORT_VERSION 4
66 #define NTB_TRANSPORT_VER "4"
67 #define NTB_TRANSPORT_NAME "ntb_transport"
68 #define NTB_TRANSPORT_DESC "Software Queue-Pair Transport over NTB"
69 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
70
71 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
72 MODULE_VERSION(NTB_TRANSPORT_VER);
73 MODULE_LICENSE("Dual BSD/GPL");
74 MODULE_AUTHOR("Intel Corporation");
75
76 static unsigned long max_mw_size;
77 module_param(max_mw_size, ulong, 0644);
78 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
79
80 static unsigned int transport_mtu = 0x10000;
81 module_param(transport_mtu, uint, 0644);
82 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
83
84 static unsigned char max_num_clients;
85 module_param(max_num_clients, byte, 0644);
86 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
87
88 static unsigned int copy_bytes = 1024;
89 module_param(copy_bytes, uint, 0644);
90 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
91
92 static bool use_dma;
93 module_param(use_dma, bool, 0644);
94 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
95
96 static bool use_msi;
97 #ifdef CONFIG_NTB_MSI
98 module_param(use_msi, bool, 0644);
99 MODULE_PARM_DESC(use_msi, "Use MSI interrupts instead of doorbells");
100 #endif
101
102 static struct dentry *nt_debugfs_dir;
103
104 /* Only two-ports NTB devices are supported */
105 #define PIDX NTB_DEF_PEER_IDX
106
107 struct ntb_queue_entry {
108 /* ntb_queue list reference */
109 struct list_head entry;
110 /* pointers to data to be transferred */
111 void *cb_data;
112 void *buf;
113 unsigned int len;
114 unsigned int flags;
115 int retries;
116 int errors;
117 unsigned int tx_index;
118 unsigned int rx_index;
119
120 struct ntb_transport_qp *qp;
121 union {
122 struct ntb_payload_header __iomem *tx_hdr;
123 struct ntb_payload_header *rx_hdr;
124 };
125 };
126
127 struct ntb_rx_info {
128 unsigned int entry;
129 };
130
131 struct ntb_transport_qp {
132 struct ntb_transport_ctx *transport;
133 struct ntb_dev *ndev;
134 void *cb_data;
135 struct dma_chan *tx_dma_chan;
136 struct dma_chan *rx_dma_chan;
137
138 bool client_ready;
139 bool link_is_up;
140 bool active;
141
142 u8 qp_num; /* Only 64 QP's are allowed. 0-63 */
143 u64 qp_bit;
144
145 struct ntb_rx_info __iomem *rx_info;
146 struct ntb_rx_info *remote_rx_info;
147
148 void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
149 void *data, int len);
150 struct list_head tx_free_q;
151 spinlock_t ntb_tx_free_q_lock;
152 void __iomem *tx_mw;
153 phys_addr_t tx_mw_phys;
154 size_t tx_mw_size;
155 dma_addr_t tx_mw_dma_addr;
156 unsigned int tx_index;
157 unsigned int tx_max_entry;
158 unsigned int tx_max_frame;
159
160 void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
161 void *data, int len);
162 struct list_head rx_post_q;
163 struct list_head rx_pend_q;
164 struct list_head rx_free_q;
165 /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
166 spinlock_t ntb_rx_q_lock;
167 void *rx_buff;
168 unsigned int rx_index;
169 unsigned int rx_max_entry;
170 unsigned int rx_max_frame;
171 unsigned int rx_alloc_entry;
172 dma_cookie_t last_cookie;
173 struct tasklet_struct rxc_db_work;
174
175 void (*event_handler)(void *data, int status);
176 struct delayed_work link_work;
177 struct work_struct link_cleanup;
178
179 struct dentry *debugfs_dir;
180 struct dentry *debugfs_stats;
181
182 /* Stats */
183 u64 rx_bytes;
184 u64 rx_pkts;
185 u64 rx_ring_empty;
186 u64 rx_err_no_buf;
187 u64 rx_err_oflow;
188 u64 rx_err_ver;
189 u64 rx_memcpy;
190 u64 rx_async;
191 u64 tx_bytes;
192 u64 tx_pkts;
193 u64 tx_ring_full;
194 u64 tx_err_no_buf;
195 u64 tx_memcpy;
196 u64 tx_async;
197
198 bool use_msi;
199 int msi_irq;
200 struct ntb_msi_desc msi_desc;
201 struct ntb_msi_desc peer_msi_desc;
202 };
203
204 struct ntb_transport_mw {
205 phys_addr_t phys_addr;
206 resource_size_t phys_size;
207 void __iomem *vbase;
208 size_t xlat_size;
209 size_t buff_size;
210 size_t alloc_size;
211 void *alloc_addr;
212 void *virt_addr;
213 dma_addr_t dma_addr;
214 };
215
216 struct ntb_transport_client_dev {
217 struct list_head entry;
218 struct ntb_transport_ctx *nt;
219 struct device dev;
220 };
221
222 struct ntb_transport_ctx {
223 struct list_head entry;
224 struct list_head client_devs;
225
226 struct ntb_dev *ndev;
227
228 struct ntb_transport_mw *mw_vec;
229 struct ntb_transport_qp *qp_vec;
230 unsigned int mw_count;
231 unsigned int qp_count;
232 u64 qp_bitmap;
233 u64 qp_bitmap_free;
234
235 bool use_msi;
236 unsigned int msi_spad_offset;
237 u64 msi_db_mask;
238
239 bool link_is_up;
240 struct delayed_work link_work;
241 struct work_struct link_cleanup;
242
243 struct dentry *debugfs_node_dir;
244 };
245
246 enum {
247 DESC_DONE_FLAG = BIT(0),
248 LINK_DOWN_FLAG = BIT(1),
249 };
250
251 struct ntb_payload_header {
252 unsigned int ver;
253 unsigned int len;
254 unsigned int flags;
255 };
256
257 enum {
258 VERSION = 0,
259 QP_LINKS,
260 NUM_QPS,
261 NUM_MWS,
262 MW0_SZ_HIGH,
263 MW0_SZ_LOW,
264 };
265
266 #define dev_client_dev(__dev) \
267 container_of((__dev), struct ntb_transport_client_dev, dev)
268
269 #define drv_client(__drv) \
270 container_of((__drv), struct ntb_transport_client, driver)
271
272 #define QP_TO_MW(nt, qp) ((qp) % nt->mw_count)
273 #define NTB_QP_DEF_NUM_ENTRIES 100
274 #define NTB_LINK_DOWN_TIMEOUT 10
275
276 static void ntb_transport_rxc_db(unsigned long data);
277 static const struct ntb_ctx_ops ntb_transport_ops;
278 static struct ntb_client ntb_transport_client;
279 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
280 struct ntb_queue_entry *entry);
281 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
282 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
283 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
284
285
ntb_transport_bus_match(struct device * dev,struct device_driver * drv)286 static int ntb_transport_bus_match(struct device *dev,
287 struct device_driver *drv)
288 {
289 return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
290 }
291
ntb_transport_bus_probe(struct device * dev)292 static int ntb_transport_bus_probe(struct device *dev)
293 {
294 const struct ntb_transport_client *client;
295 int rc;
296
297 get_device(dev);
298
299 client = drv_client(dev->driver);
300 rc = client->probe(dev);
301 if (rc)
302 put_device(dev);
303
304 return rc;
305 }
306
ntb_transport_bus_remove(struct device * dev)307 static void ntb_transport_bus_remove(struct device *dev)
308 {
309 const struct ntb_transport_client *client;
310
311 client = drv_client(dev->driver);
312 client->remove(dev);
313
314 put_device(dev);
315 }
316
317 static struct bus_type ntb_transport_bus = {
318 .name = "ntb_transport",
319 .match = ntb_transport_bus_match,
320 .probe = ntb_transport_bus_probe,
321 .remove = ntb_transport_bus_remove,
322 };
323
324 static LIST_HEAD(ntb_transport_list);
325
ntb_bus_init(struct ntb_transport_ctx * nt)326 static int ntb_bus_init(struct ntb_transport_ctx *nt)
327 {
328 list_add_tail(&nt->entry, &ntb_transport_list);
329 return 0;
330 }
331
ntb_bus_remove(struct ntb_transport_ctx * nt)332 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
333 {
334 struct ntb_transport_client_dev *client_dev, *cd;
335
336 list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
337 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
338 dev_name(&client_dev->dev));
339 list_del(&client_dev->entry);
340 device_unregister(&client_dev->dev);
341 }
342
343 list_del(&nt->entry);
344 }
345
ntb_transport_client_release(struct device * dev)346 static void ntb_transport_client_release(struct device *dev)
347 {
348 struct ntb_transport_client_dev *client_dev;
349
350 client_dev = dev_client_dev(dev);
351 kfree(client_dev);
352 }
353
354 /**
355 * ntb_transport_unregister_client_dev - Unregister NTB client device
356 * @device_name: Name of NTB client device
357 *
358 * Unregister an NTB client device with the NTB transport layer
359 */
ntb_transport_unregister_client_dev(char * device_name)360 void ntb_transport_unregister_client_dev(char *device_name)
361 {
362 struct ntb_transport_client_dev *client, *cd;
363 struct ntb_transport_ctx *nt;
364
365 list_for_each_entry(nt, &ntb_transport_list, entry)
366 list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
367 if (!strncmp(dev_name(&client->dev), device_name,
368 strlen(device_name))) {
369 list_del(&client->entry);
370 device_unregister(&client->dev);
371 }
372 }
373 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
374
375 /**
376 * ntb_transport_register_client_dev - Register NTB client device
377 * @device_name: Name of NTB client device
378 *
379 * Register an NTB client device with the NTB transport layer
380 */
ntb_transport_register_client_dev(char * device_name)381 int ntb_transport_register_client_dev(char *device_name)
382 {
383 struct ntb_transport_client_dev *client_dev;
384 struct ntb_transport_ctx *nt;
385 int node;
386 int rc, i = 0;
387
388 if (list_empty(&ntb_transport_list))
389 return -ENODEV;
390
391 list_for_each_entry(nt, &ntb_transport_list, entry) {
392 struct device *dev;
393
394 node = dev_to_node(&nt->ndev->dev);
395
396 client_dev = kzalloc_node(sizeof(*client_dev),
397 GFP_KERNEL, node);
398 if (!client_dev) {
399 rc = -ENOMEM;
400 goto err;
401 }
402
403 dev = &client_dev->dev;
404
405 /* setup and register client devices */
406 dev_set_name(dev, "%s%d", device_name, i);
407 dev->bus = &ntb_transport_bus;
408 dev->release = ntb_transport_client_release;
409 dev->parent = &nt->ndev->dev;
410
411 rc = device_register(dev);
412 if (rc) {
413 put_device(dev);
414 goto err;
415 }
416
417 list_add_tail(&client_dev->entry, &nt->client_devs);
418 i++;
419 }
420
421 return 0;
422
423 err:
424 ntb_transport_unregister_client_dev(device_name);
425
426 return rc;
427 }
428 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
429
430 /**
431 * ntb_transport_register_client - Register NTB client driver
432 * @drv: NTB client driver to be registered
433 *
434 * Register an NTB client driver with the NTB transport layer
435 *
436 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
437 */
ntb_transport_register_client(struct ntb_transport_client * drv)438 int ntb_transport_register_client(struct ntb_transport_client *drv)
439 {
440 drv->driver.bus = &ntb_transport_bus;
441
442 if (list_empty(&ntb_transport_list))
443 return -ENODEV;
444
445 return driver_register(&drv->driver);
446 }
447 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
448
449 /**
450 * ntb_transport_unregister_client - Unregister NTB client driver
451 * @drv: NTB client driver to be unregistered
452 *
453 * Unregister an NTB client driver with the NTB transport layer
454 *
455 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
456 */
ntb_transport_unregister_client(struct ntb_transport_client * drv)457 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
458 {
459 driver_unregister(&drv->driver);
460 }
461 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
462
debugfs_read(struct file * filp,char __user * ubuf,size_t count,loff_t * offp)463 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
464 loff_t *offp)
465 {
466 struct ntb_transport_qp *qp;
467 char *buf;
468 ssize_t ret, out_offset, out_count;
469
470 qp = filp->private_data;
471
472 if (!qp || !qp->link_is_up)
473 return 0;
474
475 out_count = 1000;
476
477 buf = kmalloc(out_count, GFP_KERNEL);
478 if (!buf)
479 return -ENOMEM;
480
481 out_offset = 0;
482 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
483 "\nNTB QP stats:\n\n");
484 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
485 "rx_bytes - \t%llu\n", qp->rx_bytes);
486 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
487 "rx_pkts - \t%llu\n", qp->rx_pkts);
488 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
489 "rx_memcpy - \t%llu\n", qp->rx_memcpy);
490 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
491 "rx_async - \t%llu\n", qp->rx_async);
492 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
493 "rx_ring_empty - %llu\n", qp->rx_ring_empty);
494 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
495 "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
496 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
497 "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
498 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
499 "rx_err_ver - \t%llu\n", qp->rx_err_ver);
500 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
501 "rx_buff - \t0x%p\n", qp->rx_buff);
502 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
503 "rx_index - \t%u\n", qp->rx_index);
504 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
505 "rx_max_entry - \t%u\n", qp->rx_max_entry);
506 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
507 "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
508
509 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
510 "tx_bytes - \t%llu\n", qp->tx_bytes);
511 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
512 "tx_pkts - \t%llu\n", qp->tx_pkts);
513 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
514 "tx_memcpy - \t%llu\n", qp->tx_memcpy);
515 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
516 "tx_async - \t%llu\n", qp->tx_async);
517 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
518 "tx_ring_full - \t%llu\n", qp->tx_ring_full);
519 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
520 "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
521 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
522 "tx_mw - \t0x%p\n", qp->tx_mw);
523 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
524 "tx_index (H) - \t%u\n", qp->tx_index);
525 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
526 "RRI (T) - \t%u\n",
527 qp->remote_rx_info->entry);
528 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
529 "tx_max_entry - \t%u\n", qp->tx_max_entry);
530 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
531 "free tx - \t%u\n",
532 ntb_transport_tx_free_entry(qp));
533
534 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
535 "\n");
536 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
537 "Using TX DMA - \t%s\n",
538 qp->tx_dma_chan ? "Yes" : "No");
539 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
540 "Using RX DMA - \t%s\n",
541 qp->rx_dma_chan ? "Yes" : "No");
542 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
543 "QP Link - \t%s\n",
544 qp->link_is_up ? "Up" : "Down");
545 out_offset += scnprintf(buf + out_offset, out_count - out_offset,
546 "\n");
547
548 if (out_offset > out_count)
549 out_offset = out_count;
550
551 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
552 kfree(buf);
553 return ret;
554 }
555
556 static const struct file_operations ntb_qp_debugfs_stats = {
557 .owner = THIS_MODULE,
558 .open = simple_open,
559 .read = debugfs_read,
560 };
561
ntb_list_add(spinlock_t * lock,struct list_head * entry,struct list_head * list)562 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
563 struct list_head *list)
564 {
565 unsigned long flags;
566
567 spin_lock_irqsave(lock, flags);
568 list_add_tail(entry, list);
569 spin_unlock_irqrestore(lock, flags);
570 }
571
ntb_list_rm(spinlock_t * lock,struct list_head * list)572 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
573 struct list_head *list)
574 {
575 struct ntb_queue_entry *entry;
576 unsigned long flags;
577
578 spin_lock_irqsave(lock, flags);
579 if (list_empty(list)) {
580 entry = NULL;
581 goto out;
582 }
583 entry = list_first_entry(list, struct ntb_queue_entry, entry);
584 list_del(&entry->entry);
585
586 out:
587 spin_unlock_irqrestore(lock, flags);
588
589 return entry;
590 }
591
ntb_list_mv(spinlock_t * lock,struct list_head * list,struct list_head * to_list)592 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
593 struct list_head *list,
594 struct list_head *to_list)
595 {
596 struct ntb_queue_entry *entry;
597 unsigned long flags;
598
599 spin_lock_irqsave(lock, flags);
600
601 if (list_empty(list)) {
602 entry = NULL;
603 } else {
604 entry = list_first_entry(list, struct ntb_queue_entry, entry);
605 list_move_tail(&entry->entry, to_list);
606 }
607
608 spin_unlock_irqrestore(lock, flags);
609
610 return entry;
611 }
612
ntb_transport_setup_qp_mw(struct ntb_transport_ctx * nt,unsigned int qp_num)613 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
614 unsigned int qp_num)
615 {
616 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
617 struct ntb_transport_mw *mw;
618 struct ntb_dev *ndev = nt->ndev;
619 struct ntb_queue_entry *entry;
620 unsigned int rx_size, num_qps_mw;
621 unsigned int mw_num, mw_count, qp_count;
622 unsigned int i;
623 int node;
624
625 mw_count = nt->mw_count;
626 qp_count = nt->qp_count;
627
628 mw_num = QP_TO_MW(nt, qp_num);
629 mw = &nt->mw_vec[mw_num];
630
631 if (!mw->virt_addr)
632 return -ENOMEM;
633
634 if (mw_num < qp_count % mw_count)
635 num_qps_mw = qp_count / mw_count + 1;
636 else
637 num_qps_mw = qp_count / mw_count;
638
639 rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
640 qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
641 rx_size -= sizeof(struct ntb_rx_info);
642
643 qp->remote_rx_info = qp->rx_buff + rx_size;
644
645 /* Due to housekeeping, there must be atleast 2 buffs */
646 qp->rx_max_frame = min(transport_mtu, rx_size / 2);
647 qp->rx_max_entry = rx_size / qp->rx_max_frame;
648 qp->rx_index = 0;
649
650 /*
651 * Checking to see if we have more entries than the default.
652 * We should add additional entries if that is the case so we
653 * can be in sync with the transport frames.
654 */
655 node = dev_to_node(&ndev->dev);
656 for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
657 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
658 if (!entry)
659 return -ENOMEM;
660
661 entry->qp = qp;
662 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
663 &qp->rx_free_q);
664 qp->rx_alloc_entry++;
665 }
666
667 qp->remote_rx_info->entry = qp->rx_max_entry - 1;
668
669 /* setup the hdr offsets with 0's */
670 for (i = 0; i < qp->rx_max_entry; i++) {
671 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
672 sizeof(struct ntb_payload_header));
673 memset(offset, 0, sizeof(struct ntb_payload_header));
674 }
675
676 qp->rx_pkts = 0;
677 qp->tx_pkts = 0;
678 qp->tx_index = 0;
679
680 return 0;
681 }
682
ntb_transport_isr(int irq,void * dev)683 static irqreturn_t ntb_transport_isr(int irq, void *dev)
684 {
685 struct ntb_transport_qp *qp = dev;
686
687 tasklet_schedule(&qp->rxc_db_work);
688
689 return IRQ_HANDLED;
690 }
691
ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx * nt,unsigned int qp_num)692 static void ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx *nt,
693 unsigned int qp_num)
694 {
695 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
696 int spad = qp_num * 2 + nt->msi_spad_offset;
697
698 if (!nt->use_msi)
699 return;
700
701 if (spad >= ntb_spad_count(nt->ndev))
702 return;
703
704 qp->peer_msi_desc.addr_offset =
705 ntb_peer_spad_read(qp->ndev, PIDX, spad);
706 qp->peer_msi_desc.data =
707 ntb_peer_spad_read(qp->ndev, PIDX, spad + 1);
708
709 dev_dbg(&qp->ndev->pdev->dev, "QP%d Peer MSI addr=%x data=%x\n",
710 qp_num, qp->peer_msi_desc.addr_offset, qp->peer_msi_desc.data);
711
712 if (qp->peer_msi_desc.addr_offset) {
713 qp->use_msi = true;
714 dev_info(&qp->ndev->pdev->dev,
715 "Using MSI interrupts for QP%d\n", qp_num);
716 }
717 }
718
ntb_transport_setup_qp_msi(struct ntb_transport_ctx * nt,unsigned int qp_num)719 static void ntb_transport_setup_qp_msi(struct ntb_transport_ctx *nt,
720 unsigned int qp_num)
721 {
722 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
723 int spad = qp_num * 2 + nt->msi_spad_offset;
724 int rc;
725
726 if (!nt->use_msi)
727 return;
728
729 if (spad >= ntb_spad_count(nt->ndev)) {
730 dev_warn_once(&qp->ndev->pdev->dev,
731 "Not enough SPADS to use MSI interrupts\n");
732 return;
733 }
734
735 ntb_spad_write(qp->ndev, spad, 0);
736 ntb_spad_write(qp->ndev, spad + 1, 0);
737
738 if (!qp->msi_irq) {
739 qp->msi_irq = ntbm_msi_request_irq(qp->ndev, ntb_transport_isr,
740 KBUILD_MODNAME, qp,
741 &qp->msi_desc);
742 if (qp->msi_irq < 0) {
743 dev_warn(&qp->ndev->pdev->dev,
744 "Unable to allocate MSI interrupt for qp%d\n",
745 qp_num);
746 return;
747 }
748 }
749
750 rc = ntb_spad_write(qp->ndev, spad, qp->msi_desc.addr_offset);
751 if (rc)
752 goto err_free_interrupt;
753
754 rc = ntb_spad_write(qp->ndev, spad + 1, qp->msi_desc.data);
755 if (rc)
756 goto err_free_interrupt;
757
758 dev_dbg(&qp->ndev->pdev->dev, "QP%d MSI %d addr=%x data=%x\n",
759 qp_num, qp->msi_irq, qp->msi_desc.addr_offset,
760 qp->msi_desc.data);
761
762 return;
763
764 err_free_interrupt:
765 devm_free_irq(&nt->ndev->dev, qp->msi_irq, qp);
766 }
767
ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx * nt)768 static void ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx *nt)
769 {
770 int i;
771
772 dev_dbg(&nt->ndev->pdev->dev, "Peer MSI descriptors changed");
773
774 for (i = 0; i < nt->qp_count; i++)
775 ntb_transport_setup_qp_peer_msi(nt, i);
776 }
777
ntb_transport_msi_desc_changed(void * data)778 static void ntb_transport_msi_desc_changed(void *data)
779 {
780 struct ntb_transport_ctx *nt = data;
781 int i;
782
783 dev_dbg(&nt->ndev->pdev->dev, "MSI descriptors changed");
784
785 for (i = 0; i < nt->qp_count; i++)
786 ntb_transport_setup_qp_msi(nt, i);
787
788 ntb_peer_db_set(nt->ndev, nt->msi_db_mask);
789 }
790
ntb_free_mw(struct ntb_transport_ctx * nt,int num_mw)791 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
792 {
793 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
794 struct pci_dev *pdev = nt->ndev->pdev;
795
796 if (!mw->virt_addr)
797 return;
798
799 ntb_mw_clear_trans(nt->ndev, PIDX, num_mw);
800 dma_free_coherent(&pdev->dev, mw->alloc_size,
801 mw->alloc_addr, mw->dma_addr);
802 mw->xlat_size = 0;
803 mw->buff_size = 0;
804 mw->alloc_size = 0;
805 mw->alloc_addr = NULL;
806 mw->virt_addr = NULL;
807 }
808
ntb_alloc_mw_buffer(struct ntb_transport_mw * mw,struct device * ntb_dev,size_t align)809 static int ntb_alloc_mw_buffer(struct ntb_transport_mw *mw,
810 struct device *ntb_dev, size_t align)
811 {
812 dma_addr_t dma_addr;
813 void *alloc_addr, *virt_addr;
814 int rc;
815
816 /*
817 * The buffer here is allocated against the NTB device. The reason to
818 * use dma_alloc_*() call is to allocate a large IOVA contiguous buffer
819 * backing the NTB BAR for the remote host to write to. During receive
820 * processing, the data is being copied out of the receive buffer to
821 * the kernel skbuff. When a DMA device is being used, dma_map_page()
822 * is called on the kvaddr of the receive buffer (from dma_alloc_*())
823 * and remapped against the DMA device. It appears to be a double
824 * DMA mapping of buffers, but first is mapped to the NTB device and
825 * second is to the DMA device. DMA_ATTR_FORCE_CONTIGUOUS is necessary
826 * in order for the later dma_map_page() to not fail.
827 */
828 alloc_addr = dma_alloc_attrs(ntb_dev, mw->alloc_size,
829 &dma_addr, GFP_KERNEL,
830 DMA_ATTR_FORCE_CONTIGUOUS);
831 if (!alloc_addr) {
832 dev_err(ntb_dev, "Unable to alloc MW buff of size %zu\n",
833 mw->alloc_size);
834 return -ENOMEM;
835 }
836 virt_addr = alloc_addr;
837
838 /*
839 * we must ensure that the memory address allocated is BAR size
840 * aligned in order for the XLAT register to take the value. This
841 * is a requirement of the hardware. It is recommended to setup CMA
842 * for BAR sizes equal or greater than 4MB.
843 */
844 if (!IS_ALIGNED(dma_addr, align)) {
845 if (mw->alloc_size > mw->buff_size) {
846 virt_addr = PTR_ALIGN(alloc_addr, align);
847 dma_addr = ALIGN(dma_addr, align);
848 } else {
849 rc = -ENOMEM;
850 goto err;
851 }
852 }
853
854 mw->alloc_addr = alloc_addr;
855 mw->virt_addr = virt_addr;
856 mw->dma_addr = dma_addr;
857
858 return 0;
859
860 err:
861 dma_free_coherent(ntb_dev, mw->alloc_size, alloc_addr, dma_addr);
862
863 return rc;
864 }
865
ntb_set_mw(struct ntb_transport_ctx * nt,int num_mw,resource_size_t size)866 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
867 resource_size_t size)
868 {
869 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
870 struct pci_dev *pdev = nt->ndev->pdev;
871 size_t xlat_size, buff_size;
872 resource_size_t xlat_align;
873 resource_size_t xlat_align_size;
874 int rc;
875
876 if (!size)
877 return -EINVAL;
878
879 rc = ntb_mw_get_align(nt->ndev, PIDX, num_mw, &xlat_align,
880 &xlat_align_size, NULL);
881 if (rc)
882 return rc;
883
884 xlat_size = round_up(size, xlat_align_size);
885 buff_size = round_up(size, xlat_align);
886
887 /* No need to re-setup */
888 if (mw->xlat_size == xlat_size)
889 return 0;
890
891 if (mw->buff_size)
892 ntb_free_mw(nt, num_mw);
893
894 /* Alloc memory for receiving data. Must be aligned */
895 mw->xlat_size = xlat_size;
896 mw->buff_size = buff_size;
897 mw->alloc_size = buff_size;
898
899 rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
900 if (rc) {
901 mw->alloc_size *= 2;
902 rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
903 if (rc) {
904 dev_err(&pdev->dev,
905 "Unable to alloc aligned MW buff\n");
906 mw->xlat_size = 0;
907 mw->buff_size = 0;
908 mw->alloc_size = 0;
909 return rc;
910 }
911 }
912
913 /* Notify HW the memory location of the receive buffer */
914 rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr,
915 mw->xlat_size);
916 if (rc) {
917 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
918 ntb_free_mw(nt, num_mw);
919 return -EIO;
920 }
921
922 return 0;
923 }
924
ntb_qp_link_context_reset(struct ntb_transport_qp * qp)925 static void ntb_qp_link_context_reset(struct ntb_transport_qp *qp)
926 {
927 qp->link_is_up = false;
928 qp->active = false;
929
930 qp->tx_index = 0;
931 qp->rx_index = 0;
932 qp->rx_bytes = 0;
933 qp->rx_pkts = 0;
934 qp->rx_ring_empty = 0;
935 qp->rx_err_no_buf = 0;
936 qp->rx_err_oflow = 0;
937 qp->rx_err_ver = 0;
938 qp->rx_memcpy = 0;
939 qp->rx_async = 0;
940 qp->tx_bytes = 0;
941 qp->tx_pkts = 0;
942 qp->tx_ring_full = 0;
943 qp->tx_err_no_buf = 0;
944 qp->tx_memcpy = 0;
945 qp->tx_async = 0;
946 }
947
ntb_qp_link_down_reset(struct ntb_transport_qp * qp)948 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
949 {
950 ntb_qp_link_context_reset(qp);
951 if (qp->remote_rx_info)
952 qp->remote_rx_info->entry = qp->rx_max_entry - 1;
953 }
954
ntb_qp_link_cleanup(struct ntb_transport_qp * qp)955 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
956 {
957 struct ntb_transport_ctx *nt = qp->transport;
958 struct pci_dev *pdev = nt->ndev->pdev;
959
960 dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
961
962 cancel_delayed_work_sync(&qp->link_work);
963 ntb_qp_link_down_reset(qp);
964
965 if (qp->event_handler)
966 qp->event_handler(qp->cb_data, qp->link_is_up);
967 }
968
ntb_qp_link_cleanup_work(struct work_struct * work)969 static void ntb_qp_link_cleanup_work(struct work_struct *work)
970 {
971 struct ntb_transport_qp *qp = container_of(work,
972 struct ntb_transport_qp,
973 link_cleanup);
974 struct ntb_transport_ctx *nt = qp->transport;
975
976 ntb_qp_link_cleanup(qp);
977
978 if (nt->link_is_up)
979 schedule_delayed_work(&qp->link_work,
980 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
981 }
982
ntb_qp_link_down(struct ntb_transport_qp * qp)983 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
984 {
985 schedule_work(&qp->link_cleanup);
986 }
987
ntb_transport_link_cleanup(struct ntb_transport_ctx * nt)988 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
989 {
990 struct ntb_transport_qp *qp;
991 u64 qp_bitmap_alloc;
992 unsigned int i, count;
993
994 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
995
996 /* Pass along the info to any clients */
997 for (i = 0; i < nt->qp_count; i++)
998 if (qp_bitmap_alloc & BIT_ULL(i)) {
999 qp = &nt->qp_vec[i];
1000 ntb_qp_link_cleanup(qp);
1001 cancel_work_sync(&qp->link_cleanup);
1002 cancel_delayed_work_sync(&qp->link_work);
1003 }
1004
1005 if (!nt->link_is_up)
1006 cancel_delayed_work_sync(&nt->link_work);
1007
1008 for (i = 0; i < nt->mw_count; i++)
1009 ntb_free_mw(nt, i);
1010
1011 /* The scratchpad registers keep the values if the remote side
1012 * goes down, blast them now to give them a sane value the next
1013 * time they are accessed
1014 */
1015 count = ntb_spad_count(nt->ndev);
1016 for (i = 0; i < count; i++)
1017 ntb_spad_write(nt->ndev, i, 0);
1018 }
1019
ntb_transport_link_cleanup_work(struct work_struct * work)1020 static void ntb_transport_link_cleanup_work(struct work_struct *work)
1021 {
1022 struct ntb_transport_ctx *nt =
1023 container_of(work, struct ntb_transport_ctx, link_cleanup);
1024
1025 ntb_transport_link_cleanup(nt);
1026 }
1027
ntb_transport_event_callback(void * data)1028 static void ntb_transport_event_callback(void *data)
1029 {
1030 struct ntb_transport_ctx *nt = data;
1031
1032 if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
1033 schedule_delayed_work(&nt->link_work, 0);
1034 else
1035 schedule_work(&nt->link_cleanup);
1036 }
1037
ntb_transport_link_work(struct work_struct * work)1038 static void ntb_transport_link_work(struct work_struct *work)
1039 {
1040 struct ntb_transport_ctx *nt =
1041 container_of(work, struct ntb_transport_ctx, link_work.work);
1042 struct ntb_dev *ndev = nt->ndev;
1043 struct pci_dev *pdev = ndev->pdev;
1044 resource_size_t size;
1045 u32 val;
1046 int rc = 0, i, spad;
1047
1048 /* send the local info, in the opposite order of the way we read it */
1049
1050 if (nt->use_msi) {
1051 rc = ntb_msi_setup_mws(ndev);
1052 if (rc) {
1053 dev_warn(&pdev->dev,
1054 "Failed to register MSI memory window: %d\n",
1055 rc);
1056 nt->use_msi = false;
1057 }
1058 }
1059
1060 for (i = 0; i < nt->qp_count; i++)
1061 ntb_transport_setup_qp_msi(nt, i);
1062
1063 for (i = 0; i < nt->mw_count; i++) {
1064 size = nt->mw_vec[i].phys_size;
1065
1066 if (max_mw_size && size > max_mw_size)
1067 size = max_mw_size;
1068
1069 spad = MW0_SZ_HIGH + (i * 2);
1070 ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size));
1071
1072 spad = MW0_SZ_LOW + (i * 2);
1073 ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size));
1074 }
1075
1076 ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count);
1077
1078 ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count);
1079
1080 ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION);
1081
1082 /* Query the remote side for its info */
1083 val = ntb_spad_read(ndev, VERSION);
1084 dev_dbg(&pdev->dev, "Remote version = %d\n", val);
1085 if (val != NTB_TRANSPORT_VERSION)
1086 goto out;
1087
1088 val = ntb_spad_read(ndev, NUM_QPS);
1089 dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
1090 if (val != nt->qp_count)
1091 goto out;
1092
1093 val = ntb_spad_read(ndev, NUM_MWS);
1094 dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
1095 if (val != nt->mw_count)
1096 goto out;
1097
1098 for (i = 0; i < nt->mw_count; i++) {
1099 u64 val64;
1100
1101 val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
1102 val64 = (u64)val << 32;
1103
1104 val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
1105 val64 |= val;
1106
1107 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
1108
1109 rc = ntb_set_mw(nt, i, val64);
1110 if (rc)
1111 goto out1;
1112 }
1113
1114 nt->link_is_up = true;
1115
1116 for (i = 0; i < nt->qp_count; i++) {
1117 struct ntb_transport_qp *qp = &nt->qp_vec[i];
1118
1119 ntb_transport_setup_qp_mw(nt, i);
1120 ntb_transport_setup_qp_peer_msi(nt, i);
1121
1122 if (qp->client_ready)
1123 schedule_delayed_work(&qp->link_work, 0);
1124 }
1125
1126 return;
1127
1128 out1:
1129 for (i = 0; i < nt->mw_count; i++)
1130 ntb_free_mw(nt, i);
1131
1132 /* if there's an actual failure, we should just bail */
1133 if (rc < 0)
1134 return;
1135
1136 out:
1137 if (ntb_link_is_up(ndev, NULL, NULL) == 1)
1138 schedule_delayed_work(&nt->link_work,
1139 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1140 }
1141
ntb_qp_link_work(struct work_struct * work)1142 static void ntb_qp_link_work(struct work_struct *work)
1143 {
1144 struct ntb_transport_qp *qp = container_of(work,
1145 struct ntb_transport_qp,
1146 link_work.work);
1147 struct pci_dev *pdev = qp->ndev->pdev;
1148 struct ntb_transport_ctx *nt = qp->transport;
1149 int val;
1150
1151 WARN_ON(!nt->link_is_up);
1152
1153 val = ntb_spad_read(nt->ndev, QP_LINKS);
1154
1155 ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num));
1156
1157 /* query remote spad for qp ready bits */
1158 dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
1159
1160 /* See if the remote side is up */
1161 if (val & BIT(qp->qp_num)) {
1162 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
1163 qp->link_is_up = true;
1164 qp->active = true;
1165
1166 if (qp->event_handler)
1167 qp->event_handler(qp->cb_data, qp->link_is_up);
1168
1169 if (qp->active)
1170 tasklet_schedule(&qp->rxc_db_work);
1171 } else if (nt->link_is_up)
1172 schedule_delayed_work(&qp->link_work,
1173 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1174 }
1175
ntb_transport_init_queue(struct ntb_transport_ctx * nt,unsigned int qp_num)1176 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
1177 unsigned int qp_num)
1178 {
1179 struct ntb_transport_qp *qp;
1180 phys_addr_t mw_base;
1181 resource_size_t mw_size;
1182 unsigned int num_qps_mw, tx_size;
1183 unsigned int mw_num, mw_count, qp_count;
1184 u64 qp_offset;
1185
1186 mw_count = nt->mw_count;
1187 qp_count = nt->qp_count;
1188
1189 mw_num = QP_TO_MW(nt, qp_num);
1190
1191 qp = &nt->qp_vec[qp_num];
1192 qp->qp_num = qp_num;
1193 qp->transport = nt;
1194 qp->ndev = nt->ndev;
1195 qp->client_ready = false;
1196 qp->event_handler = NULL;
1197 ntb_qp_link_context_reset(qp);
1198
1199 if (mw_num < qp_count % mw_count)
1200 num_qps_mw = qp_count / mw_count + 1;
1201 else
1202 num_qps_mw = qp_count / mw_count;
1203
1204 mw_base = nt->mw_vec[mw_num].phys_addr;
1205 mw_size = nt->mw_vec[mw_num].phys_size;
1206
1207 if (max_mw_size && mw_size > max_mw_size)
1208 mw_size = max_mw_size;
1209
1210 tx_size = (unsigned int)mw_size / num_qps_mw;
1211 qp_offset = tx_size * (qp_num / mw_count);
1212
1213 qp->tx_mw_size = tx_size;
1214 qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1215 if (!qp->tx_mw)
1216 return -EINVAL;
1217
1218 qp->tx_mw_phys = mw_base + qp_offset;
1219 if (!qp->tx_mw_phys)
1220 return -EINVAL;
1221
1222 tx_size -= sizeof(struct ntb_rx_info);
1223 qp->rx_info = qp->tx_mw + tx_size;
1224
1225 /* Due to housekeeping, there must be atleast 2 buffs */
1226 qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1227 qp->tx_max_entry = tx_size / qp->tx_max_frame;
1228
1229 if (nt->debugfs_node_dir) {
1230 char debugfs_name[4];
1231
1232 snprintf(debugfs_name, 4, "qp%d", qp_num);
1233 qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1234 nt->debugfs_node_dir);
1235
1236 qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1237 qp->debugfs_dir, qp,
1238 &ntb_qp_debugfs_stats);
1239 } else {
1240 qp->debugfs_dir = NULL;
1241 qp->debugfs_stats = NULL;
1242 }
1243
1244 INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1245 INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1246
1247 spin_lock_init(&qp->ntb_rx_q_lock);
1248 spin_lock_init(&qp->ntb_tx_free_q_lock);
1249
1250 INIT_LIST_HEAD(&qp->rx_post_q);
1251 INIT_LIST_HEAD(&qp->rx_pend_q);
1252 INIT_LIST_HEAD(&qp->rx_free_q);
1253 INIT_LIST_HEAD(&qp->tx_free_q);
1254
1255 tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1256 (unsigned long)qp);
1257
1258 return 0;
1259 }
1260
ntb_transport_probe(struct ntb_client * self,struct ntb_dev * ndev)1261 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1262 {
1263 struct ntb_transport_ctx *nt;
1264 struct ntb_transport_mw *mw;
1265 unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1266 u64 qp_bitmap;
1267 int node;
1268 int rc, i;
1269
1270 mw_count = ntb_peer_mw_count(ndev);
1271
1272 if (!ndev->ops->mw_set_trans) {
1273 dev_err(&ndev->dev, "Inbound MW based NTB API is required\n");
1274 return -EINVAL;
1275 }
1276
1277 if (ntb_db_is_unsafe(ndev))
1278 dev_dbg(&ndev->dev,
1279 "doorbell is unsafe, proceed anyway...\n");
1280 if (ntb_spad_is_unsafe(ndev))
1281 dev_dbg(&ndev->dev,
1282 "scratchpad is unsafe, proceed anyway...\n");
1283
1284 if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT)
1285 dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n");
1286
1287 node = dev_to_node(&ndev->dev);
1288
1289 nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1290 if (!nt)
1291 return -ENOMEM;
1292
1293 nt->ndev = ndev;
1294
1295 /*
1296 * If we are using MSI, and have at least one extra memory window,
1297 * we will reserve the last MW for the MSI window.
1298 */
1299 if (use_msi && mw_count > 1) {
1300 rc = ntb_msi_init(ndev, ntb_transport_msi_desc_changed);
1301 if (!rc) {
1302 mw_count -= 1;
1303 nt->use_msi = true;
1304 }
1305 }
1306
1307 spad_count = ntb_spad_count(ndev);
1308
1309 /* Limit the MW's based on the availability of scratchpads */
1310
1311 if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1312 nt->mw_count = 0;
1313 rc = -EINVAL;
1314 goto err;
1315 }
1316
1317 max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1318 nt->mw_count = min(mw_count, max_mw_count_for_spads);
1319
1320 nt->msi_spad_offset = nt->mw_count * 2 + MW0_SZ_HIGH;
1321
1322 nt->mw_vec = kcalloc_node(mw_count, sizeof(*nt->mw_vec),
1323 GFP_KERNEL, node);
1324 if (!nt->mw_vec) {
1325 rc = -ENOMEM;
1326 goto err;
1327 }
1328
1329 for (i = 0; i < mw_count; i++) {
1330 mw = &nt->mw_vec[i];
1331
1332 rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr,
1333 &mw->phys_size);
1334 if (rc)
1335 goto err1;
1336
1337 mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1338 if (!mw->vbase) {
1339 rc = -ENOMEM;
1340 goto err1;
1341 }
1342
1343 mw->buff_size = 0;
1344 mw->xlat_size = 0;
1345 mw->virt_addr = NULL;
1346 mw->dma_addr = 0;
1347 }
1348
1349 qp_bitmap = ntb_db_valid_mask(ndev);
1350
1351 qp_count = ilog2(qp_bitmap);
1352 if (nt->use_msi) {
1353 qp_count -= 1;
1354 nt->msi_db_mask = 1 << qp_count;
1355 ntb_db_clear_mask(ndev, nt->msi_db_mask);
1356 }
1357
1358 if (max_num_clients && max_num_clients < qp_count)
1359 qp_count = max_num_clients;
1360 else if (nt->mw_count < qp_count)
1361 qp_count = nt->mw_count;
1362
1363 qp_bitmap &= BIT_ULL(qp_count) - 1;
1364
1365 nt->qp_count = qp_count;
1366 nt->qp_bitmap = qp_bitmap;
1367 nt->qp_bitmap_free = qp_bitmap;
1368
1369 nt->qp_vec = kcalloc_node(qp_count, sizeof(*nt->qp_vec),
1370 GFP_KERNEL, node);
1371 if (!nt->qp_vec) {
1372 rc = -ENOMEM;
1373 goto err1;
1374 }
1375
1376 if (nt_debugfs_dir) {
1377 nt->debugfs_node_dir =
1378 debugfs_create_dir(pci_name(ndev->pdev),
1379 nt_debugfs_dir);
1380 }
1381
1382 for (i = 0; i < qp_count; i++) {
1383 rc = ntb_transport_init_queue(nt, i);
1384 if (rc)
1385 goto err2;
1386 }
1387
1388 INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1389 INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1390
1391 rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1392 if (rc)
1393 goto err2;
1394
1395 INIT_LIST_HEAD(&nt->client_devs);
1396 rc = ntb_bus_init(nt);
1397 if (rc)
1398 goto err3;
1399
1400 nt->link_is_up = false;
1401 ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1402 ntb_link_event(ndev);
1403
1404 return 0;
1405
1406 err3:
1407 ntb_clear_ctx(ndev);
1408 err2:
1409 kfree(nt->qp_vec);
1410 err1:
1411 while (i--) {
1412 mw = &nt->mw_vec[i];
1413 iounmap(mw->vbase);
1414 }
1415 kfree(nt->mw_vec);
1416 err:
1417 kfree(nt);
1418 return rc;
1419 }
1420
ntb_transport_free(struct ntb_client * self,struct ntb_dev * ndev)1421 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1422 {
1423 struct ntb_transport_ctx *nt = ndev->ctx;
1424 struct ntb_transport_qp *qp;
1425 u64 qp_bitmap_alloc;
1426 int i;
1427
1428 ntb_transport_link_cleanup(nt);
1429 cancel_work_sync(&nt->link_cleanup);
1430 cancel_delayed_work_sync(&nt->link_work);
1431
1432 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1433
1434 /* verify that all the qp's are freed */
1435 for (i = 0; i < nt->qp_count; i++) {
1436 qp = &nt->qp_vec[i];
1437 if (qp_bitmap_alloc & BIT_ULL(i))
1438 ntb_transport_free_queue(qp);
1439 debugfs_remove_recursive(qp->debugfs_dir);
1440 }
1441
1442 ntb_link_disable(ndev);
1443 ntb_clear_ctx(ndev);
1444
1445 ntb_bus_remove(nt);
1446
1447 for (i = nt->mw_count; i--; ) {
1448 ntb_free_mw(nt, i);
1449 iounmap(nt->mw_vec[i].vbase);
1450 }
1451
1452 kfree(nt->qp_vec);
1453 kfree(nt->mw_vec);
1454 kfree(nt);
1455 }
1456
ntb_complete_rxc(struct ntb_transport_qp * qp)1457 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1458 {
1459 struct ntb_queue_entry *entry;
1460 void *cb_data;
1461 unsigned int len;
1462 unsigned long irqflags;
1463
1464 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1465
1466 while (!list_empty(&qp->rx_post_q)) {
1467 entry = list_first_entry(&qp->rx_post_q,
1468 struct ntb_queue_entry, entry);
1469 if (!(entry->flags & DESC_DONE_FLAG))
1470 break;
1471
1472 entry->rx_hdr->flags = 0;
1473 iowrite32(entry->rx_index, &qp->rx_info->entry);
1474
1475 cb_data = entry->cb_data;
1476 len = entry->len;
1477
1478 list_move_tail(&entry->entry, &qp->rx_free_q);
1479
1480 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1481
1482 if (qp->rx_handler && qp->client_ready)
1483 qp->rx_handler(qp, qp->cb_data, cb_data, len);
1484
1485 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1486 }
1487
1488 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1489 }
1490
ntb_rx_copy_callback(void * data,const struct dmaengine_result * res)1491 static void ntb_rx_copy_callback(void *data,
1492 const struct dmaengine_result *res)
1493 {
1494 struct ntb_queue_entry *entry = data;
1495
1496 /* we need to check DMA results if we are using DMA */
1497 if (res) {
1498 enum dmaengine_tx_result dma_err = res->result;
1499
1500 switch (dma_err) {
1501 case DMA_TRANS_READ_FAILED:
1502 case DMA_TRANS_WRITE_FAILED:
1503 entry->errors++;
1504 fallthrough;
1505 case DMA_TRANS_ABORTED:
1506 {
1507 struct ntb_transport_qp *qp = entry->qp;
1508 void *offset = qp->rx_buff + qp->rx_max_frame *
1509 qp->rx_index;
1510
1511 ntb_memcpy_rx(entry, offset);
1512 qp->rx_memcpy++;
1513 return;
1514 }
1515
1516 case DMA_TRANS_NOERROR:
1517 default:
1518 break;
1519 }
1520 }
1521
1522 entry->flags |= DESC_DONE_FLAG;
1523
1524 ntb_complete_rxc(entry->qp);
1525 }
1526
ntb_memcpy_rx(struct ntb_queue_entry * entry,void * offset)1527 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1528 {
1529 void *buf = entry->buf;
1530 size_t len = entry->len;
1531
1532 memcpy(buf, offset, len);
1533
1534 /* Ensure that the data is fully copied out before clearing the flag */
1535 wmb();
1536
1537 ntb_rx_copy_callback(entry, NULL);
1538 }
1539
ntb_async_rx_submit(struct ntb_queue_entry * entry,void * offset)1540 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1541 {
1542 struct dma_async_tx_descriptor *txd;
1543 struct ntb_transport_qp *qp = entry->qp;
1544 struct dma_chan *chan = qp->rx_dma_chan;
1545 struct dma_device *device;
1546 size_t pay_off, buff_off, len;
1547 struct dmaengine_unmap_data *unmap;
1548 dma_cookie_t cookie;
1549 void *buf = entry->buf;
1550
1551 len = entry->len;
1552 device = chan->device;
1553 pay_off = (size_t)offset & ~PAGE_MASK;
1554 buff_off = (size_t)buf & ~PAGE_MASK;
1555
1556 if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1557 goto err;
1558
1559 unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1560 if (!unmap)
1561 goto err;
1562
1563 unmap->len = len;
1564 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1565 pay_off, len, DMA_TO_DEVICE);
1566 if (dma_mapping_error(device->dev, unmap->addr[0]))
1567 goto err_get_unmap;
1568
1569 unmap->to_cnt = 1;
1570
1571 unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1572 buff_off, len, DMA_FROM_DEVICE);
1573 if (dma_mapping_error(device->dev, unmap->addr[1]))
1574 goto err_get_unmap;
1575
1576 unmap->from_cnt = 1;
1577
1578 txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1579 unmap->addr[0], len,
1580 DMA_PREP_INTERRUPT);
1581 if (!txd)
1582 goto err_get_unmap;
1583
1584 txd->callback_result = ntb_rx_copy_callback;
1585 txd->callback_param = entry;
1586 dma_set_unmap(txd, unmap);
1587
1588 cookie = dmaengine_submit(txd);
1589 if (dma_submit_error(cookie))
1590 goto err_set_unmap;
1591
1592 dmaengine_unmap_put(unmap);
1593
1594 qp->last_cookie = cookie;
1595
1596 qp->rx_async++;
1597
1598 return 0;
1599
1600 err_set_unmap:
1601 dmaengine_unmap_put(unmap);
1602 err_get_unmap:
1603 dmaengine_unmap_put(unmap);
1604 err:
1605 return -ENXIO;
1606 }
1607
ntb_async_rx(struct ntb_queue_entry * entry,void * offset)1608 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1609 {
1610 struct ntb_transport_qp *qp = entry->qp;
1611 struct dma_chan *chan = qp->rx_dma_chan;
1612 int res;
1613
1614 if (!chan)
1615 goto err;
1616
1617 if (entry->len < copy_bytes)
1618 goto err;
1619
1620 res = ntb_async_rx_submit(entry, offset);
1621 if (res < 0)
1622 goto err;
1623
1624 if (!entry->retries)
1625 qp->rx_async++;
1626
1627 return;
1628
1629 err:
1630 ntb_memcpy_rx(entry, offset);
1631 qp->rx_memcpy++;
1632 }
1633
ntb_process_rxc(struct ntb_transport_qp * qp)1634 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1635 {
1636 struct ntb_payload_header *hdr;
1637 struct ntb_queue_entry *entry;
1638 void *offset;
1639
1640 offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1641 hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1642
1643 dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1644 qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1645
1646 if (!(hdr->flags & DESC_DONE_FLAG)) {
1647 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1648 qp->rx_ring_empty++;
1649 return -EAGAIN;
1650 }
1651
1652 if (hdr->flags & LINK_DOWN_FLAG) {
1653 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1654 ntb_qp_link_down(qp);
1655 hdr->flags = 0;
1656 return -EAGAIN;
1657 }
1658
1659 if (hdr->ver != (u32)qp->rx_pkts) {
1660 dev_dbg(&qp->ndev->pdev->dev,
1661 "version mismatch, expected %llu - got %u\n",
1662 qp->rx_pkts, hdr->ver);
1663 qp->rx_err_ver++;
1664 return -EIO;
1665 }
1666
1667 entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1668 if (!entry) {
1669 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1670 qp->rx_err_no_buf++;
1671 return -EAGAIN;
1672 }
1673
1674 entry->rx_hdr = hdr;
1675 entry->rx_index = qp->rx_index;
1676
1677 if (hdr->len > entry->len) {
1678 dev_dbg(&qp->ndev->pdev->dev,
1679 "receive buffer overflow! Wanted %d got %d\n",
1680 hdr->len, entry->len);
1681 qp->rx_err_oflow++;
1682
1683 entry->len = -EIO;
1684 entry->flags |= DESC_DONE_FLAG;
1685
1686 ntb_complete_rxc(qp);
1687 } else {
1688 dev_dbg(&qp->ndev->pdev->dev,
1689 "RX OK index %u ver %u size %d into buf size %d\n",
1690 qp->rx_index, hdr->ver, hdr->len, entry->len);
1691
1692 qp->rx_bytes += hdr->len;
1693 qp->rx_pkts++;
1694
1695 entry->len = hdr->len;
1696
1697 ntb_async_rx(entry, offset);
1698 }
1699
1700 qp->rx_index++;
1701 qp->rx_index %= qp->rx_max_entry;
1702
1703 return 0;
1704 }
1705
ntb_transport_rxc_db(unsigned long data)1706 static void ntb_transport_rxc_db(unsigned long data)
1707 {
1708 struct ntb_transport_qp *qp = (void *)data;
1709 int rc, i;
1710
1711 dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1712 __func__, qp->qp_num);
1713
1714 /* Limit the number of packets processed in a single interrupt to
1715 * provide fairness to others
1716 */
1717 for (i = 0; i < qp->rx_max_entry; i++) {
1718 rc = ntb_process_rxc(qp);
1719 if (rc)
1720 break;
1721 }
1722
1723 if (i && qp->rx_dma_chan)
1724 dma_async_issue_pending(qp->rx_dma_chan);
1725
1726 if (i == qp->rx_max_entry) {
1727 /* there is more work to do */
1728 if (qp->active)
1729 tasklet_schedule(&qp->rxc_db_work);
1730 } else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1731 /* the doorbell bit is set: clear it */
1732 ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1733 /* ntb_db_read ensures ntb_db_clear write is committed */
1734 ntb_db_read(qp->ndev);
1735
1736 /* an interrupt may have arrived between finishing
1737 * ntb_process_rxc and clearing the doorbell bit:
1738 * there might be some more work to do.
1739 */
1740 if (qp->active)
1741 tasklet_schedule(&qp->rxc_db_work);
1742 }
1743 }
1744
ntb_tx_copy_callback(void * data,const struct dmaengine_result * res)1745 static void ntb_tx_copy_callback(void *data,
1746 const struct dmaengine_result *res)
1747 {
1748 struct ntb_queue_entry *entry = data;
1749 struct ntb_transport_qp *qp = entry->qp;
1750 struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1751
1752 /* we need to check DMA results if we are using DMA */
1753 if (res) {
1754 enum dmaengine_tx_result dma_err = res->result;
1755
1756 switch (dma_err) {
1757 case DMA_TRANS_READ_FAILED:
1758 case DMA_TRANS_WRITE_FAILED:
1759 entry->errors++;
1760 fallthrough;
1761 case DMA_TRANS_ABORTED:
1762 {
1763 void __iomem *offset =
1764 qp->tx_mw + qp->tx_max_frame *
1765 entry->tx_index;
1766
1767 /* resubmit via CPU */
1768 ntb_memcpy_tx(entry, offset);
1769 qp->tx_memcpy++;
1770 return;
1771 }
1772
1773 case DMA_TRANS_NOERROR:
1774 default:
1775 break;
1776 }
1777 }
1778
1779 iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1780
1781 if (qp->use_msi)
1782 ntb_msi_peer_trigger(qp->ndev, PIDX, &qp->peer_msi_desc);
1783 else
1784 ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1785
1786 /* The entry length can only be zero if the packet is intended to be a
1787 * "link down" or similar. Since no payload is being sent in these
1788 * cases, there is nothing to add to the completion queue.
1789 */
1790 if (entry->len > 0) {
1791 qp->tx_bytes += entry->len;
1792
1793 if (qp->tx_handler)
1794 qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1795 entry->len);
1796 }
1797
1798 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1799 }
1800
ntb_memcpy_tx(struct ntb_queue_entry * entry,void __iomem * offset)1801 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1802 {
1803 #ifdef ARCH_HAS_NOCACHE_UACCESS
1804 /*
1805 * Using non-temporal mov to improve performance on non-cached
1806 * writes, even though we aren't actually copying from user space.
1807 */
1808 __copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1809 #else
1810 memcpy_toio(offset, entry->buf, entry->len);
1811 #endif
1812
1813 /* Ensure that the data is fully copied out before setting the flags */
1814 wmb();
1815
1816 ntb_tx_copy_callback(entry, NULL);
1817 }
1818
ntb_async_tx_submit(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1819 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1820 struct ntb_queue_entry *entry)
1821 {
1822 struct dma_async_tx_descriptor *txd;
1823 struct dma_chan *chan = qp->tx_dma_chan;
1824 struct dma_device *device;
1825 size_t len = entry->len;
1826 void *buf = entry->buf;
1827 size_t dest_off, buff_off;
1828 struct dmaengine_unmap_data *unmap;
1829 dma_addr_t dest;
1830 dma_cookie_t cookie;
1831
1832 device = chan->device;
1833 dest = qp->tx_mw_dma_addr + qp->tx_max_frame * entry->tx_index;
1834 buff_off = (size_t)buf & ~PAGE_MASK;
1835 dest_off = (size_t)dest & ~PAGE_MASK;
1836
1837 if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1838 goto err;
1839
1840 unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1841 if (!unmap)
1842 goto err;
1843
1844 unmap->len = len;
1845 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1846 buff_off, len, DMA_TO_DEVICE);
1847 if (dma_mapping_error(device->dev, unmap->addr[0]))
1848 goto err_get_unmap;
1849
1850 unmap->to_cnt = 1;
1851
1852 txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1853 DMA_PREP_INTERRUPT);
1854 if (!txd)
1855 goto err_get_unmap;
1856
1857 txd->callback_result = ntb_tx_copy_callback;
1858 txd->callback_param = entry;
1859 dma_set_unmap(txd, unmap);
1860
1861 cookie = dmaengine_submit(txd);
1862 if (dma_submit_error(cookie))
1863 goto err_set_unmap;
1864
1865 dmaengine_unmap_put(unmap);
1866
1867 dma_async_issue_pending(chan);
1868
1869 return 0;
1870 err_set_unmap:
1871 dmaengine_unmap_put(unmap);
1872 err_get_unmap:
1873 dmaengine_unmap_put(unmap);
1874 err:
1875 return -ENXIO;
1876 }
1877
ntb_async_tx(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1878 static void ntb_async_tx(struct ntb_transport_qp *qp,
1879 struct ntb_queue_entry *entry)
1880 {
1881 struct ntb_payload_header __iomem *hdr;
1882 struct dma_chan *chan = qp->tx_dma_chan;
1883 void __iomem *offset;
1884 int res;
1885
1886 entry->tx_index = qp->tx_index;
1887 offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1888 hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1889 entry->tx_hdr = hdr;
1890
1891 iowrite32(entry->len, &hdr->len);
1892 iowrite32((u32)qp->tx_pkts, &hdr->ver);
1893
1894 if (!chan)
1895 goto err;
1896
1897 if (entry->len < copy_bytes)
1898 goto err;
1899
1900 res = ntb_async_tx_submit(qp, entry);
1901 if (res < 0)
1902 goto err;
1903
1904 if (!entry->retries)
1905 qp->tx_async++;
1906
1907 return;
1908
1909 err:
1910 ntb_memcpy_tx(entry, offset);
1911 qp->tx_memcpy++;
1912 }
1913
ntb_process_tx(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1914 static int ntb_process_tx(struct ntb_transport_qp *qp,
1915 struct ntb_queue_entry *entry)
1916 {
1917 if (!ntb_transport_tx_free_entry(qp)) {
1918 qp->tx_ring_full++;
1919 return -EAGAIN;
1920 }
1921
1922 if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1923 if (qp->tx_handler)
1924 qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1925
1926 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1927 &qp->tx_free_q);
1928 return 0;
1929 }
1930
1931 ntb_async_tx(qp, entry);
1932
1933 qp->tx_index++;
1934 qp->tx_index %= qp->tx_max_entry;
1935
1936 qp->tx_pkts++;
1937
1938 return 0;
1939 }
1940
ntb_send_link_down(struct ntb_transport_qp * qp)1941 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1942 {
1943 struct pci_dev *pdev = qp->ndev->pdev;
1944 struct ntb_queue_entry *entry;
1945 int i, rc;
1946
1947 if (!qp->link_is_up)
1948 return;
1949
1950 dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1951
1952 for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1953 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1954 if (entry)
1955 break;
1956 msleep(100);
1957 }
1958
1959 if (!entry)
1960 return;
1961
1962 entry->cb_data = NULL;
1963 entry->buf = NULL;
1964 entry->len = 0;
1965 entry->flags = LINK_DOWN_FLAG;
1966
1967 rc = ntb_process_tx(qp, entry);
1968 if (rc)
1969 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1970 qp->qp_num);
1971
1972 ntb_qp_link_down_reset(qp);
1973 }
1974
ntb_dma_filter_fn(struct dma_chan * chan,void * node)1975 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1976 {
1977 return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1978 }
1979
1980 /**
1981 * ntb_transport_create_queue - Create a new NTB transport layer queue
1982 * @rx_handler: receive callback function
1983 * @tx_handler: transmit callback function
1984 * @event_handler: event callback function
1985 *
1986 * Create a new NTB transport layer queue and provide the queue with a callback
1987 * routine for both transmit and receive. The receive callback routine will be
1988 * used to pass up data when the transport has received it on the queue. The
1989 * transmit callback routine will be called when the transport has completed the
1990 * transmission of the data on the queue and the data is ready to be freed.
1991 *
1992 * RETURNS: pointer to newly created ntb_queue, NULL on error.
1993 */
1994 struct ntb_transport_qp *
ntb_transport_create_queue(void * data,struct device * client_dev,const struct ntb_queue_handlers * handlers)1995 ntb_transport_create_queue(void *data, struct device *client_dev,
1996 const struct ntb_queue_handlers *handlers)
1997 {
1998 struct ntb_dev *ndev;
1999 struct pci_dev *pdev;
2000 struct ntb_transport_ctx *nt;
2001 struct ntb_queue_entry *entry;
2002 struct ntb_transport_qp *qp;
2003 u64 qp_bit;
2004 unsigned int free_queue;
2005 dma_cap_mask_t dma_mask;
2006 int node;
2007 int i;
2008
2009 ndev = dev_ntb(client_dev->parent);
2010 pdev = ndev->pdev;
2011 nt = ndev->ctx;
2012
2013 node = dev_to_node(&ndev->dev);
2014
2015 free_queue = ffs(nt->qp_bitmap_free);
2016 if (!free_queue)
2017 goto err;
2018
2019 /* decrement free_queue to make it zero based */
2020 free_queue--;
2021
2022 qp = &nt->qp_vec[free_queue];
2023 qp_bit = BIT_ULL(qp->qp_num);
2024
2025 nt->qp_bitmap_free &= ~qp_bit;
2026
2027 qp->cb_data = data;
2028 qp->rx_handler = handlers->rx_handler;
2029 qp->tx_handler = handlers->tx_handler;
2030 qp->event_handler = handlers->event_handler;
2031
2032 dma_cap_zero(dma_mask);
2033 dma_cap_set(DMA_MEMCPY, dma_mask);
2034
2035 if (use_dma) {
2036 qp->tx_dma_chan =
2037 dma_request_channel(dma_mask, ntb_dma_filter_fn,
2038 (void *)(unsigned long)node);
2039 if (!qp->tx_dma_chan)
2040 dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
2041
2042 qp->rx_dma_chan =
2043 dma_request_channel(dma_mask, ntb_dma_filter_fn,
2044 (void *)(unsigned long)node);
2045 if (!qp->rx_dma_chan)
2046 dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
2047 } else {
2048 qp->tx_dma_chan = NULL;
2049 qp->rx_dma_chan = NULL;
2050 }
2051
2052 qp->tx_mw_dma_addr = 0;
2053 if (qp->tx_dma_chan) {
2054 qp->tx_mw_dma_addr =
2055 dma_map_resource(qp->tx_dma_chan->device->dev,
2056 qp->tx_mw_phys, qp->tx_mw_size,
2057 DMA_FROM_DEVICE, 0);
2058 if (dma_mapping_error(qp->tx_dma_chan->device->dev,
2059 qp->tx_mw_dma_addr)) {
2060 qp->tx_mw_dma_addr = 0;
2061 goto err1;
2062 }
2063 }
2064
2065 dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
2066 qp->tx_dma_chan ? "DMA" : "CPU");
2067
2068 dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
2069 qp->rx_dma_chan ? "DMA" : "CPU");
2070
2071 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
2072 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2073 if (!entry)
2074 goto err1;
2075
2076 entry->qp = qp;
2077 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
2078 &qp->rx_free_q);
2079 }
2080 qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
2081
2082 for (i = 0; i < qp->tx_max_entry; i++) {
2083 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2084 if (!entry)
2085 goto err2;
2086
2087 entry->qp = qp;
2088 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2089 &qp->tx_free_q);
2090 }
2091
2092 ntb_db_clear(qp->ndev, qp_bit);
2093 ntb_db_clear_mask(qp->ndev, qp_bit);
2094
2095 dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
2096
2097 return qp;
2098
2099 err2:
2100 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2101 kfree(entry);
2102 err1:
2103 qp->rx_alloc_entry = 0;
2104 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2105 kfree(entry);
2106 if (qp->tx_mw_dma_addr)
2107 dma_unmap_resource(qp->tx_dma_chan->device->dev,
2108 qp->tx_mw_dma_addr, qp->tx_mw_size,
2109 DMA_FROM_DEVICE, 0);
2110 if (qp->tx_dma_chan)
2111 dma_release_channel(qp->tx_dma_chan);
2112 if (qp->rx_dma_chan)
2113 dma_release_channel(qp->rx_dma_chan);
2114 nt->qp_bitmap_free |= qp_bit;
2115 err:
2116 return NULL;
2117 }
2118 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
2119
2120 /**
2121 * ntb_transport_free_queue - Frees NTB transport queue
2122 * @qp: NTB queue to be freed
2123 *
2124 * Frees NTB transport queue
2125 */
ntb_transport_free_queue(struct ntb_transport_qp * qp)2126 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
2127 {
2128 struct pci_dev *pdev;
2129 struct ntb_queue_entry *entry;
2130 u64 qp_bit;
2131
2132 if (!qp)
2133 return;
2134
2135 pdev = qp->ndev->pdev;
2136
2137 qp->active = false;
2138
2139 if (qp->tx_dma_chan) {
2140 struct dma_chan *chan = qp->tx_dma_chan;
2141 /* Putting the dma_chan to NULL will force any new traffic to be
2142 * processed by the CPU instead of the DAM engine
2143 */
2144 qp->tx_dma_chan = NULL;
2145
2146 /* Try to be nice and wait for any queued DMA engine
2147 * transactions to process before smashing it with a rock
2148 */
2149 dma_sync_wait(chan, qp->last_cookie);
2150 dmaengine_terminate_all(chan);
2151
2152 dma_unmap_resource(chan->device->dev,
2153 qp->tx_mw_dma_addr, qp->tx_mw_size,
2154 DMA_FROM_DEVICE, 0);
2155
2156 dma_release_channel(chan);
2157 }
2158
2159 if (qp->rx_dma_chan) {
2160 struct dma_chan *chan = qp->rx_dma_chan;
2161 /* Putting the dma_chan to NULL will force any new traffic to be
2162 * processed by the CPU instead of the DAM engine
2163 */
2164 qp->rx_dma_chan = NULL;
2165
2166 /* Try to be nice and wait for any queued DMA engine
2167 * transactions to process before smashing it with a rock
2168 */
2169 dma_sync_wait(chan, qp->last_cookie);
2170 dmaengine_terminate_all(chan);
2171 dma_release_channel(chan);
2172 }
2173
2174 qp_bit = BIT_ULL(qp->qp_num);
2175
2176 ntb_db_set_mask(qp->ndev, qp_bit);
2177 tasklet_kill(&qp->rxc_db_work);
2178
2179 cancel_delayed_work_sync(&qp->link_work);
2180
2181 qp->cb_data = NULL;
2182 qp->rx_handler = NULL;
2183 qp->tx_handler = NULL;
2184 qp->event_handler = NULL;
2185
2186 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2187 kfree(entry);
2188
2189 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
2190 dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
2191 kfree(entry);
2192 }
2193
2194 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
2195 dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
2196 kfree(entry);
2197 }
2198
2199 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2200 kfree(entry);
2201
2202 qp->transport->qp_bitmap_free |= qp_bit;
2203
2204 dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
2205 }
2206 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
2207
2208 /**
2209 * ntb_transport_rx_remove - Dequeues enqueued rx packet
2210 * @qp: NTB queue to be freed
2211 * @len: pointer to variable to write enqueued buffers length
2212 *
2213 * Dequeues unused buffers from receive queue. Should only be used during
2214 * shutdown of qp.
2215 *
2216 * RETURNS: NULL error value on error, or void* for success.
2217 */
ntb_transport_rx_remove(struct ntb_transport_qp * qp,unsigned int * len)2218 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
2219 {
2220 struct ntb_queue_entry *entry;
2221 void *buf;
2222
2223 if (!qp || qp->client_ready)
2224 return NULL;
2225
2226 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
2227 if (!entry)
2228 return NULL;
2229
2230 buf = entry->cb_data;
2231 *len = entry->len;
2232
2233 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
2234
2235 return buf;
2236 }
2237 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
2238
2239 /**
2240 * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
2241 * @qp: NTB transport layer queue the entry is to be enqueued on
2242 * @cb: per buffer pointer for callback function to use
2243 * @data: pointer to data buffer that incoming packets will be copied into
2244 * @len: length of the data buffer
2245 *
2246 * Enqueue a new receive buffer onto the transport queue into which a NTB
2247 * payload can be received into.
2248 *
2249 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2250 */
ntb_transport_rx_enqueue(struct ntb_transport_qp * qp,void * cb,void * data,unsigned int len)2251 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2252 unsigned int len)
2253 {
2254 struct ntb_queue_entry *entry;
2255
2256 if (!qp)
2257 return -EINVAL;
2258
2259 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
2260 if (!entry)
2261 return -ENOMEM;
2262
2263 entry->cb_data = cb;
2264 entry->buf = data;
2265 entry->len = len;
2266 entry->flags = 0;
2267 entry->retries = 0;
2268 entry->errors = 0;
2269 entry->rx_index = 0;
2270
2271 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2272
2273 if (qp->active)
2274 tasklet_schedule(&qp->rxc_db_work);
2275
2276 return 0;
2277 }
2278 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2279
2280 /**
2281 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2282 * @qp: NTB transport layer queue the entry is to be enqueued on
2283 * @cb: per buffer pointer for callback function to use
2284 * @data: pointer to data buffer that will be sent
2285 * @len: length of the data buffer
2286 *
2287 * Enqueue a new transmit buffer onto the transport queue from which a NTB
2288 * payload will be transmitted. This assumes that a lock is being held to
2289 * serialize access to the qp.
2290 *
2291 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2292 */
ntb_transport_tx_enqueue(struct ntb_transport_qp * qp,void * cb,void * data,unsigned int len)2293 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2294 unsigned int len)
2295 {
2296 struct ntb_queue_entry *entry;
2297 int rc;
2298
2299 if (!qp || !len)
2300 return -EINVAL;
2301
2302 /* If the qp link is down already, just ignore. */
2303 if (!qp->link_is_up)
2304 return 0;
2305
2306 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2307 if (!entry) {
2308 qp->tx_err_no_buf++;
2309 return -EBUSY;
2310 }
2311
2312 entry->cb_data = cb;
2313 entry->buf = data;
2314 entry->len = len;
2315 entry->flags = 0;
2316 entry->errors = 0;
2317 entry->retries = 0;
2318 entry->tx_index = 0;
2319
2320 rc = ntb_process_tx(qp, entry);
2321 if (rc)
2322 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2323 &qp->tx_free_q);
2324
2325 return rc;
2326 }
2327 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2328
2329 /**
2330 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2331 * @qp: NTB transport layer queue to be enabled
2332 *
2333 * Notify NTB transport layer of client readiness to use queue
2334 */
ntb_transport_link_up(struct ntb_transport_qp * qp)2335 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2336 {
2337 if (!qp)
2338 return;
2339
2340 qp->client_ready = true;
2341
2342 if (qp->transport->link_is_up)
2343 schedule_delayed_work(&qp->link_work, 0);
2344 }
2345 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2346
2347 /**
2348 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2349 * @qp: NTB transport layer queue to be disabled
2350 *
2351 * Notify NTB transport layer of client's desire to no longer receive data on
2352 * transport queue specified. It is the client's responsibility to ensure all
2353 * entries on queue are purged or otherwise handled appropriately.
2354 */
ntb_transport_link_down(struct ntb_transport_qp * qp)2355 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2356 {
2357 int val;
2358
2359 if (!qp)
2360 return;
2361
2362 qp->client_ready = false;
2363
2364 val = ntb_spad_read(qp->ndev, QP_LINKS);
2365
2366 ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num));
2367
2368 if (qp->link_is_up)
2369 ntb_send_link_down(qp);
2370 else
2371 cancel_delayed_work_sync(&qp->link_work);
2372 }
2373 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2374
2375 /**
2376 * ntb_transport_link_query - Query transport link state
2377 * @qp: NTB transport layer queue to be queried
2378 *
2379 * Query connectivity to the remote system of the NTB transport queue
2380 *
2381 * RETURNS: true for link up or false for link down
2382 */
ntb_transport_link_query(struct ntb_transport_qp * qp)2383 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2384 {
2385 if (!qp)
2386 return false;
2387
2388 return qp->link_is_up;
2389 }
2390 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2391
2392 /**
2393 * ntb_transport_qp_num - Query the qp number
2394 * @qp: NTB transport layer queue to be queried
2395 *
2396 * Query qp number of the NTB transport queue
2397 *
2398 * RETURNS: a zero based number specifying the qp number
2399 */
ntb_transport_qp_num(struct ntb_transport_qp * qp)2400 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2401 {
2402 if (!qp)
2403 return 0;
2404
2405 return qp->qp_num;
2406 }
2407 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2408
2409 /**
2410 * ntb_transport_max_size - Query the max payload size of a qp
2411 * @qp: NTB transport layer queue to be queried
2412 *
2413 * Query the maximum payload size permissible on the given qp
2414 *
2415 * RETURNS: the max payload size of a qp
2416 */
ntb_transport_max_size(struct ntb_transport_qp * qp)2417 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2418 {
2419 unsigned int max_size;
2420 unsigned int copy_align;
2421 struct dma_chan *rx_chan, *tx_chan;
2422
2423 if (!qp)
2424 return 0;
2425
2426 rx_chan = qp->rx_dma_chan;
2427 tx_chan = qp->tx_dma_chan;
2428
2429 copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2430 tx_chan ? tx_chan->device->copy_align : 0);
2431
2432 /* If DMA engine usage is possible, try to find the max size for that */
2433 max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2434 max_size = round_down(max_size, 1 << copy_align);
2435
2436 return max_size;
2437 }
2438 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2439
ntb_transport_tx_free_entry(struct ntb_transport_qp * qp)2440 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2441 {
2442 unsigned int head = qp->tx_index;
2443 unsigned int tail = qp->remote_rx_info->entry;
2444
2445 return tail >= head ? tail - head : qp->tx_max_entry + tail - head;
2446 }
2447 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2448
ntb_transport_doorbell_callback(void * data,int vector)2449 static void ntb_transport_doorbell_callback(void *data, int vector)
2450 {
2451 struct ntb_transport_ctx *nt = data;
2452 struct ntb_transport_qp *qp;
2453 u64 db_bits;
2454 unsigned int qp_num;
2455
2456 if (ntb_db_read(nt->ndev) & nt->msi_db_mask) {
2457 ntb_transport_msi_peer_desc_changed(nt);
2458 ntb_db_clear(nt->ndev, nt->msi_db_mask);
2459 }
2460
2461 db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2462 ntb_db_vector_mask(nt->ndev, vector));
2463
2464 while (db_bits) {
2465 qp_num = __ffs(db_bits);
2466 qp = &nt->qp_vec[qp_num];
2467
2468 if (qp->active)
2469 tasklet_schedule(&qp->rxc_db_work);
2470
2471 db_bits &= ~BIT_ULL(qp_num);
2472 }
2473 }
2474
2475 static const struct ntb_ctx_ops ntb_transport_ops = {
2476 .link_event = ntb_transport_event_callback,
2477 .db_event = ntb_transport_doorbell_callback,
2478 };
2479
2480 static struct ntb_client ntb_transport_client = {
2481 .ops = {
2482 .probe = ntb_transport_probe,
2483 .remove = ntb_transport_free,
2484 },
2485 };
2486
ntb_transport_init(void)2487 static int __init ntb_transport_init(void)
2488 {
2489 int rc;
2490
2491 pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2492
2493 if (debugfs_initialized())
2494 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2495
2496 rc = bus_register(&ntb_transport_bus);
2497 if (rc)
2498 goto err_bus;
2499
2500 rc = ntb_register_client(&ntb_transport_client);
2501 if (rc)
2502 goto err_client;
2503
2504 return 0;
2505
2506 err_client:
2507 bus_unregister(&ntb_transport_bus);
2508 err_bus:
2509 debugfs_remove_recursive(nt_debugfs_dir);
2510 return rc;
2511 }
2512 module_init(ntb_transport_init);
2513
ntb_transport_exit(void)2514 static void __exit ntb_transport_exit(void)
2515 {
2516 ntb_unregister_client(&ntb_transport_client);
2517 bus_unregister(&ntb_transport_bus);
2518 debugfs_remove_recursive(nt_debugfs_dir);
2519 }
2520 module_exit(ntb_transport_exit);
2521