1 /*
2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3 *
4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5 * All Rights Reserved.
6 *
7 * Author Rickard E. (Rik) Faith <faith@valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 * DEALINGS IN THE SOFTWARE.
27 */
28
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/pseudo_fs.h>
35 #include <linux/slab.h>
36 #include <linux/srcu.h>
37 #include <linux/xarray.h>
38
39 #include <drm/drm_accel.h>
40 #include <drm/drm_cache.h>
41 #include <drm/drm_client.h>
42 #include <drm/drm_color_mgmt.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_file.h>
45 #include <drm/drm_managed.h>
46 #include <drm/drm_mode_object.h>
47 #include <drm/drm_print.h>
48 #include <drm/drm_privacy_screen_machine.h>
49
50 #include "drm_crtc_internal.h"
51 #include "drm_internal.h"
52 #include "drm_legacy.h"
53
54 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
55 MODULE_DESCRIPTION("DRM shared core routines");
56 MODULE_LICENSE("GPL and additional rights");
57
58 DEFINE_XARRAY_ALLOC(drm_minors_xa);
59
60 /*
61 * If the drm core fails to init for whatever reason,
62 * we should prevent any drivers from registering with it.
63 * It's best to check this at drm_dev_init(), as some drivers
64 * prefer to embed struct drm_device into their own device
65 * structure and call drm_dev_init() themselves.
66 */
67 static bool drm_core_init_complete;
68
69 static struct dentry *drm_debugfs_root;
70
71 DEFINE_STATIC_SRCU(drm_unplug_srcu);
72
73 /*
74 * DRM Minors
75 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
76 * of them is represented by a drm_minor object. Depending on the capabilities
77 * of the device-driver, different interfaces are registered.
78 *
79 * Minors can be accessed via dev->$minor_name. This pointer is either
80 * NULL or a valid drm_minor pointer and stays valid as long as the device is
81 * valid. This means, DRM minors have the same life-time as the underlying
82 * device. However, this doesn't mean that the minor is active. Minors are
83 * registered and unregistered dynamically according to device-state.
84 */
85
drm_minor_get_xa(enum drm_minor_type type)86 static struct xarray *drm_minor_get_xa(enum drm_minor_type type)
87 {
88 if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)
89 return &drm_minors_xa;
90 #if IS_ENABLED(CONFIG_DRM_ACCEL)
91 else if (type == DRM_MINOR_ACCEL)
92 return &accel_minors_xa;
93 #endif
94 else
95 return ERR_PTR(-EOPNOTSUPP);
96 }
97
drm_minor_get_slot(struct drm_device * dev,enum drm_minor_type type)98 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
99 enum drm_minor_type type)
100 {
101 switch (type) {
102 case DRM_MINOR_PRIMARY:
103 return &dev->primary;
104 case DRM_MINOR_RENDER:
105 return &dev->render;
106 case DRM_MINOR_ACCEL:
107 return &dev->accel;
108 default:
109 BUG();
110 }
111 }
112
drm_minor_alloc_release(struct drm_device * dev,void * data)113 static void drm_minor_alloc_release(struct drm_device *dev, void *data)
114 {
115 struct drm_minor *minor = data;
116
117 WARN_ON(dev != minor->dev);
118
119 put_device(minor->kdev);
120
121 xa_erase(drm_minor_get_xa(minor->type), minor->index);
122 }
123
124 /*
125 * DRM used to support 64 devices, for backwards compatibility we need to maintain the
126 * minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes,
127 * and 128-191 are render nodes.
128 * After reaching the limit, we're allocating minors dynamically - first-come, first-serve.
129 * Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX
130 * range.
131 */
132 #define DRM_MINOR_LIMIT(t) ({ \
133 typeof(t) _t = (t); \
134 _t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \
135 })
136 #define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1)
137
drm_minor_alloc(struct drm_device * dev,enum drm_minor_type type)138 static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type)
139 {
140 struct drm_minor *minor;
141 int r;
142
143 minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
144 if (!minor)
145 return -ENOMEM;
146
147 minor->type = type;
148 minor->dev = dev;
149
150 r = xa_alloc(drm_minor_get_xa(type), &minor->index,
151 NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL);
152 if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER))
153 r = xa_alloc(&drm_minors_xa, &minor->index,
154 NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL);
155 if (r < 0)
156 return r;
157
158 r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
159 if (r)
160 return r;
161
162 minor->kdev = drm_sysfs_minor_alloc(minor);
163 if (IS_ERR(minor->kdev))
164 return PTR_ERR(minor->kdev);
165
166 *drm_minor_get_slot(dev, type) = minor;
167 return 0;
168 }
169
drm_minor_register(struct drm_device * dev,enum drm_minor_type type)170 static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type)
171 {
172 struct drm_minor *minor;
173 void *entry;
174 int ret;
175
176 DRM_DEBUG("\n");
177
178 minor = *drm_minor_get_slot(dev, type);
179 if (!minor)
180 return 0;
181
182 if (minor->type == DRM_MINOR_ACCEL) {
183 accel_debugfs_init(minor, minor->index);
184 } else {
185 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
186 if (ret) {
187 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
188 goto err_debugfs;
189 }
190 }
191
192 ret = device_add(minor->kdev);
193 if (ret)
194 goto err_debugfs;
195
196 /* replace NULL with @minor so lookups will succeed from now on */
197 entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL);
198 if (xa_is_err(entry)) {
199 ret = xa_err(entry);
200 goto err_debugfs;
201 }
202 WARN_ON(entry);
203
204 DRM_DEBUG("new minor registered %d\n", minor->index);
205 return 0;
206
207 err_debugfs:
208 drm_debugfs_cleanup(minor);
209 return ret;
210 }
211
drm_minor_unregister(struct drm_device * dev,enum drm_minor_type type)212 static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type)
213 {
214 struct drm_minor *minor;
215
216 minor = *drm_minor_get_slot(dev, type);
217 if (!minor || !device_is_registered(minor->kdev))
218 return;
219
220 /* replace @minor with NULL so lookups will fail from now on */
221 xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL);
222
223 device_del(minor->kdev);
224 dev_set_drvdata(minor->kdev, NULL); /* safety belt */
225 drm_debugfs_cleanup(minor);
226 }
227
228 /*
229 * Looks up the given minor-ID and returns the respective DRM-minor object. The
230 * refence-count of the underlying device is increased so you must release this
231 * object with drm_minor_release().
232 *
233 * As long as you hold this minor, it is guaranteed that the object and the
234 * minor->dev pointer will stay valid! However, the device may get unplugged and
235 * unregistered while you hold the minor.
236 */
drm_minor_acquire(struct xarray * minor_xa,unsigned int minor_id)237 struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id)
238 {
239 struct drm_minor *minor;
240
241 xa_lock(minor_xa);
242 minor = xa_load(minor_xa, minor_id);
243 if (minor)
244 drm_dev_get(minor->dev);
245 xa_unlock(minor_xa);
246
247 if (!minor) {
248 return ERR_PTR(-ENODEV);
249 } else if (drm_dev_is_unplugged(minor->dev)) {
250 drm_dev_put(minor->dev);
251 return ERR_PTR(-ENODEV);
252 }
253
254 return minor;
255 }
256
drm_minor_release(struct drm_minor * minor)257 void drm_minor_release(struct drm_minor *minor)
258 {
259 drm_dev_put(minor->dev);
260 }
261
262 /**
263 * DOC: driver instance overview
264 *
265 * A device instance for a drm driver is represented by &struct drm_device. This
266 * is allocated and initialized with devm_drm_dev_alloc(), usually from
267 * bus-specific ->probe() callbacks implemented by the driver. The driver then
268 * needs to initialize all the various subsystems for the drm device like memory
269 * management, vblank handling, modesetting support and initial output
270 * configuration plus obviously initialize all the corresponding hardware bits.
271 * Finally when everything is up and running and ready for userspace the device
272 * instance can be published using drm_dev_register().
273 *
274 * There is also deprecated support for initializing device instances using
275 * bus-specific helpers and the &drm_driver.load callback. But due to
276 * backwards-compatibility needs the device instance have to be published too
277 * early, which requires unpretty global locking to make safe and is therefore
278 * only support for existing drivers not yet converted to the new scheme.
279 *
280 * When cleaning up a device instance everything needs to be done in reverse:
281 * First unpublish the device instance with drm_dev_unregister(). Then clean up
282 * any other resources allocated at device initialization and drop the driver's
283 * reference to &drm_device using drm_dev_put().
284 *
285 * Note that any allocation or resource which is visible to userspace must be
286 * released only when the final drm_dev_put() is called, and not when the
287 * driver is unbound from the underlying physical struct &device. Best to use
288 * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
289 * related functions.
290 *
291 * devres managed resources like devm_kmalloc() can only be used for resources
292 * directly related to the underlying hardware device, and only used in code
293 * paths fully protected by drm_dev_enter() and drm_dev_exit().
294 *
295 * Display driver example
296 * ~~~~~~~~~~~~~~~~~~~~~~
297 *
298 * The following example shows a typical structure of a DRM display driver.
299 * The example focus on the probe() function and the other functions that is
300 * almost always present and serves as a demonstration of devm_drm_dev_alloc().
301 *
302 * .. code-block:: c
303 *
304 * struct driver_device {
305 * struct drm_device drm;
306 * void *userspace_facing;
307 * struct clk *pclk;
308 * };
309 *
310 * static const struct drm_driver driver_drm_driver = {
311 * [...]
312 * };
313 *
314 * static int driver_probe(struct platform_device *pdev)
315 * {
316 * struct driver_device *priv;
317 * struct drm_device *drm;
318 * int ret;
319 *
320 * priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver,
321 * struct driver_device, drm);
322 * if (IS_ERR(priv))
323 * return PTR_ERR(priv);
324 * drm = &priv->drm;
325 *
326 * ret = drmm_mode_config_init(drm);
327 * if (ret)
328 * return ret;
329 *
330 * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
331 * if (!priv->userspace_facing)
332 * return -ENOMEM;
333 *
334 * priv->pclk = devm_clk_get(dev, "PCLK");
335 * if (IS_ERR(priv->pclk))
336 * return PTR_ERR(priv->pclk);
337 *
338 * // Further setup, display pipeline etc
339 *
340 * platform_set_drvdata(pdev, drm);
341 *
342 * drm_mode_config_reset(drm);
343 *
344 * ret = drm_dev_register(drm);
345 * if (ret)
346 * return ret;
347 *
348 * drm_fbdev_generic_setup(drm, 32);
349 *
350 * return 0;
351 * }
352 *
353 * // This function is called before the devm_ resources are released
354 * static int driver_remove(struct platform_device *pdev)
355 * {
356 * struct drm_device *drm = platform_get_drvdata(pdev);
357 *
358 * drm_dev_unregister(drm);
359 * drm_atomic_helper_shutdown(drm)
360 *
361 * return 0;
362 * }
363 *
364 * // This function is called on kernel restart and shutdown
365 * static void driver_shutdown(struct platform_device *pdev)
366 * {
367 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
368 * }
369 *
370 * static int __maybe_unused driver_pm_suspend(struct device *dev)
371 * {
372 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
373 * }
374 *
375 * static int __maybe_unused driver_pm_resume(struct device *dev)
376 * {
377 * drm_mode_config_helper_resume(dev_get_drvdata(dev));
378 *
379 * return 0;
380 * }
381 *
382 * static const struct dev_pm_ops driver_pm_ops = {
383 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
384 * };
385 *
386 * static struct platform_driver driver_driver = {
387 * .driver = {
388 * [...]
389 * .pm = &driver_pm_ops,
390 * },
391 * .probe = driver_probe,
392 * .remove = driver_remove,
393 * .shutdown = driver_shutdown,
394 * };
395 * module_platform_driver(driver_driver);
396 *
397 * Drivers that want to support device unplugging (USB, DT overlay unload) should
398 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
399 * regions that is accessing device resources to prevent use after they're
400 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
401 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
402 * drm_atomic_helper_shutdown() is called. This means that if the disable code
403 * paths are protected, they will not run on regular driver module unload,
404 * possibly leaving the hardware enabled.
405 */
406
407 /**
408 * drm_put_dev - Unregister and release a DRM device
409 * @dev: DRM device
410 *
411 * Called at module unload time or when a PCI device is unplugged.
412 *
413 * Cleans up all DRM device, calling drm_lastclose().
414 *
415 * Note: Use of this function is deprecated. It will eventually go away
416 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly
417 * instead to make sure that the device isn't userspace accessible any more
418 * while teardown is in progress, ensuring that userspace can't access an
419 * inconsistent state.
420 */
drm_put_dev(struct drm_device * dev)421 void drm_put_dev(struct drm_device *dev)
422 {
423 DRM_DEBUG("\n");
424
425 if (!dev) {
426 DRM_ERROR("cleanup called no dev\n");
427 return;
428 }
429
430 drm_dev_unregister(dev);
431 drm_dev_put(dev);
432 }
433 EXPORT_SYMBOL(drm_put_dev);
434
435 /**
436 * drm_dev_enter - Enter device critical section
437 * @dev: DRM device
438 * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
439 *
440 * This function marks and protects the beginning of a section that should not
441 * be entered after the device has been unplugged. The section end is marked
442 * with drm_dev_exit(). Calls to this function can be nested.
443 *
444 * Returns:
445 * True if it is OK to enter the section, false otherwise.
446 */
drm_dev_enter(struct drm_device * dev,int * idx)447 bool drm_dev_enter(struct drm_device *dev, int *idx)
448 {
449 *idx = srcu_read_lock(&drm_unplug_srcu);
450
451 if (dev->unplugged) {
452 srcu_read_unlock(&drm_unplug_srcu, *idx);
453 return false;
454 }
455
456 return true;
457 }
458 EXPORT_SYMBOL(drm_dev_enter);
459
460 /**
461 * drm_dev_exit - Exit device critical section
462 * @idx: index returned from drm_dev_enter()
463 *
464 * This function marks the end of a section that should not be entered after
465 * the device has been unplugged.
466 */
drm_dev_exit(int idx)467 void drm_dev_exit(int idx)
468 {
469 srcu_read_unlock(&drm_unplug_srcu, idx);
470 }
471 EXPORT_SYMBOL(drm_dev_exit);
472
473 /**
474 * drm_dev_unplug - unplug a DRM device
475 * @dev: DRM device
476 *
477 * This unplugs a hotpluggable DRM device, which makes it inaccessible to
478 * userspace operations. Entry-points can use drm_dev_enter() and
479 * drm_dev_exit() to protect device resources in a race free manner. This
480 * essentially unregisters the device like drm_dev_unregister(), but can be
481 * called while there are still open users of @dev.
482 */
drm_dev_unplug(struct drm_device * dev)483 void drm_dev_unplug(struct drm_device *dev)
484 {
485 /*
486 * After synchronizing any critical read section is guaranteed to see
487 * the new value of ->unplugged, and any critical section which might
488 * still have seen the old value of ->unplugged is guaranteed to have
489 * finished.
490 */
491 dev->unplugged = true;
492 synchronize_srcu(&drm_unplug_srcu);
493
494 drm_dev_unregister(dev);
495
496 /* Clear all CPU mappings pointing to this device */
497 unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1);
498 }
499 EXPORT_SYMBOL(drm_dev_unplug);
500
501 /*
502 * DRM internal mount
503 * We want to be able to allocate our own "struct address_space" to control
504 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
505 * stand-alone address_space objects, so we need an underlying inode. As there
506 * is no way to allocate an independent inode easily, we need a fake internal
507 * VFS mount-point.
508 *
509 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
510 * frees it again. You are allowed to use iget() and iput() to get references to
511 * the inode. But each drm_fs_inode_new() call must be paired with exactly one
512 * drm_fs_inode_free() call (which does not have to be the last iput()).
513 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
514 * between multiple inode-users. You could, technically, call
515 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
516 * iput(), but this way you'd end up with a new vfsmount for each inode.
517 */
518
519 static int drm_fs_cnt;
520 static struct vfsmount *drm_fs_mnt;
521
drm_fs_init_fs_context(struct fs_context * fc)522 static int drm_fs_init_fs_context(struct fs_context *fc)
523 {
524 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
525 }
526
527 static struct file_system_type drm_fs_type = {
528 .name = "drm",
529 .owner = THIS_MODULE,
530 .init_fs_context = drm_fs_init_fs_context,
531 .kill_sb = kill_anon_super,
532 };
533
drm_fs_inode_new(void)534 static struct inode *drm_fs_inode_new(void)
535 {
536 struct inode *inode;
537 int r;
538
539 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
540 if (r < 0) {
541 DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
542 return ERR_PTR(r);
543 }
544
545 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
546 if (IS_ERR(inode))
547 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
548
549 return inode;
550 }
551
drm_fs_inode_free(struct inode * inode)552 static void drm_fs_inode_free(struct inode *inode)
553 {
554 if (inode) {
555 iput(inode);
556 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
557 }
558 }
559
560 /**
561 * DOC: component helper usage recommendations
562 *
563 * DRM drivers that drive hardware where a logical device consists of a pile of
564 * independent hardware blocks are recommended to use the :ref:`component helper
565 * library<component>`. For consistency and better options for code reuse the
566 * following guidelines apply:
567 *
568 * - The entire device initialization procedure should be run from the
569 * &component_master_ops.master_bind callback, starting with
570 * devm_drm_dev_alloc(), then binding all components with
571 * component_bind_all() and finishing with drm_dev_register().
572 *
573 * - The opaque pointer passed to all components through component_bind_all()
574 * should point at &struct drm_device of the device instance, not some driver
575 * specific private structure.
576 *
577 * - The component helper fills the niche where further standardization of
578 * interfaces is not practical. When there already is, or will be, a
579 * standardized interface like &drm_bridge or &drm_panel, providing its own
580 * functions to find such components at driver load time, like
581 * drm_of_find_panel_or_bridge(), then the component helper should not be
582 * used.
583 */
584
drm_dev_init_release(struct drm_device * dev,void * res)585 static void drm_dev_init_release(struct drm_device *dev, void *res)
586 {
587 drm_legacy_ctxbitmap_cleanup(dev);
588 drm_legacy_remove_map_hash(dev);
589 drm_fs_inode_free(dev->anon_inode);
590
591 put_device(dev->dev);
592 /* Prevent use-after-free in drm_managed_release when debugging is
593 * enabled. Slightly awkward, but can't really be helped. */
594 dev->dev = NULL;
595 mutex_destroy(&dev->master_mutex);
596 mutex_destroy(&dev->clientlist_mutex);
597 mutex_destroy(&dev->filelist_mutex);
598 mutex_destroy(&dev->struct_mutex);
599 mutex_destroy(&dev->debugfs_mutex);
600 drm_legacy_destroy_members(dev);
601 }
602
drm_dev_init(struct drm_device * dev,const struct drm_driver * driver,struct device * parent)603 static int drm_dev_init(struct drm_device *dev,
604 const struct drm_driver *driver,
605 struct device *parent)
606 {
607 struct inode *inode;
608 int ret;
609
610 if (!drm_core_init_complete) {
611 DRM_ERROR("DRM core is not initialized\n");
612 return -ENODEV;
613 }
614
615 if (WARN_ON(!parent))
616 return -EINVAL;
617
618 kref_init(&dev->ref);
619 dev->dev = get_device(parent);
620 dev->driver = driver;
621
622 INIT_LIST_HEAD(&dev->managed.resources);
623 spin_lock_init(&dev->managed.lock);
624
625 /* no per-device feature limits by default */
626 dev->driver_features = ~0u;
627
628 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) &&
629 (drm_core_check_feature(dev, DRIVER_RENDER) ||
630 drm_core_check_feature(dev, DRIVER_MODESET))) {
631 DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n");
632 return -EINVAL;
633 }
634
635 drm_legacy_init_members(dev);
636 INIT_LIST_HEAD(&dev->filelist);
637 INIT_LIST_HEAD(&dev->filelist_internal);
638 INIT_LIST_HEAD(&dev->clientlist);
639 INIT_LIST_HEAD(&dev->vblank_event_list);
640 INIT_LIST_HEAD(&dev->debugfs_list);
641
642 spin_lock_init(&dev->event_lock);
643 mutex_init(&dev->struct_mutex);
644 mutex_init(&dev->filelist_mutex);
645 mutex_init(&dev->clientlist_mutex);
646 mutex_init(&dev->master_mutex);
647 mutex_init(&dev->debugfs_mutex);
648
649 ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL);
650 if (ret)
651 return ret;
652
653 inode = drm_fs_inode_new();
654 if (IS_ERR(inode)) {
655 ret = PTR_ERR(inode);
656 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
657 goto err;
658 }
659
660 dev->anon_inode = inode;
661
662 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) {
663 ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL);
664 if (ret)
665 goto err;
666 } else {
667 if (drm_core_check_feature(dev, DRIVER_RENDER)) {
668 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
669 if (ret)
670 goto err;
671 }
672
673 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
674 if (ret)
675 goto err;
676 }
677
678 ret = drm_legacy_create_map_hash(dev);
679 if (ret)
680 goto err;
681
682 drm_legacy_ctxbitmap_init(dev);
683
684 if (drm_core_check_feature(dev, DRIVER_GEM)) {
685 ret = drm_gem_init(dev);
686 if (ret) {
687 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
688 goto err;
689 }
690 }
691
692 dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL);
693 if (!dev->unique) {
694 ret = -ENOMEM;
695 goto err;
696 }
697
698 return 0;
699
700 err:
701 drm_managed_release(dev);
702
703 return ret;
704 }
705
devm_drm_dev_init_release(void * data)706 static void devm_drm_dev_init_release(void *data)
707 {
708 drm_dev_put(data);
709 }
710
devm_drm_dev_init(struct device * parent,struct drm_device * dev,const struct drm_driver * driver)711 static int devm_drm_dev_init(struct device *parent,
712 struct drm_device *dev,
713 const struct drm_driver *driver)
714 {
715 int ret;
716
717 ret = drm_dev_init(dev, driver, parent);
718 if (ret)
719 return ret;
720
721 return devm_add_action_or_reset(parent,
722 devm_drm_dev_init_release, dev);
723 }
724
__devm_drm_dev_alloc(struct device * parent,const struct drm_driver * driver,size_t size,size_t offset)725 void *__devm_drm_dev_alloc(struct device *parent,
726 const struct drm_driver *driver,
727 size_t size, size_t offset)
728 {
729 void *container;
730 struct drm_device *drm;
731 int ret;
732
733 container = kzalloc(size, GFP_KERNEL);
734 if (!container)
735 return ERR_PTR(-ENOMEM);
736
737 drm = container + offset;
738 ret = devm_drm_dev_init(parent, drm, driver);
739 if (ret) {
740 kfree(container);
741 return ERR_PTR(ret);
742 }
743 drmm_add_final_kfree(drm, container);
744
745 return container;
746 }
747 EXPORT_SYMBOL(__devm_drm_dev_alloc);
748
749 /**
750 * drm_dev_alloc - Allocate new DRM device
751 * @driver: DRM driver to allocate device for
752 * @parent: Parent device object
753 *
754 * This is the deprecated version of devm_drm_dev_alloc(), which does not support
755 * subclassing through embedding the struct &drm_device in a driver private
756 * structure, and which does not support automatic cleanup through devres.
757 *
758 * RETURNS:
759 * Pointer to new DRM device, or ERR_PTR on failure.
760 */
drm_dev_alloc(const struct drm_driver * driver,struct device * parent)761 struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
762 struct device *parent)
763 {
764 struct drm_device *dev;
765 int ret;
766
767 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
768 if (!dev)
769 return ERR_PTR(-ENOMEM);
770
771 ret = drm_dev_init(dev, driver, parent);
772 if (ret) {
773 kfree(dev);
774 return ERR_PTR(ret);
775 }
776
777 drmm_add_final_kfree(dev, dev);
778
779 return dev;
780 }
781 EXPORT_SYMBOL(drm_dev_alloc);
782
drm_dev_release(struct kref * ref)783 static void drm_dev_release(struct kref *ref)
784 {
785 struct drm_device *dev = container_of(ref, struct drm_device, ref);
786
787 if (dev->driver->release)
788 dev->driver->release(dev);
789
790 drm_managed_release(dev);
791
792 kfree(dev->managed.final_kfree);
793 }
794
795 /**
796 * drm_dev_get - Take reference of a DRM device
797 * @dev: device to take reference of or NULL
798 *
799 * This increases the ref-count of @dev by one. You *must* already own a
800 * reference when calling this. Use drm_dev_put() to drop this reference
801 * again.
802 *
803 * This function never fails. However, this function does not provide *any*
804 * guarantee whether the device is alive or running. It only provides a
805 * reference to the object and the memory associated with it.
806 */
drm_dev_get(struct drm_device * dev)807 void drm_dev_get(struct drm_device *dev)
808 {
809 if (dev)
810 kref_get(&dev->ref);
811 }
812 EXPORT_SYMBOL(drm_dev_get);
813
814 /**
815 * drm_dev_put - Drop reference of a DRM device
816 * @dev: device to drop reference of or NULL
817 *
818 * This decreases the ref-count of @dev by one. The device is destroyed if the
819 * ref-count drops to zero.
820 */
drm_dev_put(struct drm_device * dev)821 void drm_dev_put(struct drm_device *dev)
822 {
823 if (dev)
824 kref_put(&dev->ref, drm_dev_release);
825 }
826 EXPORT_SYMBOL(drm_dev_put);
827
create_compat_control_link(struct drm_device * dev)828 static int create_compat_control_link(struct drm_device *dev)
829 {
830 struct drm_minor *minor;
831 char *name;
832 int ret;
833
834 if (!drm_core_check_feature(dev, DRIVER_MODESET))
835 return 0;
836
837 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
838 if (!minor)
839 return 0;
840
841 /*
842 * Some existing userspace out there uses the existing of the controlD*
843 * sysfs files to figure out whether it's a modeset driver. It only does
844 * readdir, hence a symlink is sufficient (and the least confusing
845 * option). Otherwise controlD* is entirely unused.
846 *
847 * Old controlD chardev have been allocated in the range
848 * 64-127.
849 */
850 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
851 if (!name)
852 return -ENOMEM;
853
854 ret = sysfs_create_link(minor->kdev->kobj.parent,
855 &minor->kdev->kobj,
856 name);
857
858 kfree(name);
859
860 return ret;
861 }
862
remove_compat_control_link(struct drm_device * dev)863 static void remove_compat_control_link(struct drm_device *dev)
864 {
865 struct drm_minor *minor;
866 char *name;
867
868 if (!drm_core_check_feature(dev, DRIVER_MODESET))
869 return;
870
871 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
872 if (!minor)
873 return;
874
875 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
876 if (!name)
877 return;
878
879 sysfs_remove_link(minor->kdev->kobj.parent, name);
880
881 kfree(name);
882 }
883
884 /**
885 * drm_dev_register - Register DRM device
886 * @dev: Device to register
887 * @flags: Flags passed to the driver's .load() function
888 *
889 * Register the DRM device @dev with the system, advertise device to user-space
890 * and start normal device operation. @dev must be initialized via drm_dev_init()
891 * previously.
892 *
893 * Never call this twice on any device!
894 *
895 * NOTE: To ensure backward compatibility with existing drivers method this
896 * function calls the &drm_driver.load method after registering the device
897 * nodes, creating race conditions. Usage of the &drm_driver.load methods is
898 * therefore deprecated, drivers must perform all initialization before calling
899 * drm_dev_register().
900 *
901 * RETURNS:
902 * 0 on success, negative error code on failure.
903 */
drm_dev_register(struct drm_device * dev,unsigned long flags)904 int drm_dev_register(struct drm_device *dev, unsigned long flags)
905 {
906 const struct drm_driver *driver = dev->driver;
907 int ret;
908
909 if (!driver->load)
910 drm_mode_config_validate(dev);
911
912 WARN_ON(!dev->managed.final_kfree);
913
914 if (drm_dev_needs_global_mutex(dev))
915 mutex_lock(&drm_global_mutex);
916
917 ret = drm_minor_register(dev, DRM_MINOR_RENDER);
918 if (ret)
919 goto err_minors;
920
921 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
922 if (ret)
923 goto err_minors;
924
925 ret = drm_minor_register(dev, DRM_MINOR_ACCEL);
926 if (ret)
927 goto err_minors;
928
929 ret = create_compat_control_link(dev);
930 if (ret)
931 goto err_minors;
932
933 dev->registered = true;
934
935 if (driver->load) {
936 ret = driver->load(dev, flags);
937 if (ret)
938 goto err_minors;
939 }
940
941 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
942 ret = drm_modeset_register_all(dev);
943 if (ret)
944 goto err_unload;
945 }
946
947 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
948 driver->name, driver->major, driver->minor,
949 driver->patchlevel, driver->date,
950 dev->dev ? dev_name(dev->dev) : "virtual device",
951 dev->primary ? dev->primary->index : dev->accel->index);
952
953 goto out_unlock;
954
955 err_unload:
956 if (dev->driver->unload)
957 dev->driver->unload(dev);
958 err_minors:
959 remove_compat_control_link(dev);
960 drm_minor_unregister(dev, DRM_MINOR_ACCEL);
961 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
962 drm_minor_unregister(dev, DRM_MINOR_RENDER);
963 out_unlock:
964 if (drm_dev_needs_global_mutex(dev))
965 mutex_unlock(&drm_global_mutex);
966 return ret;
967 }
968 EXPORT_SYMBOL(drm_dev_register);
969
970 /**
971 * drm_dev_unregister - Unregister DRM device
972 * @dev: Device to unregister
973 *
974 * Unregister the DRM device from the system. This does the reverse of
975 * drm_dev_register() but does not deallocate the device. The caller must call
976 * drm_dev_put() to drop their final reference, unless it is managed with devres
977 * (as devices allocated with devm_drm_dev_alloc() are), in which case there is
978 * already an unwind action registered.
979 *
980 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
981 * which can be called while there are still open users of @dev.
982 *
983 * This should be called first in the device teardown code to make sure
984 * userspace can't access the device instance any more.
985 */
drm_dev_unregister(struct drm_device * dev)986 void drm_dev_unregister(struct drm_device *dev)
987 {
988 if (drm_core_check_feature(dev, DRIVER_LEGACY))
989 drm_lastclose(dev);
990
991 dev->registered = false;
992
993 drm_client_dev_unregister(dev);
994
995 if (drm_core_check_feature(dev, DRIVER_MODESET))
996 drm_modeset_unregister_all(dev);
997
998 if (dev->driver->unload)
999 dev->driver->unload(dev);
1000
1001 drm_legacy_pci_agp_destroy(dev);
1002 drm_legacy_rmmaps(dev);
1003
1004 remove_compat_control_link(dev);
1005 drm_minor_unregister(dev, DRM_MINOR_ACCEL);
1006 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1007 drm_minor_unregister(dev, DRM_MINOR_RENDER);
1008 }
1009 EXPORT_SYMBOL(drm_dev_unregister);
1010
1011 /*
1012 * DRM Core
1013 * The DRM core module initializes all global DRM objects and makes them
1014 * available to drivers. Once setup, drivers can probe their respective
1015 * devices.
1016 * Currently, core management includes:
1017 * - The "DRM-Global" key/value database
1018 * - Global ID management for connectors
1019 * - DRM major number allocation
1020 * - DRM minor management
1021 * - DRM sysfs class
1022 * - DRM debugfs root
1023 *
1024 * Furthermore, the DRM core provides dynamic char-dev lookups. For each
1025 * interface registered on a DRM device, you can request minor numbers from DRM
1026 * core. DRM core takes care of major-number management and char-dev
1027 * registration. A stub ->open() callback forwards any open() requests to the
1028 * registered minor.
1029 */
1030
drm_stub_open(struct inode * inode,struct file * filp)1031 static int drm_stub_open(struct inode *inode, struct file *filp)
1032 {
1033 const struct file_operations *new_fops;
1034 struct drm_minor *minor;
1035 int err;
1036
1037 DRM_DEBUG("\n");
1038
1039 minor = drm_minor_acquire(&drm_minors_xa, iminor(inode));
1040 if (IS_ERR(minor))
1041 return PTR_ERR(minor);
1042
1043 new_fops = fops_get(minor->dev->driver->fops);
1044 if (!new_fops) {
1045 err = -ENODEV;
1046 goto out;
1047 }
1048
1049 replace_fops(filp, new_fops);
1050 if (filp->f_op->open)
1051 err = filp->f_op->open(inode, filp);
1052 else
1053 err = 0;
1054
1055 out:
1056 drm_minor_release(minor);
1057
1058 return err;
1059 }
1060
1061 static const struct file_operations drm_stub_fops = {
1062 .owner = THIS_MODULE,
1063 .open = drm_stub_open,
1064 .llseek = noop_llseek,
1065 };
1066
drm_core_exit(void)1067 static void drm_core_exit(void)
1068 {
1069 drm_privacy_screen_lookup_exit();
1070 accel_core_exit();
1071 unregister_chrdev(DRM_MAJOR, "drm");
1072 debugfs_remove(drm_debugfs_root);
1073 drm_sysfs_destroy();
1074 WARN_ON(!xa_empty(&drm_minors_xa));
1075 drm_connector_ida_destroy();
1076 }
1077
drm_core_init(void)1078 static int __init drm_core_init(void)
1079 {
1080 int ret;
1081
1082 drm_connector_ida_init();
1083 drm_memcpy_init_early();
1084
1085 ret = drm_sysfs_init();
1086 if (ret < 0) {
1087 DRM_ERROR("Cannot create DRM class: %d\n", ret);
1088 goto error;
1089 }
1090
1091 drm_debugfs_root = debugfs_create_dir("dri", NULL);
1092
1093 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1094 if (ret < 0)
1095 goto error;
1096
1097 ret = accel_core_init();
1098 if (ret < 0)
1099 goto error;
1100
1101 drm_privacy_screen_lookup_init();
1102
1103 drm_core_init_complete = true;
1104
1105 DRM_DEBUG("Initialized\n");
1106 return 0;
1107
1108 error:
1109 drm_core_exit();
1110 return ret;
1111 }
1112
1113 module_init(drm_core_init);
1114 module_exit(drm_core_exit);
1115