1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later
2 /*
3 * Copyright 2008 - 2016 Freescale Semiconductor Inc.
4 * Copyright 2020 NXP
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/init.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/module.h>
12 #include <linux/of_mdio.h>
13 #include <linux/of_net.h>
14 #include <linux/io.h>
15 #include <linux/if_arp.h>
16 #include <linux/if_vlan.h>
17 #include <linux/icmp.h>
18 #include <linux/ip.h>
19 #include <linux/ipv6.h>
20 #include <linux/platform_device.h>
21 #include <linux/udp.h>
22 #include <linux/tcp.h>
23 #include <linux/net.h>
24 #include <linux/skbuff.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/highmem.h>
28 #include <linux/percpu.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/sort.h>
31 #include <linux/phy_fixed.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <soc/fsl/bman.h>
35 #include <soc/fsl/qman.h>
36 #include "fman.h"
37 #include "fman_port.h"
38 #include "mac.h"
39 #include "dpaa_eth.h"
40
41 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
42 * using trace events only need to #include <trace/events/sched.h>
43 */
44 #define CREATE_TRACE_POINTS
45 #include "dpaa_eth_trace.h"
46
47 static int debug = -1;
48 module_param(debug, int, 0444);
49 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
50
51 static u16 tx_timeout = 1000;
52 module_param(tx_timeout, ushort, 0444);
53 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
54
55 #define FM_FD_STAT_RX_ERRORS \
56 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \
57 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
58 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \
59 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
60 FM_FD_ERR_PRS_HDR_ERR)
61
62 #define FM_FD_STAT_TX_ERRORS \
63 (FM_FD_ERR_UNSUPPORTED_FORMAT | \
64 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
65
66 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
67 NETIF_MSG_LINK | NETIF_MSG_IFUP | \
68 NETIF_MSG_IFDOWN | NETIF_MSG_HW)
69
70 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
71 /* Ingress congestion threshold on FMan ports
72 * The size in bytes of the ingress tail-drop threshold on FMan ports.
73 * Traffic piling up above this value will be rejected by QMan and discarded
74 * by FMan.
75 */
76
77 /* Size in bytes of the FQ taildrop threshold */
78 #define DPAA_FQ_TD 0x200000
79
80 #define DPAA_CS_THRESHOLD_1G 0x06000000
81 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
82 * The size in bytes of the egress Congestion State notification threshold on
83 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
84 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
85 * and the larger the frame size, the more acute the problem.
86 * So we have to find a balance between these factors:
87 * - avoiding the device staying congested for a prolonged time (risking
88 * the netdev watchdog to fire - see also the tx_timeout module param);
89 * - affecting performance of protocols such as TCP, which otherwise
90 * behave well under the congestion notification mechanism;
91 * - preventing the Tx cores from tightly-looping (as if the congestion
92 * threshold was too low to be effective);
93 * - running out of memory if the CS threshold is set too high.
94 */
95
96 #define DPAA_CS_THRESHOLD_10G 0x10000000
97 /* The size in bytes of the egress Congestion State notification threshold on
98 * 10G ports, range 0x1000 .. 0x10000000
99 */
100
101 /* Largest value that the FQD's OAL field can hold */
102 #define FSL_QMAN_MAX_OAL 127
103
104 /* Default alignment for start of data in an Rx FD */
105 #ifdef CONFIG_DPAA_ERRATUM_A050385
106 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer
107 * is crossing a 4k page boundary
108 */
109 #define DPAA_FD_DATA_ALIGNMENT (fman_has_errata_a050385() ? 64 : 16)
110 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary
111 * crossings; also, all SG fragments except the last must have a size multiple
112 * of 256 to avoid DMA transaction splits
113 */
114 #define DPAA_A050385_ALIGN 256
115 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \
116 DPAA_A050385_ALIGN : 16)
117 #else
118 #define DPAA_FD_DATA_ALIGNMENT 16
119 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT
120 #endif
121
122 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
123 #define DPAA_SGT_SIZE 256
124
125 /* Values for the L3R field of the FM Parse Results
126 */
127 /* L3 Type field: First IP Present IPv4 */
128 #define FM_L3_PARSE_RESULT_IPV4 0x8000
129 /* L3 Type field: First IP Present IPv6 */
130 #define FM_L3_PARSE_RESULT_IPV6 0x4000
131 /* Values for the L4R field of the FM Parse Results */
132 /* L4 Type field: UDP */
133 #define FM_L4_PARSE_RESULT_UDP 0x40
134 /* L4 Type field: TCP */
135 #define FM_L4_PARSE_RESULT_TCP 0x20
136
137 /* FD status field indicating whether the FM Parser has attempted to validate
138 * the L4 csum of the frame.
139 * Note that having this bit set doesn't necessarily imply that the checksum
140 * is valid. One would have to check the parse results to find that out.
141 */
142 #define FM_FD_STAT_L4CV 0x00000004
143
144 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
145 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
146
147 #define FSL_DPAA_BPID_INV 0xff
148 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128
149 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80
150
151 #define DPAA_TX_PRIV_DATA_SIZE 16
152 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
153 #define DPAA_TIME_STAMP_SIZE 8
154 #define DPAA_HASH_RESULTS_SIZE 8
155 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \
156 + DPAA_HASH_RESULTS_SIZE)
157 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \
158 XDP_PACKET_HEADROOM - DPAA_HWA_SIZE)
159 #ifdef CONFIG_DPAA_ERRATUM_A050385
160 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE)
161 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \
162 DPAA_RX_PRIV_DATA_A050385_SIZE : \
163 DPAA_RX_PRIV_DATA_DEFAULT_SIZE)
164 #else
165 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE
166 #endif
167
168 #define DPAA_ETH_PCD_RXQ_NUM 128
169
170 #define DPAA_ENQUEUE_RETRIES 100000
171
172 enum port_type {RX, TX};
173
174 struct fm_port_fqs {
175 struct dpaa_fq *tx_defq;
176 struct dpaa_fq *tx_errq;
177 struct dpaa_fq *rx_defq;
178 struct dpaa_fq *rx_errq;
179 struct dpaa_fq *rx_pcdq;
180 };
181
182 /* All the dpa bps in use at any moment */
183 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
184
185 #define DPAA_BP_RAW_SIZE 4096
186
187 #ifdef CONFIG_DPAA_ERRATUM_A050385
188 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \
189 ~(DPAA_A050385_ALIGN - 1))
190 #else
191 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
192 #endif
193
194 static int dpaa_max_frm;
195
196 static int dpaa_rx_extra_headroom;
197
198 #define dpaa_get_max_mtu() \
199 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
200
201 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed);
202
dpaa_netdev_init(struct net_device * net_dev,const struct net_device_ops * dpaa_ops,u16 tx_timeout)203 static int dpaa_netdev_init(struct net_device *net_dev,
204 const struct net_device_ops *dpaa_ops,
205 u16 tx_timeout)
206 {
207 struct dpaa_priv *priv = netdev_priv(net_dev);
208 struct device *dev = net_dev->dev.parent;
209 struct mac_device *mac_dev = priv->mac_dev;
210 struct dpaa_percpu_priv *percpu_priv;
211 const u8 *mac_addr;
212 int i, err;
213
214 /* Although we access another CPU's private data here
215 * we do it at initialization so it is safe
216 */
217 for_each_possible_cpu(i) {
218 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
219 percpu_priv->net_dev = net_dev;
220 }
221
222 net_dev->netdev_ops = dpaa_ops;
223 mac_addr = mac_dev->addr;
224
225 net_dev->mem_start = (unsigned long)priv->mac_dev->res->start;
226 net_dev->mem_end = (unsigned long)priv->mac_dev->res->end;
227
228 net_dev->min_mtu = ETH_MIN_MTU;
229 net_dev->max_mtu = dpaa_get_max_mtu();
230
231 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
232 NETIF_F_LLTX | NETIF_F_RXHASH);
233
234 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
235 /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
236 * For conformity, we'll still declare GSO explicitly.
237 */
238 net_dev->features |= NETIF_F_GSO;
239 net_dev->features |= NETIF_F_RXCSUM;
240
241 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
242 /* we do not want shared skbs on TX */
243 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
244
245 net_dev->features |= net_dev->hw_features;
246 net_dev->vlan_features = net_dev->features;
247
248 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
249 NETDEV_XDP_ACT_REDIRECT |
250 NETDEV_XDP_ACT_NDO_XMIT;
251
252 if (is_valid_ether_addr(mac_addr)) {
253 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
254 eth_hw_addr_set(net_dev, mac_addr);
255 } else {
256 eth_hw_addr_random(net_dev);
257 err = mac_dev->change_addr(mac_dev->fman_mac,
258 (const enet_addr_t *)net_dev->dev_addr);
259 if (err) {
260 dev_err(dev, "Failed to set random MAC address\n");
261 return -EINVAL;
262 }
263 dev_info(dev, "Using random MAC address: %pM\n",
264 net_dev->dev_addr);
265 }
266
267 net_dev->ethtool_ops = &dpaa_ethtool_ops;
268
269 net_dev->needed_headroom = priv->tx_headroom;
270 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
271
272 /* The rest of the config is filled in by the mac device already */
273 mac_dev->phylink_config.dev = &net_dev->dev;
274 mac_dev->phylink_config.type = PHYLINK_NETDEV;
275 mac_dev->update_speed = dpaa_eth_cgr_set_speed;
276 mac_dev->phylink = phylink_create(&mac_dev->phylink_config,
277 dev_fwnode(mac_dev->dev),
278 mac_dev->phy_if,
279 mac_dev->phylink_ops);
280 if (IS_ERR(mac_dev->phylink)) {
281 err = PTR_ERR(mac_dev->phylink);
282 dev_err_probe(dev, err, "Could not create phylink\n");
283 return err;
284 }
285
286 /* start without the RUNNING flag, phylib controls it later */
287 netif_carrier_off(net_dev);
288
289 err = register_netdev(net_dev);
290 if (err < 0) {
291 dev_err(dev, "register_netdev() = %d\n", err);
292 phylink_destroy(mac_dev->phylink);
293 return err;
294 }
295
296 return 0;
297 }
298
dpaa_stop(struct net_device * net_dev)299 static int dpaa_stop(struct net_device *net_dev)
300 {
301 struct mac_device *mac_dev;
302 struct dpaa_priv *priv;
303 int i, error;
304 int err = 0;
305
306 priv = netdev_priv(net_dev);
307 mac_dev = priv->mac_dev;
308
309 netif_tx_stop_all_queues(net_dev);
310 /* Allow the Fman (Tx) port to process in-flight frames before we
311 * try switching it off.
312 */
313 msleep(200);
314
315 phylink_stop(mac_dev->phylink);
316 mac_dev->disable(mac_dev->fman_mac);
317
318 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
319 error = fman_port_disable(mac_dev->port[i]);
320 if (error)
321 err = error;
322 }
323
324 phylink_disconnect_phy(mac_dev->phylink);
325 net_dev->phydev = NULL;
326
327 msleep(200);
328
329 return err;
330 }
331
dpaa_tx_timeout(struct net_device * net_dev,unsigned int txqueue)332 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
333 {
334 struct dpaa_percpu_priv *percpu_priv;
335 const struct dpaa_priv *priv;
336
337 priv = netdev_priv(net_dev);
338 percpu_priv = this_cpu_ptr(priv->percpu_priv);
339
340 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
341 jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
342
343 percpu_priv->stats.tx_errors++;
344 }
345
346 /* Calculates the statistics for the given device by adding the statistics
347 * collected by each CPU.
348 */
dpaa_get_stats64(struct net_device * net_dev,struct rtnl_link_stats64 * s)349 static void dpaa_get_stats64(struct net_device *net_dev,
350 struct rtnl_link_stats64 *s)
351 {
352 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
353 struct dpaa_priv *priv = netdev_priv(net_dev);
354 struct dpaa_percpu_priv *percpu_priv;
355 u64 *netstats = (u64 *)s;
356 u64 *cpustats;
357 int i, j;
358
359 for_each_possible_cpu(i) {
360 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
361
362 cpustats = (u64 *)&percpu_priv->stats;
363
364 /* add stats from all CPUs */
365 for (j = 0; j < numstats; j++)
366 netstats[j] += cpustats[j];
367 }
368 }
369
dpaa_setup_tc(struct net_device * net_dev,enum tc_setup_type type,void * type_data)370 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
371 void *type_data)
372 {
373 struct dpaa_priv *priv = netdev_priv(net_dev);
374 struct tc_mqprio_qopt *mqprio = type_data;
375 u8 num_tc;
376 int i;
377
378 if (type != TC_SETUP_QDISC_MQPRIO)
379 return -EOPNOTSUPP;
380
381 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
382 num_tc = mqprio->num_tc;
383
384 if (num_tc == priv->num_tc)
385 return 0;
386
387 if (!num_tc) {
388 netdev_reset_tc(net_dev);
389 goto out;
390 }
391
392 if (num_tc > DPAA_TC_NUM) {
393 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
394 DPAA_TC_NUM);
395 return -EINVAL;
396 }
397
398 netdev_set_num_tc(net_dev, num_tc);
399
400 for (i = 0; i < num_tc; i++)
401 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
402 i * DPAA_TC_TXQ_NUM);
403
404 out:
405 priv->num_tc = num_tc ? : 1;
406 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
407 return 0;
408 }
409
dpaa_mac_dev_get(struct platform_device * pdev)410 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
411 {
412 struct dpaa_eth_data *eth_data;
413 struct device *dpaa_dev;
414 struct mac_device *mac_dev;
415
416 dpaa_dev = &pdev->dev;
417 eth_data = dpaa_dev->platform_data;
418 if (!eth_data) {
419 dev_err(dpaa_dev, "eth_data missing\n");
420 return ERR_PTR(-ENODEV);
421 }
422 mac_dev = eth_data->mac_dev;
423 if (!mac_dev) {
424 dev_err(dpaa_dev, "mac_dev missing\n");
425 return ERR_PTR(-EINVAL);
426 }
427
428 return mac_dev;
429 }
430
dpaa_set_mac_address(struct net_device * net_dev,void * addr)431 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
432 {
433 const struct dpaa_priv *priv;
434 struct mac_device *mac_dev;
435 struct sockaddr old_addr;
436 int err;
437
438 priv = netdev_priv(net_dev);
439
440 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN);
441
442 err = eth_mac_addr(net_dev, addr);
443 if (err < 0) {
444 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
445 return err;
446 }
447
448 mac_dev = priv->mac_dev;
449
450 err = mac_dev->change_addr(mac_dev->fman_mac,
451 (const enet_addr_t *)net_dev->dev_addr);
452 if (err < 0) {
453 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
454 err);
455 /* reverting to previous address */
456 eth_mac_addr(net_dev, &old_addr);
457
458 return err;
459 }
460
461 return 0;
462 }
463
dpaa_set_rx_mode(struct net_device * net_dev)464 static void dpaa_set_rx_mode(struct net_device *net_dev)
465 {
466 const struct dpaa_priv *priv;
467 int err;
468
469 priv = netdev_priv(net_dev);
470
471 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
472 priv->mac_dev->promisc = !priv->mac_dev->promisc;
473 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
474 priv->mac_dev->promisc);
475 if (err < 0)
476 netif_err(priv, drv, net_dev,
477 "mac_dev->set_promisc() = %d\n",
478 err);
479 }
480
481 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
482 priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
483 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
484 priv->mac_dev->allmulti);
485 if (err < 0)
486 netif_err(priv, drv, net_dev,
487 "mac_dev->set_allmulti() = %d\n",
488 err);
489 }
490
491 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
492 if (err < 0)
493 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
494 err);
495 }
496
dpaa_bpid2pool(int bpid)497 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
498 {
499 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
500 return NULL;
501
502 return dpaa_bp_array[bpid];
503 }
504
505 /* checks if this bpool is already allocated */
dpaa_bpid2pool_use(int bpid)506 static bool dpaa_bpid2pool_use(int bpid)
507 {
508 if (dpaa_bpid2pool(bpid)) {
509 refcount_inc(&dpaa_bp_array[bpid]->refs);
510 return true;
511 }
512
513 return false;
514 }
515
516 /* called only once per bpid by dpaa_bp_alloc_pool() */
dpaa_bpid2pool_map(int bpid,struct dpaa_bp * dpaa_bp)517 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
518 {
519 dpaa_bp_array[bpid] = dpaa_bp;
520 refcount_set(&dpaa_bp->refs, 1);
521 }
522
dpaa_bp_alloc_pool(struct dpaa_bp * dpaa_bp)523 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
524 {
525 int err;
526
527 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
528 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
529 __func__);
530 return -EINVAL;
531 }
532
533 /* If the pool is already specified, we only create one per bpid */
534 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
535 dpaa_bpid2pool_use(dpaa_bp->bpid))
536 return 0;
537
538 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
539 dpaa_bp->pool = bman_new_pool();
540 if (!dpaa_bp->pool) {
541 pr_err("%s: bman_new_pool() failed\n",
542 __func__);
543 return -ENODEV;
544 }
545
546 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
547 }
548
549 if (dpaa_bp->seed_cb) {
550 err = dpaa_bp->seed_cb(dpaa_bp);
551 if (err)
552 goto pool_seed_failed;
553 }
554
555 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
556
557 return 0;
558
559 pool_seed_failed:
560 pr_err("%s: pool seeding failed\n", __func__);
561 bman_free_pool(dpaa_bp->pool);
562
563 return err;
564 }
565
566 /* remove and free all the buffers from the given buffer pool */
dpaa_bp_drain(struct dpaa_bp * bp)567 static void dpaa_bp_drain(struct dpaa_bp *bp)
568 {
569 u8 num = 8;
570 int ret;
571
572 do {
573 struct bm_buffer bmb[8];
574 int i;
575
576 ret = bman_acquire(bp->pool, bmb, num);
577 if (ret < 0) {
578 if (num == 8) {
579 /* we have less than 8 buffers left;
580 * drain them one by one
581 */
582 num = 1;
583 ret = 1;
584 continue;
585 } else {
586 /* Pool is fully drained */
587 break;
588 }
589 }
590
591 if (bp->free_buf_cb)
592 for (i = 0; i < num; i++)
593 bp->free_buf_cb(bp, &bmb[i]);
594 } while (ret > 0);
595 }
596
dpaa_bp_free(struct dpaa_bp * dpaa_bp)597 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
598 {
599 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
600
601 /* the mapping between bpid and dpaa_bp is done very late in the
602 * allocation procedure; if something failed before the mapping, the bp
603 * was not configured, therefore we don't need the below instructions
604 */
605 if (!bp)
606 return;
607
608 if (!refcount_dec_and_test(&bp->refs))
609 return;
610
611 if (bp->free_buf_cb)
612 dpaa_bp_drain(bp);
613
614 dpaa_bp_array[bp->bpid] = NULL;
615 bman_free_pool(bp->pool);
616 }
617
dpaa_bps_free(struct dpaa_priv * priv)618 static void dpaa_bps_free(struct dpaa_priv *priv)
619 {
620 dpaa_bp_free(priv->dpaa_bp);
621 }
622
623 /* Use multiple WQs for FQ assignment:
624 * - Tx Confirmation queues go to WQ1.
625 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
626 * to be scheduled, in case there are many more FQs in WQ6).
627 * - Rx Default goes to WQ6.
628 * - Tx queues go to different WQs depending on their priority. Equal
629 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
630 * WQ0 (highest priority).
631 * This ensures that Tx-confirmed buffers are timely released. In particular,
632 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
633 * are greatly outnumbered by other FQs in the system, while
634 * dequeue scheduling is round-robin.
635 */
dpaa_assign_wq(struct dpaa_fq * fq,int idx)636 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
637 {
638 switch (fq->fq_type) {
639 case FQ_TYPE_TX_CONFIRM:
640 case FQ_TYPE_TX_CONF_MQ:
641 fq->wq = 1;
642 break;
643 case FQ_TYPE_RX_ERROR:
644 case FQ_TYPE_TX_ERROR:
645 fq->wq = 5;
646 break;
647 case FQ_TYPE_RX_DEFAULT:
648 case FQ_TYPE_RX_PCD:
649 fq->wq = 6;
650 break;
651 case FQ_TYPE_TX:
652 switch (idx / DPAA_TC_TXQ_NUM) {
653 case 0:
654 /* Low priority (best effort) */
655 fq->wq = 6;
656 break;
657 case 1:
658 /* Medium priority */
659 fq->wq = 2;
660 break;
661 case 2:
662 /* High priority */
663 fq->wq = 1;
664 break;
665 case 3:
666 /* Very high priority */
667 fq->wq = 0;
668 break;
669 default:
670 WARN(1, "Too many TX FQs: more than %d!\n",
671 DPAA_ETH_TXQ_NUM);
672 }
673 break;
674 default:
675 WARN(1, "Invalid FQ type %d for FQID %d!\n",
676 fq->fq_type, fq->fqid);
677 }
678 }
679
dpaa_fq_alloc(struct device * dev,u32 start,u32 count,struct list_head * list,enum dpaa_fq_type fq_type)680 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
681 u32 start, u32 count,
682 struct list_head *list,
683 enum dpaa_fq_type fq_type)
684 {
685 struct dpaa_fq *dpaa_fq;
686 int i;
687
688 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
689 GFP_KERNEL);
690 if (!dpaa_fq)
691 return NULL;
692
693 for (i = 0; i < count; i++) {
694 dpaa_fq[i].fq_type = fq_type;
695 dpaa_fq[i].fqid = start ? start + i : 0;
696 list_add_tail(&dpaa_fq[i].list, list);
697 }
698
699 for (i = 0; i < count; i++)
700 dpaa_assign_wq(dpaa_fq + i, i);
701
702 return dpaa_fq;
703 }
704
dpaa_alloc_all_fqs(struct device * dev,struct list_head * list,struct fm_port_fqs * port_fqs)705 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
706 struct fm_port_fqs *port_fqs)
707 {
708 struct dpaa_fq *dpaa_fq;
709 u32 fq_base, fq_base_aligned, i;
710
711 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
712 if (!dpaa_fq)
713 goto fq_alloc_failed;
714
715 port_fqs->rx_errq = &dpaa_fq[0];
716
717 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
718 if (!dpaa_fq)
719 goto fq_alloc_failed;
720
721 port_fqs->rx_defq = &dpaa_fq[0];
722
723 /* the PCD FQIDs range needs to be aligned for correct operation */
724 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
725 goto fq_alloc_failed;
726
727 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
728
729 for (i = fq_base; i < fq_base_aligned; i++)
730 qman_release_fqid(i);
731
732 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
733 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
734 qman_release_fqid(i);
735
736 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
737 list, FQ_TYPE_RX_PCD);
738 if (!dpaa_fq)
739 goto fq_alloc_failed;
740
741 port_fqs->rx_pcdq = &dpaa_fq[0];
742
743 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
744 goto fq_alloc_failed;
745
746 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
747 if (!dpaa_fq)
748 goto fq_alloc_failed;
749
750 port_fqs->tx_errq = &dpaa_fq[0];
751
752 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
753 if (!dpaa_fq)
754 goto fq_alloc_failed;
755
756 port_fqs->tx_defq = &dpaa_fq[0];
757
758 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
759 goto fq_alloc_failed;
760
761 return 0;
762
763 fq_alloc_failed:
764 dev_err(dev, "dpaa_fq_alloc() failed\n");
765 return -ENOMEM;
766 }
767
768 static u32 rx_pool_channel;
769 static DEFINE_SPINLOCK(rx_pool_channel_init);
770
dpaa_get_channel(void)771 static int dpaa_get_channel(void)
772 {
773 spin_lock(&rx_pool_channel_init);
774 if (!rx_pool_channel) {
775 u32 pool;
776 int ret;
777
778 ret = qman_alloc_pool(&pool);
779
780 if (!ret)
781 rx_pool_channel = pool;
782 }
783 spin_unlock(&rx_pool_channel_init);
784 if (!rx_pool_channel)
785 return -ENOMEM;
786 return rx_pool_channel;
787 }
788
dpaa_release_channel(void)789 static void dpaa_release_channel(void)
790 {
791 qman_release_pool(rx_pool_channel);
792 }
793
dpaa_eth_add_channel(u16 channel,struct device * dev)794 static void dpaa_eth_add_channel(u16 channel, struct device *dev)
795 {
796 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
797 const cpumask_t *cpus = qman_affine_cpus();
798 struct qman_portal *portal;
799 int cpu;
800
801 for_each_cpu_and(cpu, cpus, cpu_online_mask) {
802 portal = qman_get_affine_portal(cpu);
803 qman_p_static_dequeue_add(portal, pool);
804 qman_start_using_portal(portal, dev);
805 }
806 }
807
808 /* Congestion group state change notification callback.
809 * Stops the device's egress queues while they are congested and
810 * wakes them upon exiting congested state.
811 * Also updates some CGR-related stats.
812 */
dpaa_eth_cgscn(struct qman_portal * qm,struct qman_cgr * cgr,int congested)813 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
814 int congested)
815 {
816 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
817 struct dpaa_priv, cgr_data.cgr);
818
819 if (congested) {
820 priv->cgr_data.congestion_start_jiffies = jiffies;
821 netif_tx_stop_all_queues(priv->net_dev);
822 priv->cgr_data.cgr_congested_count++;
823 } else {
824 priv->cgr_data.congested_jiffies +=
825 (jiffies - priv->cgr_data.congestion_start_jiffies);
826 netif_tx_wake_all_queues(priv->net_dev);
827 }
828 }
829
dpaa_eth_cgr_init(struct dpaa_priv * priv)830 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
831 {
832 struct qm_mcc_initcgr initcgr;
833 u32 cs_th;
834 int err;
835
836 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
837 if (err < 0) {
838 if (netif_msg_drv(priv))
839 pr_err("%s: Error %d allocating CGR ID\n",
840 __func__, err);
841 goto out_error;
842 }
843 priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
844
845 /* Enable Congestion State Change Notifications and CS taildrop */
846 memset(&initcgr, 0, sizeof(initcgr));
847 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
848 initcgr.cgr.cscn_en = QM_CGR_EN;
849
850 /* Set different thresholds based on the configured MAC speed.
851 * This may turn suboptimal if the MAC is reconfigured at another
852 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up
853 * callback.
854 */
855 if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD)
856 cs_th = DPAA_CS_THRESHOLD_10G;
857 else
858 cs_th = DPAA_CS_THRESHOLD_1G;
859 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
860
861 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
862 initcgr.cgr.cstd_en = QM_CGR_EN;
863
864 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
865 &initcgr);
866 if (err < 0) {
867 if (netif_msg_drv(priv))
868 pr_err("%s: Error %d creating CGR with ID %d\n",
869 __func__, err, priv->cgr_data.cgr.cgrid);
870 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
871 goto out_error;
872 }
873 if (netif_msg_drv(priv))
874 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
875 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
876 priv->cgr_data.cgr.chan);
877
878 out_error:
879 return err;
880 }
881
dpaa_eth_cgr_set_speed(struct mac_device * mac_dev,int speed)882 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed)
883 {
884 struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev);
885 struct dpaa_priv *priv = netdev_priv(net_dev);
886 struct qm_mcc_initcgr opts = { };
887 u32 cs_th;
888 int err;
889
890 opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
891 switch (speed) {
892 case SPEED_10000:
893 cs_th = DPAA_CS_THRESHOLD_10G;
894 break;
895 case SPEED_1000:
896 default:
897 cs_th = DPAA_CS_THRESHOLD_1G;
898 break;
899 }
900 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1);
901
902 err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts);
903 if (err)
904 netdev_err(net_dev, "could not update speed: %d\n", err);
905 }
906
dpaa_setup_ingress(const struct dpaa_priv * priv,struct dpaa_fq * fq,const struct qman_fq * template)907 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
908 struct dpaa_fq *fq,
909 const struct qman_fq *template)
910 {
911 fq->fq_base = *template;
912 fq->net_dev = priv->net_dev;
913
914 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
915 fq->channel = priv->channel;
916 }
917
dpaa_setup_egress(const struct dpaa_priv * priv,struct dpaa_fq * fq,struct fman_port * port,const struct qman_fq * template)918 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
919 struct dpaa_fq *fq,
920 struct fman_port *port,
921 const struct qman_fq *template)
922 {
923 fq->fq_base = *template;
924 fq->net_dev = priv->net_dev;
925
926 if (port) {
927 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
928 fq->channel = (u16)fman_port_get_qman_channel_id(port);
929 } else {
930 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
931 }
932 }
933
dpaa_fq_setup(struct dpaa_priv * priv,const struct dpaa_fq_cbs * fq_cbs,struct fman_port * tx_port)934 static int dpaa_fq_setup(struct dpaa_priv *priv,
935 const struct dpaa_fq_cbs *fq_cbs,
936 struct fman_port *tx_port)
937 {
938 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
939 const cpumask_t *affine_cpus = qman_affine_cpus();
940 struct dpaa_fq *fq;
941 u16 *channels;
942
943 channels = kcalloc(num_possible_cpus(), sizeof(u16), GFP_KERNEL);
944 if (!channels)
945 return -ENOMEM;
946
947 for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
948 channels[num_portals++] = qman_affine_channel(cpu);
949
950 if (num_portals == 0)
951 dev_err(priv->net_dev->dev.parent,
952 "No Qman software (affine) channels found\n");
953
954 /* Initialize each FQ in the list */
955 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
956 switch (fq->fq_type) {
957 case FQ_TYPE_RX_DEFAULT:
958 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
959 break;
960 case FQ_TYPE_RX_ERROR:
961 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
962 break;
963 case FQ_TYPE_RX_PCD:
964 if (!num_portals)
965 continue;
966 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
967 fq->channel = channels[portal_cnt++ % num_portals];
968 break;
969 case FQ_TYPE_TX:
970 dpaa_setup_egress(priv, fq, tx_port,
971 &fq_cbs->egress_ern);
972 /* If we have more Tx queues than the number of cores,
973 * just ignore the extra ones.
974 */
975 if (egress_cnt < DPAA_ETH_TXQ_NUM)
976 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
977 break;
978 case FQ_TYPE_TX_CONF_MQ:
979 priv->conf_fqs[conf_cnt++] = &fq->fq_base;
980 fallthrough;
981 case FQ_TYPE_TX_CONFIRM:
982 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
983 break;
984 case FQ_TYPE_TX_ERROR:
985 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
986 break;
987 default:
988 dev_warn(priv->net_dev->dev.parent,
989 "Unknown FQ type detected!\n");
990 break;
991 }
992 }
993
994 /* Make sure all CPUs receive a corresponding Tx queue. */
995 while (egress_cnt < DPAA_ETH_TXQ_NUM) {
996 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
997 if (fq->fq_type != FQ_TYPE_TX)
998 continue;
999 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
1000 if (egress_cnt == DPAA_ETH_TXQ_NUM)
1001 break;
1002 }
1003 }
1004
1005 kfree(channels);
1006
1007 return 0;
1008 }
1009
dpaa_tx_fq_to_id(const struct dpaa_priv * priv,struct qman_fq * tx_fq)1010 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
1011 struct qman_fq *tx_fq)
1012 {
1013 int i;
1014
1015 for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
1016 if (priv->egress_fqs[i] == tx_fq)
1017 return i;
1018
1019 return -EINVAL;
1020 }
1021
dpaa_fq_init(struct dpaa_fq * dpaa_fq,bool td_enable)1022 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
1023 {
1024 const struct dpaa_priv *priv;
1025 struct qman_fq *confq = NULL;
1026 struct qm_mcc_initfq initfq;
1027 struct device *dev;
1028 struct qman_fq *fq;
1029 int queue_id;
1030 int err;
1031
1032 priv = netdev_priv(dpaa_fq->net_dev);
1033 dev = dpaa_fq->net_dev->dev.parent;
1034
1035 if (dpaa_fq->fqid == 0)
1036 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
1037
1038 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
1039
1040 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
1041 if (err) {
1042 dev_err(dev, "qman_create_fq() failed\n");
1043 return err;
1044 }
1045 fq = &dpaa_fq->fq_base;
1046
1047 if (dpaa_fq->init) {
1048 memset(&initfq, 0, sizeof(initfq));
1049
1050 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
1051 /* Note: we may get to keep an empty FQ in cache */
1052 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1053
1054 /* Try to reduce the number of portal interrupts for
1055 * Tx Confirmation FQs.
1056 */
1057 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1058 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1059
1060 /* FQ placement */
1061 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1062
1063 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1064
1065 /* Put all egress queues in a congestion group of their own.
1066 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1067 * rather than Tx - but they nonetheless account for the
1068 * memory footprint on behalf of egress traffic. We therefore
1069 * place them in the netdev's CGR, along with the Tx FQs.
1070 */
1071 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1072 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1073 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1074 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1075 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1076 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1077 /* Set a fixed overhead accounting, in an attempt to
1078 * reduce the impact of fixed-size skb shells and the
1079 * driver's needed headroom on system memory. This is
1080 * especially the case when the egress traffic is
1081 * composed of small datagrams.
1082 * Unfortunately, QMan's OAL value is capped to an
1083 * insufficient value, but even that is better than
1084 * no overhead accounting at all.
1085 */
1086 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1087 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1088 qm_fqd_set_oal(&initfq.fqd,
1089 min(sizeof(struct sk_buff) +
1090 priv->tx_headroom,
1091 (size_t)FSL_QMAN_MAX_OAL));
1092 }
1093
1094 if (td_enable) {
1095 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1096 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1097 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1098 }
1099
1100 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1101 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1102 if (queue_id >= 0)
1103 confq = priv->conf_fqs[queue_id];
1104 if (confq) {
1105 initfq.we_mask |=
1106 cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1107 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1108 * A2V=1 (contextA A2 field is valid)
1109 * A0V=1 (contextA A0 field is valid)
1110 * B0V=1 (contextB field is valid)
1111 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1112 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1113 */
1114 qm_fqd_context_a_set64(&initfq.fqd,
1115 0x1e00000080000000ULL);
1116 }
1117 }
1118
1119 /* Put all the ingress queues in our "ingress CGR". */
1120 if (priv->use_ingress_cgr &&
1121 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1122 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1123 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1124 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1125 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1126 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1127 /* Set a fixed overhead accounting, just like for the
1128 * egress CGR.
1129 */
1130 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1131 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1132 qm_fqd_set_oal(&initfq.fqd,
1133 min(sizeof(struct sk_buff) +
1134 priv->tx_headroom,
1135 (size_t)FSL_QMAN_MAX_OAL));
1136 }
1137
1138 /* Initialization common to all ingress queues */
1139 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1140 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1141 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1142 QM_FQCTRL_CTXASTASHING);
1143 initfq.fqd.context_a.stashing.exclusive =
1144 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1145 QM_STASHING_EXCL_ANNOTATION;
1146 qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1147 DIV_ROUND_UP(sizeof(struct qman_fq),
1148 64));
1149 }
1150
1151 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1152 if (err < 0) {
1153 dev_err(dev, "qman_init_fq(%u) = %d\n",
1154 qman_fq_fqid(fq), err);
1155 qman_destroy_fq(fq);
1156 return err;
1157 }
1158 }
1159
1160 dpaa_fq->fqid = qman_fq_fqid(fq);
1161
1162 if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1163 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) {
1164 err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev,
1165 dpaa_fq->fqid, 0);
1166 if (err) {
1167 dev_err(dev, "xdp_rxq_info_reg() = %d\n", err);
1168 return err;
1169 }
1170
1171 err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq,
1172 MEM_TYPE_PAGE_ORDER0, NULL);
1173 if (err) {
1174 dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n",
1175 err);
1176 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1177 return err;
1178 }
1179 }
1180
1181 return 0;
1182 }
1183
dpaa_fq_free_entry(struct device * dev,struct qman_fq * fq)1184 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1185 {
1186 const struct dpaa_priv *priv;
1187 struct dpaa_fq *dpaa_fq;
1188 int err, error;
1189
1190 err = 0;
1191
1192 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1193 priv = netdev_priv(dpaa_fq->net_dev);
1194
1195 if (dpaa_fq->init) {
1196 err = qman_retire_fq(fq, NULL);
1197 if (err < 0 && netif_msg_drv(priv))
1198 dev_err(dev, "qman_retire_fq(%u) = %d\n",
1199 qman_fq_fqid(fq), err);
1200
1201 error = qman_oos_fq(fq);
1202 if (error < 0 && netif_msg_drv(priv)) {
1203 dev_err(dev, "qman_oos_fq(%u) = %d\n",
1204 qman_fq_fqid(fq), error);
1205 if (err >= 0)
1206 err = error;
1207 }
1208 }
1209
1210 if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1211 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) &&
1212 xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq))
1213 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1214
1215 qman_destroy_fq(fq);
1216 list_del(&dpaa_fq->list);
1217
1218 return err;
1219 }
1220
dpaa_fq_free(struct device * dev,struct list_head * list)1221 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1222 {
1223 struct dpaa_fq *dpaa_fq, *tmp;
1224 int err, error;
1225
1226 err = 0;
1227 list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1228 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1229 if (error < 0 && err >= 0)
1230 err = error;
1231 }
1232
1233 return err;
1234 }
1235
dpaa_eth_init_tx_port(struct fman_port * port,struct dpaa_fq * errq,struct dpaa_fq * defq,struct dpaa_buffer_layout * buf_layout)1236 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1237 struct dpaa_fq *defq,
1238 struct dpaa_buffer_layout *buf_layout)
1239 {
1240 struct fman_buffer_prefix_content buf_prefix_content;
1241 struct fman_port_params params;
1242 int err;
1243
1244 memset(¶ms, 0, sizeof(params));
1245 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1246
1247 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1248 buf_prefix_content.pass_prs_result = true;
1249 buf_prefix_content.pass_hash_result = true;
1250 buf_prefix_content.pass_time_stamp = true;
1251 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1252
1253 params.specific_params.non_rx_params.err_fqid = errq->fqid;
1254 params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1255
1256 err = fman_port_config(port, ¶ms);
1257 if (err) {
1258 pr_err("%s: fman_port_config failed\n", __func__);
1259 return err;
1260 }
1261
1262 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1263 if (err) {
1264 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1265 __func__);
1266 return err;
1267 }
1268
1269 err = fman_port_init(port);
1270 if (err)
1271 pr_err("%s: fm_port_init failed\n", __func__);
1272
1273 return err;
1274 }
1275
dpaa_eth_init_rx_port(struct fman_port * port,struct dpaa_bp * bp,struct dpaa_fq * errq,struct dpaa_fq * defq,struct dpaa_fq * pcdq,struct dpaa_buffer_layout * buf_layout)1276 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1277 struct dpaa_fq *errq,
1278 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1279 struct dpaa_buffer_layout *buf_layout)
1280 {
1281 struct fman_buffer_prefix_content buf_prefix_content;
1282 struct fman_port_rx_params *rx_p;
1283 struct fman_port_params params;
1284 int err;
1285
1286 memset(¶ms, 0, sizeof(params));
1287 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1288
1289 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1290 buf_prefix_content.pass_prs_result = true;
1291 buf_prefix_content.pass_hash_result = true;
1292 buf_prefix_content.pass_time_stamp = true;
1293 buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT;
1294
1295 rx_p = ¶ms.specific_params.rx_params;
1296 rx_p->err_fqid = errq->fqid;
1297 rx_p->dflt_fqid = defq->fqid;
1298 if (pcdq) {
1299 rx_p->pcd_base_fqid = pcdq->fqid;
1300 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1301 }
1302
1303 rx_p->ext_buf_pools.num_of_pools_used = 1;
1304 rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid;
1305 rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1306
1307 err = fman_port_config(port, ¶ms);
1308 if (err) {
1309 pr_err("%s: fman_port_config failed\n", __func__);
1310 return err;
1311 }
1312
1313 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1314 if (err) {
1315 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1316 __func__);
1317 return err;
1318 }
1319
1320 err = fman_port_init(port);
1321 if (err)
1322 pr_err("%s: fm_port_init failed\n", __func__);
1323
1324 return err;
1325 }
1326
dpaa_eth_init_ports(struct mac_device * mac_dev,struct dpaa_bp * bp,struct fm_port_fqs * port_fqs,struct dpaa_buffer_layout * buf_layout,struct device * dev)1327 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1328 struct dpaa_bp *bp,
1329 struct fm_port_fqs *port_fqs,
1330 struct dpaa_buffer_layout *buf_layout,
1331 struct device *dev)
1332 {
1333 struct fman_port *rxport = mac_dev->port[RX];
1334 struct fman_port *txport = mac_dev->port[TX];
1335 int err;
1336
1337 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1338 port_fqs->tx_defq, &buf_layout[TX]);
1339 if (err)
1340 return err;
1341
1342 err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1343 port_fqs->rx_defq, port_fqs->rx_pcdq,
1344 &buf_layout[RX]);
1345
1346 return err;
1347 }
1348
dpaa_bman_release(const struct dpaa_bp * dpaa_bp,struct bm_buffer * bmb,int cnt)1349 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1350 struct bm_buffer *bmb, int cnt)
1351 {
1352 int err;
1353
1354 err = bman_release(dpaa_bp->pool, bmb, cnt);
1355 /* Should never occur, address anyway to avoid leaking the buffers */
1356 if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1357 while (cnt-- > 0)
1358 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1359
1360 return cnt;
1361 }
1362
dpaa_release_sgt_members(struct qm_sg_entry * sgt)1363 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1364 {
1365 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1366 struct dpaa_bp *dpaa_bp;
1367 int i = 0, j;
1368
1369 memset(bmb, 0, sizeof(bmb));
1370
1371 do {
1372 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1373 if (!dpaa_bp)
1374 return;
1375
1376 j = 0;
1377 do {
1378 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1379
1380 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1381
1382 j++; i++;
1383 } while (j < ARRAY_SIZE(bmb) &&
1384 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1385 sgt[i - 1].bpid == sgt[i].bpid);
1386
1387 dpaa_bman_release(dpaa_bp, bmb, j);
1388 } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1389 }
1390
dpaa_fd_release(const struct net_device * net_dev,const struct qm_fd * fd)1391 static void dpaa_fd_release(const struct net_device *net_dev,
1392 const struct qm_fd *fd)
1393 {
1394 struct qm_sg_entry *sgt;
1395 struct dpaa_bp *dpaa_bp;
1396 struct bm_buffer bmb;
1397 dma_addr_t addr;
1398 void *vaddr;
1399
1400 bmb.data = 0;
1401 bm_buffer_set64(&bmb, qm_fd_addr(fd));
1402
1403 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1404 if (!dpaa_bp)
1405 return;
1406
1407 if (qm_fd_get_format(fd) == qm_fd_sg) {
1408 vaddr = phys_to_virt(qm_fd_addr(fd));
1409 sgt = vaddr + qm_fd_get_offset(fd);
1410
1411 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1412 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1413
1414 dpaa_release_sgt_members(sgt);
1415
1416 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1417 virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1418 DMA_FROM_DEVICE);
1419 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1420 netdev_err(net_dev, "DMA mapping failed\n");
1421 return;
1422 }
1423 bm_buffer_set64(&bmb, addr);
1424 }
1425
1426 dpaa_bman_release(dpaa_bp, &bmb, 1);
1427 }
1428
count_ern(struct dpaa_percpu_priv * percpu_priv,const union qm_mr_entry * msg)1429 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1430 const union qm_mr_entry *msg)
1431 {
1432 switch (msg->ern.rc & QM_MR_RC_MASK) {
1433 case QM_MR_RC_CGR_TAILDROP:
1434 percpu_priv->ern_cnt.cg_tdrop++;
1435 break;
1436 case QM_MR_RC_WRED:
1437 percpu_priv->ern_cnt.wred++;
1438 break;
1439 case QM_MR_RC_ERROR:
1440 percpu_priv->ern_cnt.err_cond++;
1441 break;
1442 case QM_MR_RC_ORPWINDOW_EARLY:
1443 percpu_priv->ern_cnt.early_window++;
1444 break;
1445 case QM_MR_RC_ORPWINDOW_LATE:
1446 percpu_priv->ern_cnt.late_window++;
1447 break;
1448 case QM_MR_RC_FQ_TAILDROP:
1449 percpu_priv->ern_cnt.fq_tdrop++;
1450 break;
1451 case QM_MR_RC_ORPWINDOW_RETIRED:
1452 percpu_priv->ern_cnt.fq_retired++;
1453 break;
1454 case QM_MR_RC_ORP_ZERO:
1455 percpu_priv->ern_cnt.orp_zero++;
1456 break;
1457 }
1458 }
1459
1460 /* Turn on HW checksum computation for this outgoing frame.
1461 * If the current protocol is not something we support in this regard
1462 * (or if the stack has already computed the SW checksum), we do nothing.
1463 *
1464 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1465 * otherwise.
1466 *
1467 * Note that this function may modify the fd->cmd field and the skb data buffer
1468 * (the Parse Results area).
1469 */
dpaa_enable_tx_csum(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd,void * parse_results)1470 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1471 struct sk_buff *skb,
1472 struct qm_fd *fd,
1473 void *parse_results)
1474 {
1475 struct fman_prs_result *parse_result;
1476 u16 ethertype = ntohs(skb->protocol);
1477 struct ipv6hdr *ipv6h = NULL;
1478 struct iphdr *iph;
1479 int retval = 0;
1480 u8 l4_proto;
1481
1482 if (skb->ip_summed != CHECKSUM_PARTIAL)
1483 return 0;
1484
1485 /* Note: L3 csum seems to be already computed in sw, but we can't choose
1486 * L4 alone from the FM configuration anyway.
1487 */
1488
1489 /* Fill in some fields of the Parse Results array, so the FMan
1490 * can find them as if they came from the FMan Parser.
1491 */
1492 parse_result = (struct fman_prs_result *)parse_results;
1493
1494 /* If we're dealing with VLAN, get the real Ethernet type */
1495 if (ethertype == ETH_P_8021Q)
1496 ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1497
1498 /* Fill in the relevant L3 parse result fields
1499 * and read the L4 protocol type
1500 */
1501 switch (ethertype) {
1502 case ETH_P_IP:
1503 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1504 iph = ip_hdr(skb);
1505 WARN_ON(!iph);
1506 l4_proto = iph->protocol;
1507 break;
1508 case ETH_P_IPV6:
1509 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1510 ipv6h = ipv6_hdr(skb);
1511 WARN_ON(!ipv6h);
1512 l4_proto = ipv6h->nexthdr;
1513 break;
1514 default:
1515 /* We shouldn't even be here */
1516 if (net_ratelimit())
1517 netif_alert(priv, tx_err, priv->net_dev,
1518 "Can't compute HW csum for L3 proto 0x%x\n",
1519 ntohs(skb->protocol));
1520 retval = -EIO;
1521 goto return_error;
1522 }
1523
1524 /* Fill in the relevant L4 parse result fields */
1525 switch (l4_proto) {
1526 case IPPROTO_UDP:
1527 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1528 break;
1529 case IPPROTO_TCP:
1530 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1531 break;
1532 default:
1533 if (net_ratelimit())
1534 netif_alert(priv, tx_err, priv->net_dev,
1535 "Can't compute HW csum for L4 proto 0x%x\n",
1536 l4_proto);
1537 retval = -EIO;
1538 goto return_error;
1539 }
1540
1541 /* At index 0 is IPOffset_1 as defined in the Parse Results */
1542 parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1543 parse_result->l4_off = (u8)skb_transport_offset(skb);
1544
1545 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1546 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1547
1548 /* On P1023 and similar platforms fd->cmd interpretation could
1549 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1550 * is not set so we do not need to check; in the future, if/when
1551 * using context_a we need to check this bit
1552 */
1553
1554 return_error:
1555 return retval;
1556 }
1557
dpaa_bp_add_8_bufs(const struct dpaa_bp * dpaa_bp)1558 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1559 {
1560 struct net_device *net_dev = dpaa_bp->priv->net_dev;
1561 struct bm_buffer bmb[8];
1562 dma_addr_t addr;
1563 struct page *p;
1564 u8 i;
1565
1566 for (i = 0; i < 8; i++) {
1567 p = dev_alloc_pages(0);
1568 if (unlikely(!p)) {
1569 netdev_err(net_dev, "dev_alloc_pages() failed\n");
1570 goto release_previous_buffs;
1571 }
1572
1573 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1574 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1575 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1576 addr))) {
1577 netdev_err(net_dev, "DMA map failed\n");
1578 goto release_previous_buffs;
1579 }
1580
1581 bmb[i].data = 0;
1582 bm_buffer_set64(&bmb[i], addr);
1583 }
1584
1585 release_bufs:
1586 return dpaa_bman_release(dpaa_bp, bmb, i);
1587
1588 release_previous_buffs:
1589 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1590
1591 bm_buffer_set64(&bmb[i], 0);
1592 /* Avoid releasing a completely null buffer; bman_release() requires
1593 * at least one buffer.
1594 */
1595 if (likely(i))
1596 goto release_bufs;
1597
1598 return 0;
1599 }
1600
dpaa_bp_seed(struct dpaa_bp * dpaa_bp)1601 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1602 {
1603 int i;
1604
1605 /* Give each CPU an allotment of "config_count" buffers */
1606 for_each_possible_cpu(i) {
1607 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1608 int j;
1609
1610 /* Although we access another CPU's counters here
1611 * we do it at boot time so it is safe
1612 */
1613 for (j = 0; j < dpaa_bp->config_count; j += 8)
1614 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1615 }
1616 return 0;
1617 }
1618
1619 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1620 * REFILL_THRESHOLD.
1621 */
dpaa_eth_refill_bpool(struct dpaa_bp * dpaa_bp,int * countptr)1622 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1623 {
1624 int count = *countptr;
1625 int new_bufs;
1626
1627 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1628 do {
1629 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1630 if (unlikely(!new_bufs)) {
1631 /* Avoid looping forever if we've temporarily
1632 * run out of memory. We'll try again at the
1633 * next NAPI cycle.
1634 */
1635 break;
1636 }
1637 count += new_bufs;
1638 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1639
1640 *countptr = count;
1641 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1642 return -ENOMEM;
1643 }
1644
1645 return 0;
1646 }
1647
dpaa_eth_refill_bpools(struct dpaa_priv * priv)1648 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1649 {
1650 struct dpaa_bp *dpaa_bp;
1651 int *countptr;
1652
1653 dpaa_bp = priv->dpaa_bp;
1654 if (!dpaa_bp)
1655 return -EINVAL;
1656 countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1657
1658 return dpaa_eth_refill_bpool(dpaa_bp, countptr);
1659 }
1660
1661 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1662 * either contiguous frames or scatter/gather ones.
1663 * Skb freeing is not handled here.
1664 *
1665 * This function may be called on error paths in the Tx function, so guard
1666 * against cases when not all fd relevant fields were filled in. To avoid
1667 * reading the invalid transmission timestamp for the error paths set ts to
1668 * false.
1669 *
1670 * Return the skb backpointer, since for S/G frames the buffer containing it
1671 * gets freed here.
1672 *
1673 * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer
1674 * and return NULL in this case.
1675 */
dpaa_cleanup_tx_fd(const struct dpaa_priv * priv,const struct qm_fd * fd,bool ts)1676 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1677 const struct qm_fd *fd, bool ts)
1678 {
1679 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1680 struct device *dev = priv->net_dev->dev.parent;
1681 struct skb_shared_hwtstamps shhwtstamps;
1682 dma_addr_t addr = qm_fd_addr(fd);
1683 void *vaddr = phys_to_virt(addr);
1684 const struct qm_sg_entry *sgt;
1685 struct dpaa_eth_swbp *swbp;
1686 struct sk_buff *skb;
1687 u64 ns;
1688 int i;
1689
1690 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1691 dma_unmap_page(priv->tx_dma_dev, addr,
1692 qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1693 dma_dir);
1694
1695 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1696 * it's from lowmem.
1697 */
1698 sgt = vaddr + qm_fd_get_offset(fd);
1699
1700 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1701 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1702 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1703
1704 /* remaining pages were mapped with skb_frag_dma_map() */
1705 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1706 !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1707 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1708
1709 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1710 qm_sg_entry_get_len(&sgt[i]), dma_dir);
1711 }
1712 } else {
1713 dma_unmap_single(priv->tx_dma_dev, addr,
1714 qm_fd_get_offset(fd) + qm_fd_get_length(fd),
1715 dma_dir);
1716 }
1717
1718 swbp = (struct dpaa_eth_swbp *)vaddr;
1719 skb = swbp->skb;
1720
1721 /* No skb backpointer is set when running XDP. An xdp_frame
1722 * backpointer is saved instead.
1723 */
1724 if (!skb) {
1725 xdp_return_frame(swbp->xdpf);
1726 return NULL;
1727 }
1728
1729 /* DMA unmapping is required before accessing the HW provided info */
1730 if (ts && priv->tx_tstamp &&
1731 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1732 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1733
1734 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1735 &ns)) {
1736 shhwtstamps.hwtstamp = ns_to_ktime(ns);
1737 skb_tstamp_tx(skb, &shhwtstamps);
1738 } else {
1739 dev_warn(dev, "fman_port_get_tstamp failed!\n");
1740 }
1741 }
1742
1743 if (qm_fd_get_format(fd) == qm_fd_sg)
1744 /* Free the page that we allocated on Tx for the SGT */
1745 free_pages((unsigned long)vaddr, 0);
1746
1747 return skb;
1748 }
1749
rx_csum_offload(const struct dpaa_priv * priv,const struct qm_fd * fd)1750 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1751 {
1752 /* The parser has run and performed L4 checksum validation.
1753 * We know there were no parser errors (and implicitly no
1754 * L4 csum error), otherwise we wouldn't be here.
1755 */
1756 if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1757 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1758 return CHECKSUM_UNNECESSARY;
1759
1760 /* We're here because either the parser didn't run or the L4 checksum
1761 * was not verified. This may include the case of a UDP frame with
1762 * checksum zero or an L4 proto other than TCP/UDP
1763 */
1764 return CHECKSUM_NONE;
1765 }
1766
1767 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a)))
1768
1769 /* Build a linear skb around the received buffer.
1770 * We are guaranteed there is enough room at the end of the data buffer to
1771 * accommodate the shared info area of the skb.
1772 */
contig_fd_to_skb(const struct dpaa_priv * priv,const struct qm_fd * fd)1773 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1774 const struct qm_fd *fd)
1775 {
1776 ssize_t fd_off = qm_fd_get_offset(fd);
1777 dma_addr_t addr = qm_fd_addr(fd);
1778 struct dpaa_bp *dpaa_bp;
1779 struct sk_buff *skb;
1780 void *vaddr;
1781
1782 vaddr = phys_to_virt(addr);
1783 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1784
1785 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1786 if (!dpaa_bp)
1787 goto free_buffer;
1788
1789 skb = build_skb(vaddr, dpaa_bp->size +
1790 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1791 if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1792 goto free_buffer;
1793 skb_reserve(skb, fd_off);
1794 skb_put(skb, qm_fd_get_length(fd));
1795
1796 skb->ip_summed = rx_csum_offload(priv, fd);
1797
1798 return skb;
1799
1800 free_buffer:
1801 free_pages((unsigned long)vaddr, 0);
1802 return NULL;
1803 }
1804
1805 /* Build an skb with the data of the first S/G entry in the linear portion and
1806 * the rest of the frame as skb fragments.
1807 *
1808 * The page fragment holding the S/G Table is recycled here.
1809 */
sg_fd_to_skb(const struct dpaa_priv * priv,const struct qm_fd * fd)1810 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1811 const struct qm_fd *fd)
1812 {
1813 ssize_t fd_off = qm_fd_get_offset(fd);
1814 dma_addr_t addr = qm_fd_addr(fd);
1815 const struct qm_sg_entry *sgt;
1816 struct page *page, *head_page;
1817 struct dpaa_bp *dpaa_bp;
1818 void *vaddr, *sg_vaddr;
1819 int frag_off, frag_len;
1820 struct sk_buff *skb;
1821 dma_addr_t sg_addr;
1822 int page_offset;
1823 unsigned int sz;
1824 int *count_ptr;
1825 int i, j;
1826
1827 vaddr = phys_to_virt(addr);
1828 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1829
1830 /* Iterate through the SGT entries and add data buffers to the skb */
1831 sgt = vaddr + fd_off;
1832 skb = NULL;
1833 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1834 /* Extension bit is not supported */
1835 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1836
1837 sg_addr = qm_sg_addr(&sgt[i]);
1838 sg_vaddr = phys_to_virt(sg_addr);
1839 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES));
1840
1841 dma_unmap_page(priv->rx_dma_dev, sg_addr,
1842 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1843
1844 /* We may use multiple Rx pools */
1845 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1846 if (!dpaa_bp)
1847 goto free_buffers;
1848
1849 if (!skb) {
1850 sz = dpaa_bp->size +
1851 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1852 skb = build_skb(sg_vaddr, sz);
1853 if (WARN_ON(!skb))
1854 goto free_buffers;
1855
1856 skb->ip_summed = rx_csum_offload(priv, fd);
1857
1858 /* Make sure forwarded skbs will have enough space
1859 * on Tx, if extra headers are added.
1860 */
1861 WARN_ON(fd_off != priv->rx_headroom);
1862 skb_reserve(skb, fd_off);
1863 skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1864 } else {
1865 /* Not the first S/G entry; all data from buffer will
1866 * be added in an skb fragment; fragment index is offset
1867 * by one since first S/G entry was incorporated in the
1868 * linear part of the skb.
1869 *
1870 * Caution: 'page' may be a tail page.
1871 */
1872 page = virt_to_page(sg_vaddr);
1873 head_page = virt_to_head_page(sg_vaddr);
1874
1875 /* Compute offset in (possibly tail) page */
1876 page_offset = ((unsigned long)sg_vaddr &
1877 (PAGE_SIZE - 1)) +
1878 (page_address(page) - page_address(head_page));
1879 /* page_offset only refers to the beginning of sgt[i];
1880 * but the buffer itself may have an internal offset.
1881 */
1882 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1883 frag_len = qm_sg_entry_get_len(&sgt[i]);
1884 /* skb_add_rx_frag() does no checking on the page; if
1885 * we pass it a tail page, we'll end up with
1886 * bad page accounting and eventually with segafults.
1887 */
1888 skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1889 frag_len, dpaa_bp->size);
1890 }
1891
1892 /* Update the pool count for the current {cpu x bpool} */
1893 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1894 (*count_ptr)--;
1895
1896 if (qm_sg_entry_is_final(&sgt[i]))
1897 break;
1898 }
1899 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1900
1901 /* free the SG table buffer */
1902 free_pages((unsigned long)vaddr, 0);
1903
1904 return skb;
1905
1906 free_buffers:
1907 /* free all the SG entries */
1908 for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1909 sg_addr = qm_sg_addr(&sgt[j]);
1910 sg_vaddr = phys_to_virt(sg_addr);
1911 /* all pages 0..i were unmaped */
1912 if (j > i)
1913 dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1914 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1915 free_pages((unsigned long)sg_vaddr, 0);
1916 /* counters 0..i-1 were decremented */
1917 if (j >= i) {
1918 dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1919 if (dpaa_bp) {
1920 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1921 (*count_ptr)--;
1922 }
1923 }
1924
1925 if (qm_sg_entry_is_final(&sgt[j]))
1926 break;
1927 }
1928 /* free the SGT fragment */
1929 free_pages((unsigned long)vaddr, 0);
1930
1931 return NULL;
1932 }
1933
skb_to_contig_fd(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd,int * offset)1934 static int skb_to_contig_fd(struct dpaa_priv *priv,
1935 struct sk_buff *skb, struct qm_fd *fd,
1936 int *offset)
1937 {
1938 struct net_device *net_dev = priv->net_dev;
1939 enum dma_data_direction dma_dir;
1940 struct dpaa_eth_swbp *swbp;
1941 unsigned char *buff_start;
1942 dma_addr_t addr;
1943 int err;
1944
1945 /* We are guaranteed to have at least tx_headroom bytes
1946 * available, so just use that for offset.
1947 */
1948 fd->bpid = FSL_DPAA_BPID_INV;
1949 buff_start = skb->data - priv->tx_headroom;
1950 dma_dir = DMA_TO_DEVICE;
1951
1952 swbp = (struct dpaa_eth_swbp *)buff_start;
1953 swbp->skb = skb;
1954
1955 /* Enable L3/L4 hardware checksum computation.
1956 *
1957 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1958 * need to write into the skb.
1959 */
1960 err = dpaa_enable_tx_csum(priv, skb, fd,
1961 buff_start + DPAA_TX_PRIV_DATA_SIZE);
1962 if (unlikely(err < 0)) {
1963 if (net_ratelimit())
1964 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1965 err);
1966 return err;
1967 }
1968
1969 /* Fill in the rest of the FD fields */
1970 qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1971 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1972
1973 /* Map the entire buffer size that may be seen by FMan, but no more */
1974 addr = dma_map_single(priv->tx_dma_dev, buff_start,
1975 priv->tx_headroom + skb->len, dma_dir);
1976 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1977 if (net_ratelimit())
1978 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1979 return -EINVAL;
1980 }
1981 qm_fd_addr_set64(fd, addr);
1982
1983 return 0;
1984 }
1985
skb_to_sg_fd(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd)1986 static int skb_to_sg_fd(struct dpaa_priv *priv,
1987 struct sk_buff *skb, struct qm_fd *fd)
1988 {
1989 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1990 const int nr_frags = skb_shinfo(skb)->nr_frags;
1991 struct net_device *net_dev = priv->net_dev;
1992 struct dpaa_eth_swbp *swbp;
1993 struct qm_sg_entry *sgt;
1994 void *buff_start;
1995 skb_frag_t *frag;
1996 dma_addr_t addr;
1997 size_t frag_len;
1998 struct page *p;
1999 int i, j, err;
2000
2001 /* get a page to store the SGTable */
2002 p = dev_alloc_pages(0);
2003 if (unlikely(!p)) {
2004 netdev_err(net_dev, "dev_alloc_pages() failed\n");
2005 return -ENOMEM;
2006 }
2007 buff_start = page_address(p);
2008
2009 /* Enable L3/L4 hardware checksum computation.
2010 *
2011 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
2012 * need to write into the skb.
2013 */
2014 err = dpaa_enable_tx_csum(priv, skb, fd,
2015 buff_start + DPAA_TX_PRIV_DATA_SIZE);
2016 if (unlikely(err < 0)) {
2017 if (net_ratelimit())
2018 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
2019 err);
2020 goto csum_failed;
2021 }
2022
2023 /* SGT[0] is used by the linear part */
2024 sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
2025 frag_len = skb_headlen(skb);
2026 qm_sg_entry_set_len(&sgt[0], frag_len);
2027 sgt[0].bpid = FSL_DPAA_BPID_INV;
2028 sgt[0].offset = 0;
2029 addr = dma_map_single(priv->tx_dma_dev, skb->data,
2030 skb_headlen(skb), dma_dir);
2031 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2032 netdev_err(priv->net_dev, "DMA mapping failed\n");
2033 err = -EINVAL;
2034 goto sg0_map_failed;
2035 }
2036 qm_sg_entry_set64(&sgt[0], addr);
2037
2038 /* populate the rest of SGT entries */
2039 for (i = 0; i < nr_frags; i++) {
2040 frag = &skb_shinfo(skb)->frags[i];
2041 frag_len = skb_frag_size(frag);
2042 WARN_ON(!skb_frag_page(frag));
2043 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
2044 frag_len, dma_dir);
2045 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2046 netdev_err(priv->net_dev, "DMA mapping failed\n");
2047 err = -EINVAL;
2048 goto sg_map_failed;
2049 }
2050
2051 qm_sg_entry_set_len(&sgt[i + 1], frag_len);
2052 sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
2053 sgt[i + 1].offset = 0;
2054
2055 /* keep the offset in the address */
2056 qm_sg_entry_set64(&sgt[i + 1], addr);
2057 }
2058
2059 /* Set the final bit in the last used entry of the SGT */
2060 qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
2061
2062 /* set fd offset to priv->tx_headroom */
2063 qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
2064
2065 /* DMA map the SGT page */
2066 swbp = (struct dpaa_eth_swbp *)buff_start;
2067 swbp->skb = skb;
2068
2069 addr = dma_map_page(priv->tx_dma_dev, p, 0,
2070 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
2071 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2072 netdev_err(priv->net_dev, "DMA mapping failed\n");
2073 err = -EINVAL;
2074 goto sgt_map_failed;
2075 }
2076
2077 fd->bpid = FSL_DPAA_BPID_INV;
2078 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2079 qm_fd_addr_set64(fd, addr);
2080
2081 return 0;
2082
2083 sgt_map_failed:
2084 sg_map_failed:
2085 for (j = 0; j < i; j++)
2086 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
2087 qm_sg_entry_get_len(&sgt[j]), dma_dir);
2088 sg0_map_failed:
2089 csum_failed:
2090 free_pages((unsigned long)buff_start, 0);
2091
2092 return err;
2093 }
2094
dpaa_xmit(struct dpaa_priv * priv,struct rtnl_link_stats64 * percpu_stats,int queue,struct qm_fd * fd)2095 static inline int dpaa_xmit(struct dpaa_priv *priv,
2096 struct rtnl_link_stats64 *percpu_stats,
2097 int queue,
2098 struct qm_fd *fd)
2099 {
2100 struct qman_fq *egress_fq;
2101 int err, i;
2102
2103 egress_fq = priv->egress_fqs[queue];
2104 if (fd->bpid == FSL_DPAA_BPID_INV)
2105 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2106
2107 /* Trace this Tx fd */
2108 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2109
2110 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2111 err = qman_enqueue(egress_fq, fd);
2112 if (err != -EBUSY)
2113 break;
2114 }
2115
2116 if (unlikely(err < 0)) {
2117 percpu_stats->tx_fifo_errors++;
2118 return err;
2119 }
2120
2121 percpu_stats->tx_packets++;
2122 percpu_stats->tx_bytes += qm_fd_get_length(fd);
2123
2124 return 0;
2125 }
2126
2127 #ifdef CONFIG_DPAA_ERRATUM_A050385
dpaa_a050385_wa_skb(struct net_device * net_dev,struct sk_buff ** s)2128 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s)
2129 {
2130 struct dpaa_priv *priv = netdev_priv(net_dev);
2131 struct sk_buff *new_skb, *skb = *s;
2132 unsigned char *start, i;
2133
2134 /* check linear buffer alignment */
2135 if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN))
2136 goto workaround;
2137
2138 /* linear buffers just need to have an aligned start */
2139 if (!skb_is_nonlinear(skb))
2140 return 0;
2141
2142 /* linear data size for nonlinear skbs needs to be aligned */
2143 if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN))
2144 goto workaround;
2145
2146 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2147 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2148
2149 /* all fragments need to have aligned start addresses */
2150 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN))
2151 goto workaround;
2152
2153 /* all but last fragment need to have aligned sizes */
2154 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) &&
2155 (i < skb_shinfo(skb)->nr_frags - 1))
2156 goto workaround;
2157 }
2158
2159 return 0;
2160
2161 workaround:
2162 /* copy all the skb content into a new linear buffer */
2163 new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 +
2164 priv->tx_headroom);
2165 if (!new_skb)
2166 return -ENOMEM;
2167
2168 /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */
2169 skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD);
2170
2171 /* Workaround for DPAA_A050385 requires data start to be aligned */
2172 start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN);
2173 if (start - new_skb->data)
2174 skb_reserve(new_skb, start - new_skb->data);
2175
2176 skb_put(new_skb, skb->len);
2177 skb_copy_bits(skb, 0, new_skb->data, skb->len);
2178 skb_copy_header(new_skb, skb);
2179 new_skb->dev = skb->dev;
2180
2181 /* Copy relevant timestamp info from the old skb to the new */
2182 if (priv->tx_tstamp) {
2183 skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags;
2184 skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps;
2185 skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey;
2186 if (skb->sk)
2187 skb_set_owner_w(new_skb, skb->sk);
2188 }
2189
2190 /* We move the headroom when we align it so we have to reset the
2191 * network and transport header offsets relative to the new data
2192 * pointer. The checksum offload relies on these offsets.
2193 */
2194 skb_set_network_header(new_skb, skb_network_offset(skb));
2195 skb_set_transport_header(new_skb, skb_transport_offset(skb));
2196
2197 dev_kfree_skb(skb);
2198 *s = new_skb;
2199
2200 return 0;
2201 }
2202
dpaa_a050385_wa_xdpf(struct dpaa_priv * priv,struct xdp_frame ** init_xdpf)2203 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv,
2204 struct xdp_frame **init_xdpf)
2205 {
2206 struct xdp_frame *new_xdpf, *xdpf = *init_xdpf;
2207 void *new_buff, *aligned_data;
2208 struct page *p;
2209 u32 data_shift;
2210 int headroom;
2211
2212 /* Check the data alignment and make sure the headroom is large
2213 * enough to store the xdpf backpointer. Use an aligned headroom
2214 * value.
2215 *
2216 * Due to alignment constraints, we give XDP access to the full 256
2217 * byte frame headroom. If the XDP program uses all of it, copy the
2218 * data to a new buffer and make room for storing the backpointer.
2219 */
2220 if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) &&
2221 xdpf->headroom >= priv->tx_headroom) {
2222 xdpf->headroom = priv->tx_headroom;
2223 return 0;
2224 }
2225
2226 /* Try to move the data inside the buffer just enough to align it and
2227 * store the xdpf backpointer. If the available headroom isn't large
2228 * enough, resort to allocating a new buffer and copying the data.
2229 */
2230 aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT);
2231 data_shift = xdpf->data - aligned_data;
2232
2233 /* The XDP frame's headroom needs to be large enough to accommodate
2234 * shifting the data as well as storing the xdpf backpointer.
2235 */
2236 if (xdpf->headroom >= data_shift + priv->tx_headroom) {
2237 memmove(aligned_data, xdpf->data, xdpf->len);
2238 xdpf->data = aligned_data;
2239 xdpf->headroom = priv->tx_headroom;
2240 return 0;
2241 }
2242
2243 /* The new xdp_frame is stored in the new buffer. Reserve enough space
2244 * in the headroom for storing it along with the driver's private
2245 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to
2246 * guarantee the data's alignment in the buffer.
2247 */
2248 headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom,
2249 DPAA_FD_DATA_ALIGNMENT);
2250
2251 /* Assure the extended headroom and data don't overflow the buffer,
2252 * while maintaining the mandatory tailroom.
2253 */
2254 if (headroom + xdpf->len > DPAA_BP_RAW_SIZE -
2255 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
2256 return -ENOMEM;
2257
2258 p = dev_alloc_pages(0);
2259 if (unlikely(!p))
2260 return -ENOMEM;
2261
2262 /* Copy the data to the new buffer at a properly aligned offset */
2263 new_buff = page_address(p);
2264 memcpy(new_buff + headroom, xdpf->data, xdpf->len);
2265
2266 /* Create an XDP frame around the new buffer in a similar fashion
2267 * to xdp_convert_buff_to_frame.
2268 */
2269 new_xdpf = new_buff;
2270 new_xdpf->data = new_buff + headroom;
2271 new_xdpf->len = xdpf->len;
2272 new_xdpf->headroom = priv->tx_headroom;
2273 new_xdpf->frame_sz = DPAA_BP_RAW_SIZE;
2274 new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0;
2275
2276 /* Release the initial buffer */
2277 xdp_return_frame_rx_napi(xdpf);
2278
2279 *init_xdpf = new_xdpf;
2280 return 0;
2281 }
2282 #endif
2283
2284 static netdev_tx_t
dpaa_start_xmit(struct sk_buff * skb,struct net_device * net_dev)2285 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2286 {
2287 const int queue_mapping = skb_get_queue_mapping(skb);
2288 struct rtnl_link_stats64 *percpu_stats;
2289 struct dpaa_percpu_priv *percpu_priv;
2290 struct netdev_queue *txq;
2291 struct dpaa_priv *priv;
2292 struct qm_fd fd;
2293 bool nonlinear;
2294 int offset = 0;
2295 int err = 0;
2296
2297 priv = netdev_priv(net_dev);
2298 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2299 percpu_stats = &percpu_priv->stats;
2300
2301 qm_fd_clear_fd(&fd);
2302
2303 /* Packet data is always read as 32-bit words, so zero out any part of
2304 * the skb which might be sent if we have to pad the packet
2305 */
2306 if (__skb_put_padto(skb, ETH_ZLEN, false))
2307 goto enomem;
2308
2309 nonlinear = skb_is_nonlinear(skb);
2310 if (!nonlinear) {
2311 /* We're going to store the skb backpointer at the beginning
2312 * of the data buffer, so we need a privately owned skb
2313 *
2314 * We've made sure skb is not shared in dev->priv_flags,
2315 * we need to verify the skb head is not cloned
2316 */
2317 if (skb_cow_head(skb, priv->tx_headroom))
2318 goto enomem;
2319
2320 WARN_ON(skb_is_nonlinear(skb));
2321 }
2322
2323 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2324 * make sure we don't feed FMan with more fragments than it supports.
2325 */
2326 if (unlikely(nonlinear &&
2327 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2328 /* If the egress skb contains more fragments than we support
2329 * we have no choice but to linearize it ourselves.
2330 */
2331 if (__skb_linearize(skb))
2332 goto enomem;
2333
2334 nonlinear = skb_is_nonlinear(skb);
2335 }
2336
2337 #ifdef CONFIG_DPAA_ERRATUM_A050385
2338 if (unlikely(fman_has_errata_a050385())) {
2339 if (dpaa_a050385_wa_skb(net_dev, &skb))
2340 goto enomem;
2341 nonlinear = skb_is_nonlinear(skb);
2342 }
2343 #endif
2344
2345 if (nonlinear) {
2346 /* Just create a S/G fd based on the skb */
2347 err = skb_to_sg_fd(priv, skb, &fd);
2348 percpu_priv->tx_frag_skbuffs++;
2349 } else {
2350 /* Create a contig FD from this skb */
2351 err = skb_to_contig_fd(priv, skb, &fd, &offset);
2352 }
2353 if (unlikely(err < 0))
2354 goto skb_to_fd_failed;
2355
2356 txq = netdev_get_tx_queue(net_dev, queue_mapping);
2357
2358 /* LLTX requires to do our own update of trans_start */
2359 txq_trans_cond_update(txq);
2360
2361 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2362 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2363 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2364 }
2365
2366 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2367 return NETDEV_TX_OK;
2368
2369 dpaa_cleanup_tx_fd(priv, &fd, false);
2370 skb_to_fd_failed:
2371 enomem:
2372 percpu_stats->tx_errors++;
2373 dev_kfree_skb(skb);
2374 return NETDEV_TX_OK;
2375 }
2376
dpaa_rx_error(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2377 static void dpaa_rx_error(struct net_device *net_dev,
2378 const struct dpaa_priv *priv,
2379 struct dpaa_percpu_priv *percpu_priv,
2380 const struct qm_fd *fd,
2381 u32 fqid)
2382 {
2383 if (net_ratelimit())
2384 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2385 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2386
2387 percpu_priv->stats.rx_errors++;
2388
2389 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2390 percpu_priv->rx_errors.dme++;
2391 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2392 percpu_priv->rx_errors.fpe++;
2393 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2394 percpu_priv->rx_errors.fse++;
2395 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2396 percpu_priv->rx_errors.phe++;
2397
2398 dpaa_fd_release(net_dev, fd);
2399 }
2400
dpaa_tx_error(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2401 static void dpaa_tx_error(struct net_device *net_dev,
2402 const struct dpaa_priv *priv,
2403 struct dpaa_percpu_priv *percpu_priv,
2404 const struct qm_fd *fd,
2405 u32 fqid)
2406 {
2407 struct sk_buff *skb;
2408
2409 if (net_ratelimit())
2410 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2411 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2412
2413 percpu_priv->stats.tx_errors++;
2414
2415 skb = dpaa_cleanup_tx_fd(priv, fd, false);
2416 dev_kfree_skb(skb);
2417 }
2418
dpaa_eth_poll(struct napi_struct * napi,int budget)2419 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2420 {
2421 struct dpaa_napi_portal *np =
2422 container_of(napi, struct dpaa_napi_portal, napi);
2423 int cleaned;
2424
2425 np->xdp_act = 0;
2426
2427 cleaned = qman_p_poll_dqrr(np->p, budget);
2428
2429 if (np->xdp_act & XDP_REDIRECT)
2430 xdp_do_flush();
2431
2432 if (cleaned < budget) {
2433 napi_complete_done(napi, cleaned);
2434 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2435 } else if (np->down) {
2436 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2437 }
2438
2439 return cleaned;
2440 }
2441
dpaa_tx_conf(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2442 static void dpaa_tx_conf(struct net_device *net_dev,
2443 const struct dpaa_priv *priv,
2444 struct dpaa_percpu_priv *percpu_priv,
2445 const struct qm_fd *fd,
2446 u32 fqid)
2447 {
2448 struct sk_buff *skb;
2449
2450 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2451 if (net_ratelimit())
2452 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2453 be32_to_cpu(fd->status) &
2454 FM_FD_STAT_TX_ERRORS);
2455
2456 percpu_priv->stats.tx_errors++;
2457 }
2458
2459 percpu_priv->tx_confirm++;
2460
2461 skb = dpaa_cleanup_tx_fd(priv, fd, true);
2462
2463 consume_skb(skb);
2464 }
2465
dpaa_eth_napi_schedule(struct dpaa_percpu_priv * percpu_priv,struct qman_portal * portal,bool sched_napi)2466 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2467 struct qman_portal *portal, bool sched_napi)
2468 {
2469 if (sched_napi) {
2470 /* Disable QMan IRQ and invoke NAPI */
2471 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2472
2473 percpu_priv->np.p = portal;
2474 napi_schedule(&percpu_priv->np.napi);
2475 percpu_priv->in_interrupt++;
2476 return 1;
2477 }
2478 return 0;
2479 }
2480
rx_error_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2481 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2482 struct qman_fq *fq,
2483 const struct qm_dqrr_entry *dq,
2484 bool sched_napi)
2485 {
2486 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2487 struct dpaa_percpu_priv *percpu_priv;
2488 struct net_device *net_dev;
2489 struct dpaa_bp *dpaa_bp;
2490 struct dpaa_priv *priv;
2491
2492 net_dev = dpaa_fq->net_dev;
2493 priv = netdev_priv(net_dev);
2494 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2495 if (!dpaa_bp)
2496 return qman_cb_dqrr_consume;
2497
2498 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2499
2500 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2501 return qman_cb_dqrr_stop;
2502
2503 dpaa_eth_refill_bpools(priv);
2504 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2505
2506 return qman_cb_dqrr_consume;
2507 }
2508
dpaa_xdp_xmit_frame(struct net_device * net_dev,struct xdp_frame * xdpf)2509 static int dpaa_xdp_xmit_frame(struct net_device *net_dev,
2510 struct xdp_frame *xdpf)
2511 {
2512 struct dpaa_priv *priv = netdev_priv(net_dev);
2513 struct rtnl_link_stats64 *percpu_stats;
2514 struct dpaa_percpu_priv *percpu_priv;
2515 struct dpaa_eth_swbp *swbp;
2516 struct netdev_queue *txq;
2517 void *buff_start;
2518 struct qm_fd fd;
2519 dma_addr_t addr;
2520 int err;
2521
2522 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2523 percpu_stats = &percpu_priv->stats;
2524
2525 #ifdef CONFIG_DPAA_ERRATUM_A050385
2526 if (unlikely(fman_has_errata_a050385())) {
2527 if (dpaa_a050385_wa_xdpf(priv, &xdpf)) {
2528 err = -ENOMEM;
2529 goto out_error;
2530 }
2531 }
2532 #endif
2533
2534 if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) {
2535 err = -EINVAL;
2536 goto out_error;
2537 }
2538
2539 buff_start = xdpf->data - xdpf->headroom;
2540
2541 /* Leave empty the skb backpointer at the start of the buffer.
2542 * Save the XDP frame for easy cleanup on confirmation.
2543 */
2544 swbp = (struct dpaa_eth_swbp *)buff_start;
2545 swbp->skb = NULL;
2546 swbp->xdpf = xdpf;
2547
2548 qm_fd_clear_fd(&fd);
2549 fd.bpid = FSL_DPAA_BPID_INV;
2550 fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2551 qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len);
2552
2553 addr = dma_map_single(priv->tx_dma_dev, buff_start,
2554 xdpf->headroom + xdpf->len,
2555 DMA_TO_DEVICE);
2556 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2557 err = -EINVAL;
2558 goto out_error;
2559 }
2560
2561 qm_fd_addr_set64(&fd, addr);
2562
2563 /* Bump the trans_start */
2564 txq = netdev_get_tx_queue(net_dev, smp_processor_id());
2565 txq_trans_cond_update(txq);
2566
2567 err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd);
2568 if (err) {
2569 dma_unmap_single(priv->tx_dma_dev, addr,
2570 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd),
2571 DMA_TO_DEVICE);
2572 goto out_error;
2573 }
2574
2575 return 0;
2576
2577 out_error:
2578 percpu_stats->tx_errors++;
2579 return err;
2580 }
2581
dpaa_run_xdp(struct dpaa_priv * priv,struct qm_fd * fd,void * vaddr,struct dpaa_fq * dpaa_fq,unsigned int * xdp_meta_len)2582 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr,
2583 struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len)
2584 {
2585 ssize_t fd_off = qm_fd_get_offset(fd);
2586 struct bpf_prog *xdp_prog;
2587 struct xdp_frame *xdpf;
2588 struct xdp_buff xdp;
2589 u32 xdp_act;
2590 int err;
2591
2592 xdp_prog = READ_ONCE(priv->xdp_prog);
2593 if (!xdp_prog)
2594 return XDP_PASS;
2595
2596 xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE,
2597 &dpaa_fq->xdp_rxq);
2598 xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM,
2599 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true);
2600
2601 /* We reserve a fixed headroom of 256 bytes under the erratum and we
2602 * offer it all to XDP programs to use. If no room is left for the
2603 * xdpf backpointer on TX, we will need to copy the data.
2604 * Disable metadata support since data realignments might be required
2605 * and the information can be lost.
2606 */
2607 #ifdef CONFIG_DPAA_ERRATUM_A050385
2608 if (unlikely(fman_has_errata_a050385())) {
2609 xdp_set_data_meta_invalid(&xdp);
2610 xdp.data_hard_start = vaddr;
2611 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2612 }
2613 #endif
2614
2615 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp);
2616
2617 /* Update the length and the offset of the FD */
2618 qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data);
2619
2620 switch (xdp_act) {
2621 case XDP_PASS:
2622 #ifdef CONFIG_DPAA_ERRATUM_A050385
2623 *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 :
2624 xdp.data - xdp.data_meta;
2625 #else
2626 *xdp_meta_len = xdp.data - xdp.data_meta;
2627 #endif
2628 break;
2629 case XDP_TX:
2630 /* We can access the full headroom when sending the frame
2631 * back out
2632 */
2633 xdp.data_hard_start = vaddr;
2634 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2635 xdpf = xdp_convert_buff_to_frame(&xdp);
2636 if (unlikely(!xdpf)) {
2637 free_pages((unsigned long)vaddr, 0);
2638 break;
2639 }
2640
2641 if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf))
2642 xdp_return_frame_rx_napi(xdpf);
2643
2644 break;
2645 case XDP_REDIRECT:
2646 /* Allow redirect to use the full headroom */
2647 xdp.data_hard_start = vaddr;
2648 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2649
2650 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog);
2651 if (err) {
2652 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2653 free_pages((unsigned long)vaddr, 0);
2654 }
2655 break;
2656 default:
2657 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act);
2658 fallthrough;
2659 case XDP_ABORTED:
2660 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2661 fallthrough;
2662 case XDP_DROP:
2663 /* Free the buffer */
2664 free_pages((unsigned long)vaddr, 0);
2665 break;
2666 }
2667
2668 return xdp_act;
2669 }
2670
rx_default_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2671 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2672 struct qman_fq *fq,
2673 const struct qm_dqrr_entry *dq,
2674 bool sched_napi)
2675 {
2676 bool ts_valid = false, hash_valid = false;
2677 struct skb_shared_hwtstamps *shhwtstamps;
2678 unsigned int skb_len, xdp_meta_len = 0;
2679 struct rtnl_link_stats64 *percpu_stats;
2680 struct dpaa_percpu_priv *percpu_priv;
2681 const struct qm_fd *fd = &dq->fd;
2682 dma_addr_t addr = qm_fd_addr(fd);
2683 struct dpaa_napi_portal *np;
2684 enum qm_fd_format fd_format;
2685 struct net_device *net_dev;
2686 u32 fd_status, hash_offset;
2687 struct qm_sg_entry *sgt;
2688 struct dpaa_bp *dpaa_bp;
2689 struct dpaa_fq *dpaa_fq;
2690 struct dpaa_priv *priv;
2691 struct sk_buff *skb;
2692 int *count_ptr;
2693 u32 xdp_act;
2694 void *vaddr;
2695 u32 hash;
2696 u64 ns;
2697
2698 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2699 fd_status = be32_to_cpu(fd->status);
2700 fd_format = qm_fd_get_format(fd);
2701 net_dev = dpaa_fq->net_dev;
2702 priv = netdev_priv(net_dev);
2703 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2704 if (!dpaa_bp)
2705 return qman_cb_dqrr_consume;
2706
2707 /* Trace the Rx fd */
2708 trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2709
2710 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2711 percpu_stats = &percpu_priv->stats;
2712 np = &percpu_priv->np;
2713
2714 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)))
2715 return qman_cb_dqrr_stop;
2716
2717 /* Make sure we didn't run out of buffers */
2718 if (unlikely(dpaa_eth_refill_bpools(priv))) {
2719 /* Unable to refill the buffer pool due to insufficient
2720 * system memory. Just release the frame back into the pool,
2721 * otherwise we'll soon end up with an empty buffer pool.
2722 */
2723 dpaa_fd_release(net_dev, &dq->fd);
2724 return qman_cb_dqrr_consume;
2725 }
2726
2727 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2728 if (net_ratelimit())
2729 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2730 fd_status & FM_FD_STAT_RX_ERRORS);
2731
2732 percpu_stats->rx_errors++;
2733 dpaa_fd_release(net_dev, fd);
2734 return qman_cb_dqrr_consume;
2735 }
2736
2737 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2738 DMA_FROM_DEVICE);
2739
2740 /* prefetch the first 64 bytes of the frame or the SGT start */
2741 vaddr = phys_to_virt(addr);
2742 prefetch(vaddr + qm_fd_get_offset(fd));
2743
2744 /* The only FD types that we may receive are contig and S/G */
2745 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2746
2747 /* Account for either the contig buffer or the SGT buffer (depending on
2748 * which case we were in) having been removed from the pool.
2749 */
2750 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2751 (*count_ptr)--;
2752
2753 /* Extract the timestamp stored in the headroom before running XDP */
2754 if (priv->rx_tstamp) {
2755 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2756 ts_valid = true;
2757 else
2758 WARN_ONCE(1, "fman_port_get_tstamp failed!\n");
2759 }
2760
2761 /* Extract the hash stored in the headroom before running XDP */
2762 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2763 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2764 &hash_offset)) {
2765 hash = be32_to_cpu(*(u32 *)(vaddr + hash_offset));
2766 hash_valid = true;
2767 }
2768
2769 if (likely(fd_format == qm_fd_contig)) {
2770 xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr,
2771 dpaa_fq, &xdp_meta_len);
2772 np->xdp_act |= xdp_act;
2773 if (xdp_act != XDP_PASS) {
2774 percpu_stats->rx_packets++;
2775 percpu_stats->rx_bytes += qm_fd_get_length(fd);
2776 return qman_cb_dqrr_consume;
2777 }
2778 skb = contig_fd_to_skb(priv, fd);
2779 } else {
2780 /* XDP doesn't support S/G frames. Return the fragments to the
2781 * buffer pool and release the SGT.
2782 */
2783 if (READ_ONCE(priv->xdp_prog)) {
2784 WARN_ONCE(1, "S/G frames not supported under XDP\n");
2785 sgt = vaddr + qm_fd_get_offset(fd);
2786 dpaa_release_sgt_members(sgt);
2787 free_pages((unsigned long)vaddr, 0);
2788 return qman_cb_dqrr_consume;
2789 }
2790 skb = sg_fd_to_skb(priv, fd);
2791 }
2792 if (!skb)
2793 return qman_cb_dqrr_consume;
2794
2795 if (xdp_meta_len)
2796 skb_metadata_set(skb, xdp_meta_len);
2797
2798 /* Set the previously extracted timestamp */
2799 if (ts_valid) {
2800 shhwtstamps = skb_hwtstamps(skb);
2801 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2802 shhwtstamps->hwtstamp = ns_to_ktime(ns);
2803 }
2804
2805 skb->protocol = eth_type_trans(skb, net_dev);
2806
2807 /* Set the previously extracted hash */
2808 if (hash_valid) {
2809 enum pkt_hash_types type;
2810
2811 /* if L4 exists, it was used in the hash generation */
2812 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2813 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2814 skb_set_hash(skb, hash, type);
2815 }
2816
2817 skb_len = skb->len;
2818
2819 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2820 percpu_stats->rx_dropped++;
2821 return qman_cb_dqrr_consume;
2822 }
2823
2824 percpu_stats->rx_packets++;
2825 percpu_stats->rx_bytes += skb_len;
2826
2827 return qman_cb_dqrr_consume;
2828 }
2829
conf_error_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2830 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2831 struct qman_fq *fq,
2832 const struct qm_dqrr_entry *dq,
2833 bool sched_napi)
2834 {
2835 struct dpaa_percpu_priv *percpu_priv;
2836 struct net_device *net_dev;
2837 struct dpaa_priv *priv;
2838
2839 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2840 priv = netdev_priv(net_dev);
2841
2842 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2843
2844 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2845 return qman_cb_dqrr_stop;
2846
2847 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2848
2849 return qman_cb_dqrr_consume;
2850 }
2851
conf_dflt_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2852 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2853 struct qman_fq *fq,
2854 const struct qm_dqrr_entry *dq,
2855 bool sched_napi)
2856 {
2857 struct dpaa_percpu_priv *percpu_priv;
2858 struct net_device *net_dev;
2859 struct dpaa_priv *priv;
2860
2861 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2862 priv = netdev_priv(net_dev);
2863
2864 /* Trace the fd */
2865 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2866
2867 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2868
2869 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2870 return qman_cb_dqrr_stop;
2871
2872 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2873
2874 return qman_cb_dqrr_consume;
2875 }
2876
egress_ern(struct qman_portal * portal,struct qman_fq * fq,const union qm_mr_entry * msg)2877 static void egress_ern(struct qman_portal *portal,
2878 struct qman_fq *fq,
2879 const union qm_mr_entry *msg)
2880 {
2881 const struct qm_fd *fd = &msg->ern.fd;
2882 struct dpaa_percpu_priv *percpu_priv;
2883 const struct dpaa_priv *priv;
2884 struct net_device *net_dev;
2885 struct sk_buff *skb;
2886
2887 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2888 priv = netdev_priv(net_dev);
2889 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2890
2891 percpu_priv->stats.tx_dropped++;
2892 percpu_priv->stats.tx_fifo_errors++;
2893 count_ern(percpu_priv, msg);
2894
2895 skb = dpaa_cleanup_tx_fd(priv, fd, false);
2896 dev_kfree_skb_any(skb);
2897 }
2898
2899 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2900 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2901 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2902 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2903 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2904 .egress_ern = { .cb = { .ern = egress_ern } }
2905 };
2906
dpaa_eth_napi_enable(struct dpaa_priv * priv)2907 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2908 {
2909 struct dpaa_percpu_priv *percpu_priv;
2910 int i;
2911
2912 for_each_online_cpu(i) {
2913 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2914
2915 percpu_priv->np.down = false;
2916 napi_enable(&percpu_priv->np.napi);
2917 }
2918 }
2919
dpaa_eth_napi_disable(struct dpaa_priv * priv)2920 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2921 {
2922 struct dpaa_percpu_priv *percpu_priv;
2923 int i;
2924
2925 for_each_online_cpu(i) {
2926 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2927
2928 percpu_priv->np.down = true;
2929 napi_disable(&percpu_priv->np.napi);
2930 }
2931 }
2932
dpaa_open(struct net_device * net_dev)2933 static int dpaa_open(struct net_device *net_dev)
2934 {
2935 struct mac_device *mac_dev;
2936 struct dpaa_priv *priv;
2937 int err, i;
2938
2939 priv = netdev_priv(net_dev);
2940 mac_dev = priv->mac_dev;
2941 dpaa_eth_napi_enable(priv);
2942
2943 err = phylink_of_phy_connect(mac_dev->phylink,
2944 mac_dev->dev->of_node, 0);
2945 if (err)
2946 goto phy_init_failed;
2947
2948 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2949 err = fman_port_enable(mac_dev->port[i]);
2950 if (err)
2951 goto mac_start_failed;
2952 }
2953
2954 err = priv->mac_dev->enable(mac_dev->fman_mac);
2955 if (err < 0) {
2956 netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err);
2957 goto mac_start_failed;
2958 }
2959 phylink_start(mac_dev->phylink);
2960
2961 netif_tx_start_all_queues(net_dev);
2962
2963 return 0;
2964
2965 mac_start_failed:
2966 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2967 fman_port_disable(mac_dev->port[i]);
2968 phylink_disconnect_phy(mac_dev->phylink);
2969
2970 phy_init_failed:
2971 dpaa_eth_napi_disable(priv);
2972
2973 return err;
2974 }
2975
dpaa_eth_stop(struct net_device * net_dev)2976 static int dpaa_eth_stop(struct net_device *net_dev)
2977 {
2978 struct dpaa_priv *priv;
2979 int err;
2980
2981 err = dpaa_stop(net_dev);
2982
2983 priv = netdev_priv(net_dev);
2984 dpaa_eth_napi_disable(priv);
2985
2986 return err;
2987 }
2988
xdp_validate_mtu(struct dpaa_priv * priv,int mtu)2989 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu)
2990 {
2991 int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom;
2992
2993 /* We do not support S/G fragments when XDP is enabled.
2994 * Limit the MTU in relation to the buffer size.
2995 */
2996 if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) {
2997 dev_warn(priv->net_dev->dev.parent,
2998 "The maximum MTU for XDP is %d\n",
2999 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN);
3000 return false;
3001 }
3002
3003 return true;
3004 }
3005
dpaa_change_mtu(struct net_device * net_dev,int new_mtu)3006 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu)
3007 {
3008 struct dpaa_priv *priv = netdev_priv(net_dev);
3009
3010 if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu))
3011 return -EINVAL;
3012
3013 net_dev->mtu = new_mtu;
3014 return 0;
3015 }
3016
dpaa_setup_xdp(struct net_device * net_dev,struct netdev_bpf * bpf)3017 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf)
3018 {
3019 struct dpaa_priv *priv = netdev_priv(net_dev);
3020 struct bpf_prog *old_prog;
3021 int err;
3022 bool up;
3023
3024 /* S/G fragments are not supported in XDP-mode */
3025 if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) {
3026 NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP");
3027 return -EINVAL;
3028 }
3029
3030 up = netif_running(net_dev);
3031
3032 if (up)
3033 dpaa_eth_stop(net_dev);
3034
3035 old_prog = xchg(&priv->xdp_prog, bpf->prog);
3036 if (old_prog)
3037 bpf_prog_put(old_prog);
3038
3039 if (up) {
3040 err = dpaa_open(net_dev);
3041 if (err) {
3042 NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed");
3043 return err;
3044 }
3045 }
3046
3047 return 0;
3048 }
3049
dpaa_xdp(struct net_device * net_dev,struct netdev_bpf * xdp)3050 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp)
3051 {
3052 switch (xdp->command) {
3053 case XDP_SETUP_PROG:
3054 return dpaa_setup_xdp(net_dev, xdp);
3055 default:
3056 return -EINVAL;
3057 }
3058 }
3059
dpaa_xdp_xmit(struct net_device * net_dev,int n,struct xdp_frame ** frames,u32 flags)3060 static int dpaa_xdp_xmit(struct net_device *net_dev, int n,
3061 struct xdp_frame **frames, u32 flags)
3062 {
3063 struct xdp_frame *xdpf;
3064 int i, nxmit = 0;
3065
3066 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3067 return -EINVAL;
3068
3069 if (!netif_running(net_dev))
3070 return -ENETDOWN;
3071
3072 for (i = 0; i < n; i++) {
3073 xdpf = frames[i];
3074 if (dpaa_xdp_xmit_frame(net_dev, xdpf))
3075 break;
3076 nxmit++;
3077 }
3078
3079 return nxmit;
3080 }
3081
dpaa_ts_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)3082 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3083 {
3084 struct dpaa_priv *priv = netdev_priv(dev);
3085 struct hwtstamp_config config;
3086
3087 if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
3088 return -EFAULT;
3089
3090 switch (config.tx_type) {
3091 case HWTSTAMP_TX_OFF:
3092 /* Couldn't disable rx/tx timestamping separately.
3093 * Do nothing here.
3094 */
3095 priv->tx_tstamp = false;
3096 break;
3097 case HWTSTAMP_TX_ON:
3098 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3099 priv->tx_tstamp = true;
3100 break;
3101 default:
3102 return -ERANGE;
3103 }
3104
3105 if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
3106 /* Couldn't disable rx/tx timestamping separately.
3107 * Do nothing here.
3108 */
3109 priv->rx_tstamp = false;
3110 } else {
3111 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3112 priv->rx_tstamp = true;
3113 /* TS is set for all frame types, not only those requested */
3114 config.rx_filter = HWTSTAMP_FILTER_ALL;
3115 }
3116
3117 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
3118 -EFAULT : 0;
3119 }
3120
dpaa_ioctl(struct net_device * net_dev,struct ifreq * rq,int cmd)3121 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
3122 {
3123 int ret = -EINVAL;
3124 struct dpaa_priv *priv = netdev_priv(net_dev);
3125
3126 if (cmd == SIOCGMIIREG) {
3127 if (net_dev->phydev)
3128 return phylink_mii_ioctl(priv->mac_dev->phylink, rq,
3129 cmd);
3130 }
3131
3132 if (cmd == SIOCSHWTSTAMP)
3133 return dpaa_ts_ioctl(net_dev, rq, cmd);
3134
3135 return ret;
3136 }
3137
3138 static const struct net_device_ops dpaa_ops = {
3139 .ndo_open = dpaa_open,
3140 .ndo_start_xmit = dpaa_start_xmit,
3141 .ndo_stop = dpaa_eth_stop,
3142 .ndo_tx_timeout = dpaa_tx_timeout,
3143 .ndo_get_stats64 = dpaa_get_stats64,
3144 .ndo_change_carrier = fixed_phy_change_carrier,
3145 .ndo_set_mac_address = dpaa_set_mac_address,
3146 .ndo_validate_addr = eth_validate_addr,
3147 .ndo_set_rx_mode = dpaa_set_rx_mode,
3148 .ndo_eth_ioctl = dpaa_ioctl,
3149 .ndo_setup_tc = dpaa_setup_tc,
3150 .ndo_change_mtu = dpaa_change_mtu,
3151 .ndo_bpf = dpaa_xdp,
3152 .ndo_xdp_xmit = dpaa_xdp_xmit,
3153 };
3154
dpaa_napi_add(struct net_device * net_dev)3155 static int dpaa_napi_add(struct net_device *net_dev)
3156 {
3157 struct dpaa_priv *priv = netdev_priv(net_dev);
3158 struct dpaa_percpu_priv *percpu_priv;
3159 int cpu;
3160
3161 for_each_possible_cpu(cpu) {
3162 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3163
3164 netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll);
3165 }
3166
3167 return 0;
3168 }
3169
dpaa_napi_del(struct net_device * net_dev)3170 static void dpaa_napi_del(struct net_device *net_dev)
3171 {
3172 struct dpaa_priv *priv = netdev_priv(net_dev);
3173 struct dpaa_percpu_priv *percpu_priv;
3174 int cpu;
3175
3176 for_each_possible_cpu(cpu) {
3177 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3178
3179 netif_napi_del(&percpu_priv->np.napi);
3180 }
3181 }
3182
dpaa_bp_free_pf(const struct dpaa_bp * bp,struct bm_buffer * bmb)3183 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
3184 struct bm_buffer *bmb)
3185 {
3186 dma_addr_t addr = bm_buf_addr(bmb);
3187
3188 dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
3189 DMA_FROM_DEVICE);
3190
3191 skb_free_frag(phys_to_virt(addr));
3192 }
3193
3194 /* Alloc the dpaa_bp struct and configure default values */
dpaa_bp_alloc(struct device * dev)3195 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
3196 {
3197 struct dpaa_bp *dpaa_bp;
3198
3199 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
3200 if (!dpaa_bp)
3201 return ERR_PTR(-ENOMEM);
3202
3203 dpaa_bp->bpid = FSL_DPAA_BPID_INV;
3204 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
3205 if (!dpaa_bp->percpu_count)
3206 return ERR_PTR(-ENOMEM);
3207
3208 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
3209
3210 dpaa_bp->seed_cb = dpaa_bp_seed;
3211 dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
3212
3213 return dpaa_bp;
3214 }
3215
3216 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
3217 * We won't be sending congestion notifications to FMan; for now, we just use
3218 * this CGR to generate enqueue rejections to FMan in order to drop the frames
3219 * before they reach our ingress queues and eat up memory.
3220 */
dpaa_ingress_cgr_init(struct dpaa_priv * priv)3221 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
3222 {
3223 struct qm_mcc_initcgr initcgr;
3224 u32 cs_th;
3225 int err;
3226
3227 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
3228 if (err < 0) {
3229 if (netif_msg_drv(priv))
3230 pr_err("Error %d allocating CGR ID\n", err);
3231 goto out_error;
3232 }
3233
3234 /* Enable CS TD, but disable Congestion State Change Notifications. */
3235 memset(&initcgr, 0, sizeof(initcgr));
3236 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
3237 initcgr.cgr.cscn_en = QM_CGR_EN;
3238 cs_th = DPAA_INGRESS_CS_THRESHOLD;
3239 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
3240
3241 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
3242 initcgr.cgr.cstd_en = QM_CGR_EN;
3243
3244 /* This CGR will be associated with the SWP affined to the current CPU.
3245 * However, we'll place all our ingress FQs in it.
3246 */
3247 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
3248 &initcgr);
3249 if (err < 0) {
3250 if (netif_msg_drv(priv))
3251 pr_err("Error %d creating ingress CGR with ID %d\n",
3252 err, priv->ingress_cgr.cgrid);
3253 qman_release_cgrid(priv->ingress_cgr.cgrid);
3254 goto out_error;
3255 }
3256 if (netif_msg_drv(priv))
3257 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
3258 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
3259
3260 priv->use_ingress_cgr = true;
3261
3262 out_error:
3263 return err;
3264 }
3265
dpaa_get_headroom(struct dpaa_buffer_layout * bl,enum port_type port)3266 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl,
3267 enum port_type port)
3268 {
3269 u16 headroom;
3270
3271 /* The frame headroom must accommodate:
3272 * - the driver private data area
3273 * - parse results, hash results, timestamp if selected
3274 * If either hash results or time stamp are selected, both will
3275 * be copied to/from the frame headroom, as TS is located between PR and
3276 * HR in the IC and IC copy size has a granularity of 16bytes
3277 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
3278 *
3279 * Also make sure the headroom is a multiple of data_align bytes
3280 */
3281 headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE);
3282
3283 if (port == RX) {
3284 #ifdef CONFIG_DPAA_ERRATUM_A050385
3285 if (unlikely(fman_has_errata_a050385()))
3286 headroom = XDP_PACKET_HEADROOM;
3287 #endif
3288
3289 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT);
3290 } else {
3291 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
3292 }
3293 }
3294
dpaa_eth_probe(struct platform_device * pdev)3295 static int dpaa_eth_probe(struct platform_device *pdev)
3296 {
3297 struct net_device *net_dev = NULL;
3298 struct dpaa_bp *dpaa_bp = NULL;
3299 struct dpaa_fq *dpaa_fq, *tmp;
3300 struct dpaa_priv *priv = NULL;
3301 struct fm_port_fqs port_fqs;
3302 struct mac_device *mac_dev;
3303 int err = 0, channel;
3304 struct device *dev;
3305
3306 dev = &pdev->dev;
3307
3308 err = bman_is_probed();
3309 if (!err)
3310 return -EPROBE_DEFER;
3311 if (err < 0) {
3312 dev_err(dev, "failing probe due to bman probe error\n");
3313 return -ENODEV;
3314 }
3315 err = qman_is_probed();
3316 if (!err)
3317 return -EPROBE_DEFER;
3318 if (err < 0) {
3319 dev_err(dev, "failing probe due to qman probe error\n");
3320 return -ENODEV;
3321 }
3322 err = bman_portals_probed();
3323 if (!err)
3324 return -EPROBE_DEFER;
3325 if (err < 0) {
3326 dev_err(dev,
3327 "failing probe due to bman portals probe error\n");
3328 return -ENODEV;
3329 }
3330 err = qman_portals_probed();
3331 if (!err)
3332 return -EPROBE_DEFER;
3333 if (err < 0) {
3334 dev_err(dev,
3335 "failing probe due to qman portals probe error\n");
3336 return -ENODEV;
3337 }
3338
3339 /* Allocate this early, so we can store relevant information in
3340 * the private area
3341 */
3342 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
3343 if (!net_dev) {
3344 dev_err(dev, "alloc_etherdev_mq() failed\n");
3345 return -ENOMEM;
3346 }
3347
3348 /* Do this here, so we can be verbose early */
3349 SET_NETDEV_DEV(net_dev, dev->parent);
3350 dev_set_drvdata(dev, net_dev);
3351
3352 priv = netdev_priv(net_dev);
3353 priv->net_dev = net_dev;
3354
3355 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
3356
3357 mac_dev = dpaa_mac_dev_get(pdev);
3358 if (IS_ERR(mac_dev)) {
3359 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
3360 err = PTR_ERR(mac_dev);
3361 goto free_netdev;
3362 }
3363
3364 /* Devices used for DMA mapping */
3365 priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
3366 priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
3367 err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
3368 if (!err)
3369 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
3370 DMA_BIT_MASK(40));
3371 if (err) {
3372 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
3373 goto free_netdev;
3374 }
3375
3376 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
3377 * we choose conservatively and let the user explicitly set a higher
3378 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
3379 * in the same LAN.
3380 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
3381 * start with the maximum allowed.
3382 */
3383 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
3384
3385 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
3386 net_dev->mtu);
3387
3388 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
3389 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
3390
3391 /* bp init */
3392 dpaa_bp = dpaa_bp_alloc(dev);
3393 if (IS_ERR(dpaa_bp)) {
3394 err = PTR_ERR(dpaa_bp);
3395 goto free_dpaa_bps;
3396 }
3397 /* the raw size of the buffers used for reception */
3398 dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
3399 /* avoid runtime computations by keeping the usable size here */
3400 dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
3401 dpaa_bp->priv = priv;
3402
3403 err = dpaa_bp_alloc_pool(dpaa_bp);
3404 if (err < 0)
3405 goto free_dpaa_bps;
3406 priv->dpaa_bp = dpaa_bp;
3407
3408 INIT_LIST_HEAD(&priv->dpaa_fq_list);
3409
3410 memset(&port_fqs, 0, sizeof(port_fqs));
3411
3412 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
3413 if (err < 0) {
3414 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
3415 goto free_dpaa_bps;
3416 }
3417
3418 priv->mac_dev = mac_dev;
3419
3420 channel = dpaa_get_channel();
3421 if (channel < 0) {
3422 dev_err(dev, "dpaa_get_channel() failed\n");
3423 err = channel;
3424 goto free_dpaa_bps;
3425 }
3426
3427 priv->channel = (u16)channel;
3428
3429 /* Walk the CPUs with affine portals
3430 * and add this pool channel to each's dequeue mask.
3431 */
3432 dpaa_eth_add_channel(priv->channel, &pdev->dev);
3433
3434 err = dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
3435 if (err)
3436 goto free_dpaa_bps;
3437
3438 /* Create a congestion group for this netdev, with
3439 * dynamically-allocated CGR ID.
3440 * Must be executed after probing the MAC, but before
3441 * assigning the egress FQs to the CGRs.
3442 */
3443 err = dpaa_eth_cgr_init(priv);
3444 if (err < 0) {
3445 dev_err(dev, "Error initializing CGR\n");
3446 goto free_dpaa_bps;
3447 }
3448
3449 err = dpaa_ingress_cgr_init(priv);
3450 if (err < 0) {
3451 dev_err(dev, "Error initializing ingress CGR\n");
3452 goto delete_egress_cgr;
3453 }
3454
3455 /* Add the FQs to the interface, and make them active */
3456 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
3457 err = dpaa_fq_init(dpaa_fq, false);
3458 if (err < 0)
3459 goto free_dpaa_fqs;
3460 }
3461
3462 priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX);
3463 priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX);
3464
3465 /* All real interfaces need their ports initialized */
3466 err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
3467 &priv->buf_layout[0], dev);
3468 if (err)
3469 goto free_dpaa_fqs;
3470
3471 /* Rx traffic distribution based on keygen hashing defaults to on */
3472 priv->keygen_in_use = true;
3473
3474 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
3475 if (!priv->percpu_priv) {
3476 dev_err(dev, "devm_alloc_percpu() failed\n");
3477 err = -ENOMEM;
3478 goto free_dpaa_fqs;
3479 }
3480
3481 priv->num_tc = 1;
3482 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
3483
3484 /* Initialize NAPI */
3485 err = dpaa_napi_add(net_dev);
3486 if (err < 0)
3487 goto delete_dpaa_napi;
3488
3489 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
3490 if (err < 0)
3491 goto delete_dpaa_napi;
3492
3493 dpaa_eth_sysfs_init(&net_dev->dev);
3494
3495 netif_info(priv, probe, net_dev, "Probed interface %s\n",
3496 net_dev->name);
3497
3498 return 0;
3499
3500 delete_dpaa_napi:
3501 dpaa_napi_del(net_dev);
3502 free_dpaa_fqs:
3503 dpaa_fq_free(dev, &priv->dpaa_fq_list);
3504 qman_delete_cgr_safe(&priv->ingress_cgr);
3505 qman_release_cgrid(priv->ingress_cgr.cgrid);
3506 delete_egress_cgr:
3507 qman_delete_cgr_safe(&priv->cgr_data.cgr);
3508 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3509 free_dpaa_bps:
3510 dpaa_bps_free(priv);
3511 free_netdev:
3512 dev_set_drvdata(dev, NULL);
3513 free_netdev(net_dev);
3514
3515 return err;
3516 }
3517
dpaa_remove(struct platform_device * pdev)3518 static void dpaa_remove(struct platform_device *pdev)
3519 {
3520 struct net_device *net_dev;
3521 struct dpaa_priv *priv;
3522 struct device *dev;
3523 int err;
3524
3525 dev = &pdev->dev;
3526 net_dev = dev_get_drvdata(dev);
3527
3528 priv = netdev_priv(net_dev);
3529
3530 dpaa_eth_sysfs_remove(dev);
3531
3532 dev_set_drvdata(dev, NULL);
3533 unregister_netdev(net_dev);
3534 phylink_destroy(priv->mac_dev->phylink);
3535
3536 err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
3537 if (err)
3538 dev_err(dev, "Failed to free FQs on remove (%pE)\n",
3539 ERR_PTR(err));
3540
3541 qman_delete_cgr_safe(&priv->ingress_cgr);
3542 qman_release_cgrid(priv->ingress_cgr.cgrid);
3543 qman_delete_cgr_safe(&priv->cgr_data.cgr);
3544 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3545
3546 dpaa_napi_del(net_dev);
3547
3548 dpaa_bps_free(priv);
3549
3550 free_netdev(net_dev);
3551 }
3552
3553 static const struct platform_device_id dpaa_devtype[] = {
3554 {
3555 .name = "dpaa-ethernet",
3556 .driver_data = 0,
3557 }, {
3558 }
3559 };
3560 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3561
3562 static struct platform_driver dpaa_driver = {
3563 .driver = {
3564 .name = KBUILD_MODNAME,
3565 },
3566 .id_table = dpaa_devtype,
3567 .probe = dpaa_eth_probe,
3568 .remove_new = dpaa_remove
3569 };
3570
dpaa_load(void)3571 static int __init dpaa_load(void)
3572 {
3573 int err;
3574
3575 pr_debug("FSL DPAA Ethernet driver\n");
3576
3577 /* initialize dpaa_eth mirror values */
3578 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3579 dpaa_max_frm = fman_get_max_frm();
3580
3581 err = platform_driver_register(&dpaa_driver);
3582 if (err < 0)
3583 pr_err("Error, platform_driver_register() = %d\n", err);
3584
3585 return err;
3586 }
3587 module_init(dpaa_load);
3588
dpaa_unload(void)3589 static void __exit dpaa_unload(void)
3590 {
3591 platform_driver_unregister(&dpaa_driver);
3592
3593 /* Only one channel is used and needs to be released after all
3594 * interfaces are removed
3595 */
3596 dpaa_release_channel();
3597 }
3598 module_exit(dpaa_unload);
3599
3600 MODULE_LICENSE("Dual BSD/GPL");
3601 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
3602