1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch/sh/drivers/dma/dma-sh.c
4 *
5 * SuperH On-chip DMAC Support
6 *
7 * Copyright (C) 2000 Takashi YOSHII
8 * Copyright (C) 2003, 2004 Paul Mundt
9 * Copyright (C) 2005 Andriy Skulysh
10 */
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/io.h>
15 #include <mach-dreamcast/mach/dma.h>
16 #include <asm/dma.h>
17 #include <asm/dma-register.h>
18 #include <cpu/dma-register.h>
19 #include <cpu/dma.h>
20
21 /*
22 * Some of the SoCs feature two DMAC modules. In such a case, the channels are
23 * distributed equally among them.
24 */
25 #ifdef SH_DMAC_BASE1
26 #define SH_DMAC_NR_MD_CH (CONFIG_NR_ONCHIP_DMA_CHANNELS / 2)
27 #else
28 #define SH_DMAC_NR_MD_CH CONFIG_NR_ONCHIP_DMA_CHANNELS
29 #endif
30
31 #define SH_DMAC_CH_SZ 0x10
32
33 /*
34 * Define the default configuration for dual address memory-memory transfer.
35 * The 0x400 value represents auto-request, external->external.
36 */
37 #define RS_DUAL (DM_INC | SM_INC | RS_AUTO | TS_INDEX2VAL(XMIT_SZ_32BIT))
38
dma_find_base(unsigned int chan)39 static unsigned long dma_find_base(unsigned int chan)
40 {
41 unsigned long base = SH_DMAC_BASE0;
42
43 #ifdef SH_DMAC_BASE1
44 if (chan >= SH_DMAC_NR_MD_CH)
45 base = SH_DMAC_BASE1;
46 #endif
47
48 return base;
49 }
50
dma_base_addr(unsigned int chan)51 static unsigned long dma_base_addr(unsigned int chan)
52 {
53 unsigned long base = dma_find_base(chan);
54
55 chan = (chan % SH_DMAC_NR_MD_CH) * SH_DMAC_CH_SZ;
56
57 /* DMAOR is placed inside the channel register space. Step over it. */
58 if (chan >= DMAOR)
59 base += SH_DMAC_CH_SZ;
60
61 return base + chan;
62 }
63
64 #ifdef CONFIG_SH_DMA_IRQ_MULTI
get_dmte_irq(unsigned int chan)65 static inline unsigned int get_dmte_irq(unsigned int chan)
66 {
67 return chan >= 6 ? DMTE6_IRQ : DMTE0_IRQ;
68 }
69 #else
70
71 static unsigned int dmte_irq_map[] = {
72 DMTE0_IRQ, DMTE0_IRQ + 1, DMTE0_IRQ + 2, DMTE0_IRQ + 3,
73
74 #ifdef DMTE4_IRQ
75 DMTE4_IRQ, DMTE4_IRQ + 1,
76 #endif
77
78 #ifdef DMTE6_IRQ
79 DMTE6_IRQ, DMTE6_IRQ + 1,
80 #endif
81
82 #ifdef DMTE8_IRQ
83 DMTE8_IRQ, DMTE9_IRQ, DMTE10_IRQ, DMTE11_IRQ,
84 #endif
85 };
86
get_dmte_irq(unsigned int chan)87 static inline unsigned int get_dmte_irq(unsigned int chan)
88 {
89 return dmte_irq_map[chan];
90 }
91 #endif
92
93 /*
94 * We determine the correct shift size based off of the CHCR transmit size
95 * for the given channel. Since we know that it will take:
96 *
97 * info->count >> ts_shift[transmit_size]
98 *
99 * iterations to complete the transfer.
100 */
101 static unsigned int ts_shift[] = TS_SHIFT;
102
calc_xmit_shift(struct dma_channel * chan)103 static inline unsigned int calc_xmit_shift(struct dma_channel *chan)
104 {
105 u32 chcr = __raw_readl(dma_base_addr(chan->chan) + CHCR);
106 int cnt = ((chcr & CHCR_TS_LOW_MASK) >> CHCR_TS_LOW_SHIFT) |
107 ((chcr & CHCR_TS_HIGH_MASK) >> CHCR_TS_HIGH_SHIFT);
108
109 return ts_shift[cnt];
110 }
111
112 /*
113 * The transfer end interrupt must read the chcr register to end the
114 * hardware interrupt active condition.
115 * Besides that it needs to waken any waiting process, which should handle
116 * setting up the next transfer.
117 */
dma_tei(int irq,void * dev_id)118 static irqreturn_t dma_tei(int irq, void *dev_id)
119 {
120 struct dma_channel *chan = dev_id;
121 u32 chcr;
122
123 chcr = __raw_readl(dma_base_addr(chan->chan) + CHCR);
124
125 if (!(chcr & CHCR_TE))
126 return IRQ_NONE;
127
128 chcr &= ~(CHCR_IE | CHCR_DE);
129 __raw_writel(chcr, (dma_base_addr(chan->chan) + CHCR));
130
131 wake_up(&chan->wait_queue);
132
133 return IRQ_HANDLED;
134 }
135
sh_dmac_request_dma(struct dma_channel * chan)136 static int sh_dmac_request_dma(struct dma_channel *chan)
137 {
138 if (unlikely(!(chan->flags & DMA_TEI_CAPABLE)))
139 return 0;
140
141 return request_irq(get_dmte_irq(chan->chan), dma_tei, IRQF_SHARED,
142 chan->dev_id, chan);
143 }
144
sh_dmac_free_dma(struct dma_channel * chan)145 static void sh_dmac_free_dma(struct dma_channel *chan)
146 {
147 free_irq(get_dmte_irq(chan->chan), chan);
148 }
149
150 static int
sh_dmac_configure_channel(struct dma_channel * chan,unsigned long chcr)151 sh_dmac_configure_channel(struct dma_channel *chan, unsigned long chcr)
152 {
153 if (!chcr)
154 chcr = RS_DUAL | CHCR_IE;
155
156 if (chcr & CHCR_IE) {
157 chcr &= ~CHCR_IE;
158 chan->flags |= DMA_TEI_CAPABLE;
159 } else {
160 chan->flags &= ~DMA_TEI_CAPABLE;
161 }
162
163 __raw_writel(chcr, (dma_base_addr(chan->chan) + CHCR));
164
165 chan->flags |= DMA_CONFIGURED;
166 return 0;
167 }
168
sh_dmac_enable_dma(struct dma_channel * chan)169 static void sh_dmac_enable_dma(struct dma_channel *chan)
170 {
171 int irq;
172 u32 chcr;
173
174 chcr = __raw_readl(dma_base_addr(chan->chan) + CHCR);
175 chcr |= CHCR_DE;
176
177 if (chan->flags & DMA_TEI_CAPABLE)
178 chcr |= CHCR_IE;
179
180 __raw_writel(chcr, (dma_base_addr(chan->chan) + CHCR));
181
182 if (chan->flags & DMA_TEI_CAPABLE) {
183 irq = get_dmte_irq(chan->chan);
184 enable_irq(irq);
185 }
186 }
187
sh_dmac_disable_dma(struct dma_channel * chan)188 static void sh_dmac_disable_dma(struct dma_channel *chan)
189 {
190 int irq;
191 u32 chcr;
192
193 if (chan->flags & DMA_TEI_CAPABLE) {
194 irq = get_dmte_irq(chan->chan);
195 disable_irq(irq);
196 }
197
198 chcr = __raw_readl(dma_base_addr(chan->chan) + CHCR);
199 chcr &= ~(CHCR_DE | CHCR_TE | CHCR_IE);
200 __raw_writel(chcr, (dma_base_addr(chan->chan) + CHCR));
201 }
202
sh_dmac_xfer_dma(struct dma_channel * chan)203 static int sh_dmac_xfer_dma(struct dma_channel *chan)
204 {
205 /*
206 * If we haven't pre-configured the channel with special flags, use
207 * the defaults.
208 */
209 if (unlikely(!(chan->flags & DMA_CONFIGURED)))
210 sh_dmac_configure_channel(chan, 0);
211
212 sh_dmac_disable_dma(chan);
213
214 /*
215 * Single-address mode usage note!
216 *
217 * It's important that we don't accidentally write any value to SAR/DAR
218 * (this includes 0) that hasn't been directly specified by the user if
219 * we're in single-address mode.
220 *
221 * In this case, only one address can be defined, anything else will
222 * result in a DMA address error interrupt (at least on the SH-4),
223 * which will subsequently halt the transfer.
224 *
225 * Channel 2 on the Dreamcast is a special case, as this is used for
226 * cascading to the PVR2 DMAC. In this case, we still need to write
227 * SAR and DAR, regardless of value, in order for cascading to work.
228 */
229 if (chan->sar || (mach_is_dreamcast() &&
230 chan->chan == PVR2_CASCADE_CHAN))
231 __raw_writel(chan->sar, (dma_base_addr(chan->chan) + SAR));
232 if (chan->dar || (mach_is_dreamcast() &&
233 chan->chan == PVR2_CASCADE_CHAN))
234 __raw_writel(chan->dar, (dma_base_addr(chan->chan) + DAR));
235
236 __raw_writel(chan->count >> calc_xmit_shift(chan),
237 (dma_base_addr(chan->chan) + TCR));
238
239 sh_dmac_enable_dma(chan);
240
241 return 0;
242 }
243
sh_dmac_get_dma_residue(struct dma_channel * chan)244 static int sh_dmac_get_dma_residue(struct dma_channel *chan)
245 {
246 if (!(__raw_readl(dma_base_addr(chan->chan) + CHCR) & CHCR_DE))
247 return 0;
248
249 return __raw_readl(dma_base_addr(chan->chan) + TCR)
250 << calc_xmit_shift(chan);
251 }
252
253 /*
254 * DMAOR handling
255 */
256 #if defined(CONFIG_CPU_SUBTYPE_SH7723) || \
257 defined(CONFIG_CPU_SUBTYPE_SH7724) || \
258 defined(CONFIG_CPU_SUBTYPE_SH7780) || \
259 defined(CONFIG_CPU_SUBTYPE_SH7785)
260 #define NR_DMAOR 2
261 #else
262 #define NR_DMAOR 1
263 #endif
264
265 #define dmaor_read_reg(n) __raw_readw(dma_find_base((n) * \
266 SH_DMAC_NR_MD_CH) + DMAOR)
267 #define dmaor_write_reg(n, data) __raw_writew(data, \
268 dma_find_base((n) * \
269 SH_DMAC_NR_MD_CH) + DMAOR)
270
dmaor_reset(int no)271 static inline int dmaor_reset(int no)
272 {
273 unsigned long dmaor = dmaor_read_reg(no);
274
275 /* Try to clear the error flags first, incase they are set */
276 dmaor &= ~(DMAOR_NMIF | DMAOR_AE);
277 dmaor_write_reg(no, dmaor);
278
279 dmaor |= DMAOR_INIT;
280 dmaor_write_reg(no, dmaor);
281
282 /* See if we got an error again */
283 if ((dmaor_read_reg(no) & (DMAOR_AE | DMAOR_NMIF))) {
284 printk(KERN_ERR "dma-sh: Can't initialize DMAOR.\n");
285 return -EINVAL;
286 }
287
288 return 0;
289 }
290
291 /*
292 * DMAE handling
293 */
294 #ifdef CONFIG_CPU_SH4
295
296 #if defined(DMAE1_IRQ)
297 #define NR_DMAE 2
298 #else
299 #define NR_DMAE 1
300 #endif
301
302 static const char *dmae_name[] = {
303 "DMAC Address Error0",
304 "DMAC Address Error1"
305 };
306
307 #ifdef CONFIG_SH_DMA_IRQ_MULTI
get_dma_error_irq(int n)308 static inline unsigned int get_dma_error_irq(int n)
309 {
310 return get_dmte_irq(n * 6);
311 }
312 #else
313
314 static unsigned int dmae_irq_map[] = {
315 DMAE0_IRQ,
316
317 #ifdef DMAE1_IRQ
318 DMAE1_IRQ,
319 #endif
320 };
321
get_dma_error_irq(int n)322 static inline unsigned int get_dma_error_irq(int n)
323 {
324 return dmae_irq_map[n];
325 }
326 #endif
327
dma_err(int irq,void * dummy)328 static irqreturn_t dma_err(int irq, void *dummy)
329 {
330 int i;
331
332 for (i = 0; i < NR_DMAOR; i++)
333 dmaor_reset(i);
334
335 disable_irq(irq);
336
337 return IRQ_HANDLED;
338 }
339
dmae_irq_init(void)340 static int dmae_irq_init(void)
341 {
342 int n;
343
344 for (n = 0; n < NR_DMAE; n++) {
345 int i = request_irq(get_dma_error_irq(n), dma_err,
346 IRQF_SHARED, dmae_name[n], (void *)dmae_name[n]);
347 if (unlikely(i < 0)) {
348 printk(KERN_ERR "%s request_irq fail\n", dmae_name[n]);
349 return i;
350 }
351 }
352
353 return 0;
354 }
355
dmae_irq_free(void)356 static void dmae_irq_free(void)
357 {
358 int n;
359
360 for (n = 0; n < NR_DMAE; n++)
361 free_irq(get_dma_error_irq(n), NULL);
362 }
363 #else
dmae_irq_init(void)364 static inline int dmae_irq_init(void)
365 {
366 return 0;
367 }
368
dmae_irq_free(void)369 static void dmae_irq_free(void)
370 {
371 }
372 #endif
373
374 static struct dma_ops sh_dmac_ops = {
375 .request = sh_dmac_request_dma,
376 .free = sh_dmac_free_dma,
377 .get_residue = sh_dmac_get_dma_residue,
378 .xfer = sh_dmac_xfer_dma,
379 .configure = sh_dmac_configure_channel,
380 };
381
382 static struct dma_info sh_dmac_info = {
383 .name = "sh_dmac",
384 .nr_channels = CONFIG_NR_ONCHIP_DMA_CHANNELS,
385 .ops = &sh_dmac_ops,
386 .flags = DMAC_CHANNELS_TEI_CAPABLE,
387 };
388
sh_dmac_init(void)389 static int __init sh_dmac_init(void)
390 {
391 struct dma_info *info = &sh_dmac_info;
392 int i, rc;
393
394 /*
395 * Initialize DMAE, for parts that support it.
396 */
397 rc = dmae_irq_init();
398 if (unlikely(rc != 0))
399 return rc;
400
401 /*
402 * Initialize DMAOR, and clean up any error flags that may have
403 * been set.
404 */
405 for (i = 0; i < NR_DMAOR; i++) {
406 rc = dmaor_reset(i);
407 if (unlikely(rc != 0))
408 return rc;
409 }
410
411 return register_dmac(info);
412 }
413
sh_dmac_exit(void)414 static void __exit sh_dmac_exit(void)
415 {
416 dmae_irq_free();
417 unregister_dmac(&sh_dmac_info);
418 }
419
420 subsys_initcall(sh_dmac_init);
421 module_exit(sh_dmac_exit);
422
423 MODULE_AUTHOR("Takashi YOSHII, Paul Mundt, Andriy Skulysh");
424 MODULE_DESCRIPTION("SuperH On-Chip DMAC Support");
425 MODULE_LICENSE("GPL v2");
426