1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66 struct task_struct *p;
67 remote_function_f func;
68 void *info;
69 int ret;
70 };
71
remote_function(void * data)72 static void remote_function(void *data)
73 {
74 struct remote_function_call *tfc = data;
75 struct task_struct *p = tfc->p;
76
77 if (p) {
78 /* -EAGAIN */
79 if (task_cpu(p) != smp_processor_id())
80 return;
81
82 /*
83 * Now that we're on right CPU with IRQs disabled, we can test
84 * if we hit the right task without races.
85 */
86
87 tfc->ret = -ESRCH; /* No such (running) process */
88 if (p != current)
89 return;
90 }
91
92 tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96 * task_function_call - call a function on the cpu on which a task runs
97 * @p: the task to evaluate
98 * @func: the function to be called
99 * @info: the function call argument
100 *
101 * Calls the function @func when the task is currently running. This might
102 * be on the current CPU, which just calls the function directly. This will
103 * retry due to any failures in smp_call_function_single(), such as if the
104 * task_cpu() goes offline concurrently.
105 *
106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107 */
108 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 struct remote_function_call data = {
112 .p = p,
113 .func = func,
114 .info = info,
115 .ret = -EAGAIN,
116 };
117 int ret;
118
119 for (;;) {
120 ret = smp_call_function_single(task_cpu(p), remote_function,
121 &data, 1);
122 if (!ret)
123 ret = data.ret;
124
125 if (ret != -EAGAIN)
126 break;
127
128 cond_resched();
129 }
130
131 return ret;
132 }
133
134 /**
135 * cpu_function_call - call a function on the cpu
136 * @cpu: target cpu to queue this function
137 * @func: the function to be called
138 * @info: the function call argument
139 *
140 * Calls the function @func on the remote cpu.
141 *
142 * returns: @func return value or -ENXIO when the cpu is offline
143 */
cpu_function_call(int cpu,remote_function_f func,void * info)144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 struct remote_function_call data = {
147 .p = NULL,
148 .func = func,
149 .info = info,
150 .ret = -ENXIO, /* No such CPU */
151 };
152
153 smp_call_function_single(cpu, remote_function, &data, 1);
154
155 return data.ret;
156 }
157
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 struct perf_event_context *ctx)
160 {
161 raw_spin_lock(&cpuctx->ctx.lock);
162 if (ctx)
163 raw_spin_lock(&ctx->lock);
164 }
165
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 struct perf_event_context *ctx)
168 {
169 if (ctx)
170 raw_spin_unlock(&ctx->lock);
171 raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
is_kernel_event(struct perf_event * event)176 static bool is_kernel_event(struct perf_event *event)
177 {
178 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
perf_cpu_task_ctx(void)183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 lockdep_assert_irqs_disabled();
186 return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188
189 /*
190 * On task ctx scheduling...
191 *
192 * When !ctx->nr_events a task context will not be scheduled. This means
193 * we can disable the scheduler hooks (for performance) without leaving
194 * pending task ctx state.
195 *
196 * This however results in two special cases:
197 *
198 * - removing the last event from a task ctx; this is relatively straight
199 * forward and is done in __perf_remove_from_context.
200 *
201 * - adding the first event to a task ctx; this is tricky because we cannot
202 * rely on ctx->is_active and therefore cannot use event_function_call().
203 * See perf_install_in_context().
204 *
205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206 */
207
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 struct perf_event_context *, void *);
210
211 struct event_function_struct {
212 struct perf_event *event;
213 event_f func;
214 void *data;
215 };
216
event_function(void * info)217 static int event_function(void *info)
218 {
219 struct event_function_struct *efs = info;
220 struct perf_event *event = efs->event;
221 struct perf_event_context *ctx = event->ctx;
222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 int ret = 0;
225
226 lockdep_assert_irqs_disabled();
227
228 perf_ctx_lock(cpuctx, task_ctx);
229 /*
230 * Since we do the IPI call without holding ctx->lock things can have
231 * changed, double check we hit the task we set out to hit.
232 */
233 if (ctx->task) {
234 if (ctx->task != current) {
235 ret = -ESRCH;
236 goto unlock;
237 }
238
239 /*
240 * We only use event_function_call() on established contexts,
241 * and event_function() is only ever called when active (or
242 * rather, we'll have bailed in task_function_call() or the
243 * above ctx->task != current test), therefore we must have
244 * ctx->is_active here.
245 */
246 WARN_ON_ONCE(!ctx->is_active);
247 /*
248 * And since we have ctx->is_active, cpuctx->task_ctx must
249 * match.
250 */
251 WARN_ON_ONCE(task_ctx != ctx);
252 } else {
253 WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 }
255
256 efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 perf_ctx_unlock(cpuctx, task_ctx);
259
260 return ret;
261 }
262
event_function_call(struct perf_event * event,event_f func,void * data)263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 struct perf_event_context *ctx = event->ctx;
266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 struct perf_cpu_context *cpuctx;
268 struct event_function_struct efs = {
269 .event = event,
270 .func = func,
271 .data = data,
272 };
273
274 if (!event->parent) {
275 /*
276 * If this is a !child event, we must hold ctx::mutex to
277 * stabilize the event->ctx relation. See
278 * perf_event_ctx_lock().
279 */
280 lockdep_assert_held(&ctx->mutex);
281 }
282
283 if (!task) {
284 cpu_function_call(event->cpu, event_function, &efs);
285 return;
286 }
287
288 if (task == TASK_TOMBSTONE)
289 return;
290
291 again:
292 if (!task_function_call(task, event_function, &efs))
293 return;
294
295 local_irq_disable();
296 cpuctx = this_cpu_ptr(&perf_cpu_context);
297 perf_ctx_lock(cpuctx, ctx);
298 /*
299 * Reload the task pointer, it might have been changed by
300 * a concurrent perf_event_context_sched_out().
301 */
302 task = ctx->task;
303 if (task == TASK_TOMBSTONE)
304 goto unlock;
305 if (ctx->is_active) {
306 perf_ctx_unlock(cpuctx, ctx);
307 local_irq_enable();
308 goto again;
309 }
310 func(event, NULL, ctx, data);
311 unlock:
312 perf_ctx_unlock(cpuctx, ctx);
313 local_irq_enable();
314 }
315
316 /*
317 * Similar to event_function_call() + event_function(), but hard assumes IRQs
318 * are already disabled and we're on the right CPU.
319 */
event_function_local(struct perf_event * event,event_f func,void * data)320 static void event_function_local(struct perf_event *event, event_f func, void *data)
321 {
322 struct perf_event_context *ctx = event->ctx;
323 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
324 struct task_struct *task = READ_ONCE(ctx->task);
325 struct perf_event_context *task_ctx = NULL;
326
327 lockdep_assert_irqs_disabled();
328
329 if (task) {
330 if (task == TASK_TOMBSTONE)
331 return;
332
333 task_ctx = ctx;
334 }
335
336 perf_ctx_lock(cpuctx, task_ctx);
337
338 task = ctx->task;
339 if (task == TASK_TOMBSTONE)
340 goto unlock;
341
342 if (task) {
343 /*
344 * We must be either inactive or active and the right task,
345 * otherwise we're screwed, since we cannot IPI to somewhere
346 * else.
347 */
348 if (ctx->is_active) {
349 if (WARN_ON_ONCE(task != current))
350 goto unlock;
351
352 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
353 goto unlock;
354 }
355 } else {
356 WARN_ON_ONCE(&cpuctx->ctx != ctx);
357 }
358
359 func(event, cpuctx, ctx, data);
360 unlock:
361 perf_ctx_unlock(cpuctx, task_ctx);
362 }
363
364 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
365 PERF_FLAG_FD_OUTPUT |\
366 PERF_FLAG_PID_CGROUP |\
367 PERF_FLAG_FD_CLOEXEC)
368
369 /*
370 * branch priv levels that need permission checks
371 */
372 #define PERF_SAMPLE_BRANCH_PERM_PLM \
373 (PERF_SAMPLE_BRANCH_KERNEL |\
374 PERF_SAMPLE_BRANCH_HV)
375
376 enum event_type_t {
377 EVENT_FLEXIBLE = 0x1,
378 EVENT_PINNED = 0x2,
379 EVENT_TIME = 0x4,
380 /* see ctx_resched() for details */
381 EVENT_CPU = 0x8,
382 EVENT_CGROUP = 0x10,
383 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
384 };
385
386 /*
387 * perf_sched_events : >0 events exist
388 */
389
390 static void perf_sched_delayed(struct work_struct *work);
391 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
392 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
393 static DEFINE_MUTEX(perf_sched_mutex);
394 static atomic_t perf_sched_count;
395
396 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
397
398 static atomic_t nr_mmap_events __read_mostly;
399 static atomic_t nr_comm_events __read_mostly;
400 static atomic_t nr_namespaces_events __read_mostly;
401 static atomic_t nr_task_events __read_mostly;
402 static atomic_t nr_freq_events __read_mostly;
403 static atomic_t nr_switch_events __read_mostly;
404 static atomic_t nr_ksymbol_events __read_mostly;
405 static atomic_t nr_bpf_events __read_mostly;
406 static atomic_t nr_cgroup_events __read_mostly;
407 static atomic_t nr_text_poke_events __read_mostly;
408 static atomic_t nr_build_id_events __read_mostly;
409
410 static LIST_HEAD(pmus);
411 static DEFINE_MUTEX(pmus_lock);
412 static struct srcu_struct pmus_srcu;
413 static cpumask_var_t perf_online_mask;
414 static struct kmem_cache *perf_event_cache;
415
416 /*
417 * perf event paranoia level:
418 * -1 - not paranoid at all
419 * 0 - disallow raw tracepoint access for unpriv
420 * 1 - disallow cpu events for unpriv
421 * 2 - disallow kernel profiling for unpriv
422 */
423 int sysctl_perf_event_paranoid __read_mostly = 2;
424
425 /* Minimum for 512 kiB + 1 user control page */
426 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
427
428 /*
429 * max perf event sample rate
430 */
431 #define DEFAULT_MAX_SAMPLE_RATE 100000
432 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
433 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
434
435 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
436
437 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
438 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
439
440 static int perf_sample_allowed_ns __read_mostly =
441 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
442
update_perf_cpu_limits(void)443 static void update_perf_cpu_limits(void)
444 {
445 u64 tmp = perf_sample_period_ns;
446
447 tmp *= sysctl_perf_cpu_time_max_percent;
448 tmp = div_u64(tmp, 100);
449 if (!tmp)
450 tmp = 1;
451
452 WRITE_ONCE(perf_sample_allowed_ns, tmp);
453 }
454
455 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
456
perf_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)457 int perf_proc_update_handler(struct ctl_table *table, int write,
458 void *buffer, size_t *lenp, loff_t *ppos)
459 {
460 int ret;
461 int perf_cpu = sysctl_perf_cpu_time_max_percent;
462 /*
463 * If throttling is disabled don't allow the write:
464 */
465 if (write && (perf_cpu == 100 || perf_cpu == 0))
466 return -EINVAL;
467
468 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
469 if (ret || !write)
470 return ret;
471
472 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
473 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
474 update_perf_cpu_limits();
475
476 return 0;
477 }
478
479 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
480
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)481 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
482 void *buffer, size_t *lenp, loff_t *ppos)
483 {
484 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
485
486 if (ret || !write)
487 return ret;
488
489 if (sysctl_perf_cpu_time_max_percent == 100 ||
490 sysctl_perf_cpu_time_max_percent == 0) {
491 printk(KERN_WARNING
492 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
493 WRITE_ONCE(perf_sample_allowed_ns, 0);
494 } else {
495 update_perf_cpu_limits();
496 }
497
498 return 0;
499 }
500
501 /*
502 * perf samples are done in some very critical code paths (NMIs).
503 * If they take too much CPU time, the system can lock up and not
504 * get any real work done. This will drop the sample rate when
505 * we detect that events are taking too long.
506 */
507 #define NR_ACCUMULATED_SAMPLES 128
508 static DEFINE_PER_CPU(u64, running_sample_length);
509
510 static u64 __report_avg;
511 static u64 __report_allowed;
512
perf_duration_warn(struct irq_work * w)513 static void perf_duration_warn(struct irq_work *w)
514 {
515 printk_ratelimited(KERN_INFO
516 "perf: interrupt took too long (%lld > %lld), lowering "
517 "kernel.perf_event_max_sample_rate to %d\n",
518 __report_avg, __report_allowed,
519 sysctl_perf_event_sample_rate);
520 }
521
522 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
523
perf_sample_event_took(u64 sample_len_ns)524 void perf_sample_event_took(u64 sample_len_ns)
525 {
526 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
527 u64 running_len;
528 u64 avg_len;
529 u32 max;
530
531 if (max_len == 0)
532 return;
533
534 /* Decay the counter by 1 average sample. */
535 running_len = __this_cpu_read(running_sample_length);
536 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
537 running_len += sample_len_ns;
538 __this_cpu_write(running_sample_length, running_len);
539
540 /*
541 * Note: this will be biased artifically low until we have
542 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
543 * from having to maintain a count.
544 */
545 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
546 if (avg_len <= max_len)
547 return;
548
549 __report_avg = avg_len;
550 __report_allowed = max_len;
551
552 /*
553 * Compute a throttle threshold 25% below the current duration.
554 */
555 avg_len += avg_len / 4;
556 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
557 if (avg_len < max)
558 max /= (u32)avg_len;
559 else
560 max = 1;
561
562 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
563 WRITE_ONCE(max_samples_per_tick, max);
564
565 sysctl_perf_event_sample_rate = max * HZ;
566 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
567
568 if (!irq_work_queue(&perf_duration_work)) {
569 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
570 "kernel.perf_event_max_sample_rate to %d\n",
571 __report_avg, __report_allowed,
572 sysctl_perf_event_sample_rate);
573 }
574 }
575
576 static atomic64_t perf_event_id;
577
578 static void update_context_time(struct perf_event_context *ctx);
579 static u64 perf_event_time(struct perf_event *event);
580
perf_event_print_debug(void)581 void __weak perf_event_print_debug(void) { }
582
perf_clock(void)583 static inline u64 perf_clock(void)
584 {
585 return local_clock();
586 }
587
perf_event_clock(struct perf_event * event)588 static inline u64 perf_event_clock(struct perf_event *event)
589 {
590 return event->clock();
591 }
592
593 /*
594 * State based event timekeeping...
595 *
596 * The basic idea is to use event->state to determine which (if any) time
597 * fields to increment with the current delta. This means we only need to
598 * update timestamps when we change state or when they are explicitly requested
599 * (read).
600 *
601 * Event groups make things a little more complicated, but not terribly so. The
602 * rules for a group are that if the group leader is OFF the entire group is
603 * OFF, irrespecive of what the group member states are. This results in
604 * __perf_effective_state().
605 *
606 * A futher ramification is that when a group leader flips between OFF and
607 * !OFF, we need to update all group member times.
608 *
609 *
610 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
611 * need to make sure the relevant context time is updated before we try and
612 * update our timestamps.
613 */
614
615 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)616 __perf_effective_state(struct perf_event *event)
617 {
618 struct perf_event *leader = event->group_leader;
619
620 if (leader->state <= PERF_EVENT_STATE_OFF)
621 return leader->state;
622
623 return event->state;
624 }
625
626 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)627 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
628 {
629 enum perf_event_state state = __perf_effective_state(event);
630 u64 delta = now - event->tstamp;
631
632 *enabled = event->total_time_enabled;
633 if (state >= PERF_EVENT_STATE_INACTIVE)
634 *enabled += delta;
635
636 *running = event->total_time_running;
637 if (state >= PERF_EVENT_STATE_ACTIVE)
638 *running += delta;
639 }
640
perf_event_update_time(struct perf_event * event)641 static void perf_event_update_time(struct perf_event *event)
642 {
643 u64 now = perf_event_time(event);
644
645 __perf_update_times(event, now, &event->total_time_enabled,
646 &event->total_time_running);
647 event->tstamp = now;
648 }
649
perf_event_update_sibling_time(struct perf_event * leader)650 static void perf_event_update_sibling_time(struct perf_event *leader)
651 {
652 struct perf_event *sibling;
653
654 for_each_sibling_event(sibling, leader)
655 perf_event_update_time(sibling);
656 }
657
658 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)659 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
660 {
661 if (event->state == state)
662 return;
663
664 perf_event_update_time(event);
665 /*
666 * If a group leader gets enabled/disabled all its siblings
667 * are affected too.
668 */
669 if ((event->state < 0) ^ (state < 0))
670 perf_event_update_sibling_time(event);
671
672 WRITE_ONCE(event->state, state);
673 }
674
675 /*
676 * UP store-release, load-acquire
677 */
678
679 #define __store_release(ptr, val) \
680 do { \
681 barrier(); \
682 WRITE_ONCE(*(ptr), (val)); \
683 } while (0)
684
685 #define __load_acquire(ptr) \
686 ({ \
687 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
688 barrier(); \
689 ___p; \
690 })
691
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)692 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
693 {
694 struct perf_event_pmu_context *pmu_ctx;
695
696 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
697 if (cgroup && !pmu_ctx->nr_cgroups)
698 continue;
699 perf_pmu_disable(pmu_ctx->pmu);
700 }
701 }
702
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)703 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
704 {
705 struct perf_event_pmu_context *pmu_ctx;
706
707 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
708 if (cgroup && !pmu_ctx->nr_cgroups)
709 continue;
710 perf_pmu_enable(pmu_ctx->pmu);
711 }
712 }
713
714 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
715 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
716
717 #ifdef CONFIG_CGROUP_PERF
718
719 static inline bool
perf_cgroup_match(struct perf_event * event)720 perf_cgroup_match(struct perf_event *event)
721 {
722 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
723
724 /* @event doesn't care about cgroup */
725 if (!event->cgrp)
726 return true;
727
728 /* wants specific cgroup scope but @cpuctx isn't associated with any */
729 if (!cpuctx->cgrp)
730 return false;
731
732 /*
733 * Cgroup scoping is recursive. An event enabled for a cgroup is
734 * also enabled for all its descendant cgroups. If @cpuctx's
735 * cgroup is a descendant of @event's (the test covers identity
736 * case), it's a match.
737 */
738 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
739 event->cgrp->css.cgroup);
740 }
741
perf_detach_cgroup(struct perf_event * event)742 static inline void perf_detach_cgroup(struct perf_event *event)
743 {
744 css_put(&event->cgrp->css);
745 event->cgrp = NULL;
746 }
747
is_cgroup_event(struct perf_event * event)748 static inline int is_cgroup_event(struct perf_event *event)
749 {
750 return event->cgrp != NULL;
751 }
752
perf_cgroup_event_time(struct perf_event * event)753 static inline u64 perf_cgroup_event_time(struct perf_event *event)
754 {
755 struct perf_cgroup_info *t;
756
757 t = per_cpu_ptr(event->cgrp->info, event->cpu);
758 return t->time;
759 }
760
perf_cgroup_event_time_now(struct perf_event * event,u64 now)761 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
762 {
763 struct perf_cgroup_info *t;
764
765 t = per_cpu_ptr(event->cgrp->info, event->cpu);
766 if (!__load_acquire(&t->active))
767 return t->time;
768 now += READ_ONCE(t->timeoffset);
769 return now;
770 }
771
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)772 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
773 {
774 if (adv)
775 info->time += now - info->timestamp;
776 info->timestamp = now;
777 /*
778 * see update_context_time()
779 */
780 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
781 }
782
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)783 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
784 {
785 struct perf_cgroup *cgrp = cpuctx->cgrp;
786 struct cgroup_subsys_state *css;
787 struct perf_cgroup_info *info;
788
789 if (cgrp) {
790 u64 now = perf_clock();
791
792 for (css = &cgrp->css; css; css = css->parent) {
793 cgrp = container_of(css, struct perf_cgroup, css);
794 info = this_cpu_ptr(cgrp->info);
795
796 __update_cgrp_time(info, now, true);
797 if (final)
798 __store_release(&info->active, 0);
799 }
800 }
801 }
802
update_cgrp_time_from_event(struct perf_event * event)803 static inline void update_cgrp_time_from_event(struct perf_event *event)
804 {
805 struct perf_cgroup_info *info;
806
807 /*
808 * ensure we access cgroup data only when needed and
809 * when we know the cgroup is pinned (css_get)
810 */
811 if (!is_cgroup_event(event))
812 return;
813
814 info = this_cpu_ptr(event->cgrp->info);
815 /*
816 * Do not update time when cgroup is not active
817 */
818 if (info->active)
819 __update_cgrp_time(info, perf_clock(), true);
820 }
821
822 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)823 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
824 {
825 struct perf_event_context *ctx = &cpuctx->ctx;
826 struct perf_cgroup *cgrp = cpuctx->cgrp;
827 struct perf_cgroup_info *info;
828 struct cgroup_subsys_state *css;
829
830 /*
831 * ctx->lock held by caller
832 * ensure we do not access cgroup data
833 * unless we have the cgroup pinned (css_get)
834 */
835 if (!cgrp)
836 return;
837
838 WARN_ON_ONCE(!ctx->nr_cgroups);
839
840 for (css = &cgrp->css; css; css = css->parent) {
841 cgrp = container_of(css, struct perf_cgroup, css);
842 info = this_cpu_ptr(cgrp->info);
843 __update_cgrp_time(info, ctx->timestamp, false);
844 __store_release(&info->active, 1);
845 }
846 }
847
848 /*
849 * reschedule events based on the cgroup constraint of task.
850 */
perf_cgroup_switch(struct task_struct * task)851 static void perf_cgroup_switch(struct task_struct *task)
852 {
853 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
854 struct perf_cgroup *cgrp;
855
856 /*
857 * cpuctx->cgrp is set when the first cgroup event enabled,
858 * and is cleared when the last cgroup event disabled.
859 */
860 if (READ_ONCE(cpuctx->cgrp) == NULL)
861 return;
862
863 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
864
865 cgrp = perf_cgroup_from_task(task, NULL);
866 if (READ_ONCE(cpuctx->cgrp) == cgrp)
867 return;
868
869 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
870 perf_ctx_disable(&cpuctx->ctx, true);
871
872 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
873 /*
874 * must not be done before ctxswout due
875 * to update_cgrp_time_from_cpuctx() in
876 * ctx_sched_out()
877 */
878 cpuctx->cgrp = cgrp;
879 /*
880 * set cgrp before ctxsw in to allow
881 * perf_cgroup_set_timestamp() in ctx_sched_in()
882 * to not have to pass task around
883 */
884 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
885
886 perf_ctx_enable(&cpuctx->ctx, true);
887 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
888 }
889
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)890 static int perf_cgroup_ensure_storage(struct perf_event *event,
891 struct cgroup_subsys_state *css)
892 {
893 struct perf_cpu_context *cpuctx;
894 struct perf_event **storage;
895 int cpu, heap_size, ret = 0;
896
897 /*
898 * Allow storage to have sufficent space for an iterator for each
899 * possibly nested cgroup plus an iterator for events with no cgroup.
900 */
901 for (heap_size = 1; css; css = css->parent)
902 heap_size++;
903
904 for_each_possible_cpu(cpu) {
905 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
906 if (heap_size <= cpuctx->heap_size)
907 continue;
908
909 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
910 GFP_KERNEL, cpu_to_node(cpu));
911 if (!storage) {
912 ret = -ENOMEM;
913 break;
914 }
915
916 raw_spin_lock_irq(&cpuctx->ctx.lock);
917 if (cpuctx->heap_size < heap_size) {
918 swap(cpuctx->heap, storage);
919 if (storage == cpuctx->heap_default)
920 storage = NULL;
921 cpuctx->heap_size = heap_size;
922 }
923 raw_spin_unlock_irq(&cpuctx->ctx.lock);
924
925 kfree(storage);
926 }
927
928 return ret;
929 }
930
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)931 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
932 struct perf_event_attr *attr,
933 struct perf_event *group_leader)
934 {
935 struct perf_cgroup *cgrp;
936 struct cgroup_subsys_state *css;
937 struct fd f = fdget(fd);
938 int ret = 0;
939
940 if (!f.file)
941 return -EBADF;
942
943 css = css_tryget_online_from_dir(f.file->f_path.dentry,
944 &perf_event_cgrp_subsys);
945 if (IS_ERR(css)) {
946 ret = PTR_ERR(css);
947 goto out;
948 }
949
950 ret = perf_cgroup_ensure_storage(event, css);
951 if (ret)
952 goto out;
953
954 cgrp = container_of(css, struct perf_cgroup, css);
955 event->cgrp = cgrp;
956
957 /*
958 * all events in a group must monitor
959 * the same cgroup because a task belongs
960 * to only one perf cgroup at a time
961 */
962 if (group_leader && group_leader->cgrp != cgrp) {
963 perf_detach_cgroup(event);
964 ret = -EINVAL;
965 }
966 out:
967 fdput(f);
968 return ret;
969 }
970
971 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)972 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
973 {
974 struct perf_cpu_context *cpuctx;
975
976 if (!is_cgroup_event(event))
977 return;
978
979 event->pmu_ctx->nr_cgroups++;
980
981 /*
982 * Because cgroup events are always per-cpu events,
983 * @ctx == &cpuctx->ctx.
984 */
985 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
986
987 if (ctx->nr_cgroups++)
988 return;
989
990 cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
991 }
992
993 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)994 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
995 {
996 struct perf_cpu_context *cpuctx;
997
998 if (!is_cgroup_event(event))
999 return;
1000
1001 event->pmu_ctx->nr_cgroups--;
1002
1003 /*
1004 * Because cgroup events are always per-cpu events,
1005 * @ctx == &cpuctx->ctx.
1006 */
1007 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1008
1009 if (--ctx->nr_cgroups)
1010 return;
1011
1012 cpuctx->cgrp = NULL;
1013 }
1014
1015 #else /* !CONFIG_CGROUP_PERF */
1016
1017 static inline bool
perf_cgroup_match(struct perf_event * event)1018 perf_cgroup_match(struct perf_event *event)
1019 {
1020 return true;
1021 }
1022
perf_detach_cgroup(struct perf_event * event)1023 static inline void perf_detach_cgroup(struct perf_event *event)
1024 {}
1025
is_cgroup_event(struct perf_event * event)1026 static inline int is_cgroup_event(struct perf_event *event)
1027 {
1028 return 0;
1029 }
1030
update_cgrp_time_from_event(struct perf_event * event)1031 static inline void update_cgrp_time_from_event(struct perf_event *event)
1032 {
1033 }
1034
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1035 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1036 bool final)
1037 {
1038 }
1039
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1040 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1041 struct perf_event_attr *attr,
1042 struct perf_event *group_leader)
1043 {
1044 return -EINVAL;
1045 }
1046
1047 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1048 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1049 {
1050 }
1051
perf_cgroup_event_time(struct perf_event * event)1052 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1053 {
1054 return 0;
1055 }
1056
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1057 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1058 {
1059 return 0;
1060 }
1061
1062 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1063 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1064 {
1065 }
1066
1067 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1068 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1069 {
1070 }
1071
perf_cgroup_switch(struct task_struct * task)1072 static void perf_cgroup_switch(struct task_struct *task)
1073 {
1074 }
1075 #endif
1076
1077 /*
1078 * set default to be dependent on timer tick just
1079 * like original code
1080 */
1081 #define PERF_CPU_HRTIMER (1000 / HZ)
1082 /*
1083 * function must be called with interrupts disabled
1084 */
perf_mux_hrtimer_handler(struct hrtimer * hr)1085 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1086 {
1087 struct perf_cpu_pmu_context *cpc;
1088 bool rotations;
1089
1090 lockdep_assert_irqs_disabled();
1091
1092 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1093 rotations = perf_rotate_context(cpc);
1094
1095 raw_spin_lock(&cpc->hrtimer_lock);
1096 if (rotations)
1097 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1098 else
1099 cpc->hrtimer_active = 0;
1100 raw_spin_unlock(&cpc->hrtimer_lock);
1101
1102 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1103 }
1104
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1105 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1106 {
1107 struct hrtimer *timer = &cpc->hrtimer;
1108 struct pmu *pmu = cpc->epc.pmu;
1109 u64 interval;
1110
1111 /*
1112 * check default is sane, if not set then force to
1113 * default interval (1/tick)
1114 */
1115 interval = pmu->hrtimer_interval_ms;
1116 if (interval < 1)
1117 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1118
1119 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1120
1121 raw_spin_lock_init(&cpc->hrtimer_lock);
1122 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1123 timer->function = perf_mux_hrtimer_handler;
1124 }
1125
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1126 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1127 {
1128 struct hrtimer *timer = &cpc->hrtimer;
1129 unsigned long flags;
1130
1131 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1132 if (!cpc->hrtimer_active) {
1133 cpc->hrtimer_active = 1;
1134 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1135 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1136 }
1137 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1138
1139 return 0;
1140 }
1141
perf_mux_hrtimer_restart_ipi(void * arg)1142 static int perf_mux_hrtimer_restart_ipi(void *arg)
1143 {
1144 return perf_mux_hrtimer_restart(arg);
1145 }
1146
perf_pmu_disable(struct pmu * pmu)1147 void perf_pmu_disable(struct pmu *pmu)
1148 {
1149 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1150 if (!(*count)++)
1151 pmu->pmu_disable(pmu);
1152 }
1153
perf_pmu_enable(struct pmu * pmu)1154 void perf_pmu_enable(struct pmu *pmu)
1155 {
1156 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1157 if (!--(*count))
1158 pmu->pmu_enable(pmu);
1159 }
1160
perf_assert_pmu_disabled(struct pmu * pmu)1161 static void perf_assert_pmu_disabled(struct pmu *pmu)
1162 {
1163 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1164 }
1165
get_ctx(struct perf_event_context * ctx)1166 static void get_ctx(struct perf_event_context *ctx)
1167 {
1168 refcount_inc(&ctx->refcount);
1169 }
1170
alloc_task_ctx_data(struct pmu * pmu)1171 static void *alloc_task_ctx_data(struct pmu *pmu)
1172 {
1173 if (pmu->task_ctx_cache)
1174 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1175
1176 return NULL;
1177 }
1178
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1179 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1180 {
1181 if (pmu->task_ctx_cache && task_ctx_data)
1182 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1183 }
1184
free_ctx(struct rcu_head * head)1185 static void free_ctx(struct rcu_head *head)
1186 {
1187 struct perf_event_context *ctx;
1188
1189 ctx = container_of(head, struct perf_event_context, rcu_head);
1190 kfree(ctx);
1191 }
1192
put_ctx(struct perf_event_context * ctx)1193 static void put_ctx(struct perf_event_context *ctx)
1194 {
1195 if (refcount_dec_and_test(&ctx->refcount)) {
1196 if (ctx->parent_ctx)
1197 put_ctx(ctx->parent_ctx);
1198 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1199 put_task_struct(ctx->task);
1200 call_rcu(&ctx->rcu_head, free_ctx);
1201 }
1202 }
1203
1204 /*
1205 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1206 * perf_pmu_migrate_context() we need some magic.
1207 *
1208 * Those places that change perf_event::ctx will hold both
1209 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1210 *
1211 * Lock ordering is by mutex address. There are two other sites where
1212 * perf_event_context::mutex nests and those are:
1213 *
1214 * - perf_event_exit_task_context() [ child , 0 ]
1215 * perf_event_exit_event()
1216 * put_event() [ parent, 1 ]
1217 *
1218 * - perf_event_init_context() [ parent, 0 ]
1219 * inherit_task_group()
1220 * inherit_group()
1221 * inherit_event()
1222 * perf_event_alloc()
1223 * perf_init_event()
1224 * perf_try_init_event() [ child , 1 ]
1225 *
1226 * While it appears there is an obvious deadlock here -- the parent and child
1227 * nesting levels are inverted between the two. This is in fact safe because
1228 * life-time rules separate them. That is an exiting task cannot fork, and a
1229 * spawning task cannot (yet) exit.
1230 *
1231 * But remember that these are parent<->child context relations, and
1232 * migration does not affect children, therefore these two orderings should not
1233 * interact.
1234 *
1235 * The change in perf_event::ctx does not affect children (as claimed above)
1236 * because the sys_perf_event_open() case will install a new event and break
1237 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1238 * concerned with cpuctx and that doesn't have children.
1239 *
1240 * The places that change perf_event::ctx will issue:
1241 *
1242 * perf_remove_from_context();
1243 * synchronize_rcu();
1244 * perf_install_in_context();
1245 *
1246 * to affect the change. The remove_from_context() + synchronize_rcu() should
1247 * quiesce the event, after which we can install it in the new location. This
1248 * means that only external vectors (perf_fops, prctl) can perturb the event
1249 * while in transit. Therefore all such accessors should also acquire
1250 * perf_event_context::mutex to serialize against this.
1251 *
1252 * However; because event->ctx can change while we're waiting to acquire
1253 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1254 * function.
1255 *
1256 * Lock order:
1257 * exec_update_lock
1258 * task_struct::perf_event_mutex
1259 * perf_event_context::mutex
1260 * perf_event::child_mutex;
1261 * perf_event_context::lock
1262 * mmap_lock
1263 * perf_event::mmap_mutex
1264 * perf_buffer::aux_mutex
1265 * perf_addr_filters_head::lock
1266 *
1267 * cpu_hotplug_lock
1268 * pmus_lock
1269 * cpuctx->mutex / perf_event_context::mutex
1270 */
1271 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1272 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1273 {
1274 struct perf_event_context *ctx;
1275
1276 again:
1277 rcu_read_lock();
1278 ctx = READ_ONCE(event->ctx);
1279 if (!refcount_inc_not_zero(&ctx->refcount)) {
1280 rcu_read_unlock();
1281 goto again;
1282 }
1283 rcu_read_unlock();
1284
1285 mutex_lock_nested(&ctx->mutex, nesting);
1286 if (event->ctx != ctx) {
1287 mutex_unlock(&ctx->mutex);
1288 put_ctx(ctx);
1289 goto again;
1290 }
1291
1292 return ctx;
1293 }
1294
1295 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1296 perf_event_ctx_lock(struct perf_event *event)
1297 {
1298 return perf_event_ctx_lock_nested(event, 0);
1299 }
1300
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1301 static void perf_event_ctx_unlock(struct perf_event *event,
1302 struct perf_event_context *ctx)
1303 {
1304 mutex_unlock(&ctx->mutex);
1305 put_ctx(ctx);
1306 }
1307
1308 /*
1309 * This must be done under the ctx->lock, such as to serialize against
1310 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1311 * calling scheduler related locks and ctx->lock nests inside those.
1312 */
1313 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1314 unclone_ctx(struct perf_event_context *ctx)
1315 {
1316 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1317
1318 lockdep_assert_held(&ctx->lock);
1319
1320 if (parent_ctx)
1321 ctx->parent_ctx = NULL;
1322 ctx->generation++;
1323
1324 return parent_ctx;
1325 }
1326
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1327 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1328 enum pid_type type)
1329 {
1330 u32 nr;
1331 /*
1332 * only top level events have the pid namespace they were created in
1333 */
1334 if (event->parent)
1335 event = event->parent;
1336
1337 nr = __task_pid_nr_ns(p, type, event->ns);
1338 /* avoid -1 if it is idle thread or runs in another ns */
1339 if (!nr && !pid_alive(p))
1340 nr = -1;
1341 return nr;
1342 }
1343
perf_event_pid(struct perf_event * event,struct task_struct * p)1344 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1345 {
1346 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1347 }
1348
perf_event_tid(struct perf_event * event,struct task_struct * p)1349 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1350 {
1351 return perf_event_pid_type(event, p, PIDTYPE_PID);
1352 }
1353
1354 /*
1355 * If we inherit events we want to return the parent event id
1356 * to userspace.
1357 */
primary_event_id(struct perf_event * event)1358 static u64 primary_event_id(struct perf_event *event)
1359 {
1360 u64 id = event->id;
1361
1362 if (event->parent)
1363 id = event->parent->id;
1364
1365 return id;
1366 }
1367
1368 /*
1369 * Get the perf_event_context for a task and lock it.
1370 *
1371 * This has to cope with the fact that until it is locked,
1372 * the context could get moved to another task.
1373 */
1374 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1375 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1376 {
1377 struct perf_event_context *ctx;
1378
1379 retry:
1380 /*
1381 * One of the few rules of preemptible RCU is that one cannot do
1382 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1383 * part of the read side critical section was irqs-enabled -- see
1384 * rcu_read_unlock_special().
1385 *
1386 * Since ctx->lock nests under rq->lock we must ensure the entire read
1387 * side critical section has interrupts disabled.
1388 */
1389 local_irq_save(*flags);
1390 rcu_read_lock();
1391 ctx = rcu_dereference(task->perf_event_ctxp);
1392 if (ctx) {
1393 /*
1394 * If this context is a clone of another, it might
1395 * get swapped for another underneath us by
1396 * perf_event_task_sched_out, though the
1397 * rcu_read_lock() protects us from any context
1398 * getting freed. Lock the context and check if it
1399 * got swapped before we could get the lock, and retry
1400 * if so. If we locked the right context, then it
1401 * can't get swapped on us any more.
1402 */
1403 raw_spin_lock(&ctx->lock);
1404 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1405 raw_spin_unlock(&ctx->lock);
1406 rcu_read_unlock();
1407 local_irq_restore(*flags);
1408 goto retry;
1409 }
1410
1411 if (ctx->task == TASK_TOMBSTONE ||
1412 !refcount_inc_not_zero(&ctx->refcount)) {
1413 raw_spin_unlock(&ctx->lock);
1414 ctx = NULL;
1415 } else {
1416 WARN_ON_ONCE(ctx->task != task);
1417 }
1418 }
1419 rcu_read_unlock();
1420 if (!ctx)
1421 local_irq_restore(*flags);
1422 return ctx;
1423 }
1424
1425 /*
1426 * Get the context for a task and increment its pin_count so it
1427 * can't get swapped to another task. This also increments its
1428 * reference count so that the context can't get freed.
1429 */
1430 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1431 perf_pin_task_context(struct task_struct *task)
1432 {
1433 struct perf_event_context *ctx;
1434 unsigned long flags;
1435
1436 ctx = perf_lock_task_context(task, &flags);
1437 if (ctx) {
1438 ++ctx->pin_count;
1439 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1440 }
1441 return ctx;
1442 }
1443
perf_unpin_context(struct perf_event_context * ctx)1444 static void perf_unpin_context(struct perf_event_context *ctx)
1445 {
1446 unsigned long flags;
1447
1448 raw_spin_lock_irqsave(&ctx->lock, flags);
1449 --ctx->pin_count;
1450 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1451 }
1452
1453 /*
1454 * Update the record of the current time in a context.
1455 */
__update_context_time(struct perf_event_context * ctx,bool adv)1456 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1457 {
1458 u64 now = perf_clock();
1459
1460 lockdep_assert_held(&ctx->lock);
1461
1462 if (adv)
1463 ctx->time += now - ctx->timestamp;
1464 ctx->timestamp = now;
1465
1466 /*
1467 * The above: time' = time + (now - timestamp), can be re-arranged
1468 * into: time` = now + (time - timestamp), which gives a single value
1469 * offset to compute future time without locks on.
1470 *
1471 * See perf_event_time_now(), which can be used from NMI context where
1472 * it's (obviously) not possible to acquire ctx->lock in order to read
1473 * both the above values in a consistent manner.
1474 */
1475 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1476 }
1477
update_context_time(struct perf_event_context * ctx)1478 static void update_context_time(struct perf_event_context *ctx)
1479 {
1480 __update_context_time(ctx, true);
1481 }
1482
perf_event_time(struct perf_event * event)1483 static u64 perf_event_time(struct perf_event *event)
1484 {
1485 struct perf_event_context *ctx = event->ctx;
1486
1487 if (unlikely(!ctx))
1488 return 0;
1489
1490 if (is_cgroup_event(event))
1491 return perf_cgroup_event_time(event);
1492
1493 return ctx->time;
1494 }
1495
perf_event_time_now(struct perf_event * event,u64 now)1496 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1497 {
1498 struct perf_event_context *ctx = event->ctx;
1499
1500 if (unlikely(!ctx))
1501 return 0;
1502
1503 if (is_cgroup_event(event))
1504 return perf_cgroup_event_time_now(event, now);
1505
1506 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1507 return ctx->time;
1508
1509 now += READ_ONCE(ctx->timeoffset);
1510 return now;
1511 }
1512
get_event_type(struct perf_event * event)1513 static enum event_type_t get_event_type(struct perf_event *event)
1514 {
1515 struct perf_event_context *ctx = event->ctx;
1516 enum event_type_t event_type;
1517
1518 lockdep_assert_held(&ctx->lock);
1519
1520 /*
1521 * It's 'group type', really, because if our group leader is
1522 * pinned, so are we.
1523 */
1524 if (event->group_leader != event)
1525 event = event->group_leader;
1526
1527 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1528 if (!ctx->task)
1529 event_type |= EVENT_CPU;
1530
1531 return event_type;
1532 }
1533
1534 /*
1535 * Helper function to initialize event group nodes.
1536 */
init_event_group(struct perf_event * event)1537 static void init_event_group(struct perf_event *event)
1538 {
1539 RB_CLEAR_NODE(&event->group_node);
1540 event->group_index = 0;
1541 }
1542
1543 /*
1544 * Extract pinned or flexible groups from the context
1545 * based on event attrs bits.
1546 */
1547 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1548 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1549 {
1550 if (event->attr.pinned)
1551 return &ctx->pinned_groups;
1552 else
1553 return &ctx->flexible_groups;
1554 }
1555
1556 /*
1557 * Helper function to initializes perf_event_group trees.
1558 */
perf_event_groups_init(struct perf_event_groups * groups)1559 static void perf_event_groups_init(struct perf_event_groups *groups)
1560 {
1561 groups->tree = RB_ROOT;
1562 groups->index = 0;
1563 }
1564
event_cgroup(const struct perf_event * event)1565 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1566 {
1567 struct cgroup *cgroup = NULL;
1568
1569 #ifdef CONFIG_CGROUP_PERF
1570 if (event->cgrp)
1571 cgroup = event->cgrp->css.cgroup;
1572 #endif
1573
1574 return cgroup;
1575 }
1576
1577 /*
1578 * Compare function for event groups;
1579 *
1580 * Implements complex key that first sorts by CPU and then by virtual index
1581 * which provides ordering when rotating groups for the same CPU.
1582 */
1583 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1584 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1585 const struct cgroup *left_cgroup, const u64 left_group_index,
1586 const struct perf_event *right)
1587 {
1588 if (left_cpu < right->cpu)
1589 return -1;
1590 if (left_cpu > right->cpu)
1591 return 1;
1592
1593 if (left_pmu) {
1594 if (left_pmu < right->pmu_ctx->pmu)
1595 return -1;
1596 if (left_pmu > right->pmu_ctx->pmu)
1597 return 1;
1598 }
1599
1600 #ifdef CONFIG_CGROUP_PERF
1601 {
1602 const struct cgroup *right_cgroup = event_cgroup(right);
1603
1604 if (left_cgroup != right_cgroup) {
1605 if (!left_cgroup) {
1606 /*
1607 * Left has no cgroup but right does, no
1608 * cgroups come first.
1609 */
1610 return -1;
1611 }
1612 if (!right_cgroup) {
1613 /*
1614 * Right has no cgroup but left does, no
1615 * cgroups come first.
1616 */
1617 return 1;
1618 }
1619 /* Two dissimilar cgroups, order by id. */
1620 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1621 return -1;
1622
1623 return 1;
1624 }
1625 }
1626 #endif
1627
1628 if (left_group_index < right->group_index)
1629 return -1;
1630 if (left_group_index > right->group_index)
1631 return 1;
1632
1633 return 0;
1634 }
1635
1636 #define __node_2_pe(node) \
1637 rb_entry((node), struct perf_event, group_node)
1638
__group_less(struct rb_node * a,const struct rb_node * b)1639 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1640 {
1641 struct perf_event *e = __node_2_pe(a);
1642 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1643 e->group_index, __node_2_pe(b)) < 0;
1644 }
1645
1646 struct __group_key {
1647 int cpu;
1648 struct pmu *pmu;
1649 struct cgroup *cgroup;
1650 };
1651
__group_cmp(const void * key,const struct rb_node * node)1652 static inline int __group_cmp(const void *key, const struct rb_node *node)
1653 {
1654 const struct __group_key *a = key;
1655 const struct perf_event *b = __node_2_pe(node);
1656
1657 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1658 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1659 }
1660
1661 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1662 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1663 {
1664 const struct __group_key *a = key;
1665 const struct perf_event *b = __node_2_pe(node);
1666
1667 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1668 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1669 b->group_index, b);
1670 }
1671
1672 /*
1673 * Insert @event into @groups' tree; using
1674 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1675 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1676 */
1677 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1678 perf_event_groups_insert(struct perf_event_groups *groups,
1679 struct perf_event *event)
1680 {
1681 event->group_index = ++groups->index;
1682
1683 rb_add(&event->group_node, &groups->tree, __group_less);
1684 }
1685
1686 /*
1687 * Helper function to insert event into the pinned or flexible groups.
1688 */
1689 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1690 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1691 {
1692 struct perf_event_groups *groups;
1693
1694 groups = get_event_groups(event, ctx);
1695 perf_event_groups_insert(groups, event);
1696 }
1697
1698 /*
1699 * Delete a group from a tree.
1700 */
1701 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1702 perf_event_groups_delete(struct perf_event_groups *groups,
1703 struct perf_event *event)
1704 {
1705 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1706 RB_EMPTY_ROOT(&groups->tree));
1707
1708 rb_erase(&event->group_node, &groups->tree);
1709 init_event_group(event);
1710 }
1711
1712 /*
1713 * Helper function to delete event from its groups.
1714 */
1715 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1716 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1717 {
1718 struct perf_event_groups *groups;
1719
1720 groups = get_event_groups(event, ctx);
1721 perf_event_groups_delete(groups, event);
1722 }
1723
1724 /*
1725 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1726 */
1727 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1728 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1729 struct pmu *pmu, struct cgroup *cgrp)
1730 {
1731 struct __group_key key = {
1732 .cpu = cpu,
1733 .pmu = pmu,
1734 .cgroup = cgrp,
1735 };
1736 struct rb_node *node;
1737
1738 node = rb_find_first(&key, &groups->tree, __group_cmp);
1739 if (node)
1740 return __node_2_pe(node);
1741
1742 return NULL;
1743 }
1744
1745 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1746 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1747 {
1748 struct __group_key key = {
1749 .cpu = event->cpu,
1750 .pmu = pmu,
1751 .cgroup = event_cgroup(event),
1752 };
1753 struct rb_node *next;
1754
1755 next = rb_next_match(&key, &event->group_node, __group_cmp);
1756 if (next)
1757 return __node_2_pe(next);
1758
1759 return NULL;
1760 }
1761
1762 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1763 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1764 event; event = perf_event_groups_next(event, pmu))
1765
1766 /*
1767 * Iterate through the whole groups tree.
1768 */
1769 #define perf_event_groups_for_each(event, groups) \
1770 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1771 typeof(*event), group_node); event; \
1772 event = rb_entry_safe(rb_next(&event->group_node), \
1773 typeof(*event), group_node))
1774
1775 /*
1776 * Add an event from the lists for its context.
1777 * Must be called with ctx->mutex and ctx->lock held.
1778 */
1779 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1780 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1781 {
1782 lockdep_assert_held(&ctx->lock);
1783
1784 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1785 event->attach_state |= PERF_ATTACH_CONTEXT;
1786
1787 event->tstamp = perf_event_time(event);
1788
1789 /*
1790 * If we're a stand alone event or group leader, we go to the context
1791 * list, group events are kept attached to the group so that
1792 * perf_group_detach can, at all times, locate all siblings.
1793 */
1794 if (event->group_leader == event) {
1795 event->group_caps = event->event_caps;
1796 add_event_to_groups(event, ctx);
1797 }
1798
1799 list_add_rcu(&event->event_entry, &ctx->event_list);
1800 ctx->nr_events++;
1801 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1802 ctx->nr_user++;
1803 if (event->attr.inherit_stat)
1804 ctx->nr_stat++;
1805
1806 if (event->state > PERF_EVENT_STATE_OFF)
1807 perf_cgroup_event_enable(event, ctx);
1808
1809 ctx->generation++;
1810 event->pmu_ctx->nr_events++;
1811 }
1812
1813 /*
1814 * Initialize event state based on the perf_event_attr::disabled.
1815 */
perf_event__state_init(struct perf_event * event)1816 static inline void perf_event__state_init(struct perf_event *event)
1817 {
1818 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1819 PERF_EVENT_STATE_INACTIVE;
1820 }
1821
__perf_event_read_size(u64 read_format,int nr_siblings)1822 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1823 {
1824 int entry = sizeof(u64); /* value */
1825 int size = 0;
1826 int nr = 1;
1827
1828 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1829 size += sizeof(u64);
1830
1831 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1832 size += sizeof(u64);
1833
1834 if (read_format & PERF_FORMAT_ID)
1835 entry += sizeof(u64);
1836
1837 if (read_format & PERF_FORMAT_LOST)
1838 entry += sizeof(u64);
1839
1840 if (read_format & PERF_FORMAT_GROUP) {
1841 nr += nr_siblings;
1842 size += sizeof(u64);
1843 }
1844
1845 /*
1846 * Since perf_event_validate_size() limits this to 16k and inhibits
1847 * adding more siblings, this will never overflow.
1848 */
1849 return size + nr * entry;
1850 }
1851
__perf_event_header_size(struct perf_event * event,u64 sample_type)1852 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1853 {
1854 struct perf_sample_data *data;
1855 u16 size = 0;
1856
1857 if (sample_type & PERF_SAMPLE_IP)
1858 size += sizeof(data->ip);
1859
1860 if (sample_type & PERF_SAMPLE_ADDR)
1861 size += sizeof(data->addr);
1862
1863 if (sample_type & PERF_SAMPLE_PERIOD)
1864 size += sizeof(data->period);
1865
1866 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1867 size += sizeof(data->weight.full);
1868
1869 if (sample_type & PERF_SAMPLE_READ)
1870 size += event->read_size;
1871
1872 if (sample_type & PERF_SAMPLE_DATA_SRC)
1873 size += sizeof(data->data_src.val);
1874
1875 if (sample_type & PERF_SAMPLE_TRANSACTION)
1876 size += sizeof(data->txn);
1877
1878 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1879 size += sizeof(data->phys_addr);
1880
1881 if (sample_type & PERF_SAMPLE_CGROUP)
1882 size += sizeof(data->cgroup);
1883
1884 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1885 size += sizeof(data->data_page_size);
1886
1887 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1888 size += sizeof(data->code_page_size);
1889
1890 event->header_size = size;
1891 }
1892
1893 /*
1894 * Called at perf_event creation and when events are attached/detached from a
1895 * group.
1896 */
perf_event__header_size(struct perf_event * event)1897 static void perf_event__header_size(struct perf_event *event)
1898 {
1899 event->read_size =
1900 __perf_event_read_size(event->attr.read_format,
1901 event->group_leader->nr_siblings);
1902 __perf_event_header_size(event, event->attr.sample_type);
1903 }
1904
perf_event__id_header_size(struct perf_event * event)1905 static void perf_event__id_header_size(struct perf_event *event)
1906 {
1907 struct perf_sample_data *data;
1908 u64 sample_type = event->attr.sample_type;
1909 u16 size = 0;
1910
1911 if (sample_type & PERF_SAMPLE_TID)
1912 size += sizeof(data->tid_entry);
1913
1914 if (sample_type & PERF_SAMPLE_TIME)
1915 size += sizeof(data->time);
1916
1917 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918 size += sizeof(data->id);
1919
1920 if (sample_type & PERF_SAMPLE_ID)
1921 size += sizeof(data->id);
1922
1923 if (sample_type & PERF_SAMPLE_STREAM_ID)
1924 size += sizeof(data->stream_id);
1925
1926 if (sample_type & PERF_SAMPLE_CPU)
1927 size += sizeof(data->cpu_entry);
1928
1929 event->id_header_size = size;
1930 }
1931
1932 /*
1933 * Check that adding an event to the group does not result in anybody
1934 * overflowing the 64k event limit imposed by the output buffer.
1935 *
1936 * Specifically, check that the read_size for the event does not exceed 16k,
1937 * read_size being the one term that grows with groups size. Since read_size
1938 * depends on per-event read_format, also (re)check the existing events.
1939 *
1940 * This leaves 48k for the constant size fields and things like callchains,
1941 * branch stacks and register sets.
1942 */
perf_event_validate_size(struct perf_event * event)1943 static bool perf_event_validate_size(struct perf_event *event)
1944 {
1945 struct perf_event *sibling, *group_leader = event->group_leader;
1946
1947 if (__perf_event_read_size(event->attr.read_format,
1948 group_leader->nr_siblings + 1) > 16*1024)
1949 return false;
1950
1951 if (__perf_event_read_size(group_leader->attr.read_format,
1952 group_leader->nr_siblings + 1) > 16*1024)
1953 return false;
1954
1955 /*
1956 * When creating a new group leader, group_leader->ctx is initialized
1957 * after the size has been validated, but we cannot safely use
1958 * for_each_sibling_event() until group_leader->ctx is set. A new group
1959 * leader cannot have any siblings yet, so we can safely skip checking
1960 * the non-existent siblings.
1961 */
1962 if (event == group_leader)
1963 return true;
1964
1965 for_each_sibling_event(sibling, group_leader) {
1966 if (__perf_event_read_size(sibling->attr.read_format,
1967 group_leader->nr_siblings + 1) > 16*1024)
1968 return false;
1969 }
1970
1971 return true;
1972 }
1973
perf_group_attach(struct perf_event * event)1974 static void perf_group_attach(struct perf_event *event)
1975 {
1976 struct perf_event *group_leader = event->group_leader, *pos;
1977
1978 lockdep_assert_held(&event->ctx->lock);
1979
1980 /*
1981 * We can have double attach due to group movement (move_group) in
1982 * perf_event_open().
1983 */
1984 if (event->attach_state & PERF_ATTACH_GROUP)
1985 return;
1986
1987 event->attach_state |= PERF_ATTACH_GROUP;
1988
1989 if (group_leader == event)
1990 return;
1991
1992 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1993
1994 group_leader->group_caps &= event->event_caps;
1995
1996 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1997 group_leader->nr_siblings++;
1998 group_leader->group_generation++;
1999
2000 perf_event__header_size(group_leader);
2001
2002 for_each_sibling_event(pos, group_leader)
2003 perf_event__header_size(pos);
2004 }
2005
2006 /*
2007 * Remove an event from the lists for its context.
2008 * Must be called with ctx->mutex and ctx->lock held.
2009 */
2010 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2011 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2012 {
2013 WARN_ON_ONCE(event->ctx != ctx);
2014 lockdep_assert_held(&ctx->lock);
2015
2016 /*
2017 * We can have double detach due to exit/hot-unplug + close.
2018 */
2019 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2020 return;
2021
2022 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2023
2024 ctx->nr_events--;
2025 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2026 ctx->nr_user--;
2027 if (event->attr.inherit_stat)
2028 ctx->nr_stat--;
2029
2030 list_del_rcu(&event->event_entry);
2031
2032 if (event->group_leader == event)
2033 del_event_from_groups(event, ctx);
2034
2035 /*
2036 * If event was in error state, then keep it
2037 * that way, otherwise bogus counts will be
2038 * returned on read(). The only way to get out
2039 * of error state is by explicit re-enabling
2040 * of the event
2041 */
2042 if (event->state > PERF_EVENT_STATE_OFF) {
2043 perf_cgroup_event_disable(event, ctx);
2044 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2045 }
2046
2047 ctx->generation++;
2048 event->pmu_ctx->nr_events--;
2049 }
2050
2051 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2052 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2053 {
2054 if (!has_aux(aux_event))
2055 return 0;
2056
2057 if (!event->pmu->aux_output_match)
2058 return 0;
2059
2060 return event->pmu->aux_output_match(aux_event);
2061 }
2062
2063 static void put_event(struct perf_event *event);
2064 static void event_sched_out(struct perf_event *event,
2065 struct perf_event_context *ctx);
2066
perf_put_aux_event(struct perf_event * event)2067 static void perf_put_aux_event(struct perf_event *event)
2068 {
2069 struct perf_event_context *ctx = event->ctx;
2070 struct perf_event *iter;
2071
2072 /*
2073 * If event uses aux_event tear down the link
2074 */
2075 if (event->aux_event) {
2076 iter = event->aux_event;
2077 event->aux_event = NULL;
2078 put_event(iter);
2079 return;
2080 }
2081
2082 /*
2083 * If the event is an aux_event, tear down all links to
2084 * it from other events.
2085 */
2086 for_each_sibling_event(iter, event->group_leader) {
2087 if (iter->aux_event != event)
2088 continue;
2089
2090 iter->aux_event = NULL;
2091 put_event(event);
2092
2093 /*
2094 * If it's ACTIVE, schedule it out and put it into ERROR
2095 * state so that we don't try to schedule it again. Note
2096 * that perf_event_enable() will clear the ERROR status.
2097 */
2098 event_sched_out(iter, ctx);
2099 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2100 }
2101 }
2102
perf_need_aux_event(struct perf_event * event)2103 static bool perf_need_aux_event(struct perf_event *event)
2104 {
2105 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2106 }
2107
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2108 static int perf_get_aux_event(struct perf_event *event,
2109 struct perf_event *group_leader)
2110 {
2111 /*
2112 * Our group leader must be an aux event if we want to be
2113 * an aux_output. This way, the aux event will precede its
2114 * aux_output events in the group, and therefore will always
2115 * schedule first.
2116 */
2117 if (!group_leader)
2118 return 0;
2119
2120 /*
2121 * aux_output and aux_sample_size are mutually exclusive.
2122 */
2123 if (event->attr.aux_output && event->attr.aux_sample_size)
2124 return 0;
2125
2126 if (event->attr.aux_output &&
2127 !perf_aux_output_match(event, group_leader))
2128 return 0;
2129
2130 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2131 return 0;
2132
2133 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2134 return 0;
2135
2136 /*
2137 * Link aux_outputs to their aux event; this is undone in
2138 * perf_group_detach() by perf_put_aux_event(). When the
2139 * group in torn down, the aux_output events loose their
2140 * link to the aux_event and can't schedule any more.
2141 */
2142 event->aux_event = group_leader;
2143
2144 return 1;
2145 }
2146
get_event_list(struct perf_event * event)2147 static inline struct list_head *get_event_list(struct perf_event *event)
2148 {
2149 return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2150 &event->pmu_ctx->flexible_active;
2151 }
2152
2153 /*
2154 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2155 * cannot exist on their own, schedule them out and move them into the ERROR
2156 * state. Also see _perf_event_enable(), it will not be able to recover
2157 * this ERROR state.
2158 */
perf_remove_sibling_event(struct perf_event * event)2159 static inline void perf_remove_sibling_event(struct perf_event *event)
2160 {
2161 event_sched_out(event, event->ctx);
2162 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2163 }
2164
perf_group_detach(struct perf_event * event)2165 static void perf_group_detach(struct perf_event *event)
2166 {
2167 struct perf_event *leader = event->group_leader;
2168 struct perf_event *sibling, *tmp;
2169 struct perf_event_context *ctx = event->ctx;
2170
2171 lockdep_assert_held(&ctx->lock);
2172
2173 /*
2174 * We can have double detach due to exit/hot-unplug + close.
2175 */
2176 if (!(event->attach_state & PERF_ATTACH_GROUP))
2177 return;
2178
2179 event->attach_state &= ~PERF_ATTACH_GROUP;
2180
2181 perf_put_aux_event(event);
2182
2183 /*
2184 * If this is a sibling, remove it from its group.
2185 */
2186 if (leader != event) {
2187 list_del_init(&event->sibling_list);
2188 event->group_leader->nr_siblings--;
2189 event->group_leader->group_generation++;
2190 goto out;
2191 }
2192
2193 /*
2194 * If this was a group event with sibling events then
2195 * upgrade the siblings to singleton events by adding them
2196 * to whatever list we are on.
2197 */
2198 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2199
2200 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2201 perf_remove_sibling_event(sibling);
2202
2203 sibling->group_leader = sibling;
2204 list_del_init(&sibling->sibling_list);
2205
2206 /* Inherit group flags from the previous leader */
2207 sibling->group_caps = event->group_caps;
2208
2209 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2210 add_event_to_groups(sibling, event->ctx);
2211
2212 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2213 list_add_tail(&sibling->active_list, get_event_list(sibling));
2214 }
2215
2216 WARN_ON_ONCE(sibling->ctx != event->ctx);
2217 }
2218
2219 out:
2220 for_each_sibling_event(tmp, leader)
2221 perf_event__header_size(tmp);
2222
2223 perf_event__header_size(leader);
2224 }
2225
2226 static void sync_child_event(struct perf_event *child_event);
2227
perf_child_detach(struct perf_event * event)2228 static void perf_child_detach(struct perf_event *event)
2229 {
2230 struct perf_event *parent_event = event->parent;
2231
2232 if (!(event->attach_state & PERF_ATTACH_CHILD))
2233 return;
2234
2235 event->attach_state &= ~PERF_ATTACH_CHILD;
2236
2237 if (WARN_ON_ONCE(!parent_event))
2238 return;
2239
2240 lockdep_assert_held(&parent_event->child_mutex);
2241
2242 sync_child_event(event);
2243 list_del_init(&event->child_list);
2244 }
2245
is_orphaned_event(struct perf_event * event)2246 static bool is_orphaned_event(struct perf_event *event)
2247 {
2248 return event->state == PERF_EVENT_STATE_DEAD;
2249 }
2250
2251 static inline int
event_filter_match(struct perf_event * event)2252 event_filter_match(struct perf_event *event)
2253 {
2254 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2255 perf_cgroup_match(event);
2256 }
2257
2258 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2259 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2260 {
2261 struct perf_event_pmu_context *epc = event->pmu_ctx;
2262 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2263 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2264
2265 // XXX cpc serialization, probably per-cpu IRQ disabled
2266
2267 WARN_ON_ONCE(event->ctx != ctx);
2268 lockdep_assert_held(&ctx->lock);
2269
2270 if (event->state != PERF_EVENT_STATE_ACTIVE)
2271 return;
2272
2273 /*
2274 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2275 * we can schedule events _OUT_ individually through things like
2276 * __perf_remove_from_context().
2277 */
2278 list_del_init(&event->active_list);
2279
2280 perf_pmu_disable(event->pmu);
2281
2282 event->pmu->del(event, 0);
2283 event->oncpu = -1;
2284
2285 if (event->pending_disable) {
2286 event->pending_disable = 0;
2287 perf_cgroup_event_disable(event, ctx);
2288 state = PERF_EVENT_STATE_OFF;
2289 }
2290
2291 if (event->pending_sigtrap) {
2292 event->pending_sigtrap = 0;
2293 if (state != PERF_EVENT_STATE_OFF &&
2294 !event->pending_work &&
2295 !task_work_add(current, &event->pending_task, TWA_RESUME)) {
2296 event->pending_work = 1;
2297 } else {
2298 local_dec(&event->ctx->nr_pending);
2299 }
2300 }
2301
2302 perf_event_set_state(event, state);
2303
2304 if (!is_software_event(event))
2305 cpc->active_oncpu--;
2306 if (event->attr.freq && event->attr.sample_freq)
2307 ctx->nr_freq--;
2308 if (event->attr.exclusive || !cpc->active_oncpu)
2309 cpc->exclusive = 0;
2310
2311 perf_pmu_enable(event->pmu);
2312 }
2313
2314 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2315 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2316 {
2317 struct perf_event *event;
2318
2319 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2320 return;
2321
2322 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2323
2324 event_sched_out(group_event, ctx);
2325
2326 /*
2327 * Schedule out siblings (if any):
2328 */
2329 for_each_sibling_event(event, group_event)
2330 event_sched_out(event, ctx);
2331 }
2332
2333 #define DETACH_GROUP 0x01UL
2334 #define DETACH_CHILD 0x02UL
2335 #define DETACH_DEAD 0x04UL
2336 #define DETACH_EXIT 0x08UL
2337
2338 /*
2339 * Cross CPU call to remove a performance event
2340 *
2341 * We disable the event on the hardware level first. After that we
2342 * remove it from the context list.
2343 */
2344 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2345 __perf_remove_from_context(struct perf_event *event,
2346 struct perf_cpu_context *cpuctx,
2347 struct perf_event_context *ctx,
2348 void *info)
2349 {
2350 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2351 enum perf_event_state state = PERF_EVENT_STATE_OFF;
2352 unsigned long flags = (unsigned long)info;
2353
2354 if (ctx->is_active & EVENT_TIME) {
2355 update_context_time(ctx);
2356 update_cgrp_time_from_cpuctx(cpuctx, false);
2357 }
2358
2359 /*
2360 * Ensure event_sched_out() switches to OFF, at the very least
2361 * this avoids raising perf_pending_task() at this time.
2362 */
2363 if (flags & DETACH_EXIT)
2364 state = PERF_EVENT_STATE_EXIT;
2365 if (flags & DETACH_DEAD) {
2366 event->pending_disable = 1;
2367 state = PERF_EVENT_STATE_DEAD;
2368 }
2369 event_sched_out(event, ctx);
2370 perf_event_set_state(event, min(event->state, state));
2371 if (flags & DETACH_GROUP)
2372 perf_group_detach(event);
2373 if (flags & DETACH_CHILD)
2374 perf_child_detach(event);
2375 list_del_event(event, ctx);
2376
2377 if (!pmu_ctx->nr_events) {
2378 pmu_ctx->rotate_necessary = 0;
2379
2380 if (ctx->task && ctx->is_active) {
2381 struct perf_cpu_pmu_context *cpc;
2382
2383 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2384 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2385 cpc->task_epc = NULL;
2386 }
2387 }
2388
2389 if (!ctx->nr_events && ctx->is_active) {
2390 if (ctx == &cpuctx->ctx)
2391 update_cgrp_time_from_cpuctx(cpuctx, true);
2392
2393 ctx->is_active = 0;
2394 if (ctx->task) {
2395 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2396 cpuctx->task_ctx = NULL;
2397 }
2398 }
2399 }
2400
2401 /*
2402 * Remove the event from a task's (or a CPU's) list of events.
2403 *
2404 * If event->ctx is a cloned context, callers must make sure that
2405 * every task struct that event->ctx->task could possibly point to
2406 * remains valid. This is OK when called from perf_release since
2407 * that only calls us on the top-level context, which can't be a clone.
2408 * When called from perf_event_exit_task, it's OK because the
2409 * context has been detached from its task.
2410 */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2411 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2412 {
2413 struct perf_event_context *ctx = event->ctx;
2414
2415 lockdep_assert_held(&ctx->mutex);
2416
2417 /*
2418 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2419 * to work in the face of TASK_TOMBSTONE, unlike every other
2420 * event_function_call() user.
2421 */
2422 raw_spin_lock_irq(&ctx->lock);
2423 if (!ctx->is_active) {
2424 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2425 ctx, (void *)flags);
2426 raw_spin_unlock_irq(&ctx->lock);
2427 return;
2428 }
2429 raw_spin_unlock_irq(&ctx->lock);
2430
2431 event_function_call(event, __perf_remove_from_context, (void *)flags);
2432 }
2433
2434 /*
2435 * Cross CPU call to disable a performance event
2436 */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2437 static void __perf_event_disable(struct perf_event *event,
2438 struct perf_cpu_context *cpuctx,
2439 struct perf_event_context *ctx,
2440 void *info)
2441 {
2442 if (event->state < PERF_EVENT_STATE_INACTIVE)
2443 return;
2444
2445 if (ctx->is_active & EVENT_TIME) {
2446 update_context_time(ctx);
2447 update_cgrp_time_from_event(event);
2448 }
2449
2450 perf_pmu_disable(event->pmu_ctx->pmu);
2451
2452 if (event == event->group_leader)
2453 group_sched_out(event, ctx);
2454 else
2455 event_sched_out(event, ctx);
2456
2457 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2458 perf_cgroup_event_disable(event, ctx);
2459
2460 perf_pmu_enable(event->pmu_ctx->pmu);
2461 }
2462
2463 /*
2464 * Disable an event.
2465 *
2466 * If event->ctx is a cloned context, callers must make sure that
2467 * every task struct that event->ctx->task could possibly point to
2468 * remains valid. This condition is satisfied when called through
2469 * perf_event_for_each_child or perf_event_for_each because they
2470 * hold the top-level event's child_mutex, so any descendant that
2471 * goes to exit will block in perf_event_exit_event().
2472 *
2473 * When called from perf_pending_irq it's OK because event->ctx
2474 * is the current context on this CPU and preemption is disabled,
2475 * hence we can't get into perf_event_task_sched_out for this context.
2476 */
_perf_event_disable(struct perf_event * event)2477 static void _perf_event_disable(struct perf_event *event)
2478 {
2479 struct perf_event_context *ctx = event->ctx;
2480
2481 raw_spin_lock_irq(&ctx->lock);
2482 if (event->state <= PERF_EVENT_STATE_OFF) {
2483 raw_spin_unlock_irq(&ctx->lock);
2484 return;
2485 }
2486 raw_spin_unlock_irq(&ctx->lock);
2487
2488 event_function_call(event, __perf_event_disable, NULL);
2489 }
2490
perf_event_disable_local(struct perf_event * event)2491 void perf_event_disable_local(struct perf_event *event)
2492 {
2493 event_function_local(event, __perf_event_disable, NULL);
2494 }
2495
2496 /*
2497 * Strictly speaking kernel users cannot create groups and therefore this
2498 * interface does not need the perf_event_ctx_lock() magic.
2499 */
perf_event_disable(struct perf_event * event)2500 void perf_event_disable(struct perf_event *event)
2501 {
2502 struct perf_event_context *ctx;
2503
2504 ctx = perf_event_ctx_lock(event);
2505 _perf_event_disable(event);
2506 perf_event_ctx_unlock(event, ctx);
2507 }
2508 EXPORT_SYMBOL_GPL(perf_event_disable);
2509
perf_event_disable_inatomic(struct perf_event * event)2510 void perf_event_disable_inatomic(struct perf_event *event)
2511 {
2512 event->pending_disable = 1;
2513 irq_work_queue(&event->pending_irq);
2514 }
2515
2516 #define MAX_INTERRUPTS (~0ULL)
2517
2518 static void perf_log_throttle(struct perf_event *event, int enable);
2519 static void perf_log_itrace_start(struct perf_event *event);
2520
2521 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2522 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2523 {
2524 struct perf_event_pmu_context *epc = event->pmu_ctx;
2525 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2526 int ret = 0;
2527
2528 WARN_ON_ONCE(event->ctx != ctx);
2529
2530 lockdep_assert_held(&ctx->lock);
2531
2532 if (event->state <= PERF_EVENT_STATE_OFF)
2533 return 0;
2534
2535 WRITE_ONCE(event->oncpu, smp_processor_id());
2536 /*
2537 * Order event::oncpu write to happen before the ACTIVE state is
2538 * visible. This allows perf_event_{stop,read}() to observe the correct
2539 * ->oncpu if it sees ACTIVE.
2540 */
2541 smp_wmb();
2542 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2543
2544 /*
2545 * Unthrottle events, since we scheduled we might have missed several
2546 * ticks already, also for a heavily scheduling task there is little
2547 * guarantee it'll get a tick in a timely manner.
2548 */
2549 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2550 perf_log_throttle(event, 1);
2551 event->hw.interrupts = 0;
2552 }
2553
2554 perf_pmu_disable(event->pmu);
2555
2556 perf_log_itrace_start(event);
2557
2558 if (event->pmu->add(event, PERF_EF_START)) {
2559 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2560 event->oncpu = -1;
2561 ret = -EAGAIN;
2562 goto out;
2563 }
2564
2565 if (!is_software_event(event))
2566 cpc->active_oncpu++;
2567 if (event->attr.freq && event->attr.sample_freq)
2568 ctx->nr_freq++;
2569
2570 if (event->attr.exclusive)
2571 cpc->exclusive = 1;
2572
2573 out:
2574 perf_pmu_enable(event->pmu);
2575
2576 return ret;
2577 }
2578
2579 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2580 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2581 {
2582 struct perf_event *event, *partial_group = NULL;
2583 struct pmu *pmu = group_event->pmu_ctx->pmu;
2584
2585 if (group_event->state == PERF_EVENT_STATE_OFF)
2586 return 0;
2587
2588 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2589
2590 if (event_sched_in(group_event, ctx))
2591 goto error;
2592
2593 /*
2594 * Schedule in siblings as one group (if any):
2595 */
2596 for_each_sibling_event(event, group_event) {
2597 if (event_sched_in(event, ctx)) {
2598 partial_group = event;
2599 goto group_error;
2600 }
2601 }
2602
2603 if (!pmu->commit_txn(pmu))
2604 return 0;
2605
2606 group_error:
2607 /*
2608 * Groups can be scheduled in as one unit only, so undo any
2609 * partial group before returning:
2610 * The events up to the failed event are scheduled out normally.
2611 */
2612 for_each_sibling_event(event, group_event) {
2613 if (event == partial_group)
2614 break;
2615
2616 event_sched_out(event, ctx);
2617 }
2618 event_sched_out(group_event, ctx);
2619
2620 error:
2621 pmu->cancel_txn(pmu);
2622 return -EAGAIN;
2623 }
2624
2625 /*
2626 * Work out whether we can put this event group on the CPU now.
2627 */
group_can_go_on(struct perf_event * event,int can_add_hw)2628 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2629 {
2630 struct perf_event_pmu_context *epc = event->pmu_ctx;
2631 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2632
2633 /*
2634 * Groups consisting entirely of software events can always go on.
2635 */
2636 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2637 return 1;
2638 /*
2639 * If an exclusive group is already on, no other hardware
2640 * events can go on.
2641 */
2642 if (cpc->exclusive)
2643 return 0;
2644 /*
2645 * If this group is exclusive and there are already
2646 * events on the CPU, it can't go on.
2647 */
2648 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2649 return 0;
2650 /*
2651 * Otherwise, try to add it if all previous groups were able
2652 * to go on.
2653 */
2654 return can_add_hw;
2655 }
2656
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2657 static void add_event_to_ctx(struct perf_event *event,
2658 struct perf_event_context *ctx)
2659 {
2660 list_add_event(event, ctx);
2661 perf_group_attach(event);
2662 }
2663
task_ctx_sched_out(struct perf_event_context * ctx,enum event_type_t event_type)2664 static void task_ctx_sched_out(struct perf_event_context *ctx,
2665 enum event_type_t event_type)
2666 {
2667 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2668
2669 if (!cpuctx->task_ctx)
2670 return;
2671
2672 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2673 return;
2674
2675 ctx_sched_out(ctx, event_type);
2676 }
2677
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2678 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2679 struct perf_event_context *ctx)
2680 {
2681 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2682 if (ctx)
2683 ctx_sched_in(ctx, EVENT_PINNED);
2684 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2685 if (ctx)
2686 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2687 }
2688
2689 /*
2690 * We want to maintain the following priority of scheduling:
2691 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2692 * - task pinned (EVENT_PINNED)
2693 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2694 * - task flexible (EVENT_FLEXIBLE).
2695 *
2696 * In order to avoid unscheduling and scheduling back in everything every
2697 * time an event is added, only do it for the groups of equal priority and
2698 * below.
2699 *
2700 * This can be called after a batch operation on task events, in which case
2701 * event_type is a bit mask of the types of events involved. For CPU events,
2702 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2703 */
2704 /*
2705 * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2706 * event to the context or enabling existing event in the context. We can
2707 * probably optimize it by rescheduling only affected pmu_ctx.
2708 */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2709 static void ctx_resched(struct perf_cpu_context *cpuctx,
2710 struct perf_event_context *task_ctx,
2711 enum event_type_t event_type)
2712 {
2713 bool cpu_event = !!(event_type & EVENT_CPU);
2714
2715 /*
2716 * If pinned groups are involved, flexible groups also need to be
2717 * scheduled out.
2718 */
2719 if (event_type & EVENT_PINNED)
2720 event_type |= EVENT_FLEXIBLE;
2721
2722 event_type &= EVENT_ALL;
2723
2724 perf_ctx_disable(&cpuctx->ctx, false);
2725 if (task_ctx) {
2726 perf_ctx_disable(task_ctx, false);
2727 task_ctx_sched_out(task_ctx, event_type);
2728 }
2729
2730 /*
2731 * Decide which cpu ctx groups to schedule out based on the types
2732 * of events that caused rescheduling:
2733 * - EVENT_CPU: schedule out corresponding groups;
2734 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2735 * - otherwise, do nothing more.
2736 */
2737 if (cpu_event)
2738 ctx_sched_out(&cpuctx->ctx, event_type);
2739 else if (event_type & EVENT_PINNED)
2740 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2741
2742 perf_event_sched_in(cpuctx, task_ctx);
2743
2744 perf_ctx_enable(&cpuctx->ctx, false);
2745 if (task_ctx)
2746 perf_ctx_enable(task_ctx, false);
2747 }
2748
perf_pmu_resched(struct pmu * pmu)2749 void perf_pmu_resched(struct pmu *pmu)
2750 {
2751 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2752 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2753
2754 perf_ctx_lock(cpuctx, task_ctx);
2755 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2756 perf_ctx_unlock(cpuctx, task_ctx);
2757 }
2758
2759 /*
2760 * Cross CPU call to install and enable a performance event
2761 *
2762 * Very similar to remote_function() + event_function() but cannot assume that
2763 * things like ctx->is_active and cpuctx->task_ctx are set.
2764 */
__perf_install_in_context(void * info)2765 static int __perf_install_in_context(void *info)
2766 {
2767 struct perf_event *event = info;
2768 struct perf_event_context *ctx = event->ctx;
2769 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2770 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2771 bool reprogram = true;
2772 int ret = 0;
2773
2774 raw_spin_lock(&cpuctx->ctx.lock);
2775 if (ctx->task) {
2776 raw_spin_lock(&ctx->lock);
2777 task_ctx = ctx;
2778
2779 reprogram = (ctx->task == current);
2780
2781 /*
2782 * If the task is running, it must be running on this CPU,
2783 * otherwise we cannot reprogram things.
2784 *
2785 * If its not running, we don't care, ctx->lock will
2786 * serialize against it becoming runnable.
2787 */
2788 if (task_curr(ctx->task) && !reprogram) {
2789 ret = -ESRCH;
2790 goto unlock;
2791 }
2792
2793 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2794 } else if (task_ctx) {
2795 raw_spin_lock(&task_ctx->lock);
2796 }
2797
2798 #ifdef CONFIG_CGROUP_PERF
2799 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2800 /*
2801 * If the current cgroup doesn't match the event's
2802 * cgroup, we should not try to schedule it.
2803 */
2804 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2805 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2806 event->cgrp->css.cgroup);
2807 }
2808 #endif
2809
2810 if (reprogram) {
2811 ctx_sched_out(ctx, EVENT_TIME);
2812 add_event_to_ctx(event, ctx);
2813 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2814 } else {
2815 add_event_to_ctx(event, ctx);
2816 }
2817
2818 unlock:
2819 perf_ctx_unlock(cpuctx, task_ctx);
2820
2821 return ret;
2822 }
2823
2824 static bool exclusive_event_installable(struct perf_event *event,
2825 struct perf_event_context *ctx);
2826
2827 /*
2828 * Attach a performance event to a context.
2829 *
2830 * Very similar to event_function_call, see comment there.
2831 */
2832 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2833 perf_install_in_context(struct perf_event_context *ctx,
2834 struct perf_event *event,
2835 int cpu)
2836 {
2837 struct task_struct *task = READ_ONCE(ctx->task);
2838
2839 lockdep_assert_held(&ctx->mutex);
2840
2841 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2842
2843 if (event->cpu != -1)
2844 WARN_ON_ONCE(event->cpu != cpu);
2845
2846 /*
2847 * Ensures that if we can observe event->ctx, both the event and ctx
2848 * will be 'complete'. See perf_iterate_sb_cpu().
2849 */
2850 smp_store_release(&event->ctx, ctx);
2851
2852 /*
2853 * perf_event_attr::disabled events will not run and can be initialized
2854 * without IPI. Except when this is the first event for the context, in
2855 * that case we need the magic of the IPI to set ctx->is_active.
2856 *
2857 * The IOC_ENABLE that is sure to follow the creation of a disabled
2858 * event will issue the IPI and reprogram the hardware.
2859 */
2860 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2861 ctx->nr_events && !is_cgroup_event(event)) {
2862 raw_spin_lock_irq(&ctx->lock);
2863 if (ctx->task == TASK_TOMBSTONE) {
2864 raw_spin_unlock_irq(&ctx->lock);
2865 return;
2866 }
2867 add_event_to_ctx(event, ctx);
2868 raw_spin_unlock_irq(&ctx->lock);
2869 return;
2870 }
2871
2872 if (!task) {
2873 cpu_function_call(cpu, __perf_install_in_context, event);
2874 return;
2875 }
2876
2877 /*
2878 * Should not happen, we validate the ctx is still alive before calling.
2879 */
2880 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2881 return;
2882
2883 /*
2884 * Installing events is tricky because we cannot rely on ctx->is_active
2885 * to be set in case this is the nr_events 0 -> 1 transition.
2886 *
2887 * Instead we use task_curr(), which tells us if the task is running.
2888 * However, since we use task_curr() outside of rq::lock, we can race
2889 * against the actual state. This means the result can be wrong.
2890 *
2891 * If we get a false positive, we retry, this is harmless.
2892 *
2893 * If we get a false negative, things are complicated. If we are after
2894 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2895 * value must be correct. If we're before, it doesn't matter since
2896 * perf_event_context_sched_in() will program the counter.
2897 *
2898 * However, this hinges on the remote context switch having observed
2899 * our task->perf_event_ctxp[] store, such that it will in fact take
2900 * ctx::lock in perf_event_context_sched_in().
2901 *
2902 * We do this by task_function_call(), if the IPI fails to hit the task
2903 * we know any future context switch of task must see the
2904 * perf_event_ctpx[] store.
2905 */
2906
2907 /*
2908 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2909 * task_cpu() load, such that if the IPI then does not find the task
2910 * running, a future context switch of that task must observe the
2911 * store.
2912 */
2913 smp_mb();
2914 again:
2915 if (!task_function_call(task, __perf_install_in_context, event))
2916 return;
2917
2918 raw_spin_lock_irq(&ctx->lock);
2919 task = ctx->task;
2920 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2921 /*
2922 * Cannot happen because we already checked above (which also
2923 * cannot happen), and we hold ctx->mutex, which serializes us
2924 * against perf_event_exit_task_context().
2925 */
2926 raw_spin_unlock_irq(&ctx->lock);
2927 return;
2928 }
2929 /*
2930 * If the task is not running, ctx->lock will avoid it becoming so,
2931 * thus we can safely install the event.
2932 */
2933 if (task_curr(task)) {
2934 raw_spin_unlock_irq(&ctx->lock);
2935 goto again;
2936 }
2937 add_event_to_ctx(event, ctx);
2938 raw_spin_unlock_irq(&ctx->lock);
2939 }
2940
2941 /*
2942 * Cross CPU call to enable a performance event
2943 */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2944 static void __perf_event_enable(struct perf_event *event,
2945 struct perf_cpu_context *cpuctx,
2946 struct perf_event_context *ctx,
2947 void *info)
2948 {
2949 struct perf_event *leader = event->group_leader;
2950 struct perf_event_context *task_ctx;
2951
2952 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2953 event->state <= PERF_EVENT_STATE_ERROR)
2954 return;
2955
2956 if (ctx->is_active)
2957 ctx_sched_out(ctx, EVENT_TIME);
2958
2959 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2960 perf_cgroup_event_enable(event, ctx);
2961
2962 if (!ctx->is_active)
2963 return;
2964
2965 if (!event_filter_match(event)) {
2966 ctx_sched_in(ctx, EVENT_TIME);
2967 return;
2968 }
2969
2970 /*
2971 * If the event is in a group and isn't the group leader,
2972 * then don't put it on unless the group is on.
2973 */
2974 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2975 ctx_sched_in(ctx, EVENT_TIME);
2976 return;
2977 }
2978
2979 task_ctx = cpuctx->task_ctx;
2980 if (ctx->task)
2981 WARN_ON_ONCE(task_ctx != ctx);
2982
2983 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2984 }
2985
2986 /*
2987 * Enable an event.
2988 *
2989 * If event->ctx is a cloned context, callers must make sure that
2990 * every task struct that event->ctx->task could possibly point to
2991 * remains valid. This condition is satisfied when called through
2992 * perf_event_for_each_child or perf_event_for_each as described
2993 * for perf_event_disable.
2994 */
_perf_event_enable(struct perf_event * event)2995 static void _perf_event_enable(struct perf_event *event)
2996 {
2997 struct perf_event_context *ctx = event->ctx;
2998
2999 raw_spin_lock_irq(&ctx->lock);
3000 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3001 event->state < PERF_EVENT_STATE_ERROR) {
3002 out:
3003 raw_spin_unlock_irq(&ctx->lock);
3004 return;
3005 }
3006
3007 /*
3008 * If the event is in error state, clear that first.
3009 *
3010 * That way, if we see the event in error state below, we know that it
3011 * has gone back into error state, as distinct from the task having
3012 * been scheduled away before the cross-call arrived.
3013 */
3014 if (event->state == PERF_EVENT_STATE_ERROR) {
3015 /*
3016 * Detached SIBLING events cannot leave ERROR state.
3017 */
3018 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3019 event->group_leader == event)
3020 goto out;
3021
3022 event->state = PERF_EVENT_STATE_OFF;
3023 }
3024 raw_spin_unlock_irq(&ctx->lock);
3025
3026 event_function_call(event, __perf_event_enable, NULL);
3027 }
3028
3029 /*
3030 * See perf_event_disable();
3031 */
perf_event_enable(struct perf_event * event)3032 void perf_event_enable(struct perf_event *event)
3033 {
3034 struct perf_event_context *ctx;
3035
3036 ctx = perf_event_ctx_lock(event);
3037 _perf_event_enable(event);
3038 perf_event_ctx_unlock(event, ctx);
3039 }
3040 EXPORT_SYMBOL_GPL(perf_event_enable);
3041
3042 struct stop_event_data {
3043 struct perf_event *event;
3044 unsigned int restart;
3045 };
3046
__perf_event_stop(void * info)3047 static int __perf_event_stop(void *info)
3048 {
3049 struct stop_event_data *sd = info;
3050 struct perf_event *event = sd->event;
3051
3052 /* if it's already INACTIVE, do nothing */
3053 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3054 return 0;
3055
3056 /* matches smp_wmb() in event_sched_in() */
3057 smp_rmb();
3058
3059 /*
3060 * There is a window with interrupts enabled before we get here,
3061 * so we need to check again lest we try to stop another CPU's event.
3062 */
3063 if (READ_ONCE(event->oncpu) != smp_processor_id())
3064 return -EAGAIN;
3065
3066 event->pmu->stop(event, PERF_EF_UPDATE);
3067
3068 /*
3069 * May race with the actual stop (through perf_pmu_output_stop()),
3070 * but it is only used for events with AUX ring buffer, and such
3071 * events will refuse to restart because of rb::aux_mmap_count==0,
3072 * see comments in perf_aux_output_begin().
3073 *
3074 * Since this is happening on an event-local CPU, no trace is lost
3075 * while restarting.
3076 */
3077 if (sd->restart)
3078 event->pmu->start(event, 0);
3079
3080 return 0;
3081 }
3082
perf_event_stop(struct perf_event * event,int restart)3083 static int perf_event_stop(struct perf_event *event, int restart)
3084 {
3085 struct stop_event_data sd = {
3086 .event = event,
3087 .restart = restart,
3088 };
3089 int ret = 0;
3090
3091 do {
3092 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3093 return 0;
3094
3095 /* matches smp_wmb() in event_sched_in() */
3096 smp_rmb();
3097
3098 /*
3099 * We only want to restart ACTIVE events, so if the event goes
3100 * inactive here (event->oncpu==-1), there's nothing more to do;
3101 * fall through with ret==-ENXIO.
3102 */
3103 ret = cpu_function_call(READ_ONCE(event->oncpu),
3104 __perf_event_stop, &sd);
3105 } while (ret == -EAGAIN);
3106
3107 return ret;
3108 }
3109
3110 /*
3111 * In order to contain the amount of racy and tricky in the address filter
3112 * configuration management, it is a two part process:
3113 *
3114 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3115 * we update the addresses of corresponding vmas in
3116 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3117 * (p2) when an event is scheduled in (pmu::add), it calls
3118 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3119 * if the generation has changed since the previous call.
3120 *
3121 * If (p1) happens while the event is active, we restart it to force (p2).
3122 *
3123 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3124 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3125 * ioctl;
3126 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3127 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3128 * for reading;
3129 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3130 * of exec.
3131 */
perf_event_addr_filters_sync(struct perf_event * event)3132 void perf_event_addr_filters_sync(struct perf_event *event)
3133 {
3134 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3135
3136 if (!has_addr_filter(event))
3137 return;
3138
3139 raw_spin_lock(&ifh->lock);
3140 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3141 event->pmu->addr_filters_sync(event);
3142 event->hw.addr_filters_gen = event->addr_filters_gen;
3143 }
3144 raw_spin_unlock(&ifh->lock);
3145 }
3146 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3147
_perf_event_refresh(struct perf_event * event,int refresh)3148 static int _perf_event_refresh(struct perf_event *event, int refresh)
3149 {
3150 /*
3151 * not supported on inherited events
3152 */
3153 if (event->attr.inherit || !is_sampling_event(event))
3154 return -EINVAL;
3155
3156 atomic_add(refresh, &event->event_limit);
3157 _perf_event_enable(event);
3158
3159 return 0;
3160 }
3161
3162 /*
3163 * See perf_event_disable()
3164 */
perf_event_refresh(struct perf_event * event,int refresh)3165 int perf_event_refresh(struct perf_event *event, int refresh)
3166 {
3167 struct perf_event_context *ctx;
3168 int ret;
3169
3170 ctx = perf_event_ctx_lock(event);
3171 ret = _perf_event_refresh(event, refresh);
3172 perf_event_ctx_unlock(event, ctx);
3173
3174 return ret;
3175 }
3176 EXPORT_SYMBOL_GPL(perf_event_refresh);
3177
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3178 static int perf_event_modify_breakpoint(struct perf_event *bp,
3179 struct perf_event_attr *attr)
3180 {
3181 int err;
3182
3183 _perf_event_disable(bp);
3184
3185 err = modify_user_hw_breakpoint_check(bp, attr, true);
3186
3187 if (!bp->attr.disabled)
3188 _perf_event_enable(bp);
3189
3190 return err;
3191 }
3192
3193 /*
3194 * Copy event-type-independent attributes that may be modified.
3195 */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3196 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3197 const struct perf_event_attr *from)
3198 {
3199 to->sig_data = from->sig_data;
3200 }
3201
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3202 static int perf_event_modify_attr(struct perf_event *event,
3203 struct perf_event_attr *attr)
3204 {
3205 int (*func)(struct perf_event *, struct perf_event_attr *);
3206 struct perf_event *child;
3207 int err;
3208
3209 if (event->attr.type != attr->type)
3210 return -EINVAL;
3211
3212 switch (event->attr.type) {
3213 case PERF_TYPE_BREAKPOINT:
3214 func = perf_event_modify_breakpoint;
3215 break;
3216 default:
3217 /* Place holder for future additions. */
3218 return -EOPNOTSUPP;
3219 }
3220
3221 WARN_ON_ONCE(event->ctx->parent_ctx);
3222
3223 mutex_lock(&event->child_mutex);
3224 /*
3225 * Event-type-independent attributes must be copied before event-type
3226 * modification, which will validate that final attributes match the
3227 * source attributes after all relevant attributes have been copied.
3228 */
3229 perf_event_modify_copy_attr(&event->attr, attr);
3230 err = func(event, attr);
3231 if (err)
3232 goto out;
3233 list_for_each_entry(child, &event->child_list, child_list) {
3234 perf_event_modify_copy_attr(&child->attr, attr);
3235 err = func(child, attr);
3236 if (err)
3237 goto out;
3238 }
3239 out:
3240 mutex_unlock(&event->child_mutex);
3241 return err;
3242 }
3243
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3244 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3245 enum event_type_t event_type)
3246 {
3247 struct perf_event_context *ctx = pmu_ctx->ctx;
3248 struct perf_event *event, *tmp;
3249 struct pmu *pmu = pmu_ctx->pmu;
3250
3251 if (ctx->task && !ctx->is_active) {
3252 struct perf_cpu_pmu_context *cpc;
3253
3254 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3255 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3256 cpc->task_epc = NULL;
3257 }
3258
3259 if (!event_type)
3260 return;
3261
3262 perf_pmu_disable(pmu);
3263 if (event_type & EVENT_PINNED) {
3264 list_for_each_entry_safe(event, tmp,
3265 &pmu_ctx->pinned_active,
3266 active_list)
3267 group_sched_out(event, ctx);
3268 }
3269
3270 if (event_type & EVENT_FLEXIBLE) {
3271 list_for_each_entry_safe(event, tmp,
3272 &pmu_ctx->flexible_active,
3273 active_list)
3274 group_sched_out(event, ctx);
3275 /*
3276 * Since we cleared EVENT_FLEXIBLE, also clear
3277 * rotate_necessary, is will be reset by
3278 * ctx_flexible_sched_in() when needed.
3279 */
3280 pmu_ctx->rotate_necessary = 0;
3281 }
3282 perf_pmu_enable(pmu);
3283 }
3284
3285 static void
ctx_sched_out(struct perf_event_context * ctx,enum event_type_t event_type)3286 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3287 {
3288 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3289 struct perf_event_pmu_context *pmu_ctx;
3290 int is_active = ctx->is_active;
3291 bool cgroup = event_type & EVENT_CGROUP;
3292
3293 event_type &= ~EVENT_CGROUP;
3294
3295 lockdep_assert_held(&ctx->lock);
3296
3297 if (likely(!ctx->nr_events)) {
3298 /*
3299 * See __perf_remove_from_context().
3300 */
3301 WARN_ON_ONCE(ctx->is_active);
3302 if (ctx->task)
3303 WARN_ON_ONCE(cpuctx->task_ctx);
3304 return;
3305 }
3306
3307 /*
3308 * Always update time if it was set; not only when it changes.
3309 * Otherwise we can 'forget' to update time for any but the last
3310 * context we sched out. For example:
3311 *
3312 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3313 * ctx_sched_out(.event_type = EVENT_PINNED)
3314 *
3315 * would only update time for the pinned events.
3316 */
3317 if (is_active & EVENT_TIME) {
3318 /* update (and stop) ctx time */
3319 update_context_time(ctx);
3320 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3321 /*
3322 * CPU-release for the below ->is_active store,
3323 * see __load_acquire() in perf_event_time_now()
3324 */
3325 barrier();
3326 }
3327
3328 ctx->is_active &= ~event_type;
3329 if (!(ctx->is_active & EVENT_ALL))
3330 ctx->is_active = 0;
3331
3332 if (ctx->task) {
3333 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3334 if (!ctx->is_active)
3335 cpuctx->task_ctx = NULL;
3336 }
3337
3338 is_active ^= ctx->is_active; /* changed bits */
3339
3340 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3341 if (cgroup && !pmu_ctx->nr_cgroups)
3342 continue;
3343 __pmu_ctx_sched_out(pmu_ctx, is_active);
3344 }
3345 }
3346
3347 /*
3348 * Test whether two contexts are equivalent, i.e. whether they have both been
3349 * cloned from the same version of the same context.
3350 *
3351 * Equivalence is measured using a generation number in the context that is
3352 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3353 * and list_del_event().
3354 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3355 static int context_equiv(struct perf_event_context *ctx1,
3356 struct perf_event_context *ctx2)
3357 {
3358 lockdep_assert_held(&ctx1->lock);
3359 lockdep_assert_held(&ctx2->lock);
3360
3361 /* Pinning disables the swap optimization */
3362 if (ctx1->pin_count || ctx2->pin_count)
3363 return 0;
3364
3365 /* If ctx1 is the parent of ctx2 */
3366 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3367 return 1;
3368
3369 /* If ctx2 is the parent of ctx1 */
3370 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3371 return 1;
3372
3373 /*
3374 * If ctx1 and ctx2 have the same parent; we flatten the parent
3375 * hierarchy, see perf_event_init_context().
3376 */
3377 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3378 ctx1->parent_gen == ctx2->parent_gen)
3379 return 1;
3380
3381 /* Unmatched */
3382 return 0;
3383 }
3384
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3385 static void __perf_event_sync_stat(struct perf_event *event,
3386 struct perf_event *next_event)
3387 {
3388 u64 value;
3389
3390 if (!event->attr.inherit_stat)
3391 return;
3392
3393 /*
3394 * Update the event value, we cannot use perf_event_read()
3395 * because we're in the middle of a context switch and have IRQs
3396 * disabled, which upsets smp_call_function_single(), however
3397 * we know the event must be on the current CPU, therefore we
3398 * don't need to use it.
3399 */
3400 if (event->state == PERF_EVENT_STATE_ACTIVE)
3401 event->pmu->read(event);
3402
3403 perf_event_update_time(event);
3404
3405 /*
3406 * In order to keep per-task stats reliable we need to flip the event
3407 * values when we flip the contexts.
3408 */
3409 value = local64_read(&next_event->count);
3410 value = local64_xchg(&event->count, value);
3411 local64_set(&next_event->count, value);
3412
3413 swap(event->total_time_enabled, next_event->total_time_enabled);
3414 swap(event->total_time_running, next_event->total_time_running);
3415
3416 /*
3417 * Since we swizzled the values, update the user visible data too.
3418 */
3419 perf_event_update_userpage(event);
3420 perf_event_update_userpage(next_event);
3421 }
3422
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3423 static void perf_event_sync_stat(struct perf_event_context *ctx,
3424 struct perf_event_context *next_ctx)
3425 {
3426 struct perf_event *event, *next_event;
3427
3428 if (!ctx->nr_stat)
3429 return;
3430
3431 update_context_time(ctx);
3432
3433 event = list_first_entry(&ctx->event_list,
3434 struct perf_event, event_entry);
3435
3436 next_event = list_first_entry(&next_ctx->event_list,
3437 struct perf_event, event_entry);
3438
3439 while (&event->event_entry != &ctx->event_list &&
3440 &next_event->event_entry != &next_ctx->event_list) {
3441
3442 __perf_event_sync_stat(event, next_event);
3443
3444 event = list_next_entry(event, event_entry);
3445 next_event = list_next_entry(next_event, event_entry);
3446 }
3447 }
3448
3449 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \
3450 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \
3451 pos2 = list_first_entry(head2, typeof(*pos2), member); \
3452 !list_entry_is_head(pos1, head1, member) && \
3453 !list_entry_is_head(pos2, head2, member); \
3454 pos1 = list_next_entry(pos1, member), \
3455 pos2 = list_next_entry(pos2, member))
3456
perf_event_swap_task_ctx_data(struct perf_event_context * prev_ctx,struct perf_event_context * next_ctx)3457 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3458 struct perf_event_context *next_ctx)
3459 {
3460 struct perf_event_pmu_context *prev_epc, *next_epc;
3461
3462 if (!prev_ctx->nr_task_data)
3463 return;
3464
3465 double_list_for_each_entry(prev_epc, next_epc,
3466 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3467 pmu_ctx_entry) {
3468
3469 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3470 continue;
3471
3472 /*
3473 * PMU specific parts of task perf context can require
3474 * additional synchronization. As an example of such
3475 * synchronization see implementation details of Intel
3476 * LBR call stack data profiling;
3477 */
3478 if (prev_epc->pmu->swap_task_ctx)
3479 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3480 else
3481 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3482 }
3483 }
3484
perf_ctx_sched_task_cb(struct perf_event_context * ctx,bool sched_in)3485 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3486 {
3487 struct perf_event_pmu_context *pmu_ctx;
3488 struct perf_cpu_pmu_context *cpc;
3489
3490 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3491 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3492
3493 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3494 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3495 }
3496 }
3497
3498 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3499 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3500 {
3501 struct perf_event_context *ctx = task->perf_event_ctxp;
3502 struct perf_event_context *next_ctx;
3503 struct perf_event_context *parent, *next_parent;
3504 int do_switch = 1;
3505
3506 if (likely(!ctx))
3507 return;
3508
3509 rcu_read_lock();
3510 next_ctx = rcu_dereference(next->perf_event_ctxp);
3511 if (!next_ctx)
3512 goto unlock;
3513
3514 parent = rcu_dereference(ctx->parent_ctx);
3515 next_parent = rcu_dereference(next_ctx->parent_ctx);
3516
3517 /* If neither context have a parent context; they cannot be clones. */
3518 if (!parent && !next_parent)
3519 goto unlock;
3520
3521 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3522 /*
3523 * Looks like the two contexts are clones, so we might be
3524 * able to optimize the context switch. We lock both
3525 * contexts and check that they are clones under the
3526 * lock (including re-checking that neither has been
3527 * uncloned in the meantime). It doesn't matter which
3528 * order we take the locks because no other cpu could
3529 * be trying to lock both of these tasks.
3530 */
3531 raw_spin_lock(&ctx->lock);
3532 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3533 if (context_equiv(ctx, next_ctx)) {
3534
3535 perf_ctx_disable(ctx, false);
3536
3537 /* PMIs are disabled; ctx->nr_pending is stable. */
3538 if (local_read(&ctx->nr_pending) ||
3539 local_read(&next_ctx->nr_pending)) {
3540 /*
3541 * Must not swap out ctx when there's pending
3542 * events that rely on the ctx->task relation.
3543 */
3544 raw_spin_unlock(&next_ctx->lock);
3545 rcu_read_unlock();
3546 goto inside_switch;
3547 }
3548
3549 WRITE_ONCE(ctx->task, next);
3550 WRITE_ONCE(next_ctx->task, task);
3551
3552 perf_ctx_sched_task_cb(ctx, false);
3553 perf_event_swap_task_ctx_data(ctx, next_ctx);
3554
3555 perf_ctx_enable(ctx, false);
3556
3557 /*
3558 * RCU_INIT_POINTER here is safe because we've not
3559 * modified the ctx and the above modification of
3560 * ctx->task and ctx->task_ctx_data are immaterial
3561 * since those values are always verified under
3562 * ctx->lock which we're now holding.
3563 */
3564 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3565 RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3566
3567 do_switch = 0;
3568
3569 perf_event_sync_stat(ctx, next_ctx);
3570 }
3571 raw_spin_unlock(&next_ctx->lock);
3572 raw_spin_unlock(&ctx->lock);
3573 }
3574 unlock:
3575 rcu_read_unlock();
3576
3577 if (do_switch) {
3578 raw_spin_lock(&ctx->lock);
3579 perf_ctx_disable(ctx, false);
3580
3581 inside_switch:
3582 perf_ctx_sched_task_cb(ctx, false);
3583 task_ctx_sched_out(ctx, EVENT_ALL);
3584
3585 perf_ctx_enable(ctx, false);
3586 raw_spin_unlock(&ctx->lock);
3587 }
3588 }
3589
3590 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3591 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3592
perf_sched_cb_dec(struct pmu * pmu)3593 void perf_sched_cb_dec(struct pmu *pmu)
3594 {
3595 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3596
3597 this_cpu_dec(perf_sched_cb_usages);
3598 barrier();
3599
3600 if (!--cpc->sched_cb_usage)
3601 list_del(&cpc->sched_cb_entry);
3602 }
3603
3604
perf_sched_cb_inc(struct pmu * pmu)3605 void perf_sched_cb_inc(struct pmu *pmu)
3606 {
3607 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3608
3609 if (!cpc->sched_cb_usage++)
3610 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3611
3612 barrier();
3613 this_cpu_inc(perf_sched_cb_usages);
3614 }
3615
3616 /*
3617 * This function provides the context switch callback to the lower code
3618 * layer. It is invoked ONLY when the context switch callback is enabled.
3619 *
3620 * This callback is relevant even to per-cpu events; for example multi event
3621 * PEBS requires this to provide PID/TID information. This requires we flush
3622 * all queued PEBS records before we context switch to a new task.
3623 */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,bool sched_in)3624 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3625 {
3626 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3627 struct pmu *pmu;
3628
3629 pmu = cpc->epc.pmu;
3630
3631 /* software PMUs will not have sched_task */
3632 if (WARN_ON_ONCE(!pmu->sched_task))
3633 return;
3634
3635 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3636 perf_pmu_disable(pmu);
3637
3638 pmu->sched_task(cpc->task_epc, sched_in);
3639
3640 perf_pmu_enable(pmu);
3641 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3642 }
3643
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3644 static void perf_pmu_sched_task(struct task_struct *prev,
3645 struct task_struct *next,
3646 bool sched_in)
3647 {
3648 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3649 struct perf_cpu_pmu_context *cpc;
3650
3651 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3652 if (prev == next || cpuctx->task_ctx)
3653 return;
3654
3655 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3656 __perf_pmu_sched_task(cpc, sched_in);
3657 }
3658
3659 static void perf_event_switch(struct task_struct *task,
3660 struct task_struct *next_prev, bool sched_in);
3661
3662 /*
3663 * Called from scheduler to remove the events of the current task,
3664 * with interrupts disabled.
3665 *
3666 * We stop each event and update the event value in event->count.
3667 *
3668 * This does not protect us against NMI, but disable()
3669 * sets the disabled bit in the control field of event _before_
3670 * accessing the event control register. If a NMI hits, then it will
3671 * not restart the event.
3672 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3673 void __perf_event_task_sched_out(struct task_struct *task,
3674 struct task_struct *next)
3675 {
3676 if (__this_cpu_read(perf_sched_cb_usages))
3677 perf_pmu_sched_task(task, next, false);
3678
3679 if (atomic_read(&nr_switch_events))
3680 perf_event_switch(task, next, false);
3681
3682 perf_event_context_sched_out(task, next);
3683
3684 /*
3685 * if cgroup events exist on this CPU, then we need
3686 * to check if we have to switch out PMU state.
3687 * cgroup event are system-wide mode only
3688 */
3689 perf_cgroup_switch(next);
3690 }
3691
perf_less_group_idx(const void * l,const void * r)3692 static bool perf_less_group_idx(const void *l, const void *r)
3693 {
3694 const struct perf_event *le = *(const struct perf_event **)l;
3695 const struct perf_event *re = *(const struct perf_event **)r;
3696
3697 return le->group_index < re->group_index;
3698 }
3699
swap_ptr(void * l,void * r)3700 static void swap_ptr(void *l, void *r)
3701 {
3702 void **lp = l, **rp = r;
3703
3704 swap(*lp, *rp);
3705 }
3706
3707 static const struct min_heap_callbacks perf_min_heap = {
3708 .elem_size = sizeof(struct perf_event *),
3709 .less = perf_less_group_idx,
3710 .swp = swap_ptr,
3711 };
3712
__heap_add(struct min_heap * heap,struct perf_event * event)3713 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3714 {
3715 struct perf_event **itrs = heap->data;
3716
3717 if (event) {
3718 itrs[heap->nr] = event;
3719 heap->nr++;
3720 }
3721 }
3722
__link_epc(struct perf_event_pmu_context * pmu_ctx)3723 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3724 {
3725 struct perf_cpu_pmu_context *cpc;
3726
3727 if (!pmu_ctx->ctx->task)
3728 return;
3729
3730 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3731 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3732 cpc->task_epc = pmu_ctx;
3733 }
3734
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3735 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3736 struct perf_event_groups *groups, int cpu,
3737 struct pmu *pmu,
3738 int (*func)(struct perf_event *, void *),
3739 void *data)
3740 {
3741 #ifdef CONFIG_CGROUP_PERF
3742 struct cgroup_subsys_state *css = NULL;
3743 #endif
3744 struct perf_cpu_context *cpuctx = NULL;
3745 /* Space for per CPU and/or any CPU event iterators. */
3746 struct perf_event *itrs[2];
3747 struct min_heap event_heap;
3748 struct perf_event **evt;
3749 int ret;
3750
3751 if (pmu->filter && pmu->filter(pmu, cpu))
3752 return 0;
3753
3754 if (!ctx->task) {
3755 cpuctx = this_cpu_ptr(&perf_cpu_context);
3756 event_heap = (struct min_heap){
3757 .data = cpuctx->heap,
3758 .nr = 0,
3759 .size = cpuctx->heap_size,
3760 };
3761
3762 lockdep_assert_held(&cpuctx->ctx.lock);
3763
3764 #ifdef CONFIG_CGROUP_PERF
3765 if (cpuctx->cgrp)
3766 css = &cpuctx->cgrp->css;
3767 #endif
3768 } else {
3769 event_heap = (struct min_heap){
3770 .data = itrs,
3771 .nr = 0,
3772 .size = ARRAY_SIZE(itrs),
3773 };
3774 /* Events not within a CPU context may be on any CPU. */
3775 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3776 }
3777 evt = event_heap.data;
3778
3779 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3780
3781 #ifdef CONFIG_CGROUP_PERF
3782 for (; css; css = css->parent)
3783 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3784 #endif
3785
3786 if (event_heap.nr) {
3787 __link_epc((*evt)->pmu_ctx);
3788 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3789 }
3790
3791 min_heapify_all(&event_heap, &perf_min_heap);
3792
3793 while (event_heap.nr) {
3794 ret = func(*evt, data);
3795 if (ret)
3796 return ret;
3797
3798 *evt = perf_event_groups_next(*evt, pmu);
3799 if (*evt)
3800 min_heapify(&event_heap, 0, &perf_min_heap);
3801 else
3802 min_heap_pop(&event_heap, &perf_min_heap);
3803 }
3804
3805 return 0;
3806 }
3807
3808 /*
3809 * Because the userpage is strictly per-event (there is no concept of context,
3810 * so there cannot be a context indirection), every userpage must be updated
3811 * when context time starts :-(
3812 *
3813 * IOW, we must not miss EVENT_TIME edges.
3814 */
event_update_userpage(struct perf_event * event)3815 static inline bool event_update_userpage(struct perf_event *event)
3816 {
3817 if (likely(!atomic_read(&event->mmap_count)))
3818 return false;
3819
3820 perf_event_update_time(event);
3821 perf_event_update_userpage(event);
3822
3823 return true;
3824 }
3825
group_update_userpage(struct perf_event * group_event)3826 static inline void group_update_userpage(struct perf_event *group_event)
3827 {
3828 struct perf_event *event;
3829
3830 if (!event_update_userpage(group_event))
3831 return;
3832
3833 for_each_sibling_event(event, group_event)
3834 event_update_userpage(event);
3835 }
3836
merge_sched_in(struct perf_event * event,void * data)3837 static int merge_sched_in(struct perf_event *event, void *data)
3838 {
3839 struct perf_event_context *ctx = event->ctx;
3840 int *can_add_hw = data;
3841
3842 if (event->state <= PERF_EVENT_STATE_OFF)
3843 return 0;
3844
3845 if (!event_filter_match(event))
3846 return 0;
3847
3848 if (group_can_go_on(event, *can_add_hw)) {
3849 if (!group_sched_in(event, ctx))
3850 list_add_tail(&event->active_list, get_event_list(event));
3851 }
3852
3853 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3854 *can_add_hw = 0;
3855 if (event->attr.pinned) {
3856 perf_cgroup_event_disable(event, ctx);
3857 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3858 } else {
3859 struct perf_cpu_pmu_context *cpc;
3860
3861 event->pmu_ctx->rotate_necessary = 1;
3862 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3863 perf_mux_hrtimer_restart(cpc);
3864 group_update_userpage(event);
3865 }
3866 }
3867
3868 return 0;
3869 }
3870
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)3871 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3872 struct perf_event_groups *groups,
3873 struct pmu *pmu)
3874 {
3875 int can_add_hw = 1;
3876 visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3877 merge_sched_in, &can_add_hw);
3878 }
3879
ctx_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,bool cgroup)3880 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3881 struct perf_event_groups *groups,
3882 bool cgroup)
3883 {
3884 struct perf_event_pmu_context *pmu_ctx;
3885
3886 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3887 if (cgroup && !pmu_ctx->nr_cgroups)
3888 continue;
3889 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3890 }
3891 }
3892
__pmu_ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu)3893 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3894 struct pmu *pmu)
3895 {
3896 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3897 }
3898
3899 static void
ctx_sched_in(struct perf_event_context * ctx,enum event_type_t event_type)3900 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3901 {
3902 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3903 int is_active = ctx->is_active;
3904 bool cgroup = event_type & EVENT_CGROUP;
3905
3906 event_type &= ~EVENT_CGROUP;
3907
3908 lockdep_assert_held(&ctx->lock);
3909
3910 if (likely(!ctx->nr_events))
3911 return;
3912
3913 if (!(is_active & EVENT_TIME)) {
3914 /* start ctx time */
3915 __update_context_time(ctx, false);
3916 perf_cgroup_set_timestamp(cpuctx);
3917 /*
3918 * CPU-release for the below ->is_active store,
3919 * see __load_acquire() in perf_event_time_now()
3920 */
3921 barrier();
3922 }
3923
3924 ctx->is_active |= (event_type | EVENT_TIME);
3925 if (ctx->task) {
3926 if (!is_active)
3927 cpuctx->task_ctx = ctx;
3928 else
3929 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3930 }
3931
3932 is_active ^= ctx->is_active; /* changed bits */
3933
3934 /*
3935 * First go through the list and put on any pinned groups
3936 * in order to give them the best chance of going on.
3937 */
3938 if (is_active & EVENT_PINNED)
3939 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3940
3941 /* Then walk through the lower prio flexible groups */
3942 if (is_active & EVENT_FLEXIBLE)
3943 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3944 }
3945
perf_event_context_sched_in(struct task_struct * task)3946 static void perf_event_context_sched_in(struct task_struct *task)
3947 {
3948 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3949 struct perf_event_context *ctx;
3950
3951 rcu_read_lock();
3952 ctx = rcu_dereference(task->perf_event_ctxp);
3953 if (!ctx)
3954 goto rcu_unlock;
3955
3956 if (cpuctx->task_ctx == ctx) {
3957 perf_ctx_lock(cpuctx, ctx);
3958 perf_ctx_disable(ctx, false);
3959
3960 perf_ctx_sched_task_cb(ctx, true);
3961
3962 perf_ctx_enable(ctx, false);
3963 perf_ctx_unlock(cpuctx, ctx);
3964 goto rcu_unlock;
3965 }
3966
3967 perf_ctx_lock(cpuctx, ctx);
3968 /*
3969 * We must check ctx->nr_events while holding ctx->lock, such
3970 * that we serialize against perf_install_in_context().
3971 */
3972 if (!ctx->nr_events)
3973 goto unlock;
3974
3975 perf_ctx_disable(ctx, false);
3976 /*
3977 * We want to keep the following priority order:
3978 * cpu pinned (that don't need to move), task pinned,
3979 * cpu flexible, task flexible.
3980 *
3981 * However, if task's ctx is not carrying any pinned
3982 * events, no need to flip the cpuctx's events around.
3983 */
3984 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3985 perf_ctx_disable(&cpuctx->ctx, false);
3986 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3987 }
3988
3989 perf_event_sched_in(cpuctx, ctx);
3990
3991 perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3992
3993 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3994 perf_ctx_enable(&cpuctx->ctx, false);
3995
3996 perf_ctx_enable(ctx, false);
3997
3998 unlock:
3999 perf_ctx_unlock(cpuctx, ctx);
4000 rcu_unlock:
4001 rcu_read_unlock();
4002 }
4003
4004 /*
4005 * Called from scheduler to add the events of the current task
4006 * with interrupts disabled.
4007 *
4008 * We restore the event value and then enable it.
4009 *
4010 * This does not protect us against NMI, but enable()
4011 * sets the enabled bit in the control field of event _before_
4012 * accessing the event control register. If a NMI hits, then it will
4013 * keep the event running.
4014 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4015 void __perf_event_task_sched_in(struct task_struct *prev,
4016 struct task_struct *task)
4017 {
4018 perf_event_context_sched_in(task);
4019
4020 if (atomic_read(&nr_switch_events))
4021 perf_event_switch(task, prev, true);
4022
4023 if (__this_cpu_read(perf_sched_cb_usages))
4024 perf_pmu_sched_task(prev, task, true);
4025 }
4026
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4027 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4028 {
4029 u64 frequency = event->attr.sample_freq;
4030 u64 sec = NSEC_PER_SEC;
4031 u64 divisor, dividend;
4032
4033 int count_fls, nsec_fls, frequency_fls, sec_fls;
4034
4035 count_fls = fls64(count);
4036 nsec_fls = fls64(nsec);
4037 frequency_fls = fls64(frequency);
4038 sec_fls = 30;
4039
4040 /*
4041 * We got @count in @nsec, with a target of sample_freq HZ
4042 * the target period becomes:
4043 *
4044 * @count * 10^9
4045 * period = -------------------
4046 * @nsec * sample_freq
4047 *
4048 */
4049
4050 /*
4051 * Reduce accuracy by one bit such that @a and @b converge
4052 * to a similar magnitude.
4053 */
4054 #define REDUCE_FLS(a, b) \
4055 do { \
4056 if (a##_fls > b##_fls) { \
4057 a >>= 1; \
4058 a##_fls--; \
4059 } else { \
4060 b >>= 1; \
4061 b##_fls--; \
4062 } \
4063 } while (0)
4064
4065 /*
4066 * Reduce accuracy until either term fits in a u64, then proceed with
4067 * the other, so that finally we can do a u64/u64 division.
4068 */
4069 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4070 REDUCE_FLS(nsec, frequency);
4071 REDUCE_FLS(sec, count);
4072 }
4073
4074 if (count_fls + sec_fls > 64) {
4075 divisor = nsec * frequency;
4076
4077 while (count_fls + sec_fls > 64) {
4078 REDUCE_FLS(count, sec);
4079 divisor >>= 1;
4080 }
4081
4082 dividend = count * sec;
4083 } else {
4084 dividend = count * sec;
4085
4086 while (nsec_fls + frequency_fls > 64) {
4087 REDUCE_FLS(nsec, frequency);
4088 dividend >>= 1;
4089 }
4090
4091 divisor = nsec * frequency;
4092 }
4093
4094 if (!divisor)
4095 return dividend;
4096
4097 return div64_u64(dividend, divisor);
4098 }
4099
4100 static DEFINE_PER_CPU(int, perf_throttled_count);
4101 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4102
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4103 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4104 {
4105 struct hw_perf_event *hwc = &event->hw;
4106 s64 period, sample_period;
4107 s64 delta;
4108
4109 period = perf_calculate_period(event, nsec, count);
4110
4111 delta = (s64)(period - hwc->sample_period);
4112 if (delta >= 0)
4113 delta += 7;
4114 else
4115 delta -= 7;
4116 delta /= 8; /* low pass filter */
4117
4118 sample_period = hwc->sample_period + delta;
4119
4120 if (!sample_period)
4121 sample_period = 1;
4122
4123 hwc->sample_period = sample_period;
4124
4125 if (local64_read(&hwc->period_left) > 8*sample_period) {
4126 if (disable)
4127 event->pmu->stop(event, PERF_EF_UPDATE);
4128
4129 local64_set(&hwc->period_left, 0);
4130
4131 if (disable)
4132 event->pmu->start(event, PERF_EF_RELOAD);
4133 }
4134 }
4135
4136 /*
4137 * combine freq adjustment with unthrottling to avoid two passes over the
4138 * events. At the same time, make sure, having freq events does not change
4139 * the rate of unthrottling as that would introduce bias.
4140 */
4141 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4142 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4143 {
4144 struct perf_event *event;
4145 struct hw_perf_event *hwc;
4146 u64 now, period = TICK_NSEC;
4147 s64 delta;
4148
4149 /*
4150 * only need to iterate over all events iff:
4151 * - context have events in frequency mode (needs freq adjust)
4152 * - there are events to unthrottle on this cpu
4153 */
4154 if (!(ctx->nr_freq || unthrottle))
4155 return;
4156
4157 raw_spin_lock(&ctx->lock);
4158
4159 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4160 if (event->state != PERF_EVENT_STATE_ACTIVE)
4161 continue;
4162
4163 // XXX use visit thingy to avoid the -1,cpu match
4164 if (!event_filter_match(event))
4165 continue;
4166
4167 perf_pmu_disable(event->pmu);
4168
4169 hwc = &event->hw;
4170
4171 if (hwc->interrupts == MAX_INTERRUPTS) {
4172 hwc->interrupts = 0;
4173 perf_log_throttle(event, 1);
4174 event->pmu->start(event, 0);
4175 }
4176
4177 if (!event->attr.freq || !event->attr.sample_freq)
4178 goto next;
4179
4180 /*
4181 * stop the event and update event->count
4182 */
4183 event->pmu->stop(event, PERF_EF_UPDATE);
4184
4185 now = local64_read(&event->count);
4186 delta = now - hwc->freq_count_stamp;
4187 hwc->freq_count_stamp = now;
4188
4189 /*
4190 * restart the event
4191 * reload only if value has changed
4192 * we have stopped the event so tell that
4193 * to perf_adjust_period() to avoid stopping it
4194 * twice.
4195 */
4196 if (delta > 0)
4197 perf_adjust_period(event, period, delta, false);
4198
4199 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4200 next:
4201 perf_pmu_enable(event->pmu);
4202 }
4203
4204 raw_spin_unlock(&ctx->lock);
4205 }
4206
4207 /*
4208 * Move @event to the tail of the @ctx's elegible events.
4209 */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4210 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4211 {
4212 /*
4213 * Rotate the first entry last of non-pinned groups. Rotation might be
4214 * disabled by the inheritance code.
4215 */
4216 if (ctx->rotate_disable)
4217 return;
4218
4219 perf_event_groups_delete(&ctx->flexible_groups, event);
4220 perf_event_groups_insert(&ctx->flexible_groups, event);
4221 }
4222
4223 /* pick an event from the flexible_groups to rotate */
4224 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4225 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4226 {
4227 struct perf_event *event;
4228 struct rb_node *node;
4229 struct rb_root *tree;
4230 struct __group_key key = {
4231 .pmu = pmu_ctx->pmu,
4232 };
4233
4234 /* pick the first active flexible event */
4235 event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4236 struct perf_event, active_list);
4237 if (event)
4238 goto out;
4239
4240 /* if no active flexible event, pick the first event */
4241 tree = &pmu_ctx->ctx->flexible_groups.tree;
4242
4243 if (!pmu_ctx->ctx->task) {
4244 key.cpu = smp_processor_id();
4245
4246 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4247 if (node)
4248 event = __node_2_pe(node);
4249 goto out;
4250 }
4251
4252 key.cpu = -1;
4253 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4254 if (node) {
4255 event = __node_2_pe(node);
4256 goto out;
4257 }
4258
4259 key.cpu = smp_processor_id();
4260 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4261 if (node)
4262 event = __node_2_pe(node);
4263
4264 out:
4265 /*
4266 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4267 * finds there are unschedulable events, it will set it again.
4268 */
4269 pmu_ctx->rotate_necessary = 0;
4270
4271 return event;
4272 }
4273
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4274 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4275 {
4276 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4277 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4278 struct perf_event *cpu_event = NULL, *task_event = NULL;
4279 int cpu_rotate, task_rotate;
4280 struct pmu *pmu;
4281
4282 /*
4283 * Since we run this from IRQ context, nobody can install new
4284 * events, thus the event count values are stable.
4285 */
4286
4287 cpu_epc = &cpc->epc;
4288 pmu = cpu_epc->pmu;
4289 task_epc = cpc->task_epc;
4290
4291 cpu_rotate = cpu_epc->rotate_necessary;
4292 task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4293
4294 if (!(cpu_rotate || task_rotate))
4295 return false;
4296
4297 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4298 perf_pmu_disable(pmu);
4299
4300 if (task_rotate)
4301 task_event = ctx_event_to_rotate(task_epc);
4302 if (cpu_rotate)
4303 cpu_event = ctx_event_to_rotate(cpu_epc);
4304
4305 /*
4306 * As per the order given at ctx_resched() first 'pop' task flexible
4307 * and then, if needed CPU flexible.
4308 */
4309 if (task_event || (task_epc && cpu_event)) {
4310 update_context_time(task_epc->ctx);
4311 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4312 }
4313
4314 if (cpu_event) {
4315 update_context_time(&cpuctx->ctx);
4316 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4317 rotate_ctx(&cpuctx->ctx, cpu_event);
4318 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4319 }
4320
4321 if (task_event)
4322 rotate_ctx(task_epc->ctx, task_event);
4323
4324 if (task_event || (task_epc && cpu_event))
4325 __pmu_ctx_sched_in(task_epc->ctx, pmu);
4326
4327 perf_pmu_enable(pmu);
4328 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4329
4330 return true;
4331 }
4332
perf_event_task_tick(void)4333 void perf_event_task_tick(void)
4334 {
4335 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4336 struct perf_event_context *ctx;
4337 int throttled;
4338
4339 lockdep_assert_irqs_disabled();
4340
4341 __this_cpu_inc(perf_throttled_seq);
4342 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4343 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4344
4345 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4346
4347 rcu_read_lock();
4348 ctx = rcu_dereference(current->perf_event_ctxp);
4349 if (ctx)
4350 perf_adjust_freq_unthr_context(ctx, !!throttled);
4351 rcu_read_unlock();
4352 }
4353
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4354 static int event_enable_on_exec(struct perf_event *event,
4355 struct perf_event_context *ctx)
4356 {
4357 if (!event->attr.enable_on_exec)
4358 return 0;
4359
4360 event->attr.enable_on_exec = 0;
4361 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4362 return 0;
4363
4364 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4365
4366 return 1;
4367 }
4368
4369 /*
4370 * Enable all of a task's events that have been marked enable-on-exec.
4371 * This expects task == current.
4372 */
perf_event_enable_on_exec(struct perf_event_context * ctx)4373 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4374 {
4375 struct perf_event_context *clone_ctx = NULL;
4376 enum event_type_t event_type = 0;
4377 struct perf_cpu_context *cpuctx;
4378 struct perf_event *event;
4379 unsigned long flags;
4380 int enabled = 0;
4381
4382 local_irq_save(flags);
4383 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4384 goto out;
4385
4386 if (!ctx->nr_events)
4387 goto out;
4388
4389 cpuctx = this_cpu_ptr(&perf_cpu_context);
4390 perf_ctx_lock(cpuctx, ctx);
4391 ctx_sched_out(ctx, EVENT_TIME);
4392
4393 list_for_each_entry(event, &ctx->event_list, event_entry) {
4394 enabled |= event_enable_on_exec(event, ctx);
4395 event_type |= get_event_type(event);
4396 }
4397
4398 /*
4399 * Unclone and reschedule this context if we enabled any event.
4400 */
4401 if (enabled) {
4402 clone_ctx = unclone_ctx(ctx);
4403 ctx_resched(cpuctx, ctx, event_type);
4404 } else {
4405 ctx_sched_in(ctx, EVENT_TIME);
4406 }
4407 perf_ctx_unlock(cpuctx, ctx);
4408
4409 out:
4410 local_irq_restore(flags);
4411
4412 if (clone_ctx)
4413 put_ctx(clone_ctx);
4414 }
4415
4416 static void perf_remove_from_owner(struct perf_event *event);
4417 static void perf_event_exit_event(struct perf_event *event,
4418 struct perf_event_context *ctx);
4419
4420 /*
4421 * Removes all events from the current task that have been marked
4422 * remove-on-exec, and feeds their values back to parent events.
4423 */
perf_event_remove_on_exec(struct perf_event_context * ctx)4424 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4425 {
4426 struct perf_event_context *clone_ctx = NULL;
4427 struct perf_event *event, *next;
4428 unsigned long flags;
4429 bool modified = false;
4430
4431 mutex_lock(&ctx->mutex);
4432
4433 if (WARN_ON_ONCE(ctx->task != current))
4434 goto unlock;
4435
4436 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4437 if (!event->attr.remove_on_exec)
4438 continue;
4439
4440 if (!is_kernel_event(event))
4441 perf_remove_from_owner(event);
4442
4443 modified = true;
4444
4445 perf_event_exit_event(event, ctx);
4446 }
4447
4448 raw_spin_lock_irqsave(&ctx->lock, flags);
4449 if (modified)
4450 clone_ctx = unclone_ctx(ctx);
4451 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4452
4453 unlock:
4454 mutex_unlock(&ctx->mutex);
4455
4456 if (clone_ctx)
4457 put_ctx(clone_ctx);
4458 }
4459
4460 struct perf_read_data {
4461 struct perf_event *event;
4462 bool group;
4463 int ret;
4464 };
4465
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4466 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4467 {
4468 u16 local_pkg, event_pkg;
4469
4470 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4471 int local_cpu = smp_processor_id();
4472
4473 event_pkg = topology_physical_package_id(event_cpu);
4474 local_pkg = topology_physical_package_id(local_cpu);
4475
4476 if (event_pkg == local_pkg)
4477 return local_cpu;
4478 }
4479
4480 return event_cpu;
4481 }
4482
4483 /*
4484 * Cross CPU call to read the hardware event
4485 */
__perf_event_read(void * info)4486 static void __perf_event_read(void *info)
4487 {
4488 struct perf_read_data *data = info;
4489 struct perf_event *sub, *event = data->event;
4490 struct perf_event_context *ctx = event->ctx;
4491 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4492 struct pmu *pmu = event->pmu;
4493
4494 /*
4495 * If this is a task context, we need to check whether it is
4496 * the current task context of this cpu. If not it has been
4497 * scheduled out before the smp call arrived. In that case
4498 * event->count would have been updated to a recent sample
4499 * when the event was scheduled out.
4500 */
4501 if (ctx->task && cpuctx->task_ctx != ctx)
4502 return;
4503
4504 raw_spin_lock(&ctx->lock);
4505 if (ctx->is_active & EVENT_TIME) {
4506 update_context_time(ctx);
4507 update_cgrp_time_from_event(event);
4508 }
4509
4510 perf_event_update_time(event);
4511 if (data->group)
4512 perf_event_update_sibling_time(event);
4513
4514 if (event->state != PERF_EVENT_STATE_ACTIVE)
4515 goto unlock;
4516
4517 if (!data->group) {
4518 pmu->read(event);
4519 data->ret = 0;
4520 goto unlock;
4521 }
4522
4523 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4524
4525 pmu->read(event);
4526
4527 for_each_sibling_event(sub, event) {
4528 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4529 /*
4530 * Use sibling's PMU rather than @event's since
4531 * sibling could be on different (eg: software) PMU.
4532 */
4533 sub->pmu->read(sub);
4534 }
4535 }
4536
4537 data->ret = pmu->commit_txn(pmu);
4538
4539 unlock:
4540 raw_spin_unlock(&ctx->lock);
4541 }
4542
perf_event_count(struct perf_event * event)4543 static inline u64 perf_event_count(struct perf_event *event)
4544 {
4545 return local64_read(&event->count) + atomic64_read(&event->child_count);
4546 }
4547
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4548 static void calc_timer_values(struct perf_event *event,
4549 u64 *now,
4550 u64 *enabled,
4551 u64 *running)
4552 {
4553 u64 ctx_time;
4554
4555 *now = perf_clock();
4556 ctx_time = perf_event_time_now(event, *now);
4557 __perf_update_times(event, ctx_time, enabled, running);
4558 }
4559
4560 /*
4561 * NMI-safe method to read a local event, that is an event that
4562 * is:
4563 * - either for the current task, or for this CPU
4564 * - does not have inherit set, for inherited task events
4565 * will not be local and we cannot read them atomically
4566 * - must not have a pmu::count method
4567 */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4568 int perf_event_read_local(struct perf_event *event, u64 *value,
4569 u64 *enabled, u64 *running)
4570 {
4571 unsigned long flags;
4572 int ret = 0;
4573
4574 /*
4575 * Disabling interrupts avoids all counter scheduling (context
4576 * switches, timer based rotation and IPIs).
4577 */
4578 local_irq_save(flags);
4579
4580 /*
4581 * It must not be an event with inherit set, we cannot read
4582 * all child counters from atomic context.
4583 */
4584 if (event->attr.inherit) {
4585 ret = -EOPNOTSUPP;
4586 goto out;
4587 }
4588
4589 /* If this is a per-task event, it must be for current */
4590 if ((event->attach_state & PERF_ATTACH_TASK) &&
4591 event->hw.target != current) {
4592 ret = -EINVAL;
4593 goto out;
4594 }
4595
4596 /* If this is a per-CPU event, it must be for this CPU */
4597 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4598 event->cpu != smp_processor_id()) {
4599 ret = -EINVAL;
4600 goto out;
4601 }
4602
4603 /* If this is a pinned event it must be running on this CPU */
4604 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4605 ret = -EBUSY;
4606 goto out;
4607 }
4608
4609 /*
4610 * If the event is currently on this CPU, its either a per-task event,
4611 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4612 * oncpu == -1).
4613 */
4614 if (event->oncpu == smp_processor_id())
4615 event->pmu->read(event);
4616
4617 *value = local64_read(&event->count);
4618 if (enabled || running) {
4619 u64 __enabled, __running, __now;
4620
4621 calc_timer_values(event, &__now, &__enabled, &__running);
4622 if (enabled)
4623 *enabled = __enabled;
4624 if (running)
4625 *running = __running;
4626 }
4627 out:
4628 local_irq_restore(flags);
4629
4630 return ret;
4631 }
4632
perf_event_read(struct perf_event * event,bool group)4633 static int perf_event_read(struct perf_event *event, bool group)
4634 {
4635 enum perf_event_state state = READ_ONCE(event->state);
4636 int event_cpu, ret = 0;
4637
4638 /*
4639 * If event is enabled and currently active on a CPU, update the
4640 * value in the event structure:
4641 */
4642 again:
4643 if (state == PERF_EVENT_STATE_ACTIVE) {
4644 struct perf_read_data data;
4645
4646 /*
4647 * Orders the ->state and ->oncpu loads such that if we see
4648 * ACTIVE we must also see the right ->oncpu.
4649 *
4650 * Matches the smp_wmb() from event_sched_in().
4651 */
4652 smp_rmb();
4653
4654 event_cpu = READ_ONCE(event->oncpu);
4655 if ((unsigned)event_cpu >= nr_cpu_ids)
4656 return 0;
4657
4658 data = (struct perf_read_data){
4659 .event = event,
4660 .group = group,
4661 .ret = 0,
4662 };
4663
4664 preempt_disable();
4665 event_cpu = __perf_event_read_cpu(event, event_cpu);
4666
4667 /*
4668 * Purposely ignore the smp_call_function_single() return
4669 * value.
4670 *
4671 * If event_cpu isn't a valid CPU it means the event got
4672 * scheduled out and that will have updated the event count.
4673 *
4674 * Therefore, either way, we'll have an up-to-date event count
4675 * after this.
4676 */
4677 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4678 preempt_enable();
4679 ret = data.ret;
4680
4681 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4682 struct perf_event_context *ctx = event->ctx;
4683 unsigned long flags;
4684
4685 raw_spin_lock_irqsave(&ctx->lock, flags);
4686 state = event->state;
4687 if (state != PERF_EVENT_STATE_INACTIVE) {
4688 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4689 goto again;
4690 }
4691
4692 /*
4693 * May read while context is not active (e.g., thread is
4694 * blocked), in that case we cannot update context time
4695 */
4696 if (ctx->is_active & EVENT_TIME) {
4697 update_context_time(ctx);
4698 update_cgrp_time_from_event(event);
4699 }
4700
4701 perf_event_update_time(event);
4702 if (group)
4703 perf_event_update_sibling_time(event);
4704 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4705 }
4706
4707 return ret;
4708 }
4709
4710 /*
4711 * Initialize the perf_event context in a task_struct:
4712 */
__perf_event_init_context(struct perf_event_context * ctx)4713 static void __perf_event_init_context(struct perf_event_context *ctx)
4714 {
4715 raw_spin_lock_init(&ctx->lock);
4716 mutex_init(&ctx->mutex);
4717 INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4718 perf_event_groups_init(&ctx->pinned_groups);
4719 perf_event_groups_init(&ctx->flexible_groups);
4720 INIT_LIST_HEAD(&ctx->event_list);
4721 refcount_set(&ctx->refcount, 1);
4722 }
4723
4724 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4725 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4726 {
4727 epc->pmu = pmu;
4728 INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4729 INIT_LIST_HEAD(&epc->pinned_active);
4730 INIT_LIST_HEAD(&epc->flexible_active);
4731 atomic_set(&epc->refcount, 1);
4732 }
4733
4734 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4735 alloc_perf_context(struct task_struct *task)
4736 {
4737 struct perf_event_context *ctx;
4738
4739 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4740 if (!ctx)
4741 return NULL;
4742
4743 __perf_event_init_context(ctx);
4744 if (task)
4745 ctx->task = get_task_struct(task);
4746
4747 return ctx;
4748 }
4749
4750 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4751 find_lively_task_by_vpid(pid_t vpid)
4752 {
4753 struct task_struct *task;
4754
4755 rcu_read_lock();
4756 if (!vpid)
4757 task = current;
4758 else
4759 task = find_task_by_vpid(vpid);
4760 if (task)
4761 get_task_struct(task);
4762 rcu_read_unlock();
4763
4764 if (!task)
4765 return ERR_PTR(-ESRCH);
4766
4767 return task;
4768 }
4769
4770 /*
4771 * Returns a matching context with refcount and pincount.
4772 */
4773 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4774 find_get_context(struct task_struct *task, struct perf_event *event)
4775 {
4776 struct perf_event_context *ctx, *clone_ctx = NULL;
4777 struct perf_cpu_context *cpuctx;
4778 unsigned long flags;
4779 int err;
4780
4781 if (!task) {
4782 /* Must be root to operate on a CPU event: */
4783 err = perf_allow_cpu(&event->attr);
4784 if (err)
4785 return ERR_PTR(err);
4786
4787 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4788 ctx = &cpuctx->ctx;
4789 get_ctx(ctx);
4790 raw_spin_lock_irqsave(&ctx->lock, flags);
4791 ++ctx->pin_count;
4792 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4793
4794 return ctx;
4795 }
4796
4797 err = -EINVAL;
4798 retry:
4799 ctx = perf_lock_task_context(task, &flags);
4800 if (ctx) {
4801 clone_ctx = unclone_ctx(ctx);
4802 ++ctx->pin_count;
4803
4804 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4805
4806 if (clone_ctx)
4807 put_ctx(clone_ctx);
4808 } else {
4809 ctx = alloc_perf_context(task);
4810 err = -ENOMEM;
4811 if (!ctx)
4812 goto errout;
4813
4814 err = 0;
4815 mutex_lock(&task->perf_event_mutex);
4816 /*
4817 * If it has already passed perf_event_exit_task().
4818 * we must see PF_EXITING, it takes this mutex too.
4819 */
4820 if (task->flags & PF_EXITING)
4821 err = -ESRCH;
4822 else if (task->perf_event_ctxp)
4823 err = -EAGAIN;
4824 else {
4825 get_ctx(ctx);
4826 ++ctx->pin_count;
4827 rcu_assign_pointer(task->perf_event_ctxp, ctx);
4828 }
4829 mutex_unlock(&task->perf_event_mutex);
4830
4831 if (unlikely(err)) {
4832 put_ctx(ctx);
4833
4834 if (err == -EAGAIN)
4835 goto retry;
4836 goto errout;
4837 }
4838 }
4839
4840 return ctx;
4841
4842 errout:
4843 return ERR_PTR(err);
4844 }
4845
4846 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)4847 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4848 struct perf_event *event)
4849 {
4850 struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
4851 void *task_ctx_data = NULL;
4852
4853 if (!ctx->task) {
4854 /*
4855 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4856 * relies on the fact that find_get_pmu_context() cannot fail
4857 * for CPU contexts.
4858 */
4859 struct perf_cpu_pmu_context *cpc;
4860
4861 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4862 epc = &cpc->epc;
4863 raw_spin_lock_irq(&ctx->lock);
4864 if (!epc->ctx) {
4865 atomic_set(&epc->refcount, 1);
4866 epc->embedded = 1;
4867 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4868 epc->ctx = ctx;
4869 } else {
4870 WARN_ON_ONCE(epc->ctx != ctx);
4871 atomic_inc(&epc->refcount);
4872 }
4873 raw_spin_unlock_irq(&ctx->lock);
4874 return epc;
4875 }
4876
4877 new = kzalloc(sizeof(*epc), GFP_KERNEL);
4878 if (!new)
4879 return ERR_PTR(-ENOMEM);
4880
4881 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4882 task_ctx_data = alloc_task_ctx_data(pmu);
4883 if (!task_ctx_data) {
4884 kfree(new);
4885 return ERR_PTR(-ENOMEM);
4886 }
4887 }
4888
4889 __perf_init_event_pmu_context(new, pmu);
4890
4891 /*
4892 * XXX
4893 *
4894 * lockdep_assert_held(&ctx->mutex);
4895 *
4896 * can't because perf_event_init_task() doesn't actually hold the
4897 * child_ctx->mutex.
4898 */
4899
4900 raw_spin_lock_irq(&ctx->lock);
4901 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4902 if (epc->pmu == pmu) {
4903 WARN_ON_ONCE(epc->ctx != ctx);
4904 atomic_inc(&epc->refcount);
4905 goto found_epc;
4906 }
4907 /* Make sure the pmu_ctx_list is sorted by PMU type: */
4908 if (!pos && epc->pmu->type > pmu->type)
4909 pos = epc;
4910 }
4911
4912 epc = new;
4913 new = NULL;
4914
4915 if (!pos)
4916 list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4917 else
4918 list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
4919
4920 epc->ctx = ctx;
4921
4922 found_epc:
4923 if (task_ctx_data && !epc->task_ctx_data) {
4924 epc->task_ctx_data = task_ctx_data;
4925 task_ctx_data = NULL;
4926 ctx->nr_task_data++;
4927 }
4928 raw_spin_unlock_irq(&ctx->lock);
4929
4930 free_task_ctx_data(pmu, task_ctx_data);
4931 kfree(new);
4932
4933 return epc;
4934 }
4935
get_pmu_ctx(struct perf_event_pmu_context * epc)4936 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4937 {
4938 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4939 }
4940
free_epc_rcu(struct rcu_head * head)4941 static void free_epc_rcu(struct rcu_head *head)
4942 {
4943 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4944
4945 kfree(epc->task_ctx_data);
4946 kfree(epc);
4947 }
4948
put_pmu_ctx(struct perf_event_pmu_context * epc)4949 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4950 {
4951 struct perf_event_context *ctx = epc->ctx;
4952 unsigned long flags;
4953
4954 /*
4955 * XXX
4956 *
4957 * lockdep_assert_held(&ctx->mutex);
4958 *
4959 * can't because of the call-site in _free_event()/put_event()
4960 * which isn't always called under ctx->mutex.
4961 */
4962 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4963 return;
4964
4965 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4966
4967 list_del_init(&epc->pmu_ctx_entry);
4968 epc->ctx = NULL;
4969
4970 WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4971 WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4972
4973 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4974
4975 if (epc->embedded)
4976 return;
4977
4978 call_rcu(&epc->rcu_head, free_epc_rcu);
4979 }
4980
4981 static void perf_event_free_filter(struct perf_event *event);
4982
free_event_rcu(struct rcu_head * head)4983 static void free_event_rcu(struct rcu_head *head)
4984 {
4985 struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4986
4987 if (event->ns)
4988 put_pid_ns(event->ns);
4989 perf_event_free_filter(event);
4990 kmem_cache_free(perf_event_cache, event);
4991 }
4992
4993 static void ring_buffer_attach(struct perf_event *event,
4994 struct perf_buffer *rb);
4995
detach_sb_event(struct perf_event * event)4996 static void detach_sb_event(struct perf_event *event)
4997 {
4998 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4999
5000 raw_spin_lock(&pel->lock);
5001 list_del_rcu(&event->sb_list);
5002 raw_spin_unlock(&pel->lock);
5003 }
5004
is_sb_event(struct perf_event * event)5005 static bool is_sb_event(struct perf_event *event)
5006 {
5007 struct perf_event_attr *attr = &event->attr;
5008
5009 if (event->parent)
5010 return false;
5011
5012 if (event->attach_state & PERF_ATTACH_TASK)
5013 return false;
5014
5015 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5016 attr->comm || attr->comm_exec ||
5017 attr->task || attr->ksymbol ||
5018 attr->context_switch || attr->text_poke ||
5019 attr->bpf_event)
5020 return true;
5021 return false;
5022 }
5023
unaccount_pmu_sb_event(struct perf_event * event)5024 static void unaccount_pmu_sb_event(struct perf_event *event)
5025 {
5026 if (is_sb_event(event))
5027 detach_sb_event(event);
5028 }
5029
5030 #ifdef CONFIG_NO_HZ_FULL
5031 static DEFINE_SPINLOCK(nr_freq_lock);
5032 #endif
5033
unaccount_freq_event_nohz(void)5034 static void unaccount_freq_event_nohz(void)
5035 {
5036 #ifdef CONFIG_NO_HZ_FULL
5037 spin_lock(&nr_freq_lock);
5038 if (atomic_dec_and_test(&nr_freq_events))
5039 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5040 spin_unlock(&nr_freq_lock);
5041 #endif
5042 }
5043
unaccount_freq_event(void)5044 static void unaccount_freq_event(void)
5045 {
5046 if (tick_nohz_full_enabled())
5047 unaccount_freq_event_nohz();
5048 else
5049 atomic_dec(&nr_freq_events);
5050 }
5051
unaccount_event(struct perf_event * event)5052 static void unaccount_event(struct perf_event *event)
5053 {
5054 bool dec = false;
5055
5056 if (event->parent)
5057 return;
5058
5059 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5060 dec = true;
5061 if (event->attr.mmap || event->attr.mmap_data)
5062 atomic_dec(&nr_mmap_events);
5063 if (event->attr.build_id)
5064 atomic_dec(&nr_build_id_events);
5065 if (event->attr.comm)
5066 atomic_dec(&nr_comm_events);
5067 if (event->attr.namespaces)
5068 atomic_dec(&nr_namespaces_events);
5069 if (event->attr.cgroup)
5070 atomic_dec(&nr_cgroup_events);
5071 if (event->attr.task)
5072 atomic_dec(&nr_task_events);
5073 if (event->attr.freq)
5074 unaccount_freq_event();
5075 if (event->attr.context_switch) {
5076 dec = true;
5077 atomic_dec(&nr_switch_events);
5078 }
5079 if (is_cgroup_event(event))
5080 dec = true;
5081 if (has_branch_stack(event))
5082 dec = true;
5083 if (event->attr.ksymbol)
5084 atomic_dec(&nr_ksymbol_events);
5085 if (event->attr.bpf_event)
5086 atomic_dec(&nr_bpf_events);
5087 if (event->attr.text_poke)
5088 atomic_dec(&nr_text_poke_events);
5089
5090 if (dec) {
5091 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5092 schedule_delayed_work(&perf_sched_work, HZ);
5093 }
5094
5095 unaccount_pmu_sb_event(event);
5096 }
5097
perf_sched_delayed(struct work_struct * work)5098 static void perf_sched_delayed(struct work_struct *work)
5099 {
5100 mutex_lock(&perf_sched_mutex);
5101 if (atomic_dec_and_test(&perf_sched_count))
5102 static_branch_disable(&perf_sched_events);
5103 mutex_unlock(&perf_sched_mutex);
5104 }
5105
5106 /*
5107 * The following implement mutual exclusion of events on "exclusive" pmus
5108 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5109 * at a time, so we disallow creating events that might conflict, namely:
5110 *
5111 * 1) cpu-wide events in the presence of per-task events,
5112 * 2) per-task events in the presence of cpu-wide events,
5113 * 3) two matching events on the same perf_event_context.
5114 *
5115 * The former two cases are handled in the allocation path (perf_event_alloc(),
5116 * _free_event()), the latter -- before the first perf_install_in_context().
5117 */
exclusive_event_init(struct perf_event * event)5118 static int exclusive_event_init(struct perf_event *event)
5119 {
5120 struct pmu *pmu = event->pmu;
5121
5122 if (!is_exclusive_pmu(pmu))
5123 return 0;
5124
5125 /*
5126 * Prevent co-existence of per-task and cpu-wide events on the
5127 * same exclusive pmu.
5128 *
5129 * Negative pmu::exclusive_cnt means there are cpu-wide
5130 * events on this "exclusive" pmu, positive means there are
5131 * per-task events.
5132 *
5133 * Since this is called in perf_event_alloc() path, event::ctx
5134 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5135 * to mean "per-task event", because unlike other attach states it
5136 * never gets cleared.
5137 */
5138 if (event->attach_state & PERF_ATTACH_TASK) {
5139 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5140 return -EBUSY;
5141 } else {
5142 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5143 return -EBUSY;
5144 }
5145
5146 return 0;
5147 }
5148
exclusive_event_destroy(struct perf_event * event)5149 static void exclusive_event_destroy(struct perf_event *event)
5150 {
5151 struct pmu *pmu = event->pmu;
5152
5153 if (!is_exclusive_pmu(pmu))
5154 return;
5155
5156 /* see comment in exclusive_event_init() */
5157 if (event->attach_state & PERF_ATTACH_TASK)
5158 atomic_dec(&pmu->exclusive_cnt);
5159 else
5160 atomic_inc(&pmu->exclusive_cnt);
5161 }
5162
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5163 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5164 {
5165 if ((e1->pmu == e2->pmu) &&
5166 (e1->cpu == e2->cpu ||
5167 e1->cpu == -1 ||
5168 e2->cpu == -1))
5169 return true;
5170 return false;
5171 }
5172
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5173 static bool exclusive_event_installable(struct perf_event *event,
5174 struct perf_event_context *ctx)
5175 {
5176 struct perf_event *iter_event;
5177 struct pmu *pmu = event->pmu;
5178
5179 lockdep_assert_held(&ctx->mutex);
5180
5181 if (!is_exclusive_pmu(pmu))
5182 return true;
5183
5184 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5185 if (exclusive_event_match(iter_event, event))
5186 return false;
5187 }
5188
5189 return true;
5190 }
5191
5192 static void perf_addr_filters_splice(struct perf_event *event,
5193 struct list_head *head);
5194
perf_pending_task_sync(struct perf_event * event)5195 static void perf_pending_task_sync(struct perf_event *event)
5196 {
5197 struct callback_head *head = &event->pending_task;
5198
5199 if (!event->pending_work)
5200 return;
5201 /*
5202 * If the task is queued to the current task's queue, we
5203 * obviously can't wait for it to complete. Simply cancel it.
5204 */
5205 if (task_work_cancel(current, head)) {
5206 event->pending_work = 0;
5207 local_dec(&event->ctx->nr_pending);
5208 return;
5209 }
5210
5211 /*
5212 * All accesses related to the event are within the same
5213 * non-preemptible section in perf_pending_task(). The RCU
5214 * grace period before the event is freed will make sure all
5215 * those accesses are complete by then.
5216 */
5217 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5218 }
5219
_free_event(struct perf_event * event)5220 static void _free_event(struct perf_event *event)
5221 {
5222 irq_work_sync(&event->pending_irq);
5223 perf_pending_task_sync(event);
5224
5225 unaccount_event(event);
5226
5227 security_perf_event_free(event);
5228
5229 if (event->rb) {
5230 /*
5231 * Can happen when we close an event with re-directed output.
5232 *
5233 * Since we have a 0 refcount, perf_mmap_close() will skip
5234 * over us; possibly making our ring_buffer_put() the last.
5235 */
5236 mutex_lock(&event->mmap_mutex);
5237 ring_buffer_attach(event, NULL);
5238 mutex_unlock(&event->mmap_mutex);
5239 }
5240
5241 if (is_cgroup_event(event))
5242 perf_detach_cgroup(event);
5243
5244 if (!event->parent) {
5245 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5246 put_callchain_buffers();
5247 }
5248
5249 perf_event_free_bpf_prog(event);
5250 perf_addr_filters_splice(event, NULL);
5251 kfree(event->addr_filter_ranges);
5252
5253 if (event->destroy)
5254 event->destroy(event);
5255
5256 /*
5257 * Must be after ->destroy(), due to uprobe_perf_close() using
5258 * hw.target.
5259 */
5260 if (event->hw.target)
5261 put_task_struct(event->hw.target);
5262
5263 if (event->pmu_ctx)
5264 put_pmu_ctx(event->pmu_ctx);
5265
5266 /*
5267 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5268 * all task references must be cleaned up.
5269 */
5270 if (event->ctx)
5271 put_ctx(event->ctx);
5272
5273 exclusive_event_destroy(event);
5274 module_put(event->pmu->module);
5275
5276 call_rcu(&event->rcu_head, free_event_rcu);
5277 }
5278
5279 /*
5280 * Used to free events which have a known refcount of 1, such as in error paths
5281 * where the event isn't exposed yet and inherited events.
5282 */
free_event(struct perf_event * event)5283 static void free_event(struct perf_event *event)
5284 {
5285 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5286 "unexpected event refcount: %ld; ptr=%p\n",
5287 atomic_long_read(&event->refcount), event)) {
5288 /* leak to avoid use-after-free */
5289 return;
5290 }
5291
5292 _free_event(event);
5293 }
5294
5295 /*
5296 * Remove user event from the owner task.
5297 */
perf_remove_from_owner(struct perf_event * event)5298 static void perf_remove_from_owner(struct perf_event *event)
5299 {
5300 struct task_struct *owner;
5301
5302 rcu_read_lock();
5303 /*
5304 * Matches the smp_store_release() in perf_event_exit_task(). If we
5305 * observe !owner it means the list deletion is complete and we can
5306 * indeed free this event, otherwise we need to serialize on
5307 * owner->perf_event_mutex.
5308 */
5309 owner = READ_ONCE(event->owner);
5310 if (owner) {
5311 /*
5312 * Since delayed_put_task_struct() also drops the last
5313 * task reference we can safely take a new reference
5314 * while holding the rcu_read_lock().
5315 */
5316 get_task_struct(owner);
5317 }
5318 rcu_read_unlock();
5319
5320 if (owner) {
5321 /*
5322 * If we're here through perf_event_exit_task() we're already
5323 * holding ctx->mutex which would be an inversion wrt. the
5324 * normal lock order.
5325 *
5326 * However we can safely take this lock because its the child
5327 * ctx->mutex.
5328 */
5329 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5330
5331 /*
5332 * We have to re-check the event->owner field, if it is cleared
5333 * we raced with perf_event_exit_task(), acquiring the mutex
5334 * ensured they're done, and we can proceed with freeing the
5335 * event.
5336 */
5337 if (event->owner) {
5338 list_del_init(&event->owner_entry);
5339 smp_store_release(&event->owner, NULL);
5340 }
5341 mutex_unlock(&owner->perf_event_mutex);
5342 put_task_struct(owner);
5343 }
5344 }
5345
put_event(struct perf_event * event)5346 static void put_event(struct perf_event *event)
5347 {
5348 if (!atomic_long_dec_and_test(&event->refcount))
5349 return;
5350
5351 _free_event(event);
5352 }
5353
5354 /*
5355 * Kill an event dead; while event:refcount will preserve the event
5356 * object, it will not preserve its functionality. Once the last 'user'
5357 * gives up the object, we'll destroy the thing.
5358 */
perf_event_release_kernel(struct perf_event * event)5359 int perf_event_release_kernel(struct perf_event *event)
5360 {
5361 struct perf_event_context *ctx = event->ctx;
5362 struct perf_event *child, *tmp;
5363 LIST_HEAD(free_list);
5364
5365 /*
5366 * If we got here through err_alloc: free_event(event); we will not
5367 * have attached to a context yet.
5368 */
5369 if (!ctx) {
5370 WARN_ON_ONCE(event->attach_state &
5371 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5372 goto no_ctx;
5373 }
5374
5375 if (!is_kernel_event(event))
5376 perf_remove_from_owner(event);
5377
5378 ctx = perf_event_ctx_lock(event);
5379 WARN_ON_ONCE(ctx->parent_ctx);
5380
5381 /*
5382 * Mark this event as STATE_DEAD, there is no external reference to it
5383 * anymore.
5384 *
5385 * Anybody acquiring event->child_mutex after the below loop _must_
5386 * also see this, most importantly inherit_event() which will avoid
5387 * placing more children on the list.
5388 *
5389 * Thus this guarantees that we will in fact observe and kill _ALL_
5390 * child events.
5391 */
5392 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5393
5394 perf_event_ctx_unlock(event, ctx);
5395
5396 again:
5397 mutex_lock(&event->child_mutex);
5398 list_for_each_entry(child, &event->child_list, child_list) {
5399 void *var = NULL;
5400
5401 /*
5402 * Cannot change, child events are not migrated, see the
5403 * comment with perf_event_ctx_lock_nested().
5404 */
5405 ctx = READ_ONCE(child->ctx);
5406 /*
5407 * Since child_mutex nests inside ctx::mutex, we must jump
5408 * through hoops. We start by grabbing a reference on the ctx.
5409 *
5410 * Since the event cannot get freed while we hold the
5411 * child_mutex, the context must also exist and have a !0
5412 * reference count.
5413 */
5414 get_ctx(ctx);
5415
5416 /*
5417 * Now that we have a ctx ref, we can drop child_mutex, and
5418 * acquire ctx::mutex without fear of it going away. Then we
5419 * can re-acquire child_mutex.
5420 */
5421 mutex_unlock(&event->child_mutex);
5422 mutex_lock(&ctx->mutex);
5423 mutex_lock(&event->child_mutex);
5424
5425 /*
5426 * Now that we hold ctx::mutex and child_mutex, revalidate our
5427 * state, if child is still the first entry, it didn't get freed
5428 * and we can continue doing so.
5429 */
5430 tmp = list_first_entry_or_null(&event->child_list,
5431 struct perf_event, child_list);
5432 if (tmp == child) {
5433 perf_remove_from_context(child, DETACH_GROUP);
5434 list_move(&child->child_list, &free_list);
5435 /*
5436 * This matches the refcount bump in inherit_event();
5437 * this can't be the last reference.
5438 */
5439 put_event(event);
5440 } else {
5441 var = &ctx->refcount;
5442 }
5443
5444 mutex_unlock(&event->child_mutex);
5445 mutex_unlock(&ctx->mutex);
5446 put_ctx(ctx);
5447
5448 if (var) {
5449 /*
5450 * If perf_event_free_task() has deleted all events from the
5451 * ctx while the child_mutex got released above, make sure to
5452 * notify about the preceding put_ctx().
5453 */
5454 smp_mb(); /* pairs with wait_var_event() */
5455 wake_up_var(var);
5456 }
5457 goto again;
5458 }
5459 mutex_unlock(&event->child_mutex);
5460
5461 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5462 void *var = &child->ctx->refcount;
5463
5464 list_del(&child->child_list);
5465 free_event(child);
5466
5467 /*
5468 * Wake any perf_event_free_task() waiting for this event to be
5469 * freed.
5470 */
5471 smp_mb(); /* pairs with wait_var_event() */
5472 wake_up_var(var);
5473 }
5474
5475 no_ctx:
5476 put_event(event); /* Must be the 'last' reference */
5477 return 0;
5478 }
5479 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5480
5481 /*
5482 * Called when the last reference to the file is gone.
5483 */
perf_release(struct inode * inode,struct file * file)5484 static int perf_release(struct inode *inode, struct file *file)
5485 {
5486 perf_event_release_kernel(file->private_data);
5487 return 0;
5488 }
5489
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5490 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5491 {
5492 struct perf_event *child;
5493 u64 total = 0;
5494
5495 *enabled = 0;
5496 *running = 0;
5497
5498 mutex_lock(&event->child_mutex);
5499
5500 (void)perf_event_read(event, false);
5501 total += perf_event_count(event);
5502
5503 *enabled += event->total_time_enabled +
5504 atomic64_read(&event->child_total_time_enabled);
5505 *running += event->total_time_running +
5506 atomic64_read(&event->child_total_time_running);
5507
5508 list_for_each_entry(child, &event->child_list, child_list) {
5509 (void)perf_event_read(child, false);
5510 total += perf_event_count(child);
5511 *enabled += child->total_time_enabled;
5512 *running += child->total_time_running;
5513 }
5514 mutex_unlock(&event->child_mutex);
5515
5516 return total;
5517 }
5518
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5519 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5520 {
5521 struct perf_event_context *ctx;
5522 u64 count;
5523
5524 ctx = perf_event_ctx_lock(event);
5525 count = __perf_event_read_value(event, enabled, running);
5526 perf_event_ctx_unlock(event, ctx);
5527
5528 return count;
5529 }
5530 EXPORT_SYMBOL_GPL(perf_event_read_value);
5531
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5532 static int __perf_read_group_add(struct perf_event *leader,
5533 u64 read_format, u64 *values)
5534 {
5535 struct perf_event_context *ctx = leader->ctx;
5536 struct perf_event *sub, *parent;
5537 unsigned long flags;
5538 int n = 1; /* skip @nr */
5539 int ret;
5540
5541 ret = perf_event_read(leader, true);
5542 if (ret)
5543 return ret;
5544
5545 raw_spin_lock_irqsave(&ctx->lock, flags);
5546 /*
5547 * Verify the grouping between the parent and child (inherited)
5548 * events is still in tact.
5549 *
5550 * Specifically:
5551 * - leader->ctx->lock pins leader->sibling_list
5552 * - parent->child_mutex pins parent->child_list
5553 * - parent->ctx->mutex pins parent->sibling_list
5554 *
5555 * Because parent->ctx != leader->ctx (and child_list nests inside
5556 * ctx->mutex), group destruction is not atomic between children, also
5557 * see perf_event_release_kernel(). Additionally, parent can grow the
5558 * group.
5559 *
5560 * Therefore it is possible to have parent and child groups in a
5561 * different configuration and summing over such a beast makes no sense
5562 * what so ever.
5563 *
5564 * Reject this.
5565 */
5566 parent = leader->parent;
5567 if (parent &&
5568 (parent->group_generation != leader->group_generation ||
5569 parent->nr_siblings != leader->nr_siblings)) {
5570 ret = -ECHILD;
5571 goto unlock;
5572 }
5573
5574 /*
5575 * Since we co-schedule groups, {enabled,running} times of siblings
5576 * will be identical to those of the leader, so we only publish one
5577 * set.
5578 */
5579 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5580 values[n++] += leader->total_time_enabled +
5581 atomic64_read(&leader->child_total_time_enabled);
5582 }
5583
5584 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5585 values[n++] += leader->total_time_running +
5586 atomic64_read(&leader->child_total_time_running);
5587 }
5588
5589 /*
5590 * Write {count,id} tuples for every sibling.
5591 */
5592 values[n++] += perf_event_count(leader);
5593 if (read_format & PERF_FORMAT_ID)
5594 values[n++] = primary_event_id(leader);
5595 if (read_format & PERF_FORMAT_LOST)
5596 values[n++] = atomic64_read(&leader->lost_samples);
5597
5598 for_each_sibling_event(sub, leader) {
5599 values[n++] += perf_event_count(sub);
5600 if (read_format & PERF_FORMAT_ID)
5601 values[n++] = primary_event_id(sub);
5602 if (read_format & PERF_FORMAT_LOST)
5603 values[n++] = atomic64_read(&sub->lost_samples);
5604 }
5605
5606 unlock:
5607 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5608 return ret;
5609 }
5610
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5611 static int perf_read_group(struct perf_event *event,
5612 u64 read_format, char __user *buf)
5613 {
5614 struct perf_event *leader = event->group_leader, *child;
5615 struct perf_event_context *ctx = leader->ctx;
5616 int ret;
5617 u64 *values;
5618
5619 lockdep_assert_held(&ctx->mutex);
5620
5621 values = kzalloc(event->read_size, GFP_KERNEL);
5622 if (!values)
5623 return -ENOMEM;
5624
5625 values[0] = 1 + leader->nr_siblings;
5626
5627 mutex_lock(&leader->child_mutex);
5628
5629 ret = __perf_read_group_add(leader, read_format, values);
5630 if (ret)
5631 goto unlock;
5632
5633 list_for_each_entry(child, &leader->child_list, child_list) {
5634 ret = __perf_read_group_add(child, read_format, values);
5635 if (ret)
5636 goto unlock;
5637 }
5638
5639 mutex_unlock(&leader->child_mutex);
5640
5641 ret = event->read_size;
5642 if (copy_to_user(buf, values, event->read_size))
5643 ret = -EFAULT;
5644 goto out;
5645
5646 unlock:
5647 mutex_unlock(&leader->child_mutex);
5648 out:
5649 kfree(values);
5650 return ret;
5651 }
5652
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5653 static int perf_read_one(struct perf_event *event,
5654 u64 read_format, char __user *buf)
5655 {
5656 u64 enabled, running;
5657 u64 values[5];
5658 int n = 0;
5659
5660 values[n++] = __perf_event_read_value(event, &enabled, &running);
5661 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5662 values[n++] = enabled;
5663 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5664 values[n++] = running;
5665 if (read_format & PERF_FORMAT_ID)
5666 values[n++] = primary_event_id(event);
5667 if (read_format & PERF_FORMAT_LOST)
5668 values[n++] = atomic64_read(&event->lost_samples);
5669
5670 if (copy_to_user(buf, values, n * sizeof(u64)))
5671 return -EFAULT;
5672
5673 return n * sizeof(u64);
5674 }
5675
is_event_hup(struct perf_event * event)5676 static bool is_event_hup(struct perf_event *event)
5677 {
5678 bool no_children;
5679
5680 if (event->state > PERF_EVENT_STATE_EXIT)
5681 return false;
5682
5683 mutex_lock(&event->child_mutex);
5684 no_children = list_empty(&event->child_list);
5685 mutex_unlock(&event->child_mutex);
5686 return no_children;
5687 }
5688
5689 /*
5690 * Read the performance event - simple non blocking version for now
5691 */
5692 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5693 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5694 {
5695 u64 read_format = event->attr.read_format;
5696 int ret;
5697
5698 /*
5699 * Return end-of-file for a read on an event that is in
5700 * error state (i.e. because it was pinned but it couldn't be
5701 * scheduled on to the CPU at some point).
5702 */
5703 if (event->state == PERF_EVENT_STATE_ERROR)
5704 return 0;
5705
5706 if (count < event->read_size)
5707 return -ENOSPC;
5708
5709 WARN_ON_ONCE(event->ctx->parent_ctx);
5710 if (read_format & PERF_FORMAT_GROUP)
5711 ret = perf_read_group(event, read_format, buf);
5712 else
5713 ret = perf_read_one(event, read_format, buf);
5714
5715 return ret;
5716 }
5717
5718 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5719 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5720 {
5721 struct perf_event *event = file->private_data;
5722 struct perf_event_context *ctx;
5723 int ret;
5724
5725 ret = security_perf_event_read(event);
5726 if (ret)
5727 return ret;
5728
5729 ctx = perf_event_ctx_lock(event);
5730 ret = __perf_read(event, buf, count);
5731 perf_event_ctx_unlock(event, ctx);
5732
5733 return ret;
5734 }
5735
perf_poll(struct file * file,poll_table * wait)5736 static __poll_t perf_poll(struct file *file, poll_table *wait)
5737 {
5738 struct perf_event *event = file->private_data;
5739 struct perf_buffer *rb;
5740 __poll_t events = EPOLLHUP;
5741
5742 poll_wait(file, &event->waitq, wait);
5743
5744 if (is_event_hup(event))
5745 return events;
5746
5747 /*
5748 * Pin the event->rb by taking event->mmap_mutex; otherwise
5749 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5750 */
5751 mutex_lock(&event->mmap_mutex);
5752 rb = event->rb;
5753 if (rb)
5754 events = atomic_xchg(&rb->poll, 0);
5755 mutex_unlock(&event->mmap_mutex);
5756 return events;
5757 }
5758
_perf_event_reset(struct perf_event * event)5759 static void _perf_event_reset(struct perf_event *event)
5760 {
5761 (void)perf_event_read(event, false);
5762 local64_set(&event->count, 0);
5763 perf_event_update_userpage(event);
5764 }
5765
5766 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5767 u64 perf_event_pause(struct perf_event *event, bool reset)
5768 {
5769 struct perf_event_context *ctx;
5770 u64 count;
5771
5772 ctx = perf_event_ctx_lock(event);
5773 WARN_ON_ONCE(event->attr.inherit);
5774 _perf_event_disable(event);
5775 count = local64_read(&event->count);
5776 if (reset)
5777 local64_set(&event->count, 0);
5778 perf_event_ctx_unlock(event, ctx);
5779
5780 return count;
5781 }
5782 EXPORT_SYMBOL_GPL(perf_event_pause);
5783
5784 /*
5785 * Holding the top-level event's child_mutex means that any
5786 * descendant process that has inherited this event will block
5787 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5788 * task existence requirements of perf_event_enable/disable.
5789 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5790 static void perf_event_for_each_child(struct perf_event *event,
5791 void (*func)(struct perf_event *))
5792 {
5793 struct perf_event *child;
5794
5795 WARN_ON_ONCE(event->ctx->parent_ctx);
5796
5797 mutex_lock(&event->child_mutex);
5798 func(event);
5799 list_for_each_entry(child, &event->child_list, child_list)
5800 func(child);
5801 mutex_unlock(&event->child_mutex);
5802 }
5803
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5804 static void perf_event_for_each(struct perf_event *event,
5805 void (*func)(struct perf_event *))
5806 {
5807 struct perf_event_context *ctx = event->ctx;
5808 struct perf_event *sibling;
5809
5810 lockdep_assert_held(&ctx->mutex);
5811
5812 event = event->group_leader;
5813
5814 perf_event_for_each_child(event, func);
5815 for_each_sibling_event(sibling, event)
5816 perf_event_for_each_child(sibling, func);
5817 }
5818
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5819 static void __perf_event_period(struct perf_event *event,
5820 struct perf_cpu_context *cpuctx,
5821 struct perf_event_context *ctx,
5822 void *info)
5823 {
5824 u64 value = *((u64 *)info);
5825 bool active;
5826
5827 if (event->attr.freq) {
5828 event->attr.sample_freq = value;
5829 } else {
5830 event->attr.sample_period = value;
5831 event->hw.sample_period = value;
5832 }
5833
5834 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5835 if (active) {
5836 perf_pmu_disable(event->pmu);
5837 /*
5838 * We could be throttled; unthrottle now to avoid the tick
5839 * trying to unthrottle while we already re-started the event.
5840 */
5841 if (event->hw.interrupts == MAX_INTERRUPTS) {
5842 event->hw.interrupts = 0;
5843 perf_log_throttle(event, 1);
5844 }
5845 event->pmu->stop(event, PERF_EF_UPDATE);
5846 }
5847
5848 local64_set(&event->hw.period_left, 0);
5849
5850 if (active) {
5851 event->pmu->start(event, PERF_EF_RELOAD);
5852 perf_pmu_enable(event->pmu);
5853 }
5854 }
5855
perf_event_check_period(struct perf_event * event,u64 value)5856 static int perf_event_check_period(struct perf_event *event, u64 value)
5857 {
5858 return event->pmu->check_period(event, value);
5859 }
5860
_perf_event_period(struct perf_event * event,u64 value)5861 static int _perf_event_period(struct perf_event *event, u64 value)
5862 {
5863 if (!is_sampling_event(event))
5864 return -EINVAL;
5865
5866 if (!value)
5867 return -EINVAL;
5868
5869 if (event->attr.freq) {
5870 if (value > sysctl_perf_event_sample_rate)
5871 return -EINVAL;
5872 } else {
5873 if (perf_event_check_period(event, value))
5874 return -EINVAL;
5875 if (value & (1ULL << 63))
5876 return -EINVAL;
5877 }
5878
5879 event_function_call(event, __perf_event_period, &value);
5880
5881 return 0;
5882 }
5883
perf_event_period(struct perf_event * event,u64 value)5884 int perf_event_period(struct perf_event *event, u64 value)
5885 {
5886 struct perf_event_context *ctx;
5887 int ret;
5888
5889 ctx = perf_event_ctx_lock(event);
5890 ret = _perf_event_period(event, value);
5891 perf_event_ctx_unlock(event, ctx);
5892
5893 return ret;
5894 }
5895 EXPORT_SYMBOL_GPL(perf_event_period);
5896
5897 static const struct file_operations perf_fops;
5898
perf_fget_light(int fd,struct fd * p)5899 static inline int perf_fget_light(int fd, struct fd *p)
5900 {
5901 struct fd f = fdget(fd);
5902 if (!f.file)
5903 return -EBADF;
5904
5905 if (f.file->f_op != &perf_fops) {
5906 fdput(f);
5907 return -EBADF;
5908 }
5909 *p = f;
5910 return 0;
5911 }
5912
5913 static int perf_event_set_output(struct perf_event *event,
5914 struct perf_event *output_event);
5915 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5916 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5917 struct perf_event_attr *attr);
5918
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5919 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5920 {
5921 void (*func)(struct perf_event *);
5922 u32 flags = arg;
5923
5924 switch (cmd) {
5925 case PERF_EVENT_IOC_ENABLE:
5926 func = _perf_event_enable;
5927 break;
5928 case PERF_EVENT_IOC_DISABLE:
5929 func = _perf_event_disable;
5930 break;
5931 case PERF_EVENT_IOC_RESET:
5932 func = _perf_event_reset;
5933 break;
5934
5935 case PERF_EVENT_IOC_REFRESH:
5936 return _perf_event_refresh(event, arg);
5937
5938 case PERF_EVENT_IOC_PERIOD:
5939 {
5940 u64 value;
5941
5942 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5943 return -EFAULT;
5944
5945 return _perf_event_period(event, value);
5946 }
5947 case PERF_EVENT_IOC_ID:
5948 {
5949 u64 id = primary_event_id(event);
5950
5951 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5952 return -EFAULT;
5953 return 0;
5954 }
5955
5956 case PERF_EVENT_IOC_SET_OUTPUT:
5957 {
5958 int ret;
5959 if (arg != -1) {
5960 struct perf_event *output_event;
5961 struct fd output;
5962 ret = perf_fget_light(arg, &output);
5963 if (ret)
5964 return ret;
5965 output_event = output.file->private_data;
5966 ret = perf_event_set_output(event, output_event);
5967 fdput(output);
5968 } else {
5969 ret = perf_event_set_output(event, NULL);
5970 }
5971 return ret;
5972 }
5973
5974 case PERF_EVENT_IOC_SET_FILTER:
5975 return perf_event_set_filter(event, (void __user *)arg);
5976
5977 case PERF_EVENT_IOC_SET_BPF:
5978 {
5979 struct bpf_prog *prog;
5980 int err;
5981
5982 prog = bpf_prog_get(arg);
5983 if (IS_ERR(prog))
5984 return PTR_ERR(prog);
5985
5986 err = perf_event_set_bpf_prog(event, prog, 0);
5987 if (err) {
5988 bpf_prog_put(prog);
5989 return err;
5990 }
5991
5992 return 0;
5993 }
5994
5995 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5996 struct perf_buffer *rb;
5997
5998 rcu_read_lock();
5999 rb = rcu_dereference(event->rb);
6000 if (!rb || !rb->nr_pages) {
6001 rcu_read_unlock();
6002 return -EINVAL;
6003 }
6004 rb_toggle_paused(rb, !!arg);
6005 rcu_read_unlock();
6006 return 0;
6007 }
6008
6009 case PERF_EVENT_IOC_QUERY_BPF:
6010 return perf_event_query_prog_array(event, (void __user *)arg);
6011
6012 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6013 struct perf_event_attr new_attr;
6014 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6015 &new_attr);
6016
6017 if (err)
6018 return err;
6019
6020 return perf_event_modify_attr(event, &new_attr);
6021 }
6022 default:
6023 return -ENOTTY;
6024 }
6025
6026 if (flags & PERF_IOC_FLAG_GROUP)
6027 perf_event_for_each(event, func);
6028 else
6029 perf_event_for_each_child(event, func);
6030
6031 return 0;
6032 }
6033
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6034 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6035 {
6036 struct perf_event *event = file->private_data;
6037 struct perf_event_context *ctx;
6038 long ret;
6039
6040 /* Treat ioctl like writes as it is likely a mutating operation. */
6041 ret = security_perf_event_write(event);
6042 if (ret)
6043 return ret;
6044
6045 ctx = perf_event_ctx_lock(event);
6046 ret = _perf_ioctl(event, cmd, arg);
6047 perf_event_ctx_unlock(event, ctx);
6048
6049 return ret;
6050 }
6051
6052 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6053 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6054 unsigned long arg)
6055 {
6056 switch (_IOC_NR(cmd)) {
6057 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6058 case _IOC_NR(PERF_EVENT_IOC_ID):
6059 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6060 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6061 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6062 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6063 cmd &= ~IOCSIZE_MASK;
6064 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6065 }
6066 break;
6067 }
6068 return perf_ioctl(file, cmd, arg);
6069 }
6070 #else
6071 # define perf_compat_ioctl NULL
6072 #endif
6073
perf_event_task_enable(void)6074 int perf_event_task_enable(void)
6075 {
6076 struct perf_event_context *ctx;
6077 struct perf_event *event;
6078
6079 mutex_lock(¤t->perf_event_mutex);
6080 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6081 ctx = perf_event_ctx_lock(event);
6082 perf_event_for_each_child(event, _perf_event_enable);
6083 perf_event_ctx_unlock(event, ctx);
6084 }
6085 mutex_unlock(¤t->perf_event_mutex);
6086
6087 return 0;
6088 }
6089
perf_event_task_disable(void)6090 int perf_event_task_disable(void)
6091 {
6092 struct perf_event_context *ctx;
6093 struct perf_event *event;
6094
6095 mutex_lock(¤t->perf_event_mutex);
6096 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6097 ctx = perf_event_ctx_lock(event);
6098 perf_event_for_each_child(event, _perf_event_disable);
6099 perf_event_ctx_unlock(event, ctx);
6100 }
6101 mutex_unlock(¤t->perf_event_mutex);
6102
6103 return 0;
6104 }
6105
perf_event_index(struct perf_event * event)6106 static int perf_event_index(struct perf_event *event)
6107 {
6108 if (event->hw.state & PERF_HES_STOPPED)
6109 return 0;
6110
6111 if (event->state != PERF_EVENT_STATE_ACTIVE)
6112 return 0;
6113
6114 return event->pmu->event_idx(event);
6115 }
6116
perf_event_init_userpage(struct perf_event * event)6117 static void perf_event_init_userpage(struct perf_event *event)
6118 {
6119 struct perf_event_mmap_page *userpg;
6120 struct perf_buffer *rb;
6121
6122 rcu_read_lock();
6123 rb = rcu_dereference(event->rb);
6124 if (!rb)
6125 goto unlock;
6126
6127 userpg = rb->user_page;
6128
6129 /* Allow new userspace to detect that bit 0 is deprecated */
6130 userpg->cap_bit0_is_deprecated = 1;
6131 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6132 userpg->data_offset = PAGE_SIZE;
6133 userpg->data_size = perf_data_size(rb);
6134
6135 unlock:
6136 rcu_read_unlock();
6137 }
6138
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6139 void __weak arch_perf_update_userpage(
6140 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6141 {
6142 }
6143
6144 /*
6145 * Callers need to ensure there can be no nesting of this function, otherwise
6146 * the seqlock logic goes bad. We can not serialize this because the arch
6147 * code calls this from NMI context.
6148 */
perf_event_update_userpage(struct perf_event * event)6149 void perf_event_update_userpage(struct perf_event *event)
6150 {
6151 struct perf_event_mmap_page *userpg;
6152 struct perf_buffer *rb;
6153 u64 enabled, running, now;
6154
6155 rcu_read_lock();
6156 rb = rcu_dereference(event->rb);
6157 if (!rb)
6158 goto unlock;
6159
6160 /*
6161 * compute total_time_enabled, total_time_running
6162 * based on snapshot values taken when the event
6163 * was last scheduled in.
6164 *
6165 * we cannot simply called update_context_time()
6166 * because of locking issue as we can be called in
6167 * NMI context
6168 */
6169 calc_timer_values(event, &now, &enabled, &running);
6170
6171 userpg = rb->user_page;
6172 /*
6173 * Disable preemption to guarantee consistent time stamps are stored to
6174 * the user page.
6175 */
6176 preempt_disable();
6177 ++userpg->lock;
6178 barrier();
6179 userpg->index = perf_event_index(event);
6180 userpg->offset = perf_event_count(event);
6181 if (userpg->index)
6182 userpg->offset -= local64_read(&event->hw.prev_count);
6183
6184 userpg->time_enabled = enabled +
6185 atomic64_read(&event->child_total_time_enabled);
6186
6187 userpg->time_running = running +
6188 atomic64_read(&event->child_total_time_running);
6189
6190 arch_perf_update_userpage(event, userpg, now);
6191
6192 barrier();
6193 ++userpg->lock;
6194 preempt_enable();
6195 unlock:
6196 rcu_read_unlock();
6197 }
6198 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6199
perf_mmap_fault(struct vm_fault * vmf)6200 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6201 {
6202 struct perf_event *event = vmf->vma->vm_file->private_data;
6203 struct perf_buffer *rb;
6204 vm_fault_t ret = VM_FAULT_SIGBUS;
6205
6206 if (vmf->flags & FAULT_FLAG_MKWRITE) {
6207 if (vmf->pgoff == 0)
6208 ret = 0;
6209 return ret;
6210 }
6211
6212 rcu_read_lock();
6213 rb = rcu_dereference(event->rb);
6214 if (!rb)
6215 goto unlock;
6216
6217 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6218 goto unlock;
6219
6220 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6221 if (!vmf->page)
6222 goto unlock;
6223
6224 get_page(vmf->page);
6225 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6226 vmf->page->index = vmf->pgoff;
6227
6228 ret = 0;
6229 unlock:
6230 rcu_read_unlock();
6231
6232 return ret;
6233 }
6234
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6235 static void ring_buffer_attach(struct perf_event *event,
6236 struct perf_buffer *rb)
6237 {
6238 struct perf_buffer *old_rb = NULL;
6239 unsigned long flags;
6240
6241 WARN_ON_ONCE(event->parent);
6242
6243 if (event->rb) {
6244 /*
6245 * Should be impossible, we set this when removing
6246 * event->rb_entry and wait/clear when adding event->rb_entry.
6247 */
6248 WARN_ON_ONCE(event->rcu_pending);
6249
6250 old_rb = event->rb;
6251 spin_lock_irqsave(&old_rb->event_lock, flags);
6252 list_del_rcu(&event->rb_entry);
6253 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6254
6255 event->rcu_batches = get_state_synchronize_rcu();
6256 event->rcu_pending = 1;
6257 }
6258
6259 if (rb) {
6260 if (event->rcu_pending) {
6261 cond_synchronize_rcu(event->rcu_batches);
6262 event->rcu_pending = 0;
6263 }
6264
6265 spin_lock_irqsave(&rb->event_lock, flags);
6266 list_add_rcu(&event->rb_entry, &rb->event_list);
6267 spin_unlock_irqrestore(&rb->event_lock, flags);
6268 }
6269
6270 /*
6271 * Avoid racing with perf_mmap_close(AUX): stop the event
6272 * before swizzling the event::rb pointer; if it's getting
6273 * unmapped, its aux_mmap_count will be 0 and it won't
6274 * restart. See the comment in __perf_pmu_output_stop().
6275 *
6276 * Data will inevitably be lost when set_output is done in
6277 * mid-air, but then again, whoever does it like this is
6278 * not in for the data anyway.
6279 */
6280 if (has_aux(event))
6281 perf_event_stop(event, 0);
6282
6283 rcu_assign_pointer(event->rb, rb);
6284
6285 if (old_rb) {
6286 ring_buffer_put(old_rb);
6287 /*
6288 * Since we detached before setting the new rb, so that we
6289 * could attach the new rb, we could have missed a wakeup.
6290 * Provide it now.
6291 */
6292 wake_up_all(&event->waitq);
6293 }
6294 }
6295
ring_buffer_wakeup(struct perf_event * event)6296 static void ring_buffer_wakeup(struct perf_event *event)
6297 {
6298 struct perf_buffer *rb;
6299
6300 if (event->parent)
6301 event = event->parent;
6302
6303 rcu_read_lock();
6304 rb = rcu_dereference(event->rb);
6305 if (rb) {
6306 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6307 wake_up_all(&event->waitq);
6308 }
6309 rcu_read_unlock();
6310 }
6311
ring_buffer_get(struct perf_event * event)6312 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6313 {
6314 struct perf_buffer *rb;
6315
6316 if (event->parent)
6317 event = event->parent;
6318
6319 rcu_read_lock();
6320 rb = rcu_dereference(event->rb);
6321 if (rb) {
6322 if (!refcount_inc_not_zero(&rb->refcount))
6323 rb = NULL;
6324 }
6325 rcu_read_unlock();
6326
6327 return rb;
6328 }
6329
ring_buffer_put(struct perf_buffer * rb)6330 void ring_buffer_put(struct perf_buffer *rb)
6331 {
6332 if (!refcount_dec_and_test(&rb->refcount))
6333 return;
6334
6335 WARN_ON_ONCE(!list_empty(&rb->event_list));
6336
6337 call_rcu(&rb->rcu_head, rb_free_rcu);
6338 }
6339
perf_mmap_open(struct vm_area_struct * vma)6340 static void perf_mmap_open(struct vm_area_struct *vma)
6341 {
6342 struct perf_event *event = vma->vm_file->private_data;
6343
6344 atomic_inc(&event->mmap_count);
6345 atomic_inc(&event->rb->mmap_count);
6346
6347 if (vma->vm_pgoff)
6348 atomic_inc(&event->rb->aux_mmap_count);
6349
6350 if (event->pmu->event_mapped)
6351 event->pmu->event_mapped(event, vma->vm_mm);
6352 }
6353
6354 static void perf_pmu_output_stop(struct perf_event *event);
6355
6356 /*
6357 * A buffer can be mmap()ed multiple times; either directly through the same
6358 * event, or through other events by use of perf_event_set_output().
6359 *
6360 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6361 * the buffer here, where we still have a VM context. This means we need
6362 * to detach all events redirecting to us.
6363 */
perf_mmap_close(struct vm_area_struct * vma)6364 static void perf_mmap_close(struct vm_area_struct *vma)
6365 {
6366 struct perf_event *event = vma->vm_file->private_data;
6367 struct perf_buffer *rb = ring_buffer_get(event);
6368 struct user_struct *mmap_user = rb->mmap_user;
6369 int mmap_locked = rb->mmap_locked;
6370 unsigned long size = perf_data_size(rb);
6371 bool detach_rest = false;
6372
6373 if (event->pmu->event_unmapped)
6374 event->pmu->event_unmapped(event, vma->vm_mm);
6375
6376 /*
6377 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6378 * to avoid complications.
6379 */
6380 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6381 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6382 /*
6383 * Stop all AUX events that are writing to this buffer,
6384 * so that we can free its AUX pages and corresponding PMU
6385 * data. Note that after rb::aux_mmap_count dropped to zero,
6386 * they won't start any more (see perf_aux_output_begin()).
6387 */
6388 perf_pmu_output_stop(event);
6389
6390 /* now it's safe to free the pages */
6391 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6392 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6393
6394 /* this has to be the last one */
6395 rb_free_aux(rb);
6396 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6397
6398 mutex_unlock(&rb->aux_mutex);
6399 }
6400
6401 if (atomic_dec_and_test(&rb->mmap_count))
6402 detach_rest = true;
6403
6404 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6405 goto out_put;
6406
6407 ring_buffer_attach(event, NULL);
6408 mutex_unlock(&event->mmap_mutex);
6409
6410 /* If there's still other mmap()s of this buffer, we're done. */
6411 if (!detach_rest)
6412 goto out_put;
6413
6414 /*
6415 * No other mmap()s, detach from all other events that might redirect
6416 * into the now unreachable buffer. Somewhat complicated by the
6417 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6418 */
6419 again:
6420 rcu_read_lock();
6421 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6422 if (!atomic_long_inc_not_zero(&event->refcount)) {
6423 /*
6424 * This event is en-route to free_event() which will
6425 * detach it and remove it from the list.
6426 */
6427 continue;
6428 }
6429 rcu_read_unlock();
6430
6431 mutex_lock(&event->mmap_mutex);
6432 /*
6433 * Check we didn't race with perf_event_set_output() which can
6434 * swizzle the rb from under us while we were waiting to
6435 * acquire mmap_mutex.
6436 *
6437 * If we find a different rb; ignore this event, a next
6438 * iteration will no longer find it on the list. We have to
6439 * still restart the iteration to make sure we're not now
6440 * iterating the wrong list.
6441 */
6442 if (event->rb == rb)
6443 ring_buffer_attach(event, NULL);
6444
6445 mutex_unlock(&event->mmap_mutex);
6446 put_event(event);
6447
6448 /*
6449 * Restart the iteration; either we're on the wrong list or
6450 * destroyed its integrity by doing a deletion.
6451 */
6452 goto again;
6453 }
6454 rcu_read_unlock();
6455
6456 /*
6457 * It could be there's still a few 0-ref events on the list; they'll
6458 * get cleaned up by free_event() -- they'll also still have their
6459 * ref on the rb and will free it whenever they are done with it.
6460 *
6461 * Aside from that, this buffer is 'fully' detached and unmapped,
6462 * undo the VM accounting.
6463 */
6464
6465 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6466 &mmap_user->locked_vm);
6467 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6468 free_uid(mmap_user);
6469
6470 out_put:
6471 ring_buffer_put(rb); /* could be last */
6472 }
6473
6474 static const struct vm_operations_struct perf_mmap_vmops = {
6475 .open = perf_mmap_open,
6476 .close = perf_mmap_close, /* non mergeable */
6477 .fault = perf_mmap_fault,
6478 .page_mkwrite = perf_mmap_fault,
6479 };
6480
perf_mmap(struct file * file,struct vm_area_struct * vma)6481 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6482 {
6483 struct perf_event *event = file->private_data;
6484 unsigned long user_locked, user_lock_limit;
6485 struct user_struct *user = current_user();
6486 struct mutex *aux_mutex = NULL;
6487 struct perf_buffer *rb = NULL;
6488 unsigned long locked, lock_limit;
6489 unsigned long vma_size;
6490 unsigned long nr_pages;
6491 long user_extra = 0, extra = 0;
6492 int ret = 0, flags = 0;
6493
6494 /*
6495 * Don't allow mmap() of inherited per-task counters. This would
6496 * create a performance issue due to all children writing to the
6497 * same rb.
6498 */
6499 if (event->cpu == -1 && event->attr.inherit)
6500 return -EINVAL;
6501
6502 if (!(vma->vm_flags & VM_SHARED))
6503 return -EINVAL;
6504
6505 ret = security_perf_event_read(event);
6506 if (ret)
6507 return ret;
6508
6509 vma_size = vma->vm_end - vma->vm_start;
6510
6511 if (vma->vm_pgoff == 0) {
6512 nr_pages = (vma_size / PAGE_SIZE) - 1;
6513 } else {
6514 /*
6515 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6516 * mapped, all subsequent mappings should have the same size
6517 * and offset. Must be above the normal perf buffer.
6518 */
6519 u64 aux_offset, aux_size;
6520
6521 if (!event->rb)
6522 return -EINVAL;
6523
6524 nr_pages = vma_size / PAGE_SIZE;
6525 if (nr_pages > INT_MAX)
6526 return -ENOMEM;
6527
6528 mutex_lock(&event->mmap_mutex);
6529 ret = -EINVAL;
6530
6531 rb = event->rb;
6532 if (!rb)
6533 goto aux_unlock;
6534
6535 aux_mutex = &rb->aux_mutex;
6536 mutex_lock(aux_mutex);
6537
6538 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6539 aux_size = READ_ONCE(rb->user_page->aux_size);
6540
6541 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6542 goto aux_unlock;
6543
6544 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6545 goto aux_unlock;
6546
6547 /* already mapped with a different offset */
6548 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6549 goto aux_unlock;
6550
6551 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6552 goto aux_unlock;
6553
6554 /* already mapped with a different size */
6555 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6556 goto aux_unlock;
6557
6558 if (!is_power_of_2(nr_pages))
6559 goto aux_unlock;
6560
6561 if (!atomic_inc_not_zero(&rb->mmap_count))
6562 goto aux_unlock;
6563
6564 if (rb_has_aux(rb)) {
6565 atomic_inc(&rb->aux_mmap_count);
6566 ret = 0;
6567 goto unlock;
6568 }
6569
6570 atomic_set(&rb->aux_mmap_count, 1);
6571 user_extra = nr_pages;
6572
6573 goto accounting;
6574 }
6575
6576 /*
6577 * If we have rb pages ensure they're a power-of-two number, so we
6578 * can do bitmasks instead of modulo.
6579 */
6580 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6581 return -EINVAL;
6582
6583 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6584 return -EINVAL;
6585
6586 WARN_ON_ONCE(event->ctx->parent_ctx);
6587 again:
6588 mutex_lock(&event->mmap_mutex);
6589 if (event->rb) {
6590 if (data_page_nr(event->rb) != nr_pages) {
6591 ret = -EINVAL;
6592 goto unlock;
6593 }
6594
6595 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6596 /*
6597 * Raced against perf_mmap_close(); remove the
6598 * event and try again.
6599 */
6600 ring_buffer_attach(event, NULL);
6601 mutex_unlock(&event->mmap_mutex);
6602 goto again;
6603 }
6604
6605 goto unlock;
6606 }
6607
6608 user_extra = nr_pages + 1;
6609
6610 accounting:
6611 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6612
6613 /*
6614 * Increase the limit linearly with more CPUs:
6615 */
6616 user_lock_limit *= num_online_cpus();
6617
6618 user_locked = atomic_long_read(&user->locked_vm);
6619
6620 /*
6621 * sysctl_perf_event_mlock may have changed, so that
6622 * user->locked_vm > user_lock_limit
6623 */
6624 if (user_locked > user_lock_limit)
6625 user_locked = user_lock_limit;
6626 user_locked += user_extra;
6627
6628 if (user_locked > user_lock_limit) {
6629 /*
6630 * charge locked_vm until it hits user_lock_limit;
6631 * charge the rest from pinned_vm
6632 */
6633 extra = user_locked - user_lock_limit;
6634 user_extra -= extra;
6635 }
6636
6637 lock_limit = rlimit(RLIMIT_MEMLOCK);
6638 lock_limit >>= PAGE_SHIFT;
6639 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6640
6641 if ((locked > lock_limit) && perf_is_paranoid() &&
6642 !capable(CAP_IPC_LOCK)) {
6643 ret = -EPERM;
6644 goto unlock;
6645 }
6646
6647 WARN_ON(!rb && event->rb);
6648
6649 if (vma->vm_flags & VM_WRITE)
6650 flags |= RING_BUFFER_WRITABLE;
6651
6652 if (!rb) {
6653 rb = rb_alloc(nr_pages,
6654 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6655 event->cpu, flags);
6656
6657 if (!rb) {
6658 ret = -ENOMEM;
6659 goto unlock;
6660 }
6661
6662 atomic_set(&rb->mmap_count, 1);
6663 rb->mmap_user = get_current_user();
6664 rb->mmap_locked = extra;
6665
6666 ring_buffer_attach(event, rb);
6667
6668 perf_event_update_time(event);
6669 perf_event_init_userpage(event);
6670 perf_event_update_userpage(event);
6671 } else {
6672 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6673 event->attr.aux_watermark, flags);
6674 if (!ret)
6675 rb->aux_mmap_locked = extra;
6676 }
6677
6678 unlock:
6679 if (!ret) {
6680 atomic_long_add(user_extra, &user->locked_vm);
6681 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6682
6683 atomic_inc(&event->mmap_count);
6684 } else if (rb) {
6685 atomic_dec(&rb->mmap_count);
6686 }
6687 aux_unlock:
6688 if (aux_mutex)
6689 mutex_unlock(aux_mutex);
6690 mutex_unlock(&event->mmap_mutex);
6691
6692 /*
6693 * Since pinned accounting is per vm we cannot allow fork() to copy our
6694 * vma.
6695 */
6696 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6697 vma->vm_ops = &perf_mmap_vmops;
6698
6699 if (event->pmu->event_mapped)
6700 event->pmu->event_mapped(event, vma->vm_mm);
6701
6702 return ret;
6703 }
6704
perf_fasync(int fd,struct file * filp,int on)6705 static int perf_fasync(int fd, struct file *filp, int on)
6706 {
6707 struct inode *inode = file_inode(filp);
6708 struct perf_event *event = filp->private_data;
6709 int retval;
6710
6711 inode_lock(inode);
6712 retval = fasync_helper(fd, filp, on, &event->fasync);
6713 inode_unlock(inode);
6714
6715 if (retval < 0)
6716 return retval;
6717
6718 return 0;
6719 }
6720
6721 static const struct file_operations perf_fops = {
6722 .llseek = no_llseek,
6723 .release = perf_release,
6724 .read = perf_read,
6725 .poll = perf_poll,
6726 .unlocked_ioctl = perf_ioctl,
6727 .compat_ioctl = perf_compat_ioctl,
6728 .mmap = perf_mmap,
6729 .fasync = perf_fasync,
6730 };
6731
6732 /*
6733 * Perf event wakeup
6734 *
6735 * If there's data, ensure we set the poll() state and publish everything
6736 * to user-space before waking everybody up.
6737 */
6738
perf_event_fasync(struct perf_event * event)6739 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6740 {
6741 /* only the parent has fasync state */
6742 if (event->parent)
6743 event = event->parent;
6744 return &event->fasync;
6745 }
6746
perf_event_wakeup(struct perf_event * event)6747 void perf_event_wakeup(struct perf_event *event)
6748 {
6749 ring_buffer_wakeup(event);
6750
6751 if (event->pending_kill) {
6752 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6753 event->pending_kill = 0;
6754 }
6755 }
6756
perf_sigtrap(struct perf_event * event)6757 static void perf_sigtrap(struct perf_event *event)
6758 {
6759 /*
6760 * We'd expect this to only occur if the irq_work is delayed and either
6761 * ctx->task or current has changed in the meantime. This can be the
6762 * case on architectures that do not implement arch_irq_work_raise().
6763 */
6764 if (WARN_ON_ONCE(event->ctx->task != current))
6765 return;
6766
6767 /*
6768 * Both perf_pending_task() and perf_pending_irq() can race with the
6769 * task exiting.
6770 */
6771 if (current->flags & PF_EXITING)
6772 return;
6773
6774 send_sig_perf((void __user *)event->pending_addr,
6775 event->orig_type, event->attr.sig_data);
6776 }
6777
6778 /*
6779 * Deliver the pending work in-event-context or follow the context.
6780 */
__perf_pending_irq(struct perf_event * event)6781 static void __perf_pending_irq(struct perf_event *event)
6782 {
6783 int cpu = READ_ONCE(event->oncpu);
6784
6785 /*
6786 * If the event isn't running; we done. event_sched_out() will have
6787 * taken care of things.
6788 */
6789 if (cpu < 0)
6790 return;
6791
6792 /*
6793 * Yay, we hit home and are in the context of the event.
6794 */
6795 if (cpu == smp_processor_id()) {
6796 if (event->pending_sigtrap) {
6797 event->pending_sigtrap = 0;
6798 perf_sigtrap(event);
6799 local_dec(&event->ctx->nr_pending);
6800 }
6801 if (event->pending_disable) {
6802 event->pending_disable = 0;
6803 perf_event_disable_local(event);
6804 }
6805 return;
6806 }
6807
6808 /*
6809 * CPU-A CPU-B
6810 *
6811 * perf_event_disable_inatomic()
6812 * @pending_disable = CPU-A;
6813 * irq_work_queue();
6814 *
6815 * sched-out
6816 * @pending_disable = -1;
6817 *
6818 * sched-in
6819 * perf_event_disable_inatomic()
6820 * @pending_disable = CPU-B;
6821 * irq_work_queue(); // FAILS
6822 *
6823 * irq_work_run()
6824 * perf_pending_irq()
6825 *
6826 * But the event runs on CPU-B and wants disabling there.
6827 */
6828 irq_work_queue_on(&event->pending_irq, cpu);
6829 }
6830
perf_pending_irq(struct irq_work * entry)6831 static void perf_pending_irq(struct irq_work *entry)
6832 {
6833 struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6834 int rctx;
6835
6836 /*
6837 * If we 'fail' here, that's OK, it means recursion is already disabled
6838 * and we won't recurse 'further'.
6839 */
6840 rctx = perf_swevent_get_recursion_context();
6841
6842 /*
6843 * The wakeup isn't bound to the context of the event -- it can happen
6844 * irrespective of where the event is.
6845 */
6846 if (event->pending_wakeup) {
6847 event->pending_wakeup = 0;
6848 perf_event_wakeup(event);
6849 }
6850
6851 __perf_pending_irq(event);
6852
6853 if (rctx >= 0)
6854 perf_swevent_put_recursion_context(rctx);
6855 }
6856
perf_pending_task(struct callback_head * head)6857 static void perf_pending_task(struct callback_head *head)
6858 {
6859 struct perf_event *event = container_of(head, struct perf_event, pending_task);
6860 int rctx;
6861
6862 /*
6863 * All accesses to the event must belong to the same implicit RCU read-side
6864 * critical section as the ->pending_work reset. See comment in
6865 * perf_pending_task_sync().
6866 */
6867 preempt_disable_notrace();
6868 /*
6869 * If we 'fail' here, that's OK, it means recursion is already disabled
6870 * and we won't recurse 'further'.
6871 */
6872 rctx = perf_swevent_get_recursion_context();
6873
6874 if (event->pending_work) {
6875 event->pending_work = 0;
6876 perf_sigtrap(event);
6877 local_dec(&event->ctx->nr_pending);
6878 rcuwait_wake_up(&event->pending_work_wait);
6879 }
6880
6881 if (rctx >= 0)
6882 perf_swevent_put_recursion_context(rctx);
6883 preempt_enable_notrace();
6884 }
6885
6886 #ifdef CONFIG_GUEST_PERF_EVENTS
6887 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6888
6889 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6890 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6891 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6892
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6893 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6894 {
6895 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6896 return;
6897
6898 rcu_assign_pointer(perf_guest_cbs, cbs);
6899 static_call_update(__perf_guest_state, cbs->state);
6900 static_call_update(__perf_guest_get_ip, cbs->get_ip);
6901
6902 /* Implementing ->handle_intel_pt_intr is optional. */
6903 if (cbs->handle_intel_pt_intr)
6904 static_call_update(__perf_guest_handle_intel_pt_intr,
6905 cbs->handle_intel_pt_intr);
6906 }
6907 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6908
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6909 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6910 {
6911 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6912 return;
6913
6914 rcu_assign_pointer(perf_guest_cbs, NULL);
6915 static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6916 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6917 static_call_update(__perf_guest_handle_intel_pt_intr,
6918 (void *)&__static_call_return0);
6919 synchronize_rcu();
6920 }
6921 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6922 #endif
6923
6924 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6925 perf_output_sample_regs(struct perf_output_handle *handle,
6926 struct pt_regs *regs, u64 mask)
6927 {
6928 int bit;
6929 DECLARE_BITMAP(_mask, 64);
6930
6931 bitmap_from_u64(_mask, mask);
6932 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6933 u64 val;
6934
6935 val = perf_reg_value(regs, bit);
6936 perf_output_put(handle, val);
6937 }
6938 }
6939
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)6940 static void perf_sample_regs_user(struct perf_regs *regs_user,
6941 struct pt_regs *regs)
6942 {
6943 if (user_mode(regs)) {
6944 regs_user->abi = perf_reg_abi(current);
6945 regs_user->regs = regs;
6946 } else if (!(current->flags & PF_KTHREAD)) {
6947 perf_get_regs_user(regs_user, regs);
6948 } else {
6949 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6950 regs_user->regs = NULL;
6951 }
6952 }
6953
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6954 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6955 struct pt_regs *regs)
6956 {
6957 regs_intr->regs = regs;
6958 regs_intr->abi = perf_reg_abi(current);
6959 }
6960
6961
6962 /*
6963 * Get remaining task size from user stack pointer.
6964 *
6965 * It'd be better to take stack vma map and limit this more
6966 * precisely, but there's no way to get it safely under interrupt,
6967 * so using TASK_SIZE as limit.
6968 */
perf_ustack_task_size(struct pt_regs * regs)6969 static u64 perf_ustack_task_size(struct pt_regs *regs)
6970 {
6971 unsigned long addr = perf_user_stack_pointer(regs);
6972
6973 if (!addr || addr >= TASK_SIZE)
6974 return 0;
6975
6976 return TASK_SIZE - addr;
6977 }
6978
6979 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6980 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6981 struct pt_regs *regs)
6982 {
6983 u64 task_size;
6984
6985 /* No regs, no stack pointer, no dump. */
6986 if (!regs)
6987 return 0;
6988
6989 /*
6990 * Check if we fit in with the requested stack size into the:
6991 * - TASK_SIZE
6992 * If we don't, we limit the size to the TASK_SIZE.
6993 *
6994 * - remaining sample size
6995 * If we don't, we customize the stack size to
6996 * fit in to the remaining sample size.
6997 */
6998
6999 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7000 stack_size = min(stack_size, (u16) task_size);
7001
7002 /* Current header size plus static size and dynamic size. */
7003 header_size += 2 * sizeof(u64);
7004
7005 /* Do we fit in with the current stack dump size? */
7006 if ((u16) (header_size + stack_size) < header_size) {
7007 /*
7008 * If we overflow the maximum size for the sample,
7009 * we customize the stack dump size to fit in.
7010 */
7011 stack_size = USHRT_MAX - header_size - sizeof(u64);
7012 stack_size = round_up(stack_size, sizeof(u64));
7013 }
7014
7015 return stack_size;
7016 }
7017
7018 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7019 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7020 struct pt_regs *regs)
7021 {
7022 /* Case of a kernel thread, nothing to dump */
7023 if (!regs) {
7024 u64 size = 0;
7025 perf_output_put(handle, size);
7026 } else {
7027 unsigned long sp;
7028 unsigned int rem;
7029 u64 dyn_size;
7030
7031 /*
7032 * We dump:
7033 * static size
7034 * - the size requested by user or the best one we can fit
7035 * in to the sample max size
7036 * data
7037 * - user stack dump data
7038 * dynamic size
7039 * - the actual dumped size
7040 */
7041
7042 /* Static size. */
7043 perf_output_put(handle, dump_size);
7044
7045 /* Data. */
7046 sp = perf_user_stack_pointer(regs);
7047 rem = __output_copy_user(handle, (void *) sp, dump_size);
7048 dyn_size = dump_size - rem;
7049
7050 perf_output_skip(handle, rem);
7051
7052 /* Dynamic size. */
7053 perf_output_put(handle, dyn_size);
7054 }
7055 }
7056
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7057 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7058 struct perf_sample_data *data,
7059 size_t size)
7060 {
7061 struct perf_event *sampler = event->aux_event;
7062 struct perf_buffer *rb;
7063
7064 data->aux_size = 0;
7065
7066 if (!sampler)
7067 goto out;
7068
7069 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7070 goto out;
7071
7072 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7073 goto out;
7074
7075 rb = ring_buffer_get(sampler);
7076 if (!rb)
7077 goto out;
7078
7079 /*
7080 * If this is an NMI hit inside sampling code, don't take
7081 * the sample. See also perf_aux_sample_output().
7082 */
7083 if (READ_ONCE(rb->aux_in_sampling)) {
7084 data->aux_size = 0;
7085 } else {
7086 size = min_t(size_t, size, perf_aux_size(rb));
7087 data->aux_size = ALIGN(size, sizeof(u64));
7088 }
7089 ring_buffer_put(rb);
7090
7091 out:
7092 return data->aux_size;
7093 }
7094
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7095 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7096 struct perf_event *event,
7097 struct perf_output_handle *handle,
7098 unsigned long size)
7099 {
7100 unsigned long flags;
7101 long ret;
7102
7103 /*
7104 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7105 * paths. If we start calling them in NMI context, they may race with
7106 * the IRQ ones, that is, for example, re-starting an event that's just
7107 * been stopped, which is why we're using a separate callback that
7108 * doesn't change the event state.
7109 *
7110 * IRQs need to be disabled to prevent IPIs from racing with us.
7111 */
7112 local_irq_save(flags);
7113 /*
7114 * Guard against NMI hits inside the critical section;
7115 * see also perf_prepare_sample_aux().
7116 */
7117 WRITE_ONCE(rb->aux_in_sampling, 1);
7118 barrier();
7119
7120 ret = event->pmu->snapshot_aux(event, handle, size);
7121
7122 barrier();
7123 WRITE_ONCE(rb->aux_in_sampling, 0);
7124 local_irq_restore(flags);
7125
7126 return ret;
7127 }
7128
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7129 static void perf_aux_sample_output(struct perf_event *event,
7130 struct perf_output_handle *handle,
7131 struct perf_sample_data *data)
7132 {
7133 struct perf_event *sampler = event->aux_event;
7134 struct perf_buffer *rb;
7135 unsigned long pad;
7136 long size;
7137
7138 if (WARN_ON_ONCE(!sampler || !data->aux_size))
7139 return;
7140
7141 rb = ring_buffer_get(sampler);
7142 if (!rb)
7143 return;
7144
7145 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7146
7147 /*
7148 * An error here means that perf_output_copy() failed (returned a
7149 * non-zero surplus that it didn't copy), which in its current
7150 * enlightened implementation is not possible. If that changes, we'd
7151 * like to know.
7152 */
7153 if (WARN_ON_ONCE(size < 0))
7154 goto out_put;
7155
7156 /*
7157 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7158 * perf_prepare_sample_aux(), so should not be more than that.
7159 */
7160 pad = data->aux_size - size;
7161 if (WARN_ON_ONCE(pad >= sizeof(u64)))
7162 pad = 8;
7163
7164 if (pad) {
7165 u64 zero = 0;
7166 perf_output_copy(handle, &zero, pad);
7167 }
7168
7169 out_put:
7170 ring_buffer_put(rb);
7171 }
7172
7173 /*
7174 * A set of common sample data types saved even for non-sample records
7175 * when event->attr.sample_id_all is set.
7176 */
7177 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7178 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7179 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7180
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7181 static void __perf_event_header__init_id(struct perf_sample_data *data,
7182 struct perf_event *event,
7183 u64 sample_type)
7184 {
7185 data->type = event->attr.sample_type;
7186 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7187
7188 if (sample_type & PERF_SAMPLE_TID) {
7189 /* namespace issues */
7190 data->tid_entry.pid = perf_event_pid(event, current);
7191 data->tid_entry.tid = perf_event_tid(event, current);
7192 }
7193
7194 if (sample_type & PERF_SAMPLE_TIME)
7195 data->time = perf_event_clock(event);
7196
7197 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7198 data->id = primary_event_id(event);
7199
7200 if (sample_type & PERF_SAMPLE_STREAM_ID)
7201 data->stream_id = event->id;
7202
7203 if (sample_type & PERF_SAMPLE_CPU) {
7204 data->cpu_entry.cpu = raw_smp_processor_id();
7205 data->cpu_entry.reserved = 0;
7206 }
7207 }
7208
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7209 void perf_event_header__init_id(struct perf_event_header *header,
7210 struct perf_sample_data *data,
7211 struct perf_event *event)
7212 {
7213 if (event->attr.sample_id_all) {
7214 header->size += event->id_header_size;
7215 __perf_event_header__init_id(data, event, event->attr.sample_type);
7216 }
7217 }
7218
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7219 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7220 struct perf_sample_data *data)
7221 {
7222 u64 sample_type = data->type;
7223
7224 if (sample_type & PERF_SAMPLE_TID)
7225 perf_output_put(handle, data->tid_entry);
7226
7227 if (sample_type & PERF_SAMPLE_TIME)
7228 perf_output_put(handle, data->time);
7229
7230 if (sample_type & PERF_SAMPLE_ID)
7231 perf_output_put(handle, data->id);
7232
7233 if (sample_type & PERF_SAMPLE_STREAM_ID)
7234 perf_output_put(handle, data->stream_id);
7235
7236 if (sample_type & PERF_SAMPLE_CPU)
7237 perf_output_put(handle, data->cpu_entry);
7238
7239 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7240 perf_output_put(handle, data->id);
7241 }
7242
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7243 void perf_event__output_id_sample(struct perf_event *event,
7244 struct perf_output_handle *handle,
7245 struct perf_sample_data *sample)
7246 {
7247 if (event->attr.sample_id_all)
7248 __perf_event__output_id_sample(handle, sample);
7249 }
7250
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7251 static void perf_output_read_one(struct perf_output_handle *handle,
7252 struct perf_event *event,
7253 u64 enabled, u64 running)
7254 {
7255 u64 read_format = event->attr.read_format;
7256 u64 values[5];
7257 int n = 0;
7258
7259 values[n++] = perf_event_count(event);
7260 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7261 values[n++] = enabled +
7262 atomic64_read(&event->child_total_time_enabled);
7263 }
7264 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7265 values[n++] = running +
7266 atomic64_read(&event->child_total_time_running);
7267 }
7268 if (read_format & PERF_FORMAT_ID)
7269 values[n++] = primary_event_id(event);
7270 if (read_format & PERF_FORMAT_LOST)
7271 values[n++] = atomic64_read(&event->lost_samples);
7272
7273 __output_copy(handle, values, n * sizeof(u64));
7274 }
7275
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7276 static void perf_output_read_group(struct perf_output_handle *handle,
7277 struct perf_event *event,
7278 u64 enabled, u64 running)
7279 {
7280 struct perf_event *leader = event->group_leader, *sub;
7281 u64 read_format = event->attr.read_format;
7282 unsigned long flags;
7283 u64 values[6];
7284 int n = 0;
7285
7286 /*
7287 * Disabling interrupts avoids all counter scheduling
7288 * (context switches, timer based rotation and IPIs).
7289 */
7290 local_irq_save(flags);
7291
7292 values[n++] = 1 + leader->nr_siblings;
7293
7294 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7295 values[n++] = enabled;
7296
7297 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7298 values[n++] = running;
7299
7300 if ((leader != event) &&
7301 (leader->state == PERF_EVENT_STATE_ACTIVE))
7302 leader->pmu->read(leader);
7303
7304 values[n++] = perf_event_count(leader);
7305 if (read_format & PERF_FORMAT_ID)
7306 values[n++] = primary_event_id(leader);
7307 if (read_format & PERF_FORMAT_LOST)
7308 values[n++] = atomic64_read(&leader->lost_samples);
7309
7310 __output_copy(handle, values, n * sizeof(u64));
7311
7312 for_each_sibling_event(sub, leader) {
7313 n = 0;
7314
7315 if ((sub != event) &&
7316 (sub->state == PERF_EVENT_STATE_ACTIVE))
7317 sub->pmu->read(sub);
7318
7319 values[n++] = perf_event_count(sub);
7320 if (read_format & PERF_FORMAT_ID)
7321 values[n++] = primary_event_id(sub);
7322 if (read_format & PERF_FORMAT_LOST)
7323 values[n++] = atomic64_read(&sub->lost_samples);
7324
7325 __output_copy(handle, values, n * sizeof(u64));
7326 }
7327
7328 local_irq_restore(flags);
7329 }
7330
7331 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7332 PERF_FORMAT_TOTAL_TIME_RUNNING)
7333
7334 /*
7335 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7336 *
7337 * The problem is that its both hard and excessively expensive to iterate the
7338 * child list, not to mention that its impossible to IPI the children running
7339 * on another CPU, from interrupt/NMI context.
7340 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7341 static void perf_output_read(struct perf_output_handle *handle,
7342 struct perf_event *event)
7343 {
7344 u64 enabled = 0, running = 0, now;
7345 u64 read_format = event->attr.read_format;
7346
7347 /*
7348 * compute total_time_enabled, total_time_running
7349 * based on snapshot values taken when the event
7350 * was last scheduled in.
7351 *
7352 * we cannot simply called update_context_time()
7353 * because of locking issue as we are called in
7354 * NMI context
7355 */
7356 if (read_format & PERF_FORMAT_TOTAL_TIMES)
7357 calc_timer_values(event, &now, &enabled, &running);
7358
7359 if (event->attr.read_format & PERF_FORMAT_GROUP)
7360 perf_output_read_group(handle, event, enabled, running);
7361 else
7362 perf_output_read_one(handle, event, enabled, running);
7363 }
7364
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7365 void perf_output_sample(struct perf_output_handle *handle,
7366 struct perf_event_header *header,
7367 struct perf_sample_data *data,
7368 struct perf_event *event)
7369 {
7370 u64 sample_type = data->type;
7371
7372 perf_output_put(handle, *header);
7373
7374 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7375 perf_output_put(handle, data->id);
7376
7377 if (sample_type & PERF_SAMPLE_IP)
7378 perf_output_put(handle, data->ip);
7379
7380 if (sample_type & PERF_SAMPLE_TID)
7381 perf_output_put(handle, data->tid_entry);
7382
7383 if (sample_type & PERF_SAMPLE_TIME)
7384 perf_output_put(handle, data->time);
7385
7386 if (sample_type & PERF_SAMPLE_ADDR)
7387 perf_output_put(handle, data->addr);
7388
7389 if (sample_type & PERF_SAMPLE_ID)
7390 perf_output_put(handle, data->id);
7391
7392 if (sample_type & PERF_SAMPLE_STREAM_ID)
7393 perf_output_put(handle, data->stream_id);
7394
7395 if (sample_type & PERF_SAMPLE_CPU)
7396 perf_output_put(handle, data->cpu_entry);
7397
7398 if (sample_type & PERF_SAMPLE_PERIOD)
7399 perf_output_put(handle, data->period);
7400
7401 if (sample_type & PERF_SAMPLE_READ)
7402 perf_output_read(handle, event);
7403
7404 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7405 int size = 1;
7406
7407 size += data->callchain->nr;
7408 size *= sizeof(u64);
7409 __output_copy(handle, data->callchain, size);
7410 }
7411
7412 if (sample_type & PERF_SAMPLE_RAW) {
7413 struct perf_raw_record *raw = data->raw;
7414
7415 if (raw) {
7416 struct perf_raw_frag *frag = &raw->frag;
7417
7418 perf_output_put(handle, raw->size);
7419 do {
7420 if (frag->copy) {
7421 __output_custom(handle, frag->copy,
7422 frag->data, frag->size);
7423 } else {
7424 __output_copy(handle, frag->data,
7425 frag->size);
7426 }
7427 if (perf_raw_frag_last(frag))
7428 break;
7429 frag = frag->next;
7430 } while (1);
7431 if (frag->pad)
7432 __output_skip(handle, NULL, frag->pad);
7433 } else {
7434 struct {
7435 u32 size;
7436 u32 data;
7437 } raw = {
7438 .size = sizeof(u32),
7439 .data = 0,
7440 };
7441 perf_output_put(handle, raw);
7442 }
7443 }
7444
7445 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7446 if (data->br_stack) {
7447 size_t size;
7448
7449 size = data->br_stack->nr
7450 * sizeof(struct perf_branch_entry);
7451
7452 perf_output_put(handle, data->br_stack->nr);
7453 if (branch_sample_hw_index(event))
7454 perf_output_put(handle, data->br_stack->hw_idx);
7455 perf_output_copy(handle, data->br_stack->entries, size);
7456 } else {
7457 /*
7458 * we always store at least the value of nr
7459 */
7460 u64 nr = 0;
7461 perf_output_put(handle, nr);
7462 }
7463 }
7464
7465 if (sample_type & PERF_SAMPLE_REGS_USER) {
7466 u64 abi = data->regs_user.abi;
7467
7468 /*
7469 * If there are no regs to dump, notice it through
7470 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7471 */
7472 perf_output_put(handle, abi);
7473
7474 if (abi) {
7475 u64 mask = event->attr.sample_regs_user;
7476 perf_output_sample_regs(handle,
7477 data->regs_user.regs,
7478 mask);
7479 }
7480 }
7481
7482 if (sample_type & PERF_SAMPLE_STACK_USER) {
7483 perf_output_sample_ustack(handle,
7484 data->stack_user_size,
7485 data->regs_user.regs);
7486 }
7487
7488 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7489 perf_output_put(handle, data->weight.full);
7490
7491 if (sample_type & PERF_SAMPLE_DATA_SRC)
7492 perf_output_put(handle, data->data_src.val);
7493
7494 if (sample_type & PERF_SAMPLE_TRANSACTION)
7495 perf_output_put(handle, data->txn);
7496
7497 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7498 u64 abi = data->regs_intr.abi;
7499 /*
7500 * If there are no regs to dump, notice it through
7501 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7502 */
7503 perf_output_put(handle, abi);
7504
7505 if (abi) {
7506 u64 mask = event->attr.sample_regs_intr;
7507
7508 perf_output_sample_regs(handle,
7509 data->regs_intr.regs,
7510 mask);
7511 }
7512 }
7513
7514 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7515 perf_output_put(handle, data->phys_addr);
7516
7517 if (sample_type & PERF_SAMPLE_CGROUP)
7518 perf_output_put(handle, data->cgroup);
7519
7520 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7521 perf_output_put(handle, data->data_page_size);
7522
7523 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7524 perf_output_put(handle, data->code_page_size);
7525
7526 if (sample_type & PERF_SAMPLE_AUX) {
7527 perf_output_put(handle, data->aux_size);
7528
7529 if (data->aux_size)
7530 perf_aux_sample_output(event, handle, data);
7531 }
7532
7533 if (!event->attr.watermark) {
7534 int wakeup_events = event->attr.wakeup_events;
7535
7536 if (wakeup_events) {
7537 struct perf_buffer *rb = handle->rb;
7538 int events = local_inc_return(&rb->events);
7539
7540 if (events >= wakeup_events) {
7541 local_sub(wakeup_events, &rb->events);
7542 local_inc(&rb->wakeup);
7543 }
7544 }
7545 }
7546 }
7547
perf_virt_to_phys(u64 virt)7548 static u64 perf_virt_to_phys(u64 virt)
7549 {
7550 u64 phys_addr = 0;
7551
7552 if (!virt)
7553 return 0;
7554
7555 if (virt >= TASK_SIZE) {
7556 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7557 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7558 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7559 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7560 } else {
7561 /*
7562 * Walking the pages tables for user address.
7563 * Interrupts are disabled, so it prevents any tear down
7564 * of the page tables.
7565 * Try IRQ-safe get_user_page_fast_only first.
7566 * If failed, leave phys_addr as 0.
7567 */
7568 if (current->mm != NULL) {
7569 struct page *p;
7570
7571 pagefault_disable();
7572 if (get_user_page_fast_only(virt, 0, &p)) {
7573 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7574 put_page(p);
7575 }
7576 pagefault_enable();
7577 }
7578 }
7579
7580 return phys_addr;
7581 }
7582
7583 /*
7584 * Return the pagetable size of a given virtual address.
7585 */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7586 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7587 {
7588 u64 size = 0;
7589
7590 #ifdef CONFIG_HAVE_FAST_GUP
7591 pgd_t *pgdp, pgd;
7592 p4d_t *p4dp, p4d;
7593 pud_t *pudp, pud;
7594 pmd_t *pmdp, pmd;
7595 pte_t *ptep, pte;
7596
7597 pgdp = pgd_offset(mm, addr);
7598 pgd = READ_ONCE(*pgdp);
7599 if (pgd_none(pgd))
7600 return 0;
7601
7602 if (pgd_leaf(pgd))
7603 return pgd_leaf_size(pgd);
7604
7605 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7606 p4d = READ_ONCE(*p4dp);
7607 if (!p4d_present(p4d))
7608 return 0;
7609
7610 if (p4d_leaf(p4d))
7611 return p4d_leaf_size(p4d);
7612
7613 pudp = pud_offset_lockless(p4dp, p4d, addr);
7614 pud = READ_ONCE(*pudp);
7615 if (!pud_present(pud))
7616 return 0;
7617
7618 if (pud_leaf(pud))
7619 return pud_leaf_size(pud);
7620
7621 pmdp = pmd_offset_lockless(pudp, pud, addr);
7622 again:
7623 pmd = pmdp_get_lockless(pmdp);
7624 if (!pmd_present(pmd))
7625 return 0;
7626
7627 if (pmd_leaf(pmd))
7628 return pmd_leaf_size(pmd);
7629
7630 ptep = pte_offset_map(&pmd, addr);
7631 if (!ptep)
7632 goto again;
7633
7634 pte = ptep_get_lockless(ptep);
7635 if (pte_present(pte))
7636 size = pte_leaf_size(pte);
7637 pte_unmap(ptep);
7638 #endif /* CONFIG_HAVE_FAST_GUP */
7639
7640 return size;
7641 }
7642
perf_get_page_size(unsigned long addr)7643 static u64 perf_get_page_size(unsigned long addr)
7644 {
7645 struct mm_struct *mm;
7646 unsigned long flags;
7647 u64 size;
7648
7649 if (!addr)
7650 return 0;
7651
7652 /*
7653 * Software page-table walkers must disable IRQs,
7654 * which prevents any tear down of the page tables.
7655 */
7656 local_irq_save(flags);
7657
7658 mm = current->mm;
7659 if (!mm) {
7660 /*
7661 * For kernel threads and the like, use init_mm so that
7662 * we can find kernel memory.
7663 */
7664 mm = &init_mm;
7665 }
7666
7667 size = perf_get_pgtable_size(mm, addr);
7668
7669 local_irq_restore(flags);
7670
7671 return size;
7672 }
7673
7674 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7675
7676 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7677 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7678 {
7679 bool kernel = !event->attr.exclude_callchain_kernel;
7680 bool user = !event->attr.exclude_callchain_user;
7681 /* Disallow cross-task user callchains. */
7682 bool crosstask = event->ctx->task && event->ctx->task != current;
7683 const u32 max_stack = event->attr.sample_max_stack;
7684 struct perf_callchain_entry *callchain;
7685
7686 if (!kernel && !user)
7687 return &__empty_callchain;
7688
7689 callchain = get_perf_callchain(regs, 0, kernel, user,
7690 max_stack, crosstask, true);
7691 return callchain ?: &__empty_callchain;
7692 }
7693
__cond_set(u64 flags,u64 s,u64 d)7694 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7695 {
7696 return d * !!(flags & s);
7697 }
7698
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7699 void perf_prepare_sample(struct perf_sample_data *data,
7700 struct perf_event *event,
7701 struct pt_regs *regs)
7702 {
7703 u64 sample_type = event->attr.sample_type;
7704 u64 filtered_sample_type;
7705
7706 /*
7707 * Add the sample flags that are dependent to others. And clear the
7708 * sample flags that have already been done by the PMU driver.
7709 */
7710 filtered_sample_type = sample_type;
7711 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7712 PERF_SAMPLE_IP);
7713 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7714 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7715 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7716 PERF_SAMPLE_REGS_USER);
7717 filtered_sample_type &= ~data->sample_flags;
7718
7719 if (filtered_sample_type == 0) {
7720 /* Make sure it has the correct data->type for output */
7721 data->type = event->attr.sample_type;
7722 return;
7723 }
7724
7725 __perf_event_header__init_id(data, event, filtered_sample_type);
7726
7727 if (filtered_sample_type & PERF_SAMPLE_IP) {
7728 data->ip = perf_instruction_pointer(regs);
7729 data->sample_flags |= PERF_SAMPLE_IP;
7730 }
7731
7732 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7733 perf_sample_save_callchain(data, event, regs);
7734
7735 if (filtered_sample_type & PERF_SAMPLE_RAW) {
7736 data->raw = NULL;
7737 data->dyn_size += sizeof(u64);
7738 data->sample_flags |= PERF_SAMPLE_RAW;
7739 }
7740
7741 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7742 data->br_stack = NULL;
7743 data->dyn_size += sizeof(u64);
7744 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7745 }
7746
7747 if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7748 perf_sample_regs_user(&data->regs_user, regs);
7749
7750 /*
7751 * It cannot use the filtered_sample_type here as REGS_USER can be set
7752 * by STACK_USER (using __cond_set() above) and we don't want to update
7753 * the dyn_size if it's not requested by users.
7754 */
7755 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7756 /* regs dump ABI info */
7757 int size = sizeof(u64);
7758
7759 if (data->regs_user.regs) {
7760 u64 mask = event->attr.sample_regs_user;
7761 size += hweight64(mask) * sizeof(u64);
7762 }
7763
7764 data->dyn_size += size;
7765 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7766 }
7767
7768 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7769 /*
7770 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7771 * processed as the last one or have additional check added
7772 * in case new sample type is added, because we could eat
7773 * up the rest of the sample size.
7774 */
7775 u16 stack_size = event->attr.sample_stack_user;
7776 u16 header_size = perf_sample_data_size(data, event);
7777 u16 size = sizeof(u64);
7778
7779 stack_size = perf_sample_ustack_size(stack_size, header_size,
7780 data->regs_user.regs);
7781
7782 /*
7783 * If there is something to dump, add space for the dump
7784 * itself and for the field that tells the dynamic size,
7785 * which is how many have been actually dumped.
7786 */
7787 if (stack_size)
7788 size += sizeof(u64) + stack_size;
7789
7790 data->stack_user_size = stack_size;
7791 data->dyn_size += size;
7792 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7793 }
7794
7795 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7796 data->weight.full = 0;
7797 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7798 }
7799
7800 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7801 data->data_src.val = PERF_MEM_NA;
7802 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7803 }
7804
7805 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7806 data->txn = 0;
7807 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7808 }
7809
7810 if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7811 data->addr = 0;
7812 data->sample_flags |= PERF_SAMPLE_ADDR;
7813 }
7814
7815 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7816 /* regs dump ABI info */
7817 int size = sizeof(u64);
7818
7819 perf_sample_regs_intr(&data->regs_intr, regs);
7820
7821 if (data->regs_intr.regs) {
7822 u64 mask = event->attr.sample_regs_intr;
7823
7824 size += hweight64(mask) * sizeof(u64);
7825 }
7826
7827 data->dyn_size += size;
7828 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7829 }
7830
7831 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7832 data->phys_addr = perf_virt_to_phys(data->addr);
7833 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7834 }
7835
7836 #ifdef CONFIG_CGROUP_PERF
7837 if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7838 struct cgroup *cgrp;
7839
7840 /* protected by RCU */
7841 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7842 data->cgroup = cgroup_id(cgrp);
7843 data->sample_flags |= PERF_SAMPLE_CGROUP;
7844 }
7845 #endif
7846
7847 /*
7848 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7849 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7850 * but the value will not dump to the userspace.
7851 */
7852 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7853 data->data_page_size = perf_get_page_size(data->addr);
7854 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7855 }
7856
7857 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7858 data->code_page_size = perf_get_page_size(data->ip);
7859 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7860 }
7861
7862 if (filtered_sample_type & PERF_SAMPLE_AUX) {
7863 u64 size;
7864 u16 header_size = perf_sample_data_size(data, event);
7865
7866 header_size += sizeof(u64); /* size */
7867
7868 /*
7869 * Given the 16bit nature of header::size, an AUX sample can
7870 * easily overflow it, what with all the preceding sample bits.
7871 * Make sure this doesn't happen by using up to U16_MAX bytes
7872 * per sample in total (rounded down to 8 byte boundary).
7873 */
7874 size = min_t(size_t, U16_MAX - header_size,
7875 event->attr.aux_sample_size);
7876 size = rounddown(size, 8);
7877 size = perf_prepare_sample_aux(event, data, size);
7878
7879 WARN_ON_ONCE(size + header_size > U16_MAX);
7880 data->dyn_size += size + sizeof(u64); /* size above */
7881 data->sample_flags |= PERF_SAMPLE_AUX;
7882 }
7883 }
7884
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7885 void perf_prepare_header(struct perf_event_header *header,
7886 struct perf_sample_data *data,
7887 struct perf_event *event,
7888 struct pt_regs *regs)
7889 {
7890 header->type = PERF_RECORD_SAMPLE;
7891 header->size = perf_sample_data_size(data, event);
7892 header->misc = perf_misc_flags(regs);
7893
7894 /*
7895 * If you're adding more sample types here, you likely need to do
7896 * something about the overflowing header::size, like repurpose the
7897 * lowest 3 bits of size, which should be always zero at the moment.
7898 * This raises a more important question, do we really need 512k sized
7899 * samples and why, so good argumentation is in order for whatever you
7900 * do here next.
7901 */
7902 WARN_ON_ONCE(header->size & 7);
7903 }
7904
7905 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))7906 __perf_event_output(struct perf_event *event,
7907 struct perf_sample_data *data,
7908 struct pt_regs *regs,
7909 int (*output_begin)(struct perf_output_handle *,
7910 struct perf_sample_data *,
7911 struct perf_event *,
7912 unsigned int))
7913 {
7914 struct perf_output_handle handle;
7915 struct perf_event_header header;
7916 int err;
7917
7918 /* protect the callchain buffers */
7919 rcu_read_lock();
7920
7921 perf_prepare_sample(data, event, regs);
7922 perf_prepare_header(&header, data, event, regs);
7923
7924 err = output_begin(&handle, data, event, header.size);
7925 if (err)
7926 goto exit;
7927
7928 perf_output_sample(&handle, &header, data, event);
7929
7930 perf_output_end(&handle);
7931
7932 exit:
7933 rcu_read_unlock();
7934 return err;
7935 }
7936
7937 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7938 perf_event_output_forward(struct perf_event *event,
7939 struct perf_sample_data *data,
7940 struct pt_regs *regs)
7941 {
7942 __perf_event_output(event, data, regs, perf_output_begin_forward);
7943 }
7944
7945 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7946 perf_event_output_backward(struct perf_event *event,
7947 struct perf_sample_data *data,
7948 struct pt_regs *regs)
7949 {
7950 __perf_event_output(event, data, regs, perf_output_begin_backward);
7951 }
7952
7953 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7954 perf_event_output(struct perf_event *event,
7955 struct perf_sample_data *data,
7956 struct pt_regs *regs)
7957 {
7958 return __perf_event_output(event, data, regs, perf_output_begin);
7959 }
7960
7961 /*
7962 * read event_id
7963 */
7964
7965 struct perf_read_event {
7966 struct perf_event_header header;
7967
7968 u32 pid;
7969 u32 tid;
7970 };
7971
7972 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)7973 perf_event_read_event(struct perf_event *event,
7974 struct task_struct *task)
7975 {
7976 struct perf_output_handle handle;
7977 struct perf_sample_data sample;
7978 struct perf_read_event read_event = {
7979 .header = {
7980 .type = PERF_RECORD_READ,
7981 .misc = 0,
7982 .size = sizeof(read_event) + event->read_size,
7983 },
7984 .pid = perf_event_pid(event, task),
7985 .tid = perf_event_tid(event, task),
7986 };
7987 int ret;
7988
7989 perf_event_header__init_id(&read_event.header, &sample, event);
7990 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7991 if (ret)
7992 return;
7993
7994 perf_output_put(&handle, read_event);
7995 perf_output_read(&handle, event);
7996 perf_event__output_id_sample(event, &handle, &sample);
7997
7998 perf_output_end(&handle);
7999 }
8000
8001 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8002
8003 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)8004 perf_iterate_ctx(struct perf_event_context *ctx,
8005 perf_iterate_f output,
8006 void *data, bool all)
8007 {
8008 struct perf_event *event;
8009
8010 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8011 if (!all) {
8012 if (event->state < PERF_EVENT_STATE_INACTIVE)
8013 continue;
8014 if (!event_filter_match(event))
8015 continue;
8016 }
8017
8018 output(event, data);
8019 }
8020 }
8021
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8022 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8023 {
8024 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8025 struct perf_event *event;
8026
8027 list_for_each_entry_rcu(event, &pel->list, sb_list) {
8028 /*
8029 * Skip events that are not fully formed yet; ensure that
8030 * if we observe event->ctx, both event and ctx will be
8031 * complete enough. See perf_install_in_context().
8032 */
8033 if (!smp_load_acquire(&event->ctx))
8034 continue;
8035
8036 if (event->state < PERF_EVENT_STATE_INACTIVE)
8037 continue;
8038 if (!event_filter_match(event))
8039 continue;
8040 output(event, data);
8041 }
8042 }
8043
8044 /*
8045 * Iterate all events that need to receive side-band events.
8046 *
8047 * For new callers; ensure that account_pmu_sb_event() includes
8048 * your event, otherwise it might not get delivered.
8049 */
8050 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8051 perf_iterate_sb(perf_iterate_f output, void *data,
8052 struct perf_event_context *task_ctx)
8053 {
8054 struct perf_event_context *ctx;
8055
8056 rcu_read_lock();
8057 preempt_disable();
8058
8059 /*
8060 * If we have task_ctx != NULL we only notify the task context itself.
8061 * The task_ctx is set only for EXIT events before releasing task
8062 * context.
8063 */
8064 if (task_ctx) {
8065 perf_iterate_ctx(task_ctx, output, data, false);
8066 goto done;
8067 }
8068
8069 perf_iterate_sb_cpu(output, data);
8070
8071 ctx = rcu_dereference(current->perf_event_ctxp);
8072 if (ctx)
8073 perf_iterate_ctx(ctx, output, data, false);
8074 done:
8075 preempt_enable();
8076 rcu_read_unlock();
8077 }
8078
8079 /*
8080 * Clear all file-based filters at exec, they'll have to be
8081 * re-instated when/if these objects are mmapped again.
8082 */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8083 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8084 {
8085 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8086 struct perf_addr_filter *filter;
8087 unsigned int restart = 0, count = 0;
8088 unsigned long flags;
8089
8090 if (!has_addr_filter(event))
8091 return;
8092
8093 raw_spin_lock_irqsave(&ifh->lock, flags);
8094 list_for_each_entry(filter, &ifh->list, entry) {
8095 if (filter->path.dentry) {
8096 event->addr_filter_ranges[count].start = 0;
8097 event->addr_filter_ranges[count].size = 0;
8098 restart++;
8099 }
8100
8101 count++;
8102 }
8103
8104 if (restart)
8105 event->addr_filters_gen++;
8106 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8107
8108 if (restart)
8109 perf_event_stop(event, 1);
8110 }
8111
perf_event_exec(void)8112 void perf_event_exec(void)
8113 {
8114 struct perf_event_context *ctx;
8115
8116 ctx = perf_pin_task_context(current);
8117 if (!ctx)
8118 return;
8119
8120 perf_event_enable_on_exec(ctx);
8121 perf_event_remove_on_exec(ctx);
8122 scoped_guard(rcu)
8123 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8124
8125 perf_unpin_context(ctx);
8126 put_ctx(ctx);
8127 }
8128
8129 struct remote_output {
8130 struct perf_buffer *rb;
8131 int err;
8132 };
8133
__perf_event_output_stop(struct perf_event * event,void * data)8134 static void __perf_event_output_stop(struct perf_event *event, void *data)
8135 {
8136 struct perf_event *parent = event->parent;
8137 struct remote_output *ro = data;
8138 struct perf_buffer *rb = ro->rb;
8139 struct stop_event_data sd = {
8140 .event = event,
8141 };
8142
8143 if (!has_aux(event))
8144 return;
8145
8146 if (!parent)
8147 parent = event;
8148
8149 /*
8150 * In case of inheritance, it will be the parent that links to the
8151 * ring-buffer, but it will be the child that's actually using it.
8152 *
8153 * We are using event::rb to determine if the event should be stopped,
8154 * however this may race with ring_buffer_attach() (through set_output),
8155 * which will make us skip the event that actually needs to be stopped.
8156 * So ring_buffer_attach() has to stop an aux event before re-assigning
8157 * its rb pointer.
8158 */
8159 if (rcu_dereference(parent->rb) == rb)
8160 ro->err = __perf_event_stop(&sd);
8161 }
8162
__perf_pmu_output_stop(void * info)8163 static int __perf_pmu_output_stop(void *info)
8164 {
8165 struct perf_event *event = info;
8166 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8167 struct remote_output ro = {
8168 .rb = event->rb,
8169 };
8170
8171 rcu_read_lock();
8172 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8173 if (cpuctx->task_ctx)
8174 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8175 &ro, false);
8176 rcu_read_unlock();
8177
8178 return ro.err;
8179 }
8180
perf_pmu_output_stop(struct perf_event * event)8181 static void perf_pmu_output_stop(struct perf_event *event)
8182 {
8183 struct perf_event *iter;
8184 int err, cpu;
8185
8186 restart:
8187 rcu_read_lock();
8188 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8189 /*
8190 * For per-CPU events, we need to make sure that neither they
8191 * nor their children are running; for cpu==-1 events it's
8192 * sufficient to stop the event itself if it's active, since
8193 * it can't have children.
8194 */
8195 cpu = iter->cpu;
8196 if (cpu == -1)
8197 cpu = READ_ONCE(iter->oncpu);
8198
8199 if (cpu == -1)
8200 continue;
8201
8202 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8203 if (err == -EAGAIN) {
8204 rcu_read_unlock();
8205 goto restart;
8206 }
8207 }
8208 rcu_read_unlock();
8209 }
8210
8211 /*
8212 * task tracking -- fork/exit
8213 *
8214 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8215 */
8216
8217 struct perf_task_event {
8218 struct task_struct *task;
8219 struct perf_event_context *task_ctx;
8220
8221 struct {
8222 struct perf_event_header header;
8223
8224 u32 pid;
8225 u32 ppid;
8226 u32 tid;
8227 u32 ptid;
8228 u64 time;
8229 } event_id;
8230 };
8231
perf_event_task_match(struct perf_event * event)8232 static int perf_event_task_match(struct perf_event *event)
8233 {
8234 return event->attr.comm || event->attr.mmap ||
8235 event->attr.mmap2 || event->attr.mmap_data ||
8236 event->attr.task;
8237 }
8238
perf_event_task_output(struct perf_event * event,void * data)8239 static void perf_event_task_output(struct perf_event *event,
8240 void *data)
8241 {
8242 struct perf_task_event *task_event = data;
8243 struct perf_output_handle handle;
8244 struct perf_sample_data sample;
8245 struct task_struct *task = task_event->task;
8246 int ret, size = task_event->event_id.header.size;
8247
8248 if (!perf_event_task_match(event))
8249 return;
8250
8251 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8252
8253 ret = perf_output_begin(&handle, &sample, event,
8254 task_event->event_id.header.size);
8255 if (ret)
8256 goto out;
8257
8258 task_event->event_id.pid = perf_event_pid(event, task);
8259 task_event->event_id.tid = perf_event_tid(event, task);
8260
8261 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8262 task_event->event_id.ppid = perf_event_pid(event,
8263 task->real_parent);
8264 task_event->event_id.ptid = perf_event_pid(event,
8265 task->real_parent);
8266 } else { /* PERF_RECORD_FORK */
8267 task_event->event_id.ppid = perf_event_pid(event, current);
8268 task_event->event_id.ptid = perf_event_tid(event, current);
8269 }
8270
8271 task_event->event_id.time = perf_event_clock(event);
8272
8273 perf_output_put(&handle, task_event->event_id);
8274
8275 perf_event__output_id_sample(event, &handle, &sample);
8276
8277 perf_output_end(&handle);
8278 out:
8279 task_event->event_id.header.size = size;
8280 }
8281
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8282 static void perf_event_task(struct task_struct *task,
8283 struct perf_event_context *task_ctx,
8284 int new)
8285 {
8286 struct perf_task_event task_event;
8287
8288 if (!atomic_read(&nr_comm_events) &&
8289 !atomic_read(&nr_mmap_events) &&
8290 !atomic_read(&nr_task_events))
8291 return;
8292
8293 task_event = (struct perf_task_event){
8294 .task = task,
8295 .task_ctx = task_ctx,
8296 .event_id = {
8297 .header = {
8298 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8299 .misc = 0,
8300 .size = sizeof(task_event.event_id),
8301 },
8302 /* .pid */
8303 /* .ppid */
8304 /* .tid */
8305 /* .ptid */
8306 /* .time */
8307 },
8308 };
8309
8310 perf_iterate_sb(perf_event_task_output,
8311 &task_event,
8312 task_ctx);
8313 }
8314
perf_event_fork(struct task_struct * task)8315 void perf_event_fork(struct task_struct *task)
8316 {
8317 perf_event_task(task, NULL, 1);
8318 perf_event_namespaces(task);
8319 }
8320
8321 /*
8322 * comm tracking
8323 */
8324
8325 struct perf_comm_event {
8326 struct task_struct *task;
8327 char *comm;
8328 int comm_size;
8329
8330 struct {
8331 struct perf_event_header header;
8332
8333 u32 pid;
8334 u32 tid;
8335 } event_id;
8336 };
8337
perf_event_comm_match(struct perf_event * event)8338 static int perf_event_comm_match(struct perf_event *event)
8339 {
8340 return event->attr.comm;
8341 }
8342
perf_event_comm_output(struct perf_event * event,void * data)8343 static void perf_event_comm_output(struct perf_event *event,
8344 void *data)
8345 {
8346 struct perf_comm_event *comm_event = data;
8347 struct perf_output_handle handle;
8348 struct perf_sample_data sample;
8349 int size = comm_event->event_id.header.size;
8350 int ret;
8351
8352 if (!perf_event_comm_match(event))
8353 return;
8354
8355 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8356 ret = perf_output_begin(&handle, &sample, event,
8357 comm_event->event_id.header.size);
8358
8359 if (ret)
8360 goto out;
8361
8362 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8363 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8364
8365 perf_output_put(&handle, comm_event->event_id);
8366 __output_copy(&handle, comm_event->comm,
8367 comm_event->comm_size);
8368
8369 perf_event__output_id_sample(event, &handle, &sample);
8370
8371 perf_output_end(&handle);
8372 out:
8373 comm_event->event_id.header.size = size;
8374 }
8375
perf_event_comm_event(struct perf_comm_event * comm_event)8376 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8377 {
8378 char comm[TASK_COMM_LEN];
8379 unsigned int size;
8380
8381 memset(comm, 0, sizeof(comm));
8382 strscpy(comm, comm_event->task->comm, sizeof(comm));
8383 size = ALIGN(strlen(comm)+1, sizeof(u64));
8384
8385 comm_event->comm = comm;
8386 comm_event->comm_size = size;
8387
8388 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8389
8390 perf_iterate_sb(perf_event_comm_output,
8391 comm_event,
8392 NULL);
8393 }
8394
perf_event_comm(struct task_struct * task,bool exec)8395 void perf_event_comm(struct task_struct *task, bool exec)
8396 {
8397 struct perf_comm_event comm_event;
8398
8399 if (!atomic_read(&nr_comm_events))
8400 return;
8401
8402 comm_event = (struct perf_comm_event){
8403 .task = task,
8404 /* .comm */
8405 /* .comm_size */
8406 .event_id = {
8407 .header = {
8408 .type = PERF_RECORD_COMM,
8409 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8410 /* .size */
8411 },
8412 /* .pid */
8413 /* .tid */
8414 },
8415 };
8416
8417 perf_event_comm_event(&comm_event);
8418 }
8419
8420 /*
8421 * namespaces tracking
8422 */
8423
8424 struct perf_namespaces_event {
8425 struct task_struct *task;
8426
8427 struct {
8428 struct perf_event_header header;
8429
8430 u32 pid;
8431 u32 tid;
8432 u64 nr_namespaces;
8433 struct perf_ns_link_info link_info[NR_NAMESPACES];
8434 } event_id;
8435 };
8436
perf_event_namespaces_match(struct perf_event * event)8437 static int perf_event_namespaces_match(struct perf_event *event)
8438 {
8439 return event->attr.namespaces;
8440 }
8441
perf_event_namespaces_output(struct perf_event * event,void * data)8442 static void perf_event_namespaces_output(struct perf_event *event,
8443 void *data)
8444 {
8445 struct perf_namespaces_event *namespaces_event = data;
8446 struct perf_output_handle handle;
8447 struct perf_sample_data sample;
8448 u16 header_size = namespaces_event->event_id.header.size;
8449 int ret;
8450
8451 if (!perf_event_namespaces_match(event))
8452 return;
8453
8454 perf_event_header__init_id(&namespaces_event->event_id.header,
8455 &sample, event);
8456 ret = perf_output_begin(&handle, &sample, event,
8457 namespaces_event->event_id.header.size);
8458 if (ret)
8459 goto out;
8460
8461 namespaces_event->event_id.pid = perf_event_pid(event,
8462 namespaces_event->task);
8463 namespaces_event->event_id.tid = perf_event_tid(event,
8464 namespaces_event->task);
8465
8466 perf_output_put(&handle, namespaces_event->event_id);
8467
8468 perf_event__output_id_sample(event, &handle, &sample);
8469
8470 perf_output_end(&handle);
8471 out:
8472 namespaces_event->event_id.header.size = header_size;
8473 }
8474
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8475 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8476 struct task_struct *task,
8477 const struct proc_ns_operations *ns_ops)
8478 {
8479 struct path ns_path;
8480 struct inode *ns_inode;
8481 int error;
8482
8483 error = ns_get_path(&ns_path, task, ns_ops);
8484 if (!error) {
8485 ns_inode = ns_path.dentry->d_inode;
8486 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8487 ns_link_info->ino = ns_inode->i_ino;
8488 path_put(&ns_path);
8489 }
8490 }
8491
perf_event_namespaces(struct task_struct * task)8492 void perf_event_namespaces(struct task_struct *task)
8493 {
8494 struct perf_namespaces_event namespaces_event;
8495 struct perf_ns_link_info *ns_link_info;
8496
8497 if (!atomic_read(&nr_namespaces_events))
8498 return;
8499
8500 namespaces_event = (struct perf_namespaces_event){
8501 .task = task,
8502 .event_id = {
8503 .header = {
8504 .type = PERF_RECORD_NAMESPACES,
8505 .misc = 0,
8506 .size = sizeof(namespaces_event.event_id),
8507 },
8508 /* .pid */
8509 /* .tid */
8510 .nr_namespaces = NR_NAMESPACES,
8511 /* .link_info[NR_NAMESPACES] */
8512 },
8513 };
8514
8515 ns_link_info = namespaces_event.event_id.link_info;
8516
8517 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8518 task, &mntns_operations);
8519
8520 #ifdef CONFIG_USER_NS
8521 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8522 task, &userns_operations);
8523 #endif
8524 #ifdef CONFIG_NET_NS
8525 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8526 task, &netns_operations);
8527 #endif
8528 #ifdef CONFIG_UTS_NS
8529 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8530 task, &utsns_operations);
8531 #endif
8532 #ifdef CONFIG_IPC_NS
8533 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8534 task, &ipcns_operations);
8535 #endif
8536 #ifdef CONFIG_PID_NS
8537 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8538 task, &pidns_operations);
8539 #endif
8540 #ifdef CONFIG_CGROUPS
8541 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8542 task, &cgroupns_operations);
8543 #endif
8544
8545 perf_iterate_sb(perf_event_namespaces_output,
8546 &namespaces_event,
8547 NULL);
8548 }
8549
8550 /*
8551 * cgroup tracking
8552 */
8553 #ifdef CONFIG_CGROUP_PERF
8554
8555 struct perf_cgroup_event {
8556 char *path;
8557 int path_size;
8558 struct {
8559 struct perf_event_header header;
8560 u64 id;
8561 char path[];
8562 } event_id;
8563 };
8564
perf_event_cgroup_match(struct perf_event * event)8565 static int perf_event_cgroup_match(struct perf_event *event)
8566 {
8567 return event->attr.cgroup;
8568 }
8569
perf_event_cgroup_output(struct perf_event * event,void * data)8570 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8571 {
8572 struct perf_cgroup_event *cgroup_event = data;
8573 struct perf_output_handle handle;
8574 struct perf_sample_data sample;
8575 u16 header_size = cgroup_event->event_id.header.size;
8576 int ret;
8577
8578 if (!perf_event_cgroup_match(event))
8579 return;
8580
8581 perf_event_header__init_id(&cgroup_event->event_id.header,
8582 &sample, event);
8583 ret = perf_output_begin(&handle, &sample, event,
8584 cgroup_event->event_id.header.size);
8585 if (ret)
8586 goto out;
8587
8588 perf_output_put(&handle, cgroup_event->event_id);
8589 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8590
8591 perf_event__output_id_sample(event, &handle, &sample);
8592
8593 perf_output_end(&handle);
8594 out:
8595 cgroup_event->event_id.header.size = header_size;
8596 }
8597
perf_event_cgroup(struct cgroup * cgrp)8598 static void perf_event_cgroup(struct cgroup *cgrp)
8599 {
8600 struct perf_cgroup_event cgroup_event;
8601 char path_enomem[16] = "//enomem";
8602 char *pathname;
8603 size_t size;
8604
8605 if (!atomic_read(&nr_cgroup_events))
8606 return;
8607
8608 cgroup_event = (struct perf_cgroup_event){
8609 .event_id = {
8610 .header = {
8611 .type = PERF_RECORD_CGROUP,
8612 .misc = 0,
8613 .size = sizeof(cgroup_event.event_id),
8614 },
8615 .id = cgroup_id(cgrp),
8616 },
8617 };
8618
8619 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8620 if (pathname == NULL) {
8621 cgroup_event.path = path_enomem;
8622 } else {
8623 /* just to be sure to have enough space for alignment */
8624 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8625 cgroup_event.path = pathname;
8626 }
8627
8628 /*
8629 * Since our buffer works in 8 byte units we need to align our string
8630 * size to a multiple of 8. However, we must guarantee the tail end is
8631 * zero'd out to avoid leaking random bits to userspace.
8632 */
8633 size = strlen(cgroup_event.path) + 1;
8634 while (!IS_ALIGNED(size, sizeof(u64)))
8635 cgroup_event.path[size++] = '\0';
8636
8637 cgroup_event.event_id.header.size += size;
8638 cgroup_event.path_size = size;
8639
8640 perf_iterate_sb(perf_event_cgroup_output,
8641 &cgroup_event,
8642 NULL);
8643
8644 kfree(pathname);
8645 }
8646
8647 #endif
8648
8649 /*
8650 * mmap tracking
8651 */
8652
8653 struct perf_mmap_event {
8654 struct vm_area_struct *vma;
8655
8656 const char *file_name;
8657 int file_size;
8658 int maj, min;
8659 u64 ino;
8660 u64 ino_generation;
8661 u32 prot, flags;
8662 u8 build_id[BUILD_ID_SIZE_MAX];
8663 u32 build_id_size;
8664
8665 struct {
8666 struct perf_event_header header;
8667
8668 u32 pid;
8669 u32 tid;
8670 u64 start;
8671 u64 len;
8672 u64 pgoff;
8673 } event_id;
8674 };
8675
perf_event_mmap_match(struct perf_event * event,void * data)8676 static int perf_event_mmap_match(struct perf_event *event,
8677 void *data)
8678 {
8679 struct perf_mmap_event *mmap_event = data;
8680 struct vm_area_struct *vma = mmap_event->vma;
8681 int executable = vma->vm_flags & VM_EXEC;
8682
8683 return (!executable && event->attr.mmap_data) ||
8684 (executable && (event->attr.mmap || event->attr.mmap2));
8685 }
8686
perf_event_mmap_output(struct perf_event * event,void * data)8687 static void perf_event_mmap_output(struct perf_event *event,
8688 void *data)
8689 {
8690 struct perf_mmap_event *mmap_event = data;
8691 struct perf_output_handle handle;
8692 struct perf_sample_data sample;
8693 int size = mmap_event->event_id.header.size;
8694 u32 type = mmap_event->event_id.header.type;
8695 bool use_build_id;
8696 int ret;
8697
8698 if (!perf_event_mmap_match(event, data))
8699 return;
8700
8701 if (event->attr.mmap2) {
8702 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8703 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8704 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8705 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8706 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8707 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8708 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8709 }
8710
8711 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8712 ret = perf_output_begin(&handle, &sample, event,
8713 mmap_event->event_id.header.size);
8714 if (ret)
8715 goto out;
8716
8717 mmap_event->event_id.pid = perf_event_pid(event, current);
8718 mmap_event->event_id.tid = perf_event_tid(event, current);
8719
8720 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8721
8722 if (event->attr.mmap2 && use_build_id)
8723 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8724
8725 perf_output_put(&handle, mmap_event->event_id);
8726
8727 if (event->attr.mmap2) {
8728 if (use_build_id) {
8729 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8730
8731 __output_copy(&handle, size, 4);
8732 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8733 } else {
8734 perf_output_put(&handle, mmap_event->maj);
8735 perf_output_put(&handle, mmap_event->min);
8736 perf_output_put(&handle, mmap_event->ino);
8737 perf_output_put(&handle, mmap_event->ino_generation);
8738 }
8739 perf_output_put(&handle, mmap_event->prot);
8740 perf_output_put(&handle, mmap_event->flags);
8741 }
8742
8743 __output_copy(&handle, mmap_event->file_name,
8744 mmap_event->file_size);
8745
8746 perf_event__output_id_sample(event, &handle, &sample);
8747
8748 perf_output_end(&handle);
8749 out:
8750 mmap_event->event_id.header.size = size;
8751 mmap_event->event_id.header.type = type;
8752 }
8753
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8754 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8755 {
8756 struct vm_area_struct *vma = mmap_event->vma;
8757 struct file *file = vma->vm_file;
8758 int maj = 0, min = 0;
8759 u64 ino = 0, gen = 0;
8760 u32 prot = 0, flags = 0;
8761 unsigned int size;
8762 char tmp[16];
8763 char *buf = NULL;
8764 char *name = NULL;
8765
8766 if (vma->vm_flags & VM_READ)
8767 prot |= PROT_READ;
8768 if (vma->vm_flags & VM_WRITE)
8769 prot |= PROT_WRITE;
8770 if (vma->vm_flags & VM_EXEC)
8771 prot |= PROT_EXEC;
8772
8773 if (vma->vm_flags & VM_MAYSHARE)
8774 flags = MAP_SHARED;
8775 else
8776 flags = MAP_PRIVATE;
8777
8778 if (vma->vm_flags & VM_LOCKED)
8779 flags |= MAP_LOCKED;
8780 if (is_vm_hugetlb_page(vma))
8781 flags |= MAP_HUGETLB;
8782
8783 if (file) {
8784 struct inode *inode;
8785 dev_t dev;
8786
8787 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8788 if (!buf) {
8789 name = "//enomem";
8790 goto cpy_name;
8791 }
8792 /*
8793 * d_path() works from the end of the rb backwards, so we
8794 * need to add enough zero bytes after the string to handle
8795 * the 64bit alignment we do later.
8796 */
8797 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8798 if (IS_ERR(name)) {
8799 name = "//toolong";
8800 goto cpy_name;
8801 }
8802 inode = file_inode(vma->vm_file);
8803 dev = inode->i_sb->s_dev;
8804 ino = inode->i_ino;
8805 gen = inode->i_generation;
8806 maj = MAJOR(dev);
8807 min = MINOR(dev);
8808
8809 goto got_name;
8810 } else {
8811 if (vma->vm_ops && vma->vm_ops->name)
8812 name = (char *) vma->vm_ops->name(vma);
8813 if (!name)
8814 name = (char *)arch_vma_name(vma);
8815 if (!name) {
8816 if (vma_is_initial_heap(vma))
8817 name = "[heap]";
8818 else if (vma_is_initial_stack(vma))
8819 name = "[stack]";
8820 else
8821 name = "//anon";
8822 }
8823 }
8824
8825 cpy_name:
8826 strscpy(tmp, name, sizeof(tmp));
8827 name = tmp;
8828 got_name:
8829 /*
8830 * Since our buffer works in 8 byte units we need to align our string
8831 * size to a multiple of 8. However, we must guarantee the tail end is
8832 * zero'd out to avoid leaking random bits to userspace.
8833 */
8834 size = strlen(name)+1;
8835 while (!IS_ALIGNED(size, sizeof(u64)))
8836 name[size++] = '\0';
8837
8838 mmap_event->file_name = name;
8839 mmap_event->file_size = size;
8840 mmap_event->maj = maj;
8841 mmap_event->min = min;
8842 mmap_event->ino = ino;
8843 mmap_event->ino_generation = gen;
8844 mmap_event->prot = prot;
8845 mmap_event->flags = flags;
8846
8847 if (!(vma->vm_flags & VM_EXEC))
8848 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8849
8850 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8851
8852 if (atomic_read(&nr_build_id_events))
8853 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8854
8855 perf_iterate_sb(perf_event_mmap_output,
8856 mmap_event,
8857 NULL);
8858
8859 kfree(buf);
8860 }
8861
8862 /*
8863 * Check whether inode and address range match filter criteria.
8864 */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8865 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8866 struct file *file, unsigned long offset,
8867 unsigned long size)
8868 {
8869 /* d_inode(NULL) won't be equal to any mapped user-space file */
8870 if (!filter->path.dentry)
8871 return false;
8872
8873 if (d_inode(filter->path.dentry) != file_inode(file))
8874 return false;
8875
8876 if (filter->offset > offset + size)
8877 return false;
8878
8879 if (filter->offset + filter->size < offset)
8880 return false;
8881
8882 return true;
8883 }
8884
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8885 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8886 struct vm_area_struct *vma,
8887 struct perf_addr_filter_range *fr)
8888 {
8889 unsigned long vma_size = vma->vm_end - vma->vm_start;
8890 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8891 struct file *file = vma->vm_file;
8892
8893 if (!perf_addr_filter_match(filter, file, off, vma_size))
8894 return false;
8895
8896 if (filter->offset < off) {
8897 fr->start = vma->vm_start;
8898 fr->size = min(vma_size, filter->size - (off - filter->offset));
8899 } else {
8900 fr->start = vma->vm_start + filter->offset - off;
8901 fr->size = min(vma->vm_end - fr->start, filter->size);
8902 }
8903
8904 return true;
8905 }
8906
__perf_addr_filters_adjust(struct perf_event * event,void * data)8907 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8908 {
8909 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8910 struct vm_area_struct *vma = data;
8911 struct perf_addr_filter *filter;
8912 unsigned int restart = 0, count = 0;
8913 unsigned long flags;
8914
8915 if (!has_addr_filter(event))
8916 return;
8917
8918 if (!vma->vm_file)
8919 return;
8920
8921 raw_spin_lock_irqsave(&ifh->lock, flags);
8922 list_for_each_entry(filter, &ifh->list, entry) {
8923 if (perf_addr_filter_vma_adjust(filter, vma,
8924 &event->addr_filter_ranges[count]))
8925 restart++;
8926
8927 count++;
8928 }
8929
8930 if (restart)
8931 event->addr_filters_gen++;
8932 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8933
8934 if (restart)
8935 perf_event_stop(event, 1);
8936 }
8937
8938 /*
8939 * Adjust all task's events' filters to the new vma
8940 */
perf_addr_filters_adjust(struct vm_area_struct * vma)8941 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8942 {
8943 struct perf_event_context *ctx;
8944
8945 /*
8946 * Data tracing isn't supported yet and as such there is no need
8947 * to keep track of anything that isn't related to executable code:
8948 */
8949 if (!(vma->vm_flags & VM_EXEC))
8950 return;
8951
8952 rcu_read_lock();
8953 ctx = rcu_dereference(current->perf_event_ctxp);
8954 if (ctx)
8955 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8956 rcu_read_unlock();
8957 }
8958
perf_event_mmap(struct vm_area_struct * vma)8959 void perf_event_mmap(struct vm_area_struct *vma)
8960 {
8961 struct perf_mmap_event mmap_event;
8962
8963 if (!atomic_read(&nr_mmap_events))
8964 return;
8965
8966 mmap_event = (struct perf_mmap_event){
8967 .vma = vma,
8968 /* .file_name */
8969 /* .file_size */
8970 .event_id = {
8971 .header = {
8972 .type = PERF_RECORD_MMAP,
8973 .misc = PERF_RECORD_MISC_USER,
8974 /* .size */
8975 },
8976 /* .pid */
8977 /* .tid */
8978 .start = vma->vm_start,
8979 .len = vma->vm_end - vma->vm_start,
8980 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
8981 },
8982 /* .maj (attr_mmap2 only) */
8983 /* .min (attr_mmap2 only) */
8984 /* .ino (attr_mmap2 only) */
8985 /* .ino_generation (attr_mmap2 only) */
8986 /* .prot (attr_mmap2 only) */
8987 /* .flags (attr_mmap2 only) */
8988 };
8989
8990 perf_addr_filters_adjust(vma);
8991 perf_event_mmap_event(&mmap_event);
8992 }
8993
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)8994 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8995 unsigned long size, u64 flags)
8996 {
8997 struct perf_output_handle handle;
8998 struct perf_sample_data sample;
8999 struct perf_aux_event {
9000 struct perf_event_header header;
9001 u64 offset;
9002 u64 size;
9003 u64 flags;
9004 } rec = {
9005 .header = {
9006 .type = PERF_RECORD_AUX,
9007 .misc = 0,
9008 .size = sizeof(rec),
9009 },
9010 .offset = head,
9011 .size = size,
9012 .flags = flags,
9013 };
9014 int ret;
9015
9016 perf_event_header__init_id(&rec.header, &sample, event);
9017 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9018
9019 if (ret)
9020 return;
9021
9022 perf_output_put(&handle, rec);
9023 perf_event__output_id_sample(event, &handle, &sample);
9024
9025 perf_output_end(&handle);
9026 }
9027
9028 /*
9029 * Lost/dropped samples logging
9030 */
perf_log_lost_samples(struct perf_event * event,u64 lost)9031 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9032 {
9033 struct perf_output_handle handle;
9034 struct perf_sample_data sample;
9035 int ret;
9036
9037 struct {
9038 struct perf_event_header header;
9039 u64 lost;
9040 } lost_samples_event = {
9041 .header = {
9042 .type = PERF_RECORD_LOST_SAMPLES,
9043 .misc = 0,
9044 .size = sizeof(lost_samples_event),
9045 },
9046 .lost = lost,
9047 };
9048
9049 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9050
9051 ret = perf_output_begin(&handle, &sample, event,
9052 lost_samples_event.header.size);
9053 if (ret)
9054 return;
9055
9056 perf_output_put(&handle, lost_samples_event);
9057 perf_event__output_id_sample(event, &handle, &sample);
9058 perf_output_end(&handle);
9059 }
9060
9061 /*
9062 * context_switch tracking
9063 */
9064
9065 struct perf_switch_event {
9066 struct task_struct *task;
9067 struct task_struct *next_prev;
9068
9069 struct {
9070 struct perf_event_header header;
9071 u32 next_prev_pid;
9072 u32 next_prev_tid;
9073 } event_id;
9074 };
9075
perf_event_switch_match(struct perf_event * event)9076 static int perf_event_switch_match(struct perf_event *event)
9077 {
9078 return event->attr.context_switch;
9079 }
9080
perf_event_switch_output(struct perf_event * event,void * data)9081 static void perf_event_switch_output(struct perf_event *event, void *data)
9082 {
9083 struct perf_switch_event *se = data;
9084 struct perf_output_handle handle;
9085 struct perf_sample_data sample;
9086 int ret;
9087
9088 if (!perf_event_switch_match(event))
9089 return;
9090
9091 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9092 if (event->ctx->task) {
9093 se->event_id.header.type = PERF_RECORD_SWITCH;
9094 se->event_id.header.size = sizeof(se->event_id.header);
9095 } else {
9096 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9097 se->event_id.header.size = sizeof(se->event_id);
9098 se->event_id.next_prev_pid =
9099 perf_event_pid(event, se->next_prev);
9100 se->event_id.next_prev_tid =
9101 perf_event_tid(event, se->next_prev);
9102 }
9103
9104 perf_event_header__init_id(&se->event_id.header, &sample, event);
9105
9106 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9107 if (ret)
9108 return;
9109
9110 if (event->ctx->task)
9111 perf_output_put(&handle, se->event_id.header);
9112 else
9113 perf_output_put(&handle, se->event_id);
9114
9115 perf_event__output_id_sample(event, &handle, &sample);
9116
9117 perf_output_end(&handle);
9118 }
9119
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9120 static void perf_event_switch(struct task_struct *task,
9121 struct task_struct *next_prev, bool sched_in)
9122 {
9123 struct perf_switch_event switch_event;
9124
9125 /* N.B. caller checks nr_switch_events != 0 */
9126
9127 switch_event = (struct perf_switch_event){
9128 .task = task,
9129 .next_prev = next_prev,
9130 .event_id = {
9131 .header = {
9132 /* .type */
9133 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9134 /* .size */
9135 },
9136 /* .next_prev_pid */
9137 /* .next_prev_tid */
9138 },
9139 };
9140
9141 if (!sched_in && task->on_rq) {
9142 switch_event.event_id.header.misc |=
9143 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9144 }
9145
9146 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9147 }
9148
9149 /*
9150 * IRQ throttle logging
9151 */
9152
perf_log_throttle(struct perf_event * event,int enable)9153 static void perf_log_throttle(struct perf_event *event, int enable)
9154 {
9155 struct perf_output_handle handle;
9156 struct perf_sample_data sample;
9157 int ret;
9158
9159 struct {
9160 struct perf_event_header header;
9161 u64 time;
9162 u64 id;
9163 u64 stream_id;
9164 } throttle_event = {
9165 .header = {
9166 .type = PERF_RECORD_THROTTLE,
9167 .misc = 0,
9168 .size = sizeof(throttle_event),
9169 },
9170 .time = perf_event_clock(event),
9171 .id = primary_event_id(event),
9172 .stream_id = event->id,
9173 };
9174
9175 if (enable)
9176 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9177
9178 perf_event_header__init_id(&throttle_event.header, &sample, event);
9179
9180 ret = perf_output_begin(&handle, &sample, event,
9181 throttle_event.header.size);
9182 if (ret)
9183 return;
9184
9185 perf_output_put(&handle, throttle_event);
9186 perf_event__output_id_sample(event, &handle, &sample);
9187 perf_output_end(&handle);
9188 }
9189
9190 /*
9191 * ksymbol register/unregister tracking
9192 */
9193
9194 struct perf_ksymbol_event {
9195 const char *name;
9196 int name_len;
9197 struct {
9198 struct perf_event_header header;
9199 u64 addr;
9200 u32 len;
9201 u16 ksym_type;
9202 u16 flags;
9203 } event_id;
9204 };
9205
perf_event_ksymbol_match(struct perf_event * event)9206 static int perf_event_ksymbol_match(struct perf_event *event)
9207 {
9208 return event->attr.ksymbol;
9209 }
9210
perf_event_ksymbol_output(struct perf_event * event,void * data)9211 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9212 {
9213 struct perf_ksymbol_event *ksymbol_event = data;
9214 struct perf_output_handle handle;
9215 struct perf_sample_data sample;
9216 int ret;
9217
9218 if (!perf_event_ksymbol_match(event))
9219 return;
9220
9221 perf_event_header__init_id(&ksymbol_event->event_id.header,
9222 &sample, event);
9223 ret = perf_output_begin(&handle, &sample, event,
9224 ksymbol_event->event_id.header.size);
9225 if (ret)
9226 return;
9227
9228 perf_output_put(&handle, ksymbol_event->event_id);
9229 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9230 perf_event__output_id_sample(event, &handle, &sample);
9231
9232 perf_output_end(&handle);
9233 }
9234
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9235 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9236 const char *sym)
9237 {
9238 struct perf_ksymbol_event ksymbol_event;
9239 char name[KSYM_NAME_LEN];
9240 u16 flags = 0;
9241 int name_len;
9242
9243 if (!atomic_read(&nr_ksymbol_events))
9244 return;
9245
9246 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9247 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9248 goto err;
9249
9250 strscpy(name, sym, KSYM_NAME_LEN);
9251 name_len = strlen(name) + 1;
9252 while (!IS_ALIGNED(name_len, sizeof(u64)))
9253 name[name_len++] = '\0';
9254 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9255
9256 if (unregister)
9257 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9258
9259 ksymbol_event = (struct perf_ksymbol_event){
9260 .name = name,
9261 .name_len = name_len,
9262 .event_id = {
9263 .header = {
9264 .type = PERF_RECORD_KSYMBOL,
9265 .size = sizeof(ksymbol_event.event_id) +
9266 name_len,
9267 },
9268 .addr = addr,
9269 .len = len,
9270 .ksym_type = ksym_type,
9271 .flags = flags,
9272 },
9273 };
9274
9275 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9276 return;
9277 err:
9278 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9279 }
9280
9281 /*
9282 * bpf program load/unload tracking
9283 */
9284
9285 struct perf_bpf_event {
9286 struct bpf_prog *prog;
9287 struct {
9288 struct perf_event_header header;
9289 u16 type;
9290 u16 flags;
9291 u32 id;
9292 u8 tag[BPF_TAG_SIZE];
9293 } event_id;
9294 };
9295
perf_event_bpf_match(struct perf_event * event)9296 static int perf_event_bpf_match(struct perf_event *event)
9297 {
9298 return event->attr.bpf_event;
9299 }
9300
perf_event_bpf_output(struct perf_event * event,void * data)9301 static void perf_event_bpf_output(struct perf_event *event, void *data)
9302 {
9303 struct perf_bpf_event *bpf_event = data;
9304 struct perf_output_handle handle;
9305 struct perf_sample_data sample;
9306 int ret;
9307
9308 if (!perf_event_bpf_match(event))
9309 return;
9310
9311 perf_event_header__init_id(&bpf_event->event_id.header,
9312 &sample, event);
9313 ret = perf_output_begin(&handle, &sample, event,
9314 bpf_event->event_id.header.size);
9315 if (ret)
9316 return;
9317
9318 perf_output_put(&handle, bpf_event->event_id);
9319 perf_event__output_id_sample(event, &handle, &sample);
9320
9321 perf_output_end(&handle);
9322 }
9323
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9324 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9325 enum perf_bpf_event_type type)
9326 {
9327 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9328 int i;
9329
9330 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9331 (u64)(unsigned long)prog->bpf_func,
9332 prog->jited_len, unregister,
9333 prog->aux->ksym.name);
9334
9335 for (i = 1; i < prog->aux->func_cnt; i++) {
9336 struct bpf_prog *subprog = prog->aux->func[i];
9337
9338 perf_event_ksymbol(
9339 PERF_RECORD_KSYMBOL_TYPE_BPF,
9340 (u64)(unsigned long)subprog->bpf_func,
9341 subprog->jited_len, unregister,
9342 subprog->aux->ksym.name);
9343 }
9344 }
9345
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9346 void perf_event_bpf_event(struct bpf_prog *prog,
9347 enum perf_bpf_event_type type,
9348 u16 flags)
9349 {
9350 struct perf_bpf_event bpf_event;
9351
9352 if (type <= PERF_BPF_EVENT_UNKNOWN ||
9353 type >= PERF_BPF_EVENT_MAX)
9354 return;
9355
9356 switch (type) {
9357 case PERF_BPF_EVENT_PROG_LOAD:
9358 case PERF_BPF_EVENT_PROG_UNLOAD:
9359 if (atomic_read(&nr_ksymbol_events))
9360 perf_event_bpf_emit_ksymbols(prog, type);
9361 break;
9362 default:
9363 break;
9364 }
9365
9366 if (!atomic_read(&nr_bpf_events))
9367 return;
9368
9369 bpf_event = (struct perf_bpf_event){
9370 .prog = prog,
9371 .event_id = {
9372 .header = {
9373 .type = PERF_RECORD_BPF_EVENT,
9374 .size = sizeof(bpf_event.event_id),
9375 },
9376 .type = type,
9377 .flags = flags,
9378 .id = prog->aux->id,
9379 },
9380 };
9381
9382 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9383
9384 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9385 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9386 }
9387
9388 struct perf_text_poke_event {
9389 const void *old_bytes;
9390 const void *new_bytes;
9391 size_t pad;
9392 u16 old_len;
9393 u16 new_len;
9394
9395 struct {
9396 struct perf_event_header header;
9397
9398 u64 addr;
9399 } event_id;
9400 };
9401
perf_event_text_poke_match(struct perf_event * event)9402 static int perf_event_text_poke_match(struct perf_event *event)
9403 {
9404 return event->attr.text_poke;
9405 }
9406
perf_event_text_poke_output(struct perf_event * event,void * data)9407 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9408 {
9409 struct perf_text_poke_event *text_poke_event = data;
9410 struct perf_output_handle handle;
9411 struct perf_sample_data sample;
9412 u64 padding = 0;
9413 int ret;
9414
9415 if (!perf_event_text_poke_match(event))
9416 return;
9417
9418 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9419
9420 ret = perf_output_begin(&handle, &sample, event,
9421 text_poke_event->event_id.header.size);
9422 if (ret)
9423 return;
9424
9425 perf_output_put(&handle, text_poke_event->event_id);
9426 perf_output_put(&handle, text_poke_event->old_len);
9427 perf_output_put(&handle, text_poke_event->new_len);
9428
9429 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9430 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9431
9432 if (text_poke_event->pad)
9433 __output_copy(&handle, &padding, text_poke_event->pad);
9434
9435 perf_event__output_id_sample(event, &handle, &sample);
9436
9437 perf_output_end(&handle);
9438 }
9439
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9440 void perf_event_text_poke(const void *addr, const void *old_bytes,
9441 size_t old_len, const void *new_bytes, size_t new_len)
9442 {
9443 struct perf_text_poke_event text_poke_event;
9444 size_t tot, pad;
9445
9446 if (!atomic_read(&nr_text_poke_events))
9447 return;
9448
9449 tot = sizeof(text_poke_event.old_len) + old_len;
9450 tot += sizeof(text_poke_event.new_len) + new_len;
9451 pad = ALIGN(tot, sizeof(u64)) - tot;
9452
9453 text_poke_event = (struct perf_text_poke_event){
9454 .old_bytes = old_bytes,
9455 .new_bytes = new_bytes,
9456 .pad = pad,
9457 .old_len = old_len,
9458 .new_len = new_len,
9459 .event_id = {
9460 .header = {
9461 .type = PERF_RECORD_TEXT_POKE,
9462 .misc = PERF_RECORD_MISC_KERNEL,
9463 .size = sizeof(text_poke_event.event_id) + tot + pad,
9464 },
9465 .addr = (unsigned long)addr,
9466 },
9467 };
9468
9469 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9470 }
9471
perf_event_itrace_started(struct perf_event * event)9472 void perf_event_itrace_started(struct perf_event *event)
9473 {
9474 event->attach_state |= PERF_ATTACH_ITRACE;
9475 }
9476
perf_log_itrace_start(struct perf_event * event)9477 static void perf_log_itrace_start(struct perf_event *event)
9478 {
9479 struct perf_output_handle handle;
9480 struct perf_sample_data sample;
9481 struct perf_aux_event {
9482 struct perf_event_header header;
9483 u32 pid;
9484 u32 tid;
9485 } rec;
9486 int ret;
9487
9488 if (event->parent)
9489 event = event->parent;
9490
9491 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9492 event->attach_state & PERF_ATTACH_ITRACE)
9493 return;
9494
9495 rec.header.type = PERF_RECORD_ITRACE_START;
9496 rec.header.misc = 0;
9497 rec.header.size = sizeof(rec);
9498 rec.pid = perf_event_pid(event, current);
9499 rec.tid = perf_event_tid(event, current);
9500
9501 perf_event_header__init_id(&rec.header, &sample, event);
9502 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9503
9504 if (ret)
9505 return;
9506
9507 perf_output_put(&handle, rec);
9508 perf_event__output_id_sample(event, &handle, &sample);
9509
9510 perf_output_end(&handle);
9511 }
9512
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)9513 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9514 {
9515 struct perf_output_handle handle;
9516 struct perf_sample_data sample;
9517 struct perf_aux_event {
9518 struct perf_event_header header;
9519 u64 hw_id;
9520 } rec;
9521 int ret;
9522
9523 if (event->parent)
9524 event = event->parent;
9525
9526 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9527 rec.header.misc = 0;
9528 rec.header.size = sizeof(rec);
9529 rec.hw_id = hw_id;
9530
9531 perf_event_header__init_id(&rec.header, &sample, event);
9532 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9533
9534 if (ret)
9535 return;
9536
9537 perf_output_put(&handle, rec);
9538 perf_event__output_id_sample(event, &handle, &sample);
9539
9540 perf_output_end(&handle);
9541 }
9542 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9543
9544 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)9545 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9546 {
9547 struct hw_perf_event *hwc = &event->hw;
9548 int ret = 0;
9549 u64 seq;
9550
9551 seq = __this_cpu_read(perf_throttled_seq);
9552 if (seq != hwc->interrupts_seq) {
9553 hwc->interrupts_seq = seq;
9554 hwc->interrupts = 1;
9555 } else {
9556 hwc->interrupts++;
9557 if (unlikely(throttle &&
9558 hwc->interrupts > max_samples_per_tick)) {
9559 __this_cpu_inc(perf_throttled_count);
9560 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9561 hwc->interrupts = MAX_INTERRUPTS;
9562 perf_log_throttle(event, 0);
9563 ret = 1;
9564 }
9565 }
9566
9567 if (event->attr.freq) {
9568 u64 now = perf_clock();
9569 s64 delta = now - hwc->freq_time_stamp;
9570
9571 hwc->freq_time_stamp = now;
9572
9573 if (delta > 0 && delta < 2*TICK_NSEC)
9574 perf_adjust_period(event, delta, hwc->last_period, true);
9575 }
9576
9577 return ret;
9578 }
9579
perf_event_account_interrupt(struct perf_event * event)9580 int perf_event_account_interrupt(struct perf_event *event)
9581 {
9582 return __perf_event_account_interrupt(event, 1);
9583 }
9584
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)9585 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9586 {
9587 /*
9588 * Due to interrupt latency (AKA "skid"), we may enter the
9589 * kernel before taking an overflow, even if the PMU is only
9590 * counting user events.
9591 */
9592 if (event->attr.exclude_kernel && !user_mode(regs))
9593 return false;
9594
9595 return true;
9596 }
9597
9598 /*
9599 * Generic event overflow handling, sampling.
9600 */
9601
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9602 static int __perf_event_overflow(struct perf_event *event,
9603 int throttle, struct perf_sample_data *data,
9604 struct pt_regs *regs)
9605 {
9606 int events = atomic_read(&event->event_limit);
9607 int ret = 0;
9608
9609 /*
9610 * Non-sampling counters might still use the PMI to fold short
9611 * hardware counters, ignore those.
9612 */
9613 if (unlikely(!is_sampling_event(event)))
9614 return 0;
9615
9616 ret = __perf_event_account_interrupt(event, throttle);
9617
9618 /*
9619 * XXX event_limit might not quite work as expected on inherited
9620 * events
9621 */
9622
9623 event->pending_kill = POLL_IN;
9624 if (events && atomic_dec_and_test(&event->event_limit)) {
9625 ret = 1;
9626 event->pending_kill = POLL_HUP;
9627 perf_event_disable_inatomic(event);
9628 }
9629
9630 if (event->attr.sigtrap) {
9631 /*
9632 * The desired behaviour of sigtrap vs invalid samples is a bit
9633 * tricky; on the one hand, one should not loose the SIGTRAP if
9634 * it is the first event, on the other hand, we should also not
9635 * trigger the WARN or override the data address.
9636 */
9637 bool valid_sample = sample_is_allowed(event, regs);
9638 unsigned int pending_id = 1;
9639
9640 if (regs)
9641 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9642 if (!event->pending_sigtrap) {
9643 event->pending_sigtrap = pending_id;
9644 local_inc(&event->ctx->nr_pending);
9645 } else if (event->attr.exclude_kernel && valid_sample) {
9646 /*
9647 * Should not be able to return to user space without
9648 * consuming pending_sigtrap; with exceptions:
9649 *
9650 * 1. Where !exclude_kernel, events can overflow again
9651 * in the kernel without returning to user space.
9652 *
9653 * 2. Events that can overflow again before the IRQ-
9654 * work without user space progress (e.g. hrtimer).
9655 * To approximate progress (with false negatives),
9656 * check 32-bit hash of the current IP.
9657 */
9658 WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9659 }
9660
9661 event->pending_addr = 0;
9662 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9663 event->pending_addr = data->addr;
9664 irq_work_queue(&event->pending_irq);
9665 }
9666
9667 READ_ONCE(event->overflow_handler)(event, data, regs);
9668
9669 if (*perf_event_fasync(event) && event->pending_kill) {
9670 event->pending_wakeup = 1;
9671 irq_work_queue(&event->pending_irq);
9672 }
9673
9674 return ret;
9675 }
9676
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9677 int perf_event_overflow(struct perf_event *event,
9678 struct perf_sample_data *data,
9679 struct pt_regs *regs)
9680 {
9681 return __perf_event_overflow(event, 1, data, regs);
9682 }
9683
9684 /*
9685 * Generic software event infrastructure
9686 */
9687
9688 struct swevent_htable {
9689 struct swevent_hlist *swevent_hlist;
9690 struct mutex hlist_mutex;
9691 int hlist_refcount;
9692
9693 /* Recursion avoidance in each contexts */
9694 int recursion[PERF_NR_CONTEXTS];
9695 };
9696
9697 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9698
9699 /*
9700 * We directly increment event->count and keep a second value in
9701 * event->hw.period_left to count intervals. This period event
9702 * is kept in the range [-sample_period, 0] so that we can use the
9703 * sign as trigger.
9704 */
9705
perf_swevent_set_period(struct perf_event * event)9706 u64 perf_swevent_set_period(struct perf_event *event)
9707 {
9708 struct hw_perf_event *hwc = &event->hw;
9709 u64 period = hwc->last_period;
9710 u64 nr, offset;
9711 s64 old, val;
9712
9713 hwc->last_period = hwc->sample_period;
9714
9715 old = local64_read(&hwc->period_left);
9716 do {
9717 val = old;
9718 if (val < 0)
9719 return 0;
9720
9721 nr = div64_u64(period + val, period);
9722 offset = nr * period;
9723 val -= offset;
9724 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9725
9726 return nr;
9727 }
9728
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)9729 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9730 struct perf_sample_data *data,
9731 struct pt_regs *regs)
9732 {
9733 struct hw_perf_event *hwc = &event->hw;
9734 int throttle = 0;
9735
9736 if (!overflow)
9737 overflow = perf_swevent_set_period(event);
9738
9739 if (hwc->interrupts == MAX_INTERRUPTS)
9740 return;
9741
9742 for (; overflow; overflow--) {
9743 if (__perf_event_overflow(event, throttle,
9744 data, regs)) {
9745 /*
9746 * We inhibit the overflow from happening when
9747 * hwc->interrupts == MAX_INTERRUPTS.
9748 */
9749 break;
9750 }
9751 throttle = 1;
9752 }
9753 }
9754
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9755 static void perf_swevent_event(struct perf_event *event, u64 nr,
9756 struct perf_sample_data *data,
9757 struct pt_regs *regs)
9758 {
9759 struct hw_perf_event *hwc = &event->hw;
9760
9761 local64_add(nr, &event->count);
9762
9763 if (!regs)
9764 return;
9765
9766 if (!is_sampling_event(event))
9767 return;
9768
9769 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9770 data->period = nr;
9771 return perf_swevent_overflow(event, 1, data, regs);
9772 } else
9773 data->period = event->hw.last_period;
9774
9775 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9776 return perf_swevent_overflow(event, 1, data, regs);
9777
9778 if (local64_add_negative(nr, &hwc->period_left))
9779 return;
9780
9781 perf_swevent_overflow(event, 0, data, regs);
9782 }
9783
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)9784 static int perf_exclude_event(struct perf_event *event,
9785 struct pt_regs *regs)
9786 {
9787 if (event->hw.state & PERF_HES_STOPPED)
9788 return 1;
9789
9790 if (regs) {
9791 if (event->attr.exclude_user && user_mode(regs))
9792 return 1;
9793
9794 if (event->attr.exclude_kernel && !user_mode(regs))
9795 return 1;
9796 }
9797
9798 return 0;
9799 }
9800
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)9801 static int perf_swevent_match(struct perf_event *event,
9802 enum perf_type_id type,
9803 u32 event_id,
9804 struct perf_sample_data *data,
9805 struct pt_regs *regs)
9806 {
9807 if (event->attr.type != type)
9808 return 0;
9809
9810 if (event->attr.config != event_id)
9811 return 0;
9812
9813 if (perf_exclude_event(event, regs))
9814 return 0;
9815
9816 return 1;
9817 }
9818
swevent_hash(u64 type,u32 event_id)9819 static inline u64 swevent_hash(u64 type, u32 event_id)
9820 {
9821 u64 val = event_id | (type << 32);
9822
9823 return hash_64(val, SWEVENT_HLIST_BITS);
9824 }
9825
9826 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)9827 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9828 {
9829 u64 hash = swevent_hash(type, event_id);
9830
9831 return &hlist->heads[hash];
9832 }
9833
9834 /* For the read side: events when they trigger */
9835 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)9836 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9837 {
9838 struct swevent_hlist *hlist;
9839
9840 hlist = rcu_dereference(swhash->swevent_hlist);
9841 if (!hlist)
9842 return NULL;
9843
9844 return __find_swevent_head(hlist, type, event_id);
9845 }
9846
9847 /* For the event head insertion and removal in the hlist */
9848 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)9849 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9850 {
9851 struct swevent_hlist *hlist;
9852 u32 event_id = event->attr.config;
9853 u64 type = event->attr.type;
9854
9855 /*
9856 * Event scheduling is always serialized against hlist allocation
9857 * and release. Which makes the protected version suitable here.
9858 * The context lock guarantees that.
9859 */
9860 hlist = rcu_dereference_protected(swhash->swevent_hlist,
9861 lockdep_is_held(&event->ctx->lock));
9862 if (!hlist)
9863 return NULL;
9864
9865 return __find_swevent_head(hlist, type, event_id);
9866 }
9867
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9868 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9869 u64 nr,
9870 struct perf_sample_data *data,
9871 struct pt_regs *regs)
9872 {
9873 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9874 struct perf_event *event;
9875 struct hlist_head *head;
9876
9877 rcu_read_lock();
9878 head = find_swevent_head_rcu(swhash, type, event_id);
9879 if (!head)
9880 goto end;
9881
9882 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9883 if (perf_swevent_match(event, type, event_id, data, regs))
9884 perf_swevent_event(event, nr, data, regs);
9885 }
9886 end:
9887 rcu_read_unlock();
9888 }
9889
9890 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9891
perf_swevent_get_recursion_context(void)9892 int perf_swevent_get_recursion_context(void)
9893 {
9894 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9895
9896 return get_recursion_context(swhash->recursion);
9897 }
9898 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9899
perf_swevent_put_recursion_context(int rctx)9900 void perf_swevent_put_recursion_context(int rctx)
9901 {
9902 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9903
9904 put_recursion_context(swhash->recursion, rctx);
9905 }
9906
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9907 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9908 {
9909 struct perf_sample_data data;
9910
9911 if (WARN_ON_ONCE(!regs))
9912 return;
9913
9914 perf_sample_data_init(&data, addr, 0);
9915 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9916 }
9917
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9918 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9919 {
9920 int rctx;
9921
9922 preempt_disable_notrace();
9923 rctx = perf_swevent_get_recursion_context();
9924 if (unlikely(rctx < 0))
9925 goto fail;
9926
9927 ___perf_sw_event(event_id, nr, regs, addr);
9928
9929 perf_swevent_put_recursion_context(rctx);
9930 fail:
9931 preempt_enable_notrace();
9932 }
9933
perf_swevent_read(struct perf_event * event)9934 static void perf_swevent_read(struct perf_event *event)
9935 {
9936 }
9937
perf_swevent_add(struct perf_event * event,int flags)9938 static int perf_swevent_add(struct perf_event *event, int flags)
9939 {
9940 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9941 struct hw_perf_event *hwc = &event->hw;
9942 struct hlist_head *head;
9943
9944 if (is_sampling_event(event)) {
9945 hwc->last_period = hwc->sample_period;
9946 perf_swevent_set_period(event);
9947 }
9948
9949 hwc->state = !(flags & PERF_EF_START);
9950
9951 head = find_swevent_head(swhash, event);
9952 if (WARN_ON_ONCE(!head))
9953 return -EINVAL;
9954
9955 hlist_add_head_rcu(&event->hlist_entry, head);
9956 perf_event_update_userpage(event);
9957
9958 return 0;
9959 }
9960
perf_swevent_del(struct perf_event * event,int flags)9961 static void perf_swevent_del(struct perf_event *event, int flags)
9962 {
9963 hlist_del_rcu(&event->hlist_entry);
9964 }
9965
perf_swevent_start(struct perf_event * event,int flags)9966 static void perf_swevent_start(struct perf_event *event, int flags)
9967 {
9968 event->hw.state = 0;
9969 }
9970
perf_swevent_stop(struct perf_event * event,int flags)9971 static void perf_swevent_stop(struct perf_event *event, int flags)
9972 {
9973 event->hw.state = PERF_HES_STOPPED;
9974 }
9975
9976 /* Deref the hlist from the update side */
9977 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)9978 swevent_hlist_deref(struct swevent_htable *swhash)
9979 {
9980 return rcu_dereference_protected(swhash->swevent_hlist,
9981 lockdep_is_held(&swhash->hlist_mutex));
9982 }
9983
swevent_hlist_release(struct swevent_htable * swhash)9984 static void swevent_hlist_release(struct swevent_htable *swhash)
9985 {
9986 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9987
9988 if (!hlist)
9989 return;
9990
9991 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9992 kfree_rcu(hlist, rcu_head);
9993 }
9994
swevent_hlist_put_cpu(int cpu)9995 static void swevent_hlist_put_cpu(int cpu)
9996 {
9997 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9998
9999 mutex_lock(&swhash->hlist_mutex);
10000
10001 if (!--swhash->hlist_refcount)
10002 swevent_hlist_release(swhash);
10003
10004 mutex_unlock(&swhash->hlist_mutex);
10005 }
10006
swevent_hlist_put(void)10007 static void swevent_hlist_put(void)
10008 {
10009 int cpu;
10010
10011 for_each_possible_cpu(cpu)
10012 swevent_hlist_put_cpu(cpu);
10013 }
10014
swevent_hlist_get_cpu(int cpu)10015 static int swevent_hlist_get_cpu(int cpu)
10016 {
10017 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10018 int err = 0;
10019
10020 mutex_lock(&swhash->hlist_mutex);
10021 if (!swevent_hlist_deref(swhash) &&
10022 cpumask_test_cpu(cpu, perf_online_mask)) {
10023 struct swevent_hlist *hlist;
10024
10025 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10026 if (!hlist) {
10027 err = -ENOMEM;
10028 goto exit;
10029 }
10030 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10031 }
10032 swhash->hlist_refcount++;
10033 exit:
10034 mutex_unlock(&swhash->hlist_mutex);
10035
10036 return err;
10037 }
10038
swevent_hlist_get(void)10039 static int swevent_hlist_get(void)
10040 {
10041 int err, cpu, failed_cpu;
10042
10043 mutex_lock(&pmus_lock);
10044 for_each_possible_cpu(cpu) {
10045 err = swevent_hlist_get_cpu(cpu);
10046 if (err) {
10047 failed_cpu = cpu;
10048 goto fail;
10049 }
10050 }
10051 mutex_unlock(&pmus_lock);
10052 return 0;
10053 fail:
10054 for_each_possible_cpu(cpu) {
10055 if (cpu == failed_cpu)
10056 break;
10057 swevent_hlist_put_cpu(cpu);
10058 }
10059 mutex_unlock(&pmus_lock);
10060 return err;
10061 }
10062
10063 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10064
sw_perf_event_destroy(struct perf_event * event)10065 static void sw_perf_event_destroy(struct perf_event *event)
10066 {
10067 u64 event_id = event->attr.config;
10068
10069 WARN_ON(event->parent);
10070
10071 static_key_slow_dec(&perf_swevent_enabled[event_id]);
10072 swevent_hlist_put();
10073 }
10074
10075 static struct pmu perf_cpu_clock; /* fwd declaration */
10076 static struct pmu perf_task_clock;
10077
perf_swevent_init(struct perf_event * event)10078 static int perf_swevent_init(struct perf_event *event)
10079 {
10080 u64 event_id = event->attr.config;
10081
10082 if (event->attr.type != PERF_TYPE_SOFTWARE)
10083 return -ENOENT;
10084
10085 /*
10086 * no branch sampling for software events
10087 */
10088 if (has_branch_stack(event))
10089 return -EOPNOTSUPP;
10090
10091 switch (event_id) {
10092 case PERF_COUNT_SW_CPU_CLOCK:
10093 event->attr.type = perf_cpu_clock.type;
10094 return -ENOENT;
10095 case PERF_COUNT_SW_TASK_CLOCK:
10096 event->attr.type = perf_task_clock.type;
10097 return -ENOENT;
10098
10099 default:
10100 break;
10101 }
10102
10103 if (event_id >= PERF_COUNT_SW_MAX)
10104 return -ENOENT;
10105
10106 if (!event->parent) {
10107 int err;
10108
10109 err = swevent_hlist_get();
10110 if (err)
10111 return err;
10112
10113 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10114 event->destroy = sw_perf_event_destroy;
10115 }
10116
10117 return 0;
10118 }
10119
10120 static struct pmu perf_swevent = {
10121 .task_ctx_nr = perf_sw_context,
10122
10123 .capabilities = PERF_PMU_CAP_NO_NMI,
10124
10125 .event_init = perf_swevent_init,
10126 .add = perf_swevent_add,
10127 .del = perf_swevent_del,
10128 .start = perf_swevent_start,
10129 .stop = perf_swevent_stop,
10130 .read = perf_swevent_read,
10131 };
10132
10133 #ifdef CONFIG_EVENT_TRACING
10134
tp_perf_event_destroy(struct perf_event * event)10135 static void tp_perf_event_destroy(struct perf_event *event)
10136 {
10137 perf_trace_destroy(event);
10138 }
10139
perf_tp_event_init(struct perf_event * event)10140 static int perf_tp_event_init(struct perf_event *event)
10141 {
10142 int err;
10143
10144 if (event->attr.type != PERF_TYPE_TRACEPOINT)
10145 return -ENOENT;
10146
10147 /*
10148 * no branch sampling for tracepoint events
10149 */
10150 if (has_branch_stack(event))
10151 return -EOPNOTSUPP;
10152
10153 err = perf_trace_init(event);
10154 if (err)
10155 return err;
10156
10157 event->destroy = tp_perf_event_destroy;
10158
10159 return 0;
10160 }
10161
10162 static struct pmu perf_tracepoint = {
10163 .task_ctx_nr = perf_sw_context,
10164
10165 .event_init = perf_tp_event_init,
10166 .add = perf_trace_add,
10167 .del = perf_trace_del,
10168 .start = perf_swevent_start,
10169 .stop = perf_swevent_stop,
10170 .read = perf_swevent_read,
10171 };
10172
perf_tp_filter_match(struct perf_event * event,struct perf_raw_record * raw)10173 static int perf_tp_filter_match(struct perf_event *event,
10174 struct perf_raw_record *raw)
10175 {
10176 void *record = raw->frag.data;
10177
10178 /* only top level events have filters set */
10179 if (event->parent)
10180 event = event->parent;
10181
10182 if (likely(!event->filter) || filter_match_preds(event->filter, record))
10183 return 1;
10184 return 0;
10185 }
10186
perf_tp_event_match(struct perf_event * event,struct perf_raw_record * raw,struct pt_regs * regs)10187 static int perf_tp_event_match(struct perf_event *event,
10188 struct perf_raw_record *raw,
10189 struct pt_regs *regs)
10190 {
10191 if (event->hw.state & PERF_HES_STOPPED)
10192 return 0;
10193 /*
10194 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10195 */
10196 if (event->attr.exclude_kernel && !user_mode(regs))
10197 return 0;
10198
10199 if (!perf_tp_filter_match(event, raw))
10200 return 0;
10201
10202 return 1;
10203 }
10204
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10205 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10206 struct trace_event_call *call, u64 count,
10207 struct pt_regs *regs, struct hlist_head *head,
10208 struct task_struct *task)
10209 {
10210 if (bpf_prog_array_valid(call)) {
10211 *(struct pt_regs **)raw_data = regs;
10212 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10213 perf_swevent_put_recursion_context(rctx);
10214 return;
10215 }
10216 }
10217 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10218 rctx, task);
10219 }
10220 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10221
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event * event)10222 static void __perf_tp_event_target_task(u64 count, void *record,
10223 struct pt_regs *regs,
10224 struct perf_sample_data *data,
10225 struct perf_raw_record *raw,
10226 struct perf_event *event)
10227 {
10228 struct trace_entry *entry = record;
10229
10230 if (event->attr.config != entry->type)
10231 return;
10232 /* Cannot deliver synchronous signal to other task. */
10233 if (event->attr.sigtrap)
10234 return;
10235 if (perf_tp_event_match(event, raw, regs)) {
10236 perf_sample_data_init(data, 0, 0);
10237 perf_sample_save_raw_data(data, event, raw);
10238 perf_swevent_event(event, count, data, regs);
10239 }
10240 }
10241
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event_context * ctx)10242 static void perf_tp_event_target_task(u64 count, void *record,
10243 struct pt_regs *regs,
10244 struct perf_sample_data *data,
10245 struct perf_raw_record *raw,
10246 struct perf_event_context *ctx)
10247 {
10248 unsigned int cpu = smp_processor_id();
10249 struct pmu *pmu = &perf_tracepoint;
10250 struct perf_event *event, *sibling;
10251
10252 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10253 __perf_tp_event_target_task(count, record, regs, data, raw, event);
10254 for_each_sibling_event(sibling, event)
10255 __perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10256 }
10257
10258 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10259 __perf_tp_event_target_task(count, record, regs, data, raw, event);
10260 for_each_sibling_event(sibling, event)
10261 __perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10262 }
10263 }
10264
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10265 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10266 struct pt_regs *regs, struct hlist_head *head, int rctx,
10267 struct task_struct *task)
10268 {
10269 struct perf_sample_data data;
10270 struct perf_event *event;
10271
10272 struct perf_raw_record raw = {
10273 .frag = {
10274 .size = entry_size,
10275 .data = record,
10276 },
10277 };
10278
10279 perf_trace_buf_update(record, event_type);
10280
10281 hlist_for_each_entry_rcu(event, head, hlist_entry) {
10282 if (perf_tp_event_match(event, &raw, regs)) {
10283 /*
10284 * Here use the same on-stack perf_sample_data,
10285 * some members in data are event-specific and
10286 * need to be re-computed for different sweveents.
10287 * Re-initialize data->sample_flags safely to avoid
10288 * the problem that next event skips preparing data
10289 * because data->sample_flags is set.
10290 */
10291 perf_sample_data_init(&data, 0, 0);
10292 perf_sample_save_raw_data(&data, event, &raw);
10293 perf_swevent_event(event, count, &data, regs);
10294 }
10295 }
10296
10297 /*
10298 * If we got specified a target task, also iterate its context and
10299 * deliver this event there too.
10300 */
10301 if (task && task != current) {
10302 struct perf_event_context *ctx;
10303
10304 rcu_read_lock();
10305 ctx = rcu_dereference(task->perf_event_ctxp);
10306 if (!ctx)
10307 goto unlock;
10308
10309 raw_spin_lock(&ctx->lock);
10310 perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
10311 raw_spin_unlock(&ctx->lock);
10312 unlock:
10313 rcu_read_unlock();
10314 }
10315
10316 perf_swevent_put_recursion_context(rctx);
10317 }
10318 EXPORT_SYMBOL_GPL(perf_tp_event);
10319
10320 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10321 /*
10322 * Flags in config, used by dynamic PMU kprobe and uprobe
10323 * The flags should match following PMU_FORMAT_ATTR().
10324 *
10325 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10326 * if not set, create kprobe/uprobe
10327 *
10328 * The following values specify a reference counter (or semaphore in the
10329 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10330 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10331 *
10332 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
10333 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
10334 */
10335 enum perf_probe_config {
10336 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
10337 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10338 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10339 };
10340
10341 PMU_FORMAT_ATTR(retprobe, "config:0");
10342 #endif
10343
10344 #ifdef CONFIG_KPROBE_EVENTS
10345 static struct attribute *kprobe_attrs[] = {
10346 &format_attr_retprobe.attr,
10347 NULL,
10348 };
10349
10350 static struct attribute_group kprobe_format_group = {
10351 .name = "format",
10352 .attrs = kprobe_attrs,
10353 };
10354
10355 static const struct attribute_group *kprobe_attr_groups[] = {
10356 &kprobe_format_group,
10357 NULL,
10358 };
10359
10360 static int perf_kprobe_event_init(struct perf_event *event);
10361 static struct pmu perf_kprobe = {
10362 .task_ctx_nr = perf_sw_context,
10363 .event_init = perf_kprobe_event_init,
10364 .add = perf_trace_add,
10365 .del = perf_trace_del,
10366 .start = perf_swevent_start,
10367 .stop = perf_swevent_stop,
10368 .read = perf_swevent_read,
10369 .attr_groups = kprobe_attr_groups,
10370 };
10371
perf_kprobe_event_init(struct perf_event * event)10372 static int perf_kprobe_event_init(struct perf_event *event)
10373 {
10374 int err;
10375 bool is_retprobe;
10376
10377 if (event->attr.type != perf_kprobe.type)
10378 return -ENOENT;
10379
10380 if (!perfmon_capable())
10381 return -EACCES;
10382
10383 /*
10384 * no branch sampling for probe events
10385 */
10386 if (has_branch_stack(event))
10387 return -EOPNOTSUPP;
10388
10389 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10390 err = perf_kprobe_init(event, is_retprobe);
10391 if (err)
10392 return err;
10393
10394 event->destroy = perf_kprobe_destroy;
10395
10396 return 0;
10397 }
10398 #endif /* CONFIG_KPROBE_EVENTS */
10399
10400 #ifdef CONFIG_UPROBE_EVENTS
10401 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10402
10403 static struct attribute *uprobe_attrs[] = {
10404 &format_attr_retprobe.attr,
10405 &format_attr_ref_ctr_offset.attr,
10406 NULL,
10407 };
10408
10409 static struct attribute_group uprobe_format_group = {
10410 .name = "format",
10411 .attrs = uprobe_attrs,
10412 };
10413
10414 static const struct attribute_group *uprobe_attr_groups[] = {
10415 &uprobe_format_group,
10416 NULL,
10417 };
10418
10419 static int perf_uprobe_event_init(struct perf_event *event);
10420 static struct pmu perf_uprobe = {
10421 .task_ctx_nr = perf_sw_context,
10422 .event_init = perf_uprobe_event_init,
10423 .add = perf_trace_add,
10424 .del = perf_trace_del,
10425 .start = perf_swevent_start,
10426 .stop = perf_swevent_stop,
10427 .read = perf_swevent_read,
10428 .attr_groups = uprobe_attr_groups,
10429 };
10430
perf_uprobe_event_init(struct perf_event * event)10431 static int perf_uprobe_event_init(struct perf_event *event)
10432 {
10433 int err;
10434 unsigned long ref_ctr_offset;
10435 bool is_retprobe;
10436
10437 if (event->attr.type != perf_uprobe.type)
10438 return -ENOENT;
10439
10440 if (!perfmon_capable())
10441 return -EACCES;
10442
10443 /*
10444 * no branch sampling for probe events
10445 */
10446 if (has_branch_stack(event))
10447 return -EOPNOTSUPP;
10448
10449 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10450 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10451 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10452 if (err)
10453 return err;
10454
10455 event->destroy = perf_uprobe_destroy;
10456
10457 return 0;
10458 }
10459 #endif /* CONFIG_UPROBE_EVENTS */
10460
perf_tp_register(void)10461 static inline void perf_tp_register(void)
10462 {
10463 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10464 #ifdef CONFIG_KPROBE_EVENTS
10465 perf_pmu_register(&perf_kprobe, "kprobe", -1);
10466 #endif
10467 #ifdef CONFIG_UPROBE_EVENTS
10468 perf_pmu_register(&perf_uprobe, "uprobe", -1);
10469 #endif
10470 }
10471
perf_event_free_filter(struct perf_event * event)10472 static void perf_event_free_filter(struct perf_event *event)
10473 {
10474 ftrace_profile_free_filter(event);
10475 }
10476
10477 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10478 static void bpf_overflow_handler(struct perf_event *event,
10479 struct perf_sample_data *data,
10480 struct pt_regs *regs)
10481 {
10482 struct bpf_perf_event_data_kern ctx = {
10483 .data = data,
10484 .event = event,
10485 };
10486 struct bpf_prog *prog;
10487 int ret = 0;
10488
10489 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10490 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10491 goto out;
10492 rcu_read_lock();
10493 prog = READ_ONCE(event->prog);
10494 if (prog) {
10495 perf_prepare_sample(data, event, regs);
10496 ret = bpf_prog_run(prog, &ctx);
10497 }
10498 rcu_read_unlock();
10499 out:
10500 __this_cpu_dec(bpf_prog_active);
10501 if (!ret)
10502 return;
10503
10504 event->orig_overflow_handler(event, data, regs);
10505 }
10506
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10507 static int perf_event_set_bpf_handler(struct perf_event *event,
10508 struct bpf_prog *prog,
10509 u64 bpf_cookie)
10510 {
10511 if (event->overflow_handler_context)
10512 /* hw breakpoint or kernel counter */
10513 return -EINVAL;
10514
10515 if (event->prog)
10516 return -EEXIST;
10517
10518 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10519 return -EINVAL;
10520
10521 if (event->attr.precise_ip &&
10522 prog->call_get_stack &&
10523 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10524 event->attr.exclude_callchain_kernel ||
10525 event->attr.exclude_callchain_user)) {
10526 /*
10527 * On perf_event with precise_ip, calling bpf_get_stack()
10528 * may trigger unwinder warnings and occasional crashes.
10529 * bpf_get_[stack|stackid] works around this issue by using
10530 * callchain attached to perf_sample_data. If the
10531 * perf_event does not full (kernel and user) callchain
10532 * attached to perf_sample_data, do not allow attaching BPF
10533 * program that calls bpf_get_[stack|stackid].
10534 */
10535 return -EPROTO;
10536 }
10537
10538 event->prog = prog;
10539 event->bpf_cookie = bpf_cookie;
10540 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10541 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10542 return 0;
10543 }
10544
perf_event_free_bpf_handler(struct perf_event * event)10545 static void perf_event_free_bpf_handler(struct perf_event *event)
10546 {
10547 struct bpf_prog *prog = event->prog;
10548
10549 if (!prog)
10550 return;
10551
10552 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10553 event->prog = NULL;
10554 bpf_prog_put(prog);
10555 }
10556 #else
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10557 static int perf_event_set_bpf_handler(struct perf_event *event,
10558 struct bpf_prog *prog,
10559 u64 bpf_cookie)
10560 {
10561 return -EOPNOTSUPP;
10562 }
perf_event_free_bpf_handler(struct perf_event * event)10563 static void perf_event_free_bpf_handler(struct perf_event *event)
10564 {
10565 }
10566 #endif
10567
10568 /*
10569 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10570 * with perf_event_open()
10571 */
perf_event_is_tracing(struct perf_event * event)10572 static inline bool perf_event_is_tracing(struct perf_event *event)
10573 {
10574 if (event->pmu == &perf_tracepoint)
10575 return true;
10576 #ifdef CONFIG_KPROBE_EVENTS
10577 if (event->pmu == &perf_kprobe)
10578 return true;
10579 #endif
10580 #ifdef CONFIG_UPROBE_EVENTS
10581 if (event->pmu == &perf_uprobe)
10582 return true;
10583 #endif
10584 return false;
10585 }
10586
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10587 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10588 u64 bpf_cookie)
10589 {
10590 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10591
10592 if (!perf_event_is_tracing(event))
10593 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10594
10595 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10596 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10597 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10598 is_syscall_tp = is_syscall_trace_event(event->tp_event);
10599 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10600 /* bpf programs can only be attached to u/kprobe or tracepoint */
10601 return -EINVAL;
10602
10603 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10604 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10605 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10606 return -EINVAL;
10607
10608 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10609 /* only uprobe programs are allowed to be sleepable */
10610 return -EINVAL;
10611
10612 /* Kprobe override only works for kprobes, not uprobes. */
10613 if (prog->kprobe_override && !is_kprobe)
10614 return -EINVAL;
10615
10616 if (is_tracepoint || is_syscall_tp) {
10617 int off = trace_event_get_offsets(event->tp_event);
10618
10619 if (prog->aux->max_ctx_offset > off)
10620 return -EACCES;
10621 }
10622
10623 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10624 }
10625
perf_event_free_bpf_prog(struct perf_event * event)10626 void perf_event_free_bpf_prog(struct perf_event *event)
10627 {
10628 if (!perf_event_is_tracing(event)) {
10629 perf_event_free_bpf_handler(event);
10630 return;
10631 }
10632 perf_event_detach_bpf_prog(event);
10633 }
10634
10635 #else
10636
perf_tp_register(void)10637 static inline void perf_tp_register(void)
10638 {
10639 }
10640
perf_event_free_filter(struct perf_event * event)10641 static void perf_event_free_filter(struct perf_event *event)
10642 {
10643 }
10644
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10645 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10646 u64 bpf_cookie)
10647 {
10648 return -ENOENT;
10649 }
10650
perf_event_free_bpf_prog(struct perf_event * event)10651 void perf_event_free_bpf_prog(struct perf_event *event)
10652 {
10653 }
10654 #endif /* CONFIG_EVENT_TRACING */
10655
10656 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)10657 void perf_bp_event(struct perf_event *bp, void *data)
10658 {
10659 struct perf_sample_data sample;
10660 struct pt_regs *regs = data;
10661
10662 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10663
10664 if (!bp->hw.state && !perf_exclude_event(bp, regs))
10665 perf_swevent_event(bp, 1, &sample, regs);
10666 }
10667 #endif
10668
10669 /*
10670 * Allocate a new address filter
10671 */
10672 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10673 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10674 {
10675 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10676 struct perf_addr_filter *filter;
10677
10678 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10679 if (!filter)
10680 return NULL;
10681
10682 INIT_LIST_HEAD(&filter->entry);
10683 list_add_tail(&filter->entry, filters);
10684
10685 return filter;
10686 }
10687
free_filters_list(struct list_head * filters)10688 static void free_filters_list(struct list_head *filters)
10689 {
10690 struct perf_addr_filter *filter, *iter;
10691
10692 list_for_each_entry_safe(filter, iter, filters, entry) {
10693 path_put(&filter->path);
10694 list_del(&filter->entry);
10695 kfree(filter);
10696 }
10697 }
10698
10699 /*
10700 * Free existing address filters and optionally install new ones
10701 */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10702 static void perf_addr_filters_splice(struct perf_event *event,
10703 struct list_head *head)
10704 {
10705 unsigned long flags;
10706 LIST_HEAD(list);
10707
10708 if (!has_addr_filter(event))
10709 return;
10710
10711 /* don't bother with children, they don't have their own filters */
10712 if (event->parent)
10713 return;
10714
10715 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10716
10717 list_splice_init(&event->addr_filters.list, &list);
10718 if (head)
10719 list_splice(head, &event->addr_filters.list);
10720
10721 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10722
10723 free_filters_list(&list);
10724 }
10725
10726 /*
10727 * Scan through mm's vmas and see if one of them matches the
10728 * @filter; if so, adjust filter's address range.
10729 * Called with mm::mmap_lock down for reading.
10730 */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10731 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10732 struct mm_struct *mm,
10733 struct perf_addr_filter_range *fr)
10734 {
10735 struct vm_area_struct *vma;
10736 VMA_ITERATOR(vmi, mm, 0);
10737
10738 for_each_vma(vmi, vma) {
10739 if (!vma->vm_file)
10740 continue;
10741
10742 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10743 return;
10744 }
10745 }
10746
10747 /*
10748 * Update event's address range filters based on the
10749 * task's existing mappings, if any.
10750 */
perf_event_addr_filters_apply(struct perf_event * event)10751 static void perf_event_addr_filters_apply(struct perf_event *event)
10752 {
10753 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10754 struct task_struct *task = READ_ONCE(event->ctx->task);
10755 struct perf_addr_filter *filter;
10756 struct mm_struct *mm = NULL;
10757 unsigned int count = 0;
10758 unsigned long flags;
10759
10760 /*
10761 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10762 * will stop on the parent's child_mutex that our caller is also holding
10763 */
10764 if (task == TASK_TOMBSTONE)
10765 return;
10766
10767 if (ifh->nr_file_filters) {
10768 mm = get_task_mm(task);
10769 if (!mm)
10770 goto restart;
10771
10772 mmap_read_lock(mm);
10773 }
10774
10775 raw_spin_lock_irqsave(&ifh->lock, flags);
10776 list_for_each_entry(filter, &ifh->list, entry) {
10777 if (filter->path.dentry) {
10778 /*
10779 * Adjust base offset if the filter is associated to a
10780 * binary that needs to be mapped:
10781 */
10782 event->addr_filter_ranges[count].start = 0;
10783 event->addr_filter_ranges[count].size = 0;
10784
10785 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10786 } else {
10787 event->addr_filter_ranges[count].start = filter->offset;
10788 event->addr_filter_ranges[count].size = filter->size;
10789 }
10790
10791 count++;
10792 }
10793
10794 event->addr_filters_gen++;
10795 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10796
10797 if (ifh->nr_file_filters) {
10798 mmap_read_unlock(mm);
10799
10800 mmput(mm);
10801 }
10802
10803 restart:
10804 perf_event_stop(event, 1);
10805 }
10806
10807 /*
10808 * Address range filtering: limiting the data to certain
10809 * instruction address ranges. Filters are ioctl()ed to us from
10810 * userspace as ascii strings.
10811 *
10812 * Filter string format:
10813 *
10814 * ACTION RANGE_SPEC
10815 * where ACTION is one of the
10816 * * "filter": limit the trace to this region
10817 * * "start": start tracing from this address
10818 * * "stop": stop tracing at this address/region;
10819 * RANGE_SPEC is
10820 * * for kernel addresses: <start address>[/<size>]
10821 * * for object files: <start address>[/<size>]@</path/to/object/file>
10822 *
10823 * if <size> is not specified or is zero, the range is treated as a single
10824 * address; not valid for ACTION=="filter".
10825 */
10826 enum {
10827 IF_ACT_NONE = -1,
10828 IF_ACT_FILTER,
10829 IF_ACT_START,
10830 IF_ACT_STOP,
10831 IF_SRC_FILE,
10832 IF_SRC_KERNEL,
10833 IF_SRC_FILEADDR,
10834 IF_SRC_KERNELADDR,
10835 };
10836
10837 enum {
10838 IF_STATE_ACTION = 0,
10839 IF_STATE_SOURCE,
10840 IF_STATE_END,
10841 };
10842
10843 static const match_table_t if_tokens = {
10844 { IF_ACT_FILTER, "filter" },
10845 { IF_ACT_START, "start" },
10846 { IF_ACT_STOP, "stop" },
10847 { IF_SRC_FILE, "%u/%u@%s" },
10848 { IF_SRC_KERNEL, "%u/%u" },
10849 { IF_SRC_FILEADDR, "%u@%s" },
10850 { IF_SRC_KERNELADDR, "%u" },
10851 { IF_ACT_NONE, NULL },
10852 };
10853
10854 /*
10855 * Address filter string parser
10856 */
10857 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10858 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10859 struct list_head *filters)
10860 {
10861 struct perf_addr_filter *filter = NULL;
10862 char *start, *orig, *filename = NULL;
10863 substring_t args[MAX_OPT_ARGS];
10864 int state = IF_STATE_ACTION, token;
10865 unsigned int kernel = 0;
10866 int ret = -EINVAL;
10867
10868 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10869 if (!fstr)
10870 return -ENOMEM;
10871
10872 while ((start = strsep(&fstr, " ,\n")) != NULL) {
10873 static const enum perf_addr_filter_action_t actions[] = {
10874 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10875 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10876 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10877 };
10878 ret = -EINVAL;
10879
10880 if (!*start)
10881 continue;
10882
10883 /* filter definition begins */
10884 if (state == IF_STATE_ACTION) {
10885 filter = perf_addr_filter_new(event, filters);
10886 if (!filter)
10887 goto fail;
10888 }
10889
10890 token = match_token(start, if_tokens, args);
10891 switch (token) {
10892 case IF_ACT_FILTER:
10893 case IF_ACT_START:
10894 case IF_ACT_STOP:
10895 if (state != IF_STATE_ACTION)
10896 goto fail;
10897
10898 filter->action = actions[token];
10899 state = IF_STATE_SOURCE;
10900 break;
10901
10902 case IF_SRC_KERNELADDR:
10903 case IF_SRC_KERNEL:
10904 kernel = 1;
10905 fallthrough;
10906
10907 case IF_SRC_FILEADDR:
10908 case IF_SRC_FILE:
10909 if (state != IF_STATE_SOURCE)
10910 goto fail;
10911
10912 *args[0].to = 0;
10913 ret = kstrtoul(args[0].from, 0, &filter->offset);
10914 if (ret)
10915 goto fail;
10916
10917 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10918 *args[1].to = 0;
10919 ret = kstrtoul(args[1].from, 0, &filter->size);
10920 if (ret)
10921 goto fail;
10922 }
10923
10924 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10925 int fpos = token == IF_SRC_FILE ? 2 : 1;
10926
10927 kfree(filename);
10928 filename = match_strdup(&args[fpos]);
10929 if (!filename) {
10930 ret = -ENOMEM;
10931 goto fail;
10932 }
10933 }
10934
10935 state = IF_STATE_END;
10936 break;
10937
10938 default:
10939 goto fail;
10940 }
10941
10942 /*
10943 * Filter definition is fully parsed, validate and install it.
10944 * Make sure that it doesn't contradict itself or the event's
10945 * attribute.
10946 */
10947 if (state == IF_STATE_END) {
10948 ret = -EINVAL;
10949
10950 /*
10951 * ACTION "filter" must have a non-zero length region
10952 * specified.
10953 */
10954 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10955 !filter->size)
10956 goto fail;
10957
10958 if (!kernel) {
10959 if (!filename)
10960 goto fail;
10961
10962 /*
10963 * For now, we only support file-based filters
10964 * in per-task events; doing so for CPU-wide
10965 * events requires additional context switching
10966 * trickery, since same object code will be
10967 * mapped at different virtual addresses in
10968 * different processes.
10969 */
10970 ret = -EOPNOTSUPP;
10971 if (!event->ctx->task)
10972 goto fail;
10973
10974 /* look up the path and grab its inode */
10975 ret = kern_path(filename, LOOKUP_FOLLOW,
10976 &filter->path);
10977 if (ret)
10978 goto fail;
10979
10980 ret = -EINVAL;
10981 if (!filter->path.dentry ||
10982 !S_ISREG(d_inode(filter->path.dentry)
10983 ->i_mode))
10984 goto fail;
10985
10986 event->addr_filters.nr_file_filters++;
10987 }
10988
10989 /* ready to consume more filters */
10990 kfree(filename);
10991 filename = NULL;
10992 state = IF_STATE_ACTION;
10993 filter = NULL;
10994 kernel = 0;
10995 }
10996 }
10997
10998 if (state != IF_STATE_ACTION)
10999 goto fail;
11000
11001 kfree(filename);
11002 kfree(orig);
11003
11004 return 0;
11005
11006 fail:
11007 kfree(filename);
11008 free_filters_list(filters);
11009 kfree(orig);
11010
11011 return ret;
11012 }
11013
11014 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11015 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11016 {
11017 LIST_HEAD(filters);
11018 int ret;
11019
11020 /*
11021 * Since this is called in perf_ioctl() path, we're already holding
11022 * ctx::mutex.
11023 */
11024 lockdep_assert_held(&event->ctx->mutex);
11025
11026 if (WARN_ON_ONCE(event->parent))
11027 return -EINVAL;
11028
11029 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11030 if (ret)
11031 goto fail_clear_files;
11032
11033 ret = event->pmu->addr_filters_validate(&filters);
11034 if (ret)
11035 goto fail_free_filters;
11036
11037 /* remove existing filters, if any */
11038 perf_addr_filters_splice(event, &filters);
11039
11040 /* install new filters */
11041 perf_event_for_each_child(event, perf_event_addr_filters_apply);
11042
11043 return ret;
11044
11045 fail_free_filters:
11046 free_filters_list(&filters);
11047
11048 fail_clear_files:
11049 event->addr_filters.nr_file_filters = 0;
11050
11051 return ret;
11052 }
11053
perf_event_set_filter(struct perf_event * event,void __user * arg)11054 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11055 {
11056 int ret = -EINVAL;
11057 char *filter_str;
11058
11059 filter_str = strndup_user(arg, PAGE_SIZE);
11060 if (IS_ERR(filter_str))
11061 return PTR_ERR(filter_str);
11062
11063 #ifdef CONFIG_EVENT_TRACING
11064 if (perf_event_is_tracing(event)) {
11065 struct perf_event_context *ctx = event->ctx;
11066
11067 /*
11068 * Beware, here be dragons!!
11069 *
11070 * the tracepoint muck will deadlock against ctx->mutex, but
11071 * the tracepoint stuff does not actually need it. So
11072 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11073 * already have a reference on ctx.
11074 *
11075 * This can result in event getting moved to a different ctx,
11076 * but that does not affect the tracepoint state.
11077 */
11078 mutex_unlock(&ctx->mutex);
11079 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11080 mutex_lock(&ctx->mutex);
11081 } else
11082 #endif
11083 if (has_addr_filter(event))
11084 ret = perf_event_set_addr_filter(event, filter_str);
11085
11086 kfree(filter_str);
11087 return ret;
11088 }
11089
11090 /*
11091 * hrtimer based swevent callback
11092 */
11093
perf_swevent_hrtimer(struct hrtimer * hrtimer)11094 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11095 {
11096 enum hrtimer_restart ret = HRTIMER_RESTART;
11097 struct perf_sample_data data;
11098 struct pt_regs *regs;
11099 struct perf_event *event;
11100 u64 period;
11101
11102 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11103
11104 if (event->state != PERF_EVENT_STATE_ACTIVE)
11105 return HRTIMER_NORESTART;
11106
11107 event->pmu->read(event);
11108
11109 perf_sample_data_init(&data, 0, event->hw.last_period);
11110 regs = get_irq_regs();
11111
11112 if (regs && !perf_exclude_event(event, regs)) {
11113 if (!(event->attr.exclude_idle && is_idle_task(current)))
11114 if (__perf_event_overflow(event, 1, &data, regs))
11115 ret = HRTIMER_NORESTART;
11116 }
11117
11118 period = max_t(u64, 10000, event->hw.sample_period);
11119 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11120
11121 return ret;
11122 }
11123
perf_swevent_start_hrtimer(struct perf_event * event)11124 static void perf_swevent_start_hrtimer(struct perf_event *event)
11125 {
11126 struct hw_perf_event *hwc = &event->hw;
11127 s64 period;
11128
11129 if (!is_sampling_event(event))
11130 return;
11131
11132 period = local64_read(&hwc->period_left);
11133 if (period) {
11134 if (period < 0)
11135 period = 10000;
11136
11137 local64_set(&hwc->period_left, 0);
11138 } else {
11139 period = max_t(u64, 10000, hwc->sample_period);
11140 }
11141 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11142 HRTIMER_MODE_REL_PINNED_HARD);
11143 }
11144
perf_swevent_cancel_hrtimer(struct perf_event * event)11145 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11146 {
11147 struct hw_perf_event *hwc = &event->hw;
11148
11149 if (is_sampling_event(event)) {
11150 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11151 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11152
11153 hrtimer_cancel(&hwc->hrtimer);
11154 }
11155 }
11156
perf_swevent_init_hrtimer(struct perf_event * event)11157 static void perf_swevent_init_hrtimer(struct perf_event *event)
11158 {
11159 struct hw_perf_event *hwc = &event->hw;
11160
11161 if (!is_sampling_event(event))
11162 return;
11163
11164 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11165 hwc->hrtimer.function = perf_swevent_hrtimer;
11166
11167 /*
11168 * Since hrtimers have a fixed rate, we can do a static freq->period
11169 * mapping and avoid the whole period adjust feedback stuff.
11170 */
11171 if (event->attr.freq) {
11172 long freq = event->attr.sample_freq;
11173
11174 event->attr.sample_period = NSEC_PER_SEC / freq;
11175 hwc->sample_period = event->attr.sample_period;
11176 local64_set(&hwc->period_left, hwc->sample_period);
11177 hwc->last_period = hwc->sample_period;
11178 event->attr.freq = 0;
11179 }
11180 }
11181
11182 /*
11183 * Software event: cpu wall time clock
11184 */
11185
cpu_clock_event_update(struct perf_event * event)11186 static void cpu_clock_event_update(struct perf_event *event)
11187 {
11188 s64 prev;
11189 u64 now;
11190
11191 now = local_clock();
11192 prev = local64_xchg(&event->hw.prev_count, now);
11193 local64_add(now - prev, &event->count);
11194 }
11195
cpu_clock_event_start(struct perf_event * event,int flags)11196 static void cpu_clock_event_start(struct perf_event *event, int flags)
11197 {
11198 local64_set(&event->hw.prev_count, local_clock());
11199 perf_swevent_start_hrtimer(event);
11200 }
11201
cpu_clock_event_stop(struct perf_event * event,int flags)11202 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11203 {
11204 perf_swevent_cancel_hrtimer(event);
11205 cpu_clock_event_update(event);
11206 }
11207
cpu_clock_event_add(struct perf_event * event,int flags)11208 static int cpu_clock_event_add(struct perf_event *event, int flags)
11209 {
11210 if (flags & PERF_EF_START)
11211 cpu_clock_event_start(event, flags);
11212 perf_event_update_userpage(event);
11213
11214 return 0;
11215 }
11216
cpu_clock_event_del(struct perf_event * event,int flags)11217 static void cpu_clock_event_del(struct perf_event *event, int flags)
11218 {
11219 cpu_clock_event_stop(event, flags);
11220 }
11221
cpu_clock_event_read(struct perf_event * event)11222 static void cpu_clock_event_read(struct perf_event *event)
11223 {
11224 cpu_clock_event_update(event);
11225 }
11226
cpu_clock_event_init(struct perf_event * event)11227 static int cpu_clock_event_init(struct perf_event *event)
11228 {
11229 if (event->attr.type != perf_cpu_clock.type)
11230 return -ENOENT;
11231
11232 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11233 return -ENOENT;
11234
11235 /*
11236 * no branch sampling for software events
11237 */
11238 if (has_branch_stack(event))
11239 return -EOPNOTSUPP;
11240
11241 perf_swevent_init_hrtimer(event);
11242
11243 return 0;
11244 }
11245
11246 static struct pmu perf_cpu_clock = {
11247 .task_ctx_nr = perf_sw_context,
11248
11249 .capabilities = PERF_PMU_CAP_NO_NMI,
11250 .dev = PMU_NULL_DEV,
11251
11252 .event_init = cpu_clock_event_init,
11253 .add = cpu_clock_event_add,
11254 .del = cpu_clock_event_del,
11255 .start = cpu_clock_event_start,
11256 .stop = cpu_clock_event_stop,
11257 .read = cpu_clock_event_read,
11258 };
11259
11260 /*
11261 * Software event: task time clock
11262 */
11263
task_clock_event_update(struct perf_event * event,u64 now)11264 static void task_clock_event_update(struct perf_event *event, u64 now)
11265 {
11266 u64 prev;
11267 s64 delta;
11268
11269 prev = local64_xchg(&event->hw.prev_count, now);
11270 delta = now - prev;
11271 local64_add(delta, &event->count);
11272 }
11273
task_clock_event_start(struct perf_event * event,int flags)11274 static void task_clock_event_start(struct perf_event *event, int flags)
11275 {
11276 local64_set(&event->hw.prev_count, event->ctx->time);
11277 perf_swevent_start_hrtimer(event);
11278 }
11279
task_clock_event_stop(struct perf_event * event,int flags)11280 static void task_clock_event_stop(struct perf_event *event, int flags)
11281 {
11282 perf_swevent_cancel_hrtimer(event);
11283 task_clock_event_update(event, event->ctx->time);
11284 }
11285
task_clock_event_add(struct perf_event * event,int flags)11286 static int task_clock_event_add(struct perf_event *event, int flags)
11287 {
11288 if (flags & PERF_EF_START)
11289 task_clock_event_start(event, flags);
11290 perf_event_update_userpage(event);
11291
11292 return 0;
11293 }
11294
task_clock_event_del(struct perf_event * event,int flags)11295 static void task_clock_event_del(struct perf_event *event, int flags)
11296 {
11297 task_clock_event_stop(event, PERF_EF_UPDATE);
11298 }
11299
task_clock_event_read(struct perf_event * event)11300 static void task_clock_event_read(struct perf_event *event)
11301 {
11302 u64 now = perf_clock();
11303 u64 delta = now - event->ctx->timestamp;
11304 u64 time = event->ctx->time + delta;
11305
11306 task_clock_event_update(event, time);
11307 }
11308
task_clock_event_init(struct perf_event * event)11309 static int task_clock_event_init(struct perf_event *event)
11310 {
11311 if (event->attr.type != perf_task_clock.type)
11312 return -ENOENT;
11313
11314 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11315 return -ENOENT;
11316
11317 /*
11318 * no branch sampling for software events
11319 */
11320 if (has_branch_stack(event))
11321 return -EOPNOTSUPP;
11322
11323 perf_swevent_init_hrtimer(event);
11324
11325 return 0;
11326 }
11327
11328 static struct pmu perf_task_clock = {
11329 .task_ctx_nr = perf_sw_context,
11330
11331 .capabilities = PERF_PMU_CAP_NO_NMI,
11332 .dev = PMU_NULL_DEV,
11333
11334 .event_init = task_clock_event_init,
11335 .add = task_clock_event_add,
11336 .del = task_clock_event_del,
11337 .start = task_clock_event_start,
11338 .stop = task_clock_event_stop,
11339 .read = task_clock_event_read,
11340 };
11341
perf_pmu_nop_void(struct pmu * pmu)11342 static void perf_pmu_nop_void(struct pmu *pmu)
11343 {
11344 }
11345
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11346 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11347 {
11348 }
11349
perf_pmu_nop_int(struct pmu * pmu)11350 static int perf_pmu_nop_int(struct pmu *pmu)
11351 {
11352 return 0;
11353 }
11354
perf_event_nop_int(struct perf_event * event,u64 value)11355 static int perf_event_nop_int(struct perf_event *event, u64 value)
11356 {
11357 return 0;
11358 }
11359
11360 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11361
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11362 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11363 {
11364 __this_cpu_write(nop_txn_flags, flags);
11365
11366 if (flags & ~PERF_PMU_TXN_ADD)
11367 return;
11368
11369 perf_pmu_disable(pmu);
11370 }
11371
perf_pmu_commit_txn(struct pmu * pmu)11372 static int perf_pmu_commit_txn(struct pmu *pmu)
11373 {
11374 unsigned int flags = __this_cpu_read(nop_txn_flags);
11375
11376 __this_cpu_write(nop_txn_flags, 0);
11377
11378 if (flags & ~PERF_PMU_TXN_ADD)
11379 return 0;
11380
11381 perf_pmu_enable(pmu);
11382 return 0;
11383 }
11384
perf_pmu_cancel_txn(struct pmu * pmu)11385 static void perf_pmu_cancel_txn(struct pmu *pmu)
11386 {
11387 unsigned int flags = __this_cpu_read(nop_txn_flags);
11388
11389 __this_cpu_write(nop_txn_flags, 0);
11390
11391 if (flags & ~PERF_PMU_TXN_ADD)
11392 return;
11393
11394 perf_pmu_enable(pmu);
11395 }
11396
perf_event_idx_default(struct perf_event * event)11397 static int perf_event_idx_default(struct perf_event *event)
11398 {
11399 return 0;
11400 }
11401
free_pmu_context(struct pmu * pmu)11402 static void free_pmu_context(struct pmu *pmu)
11403 {
11404 free_percpu(pmu->cpu_pmu_context);
11405 }
11406
11407 /*
11408 * Let userspace know that this PMU supports address range filtering:
11409 */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11410 static ssize_t nr_addr_filters_show(struct device *dev,
11411 struct device_attribute *attr,
11412 char *page)
11413 {
11414 struct pmu *pmu = dev_get_drvdata(dev);
11415
11416 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11417 }
11418 DEVICE_ATTR_RO(nr_addr_filters);
11419
11420 static struct idr pmu_idr;
11421
11422 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11423 type_show(struct device *dev, struct device_attribute *attr, char *page)
11424 {
11425 struct pmu *pmu = dev_get_drvdata(dev);
11426
11427 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11428 }
11429 static DEVICE_ATTR_RO(type);
11430
11431 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11432 perf_event_mux_interval_ms_show(struct device *dev,
11433 struct device_attribute *attr,
11434 char *page)
11435 {
11436 struct pmu *pmu = dev_get_drvdata(dev);
11437
11438 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11439 }
11440
11441 static DEFINE_MUTEX(mux_interval_mutex);
11442
11443 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11444 perf_event_mux_interval_ms_store(struct device *dev,
11445 struct device_attribute *attr,
11446 const char *buf, size_t count)
11447 {
11448 struct pmu *pmu = dev_get_drvdata(dev);
11449 int timer, cpu, ret;
11450
11451 ret = kstrtoint(buf, 0, &timer);
11452 if (ret)
11453 return ret;
11454
11455 if (timer < 1)
11456 return -EINVAL;
11457
11458 /* same value, noting to do */
11459 if (timer == pmu->hrtimer_interval_ms)
11460 return count;
11461
11462 mutex_lock(&mux_interval_mutex);
11463 pmu->hrtimer_interval_ms = timer;
11464
11465 /* update all cpuctx for this PMU */
11466 cpus_read_lock();
11467 for_each_online_cpu(cpu) {
11468 struct perf_cpu_pmu_context *cpc;
11469 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11470 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11471
11472 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11473 }
11474 cpus_read_unlock();
11475 mutex_unlock(&mux_interval_mutex);
11476
11477 return count;
11478 }
11479 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11480
11481 static struct attribute *pmu_dev_attrs[] = {
11482 &dev_attr_type.attr,
11483 &dev_attr_perf_event_mux_interval_ms.attr,
11484 &dev_attr_nr_addr_filters.attr,
11485 NULL,
11486 };
11487
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)11488 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11489 {
11490 struct device *dev = kobj_to_dev(kobj);
11491 struct pmu *pmu = dev_get_drvdata(dev);
11492
11493 if (n == 2 && !pmu->nr_addr_filters)
11494 return 0;
11495
11496 return a->mode;
11497 }
11498
11499 static struct attribute_group pmu_dev_attr_group = {
11500 .is_visible = pmu_dev_is_visible,
11501 .attrs = pmu_dev_attrs,
11502 };
11503
11504 static const struct attribute_group *pmu_dev_groups[] = {
11505 &pmu_dev_attr_group,
11506 NULL,
11507 };
11508
11509 static int pmu_bus_running;
11510 static struct bus_type pmu_bus = {
11511 .name = "event_source",
11512 .dev_groups = pmu_dev_groups,
11513 };
11514
pmu_dev_release(struct device * dev)11515 static void pmu_dev_release(struct device *dev)
11516 {
11517 kfree(dev);
11518 }
11519
pmu_dev_alloc(struct pmu * pmu)11520 static int pmu_dev_alloc(struct pmu *pmu)
11521 {
11522 int ret = -ENOMEM;
11523
11524 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11525 if (!pmu->dev)
11526 goto out;
11527
11528 pmu->dev->groups = pmu->attr_groups;
11529 device_initialize(pmu->dev);
11530
11531 dev_set_drvdata(pmu->dev, pmu);
11532 pmu->dev->bus = &pmu_bus;
11533 pmu->dev->parent = pmu->parent;
11534 pmu->dev->release = pmu_dev_release;
11535
11536 ret = dev_set_name(pmu->dev, "%s", pmu->name);
11537 if (ret)
11538 goto free_dev;
11539
11540 ret = device_add(pmu->dev);
11541 if (ret)
11542 goto free_dev;
11543
11544 if (pmu->attr_update) {
11545 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11546 if (ret)
11547 goto del_dev;
11548 }
11549
11550 out:
11551 return ret;
11552
11553 del_dev:
11554 device_del(pmu->dev);
11555
11556 free_dev:
11557 put_device(pmu->dev);
11558 goto out;
11559 }
11560
11561 static struct lock_class_key cpuctx_mutex;
11562 static struct lock_class_key cpuctx_lock;
11563
idr_cmpxchg(struct idr * idr,unsigned long id,void * old,void * new)11564 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
11565 {
11566 void *tmp, *val = idr_find(idr, id);
11567
11568 if (val != old)
11569 return false;
11570
11571 tmp = idr_replace(idr, new, id);
11572 if (IS_ERR(tmp))
11573 return false;
11574
11575 WARN_ON_ONCE(tmp != val);
11576 return true;
11577 }
11578
perf_pmu_register(struct pmu * pmu,const char * name,int type)11579 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11580 {
11581 int cpu, ret, max = PERF_TYPE_MAX;
11582
11583 mutex_lock(&pmus_lock);
11584 ret = -ENOMEM;
11585 pmu->pmu_disable_count = alloc_percpu(int);
11586 if (!pmu->pmu_disable_count)
11587 goto unlock;
11588
11589 pmu->type = -1;
11590 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11591 ret = -EINVAL;
11592 goto free_pdc;
11593 }
11594
11595 pmu->name = name;
11596
11597 if (type >= 0)
11598 max = type;
11599
11600 ret = idr_alloc(&pmu_idr, NULL, max, 0, GFP_KERNEL);
11601 if (ret < 0)
11602 goto free_pdc;
11603
11604 WARN_ON(type >= 0 && ret != type);
11605
11606 type = ret;
11607 pmu->type = type;
11608 atomic_set(&pmu->exclusive_cnt, 0);
11609
11610 if (pmu_bus_running && !pmu->dev) {
11611 ret = pmu_dev_alloc(pmu);
11612 if (ret)
11613 goto free_idr;
11614 }
11615
11616 ret = -ENOMEM;
11617 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11618 if (!pmu->cpu_pmu_context)
11619 goto free_dev;
11620
11621 for_each_possible_cpu(cpu) {
11622 struct perf_cpu_pmu_context *cpc;
11623
11624 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11625 __perf_init_event_pmu_context(&cpc->epc, pmu);
11626 __perf_mux_hrtimer_init(cpc, cpu);
11627 }
11628
11629 if (!pmu->start_txn) {
11630 if (pmu->pmu_enable) {
11631 /*
11632 * If we have pmu_enable/pmu_disable calls, install
11633 * transaction stubs that use that to try and batch
11634 * hardware accesses.
11635 */
11636 pmu->start_txn = perf_pmu_start_txn;
11637 pmu->commit_txn = perf_pmu_commit_txn;
11638 pmu->cancel_txn = perf_pmu_cancel_txn;
11639 } else {
11640 pmu->start_txn = perf_pmu_nop_txn;
11641 pmu->commit_txn = perf_pmu_nop_int;
11642 pmu->cancel_txn = perf_pmu_nop_void;
11643 }
11644 }
11645
11646 if (!pmu->pmu_enable) {
11647 pmu->pmu_enable = perf_pmu_nop_void;
11648 pmu->pmu_disable = perf_pmu_nop_void;
11649 }
11650
11651 if (!pmu->check_period)
11652 pmu->check_period = perf_event_nop_int;
11653
11654 if (!pmu->event_idx)
11655 pmu->event_idx = perf_event_idx_default;
11656
11657 /*
11658 * Now that the PMU is complete, make it visible to perf_try_init_event().
11659 */
11660 if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
11661 goto free_context;
11662 list_add_rcu(&pmu->entry, &pmus);
11663
11664 ret = 0;
11665 unlock:
11666 mutex_unlock(&pmus_lock);
11667
11668 return ret;
11669
11670 free_context:
11671 free_percpu(pmu->cpu_pmu_context);
11672
11673 free_dev:
11674 if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11675 device_del(pmu->dev);
11676 put_device(pmu->dev);
11677 }
11678
11679 free_idr:
11680 idr_remove(&pmu_idr, pmu->type);
11681
11682 free_pdc:
11683 free_percpu(pmu->pmu_disable_count);
11684 goto unlock;
11685 }
11686 EXPORT_SYMBOL_GPL(perf_pmu_register);
11687
perf_pmu_unregister(struct pmu * pmu)11688 void perf_pmu_unregister(struct pmu *pmu)
11689 {
11690 mutex_lock(&pmus_lock);
11691 list_del_rcu(&pmu->entry);
11692 idr_remove(&pmu_idr, pmu->type);
11693 mutex_unlock(&pmus_lock);
11694
11695 /*
11696 * We dereference the pmu list under both SRCU and regular RCU, so
11697 * synchronize against both of those.
11698 */
11699 synchronize_srcu(&pmus_srcu);
11700 synchronize_rcu();
11701
11702 free_percpu(pmu->pmu_disable_count);
11703 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11704 if (pmu->nr_addr_filters)
11705 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11706 device_del(pmu->dev);
11707 put_device(pmu->dev);
11708 }
11709 free_pmu_context(pmu);
11710 }
11711 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11712
has_extended_regs(struct perf_event * event)11713 static inline bool has_extended_regs(struct perf_event *event)
11714 {
11715 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11716 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11717 }
11718
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11719 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11720 {
11721 struct perf_event_context *ctx = NULL;
11722 int ret;
11723
11724 if (!try_module_get(pmu->module))
11725 return -ENODEV;
11726
11727 /*
11728 * A number of pmu->event_init() methods iterate the sibling_list to,
11729 * for example, validate if the group fits on the PMU. Therefore,
11730 * if this is a sibling event, acquire the ctx->mutex to protect
11731 * the sibling_list.
11732 */
11733 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11734 /*
11735 * This ctx->mutex can nest when we're called through
11736 * inheritance. See the perf_event_ctx_lock_nested() comment.
11737 */
11738 ctx = perf_event_ctx_lock_nested(event->group_leader,
11739 SINGLE_DEPTH_NESTING);
11740 BUG_ON(!ctx);
11741 }
11742
11743 event->pmu = pmu;
11744 ret = pmu->event_init(event);
11745
11746 if (ctx)
11747 perf_event_ctx_unlock(event->group_leader, ctx);
11748
11749 if (!ret) {
11750 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11751 has_extended_regs(event))
11752 ret = -EOPNOTSUPP;
11753
11754 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11755 event_has_any_exclude_flag(event))
11756 ret = -EINVAL;
11757
11758 if (ret && event->destroy)
11759 event->destroy(event);
11760 }
11761
11762 if (ret)
11763 module_put(pmu->module);
11764
11765 return ret;
11766 }
11767
perf_init_event(struct perf_event * event)11768 static struct pmu *perf_init_event(struct perf_event *event)
11769 {
11770 bool extended_type = false;
11771 int idx, type, ret;
11772 struct pmu *pmu;
11773
11774 idx = srcu_read_lock(&pmus_srcu);
11775
11776 /*
11777 * Save original type before calling pmu->event_init() since certain
11778 * pmus overwrites event->attr.type to forward event to another pmu.
11779 */
11780 event->orig_type = event->attr.type;
11781
11782 /* Try parent's PMU first: */
11783 if (event->parent && event->parent->pmu) {
11784 pmu = event->parent->pmu;
11785 ret = perf_try_init_event(pmu, event);
11786 if (!ret)
11787 goto unlock;
11788 }
11789
11790 /*
11791 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11792 * are often aliases for PERF_TYPE_RAW.
11793 */
11794 type = event->attr.type;
11795 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11796 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11797 if (!type) {
11798 type = PERF_TYPE_RAW;
11799 } else {
11800 extended_type = true;
11801 event->attr.config &= PERF_HW_EVENT_MASK;
11802 }
11803 }
11804
11805 again:
11806 rcu_read_lock();
11807 pmu = idr_find(&pmu_idr, type);
11808 rcu_read_unlock();
11809 if (pmu) {
11810 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11811 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11812 goto fail;
11813
11814 ret = perf_try_init_event(pmu, event);
11815 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11816 type = event->attr.type;
11817 goto again;
11818 }
11819
11820 if (ret)
11821 pmu = ERR_PTR(ret);
11822
11823 goto unlock;
11824 }
11825
11826 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11827 ret = perf_try_init_event(pmu, event);
11828 if (!ret)
11829 goto unlock;
11830
11831 if (ret != -ENOENT) {
11832 pmu = ERR_PTR(ret);
11833 goto unlock;
11834 }
11835 }
11836 fail:
11837 pmu = ERR_PTR(-ENOENT);
11838 unlock:
11839 srcu_read_unlock(&pmus_srcu, idx);
11840
11841 return pmu;
11842 }
11843
attach_sb_event(struct perf_event * event)11844 static void attach_sb_event(struct perf_event *event)
11845 {
11846 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11847
11848 raw_spin_lock(&pel->lock);
11849 list_add_rcu(&event->sb_list, &pel->list);
11850 raw_spin_unlock(&pel->lock);
11851 }
11852
11853 /*
11854 * We keep a list of all !task (and therefore per-cpu) events
11855 * that need to receive side-band records.
11856 *
11857 * This avoids having to scan all the various PMU per-cpu contexts
11858 * looking for them.
11859 */
account_pmu_sb_event(struct perf_event * event)11860 static void account_pmu_sb_event(struct perf_event *event)
11861 {
11862 if (is_sb_event(event))
11863 attach_sb_event(event);
11864 }
11865
11866 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)11867 static void account_freq_event_nohz(void)
11868 {
11869 #ifdef CONFIG_NO_HZ_FULL
11870 /* Lock so we don't race with concurrent unaccount */
11871 spin_lock(&nr_freq_lock);
11872 if (atomic_inc_return(&nr_freq_events) == 1)
11873 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11874 spin_unlock(&nr_freq_lock);
11875 #endif
11876 }
11877
account_freq_event(void)11878 static void account_freq_event(void)
11879 {
11880 if (tick_nohz_full_enabled())
11881 account_freq_event_nohz();
11882 else
11883 atomic_inc(&nr_freq_events);
11884 }
11885
11886
account_event(struct perf_event * event)11887 static void account_event(struct perf_event *event)
11888 {
11889 bool inc = false;
11890
11891 if (event->parent)
11892 return;
11893
11894 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11895 inc = true;
11896 if (event->attr.mmap || event->attr.mmap_data)
11897 atomic_inc(&nr_mmap_events);
11898 if (event->attr.build_id)
11899 atomic_inc(&nr_build_id_events);
11900 if (event->attr.comm)
11901 atomic_inc(&nr_comm_events);
11902 if (event->attr.namespaces)
11903 atomic_inc(&nr_namespaces_events);
11904 if (event->attr.cgroup)
11905 atomic_inc(&nr_cgroup_events);
11906 if (event->attr.task)
11907 atomic_inc(&nr_task_events);
11908 if (event->attr.freq)
11909 account_freq_event();
11910 if (event->attr.context_switch) {
11911 atomic_inc(&nr_switch_events);
11912 inc = true;
11913 }
11914 if (has_branch_stack(event))
11915 inc = true;
11916 if (is_cgroup_event(event))
11917 inc = true;
11918 if (event->attr.ksymbol)
11919 atomic_inc(&nr_ksymbol_events);
11920 if (event->attr.bpf_event)
11921 atomic_inc(&nr_bpf_events);
11922 if (event->attr.text_poke)
11923 atomic_inc(&nr_text_poke_events);
11924
11925 if (inc) {
11926 /*
11927 * We need the mutex here because static_branch_enable()
11928 * must complete *before* the perf_sched_count increment
11929 * becomes visible.
11930 */
11931 if (atomic_inc_not_zero(&perf_sched_count))
11932 goto enabled;
11933
11934 mutex_lock(&perf_sched_mutex);
11935 if (!atomic_read(&perf_sched_count)) {
11936 static_branch_enable(&perf_sched_events);
11937 /*
11938 * Guarantee that all CPUs observe they key change and
11939 * call the perf scheduling hooks before proceeding to
11940 * install events that need them.
11941 */
11942 synchronize_rcu();
11943 }
11944 /*
11945 * Now that we have waited for the sync_sched(), allow further
11946 * increments to by-pass the mutex.
11947 */
11948 atomic_inc(&perf_sched_count);
11949 mutex_unlock(&perf_sched_mutex);
11950 }
11951 enabled:
11952
11953 account_pmu_sb_event(event);
11954 }
11955
11956 /*
11957 * Allocate and initialize an event structure
11958 */
11959 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)11960 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11961 struct task_struct *task,
11962 struct perf_event *group_leader,
11963 struct perf_event *parent_event,
11964 perf_overflow_handler_t overflow_handler,
11965 void *context, int cgroup_fd)
11966 {
11967 struct pmu *pmu;
11968 struct perf_event *event;
11969 struct hw_perf_event *hwc;
11970 long err = -EINVAL;
11971 int node;
11972
11973 if ((unsigned)cpu >= nr_cpu_ids) {
11974 if (!task || cpu != -1)
11975 return ERR_PTR(-EINVAL);
11976 }
11977 if (attr->sigtrap && !task) {
11978 /* Requires a task: avoid signalling random tasks. */
11979 return ERR_PTR(-EINVAL);
11980 }
11981
11982 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11983 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11984 node);
11985 if (!event)
11986 return ERR_PTR(-ENOMEM);
11987
11988 /*
11989 * Single events are their own group leaders, with an
11990 * empty sibling list:
11991 */
11992 if (!group_leader)
11993 group_leader = event;
11994
11995 mutex_init(&event->child_mutex);
11996 INIT_LIST_HEAD(&event->child_list);
11997
11998 INIT_LIST_HEAD(&event->event_entry);
11999 INIT_LIST_HEAD(&event->sibling_list);
12000 INIT_LIST_HEAD(&event->active_list);
12001 init_event_group(event);
12002 INIT_LIST_HEAD(&event->rb_entry);
12003 INIT_LIST_HEAD(&event->active_entry);
12004 INIT_LIST_HEAD(&event->addr_filters.list);
12005 INIT_HLIST_NODE(&event->hlist_entry);
12006
12007
12008 init_waitqueue_head(&event->waitq);
12009 init_irq_work(&event->pending_irq, perf_pending_irq);
12010 init_task_work(&event->pending_task, perf_pending_task);
12011 rcuwait_init(&event->pending_work_wait);
12012
12013 mutex_init(&event->mmap_mutex);
12014 raw_spin_lock_init(&event->addr_filters.lock);
12015
12016 atomic_long_set(&event->refcount, 1);
12017 event->cpu = cpu;
12018 event->attr = *attr;
12019 event->group_leader = group_leader;
12020 event->pmu = NULL;
12021 event->oncpu = -1;
12022
12023 event->parent = parent_event;
12024
12025 event->ns = get_pid_ns(task_active_pid_ns(current));
12026 event->id = atomic64_inc_return(&perf_event_id);
12027
12028 event->state = PERF_EVENT_STATE_INACTIVE;
12029
12030 if (parent_event)
12031 event->event_caps = parent_event->event_caps;
12032
12033 if (task) {
12034 event->attach_state = PERF_ATTACH_TASK;
12035 /*
12036 * XXX pmu::event_init needs to know what task to account to
12037 * and we cannot use the ctx information because we need the
12038 * pmu before we get a ctx.
12039 */
12040 event->hw.target = get_task_struct(task);
12041 }
12042
12043 event->clock = &local_clock;
12044 if (parent_event)
12045 event->clock = parent_event->clock;
12046
12047 if (!overflow_handler && parent_event) {
12048 overflow_handler = parent_event->overflow_handler;
12049 context = parent_event->overflow_handler_context;
12050 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12051 if (overflow_handler == bpf_overflow_handler) {
12052 struct bpf_prog *prog = parent_event->prog;
12053
12054 bpf_prog_inc(prog);
12055 event->prog = prog;
12056 event->orig_overflow_handler =
12057 parent_event->orig_overflow_handler;
12058 }
12059 #endif
12060 }
12061
12062 if (overflow_handler) {
12063 event->overflow_handler = overflow_handler;
12064 event->overflow_handler_context = context;
12065 } else if (is_write_backward(event)){
12066 event->overflow_handler = perf_event_output_backward;
12067 event->overflow_handler_context = NULL;
12068 } else {
12069 event->overflow_handler = perf_event_output_forward;
12070 event->overflow_handler_context = NULL;
12071 }
12072
12073 perf_event__state_init(event);
12074
12075 pmu = NULL;
12076
12077 hwc = &event->hw;
12078 hwc->sample_period = attr->sample_period;
12079 if (attr->freq && attr->sample_freq)
12080 hwc->sample_period = 1;
12081 hwc->last_period = hwc->sample_period;
12082
12083 local64_set(&hwc->period_left, hwc->sample_period);
12084
12085 /*
12086 * We currently do not support PERF_SAMPLE_READ on inherited events.
12087 * See perf_output_read().
12088 */
12089 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
12090 goto err_ns;
12091
12092 if (!has_branch_stack(event))
12093 event->attr.branch_sample_type = 0;
12094
12095 pmu = perf_init_event(event);
12096 if (IS_ERR(pmu)) {
12097 err = PTR_ERR(pmu);
12098 goto err_ns;
12099 }
12100
12101 /*
12102 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12103 * events (they don't make sense as the cgroup will be different
12104 * on other CPUs in the uncore mask).
12105 */
12106 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12107 err = -EINVAL;
12108 goto err_pmu;
12109 }
12110
12111 if (event->attr.aux_output &&
12112 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12113 err = -EOPNOTSUPP;
12114 goto err_pmu;
12115 }
12116
12117 if (cgroup_fd != -1) {
12118 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12119 if (err)
12120 goto err_pmu;
12121 }
12122
12123 err = exclusive_event_init(event);
12124 if (err)
12125 goto err_pmu;
12126
12127 if (has_addr_filter(event)) {
12128 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12129 sizeof(struct perf_addr_filter_range),
12130 GFP_KERNEL);
12131 if (!event->addr_filter_ranges) {
12132 err = -ENOMEM;
12133 goto err_per_task;
12134 }
12135
12136 /*
12137 * Clone the parent's vma offsets: they are valid until exec()
12138 * even if the mm is not shared with the parent.
12139 */
12140 if (event->parent) {
12141 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12142
12143 raw_spin_lock_irq(&ifh->lock);
12144 memcpy(event->addr_filter_ranges,
12145 event->parent->addr_filter_ranges,
12146 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12147 raw_spin_unlock_irq(&ifh->lock);
12148 }
12149
12150 /* force hw sync on the address filters */
12151 event->addr_filters_gen = 1;
12152 }
12153
12154 if (!event->parent) {
12155 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12156 err = get_callchain_buffers(attr->sample_max_stack);
12157 if (err)
12158 goto err_addr_filters;
12159 }
12160 }
12161
12162 err = security_perf_event_alloc(event);
12163 if (err)
12164 goto err_callchain_buffer;
12165
12166 /* symmetric to unaccount_event() in _free_event() */
12167 account_event(event);
12168
12169 return event;
12170
12171 err_callchain_buffer:
12172 if (!event->parent) {
12173 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12174 put_callchain_buffers();
12175 }
12176 err_addr_filters:
12177 kfree(event->addr_filter_ranges);
12178
12179 err_per_task:
12180 exclusive_event_destroy(event);
12181
12182 err_pmu:
12183 if (is_cgroup_event(event))
12184 perf_detach_cgroup(event);
12185 if (event->destroy)
12186 event->destroy(event);
12187 module_put(pmu->module);
12188 err_ns:
12189 if (event->hw.target)
12190 put_task_struct(event->hw.target);
12191 call_rcu(&event->rcu_head, free_event_rcu);
12192
12193 return ERR_PTR(err);
12194 }
12195
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)12196 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12197 struct perf_event_attr *attr)
12198 {
12199 u32 size;
12200 int ret;
12201
12202 /* Zero the full structure, so that a short copy will be nice. */
12203 memset(attr, 0, sizeof(*attr));
12204
12205 ret = get_user(size, &uattr->size);
12206 if (ret)
12207 return ret;
12208
12209 /* ABI compatibility quirk: */
12210 if (!size)
12211 size = PERF_ATTR_SIZE_VER0;
12212 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12213 goto err_size;
12214
12215 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12216 if (ret) {
12217 if (ret == -E2BIG)
12218 goto err_size;
12219 return ret;
12220 }
12221
12222 attr->size = size;
12223
12224 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12225 return -EINVAL;
12226
12227 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12228 return -EINVAL;
12229
12230 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12231 return -EINVAL;
12232
12233 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12234 u64 mask = attr->branch_sample_type;
12235
12236 /* only using defined bits */
12237 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12238 return -EINVAL;
12239
12240 /* at least one branch bit must be set */
12241 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12242 return -EINVAL;
12243
12244 /* propagate priv level, when not set for branch */
12245 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12246
12247 /* exclude_kernel checked on syscall entry */
12248 if (!attr->exclude_kernel)
12249 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12250
12251 if (!attr->exclude_user)
12252 mask |= PERF_SAMPLE_BRANCH_USER;
12253
12254 if (!attr->exclude_hv)
12255 mask |= PERF_SAMPLE_BRANCH_HV;
12256 /*
12257 * adjust user setting (for HW filter setup)
12258 */
12259 attr->branch_sample_type = mask;
12260 }
12261 /* privileged levels capture (kernel, hv): check permissions */
12262 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12263 ret = perf_allow_kernel(attr);
12264 if (ret)
12265 return ret;
12266 }
12267 }
12268
12269 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12270 ret = perf_reg_validate(attr->sample_regs_user);
12271 if (ret)
12272 return ret;
12273 }
12274
12275 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12276 if (!arch_perf_have_user_stack_dump())
12277 return -ENOSYS;
12278
12279 /*
12280 * We have __u32 type for the size, but so far
12281 * we can only use __u16 as maximum due to the
12282 * __u16 sample size limit.
12283 */
12284 if (attr->sample_stack_user >= USHRT_MAX)
12285 return -EINVAL;
12286 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12287 return -EINVAL;
12288 }
12289
12290 if (!attr->sample_max_stack)
12291 attr->sample_max_stack = sysctl_perf_event_max_stack;
12292
12293 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12294 ret = perf_reg_validate(attr->sample_regs_intr);
12295
12296 #ifndef CONFIG_CGROUP_PERF
12297 if (attr->sample_type & PERF_SAMPLE_CGROUP)
12298 return -EINVAL;
12299 #endif
12300 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12301 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12302 return -EINVAL;
12303
12304 if (!attr->inherit && attr->inherit_thread)
12305 return -EINVAL;
12306
12307 if (attr->remove_on_exec && attr->enable_on_exec)
12308 return -EINVAL;
12309
12310 if (attr->sigtrap && !attr->remove_on_exec)
12311 return -EINVAL;
12312
12313 out:
12314 return ret;
12315
12316 err_size:
12317 put_user(sizeof(*attr), &uattr->size);
12318 ret = -E2BIG;
12319 goto out;
12320 }
12321
mutex_lock_double(struct mutex * a,struct mutex * b)12322 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12323 {
12324 if (b < a)
12325 swap(a, b);
12326
12327 mutex_lock(a);
12328 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12329 }
12330
12331 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12332 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12333 {
12334 struct perf_buffer *rb = NULL;
12335 int ret = -EINVAL;
12336
12337 if (!output_event) {
12338 mutex_lock(&event->mmap_mutex);
12339 goto set;
12340 }
12341
12342 /* don't allow circular references */
12343 if (event == output_event)
12344 goto out;
12345
12346 /*
12347 * Don't allow cross-cpu buffers
12348 */
12349 if (output_event->cpu != event->cpu)
12350 goto out;
12351
12352 /*
12353 * If its not a per-cpu rb, it must be the same task.
12354 */
12355 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12356 goto out;
12357
12358 /*
12359 * Mixing clocks in the same buffer is trouble you don't need.
12360 */
12361 if (output_event->clock != event->clock)
12362 goto out;
12363
12364 /*
12365 * Either writing ring buffer from beginning or from end.
12366 * Mixing is not allowed.
12367 */
12368 if (is_write_backward(output_event) != is_write_backward(event))
12369 goto out;
12370
12371 /*
12372 * If both events generate aux data, they must be on the same PMU
12373 */
12374 if (has_aux(event) && has_aux(output_event) &&
12375 event->pmu != output_event->pmu)
12376 goto out;
12377
12378 /*
12379 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
12380 * output_event is already on rb->event_list, and the list iteration
12381 * restarts after every removal, it is guaranteed this new event is
12382 * observed *OR* if output_event is already removed, it's guaranteed we
12383 * observe !rb->mmap_count.
12384 */
12385 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12386 set:
12387 /* Can't redirect output if we've got an active mmap() */
12388 if (atomic_read(&event->mmap_count))
12389 goto unlock;
12390
12391 if (output_event) {
12392 /* get the rb we want to redirect to */
12393 rb = ring_buffer_get(output_event);
12394 if (!rb)
12395 goto unlock;
12396
12397 /* did we race against perf_mmap_close() */
12398 if (!atomic_read(&rb->mmap_count)) {
12399 ring_buffer_put(rb);
12400 goto unlock;
12401 }
12402 }
12403
12404 ring_buffer_attach(event, rb);
12405
12406 ret = 0;
12407 unlock:
12408 mutex_unlock(&event->mmap_mutex);
12409 if (output_event)
12410 mutex_unlock(&output_event->mmap_mutex);
12411
12412 out:
12413 return ret;
12414 }
12415
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12416 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12417 {
12418 bool nmi_safe = false;
12419
12420 switch (clk_id) {
12421 case CLOCK_MONOTONIC:
12422 event->clock = &ktime_get_mono_fast_ns;
12423 nmi_safe = true;
12424 break;
12425
12426 case CLOCK_MONOTONIC_RAW:
12427 event->clock = &ktime_get_raw_fast_ns;
12428 nmi_safe = true;
12429 break;
12430
12431 case CLOCK_REALTIME:
12432 event->clock = &ktime_get_real_ns;
12433 break;
12434
12435 case CLOCK_BOOTTIME:
12436 event->clock = &ktime_get_boottime_ns;
12437 break;
12438
12439 case CLOCK_TAI:
12440 event->clock = &ktime_get_clocktai_ns;
12441 break;
12442
12443 default:
12444 return -EINVAL;
12445 }
12446
12447 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12448 return -EINVAL;
12449
12450 return 0;
12451 }
12452
12453 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)12454 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12455 {
12456 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12457 bool is_capable = perfmon_capable();
12458
12459 if (attr->sigtrap) {
12460 /*
12461 * perf_event_attr::sigtrap sends signals to the other task.
12462 * Require the current task to also have CAP_KILL.
12463 */
12464 rcu_read_lock();
12465 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12466 rcu_read_unlock();
12467
12468 /*
12469 * If the required capabilities aren't available, checks for
12470 * ptrace permissions: upgrade to ATTACH, since sending signals
12471 * can effectively change the target task.
12472 */
12473 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12474 }
12475
12476 /*
12477 * Preserve ptrace permission check for backwards compatibility. The
12478 * ptrace check also includes checks that the current task and other
12479 * task have matching uids, and is therefore not done here explicitly.
12480 */
12481 return is_capable || ptrace_may_access(task, ptrace_mode);
12482 }
12483
12484 /**
12485 * sys_perf_event_open - open a performance event, associate it to a task/cpu
12486 *
12487 * @attr_uptr: event_id type attributes for monitoring/sampling
12488 * @pid: target pid
12489 * @cpu: target cpu
12490 * @group_fd: group leader event fd
12491 * @flags: perf event open flags
12492 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)12493 SYSCALL_DEFINE5(perf_event_open,
12494 struct perf_event_attr __user *, attr_uptr,
12495 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12496 {
12497 struct perf_event *group_leader = NULL, *output_event = NULL;
12498 struct perf_event_pmu_context *pmu_ctx;
12499 struct perf_event *event, *sibling;
12500 struct perf_event_attr attr;
12501 struct perf_event_context *ctx;
12502 struct file *event_file = NULL;
12503 struct fd group = {NULL, 0};
12504 struct task_struct *task = NULL;
12505 struct pmu *pmu;
12506 int event_fd;
12507 int move_group = 0;
12508 int err;
12509 int f_flags = O_RDWR;
12510 int cgroup_fd = -1;
12511
12512 /* for future expandability... */
12513 if (flags & ~PERF_FLAG_ALL)
12514 return -EINVAL;
12515
12516 err = perf_copy_attr(attr_uptr, &attr);
12517 if (err)
12518 return err;
12519
12520 /* Do we allow access to perf_event_open(2) ? */
12521 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12522 if (err)
12523 return err;
12524
12525 if (!attr.exclude_kernel) {
12526 err = perf_allow_kernel(&attr);
12527 if (err)
12528 return err;
12529 }
12530
12531 if (attr.namespaces) {
12532 if (!perfmon_capable())
12533 return -EACCES;
12534 }
12535
12536 if (attr.freq) {
12537 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12538 return -EINVAL;
12539 } else {
12540 if (attr.sample_period & (1ULL << 63))
12541 return -EINVAL;
12542 }
12543
12544 /* Only privileged users can get physical addresses */
12545 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12546 err = perf_allow_kernel(&attr);
12547 if (err)
12548 return err;
12549 }
12550
12551 /* REGS_INTR can leak data, lockdown must prevent this */
12552 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12553 err = security_locked_down(LOCKDOWN_PERF);
12554 if (err)
12555 return err;
12556 }
12557
12558 /*
12559 * In cgroup mode, the pid argument is used to pass the fd
12560 * opened to the cgroup directory in cgroupfs. The cpu argument
12561 * designates the cpu on which to monitor threads from that
12562 * cgroup.
12563 */
12564 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12565 return -EINVAL;
12566
12567 if (flags & PERF_FLAG_FD_CLOEXEC)
12568 f_flags |= O_CLOEXEC;
12569
12570 event_fd = get_unused_fd_flags(f_flags);
12571 if (event_fd < 0)
12572 return event_fd;
12573
12574 if (group_fd != -1) {
12575 err = perf_fget_light(group_fd, &group);
12576 if (err)
12577 goto err_fd;
12578 group_leader = group.file->private_data;
12579 if (flags & PERF_FLAG_FD_OUTPUT)
12580 output_event = group_leader;
12581 if (flags & PERF_FLAG_FD_NO_GROUP)
12582 group_leader = NULL;
12583 }
12584
12585 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12586 task = find_lively_task_by_vpid(pid);
12587 if (IS_ERR(task)) {
12588 err = PTR_ERR(task);
12589 goto err_group_fd;
12590 }
12591 }
12592
12593 if (task && group_leader &&
12594 group_leader->attr.inherit != attr.inherit) {
12595 err = -EINVAL;
12596 goto err_task;
12597 }
12598
12599 if (flags & PERF_FLAG_PID_CGROUP)
12600 cgroup_fd = pid;
12601
12602 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12603 NULL, NULL, cgroup_fd);
12604 if (IS_ERR(event)) {
12605 err = PTR_ERR(event);
12606 goto err_task;
12607 }
12608
12609 if (is_sampling_event(event)) {
12610 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12611 err = -EOPNOTSUPP;
12612 goto err_alloc;
12613 }
12614 }
12615
12616 /*
12617 * Special case software events and allow them to be part of
12618 * any hardware group.
12619 */
12620 pmu = event->pmu;
12621
12622 if (attr.use_clockid) {
12623 err = perf_event_set_clock(event, attr.clockid);
12624 if (err)
12625 goto err_alloc;
12626 }
12627
12628 if (pmu->task_ctx_nr == perf_sw_context)
12629 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12630
12631 if (task) {
12632 err = down_read_interruptible(&task->signal->exec_update_lock);
12633 if (err)
12634 goto err_alloc;
12635
12636 /*
12637 * We must hold exec_update_lock across this and any potential
12638 * perf_install_in_context() call for this new event to
12639 * serialize against exec() altering our credentials (and the
12640 * perf_event_exit_task() that could imply).
12641 */
12642 err = -EACCES;
12643 if (!perf_check_permission(&attr, task))
12644 goto err_cred;
12645 }
12646
12647 /*
12648 * Get the target context (task or percpu):
12649 */
12650 ctx = find_get_context(task, event);
12651 if (IS_ERR(ctx)) {
12652 err = PTR_ERR(ctx);
12653 goto err_cred;
12654 }
12655
12656 mutex_lock(&ctx->mutex);
12657
12658 if (ctx->task == TASK_TOMBSTONE) {
12659 err = -ESRCH;
12660 goto err_locked;
12661 }
12662
12663 if (!task) {
12664 /*
12665 * Check if the @cpu we're creating an event for is online.
12666 *
12667 * We use the perf_cpu_context::ctx::mutex to serialize against
12668 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12669 */
12670 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12671
12672 if (!cpuctx->online) {
12673 err = -ENODEV;
12674 goto err_locked;
12675 }
12676 }
12677
12678 if (group_leader) {
12679 err = -EINVAL;
12680
12681 /*
12682 * Do not allow a recursive hierarchy (this new sibling
12683 * becoming part of another group-sibling):
12684 */
12685 if (group_leader->group_leader != group_leader)
12686 goto err_locked;
12687
12688 /* All events in a group should have the same clock */
12689 if (group_leader->clock != event->clock)
12690 goto err_locked;
12691
12692 /*
12693 * Make sure we're both events for the same CPU;
12694 * grouping events for different CPUs is broken; since
12695 * you can never concurrently schedule them anyhow.
12696 */
12697 if (group_leader->cpu != event->cpu)
12698 goto err_locked;
12699
12700 /*
12701 * Make sure we're both on the same context; either task or cpu.
12702 */
12703 if (group_leader->ctx != ctx)
12704 goto err_locked;
12705
12706 /*
12707 * Only a group leader can be exclusive or pinned
12708 */
12709 if (attr.exclusive || attr.pinned)
12710 goto err_locked;
12711
12712 if (is_software_event(event) &&
12713 !in_software_context(group_leader)) {
12714 /*
12715 * If the event is a sw event, but the group_leader
12716 * is on hw context.
12717 *
12718 * Allow the addition of software events to hw
12719 * groups, this is safe because software events
12720 * never fail to schedule.
12721 *
12722 * Note the comment that goes with struct
12723 * perf_event_pmu_context.
12724 */
12725 pmu = group_leader->pmu_ctx->pmu;
12726 } else if (!is_software_event(event)) {
12727 if (is_software_event(group_leader) &&
12728 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12729 /*
12730 * In case the group is a pure software group, and we
12731 * try to add a hardware event, move the whole group to
12732 * the hardware context.
12733 */
12734 move_group = 1;
12735 }
12736
12737 /* Don't allow group of multiple hw events from different pmus */
12738 if (!in_software_context(group_leader) &&
12739 group_leader->pmu_ctx->pmu != pmu)
12740 goto err_locked;
12741 }
12742 }
12743
12744 /*
12745 * Now that we're certain of the pmu; find the pmu_ctx.
12746 */
12747 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12748 if (IS_ERR(pmu_ctx)) {
12749 err = PTR_ERR(pmu_ctx);
12750 goto err_locked;
12751 }
12752 event->pmu_ctx = pmu_ctx;
12753
12754 if (output_event) {
12755 err = perf_event_set_output(event, output_event);
12756 if (err)
12757 goto err_context;
12758 }
12759
12760 if (!perf_event_validate_size(event)) {
12761 err = -E2BIG;
12762 goto err_context;
12763 }
12764
12765 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12766 err = -EINVAL;
12767 goto err_context;
12768 }
12769
12770 /*
12771 * Must be under the same ctx::mutex as perf_install_in_context(),
12772 * because we need to serialize with concurrent event creation.
12773 */
12774 if (!exclusive_event_installable(event, ctx)) {
12775 err = -EBUSY;
12776 goto err_context;
12777 }
12778
12779 WARN_ON_ONCE(ctx->parent_ctx);
12780
12781 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12782 if (IS_ERR(event_file)) {
12783 err = PTR_ERR(event_file);
12784 event_file = NULL;
12785 goto err_context;
12786 }
12787
12788 /*
12789 * This is the point on no return; we cannot fail hereafter. This is
12790 * where we start modifying current state.
12791 */
12792
12793 if (move_group) {
12794 perf_remove_from_context(group_leader, 0);
12795 put_pmu_ctx(group_leader->pmu_ctx);
12796
12797 for_each_sibling_event(sibling, group_leader) {
12798 perf_remove_from_context(sibling, 0);
12799 put_pmu_ctx(sibling->pmu_ctx);
12800 }
12801
12802 /*
12803 * Install the group siblings before the group leader.
12804 *
12805 * Because a group leader will try and install the entire group
12806 * (through the sibling list, which is still in-tact), we can
12807 * end up with siblings installed in the wrong context.
12808 *
12809 * By installing siblings first we NO-OP because they're not
12810 * reachable through the group lists.
12811 */
12812 for_each_sibling_event(sibling, group_leader) {
12813 sibling->pmu_ctx = pmu_ctx;
12814 get_pmu_ctx(pmu_ctx);
12815 perf_event__state_init(sibling);
12816 perf_install_in_context(ctx, sibling, sibling->cpu);
12817 }
12818
12819 /*
12820 * Removing from the context ends up with disabled
12821 * event. What we want here is event in the initial
12822 * startup state, ready to be add into new context.
12823 */
12824 group_leader->pmu_ctx = pmu_ctx;
12825 get_pmu_ctx(pmu_ctx);
12826 perf_event__state_init(group_leader);
12827 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12828 }
12829
12830 /*
12831 * Precalculate sample_data sizes; do while holding ctx::mutex such
12832 * that we're serialized against further additions and before
12833 * perf_install_in_context() which is the point the event is active and
12834 * can use these values.
12835 */
12836 perf_event__header_size(event);
12837 perf_event__id_header_size(event);
12838
12839 event->owner = current;
12840
12841 perf_install_in_context(ctx, event, event->cpu);
12842 perf_unpin_context(ctx);
12843
12844 mutex_unlock(&ctx->mutex);
12845
12846 if (task) {
12847 up_read(&task->signal->exec_update_lock);
12848 put_task_struct(task);
12849 }
12850
12851 mutex_lock(¤t->perf_event_mutex);
12852 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
12853 mutex_unlock(¤t->perf_event_mutex);
12854
12855 /*
12856 * Drop the reference on the group_event after placing the
12857 * new event on the sibling_list. This ensures destruction
12858 * of the group leader will find the pointer to itself in
12859 * perf_group_detach().
12860 */
12861 fdput(group);
12862 fd_install(event_fd, event_file);
12863 return event_fd;
12864
12865 err_context:
12866 put_pmu_ctx(event->pmu_ctx);
12867 event->pmu_ctx = NULL; /* _free_event() */
12868 err_locked:
12869 mutex_unlock(&ctx->mutex);
12870 perf_unpin_context(ctx);
12871 put_ctx(ctx);
12872 err_cred:
12873 if (task)
12874 up_read(&task->signal->exec_update_lock);
12875 err_alloc:
12876 free_event(event);
12877 err_task:
12878 if (task)
12879 put_task_struct(task);
12880 err_group_fd:
12881 fdput(group);
12882 err_fd:
12883 put_unused_fd(event_fd);
12884 return err;
12885 }
12886
12887 /**
12888 * perf_event_create_kernel_counter
12889 *
12890 * @attr: attributes of the counter to create
12891 * @cpu: cpu in which the counter is bound
12892 * @task: task to profile (NULL for percpu)
12893 * @overflow_handler: callback to trigger when we hit the event
12894 * @context: context data could be used in overflow_handler callback
12895 */
12896 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)12897 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12898 struct task_struct *task,
12899 perf_overflow_handler_t overflow_handler,
12900 void *context)
12901 {
12902 struct perf_event_pmu_context *pmu_ctx;
12903 struct perf_event_context *ctx;
12904 struct perf_event *event;
12905 struct pmu *pmu;
12906 int err;
12907
12908 /*
12909 * Grouping is not supported for kernel events, neither is 'AUX',
12910 * make sure the caller's intentions are adjusted.
12911 */
12912 if (attr->aux_output)
12913 return ERR_PTR(-EINVAL);
12914
12915 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12916 overflow_handler, context, -1);
12917 if (IS_ERR(event)) {
12918 err = PTR_ERR(event);
12919 goto err;
12920 }
12921
12922 /* Mark owner so we could distinguish it from user events. */
12923 event->owner = TASK_TOMBSTONE;
12924 pmu = event->pmu;
12925
12926 if (pmu->task_ctx_nr == perf_sw_context)
12927 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12928
12929 /*
12930 * Get the target context (task or percpu):
12931 */
12932 ctx = find_get_context(task, event);
12933 if (IS_ERR(ctx)) {
12934 err = PTR_ERR(ctx);
12935 goto err_alloc;
12936 }
12937
12938 WARN_ON_ONCE(ctx->parent_ctx);
12939 mutex_lock(&ctx->mutex);
12940 if (ctx->task == TASK_TOMBSTONE) {
12941 err = -ESRCH;
12942 goto err_unlock;
12943 }
12944
12945 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12946 if (IS_ERR(pmu_ctx)) {
12947 err = PTR_ERR(pmu_ctx);
12948 goto err_unlock;
12949 }
12950 event->pmu_ctx = pmu_ctx;
12951
12952 if (!task) {
12953 /*
12954 * Check if the @cpu we're creating an event for is online.
12955 *
12956 * We use the perf_cpu_context::ctx::mutex to serialize against
12957 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12958 */
12959 struct perf_cpu_context *cpuctx =
12960 container_of(ctx, struct perf_cpu_context, ctx);
12961 if (!cpuctx->online) {
12962 err = -ENODEV;
12963 goto err_pmu_ctx;
12964 }
12965 }
12966
12967 if (!exclusive_event_installable(event, ctx)) {
12968 err = -EBUSY;
12969 goto err_pmu_ctx;
12970 }
12971
12972 perf_install_in_context(ctx, event, event->cpu);
12973 perf_unpin_context(ctx);
12974 mutex_unlock(&ctx->mutex);
12975
12976 return event;
12977
12978 err_pmu_ctx:
12979 put_pmu_ctx(pmu_ctx);
12980 event->pmu_ctx = NULL; /* _free_event() */
12981 err_unlock:
12982 mutex_unlock(&ctx->mutex);
12983 perf_unpin_context(ctx);
12984 put_ctx(ctx);
12985 err_alloc:
12986 free_event(event);
12987 err:
12988 return ERR_PTR(err);
12989 }
12990 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12991
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)12992 static void __perf_pmu_remove(struct perf_event_context *ctx,
12993 int cpu, struct pmu *pmu,
12994 struct perf_event_groups *groups,
12995 struct list_head *events)
12996 {
12997 struct perf_event *event, *sibling;
12998
12999 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13000 perf_remove_from_context(event, 0);
13001 put_pmu_ctx(event->pmu_ctx);
13002 list_add(&event->migrate_entry, events);
13003
13004 for_each_sibling_event(sibling, event) {
13005 perf_remove_from_context(sibling, 0);
13006 put_pmu_ctx(sibling->pmu_ctx);
13007 list_add(&sibling->migrate_entry, events);
13008 }
13009 }
13010 }
13011
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)13012 static void __perf_pmu_install_event(struct pmu *pmu,
13013 struct perf_event_context *ctx,
13014 int cpu, struct perf_event *event)
13015 {
13016 struct perf_event_pmu_context *epc;
13017 struct perf_event_context *old_ctx = event->ctx;
13018
13019 get_ctx(ctx); /* normally find_get_context() */
13020
13021 event->cpu = cpu;
13022 epc = find_get_pmu_context(pmu, ctx, event);
13023 event->pmu_ctx = epc;
13024
13025 if (event->state >= PERF_EVENT_STATE_OFF)
13026 event->state = PERF_EVENT_STATE_INACTIVE;
13027 perf_install_in_context(ctx, event, cpu);
13028
13029 /*
13030 * Now that event->ctx is updated and visible, put the old ctx.
13031 */
13032 put_ctx(old_ctx);
13033 }
13034
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)13035 static void __perf_pmu_install(struct perf_event_context *ctx,
13036 int cpu, struct pmu *pmu, struct list_head *events)
13037 {
13038 struct perf_event *event, *tmp;
13039
13040 /*
13041 * Re-instate events in 2 passes.
13042 *
13043 * Skip over group leaders and only install siblings on this first
13044 * pass, siblings will not get enabled without a leader, however a
13045 * leader will enable its siblings, even if those are still on the old
13046 * context.
13047 */
13048 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13049 if (event->group_leader == event)
13050 continue;
13051
13052 list_del(&event->migrate_entry);
13053 __perf_pmu_install_event(pmu, ctx, cpu, event);
13054 }
13055
13056 /*
13057 * Once all the siblings are setup properly, install the group leaders
13058 * to make it go.
13059 */
13060 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13061 list_del(&event->migrate_entry);
13062 __perf_pmu_install_event(pmu, ctx, cpu, event);
13063 }
13064 }
13065
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)13066 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13067 {
13068 struct perf_event_context *src_ctx, *dst_ctx;
13069 LIST_HEAD(events);
13070
13071 /*
13072 * Since per-cpu context is persistent, no need to grab an extra
13073 * reference.
13074 */
13075 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13076 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13077
13078 /*
13079 * See perf_event_ctx_lock() for comments on the details
13080 * of swizzling perf_event::ctx.
13081 */
13082 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13083
13084 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13085 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13086
13087 if (!list_empty(&events)) {
13088 /*
13089 * Wait for the events to quiesce before re-instating them.
13090 */
13091 synchronize_rcu();
13092
13093 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13094 }
13095
13096 mutex_unlock(&dst_ctx->mutex);
13097 mutex_unlock(&src_ctx->mutex);
13098 }
13099 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13100
sync_child_event(struct perf_event * child_event)13101 static void sync_child_event(struct perf_event *child_event)
13102 {
13103 struct perf_event *parent_event = child_event->parent;
13104 u64 child_val;
13105
13106 if (child_event->attr.inherit_stat) {
13107 struct task_struct *task = child_event->ctx->task;
13108
13109 if (task && task != TASK_TOMBSTONE)
13110 perf_event_read_event(child_event, task);
13111 }
13112
13113 child_val = perf_event_count(child_event);
13114
13115 /*
13116 * Add back the child's count to the parent's count:
13117 */
13118 atomic64_add(child_val, &parent_event->child_count);
13119 atomic64_add(child_event->total_time_enabled,
13120 &parent_event->child_total_time_enabled);
13121 atomic64_add(child_event->total_time_running,
13122 &parent_event->child_total_time_running);
13123 }
13124
13125 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)13126 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13127 {
13128 struct perf_event *parent_event = event->parent;
13129 unsigned long detach_flags = 0;
13130
13131 if (parent_event) {
13132 /*
13133 * Do not destroy the 'original' grouping; because of the
13134 * context switch optimization the original events could've
13135 * ended up in a random child task.
13136 *
13137 * If we were to destroy the original group, all group related
13138 * operations would cease to function properly after this
13139 * random child dies.
13140 *
13141 * Do destroy all inherited groups, we don't care about those
13142 * and being thorough is better.
13143 */
13144 detach_flags = DETACH_GROUP | DETACH_CHILD;
13145 mutex_lock(&parent_event->child_mutex);
13146 }
13147
13148 perf_remove_from_context(event, detach_flags | DETACH_EXIT);
13149
13150 /*
13151 * Child events can be freed.
13152 */
13153 if (parent_event) {
13154 mutex_unlock(&parent_event->child_mutex);
13155 /*
13156 * Kick perf_poll() for is_event_hup();
13157 */
13158 perf_event_wakeup(parent_event);
13159 free_event(event);
13160 put_event(parent_event);
13161 return;
13162 }
13163
13164 /*
13165 * Parent events are governed by their filedesc, retain them.
13166 */
13167 perf_event_wakeup(event);
13168 }
13169
perf_event_exit_task_context(struct task_struct * child)13170 static void perf_event_exit_task_context(struct task_struct *child)
13171 {
13172 struct perf_event_context *child_ctx, *clone_ctx = NULL;
13173 struct perf_event *child_event, *next;
13174
13175 WARN_ON_ONCE(child != current);
13176
13177 child_ctx = perf_pin_task_context(child);
13178 if (!child_ctx)
13179 return;
13180
13181 /*
13182 * In order to reduce the amount of tricky in ctx tear-down, we hold
13183 * ctx::mutex over the entire thing. This serializes against almost
13184 * everything that wants to access the ctx.
13185 *
13186 * The exception is sys_perf_event_open() /
13187 * perf_event_create_kernel_count() which does find_get_context()
13188 * without ctx::mutex (it cannot because of the move_group double mutex
13189 * lock thing). See the comments in perf_install_in_context().
13190 */
13191 mutex_lock(&child_ctx->mutex);
13192
13193 /*
13194 * In a single ctx::lock section, de-schedule the events and detach the
13195 * context from the task such that we cannot ever get it scheduled back
13196 * in.
13197 */
13198 raw_spin_lock_irq(&child_ctx->lock);
13199 task_ctx_sched_out(child_ctx, EVENT_ALL);
13200
13201 /*
13202 * Now that the context is inactive, destroy the task <-> ctx relation
13203 * and mark the context dead.
13204 */
13205 RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13206 put_ctx(child_ctx); /* cannot be last */
13207 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13208 put_task_struct(current); /* cannot be last */
13209
13210 clone_ctx = unclone_ctx(child_ctx);
13211 raw_spin_unlock_irq(&child_ctx->lock);
13212
13213 if (clone_ctx)
13214 put_ctx(clone_ctx);
13215
13216 /*
13217 * Report the task dead after unscheduling the events so that we
13218 * won't get any samples after PERF_RECORD_EXIT. We can however still
13219 * get a few PERF_RECORD_READ events.
13220 */
13221 perf_event_task(child, child_ctx, 0);
13222
13223 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13224 perf_event_exit_event(child_event, child_ctx);
13225
13226 mutex_unlock(&child_ctx->mutex);
13227
13228 put_ctx(child_ctx);
13229 }
13230
13231 /*
13232 * When a child task exits, feed back event values to parent events.
13233 *
13234 * Can be called with exec_update_lock held when called from
13235 * setup_new_exec().
13236 */
perf_event_exit_task(struct task_struct * child)13237 void perf_event_exit_task(struct task_struct *child)
13238 {
13239 struct perf_event *event, *tmp;
13240
13241 mutex_lock(&child->perf_event_mutex);
13242 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13243 owner_entry) {
13244 list_del_init(&event->owner_entry);
13245
13246 /*
13247 * Ensure the list deletion is visible before we clear
13248 * the owner, closes a race against perf_release() where
13249 * we need to serialize on the owner->perf_event_mutex.
13250 */
13251 smp_store_release(&event->owner, NULL);
13252 }
13253 mutex_unlock(&child->perf_event_mutex);
13254
13255 perf_event_exit_task_context(child);
13256
13257 /*
13258 * The perf_event_exit_task_context calls perf_event_task
13259 * with child's task_ctx, which generates EXIT events for
13260 * child contexts and sets child->perf_event_ctxp[] to NULL.
13261 * At this point we need to send EXIT events to cpu contexts.
13262 */
13263 perf_event_task(child, NULL, 0);
13264 }
13265
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13266 static void perf_free_event(struct perf_event *event,
13267 struct perf_event_context *ctx)
13268 {
13269 struct perf_event *parent = event->parent;
13270
13271 if (WARN_ON_ONCE(!parent))
13272 return;
13273
13274 mutex_lock(&parent->child_mutex);
13275 list_del_init(&event->child_list);
13276 mutex_unlock(&parent->child_mutex);
13277
13278 put_event(parent);
13279
13280 raw_spin_lock_irq(&ctx->lock);
13281 perf_group_detach(event);
13282 list_del_event(event, ctx);
13283 raw_spin_unlock_irq(&ctx->lock);
13284 free_event(event);
13285 }
13286
13287 /*
13288 * Free a context as created by inheritance by perf_event_init_task() below,
13289 * used by fork() in case of fail.
13290 *
13291 * Even though the task has never lived, the context and events have been
13292 * exposed through the child_list, so we must take care tearing it all down.
13293 */
perf_event_free_task(struct task_struct * task)13294 void perf_event_free_task(struct task_struct *task)
13295 {
13296 struct perf_event_context *ctx;
13297 struct perf_event *event, *tmp;
13298
13299 ctx = rcu_access_pointer(task->perf_event_ctxp);
13300 if (!ctx)
13301 return;
13302
13303 mutex_lock(&ctx->mutex);
13304 raw_spin_lock_irq(&ctx->lock);
13305 /*
13306 * Destroy the task <-> ctx relation and mark the context dead.
13307 *
13308 * This is important because even though the task hasn't been
13309 * exposed yet the context has been (through child_list).
13310 */
13311 RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13312 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13313 put_task_struct(task); /* cannot be last */
13314 raw_spin_unlock_irq(&ctx->lock);
13315
13316
13317 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13318 perf_free_event(event, ctx);
13319
13320 mutex_unlock(&ctx->mutex);
13321
13322 /*
13323 * perf_event_release_kernel() could've stolen some of our
13324 * child events and still have them on its free_list. In that
13325 * case we must wait for these events to have been freed (in
13326 * particular all their references to this task must've been
13327 * dropped).
13328 *
13329 * Without this copy_process() will unconditionally free this
13330 * task (irrespective of its reference count) and
13331 * _free_event()'s put_task_struct(event->hw.target) will be a
13332 * use-after-free.
13333 *
13334 * Wait for all events to drop their context reference.
13335 */
13336 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13337 put_ctx(ctx); /* must be last */
13338 }
13339
perf_event_delayed_put(struct task_struct * task)13340 void perf_event_delayed_put(struct task_struct *task)
13341 {
13342 WARN_ON_ONCE(task->perf_event_ctxp);
13343 }
13344
perf_event_get(unsigned int fd)13345 struct file *perf_event_get(unsigned int fd)
13346 {
13347 struct file *file = fget(fd);
13348 if (!file)
13349 return ERR_PTR(-EBADF);
13350
13351 if (file->f_op != &perf_fops) {
13352 fput(file);
13353 return ERR_PTR(-EBADF);
13354 }
13355
13356 return file;
13357 }
13358
perf_get_event(struct file * file)13359 const struct perf_event *perf_get_event(struct file *file)
13360 {
13361 if (file->f_op != &perf_fops)
13362 return ERR_PTR(-EINVAL);
13363
13364 return file->private_data;
13365 }
13366
perf_event_attrs(struct perf_event * event)13367 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13368 {
13369 if (!event)
13370 return ERR_PTR(-EINVAL);
13371
13372 return &event->attr;
13373 }
13374
perf_allow_kernel(struct perf_event_attr * attr)13375 int perf_allow_kernel(struct perf_event_attr *attr)
13376 {
13377 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13378 return -EACCES;
13379
13380 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13381 }
13382 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13383
13384 /*
13385 * Inherit an event from parent task to child task.
13386 *
13387 * Returns:
13388 * - valid pointer on success
13389 * - NULL for orphaned events
13390 * - IS_ERR() on error
13391 */
13392 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13393 inherit_event(struct perf_event *parent_event,
13394 struct task_struct *parent,
13395 struct perf_event_context *parent_ctx,
13396 struct task_struct *child,
13397 struct perf_event *group_leader,
13398 struct perf_event_context *child_ctx)
13399 {
13400 enum perf_event_state parent_state = parent_event->state;
13401 struct perf_event_pmu_context *pmu_ctx;
13402 struct perf_event *child_event;
13403 unsigned long flags;
13404
13405 /*
13406 * Instead of creating recursive hierarchies of events,
13407 * we link inherited events back to the original parent,
13408 * which has a filp for sure, which we use as the reference
13409 * count:
13410 */
13411 if (parent_event->parent)
13412 parent_event = parent_event->parent;
13413
13414 child_event = perf_event_alloc(&parent_event->attr,
13415 parent_event->cpu,
13416 child,
13417 group_leader, parent_event,
13418 NULL, NULL, -1);
13419 if (IS_ERR(child_event))
13420 return child_event;
13421
13422 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13423 if (IS_ERR(pmu_ctx)) {
13424 free_event(child_event);
13425 return ERR_CAST(pmu_ctx);
13426 }
13427 child_event->pmu_ctx = pmu_ctx;
13428
13429 /*
13430 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13431 * must be under the same lock in order to serialize against
13432 * perf_event_release_kernel(), such that either we must observe
13433 * is_orphaned_event() or they will observe us on the child_list.
13434 */
13435 mutex_lock(&parent_event->child_mutex);
13436 if (is_orphaned_event(parent_event) ||
13437 !atomic_long_inc_not_zero(&parent_event->refcount)) {
13438 mutex_unlock(&parent_event->child_mutex);
13439 /* task_ctx_data is freed with child_ctx */
13440 free_event(child_event);
13441 return NULL;
13442 }
13443
13444 get_ctx(child_ctx);
13445
13446 /*
13447 * Make the child state follow the state of the parent event,
13448 * not its attr.disabled bit. We hold the parent's mutex,
13449 * so we won't race with perf_event_{en, dis}able_family.
13450 */
13451 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13452 child_event->state = PERF_EVENT_STATE_INACTIVE;
13453 else
13454 child_event->state = PERF_EVENT_STATE_OFF;
13455
13456 if (parent_event->attr.freq) {
13457 u64 sample_period = parent_event->hw.sample_period;
13458 struct hw_perf_event *hwc = &child_event->hw;
13459
13460 hwc->sample_period = sample_period;
13461 hwc->last_period = sample_period;
13462
13463 local64_set(&hwc->period_left, sample_period);
13464 }
13465
13466 child_event->ctx = child_ctx;
13467 child_event->overflow_handler = parent_event->overflow_handler;
13468 child_event->overflow_handler_context
13469 = parent_event->overflow_handler_context;
13470
13471 /*
13472 * Precalculate sample_data sizes
13473 */
13474 perf_event__header_size(child_event);
13475 perf_event__id_header_size(child_event);
13476
13477 /*
13478 * Link it up in the child's context:
13479 */
13480 raw_spin_lock_irqsave(&child_ctx->lock, flags);
13481 add_event_to_ctx(child_event, child_ctx);
13482 child_event->attach_state |= PERF_ATTACH_CHILD;
13483 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13484
13485 /*
13486 * Link this into the parent event's child list
13487 */
13488 list_add_tail(&child_event->child_list, &parent_event->child_list);
13489 mutex_unlock(&parent_event->child_mutex);
13490
13491 return child_event;
13492 }
13493
13494 /*
13495 * Inherits an event group.
13496 *
13497 * This will quietly suppress orphaned events; !inherit_event() is not an error.
13498 * This matches with perf_event_release_kernel() removing all child events.
13499 *
13500 * Returns:
13501 * - 0 on success
13502 * - <0 on error
13503 */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)13504 static int inherit_group(struct perf_event *parent_event,
13505 struct task_struct *parent,
13506 struct perf_event_context *parent_ctx,
13507 struct task_struct *child,
13508 struct perf_event_context *child_ctx)
13509 {
13510 struct perf_event *leader;
13511 struct perf_event *sub;
13512 struct perf_event *child_ctr;
13513
13514 leader = inherit_event(parent_event, parent, parent_ctx,
13515 child, NULL, child_ctx);
13516 if (IS_ERR(leader))
13517 return PTR_ERR(leader);
13518 /*
13519 * @leader can be NULL here because of is_orphaned_event(). In this
13520 * case inherit_event() will create individual events, similar to what
13521 * perf_group_detach() would do anyway.
13522 */
13523 for_each_sibling_event(sub, parent_event) {
13524 child_ctr = inherit_event(sub, parent, parent_ctx,
13525 child, leader, child_ctx);
13526 if (IS_ERR(child_ctr))
13527 return PTR_ERR(child_ctr);
13528
13529 if (sub->aux_event == parent_event && child_ctr &&
13530 !perf_get_aux_event(child_ctr, leader))
13531 return -EINVAL;
13532 }
13533 if (leader)
13534 leader->group_generation = parent_event->group_generation;
13535 return 0;
13536 }
13537
13538 /*
13539 * Creates the child task context and tries to inherit the event-group.
13540 *
13541 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13542 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13543 * consistent with perf_event_release_kernel() removing all child events.
13544 *
13545 * Returns:
13546 * - 0 on success
13547 * - <0 on error
13548 */
13549 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)13550 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13551 struct perf_event_context *parent_ctx,
13552 struct task_struct *child,
13553 u64 clone_flags, int *inherited_all)
13554 {
13555 struct perf_event_context *child_ctx;
13556 int ret;
13557
13558 if (!event->attr.inherit ||
13559 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13560 /* Do not inherit if sigtrap and signal handlers were cleared. */
13561 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13562 *inherited_all = 0;
13563 return 0;
13564 }
13565
13566 child_ctx = child->perf_event_ctxp;
13567 if (!child_ctx) {
13568 /*
13569 * This is executed from the parent task context, so
13570 * inherit events that have been marked for cloning.
13571 * First allocate and initialize a context for the
13572 * child.
13573 */
13574 child_ctx = alloc_perf_context(child);
13575 if (!child_ctx)
13576 return -ENOMEM;
13577
13578 child->perf_event_ctxp = child_ctx;
13579 }
13580
13581 ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13582 if (ret)
13583 *inherited_all = 0;
13584
13585 return ret;
13586 }
13587
13588 /*
13589 * Initialize the perf_event context in task_struct
13590 */
perf_event_init_context(struct task_struct * child,u64 clone_flags)13591 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13592 {
13593 struct perf_event_context *child_ctx, *parent_ctx;
13594 struct perf_event_context *cloned_ctx;
13595 struct perf_event *event;
13596 struct task_struct *parent = current;
13597 int inherited_all = 1;
13598 unsigned long flags;
13599 int ret = 0;
13600
13601 if (likely(!parent->perf_event_ctxp))
13602 return 0;
13603
13604 /*
13605 * If the parent's context is a clone, pin it so it won't get
13606 * swapped under us.
13607 */
13608 parent_ctx = perf_pin_task_context(parent);
13609 if (!parent_ctx)
13610 return 0;
13611
13612 /*
13613 * No need to check if parent_ctx != NULL here; since we saw
13614 * it non-NULL earlier, the only reason for it to become NULL
13615 * is if we exit, and since we're currently in the middle of
13616 * a fork we can't be exiting at the same time.
13617 */
13618
13619 /*
13620 * Lock the parent list. No need to lock the child - not PID
13621 * hashed yet and not running, so nobody can access it.
13622 */
13623 mutex_lock(&parent_ctx->mutex);
13624
13625 /*
13626 * We dont have to disable NMIs - we are only looking at
13627 * the list, not manipulating it:
13628 */
13629 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13630 ret = inherit_task_group(event, parent, parent_ctx,
13631 child, clone_flags, &inherited_all);
13632 if (ret)
13633 goto out_unlock;
13634 }
13635
13636 /*
13637 * We can't hold ctx->lock when iterating the ->flexible_group list due
13638 * to allocations, but we need to prevent rotation because
13639 * rotate_ctx() will change the list from interrupt context.
13640 */
13641 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13642 parent_ctx->rotate_disable = 1;
13643 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13644
13645 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13646 ret = inherit_task_group(event, parent, parent_ctx,
13647 child, clone_flags, &inherited_all);
13648 if (ret)
13649 goto out_unlock;
13650 }
13651
13652 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13653 parent_ctx->rotate_disable = 0;
13654
13655 child_ctx = child->perf_event_ctxp;
13656
13657 if (child_ctx && inherited_all) {
13658 /*
13659 * Mark the child context as a clone of the parent
13660 * context, or of whatever the parent is a clone of.
13661 *
13662 * Note that if the parent is a clone, the holding of
13663 * parent_ctx->lock avoids it from being uncloned.
13664 */
13665 cloned_ctx = parent_ctx->parent_ctx;
13666 if (cloned_ctx) {
13667 child_ctx->parent_ctx = cloned_ctx;
13668 child_ctx->parent_gen = parent_ctx->parent_gen;
13669 } else {
13670 child_ctx->parent_ctx = parent_ctx;
13671 child_ctx->parent_gen = parent_ctx->generation;
13672 }
13673 get_ctx(child_ctx->parent_ctx);
13674 }
13675
13676 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13677 out_unlock:
13678 mutex_unlock(&parent_ctx->mutex);
13679
13680 perf_unpin_context(parent_ctx);
13681 put_ctx(parent_ctx);
13682
13683 return ret;
13684 }
13685
13686 /*
13687 * Initialize the perf_event context in task_struct
13688 */
perf_event_init_task(struct task_struct * child,u64 clone_flags)13689 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13690 {
13691 int ret;
13692
13693 child->perf_event_ctxp = NULL;
13694 mutex_init(&child->perf_event_mutex);
13695 INIT_LIST_HEAD(&child->perf_event_list);
13696
13697 ret = perf_event_init_context(child, clone_flags);
13698 if (ret) {
13699 perf_event_free_task(child);
13700 return ret;
13701 }
13702
13703 return 0;
13704 }
13705
perf_event_init_all_cpus(void)13706 static void __init perf_event_init_all_cpus(void)
13707 {
13708 struct swevent_htable *swhash;
13709 struct perf_cpu_context *cpuctx;
13710 int cpu;
13711
13712 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13713
13714 for_each_possible_cpu(cpu) {
13715 swhash = &per_cpu(swevent_htable, cpu);
13716 mutex_init(&swhash->hlist_mutex);
13717
13718 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13719 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13720
13721 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13722
13723 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13724 __perf_event_init_context(&cpuctx->ctx);
13725 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13726 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13727 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13728 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13729 cpuctx->heap = cpuctx->heap_default;
13730 }
13731 }
13732
perf_swevent_init_cpu(unsigned int cpu)13733 static void perf_swevent_init_cpu(unsigned int cpu)
13734 {
13735 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13736
13737 mutex_lock(&swhash->hlist_mutex);
13738 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13739 struct swevent_hlist *hlist;
13740
13741 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13742 WARN_ON(!hlist);
13743 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13744 }
13745 mutex_unlock(&swhash->hlist_mutex);
13746 }
13747
13748 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)13749 static void __perf_event_exit_context(void *__info)
13750 {
13751 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13752 struct perf_event_context *ctx = __info;
13753 struct perf_event *event;
13754
13755 raw_spin_lock(&ctx->lock);
13756 ctx_sched_out(ctx, EVENT_TIME);
13757 list_for_each_entry(event, &ctx->event_list, event_entry)
13758 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13759 raw_spin_unlock(&ctx->lock);
13760 }
13761
perf_event_exit_cpu_context(int cpu)13762 static void perf_event_exit_cpu_context(int cpu)
13763 {
13764 struct perf_cpu_context *cpuctx;
13765 struct perf_event_context *ctx;
13766
13767 // XXX simplify cpuctx->online
13768 mutex_lock(&pmus_lock);
13769 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13770 ctx = &cpuctx->ctx;
13771
13772 mutex_lock(&ctx->mutex);
13773 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13774 cpuctx->online = 0;
13775 mutex_unlock(&ctx->mutex);
13776 cpumask_clear_cpu(cpu, perf_online_mask);
13777 mutex_unlock(&pmus_lock);
13778 }
13779 #else
13780
perf_event_exit_cpu_context(int cpu)13781 static void perf_event_exit_cpu_context(int cpu) { }
13782
13783 #endif
13784
perf_event_init_cpu(unsigned int cpu)13785 int perf_event_init_cpu(unsigned int cpu)
13786 {
13787 struct perf_cpu_context *cpuctx;
13788 struct perf_event_context *ctx;
13789
13790 perf_swevent_init_cpu(cpu);
13791
13792 mutex_lock(&pmus_lock);
13793 cpumask_set_cpu(cpu, perf_online_mask);
13794 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13795 ctx = &cpuctx->ctx;
13796
13797 mutex_lock(&ctx->mutex);
13798 cpuctx->online = 1;
13799 mutex_unlock(&ctx->mutex);
13800 mutex_unlock(&pmus_lock);
13801
13802 return 0;
13803 }
13804
perf_event_exit_cpu(unsigned int cpu)13805 int perf_event_exit_cpu(unsigned int cpu)
13806 {
13807 perf_event_exit_cpu_context(cpu);
13808 return 0;
13809 }
13810
13811 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)13812 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13813 {
13814 int cpu;
13815
13816 for_each_online_cpu(cpu)
13817 perf_event_exit_cpu(cpu);
13818
13819 return NOTIFY_OK;
13820 }
13821
13822 /*
13823 * Run the perf reboot notifier at the very last possible moment so that
13824 * the generic watchdog code runs as long as possible.
13825 */
13826 static struct notifier_block perf_reboot_notifier = {
13827 .notifier_call = perf_reboot,
13828 .priority = INT_MIN,
13829 };
13830
perf_event_init(void)13831 void __init perf_event_init(void)
13832 {
13833 int ret;
13834
13835 idr_init(&pmu_idr);
13836
13837 perf_event_init_all_cpus();
13838 init_srcu_struct(&pmus_srcu);
13839 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13840 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13841 perf_pmu_register(&perf_task_clock, "task_clock", -1);
13842 perf_tp_register();
13843 perf_event_init_cpu(smp_processor_id());
13844 register_reboot_notifier(&perf_reboot_notifier);
13845
13846 ret = init_hw_breakpoint();
13847 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13848
13849 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13850
13851 /*
13852 * Build time assertion that we keep the data_head at the intended
13853 * location. IOW, validation we got the __reserved[] size right.
13854 */
13855 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13856 != 1024);
13857 }
13858
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)13859 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13860 char *page)
13861 {
13862 struct perf_pmu_events_attr *pmu_attr =
13863 container_of(attr, struct perf_pmu_events_attr, attr);
13864
13865 if (pmu_attr->event_str)
13866 return sprintf(page, "%s\n", pmu_attr->event_str);
13867
13868 return 0;
13869 }
13870 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13871
perf_event_sysfs_init(void)13872 static int __init perf_event_sysfs_init(void)
13873 {
13874 struct pmu *pmu;
13875 int ret;
13876
13877 mutex_lock(&pmus_lock);
13878
13879 ret = bus_register(&pmu_bus);
13880 if (ret)
13881 goto unlock;
13882
13883 list_for_each_entry(pmu, &pmus, entry) {
13884 if (pmu->dev)
13885 continue;
13886
13887 ret = pmu_dev_alloc(pmu);
13888 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13889 }
13890 pmu_bus_running = 1;
13891 ret = 0;
13892
13893 unlock:
13894 mutex_unlock(&pmus_lock);
13895
13896 return ret;
13897 }
13898 device_initcall(perf_event_sysfs_init);
13899
13900 #ifdef CONFIG_CGROUP_PERF
13901 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)13902 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13903 {
13904 struct perf_cgroup *jc;
13905
13906 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13907 if (!jc)
13908 return ERR_PTR(-ENOMEM);
13909
13910 jc->info = alloc_percpu(struct perf_cgroup_info);
13911 if (!jc->info) {
13912 kfree(jc);
13913 return ERR_PTR(-ENOMEM);
13914 }
13915
13916 return &jc->css;
13917 }
13918
perf_cgroup_css_free(struct cgroup_subsys_state * css)13919 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13920 {
13921 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13922
13923 free_percpu(jc->info);
13924 kfree(jc);
13925 }
13926
perf_cgroup_css_online(struct cgroup_subsys_state * css)13927 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13928 {
13929 perf_event_cgroup(css->cgroup);
13930 return 0;
13931 }
13932
__perf_cgroup_move(void * info)13933 static int __perf_cgroup_move(void *info)
13934 {
13935 struct task_struct *task = info;
13936
13937 preempt_disable();
13938 perf_cgroup_switch(task);
13939 preempt_enable();
13940
13941 return 0;
13942 }
13943
perf_cgroup_attach(struct cgroup_taskset * tset)13944 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13945 {
13946 struct task_struct *task;
13947 struct cgroup_subsys_state *css;
13948
13949 cgroup_taskset_for_each(task, css, tset)
13950 task_function_call(task, __perf_cgroup_move, task);
13951 }
13952
13953 struct cgroup_subsys perf_event_cgrp_subsys = {
13954 .css_alloc = perf_cgroup_css_alloc,
13955 .css_free = perf_cgroup_css_free,
13956 .css_online = perf_cgroup_css_online,
13957 .attach = perf_cgroup_attach,
13958 /*
13959 * Implicitly enable on dfl hierarchy so that perf events can
13960 * always be filtered by cgroup2 path as long as perf_event
13961 * controller is not mounted on a legacy hierarchy.
13962 */
13963 .implicit_on_dfl = true,
13964 .threaded = true,
13965 };
13966 #endif /* CONFIG_CGROUP_PERF */
13967
13968 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13969