xref: /openbmc/linux/arch/x86/kernel/cpu/sgx/main.c (revision fb2d0575)
1 // SPDX-License-Identifier: GPL-2.0
2 /*  Copyright(c) 2016-20 Intel Corporation. */
3 
4 #include <linux/file.h>
5 #include <linux/freezer.h>
6 #include <linux/highmem.h>
7 #include <linux/kthread.h>
8 #include <linux/miscdevice.h>
9 #include <linux/node.h>
10 #include <linux/pagemap.h>
11 #include <linux/ratelimit.h>
12 #include <linux/sched/mm.h>
13 #include <linux/sched/signal.h>
14 #include <linux/slab.h>
15 #include <linux/sysfs.h>
16 #include <asm/sgx.h>
17 #include "driver.h"
18 #include "encl.h"
19 #include "encls.h"
20 
21 struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
22 static int sgx_nr_epc_sections;
23 static struct task_struct *ksgxd_tsk;
24 static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
25 static DEFINE_XARRAY(sgx_epc_address_space);
26 
27 /*
28  * These variables are part of the state of the reclaimer, and must be accessed
29  * with sgx_reclaimer_lock acquired.
30  */
31 static LIST_HEAD(sgx_active_page_list);
32 static DEFINE_SPINLOCK(sgx_reclaimer_lock);
33 
34 static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0);
35 
36 /* Nodes with one or more EPC sections. */
37 static nodemask_t sgx_numa_mask;
38 
39 /*
40  * Array with one list_head for each possible NUMA node.  Each
41  * list contains all the sgx_epc_section's which are on that
42  * node.
43  */
44 static struct sgx_numa_node *sgx_numa_nodes;
45 
46 static LIST_HEAD(sgx_dirty_page_list);
47 
48 /*
49  * Reset post-kexec EPC pages to the uninitialized state. The pages are removed
50  * from the input list, and made available for the page allocator. SECS pages
51  * prepending their children in the input list are left intact.
52  *
53  * Return 0 when sanitization was successful or kthread was stopped, and the
54  * number of unsanitized pages otherwise.
55  */
__sgx_sanitize_pages(struct list_head * dirty_page_list)56 static unsigned long __sgx_sanitize_pages(struct list_head *dirty_page_list)
57 {
58 	unsigned long left_dirty = 0;
59 	struct sgx_epc_page *page;
60 	LIST_HEAD(dirty);
61 	int ret;
62 
63 	/* dirty_page_list is thread-local, no need for a lock: */
64 	while (!list_empty(dirty_page_list)) {
65 		if (kthread_should_stop())
66 			return 0;
67 
68 		page = list_first_entry(dirty_page_list, struct sgx_epc_page, list);
69 
70 		/*
71 		 * Checking page->poison without holding the node->lock
72 		 * is racy, but losing the race (i.e. poison is set just
73 		 * after the check) just means __eremove() will be uselessly
74 		 * called for a page that sgx_free_epc_page() will put onto
75 		 * the node->sgx_poison_page_list later.
76 		 */
77 		if (page->poison) {
78 			struct sgx_epc_section *section = &sgx_epc_sections[page->section];
79 			struct sgx_numa_node *node = section->node;
80 
81 			spin_lock(&node->lock);
82 			list_move(&page->list, &node->sgx_poison_page_list);
83 			spin_unlock(&node->lock);
84 
85 			continue;
86 		}
87 
88 		ret = __eremove(sgx_get_epc_virt_addr(page));
89 		if (!ret) {
90 			/*
91 			 * page is now sanitized.  Make it available via the SGX
92 			 * page allocator:
93 			 */
94 			list_del(&page->list);
95 			sgx_free_epc_page(page);
96 		} else {
97 			/* The page is not yet clean - move to the dirty list. */
98 			list_move_tail(&page->list, &dirty);
99 			left_dirty++;
100 		}
101 
102 		cond_resched();
103 	}
104 
105 	list_splice(&dirty, dirty_page_list);
106 	return left_dirty;
107 }
108 
sgx_reclaimer_age(struct sgx_epc_page * epc_page)109 static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
110 {
111 	struct sgx_encl_page *page = epc_page->owner;
112 	struct sgx_encl *encl = page->encl;
113 	struct sgx_encl_mm *encl_mm;
114 	bool ret = true;
115 	int idx;
116 
117 	idx = srcu_read_lock(&encl->srcu);
118 
119 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
120 		if (!mmget_not_zero(encl_mm->mm))
121 			continue;
122 
123 		mmap_read_lock(encl_mm->mm);
124 		ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
125 		mmap_read_unlock(encl_mm->mm);
126 
127 		mmput_async(encl_mm->mm);
128 
129 		if (!ret)
130 			break;
131 	}
132 
133 	srcu_read_unlock(&encl->srcu, idx);
134 
135 	if (!ret)
136 		return false;
137 
138 	return true;
139 }
140 
sgx_reclaimer_block(struct sgx_epc_page * epc_page)141 static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
142 {
143 	struct sgx_encl_page *page = epc_page->owner;
144 	unsigned long addr = page->desc & PAGE_MASK;
145 	struct sgx_encl *encl = page->encl;
146 	int ret;
147 
148 	sgx_zap_enclave_ptes(encl, addr);
149 
150 	mutex_lock(&encl->lock);
151 
152 	ret = __eblock(sgx_get_epc_virt_addr(epc_page));
153 	if (encls_failed(ret))
154 		ENCLS_WARN(ret, "EBLOCK");
155 
156 	mutex_unlock(&encl->lock);
157 }
158 
__sgx_encl_ewb(struct sgx_epc_page * epc_page,void * va_slot,struct sgx_backing * backing)159 static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
160 			  struct sgx_backing *backing)
161 {
162 	struct sgx_pageinfo pginfo;
163 	int ret;
164 
165 	pginfo.addr = 0;
166 	pginfo.secs = 0;
167 
168 	pginfo.contents = (unsigned long)kmap_local_page(backing->contents);
169 	pginfo.metadata = (unsigned long)kmap_local_page(backing->pcmd) +
170 			  backing->pcmd_offset;
171 
172 	ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
173 	set_page_dirty(backing->pcmd);
174 	set_page_dirty(backing->contents);
175 
176 	kunmap_local((void *)(unsigned long)(pginfo.metadata -
177 					      backing->pcmd_offset));
178 	kunmap_local((void *)(unsigned long)pginfo.contents);
179 
180 	return ret;
181 }
182 
sgx_ipi_cb(void * info)183 void sgx_ipi_cb(void *info)
184 {
185 }
186 
187 /*
188  * Swap page to the regular memory transformed to the blocked state by using
189  * EBLOCK, which means that it can no longer be referenced (no new TLB entries).
190  *
191  * The first trial just tries to write the page assuming that some other thread
192  * has reset the count for threads inside the enclave by using ETRACK, and
193  * previous thread count has been zeroed out. The second trial calls ETRACK
194  * before EWB. If that fails we kick all the HW threads out, and then do EWB,
195  * which should be guaranteed the succeed.
196  */
sgx_encl_ewb(struct sgx_epc_page * epc_page,struct sgx_backing * backing)197 static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
198 			 struct sgx_backing *backing)
199 {
200 	struct sgx_encl_page *encl_page = epc_page->owner;
201 	struct sgx_encl *encl = encl_page->encl;
202 	struct sgx_va_page *va_page;
203 	unsigned int va_offset;
204 	void *va_slot;
205 	int ret;
206 
207 	encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;
208 
209 	va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
210 				   list);
211 	va_offset = sgx_alloc_va_slot(va_page);
212 	va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
213 	if (sgx_va_page_full(va_page))
214 		list_move_tail(&va_page->list, &encl->va_pages);
215 
216 	ret = __sgx_encl_ewb(epc_page, va_slot, backing);
217 	if (ret == SGX_NOT_TRACKED) {
218 		ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
219 		if (ret) {
220 			if (encls_failed(ret))
221 				ENCLS_WARN(ret, "ETRACK");
222 		}
223 
224 		ret = __sgx_encl_ewb(epc_page, va_slot, backing);
225 		if (ret == SGX_NOT_TRACKED) {
226 			/*
227 			 * Slow path, send IPIs to kick cpus out of the
228 			 * enclave.  Note, it's imperative that the cpu
229 			 * mask is generated *after* ETRACK, else we'll
230 			 * miss cpus that entered the enclave between
231 			 * generating the mask and incrementing epoch.
232 			 */
233 			on_each_cpu_mask(sgx_encl_cpumask(encl),
234 					 sgx_ipi_cb, NULL, 1);
235 			ret = __sgx_encl_ewb(epc_page, va_slot, backing);
236 		}
237 	}
238 
239 	if (ret) {
240 		if (encls_failed(ret))
241 			ENCLS_WARN(ret, "EWB");
242 
243 		sgx_free_va_slot(va_page, va_offset);
244 	} else {
245 		encl_page->desc |= va_offset;
246 		encl_page->va_page = va_page;
247 	}
248 }
249 
sgx_reclaimer_write(struct sgx_epc_page * epc_page,struct sgx_backing * backing)250 static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
251 				struct sgx_backing *backing)
252 {
253 	struct sgx_encl_page *encl_page = epc_page->owner;
254 	struct sgx_encl *encl = encl_page->encl;
255 	struct sgx_backing secs_backing;
256 	int ret;
257 
258 	mutex_lock(&encl->lock);
259 
260 	sgx_encl_ewb(epc_page, backing);
261 	encl_page->epc_page = NULL;
262 	encl->secs_child_cnt--;
263 	sgx_encl_put_backing(backing);
264 
265 	if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
266 		ret = sgx_encl_alloc_backing(encl, PFN_DOWN(encl->size),
267 					   &secs_backing);
268 		if (ret)
269 			goto out;
270 
271 		sgx_encl_ewb(encl->secs.epc_page, &secs_backing);
272 
273 		sgx_encl_free_epc_page(encl->secs.epc_page);
274 		encl->secs.epc_page = NULL;
275 
276 		sgx_encl_put_backing(&secs_backing);
277 	}
278 
279 out:
280 	mutex_unlock(&encl->lock);
281 }
282 
283 /*
284  * Take a fixed number of pages from the head of the active page pool and
285  * reclaim them to the enclave's private shmem files. Skip the pages, which have
286  * been accessed since the last scan. Move those pages to the tail of active
287  * page pool so that the pages get scanned in LRU like fashion.
288  *
289  * Batch process a chunk of pages (at the moment 16) in order to degrade amount
290  * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
291  * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
292  * + EWB) but not sufficiently. Reclaiming one page at a time would also be
293  * problematic as it would increase the lock contention too much, which would
294  * halt forward progress.
295  */
sgx_reclaim_pages(void)296 static void sgx_reclaim_pages(void)
297 {
298 	struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
299 	struct sgx_backing backing[SGX_NR_TO_SCAN];
300 	struct sgx_encl_page *encl_page;
301 	struct sgx_epc_page *epc_page;
302 	pgoff_t page_index;
303 	int cnt = 0;
304 	int ret;
305 	int i;
306 
307 	spin_lock(&sgx_reclaimer_lock);
308 	for (i = 0; i < SGX_NR_TO_SCAN; i++) {
309 		if (list_empty(&sgx_active_page_list))
310 			break;
311 
312 		epc_page = list_first_entry(&sgx_active_page_list,
313 					    struct sgx_epc_page, list);
314 		list_del_init(&epc_page->list);
315 		encl_page = epc_page->owner;
316 
317 		if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
318 			chunk[cnt++] = epc_page;
319 		else
320 			/* The owner is freeing the page. No need to add the
321 			 * page back to the list of reclaimable pages.
322 			 */
323 			epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
324 	}
325 	spin_unlock(&sgx_reclaimer_lock);
326 
327 	for (i = 0; i < cnt; i++) {
328 		epc_page = chunk[i];
329 		encl_page = epc_page->owner;
330 
331 		if (!sgx_reclaimer_age(epc_page))
332 			goto skip;
333 
334 		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
335 
336 		mutex_lock(&encl_page->encl->lock);
337 		ret = sgx_encl_alloc_backing(encl_page->encl, page_index, &backing[i]);
338 		if (ret) {
339 			mutex_unlock(&encl_page->encl->lock);
340 			goto skip;
341 		}
342 
343 		encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
344 		mutex_unlock(&encl_page->encl->lock);
345 		continue;
346 
347 skip:
348 		spin_lock(&sgx_reclaimer_lock);
349 		list_add_tail(&epc_page->list, &sgx_active_page_list);
350 		spin_unlock(&sgx_reclaimer_lock);
351 
352 		kref_put(&encl_page->encl->refcount, sgx_encl_release);
353 
354 		chunk[i] = NULL;
355 	}
356 
357 	for (i = 0; i < cnt; i++) {
358 		epc_page = chunk[i];
359 		if (epc_page)
360 			sgx_reclaimer_block(epc_page);
361 	}
362 
363 	for (i = 0; i < cnt; i++) {
364 		epc_page = chunk[i];
365 		if (!epc_page)
366 			continue;
367 
368 		encl_page = epc_page->owner;
369 		sgx_reclaimer_write(epc_page, &backing[i]);
370 
371 		kref_put(&encl_page->encl->refcount, sgx_encl_release);
372 		epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
373 
374 		sgx_free_epc_page(epc_page);
375 	}
376 }
377 
sgx_should_reclaim(unsigned long watermark)378 static bool sgx_should_reclaim(unsigned long watermark)
379 {
380 	return atomic_long_read(&sgx_nr_free_pages) < watermark &&
381 	       !list_empty(&sgx_active_page_list);
382 }
383 
384 /*
385  * sgx_reclaim_direct() should be called (without enclave's mutex held)
386  * in locations where SGX memory resources might be low and might be
387  * needed in order to make forward progress.
388  */
sgx_reclaim_direct(void)389 void sgx_reclaim_direct(void)
390 {
391 	if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
392 		sgx_reclaim_pages();
393 }
394 
ksgxd(void * p)395 static int ksgxd(void *p)
396 {
397 	set_freezable();
398 
399 	/*
400 	 * Sanitize pages in order to recover from kexec(). The 2nd pass is
401 	 * required for SECS pages, whose child pages blocked EREMOVE.
402 	 */
403 	__sgx_sanitize_pages(&sgx_dirty_page_list);
404 	WARN_ON(__sgx_sanitize_pages(&sgx_dirty_page_list));
405 
406 	while (!kthread_should_stop()) {
407 		if (try_to_freeze())
408 			continue;
409 
410 		wait_event_freezable(ksgxd_waitq,
411 				     kthread_should_stop() ||
412 				     sgx_should_reclaim(SGX_NR_HIGH_PAGES));
413 
414 		if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
415 			sgx_reclaim_pages();
416 
417 		cond_resched();
418 	}
419 
420 	return 0;
421 }
422 
sgx_page_reclaimer_init(void)423 static bool __init sgx_page_reclaimer_init(void)
424 {
425 	struct task_struct *tsk;
426 
427 	tsk = kthread_run(ksgxd, NULL, "ksgxd");
428 	if (IS_ERR(tsk))
429 		return false;
430 
431 	ksgxd_tsk = tsk;
432 
433 	return true;
434 }
435 
current_is_ksgxd(void)436 bool current_is_ksgxd(void)
437 {
438 	return current == ksgxd_tsk;
439 }
440 
__sgx_alloc_epc_page_from_node(int nid)441 static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid)
442 {
443 	struct sgx_numa_node *node = &sgx_numa_nodes[nid];
444 	struct sgx_epc_page *page = NULL;
445 
446 	spin_lock(&node->lock);
447 
448 	if (list_empty(&node->free_page_list)) {
449 		spin_unlock(&node->lock);
450 		return NULL;
451 	}
452 
453 	page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list);
454 	list_del_init(&page->list);
455 	page->flags = 0;
456 
457 	spin_unlock(&node->lock);
458 	atomic_long_dec(&sgx_nr_free_pages);
459 
460 	return page;
461 }
462 
463 /**
464  * __sgx_alloc_epc_page() - Allocate an EPC page
465  *
466  * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start
467  * from the NUMA node, where the caller is executing.
468  *
469  * Return:
470  * - an EPC page:	A borrowed EPC pages were available.
471  * - NULL:		Out of EPC pages.
472  */
__sgx_alloc_epc_page(void)473 struct sgx_epc_page *__sgx_alloc_epc_page(void)
474 {
475 	struct sgx_epc_page *page;
476 	int nid_of_current = numa_node_id();
477 	int nid_start, nid;
478 
479 	/*
480 	 * Try local node first. If it doesn't have an EPC section,
481 	 * fall back to the non-local NUMA nodes.
482 	 */
483 	if (node_isset(nid_of_current, sgx_numa_mask))
484 		nid_start = nid_of_current;
485 	else
486 		nid_start = next_node_in(nid_of_current, sgx_numa_mask);
487 
488 	nid = nid_start;
489 	do {
490 		page = __sgx_alloc_epc_page_from_node(nid);
491 		if (page)
492 			return page;
493 
494 		nid = next_node_in(nid, sgx_numa_mask);
495 	} while (nid != nid_start);
496 
497 	return ERR_PTR(-ENOMEM);
498 }
499 
500 /**
501  * sgx_mark_page_reclaimable() - Mark a page as reclaimable
502  * @page:	EPC page
503  *
504  * Mark a page as reclaimable and add it to the active page list. Pages
505  * are automatically removed from the active list when freed.
506  */
sgx_mark_page_reclaimable(struct sgx_epc_page * page)507 void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
508 {
509 	spin_lock(&sgx_reclaimer_lock);
510 	page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
511 	list_add_tail(&page->list, &sgx_active_page_list);
512 	spin_unlock(&sgx_reclaimer_lock);
513 }
514 
515 /**
516  * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
517  * @page:	EPC page
518  *
519  * Clear the reclaimable flag and remove the page from the active page list.
520  *
521  * Return:
522  *   0 on success,
523  *   -EBUSY if the page is in the process of being reclaimed
524  */
sgx_unmark_page_reclaimable(struct sgx_epc_page * page)525 int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
526 {
527 	spin_lock(&sgx_reclaimer_lock);
528 	if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
529 		/* The page is being reclaimed. */
530 		if (list_empty(&page->list)) {
531 			spin_unlock(&sgx_reclaimer_lock);
532 			return -EBUSY;
533 		}
534 
535 		list_del(&page->list);
536 		page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
537 	}
538 	spin_unlock(&sgx_reclaimer_lock);
539 
540 	return 0;
541 }
542 
543 /**
544  * sgx_alloc_epc_page() - Allocate an EPC page
545  * @owner:	the owner of the EPC page
546  * @reclaim:	reclaim pages if necessary
547  *
548  * Iterate through EPC sections and borrow a free EPC page to the caller. When a
549  * page is no longer needed it must be released with sgx_free_epc_page(). If
550  * @reclaim is set to true, directly reclaim pages when we are out of pages. No
551  * mm's can be locked when @reclaim is set to true.
552  *
553  * Finally, wake up ksgxd when the number of pages goes below the watermark
554  * before returning back to the caller.
555  *
556  * Return:
557  *   an EPC page,
558  *   -errno on error
559  */
sgx_alloc_epc_page(void * owner,bool reclaim)560 struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
561 {
562 	struct sgx_epc_page *page;
563 
564 	for ( ; ; ) {
565 		page = __sgx_alloc_epc_page();
566 		if (!IS_ERR(page)) {
567 			page->owner = owner;
568 			break;
569 		}
570 
571 		if (list_empty(&sgx_active_page_list))
572 			return ERR_PTR(-ENOMEM);
573 
574 		if (!reclaim) {
575 			page = ERR_PTR(-EBUSY);
576 			break;
577 		}
578 
579 		if (signal_pending(current)) {
580 			page = ERR_PTR(-ERESTARTSYS);
581 			break;
582 		}
583 
584 		sgx_reclaim_pages();
585 		cond_resched();
586 	}
587 
588 	if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
589 		wake_up(&ksgxd_waitq);
590 
591 	return page;
592 }
593 
594 /**
595  * sgx_free_epc_page() - Free an EPC page
596  * @page:	an EPC page
597  *
598  * Put the EPC page back to the list of free pages. It's the caller's
599  * responsibility to make sure that the page is in uninitialized state. In other
600  * words, do EREMOVE, EWB or whatever operation is necessary before calling
601  * this function.
602  */
sgx_free_epc_page(struct sgx_epc_page * page)603 void sgx_free_epc_page(struct sgx_epc_page *page)
604 {
605 	struct sgx_epc_section *section = &sgx_epc_sections[page->section];
606 	struct sgx_numa_node *node = section->node;
607 
608 	spin_lock(&node->lock);
609 
610 	page->owner = NULL;
611 	if (page->poison)
612 		list_add(&page->list, &node->sgx_poison_page_list);
613 	else
614 		list_add_tail(&page->list, &node->free_page_list);
615 	page->flags = SGX_EPC_PAGE_IS_FREE;
616 
617 	spin_unlock(&node->lock);
618 	atomic_long_inc(&sgx_nr_free_pages);
619 }
620 
sgx_setup_epc_section(u64 phys_addr,u64 size,unsigned long index,struct sgx_epc_section * section)621 static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
622 					 unsigned long index,
623 					 struct sgx_epc_section *section)
624 {
625 	unsigned long nr_pages = size >> PAGE_SHIFT;
626 	unsigned long i;
627 
628 	section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
629 	if (!section->virt_addr)
630 		return false;
631 
632 	section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page));
633 	if (!section->pages) {
634 		memunmap(section->virt_addr);
635 		return false;
636 	}
637 
638 	section->phys_addr = phys_addr;
639 	xa_store_range(&sgx_epc_address_space, section->phys_addr,
640 		       phys_addr + size - 1, section, GFP_KERNEL);
641 
642 	for (i = 0; i < nr_pages; i++) {
643 		section->pages[i].section = index;
644 		section->pages[i].flags = 0;
645 		section->pages[i].owner = NULL;
646 		section->pages[i].poison = 0;
647 		list_add_tail(&section->pages[i].list, &sgx_dirty_page_list);
648 	}
649 
650 	return true;
651 }
652 
arch_is_platform_page(u64 paddr)653 bool arch_is_platform_page(u64 paddr)
654 {
655 	return !!xa_load(&sgx_epc_address_space, paddr);
656 }
657 EXPORT_SYMBOL_GPL(arch_is_platform_page);
658 
sgx_paddr_to_page(u64 paddr)659 static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr)
660 {
661 	struct sgx_epc_section *section;
662 
663 	section = xa_load(&sgx_epc_address_space, paddr);
664 	if (!section)
665 		return NULL;
666 
667 	return &section->pages[PFN_DOWN(paddr - section->phys_addr)];
668 }
669 
670 /*
671  * Called in process context to handle a hardware reported
672  * error in an SGX EPC page.
673  * If the MF_ACTION_REQUIRED bit is set in flags, then the
674  * context is the task that consumed the poison data. Otherwise
675  * this is called from a kernel thread unrelated to the page.
676  */
arch_memory_failure(unsigned long pfn,int flags)677 int arch_memory_failure(unsigned long pfn, int flags)
678 {
679 	struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT);
680 	struct sgx_epc_section *section;
681 	struct sgx_numa_node *node;
682 
683 	/*
684 	 * mm/memory-failure.c calls this routine for all errors
685 	 * where there isn't a "struct page" for the address. But that
686 	 * includes other address ranges besides SGX.
687 	 */
688 	if (!page)
689 		return -ENXIO;
690 
691 	/*
692 	 * If poison was consumed synchronously. Send a SIGBUS to
693 	 * the task. Hardware has already exited the SGX enclave and
694 	 * will not allow re-entry to an enclave that has a memory
695 	 * error. The signal may help the task understand why the
696 	 * enclave is broken.
697 	 */
698 	if (flags & MF_ACTION_REQUIRED)
699 		force_sig(SIGBUS);
700 
701 	section = &sgx_epc_sections[page->section];
702 	node = section->node;
703 
704 	spin_lock(&node->lock);
705 
706 	/* Already poisoned? Nothing more to do */
707 	if (page->poison)
708 		goto out;
709 
710 	page->poison = 1;
711 
712 	/*
713 	 * If the page is on a free list, move it to the per-node
714 	 * poison page list.
715 	 */
716 	if (page->flags & SGX_EPC_PAGE_IS_FREE) {
717 		list_move(&page->list, &node->sgx_poison_page_list);
718 		goto out;
719 	}
720 
721 	/*
722 	 * TBD: Add additional plumbing to enable pre-emptive
723 	 * action for asynchronous poison notification. Until
724 	 * then just hope that the poison:
725 	 * a) is not accessed - sgx_free_epc_page() will deal with it
726 	 *    when the user gives it back
727 	 * b) results in a recoverable machine check rather than
728 	 *    a fatal one
729 	 */
730 out:
731 	spin_unlock(&node->lock);
732 	return 0;
733 }
734 
735 /**
736  * A section metric is concatenated in a way that @low bits 12-31 define the
737  * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
738  * metric.
739  */
sgx_calc_section_metric(u64 low,u64 high)740 static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
741 {
742 	return (low & GENMASK_ULL(31, 12)) +
743 	       ((high & GENMASK_ULL(19, 0)) << 32);
744 }
745 
746 #ifdef CONFIG_NUMA
sgx_total_bytes_show(struct device * dev,struct device_attribute * attr,char * buf)747 static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf)
748 {
749 	return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size);
750 }
751 static DEVICE_ATTR_RO(sgx_total_bytes);
752 
arch_node_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)753 static umode_t arch_node_attr_is_visible(struct kobject *kobj,
754 		struct attribute *attr, int idx)
755 {
756 	/* Make all x86/ attributes invisible when SGX is not initialized: */
757 	if (nodes_empty(sgx_numa_mask))
758 		return 0;
759 
760 	return attr->mode;
761 }
762 
763 static struct attribute *arch_node_dev_attrs[] = {
764 	&dev_attr_sgx_total_bytes.attr,
765 	NULL,
766 };
767 
768 const struct attribute_group arch_node_dev_group = {
769 	.name = "x86",
770 	.attrs = arch_node_dev_attrs,
771 	.is_visible = arch_node_attr_is_visible,
772 };
773 
arch_update_sysfs_visibility(int nid)774 static void __init arch_update_sysfs_visibility(int nid)
775 {
776 	struct node *node = node_devices[nid];
777 	int ret;
778 
779 	ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group);
780 
781 	if (ret)
782 		pr_err("sysfs update failed (%d), files may be invisible", ret);
783 }
784 #else /* !CONFIG_NUMA */
arch_update_sysfs_visibility(int nid)785 static void __init arch_update_sysfs_visibility(int nid) {}
786 #endif
787 
sgx_page_cache_init(void)788 static bool __init sgx_page_cache_init(void)
789 {
790 	u32 eax, ebx, ecx, edx, type;
791 	u64 pa, size;
792 	int nid;
793 	int i;
794 
795 	sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL);
796 	if (!sgx_numa_nodes)
797 		return false;
798 
799 	for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
800 		cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);
801 
802 		type = eax & SGX_CPUID_EPC_MASK;
803 		if (type == SGX_CPUID_EPC_INVALID)
804 			break;
805 
806 		if (type != SGX_CPUID_EPC_SECTION) {
807 			pr_err_once("Unknown EPC section type: %u\n", type);
808 			break;
809 		}
810 
811 		pa   = sgx_calc_section_metric(eax, ebx);
812 		size = sgx_calc_section_metric(ecx, edx);
813 
814 		pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);
815 
816 		if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
817 			pr_err("No free memory for an EPC section\n");
818 			break;
819 		}
820 
821 		nid = numa_map_to_online_node(phys_to_target_node(pa));
822 		if (nid == NUMA_NO_NODE) {
823 			/* The physical address is already printed above. */
824 			pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n");
825 			nid = 0;
826 		}
827 
828 		if (!node_isset(nid, sgx_numa_mask)) {
829 			spin_lock_init(&sgx_numa_nodes[nid].lock);
830 			INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list);
831 			INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list);
832 			node_set(nid, sgx_numa_mask);
833 			sgx_numa_nodes[nid].size = 0;
834 
835 			/* Make SGX-specific node sysfs files visible: */
836 			arch_update_sysfs_visibility(nid);
837 		}
838 
839 		sgx_epc_sections[i].node =  &sgx_numa_nodes[nid];
840 		sgx_numa_nodes[nid].size += size;
841 
842 		sgx_nr_epc_sections++;
843 	}
844 
845 	if (!sgx_nr_epc_sections) {
846 		pr_err("There are zero EPC sections.\n");
847 		return false;
848 	}
849 
850 	return true;
851 }
852 
853 /*
854  * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller.
855  * Bare-metal driver requires to update them to hash of enclave's signer
856  * before EINIT. KVM needs to update them to guest's virtual MSR values
857  * before doing EINIT from guest.
858  */
sgx_update_lepubkeyhash(u64 * lepubkeyhash)859 void sgx_update_lepubkeyhash(u64 *lepubkeyhash)
860 {
861 	int i;
862 
863 	WARN_ON_ONCE(preemptible());
864 
865 	for (i = 0; i < 4; i++)
866 		wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]);
867 }
868 
869 const struct file_operations sgx_provision_fops = {
870 	.owner			= THIS_MODULE,
871 };
872 
873 static struct miscdevice sgx_dev_provision = {
874 	.minor = MISC_DYNAMIC_MINOR,
875 	.name = "sgx_provision",
876 	.nodename = "sgx_provision",
877 	.fops = &sgx_provision_fops,
878 };
879 
880 /**
881  * sgx_set_attribute() - Update allowed attributes given file descriptor
882  * @allowed_attributes:		Pointer to allowed enclave attributes
883  * @attribute_fd:		File descriptor for specific attribute
884  *
885  * Append enclave attribute indicated by file descriptor to allowed
886  * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by
887  * /dev/sgx_provision is supported.
888  *
889  * Return:
890  * -0:		SGX_ATTR_PROVISIONKEY is appended to allowed_attributes
891  * -EINVAL:	Invalid, or not supported file descriptor
892  */
sgx_set_attribute(unsigned long * allowed_attributes,unsigned int attribute_fd)893 int sgx_set_attribute(unsigned long *allowed_attributes,
894 		      unsigned int attribute_fd)
895 {
896 	struct fd f = fdget(attribute_fd);
897 
898 	if (!f.file)
899 		return -EINVAL;
900 
901 	if (f.file->f_op != &sgx_provision_fops) {
902 		fdput(f);
903 		return -EINVAL;
904 	}
905 
906 	*allowed_attributes |= SGX_ATTR_PROVISIONKEY;
907 
908 	fdput(f);
909 	return 0;
910 }
911 EXPORT_SYMBOL_GPL(sgx_set_attribute);
912 
sgx_init(void)913 static int __init sgx_init(void)
914 {
915 	int ret;
916 	int i;
917 
918 	if (!cpu_feature_enabled(X86_FEATURE_SGX))
919 		return -ENODEV;
920 
921 	if (!sgx_page_cache_init())
922 		return -ENOMEM;
923 
924 	if (!sgx_page_reclaimer_init()) {
925 		ret = -ENOMEM;
926 		goto err_page_cache;
927 	}
928 
929 	ret = misc_register(&sgx_dev_provision);
930 	if (ret)
931 		goto err_kthread;
932 
933 	/*
934 	 * Always try to initialize the native *and* KVM drivers.
935 	 * The KVM driver is less picky than the native one and
936 	 * can function if the native one is not supported on the
937 	 * current system or fails to initialize.
938 	 *
939 	 * Error out only if both fail to initialize.
940 	 */
941 	ret = sgx_drv_init();
942 
943 	if (sgx_vepc_init() && ret)
944 		goto err_provision;
945 
946 	return 0;
947 
948 err_provision:
949 	misc_deregister(&sgx_dev_provision);
950 
951 err_kthread:
952 	kthread_stop(ksgxd_tsk);
953 
954 err_page_cache:
955 	for (i = 0; i < sgx_nr_epc_sections; i++) {
956 		vfree(sgx_epc_sections[i].pages);
957 		memunmap(sgx_epc_sections[i].virt_addr);
958 	}
959 
960 	return ret;
961 }
962 
963 device_initcall(sgx_init);
964