1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Generic pwmlib implementation
4 *
5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6 * Copyright (C) 2011-2012 Avionic Design GmbH
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/pwm.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20
21 #include <dt-bindings/pwm/pwm.h>
22
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25
26 #define MAX_PWMS 1024
27
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30
31 /* protects access to pwm_chips and allocated_pwms */
32 static DEFINE_MUTEX(pwm_lock);
33
34 static LIST_HEAD(pwm_chips);
35 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
36
37 /* Called with pwm_lock held */
alloc_pwms(unsigned int count)38 static int alloc_pwms(unsigned int count)
39 {
40 unsigned int start;
41
42 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
43 count, 0);
44
45 if (start + count > MAX_PWMS)
46 return -ENOSPC;
47
48 bitmap_set(allocated_pwms, start, count);
49
50 return start;
51 }
52
53 /* Called with pwm_lock held */
free_pwms(struct pwm_chip * chip)54 static void free_pwms(struct pwm_chip *chip)
55 {
56 bitmap_clear(allocated_pwms, chip->base, chip->npwm);
57
58 kfree(chip->pwms);
59 chip->pwms = NULL;
60 }
61
pwmchip_find_by_name(const char * name)62 static struct pwm_chip *pwmchip_find_by_name(const char *name)
63 {
64 struct pwm_chip *chip;
65
66 if (!name)
67 return NULL;
68
69 mutex_lock(&pwm_lock);
70
71 list_for_each_entry(chip, &pwm_chips, list) {
72 const char *chip_name = dev_name(chip->dev);
73
74 if (chip_name && strcmp(chip_name, name) == 0) {
75 mutex_unlock(&pwm_lock);
76 return chip;
77 }
78 }
79
80 mutex_unlock(&pwm_lock);
81
82 return NULL;
83 }
84
pwm_device_request(struct pwm_device * pwm,const char * label)85 static int pwm_device_request(struct pwm_device *pwm, const char *label)
86 {
87 int err;
88
89 if (test_bit(PWMF_REQUESTED, &pwm->flags))
90 return -EBUSY;
91
92 if (!try_module_get(pwm->chip->ops->owner))
93 return -ENODEV;
94
95 if (pwm->chip->ops->request) {
96 err = pwm->chip->ops->request(pwm->chip, pwm);
97 if (err) {
98 module_put(pwm->chip->ops->owner);
99 return err;
100 }
101 }
102
103 if (pwm->chip->ops->get_state) {
104 /*
105 * Zero-initialize state because most drivers are unaware of
106 * .usage_power. The other members of state are supposed to be
107 * set by lowlevel drivers. We still initialize the whole
108 * structure for simplicity even though this might paper over
109 * faulty implementations of .get_state().
110 */
111 struct pwm_state state = { 0, };
112
113 err = pwm->chip->ops->get_state(pwm->chip, pwm, &state);
114 trace_pwm_get(pwm, &state, err);
115
116 if (!err)
117 pwm->state = state;
118
119 if (IS_ENABLED(CONFIG_PWM_DEBUG))
120 pwm->last = pwm->state;
121 }
122
123 set_bit(PWMF_REQUESTED, &pwm->flags);
124 pwm->label = label;
125
126 return 0;
127 }
128
129 struct pwm_device *
of_pwm_xlate_with_flags(struct pwm_chip * chip,const struct of_phandle_args * args)130 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
131 {
132 struct pwm_device *pwm;
133
134 if (chip->of_pwm_n_cells < 2)
135 return ERR_PTR(-EINVAL);
136
137 /* flags in the third cell are optional */
138 if (args->args_count < 2)
139 return ERR_PTR(-EINVAL);
140
141 if (args->args[0] >= chip->npwm)
142 return ERR_PTR(-EINVAL);
143
144 pwm = pwm_request_from_chip(chip, args->args[0], NULL);
145 if (IS_ERR(pwm))
146 return pwm;
147
148 pwm->args.period = args->args[1];
149 pwm->args.polarity = PWM_POLARITY_NORMAL;
150
151 if (chip->of_pwm_n_cells >= 3) {
152 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
153 pwm->args.polarity = PWM_POLARITY_INVERSED;
154 }
155
156 return pwm;
157 }
158 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
159
160 struct pwm_device *
of_pwm_single_xlate(struct pwm_chip * chip,const struct of_phandle_args * args)161 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
162 {
163 struct pwm_device *pwm;
164
165 if (chip->of_pwm_n_cells < 1)
166 return ERR_PTR(-EINVAL);
167
168 /* validate that one cell is specified, optionally with flags */
169 if (args->args_count != 1 && args->args_count != 2)
170 return ERR_PTR(-EINVAL);
171
172 pwm = pwm_request_from_chip(chip, 0, NULL);
173 if (IS_ERR(pwm))
174 return pwm;
175
176 pwm->args.period = args->args[0];
177 pwm->args.polarity = PWM_POLARITY_NORMAL;
178
179 if (args->args_count == 2 && args->args[1] & PWM_POLARITY_INVERTED)
180 pwm->args.polarity = PWM_POLARITY_INVERSED;
181
182 return pwm;
183 }
184 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
185
of_pwmchip_add(struct pwm_chip * chip)186 static void of_pwmchip_add(struct pwm_chip *chip)
187 {
188 if (!chip->dev || !chip->dev->of_node)
189 return;
190
191 if (!chip->of_xlate) {
192 u32 pwm_cells;
193
194 if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
195 &pwm_cells))
196 pwm_cells = 2;
197
198 chip->of_xlate = of_pwm_xlate_with_flags;
199 chip->of_pwm_n_cells = pwm_cells;
200 }
201
202 of_node_get(chip->dev->of_node);
203 }
204
of_pwmchip_remove(struct pwm_chip * chip)205 static void of_pwmchip_remove(struct pwm_chip *chip)
206 {
207 if (chip->dev)
208 of_node_put(chip->dev->of_node);
209 }
210
211 /**
212 * pwm_set_chip_data() - set private chip data for a PWM
213 * @pwm: PWM device
214 * @data: pointer to chip-specific data
215 *
216 * Returns: 0 on success or a negative error code on failure.
217 */
pwm_set_chip_data(struct pwm_device * pwm,void * data)218 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
219 {
220 if (!pwm)
221 return -EINVAL;
222
223 pwm->chip_data = data;
224
225 return 0;
226 }
227 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
228
229 /**
230 * pwm_get_chip_data() - get private chip data for a PWM
231 * @pwm: PWM device
232 *
233 * Returns: A pointer to the chip-private data for the PWM device.
234 */
pwm_get_chip_data(struct pwm_device * pwm)235 void *pwm_get_chip_data(struct pwm_device *pwm)
236 {
237 return pwm ? pwm->chip_data : NULL;
238 }
239 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
240
pwm_ops_check(const struct pwm_chip * chip)241 static bool pwm_ops_check(const struct pwm_chip *chip)
242 {
243 const struct pwm_ops *ops = chip->ops;
244
245 if (!ops->apply)
246 return false;
247
248 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
249 dev_warn(chip->dev,
250 "Please implement the .get_state() callback\n");
251
252 return true;
253 }
254
255 /**
256 * pwmchip_add() - register a new PWM chip
257 * @chip: the PWM chip to add
258 *
259 * Register a new PWM chip.
260 *
261 * Returns: 0 on success or a negative error code on failure.
262 */
pwmchip_add(struct pwm_chip * chip)263 int pwmchip_add(struct pwm_chip *chip)
264 {
265 struct pwm_device *pwm;
266 unsigned int i;
267 int ret;
268
269 if (!chip || !chip->dev || !chip->ops || !chip->npwm)
270 return -EINVAL;
271
272 if (!pwm_ops_check(chip))
273 return -EINVAL;
274
275 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
276 if (!chip->pwms)
277 return -ENOMEM;
278
279 mutex_lock(&pwm_lock);
280
281 ret = alloc_pwms(chip->npwm);
282 if (ret < 0) {
283 mutex_unlock(&pwm_lock);
284 kfree(chip->pwms);
285 return ret;
286 }
287
288 chip->base = ret;
289
290 for (i = 0; i < chip->npwm; i++) {
291 pwm = &chip->pwms[i];
292
293 pwm->chip = chip;
294 pwm->pwm = chip->base + i;
295 pwm->hwpwm = i;
296 }
297
298 list_add(&chip->list, &pwm_chips);
299
300 mutex_unlock(&pwm_lock);
301
302 if (IS_ENABLED(CONFIG_OF))
303 of_pwmchip_add(chip);
304
305 pwmchip_sysfs_export(chip);
306
307 return 0;
308 }
309 EXPORT_SYMBOL_GPL(pwmchip_add);
310
311 /**
312 * pwmchip_remove() - remove a PWM chip
313 * @chip: the PWM chip to remove
314 *
315 * Removes a PWM chip.
316 */
pwmchip_remove(struct pwm_chip * chip)317 void pwmchip_remove(struct pwm_chip *chip)
318 {
319 pwmchip_sysfs_unexport(chip);
320
321 if (IS_ENABLED(CONFIG_OF))
322 of_pwmchip_remove(chip);
323
324 mutex_lock(&pwm_lock);
325
326 list_del_init(&chip->list);
327
328 free_pwms(chip);
329
330 mutex_unlock(&pwm_lock);
331 }
332 EXPORT_SYMBOL_GPL(pwmchip_remove);
333
devm_pwmchip_remove(void * data)334 static void devm_pwmchip_remove(void *data)
335 {
336 struct pwm_chip *chip = data;
337
338 pwmchip_remove(chip);
339 }
340
devm_pwmchip_add(struct device * dev,struct pwm_chip * chip)341 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
342 {
343 int ret;
344
345 ret = pwmchip_add(chip);
346 if (ret)
347 return ret;
348
349 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
350 }
351 EXPORT_SYMBOL_GPL(devm_pwmchip_add);
352
353 /**
354 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
355 * @chip: PWM chip
356 * @index: per-chip index of the PWM to request
357 * @label: a literal description string of this PWM
358 *
359 * Returns: A pointer to the PWM device at the given index of the given PWM
360 * chip. A negative error code is returned if the index is not valid for the
361 * specified PWM chip or if the PWM device cannot be requested.
362 */
pwm_request_from_chip(struct pwm_chip * chip,unsigned int index,const char * label)363 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
364 unsigned int index,
365 const char *label)
366 {
367 struct pwm_device *pwm;
368 int err;
369
370 if (!chip || index >= chip->npwm)
371 return ERR_PTR(-EINVAL);
372
373 mutex_lock(&pwm_lock);
374 pwm = &chip->pwms[index];
375
376 err = pwm_device_request(pwm, label);
377 if (err < 0)
378 pwm = ERR_PTR(err);
379
380 mutex_unlock(&pwm_lock);
381 return pwm;
382 }
383 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
384
pwm_apply_debug(struct pwm_device * pwm,const struct pwm_state * state)385 static void pwm_apply_debug(struct pwm_device *pwm,
386 const struct pwm_state *state)
387 {
388 struct pwm_state *last = &pwm->last;
389 struct pwm_chip *chip = pwm->chip;
390 struct pwm_state s1 = { 0 }, s2 = { 0 };
391 int err;
392
393 if (!IS_ENABLED(CONFIG_PWM_DEBUG))
394 return;
395
396 /* No reasonable diagnosis possible without .get_state() */
397 if (!chip->ops->get_state)
398 return;
399
400 /*
401 * *state was just applied. Read out the hardware state and do some
402 * checks.
403 */
404
405 err = chip->ops->get_state(chip, pwm, &s1);
406 trace_pwm_get(pwm, &s1, err);
407 if (err)
408 /* If that failed there isn't much to debug */
409 return;
410
411 /*
412 * The lowlevel driver either ignored .polarity (which is a bug) or as
413 * best effort inverted .polarity and fixed .duty_cycle respectively.
414 * Undo this inversion and fixup for further tests.
415 */
416 if (s1.enabled && s1.polarity != state->polarity) {
417 s2.polarity = state->polarity;
418 s2.duty_cycle = s1.period - s1.duty_cycle;
419 s2.period = s1.period;
420 s2.enabled = s1.enabled;
421 } else {
422 s2 = s1;
423 }
424
425 if (s2.polarity != state->polarity &&
426 state->duty_cycle < state->period)
427 dev_warn(chip->dev, ".apply ignored .polarity\n");
428
429 if (state->enabled &&
430 last->polarity == state->polarity &&
431 last->period > s2.period &&
432 last->period <= state->period)
433 dev_warn(chip->dev,
434 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
435 state->period, s2.period, last->period);
436
437 if (state->enabled && state->period < s2.period)
438 dev_warn(chip->dev,
439 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
440 state->period, s2.period);
441
442 if (state->enabled &&
443 last->polarity == state->polarity &&
444 last->period == s2.period &&
445 last->duty_cycle > s2.duty_cycle &&
446 last->duty_cycle <= state->duty_cycle)
447 dev_warn(chip->dev,
448 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
449 state->duty_cycle, state->period,
450 s2.duty_cycle, s2.period,
451 last->duty_cycle, last->period);
452
453 if (state->enabled && state->duty_cycle < s2.duty_cycle)
454 dev_warn(chip->dev,
455 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
456 state->duty_cycle, state->period,
457 s2.duty_cycle, s2.period);
458
459 if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
460 dev_warn(chip->dev,
461 "requested disabled, but yielded enabled with duty > 0\n");
462
463 /* reapply the state that the driver reported being configured. */
464 err = chip->ops->apply(chip, pwm, &s1);
465 trace_pwm_apply(pwm, &s1, err);
466 if (err) {
467 *last = s1;
468 dev_err(chip->dev, "failed to reapply current setting\n");
469 return;
470 }
471
472 *last = (struct pwm_state){ 0 };
473 err = chip->ops->get_state(chip, pwm, last);
474 trace_pwm_get(pwm, last, err);
475 if (err)
476 return;
477
478 /* reapplication of the current state should give an exact match */
479 if (s1.enabled != last->enabled ||
480 s1.polarity != last->polarity ||
481 (s1.enabled && s1.period != last->period) ||
482 (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
483 dev_err(chip->dev,
484 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
485 s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
486 last->enabled, last->polarity, last->duty_cycle,
487 last->period);
488 }
489 }
490
491 /**
492 * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
493 * @pwm: PWM device
494 * @state: new state to apply
495 */
pwm_apply_might_sleep(struct pwm_device * pwm,const struct pwm_state * state)496 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
497 {
498 struct pwm_chip *chip;
499 int err;
500
501 /*
502 * Some lowlevel driver's implementations of .apply() make use of
503 * mutexes, also with some drivers only returning when the new
504 * configuration is active calling pwm_apply_might_sleep() from atomic context
505 * is a bad idea. So make it explicit that calling this function might
506 * sleep.
507 */
508 might_sleep();
509
510 if (!pwm || !state || !state->period ||
511 state->duty_cycle > state->period)
512 return -EINVAL;
513
514 chip = pwm->chip;
515
516 if (state->period == pwm->state.period &&
517 state->duty_cycle == pwm->state.duty_cycle &&
518 state->polarity == pwm->state.polarity &&
519 state->enabled == pwm->state.enabled &&
520 state->usage_power == pwm->state.usage_power)
521 return 0;
522
523 err = chip->ops->apply(chip, pwm, state);
524 trace_pwm_apply(pwm, state, err);
525 if (err)
526 return err;
527
528 pwm->state = *state;
529
530 /*
531 * only do this after pwm->state was applied as some
532 * implementations of .get_state depend on this
533 */
534 pwm_apply_debug(pwm, state);
535
536 return 0;
537 }
538 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
539
540 /**
541 * pwm_capture() - capture and report a PWM signal
542 * @pwm: PWM device
543 * @result: structure to fill with capture result
544 * @timeout: time to wait, in milliseconds, before giving up on capture
545 *
546 * Returns: 0 on success or a negative error code on failure.
547 */
pwm_capture(struct pwm_device * pwm,struct pwm_capture * result,unsigned long timeout)548 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
549 unsigned long timeout)
550 {
551 int err;
552
553 if (!pwm || !pwm->chip->ops)
554 return -EINVAL;
555
556 if (!pwm->chip->ops->capture)
557 return -ENOSYS;
558
559 mutex_lock(&pwm_lock);
560 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
561 mutex_unlock(&pwm_lock);
562
563 return err;
564 }
565 EXPORT_SYMBOL_GPL(pwm_capture);
566
567 /**
568 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
569 * @pwm: PWM device
570 *
571 * This function will adjust the PWM config to the PWM arguments provided
572 * by the DT or PWM lookup table. This is particularly useful to adapt
573 * the bootloader config to the Linux one.
574 */
pwm_adjust_config(struct pwm_device * pwm)575 int pwm_adjust_config(struct pwm_device *pwm)
576 {
577 struct pwm_state state;
578 struct pwm_args pargs;
579
580 pwm_get_args(pwm, &pargs);
581 pwm_get_state(pwm, &state);
582
583 /*
584 * If the current period is zero it means that either the PWM driver
585 * does not support initial state retrieval or the PWM has not yet
586 * been configured.
587 *
588 * In either case, we setup the new period and polarity, and assign a
589 * duty cycle of 0.
590 */
591 if (!state.period) {
592 state.duty_cycle = 0;
593 state.period = pargs.period;
594 state.polarity = pargs.polarity;
595
596 return pwm_apply_might_sleep(pwm, &state);
597 }
598
599 /*
600 * Adjust the PWM duty cycle/period based on the period value provided
601 * in PWM args.
602 */
603 if (pargs.period != state.period) {
604 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
605
606 do_div(dutycycle, state.period);
607 state.duty_cycle = dutycycle;
608 state.period = pargs.period;
609 }
610
611 /*
612 * If the polarity changed, we should also change the duty cycle.
613 */
614 if (pargs.polarity != state.polarity) {
615 state.polarity = pargs.polarity;
616 state.duty_cycle = state.period - state.duty_cycle;
617 }
618
619 return pwm_apply_might_sleep(pwm, &state);
620 }
621 EXPORT_SYMBOL_GPL(pwm_adjust_config);
622
fwnode_to_pwmchip(struct fwnode_handle * fwnode)623 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
624 {
625 struct pwm_chip *chip;
626
627 mutex_lock(&pwm_lock);
628
629 list_for_each_entry(chip, &pwm_chips, list)
630 if (chip->dev && device_match_fwnode(chip->dev, fwnode)) {
631 mutex_unlock(&pwm_lock);
632 return chip;
633 }
634
635 mutex_unlock(&pwm_lock);
636
637 return ERR_PTR(-EPROBE_DEFER);
638 }
639
pwm_device_link_add(struct device * dev,struct pwm_device * pwm)640 static struct device_link *pwm_device_link_add(struct device *dev,
641 struct pwm_device *pwm)
642 {
643 struct device_link *dl;
644
645 if (!dev) {
646 /*
647 * No device for the PWM consumer has been provided. It may
648 * impact the PM sequence ordering: the PWM supplier may get
649 * suspended before the consumer.
650 */
651 dev_warn(pwm->chip->dev,
652 "No consumer device specified to create a link to\n");
653 return NULL;
654 }
655
656 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
657 if (!dl) {
658 dev_err(dev, "failed to create device link to %s\n",
659 dev_name(pwm->chip->dev));
660 return ERR_PTR(-EINVAL);
661 }
662
663 return dl;
664 }
665
666 /**
667 * of_pwm_get() - request a PWM via the PWM framework
668 * @dev: device for PWM consumer
669 * @np: device node to get the PWM from
670 * @con_id: consumer name
671 *
672 * Returns the PWM device parsed from the phandle and index specified in the
673 * "pwms" property of a device tree node or a negative error-code on failure.
674 * Values parsed from the device tree are stored in the returned PWM device
675 * object.
676 *
677 * If con_id is NULL, the first PWM device listed in the "pwms" property will
678 * be requested. Otherwise the "pwm-names" property is used to do a reverse
679 * lookup of the PWM index. This also means that the "pwm-names" property
680 * becomes mandatory for devices that look up the PWM device via the con_id
681 * parameter.
682 *
683 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
684 * error code on failure.
685 */
of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)686 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
687 const char *con_id)
688 {
689 struct pwm_device *pwm = NULL;
690 struct of_phandle_args args;
691 struct device_link *dl;
692 struct pwm_chip *chip;
693 int index = 0;
694 int err;
695
696 if (con_id) {
697 index = of_property_match_string(np, "pwm-names", con_id);
698 if (index < 0)
699 return ERR_PTR(index);
700 }
701
702 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
703 &args);
704 if (err) {
705 pr_err("%s(): can't parse \"pwms\" property\n", __func__);
706 return ERR_PTR(err);
707 }
708
709 chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
710 if (IS_ERR(chip)) {
711 if (PTR_ERR(chip) != -EPROBE_DEFER)
712 pr_err("%s(): PWM chip not found\n", __func__);
713
714 pwm = ERR_CAST(chip);
715 goto put;
716 }
717
718 pwm = chip->of_xlate(chip, &args);
719 if (IS_ERR(pwm))
720 goto put;
721
722 dl = pwm_device_link_add(dev, pwm);
723 if (IS_ERR(dl)) {
724 /* of_xlate ended up calling pwm_request_from_chip() */
725 pwm_put(pwm);
726 pwm = ERR_CAST(dl);
727 goto put;
728 }
729
730 /*
731 * If a consumer name was not given, try to look it up from the
732 * "pwm-names" property if it exists. Otherwise use the name of
733 * the user device node.
734 */
735 if (!con_id) {
736 err = of_property_read_string_index(np, "pwm-names", index,
737 &con_id);
738 if (err < 0)
739 con_id = np->name;
740 }
741
742 pwm->label = con_id;
743
744 put:
745 of_node_put(args.np);
746
747 return pwm;
748 }
749
750 /**
751 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
752 * @fwnode: firmware node to get the "pwms" property from
753 *
754 * Returns the PWM device parsed from the fwnode and index specified in the
755 * "pwms" property or a negative error-code on failure.
756 * Values parsed from the device tree are stored in the returned PWM device
757 * object.
758 *
759 * This is analogous to of_pwm_get() except con_id is not yet supported.
760 * ACPI entries must look like
761 * Package () {"pwms", Package ()
762 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
763 *
764 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
765 * error code on failure.
766 */
acpi_pwm_get(const struct fwnode_handle * fwnode)767 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
768 {
769 struct pwm_device *pwm;
770 struct fwnode_reference_args args;
771 struct pwm_chip *chip;
772 int ret;
773
774 memset(&args, 0, sizeof(args));
775
776 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
777 if (ret < 0)
778 return ERR_PTR(ret);
779
780 if (args.nargs < 2)
781 return ERR_PTR(-EPROTO);
782
783 chip = fwnode_to_pwmchip(args.fwnode);
784 if (IS_ERR(chip))
785 return ERR_CAST(chip);
786
787 pwm = pwm_request_from_chip(chip, args.args[0], NULL);
788 if (IS_ERR(pwm))
789 return pwm;
790
791 pwm->args.period = args.args[1];
792 pwm->args.polarity = PWM_POLARITY_NORMAL;
793
794 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
795 pwm->args.polarity = PWM_POLARITY_INVERSED;
796
797 return pwm;
798 }
799
800 /**
801 * pwm_add_table() - register PWM device consumers
802 * @table: array of consumers to register
803 * @num: number of consumers in table
804 */
pwm_add_table(struct pwm_lookup * table,size_t num)805 void pwm_add_table(struct pwm_lookup *table, size_t num)
806 {
807 mutex_lock(&pwm_lookup_lock);
808
809 while (num--) {
810 list_add_tail(&table->list, &pwm_lookup_list);
811 table++;
812 }
813
814 mutex_unlock(&pwm_lookup_lock);
815 }
816
817 /**
818 * pwm_remove_table() - unregister PWM device consumers
819 * @table: array of consumers to unregister
820 * @num: number of consumers in table
821 */
pwm_remove_table(struct pwm_lookup * table,size_t num)822 void pwm_remove_table(struct pwm_lookup *table, size_t num)
823 {
824 mutex_lock(&pwm_lookup_lock);
825
826 while (num--) {
827 list_del(&table->list);
828 table++;
829 }
830
831 mutex_unlock(&pwm_lookup_lock);
832 }
833
834 /**
835 * pwm_get() - look up and request a PWM device
836 * @dev: device for PWM consumer
837 * @con_id: consumer name
838 *
839 * Lookup is first attempted using DT. If the device was not instantiated from
840 * a device tree, a PWM chip and a relative index is looked up via a table
841 * supplied by board setup code (see pwm_add_table()).
842 *
843 * Once a PWM chip has been found the specified PWM device will be requested
844 * and is ready to be used.
845 *
846 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
847 * error code on failure.
848 */
pwm_get(struct device * dev,const char * con_id)849 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
850 {
851 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
852 const char *dev_id = dev ? dev_name(dev) : NULL;
853 struct pwm_device *pwm;
854 struct pwm_chip *chip;
855 struct device_link *dl;
856 unsigned int best = 0;
857 struct pwm_lookup *p, *chosen = NULL;
858 unsigned int match;
859 int err;
860
861 /* look up via DT first */
862 if (is_of_node(fwnode))
863 return of_pwm_get(dev, to_of_node(fwnode), con_id);
864
865 /* then lookup via ACPI */
866 if (is_acpi_node(fwnode)) {
867 pwm = acpi_pwm_get(fwnode);
868 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
869 return pwm;
870 }
871
872 /*
873 * We look up the provider in the static table typically provided by
874 * board setup code. We first try to lookup the consumer device by
875 * name. If the consumer device was passed in as NULL or if no match
876 * was found, we try to find the consumer by directly looking it up
877 * by name.
878 *
879 * If a match is found, the provider PWM chip is looked up by name
880 * and a PWM device is requested using the PWM device per-chip index.
881 *
882 * The lookup algorithm was shamelessly taken from the clock
883 * framework:
884 *
885 * We do slightly fuzzy matching here:
886 * An entry with a NULL ID is assumed to be a wildcard.
887 * If an entry has a device ID, it must match
888 * If an entry has a connection ID, it must match
889 * Then we take the most specific entry - with the following order
890 * of precedence: dev+con > dev only > con only.
891 */
892 mutex_lock(&pwm_lookup_lock);
893
894 list_for_each_entry(p, &pwm_lookup_list, list) {
895 match = 0;
896
897 if (p->dev_id) {
898 if (!dev_id || strcmp(p->dev_id, dev_id))
899 continue;
900
901 match += 2;
902 }
903
904 if (p->con_id) {
905 if (!con_id || strcmp(p->con_id, con_id))
906 continue;
907
908 match += 1;
909 }
910
911 if (match > best) {
912 chosen = p;
913
914 if (match != 3)
915 best = match;
916 else
917 break;
918 }
919 }
920
921 mutex_unlock(&pwm_lookup_lock);
922
923 if (!chosen)
924 return ERR_PTR(-ENODEV);
925
926 chip = pwmchip_find_by_name(chosen->provider);
927
928 /*
929 * If the lookup entry specifies a module, load the module and retry
930 * the PWM chip lookup. This can be used to work around driver load
931 * ordering issues if driver's can't be made to properly support the
932 * deferred probe mechanism.
933 */
934 if (!chip && chosen->module) {
935 err = request_module(chosen->module);
936 if (err == 0)
937 chip = pwmchip_find_by_name(chosen->provider);
938 }
939
940 if (!chip)
941 return ERR_PTR(-EPROBE_DEFER);
942
943 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
944 if (IS_ERR(pwm))
945 return pwm;
946
947 dl = pwm_device_link_add(dev, pwm);
948 if (IS_ERR(dl)) {
949 pwm_put(pwm);
950 return ERR_CAST(dl);
951 }
952
953 pwm->args.period = chosen->period;
954 pwm->args.polarity = chosen->polarity;
955
956 return pwm;
957 }
958 EXPORT_SYMBOL_GPL(pwm_get);
959
960 /**
961 * pwm_put() - release a PWM device
962 * @pwm: PWM device
963 */
pwm_put(struct pwm_device * pwm)964 void pwm_put(struct pwm_device *pwm)
965 {
966 if (!pwm)
967 return;
968
969 mutex_lock(&pwm_lock);
970
971 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
972 pr_warn("PWM device already freed\n");
973 goto out;
974 }
975
976 if (pwm->chip->ops->free)
977 pwm->chip->ops->free(pwm->chip, pwm);
978
979 pwm_set_chip_data(pwm, NULL);
980 pwm->label = NULL;
981
982 module_put(pwm->chip->ops->owner);
983 out:
984 mutex_unlock(&pwm_lock);
985 }
986 EXPORT_SYMBOL_GPL(pwm_put);
987
devm_pwm_release(void * pwm)988 static void devm_pwm_release(void *pwm)
989 {
990 pwm_put(pwm);
991 }
992
993 /**
994 * devm_pwm_get() - resource managed pwm_get()
995 * @dev: device for PWM consumer
996 * @con_id: consumer name
997 *
998 * This function performs like pwm_get() but the acquired PWM device will
999 * automatically be released on driver detach.
1000 *
1001 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1002 * error code on failure.
1003 */
devm_pwm_get(struct device * dev,const char * con_id)1004 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1005 {
1006 struct pwm_device *pwm;
1007 int ret;
1008
1009 pwm = pwm_get(dev, con_id);
1010 if (IS_ERR(pwm))
1011 return pwm;
1012
1013 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1014 if (ret)
1015 return ERR_PTR(ret);
1016
1017 return pwm;
1018 }
1019 EXPORT_SYMBOL_GPL(devm_pwm_get);
1020
1021 /**
1022 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1023 * @dev: device for PWM consumer
1024 * @fwnode: firmware node to get the PWM from
1025 * @con_id: consumer name
1026 *
1027 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1028 * acpi_pwm_get() for a detailed description.
1029 *
1030 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1031 * error code on failure.
1032 */
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)1033 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1034 struct fwnode_handle *fwnode,
1035 const char *con_id)
1036 {
1037 struct pwm_device *pwm = ERR_PTR(-ENODEV);
1038 int ret;
1039
1040 if (is_of_node(fwnode))
1041 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1042 else if (is_acpi_node(fwnode))
1043 pwm = acpi_pwm_get(fwnode);
1044 if (IS_ERR(pwm))
1045 return pwm;
1046
1047 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1048 if (ret)
1049 return ERR_PTR(ret);
1050
1051 return pwm;
1052 }
1053 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1054
1055 #ifdef CONFIG_DEBUG_FS
pwm_dbg_show(struct pwm_chip * chip,struct seq_file * s)1056 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1057 {
1058 unsigned int i;
1059
1060 for (i = 0; i < chip->npwm; i++) {
1061 struct pwm_device *pwm = &chip->pwms[i];
1062 struct pwm_state state;
1063
1064 pwm_get_state(pwm, &state);
1065
1066 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1067
1068 if (test_bit(PWMF_REQUESTED, &pwm->flags))
1069 seq_puts(s, " requested");
1070
1071 if (state.enabled)
1072 seq_puts(s, " enabled");
1073
1074 seq_printf(s, " period: %llu ns", state.period);
1075 seq_printf(s, " duty: %llu ns", state.duty_cycle);
1076 seq_printf(s, " polarity: %s",
1077 state.polarity ? "inverse" : "normal");
1078
1079 if (state.usage_power)
1080 seq_puts(s, " usage_power");
1081
1082 seq_puts(s, "\n");
1083 }
1084 }
1085
pwm_seq_start(struct seq_file * s,loff_t * pos)1086 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1087 {
1088 mutex_lock(&pwm_lock);
1089 s->private = "";
1090
1091 return seq_list_start(&pwm_chips, *pos);
1092 }
1093
pwm_seq_next(struct seq_file * s,void * v,loff_t * pos)1094 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1095 {
1096 s->private = "\n";
1097
1098 return seq_list_next(v, &pwm_chips, pos);
1099 }
1100
pwm_seq_stop(struct seq_file * s,void * v)1101 static void pwm_seq_stop(struct seq_file *s, void *v)
1102 {
1103 mutex_unlock(&pwm_lock);
1104 }
1105
pwm_seq_show(struct seq_file * s,void * v)1106 static int pwm_seq_show(struct seq_file *s, void *v)
1107 {
1108 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1109
1110 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1111 chip->dev->bus ? chip->dev->bus->name : "no-bus",
1112 dev_name(chip->dev), chip->npwm,
1113 (chip->npwm != 1) ? "s" : "");
1114
1115 pwm_dbg_show(chip, s);
1116
1117 return 0;
1118 }
1119
1120 static const struct seq_operations pwm_debugfs_sops = {
1121 .start = pwm_seq_start,
1122 .next = pwm_seq_next,
1123 .stop = pwm_seq_stop,
1124 .show = pwm_seq_show,
1125 };
1126
1127 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1128
pwm_debugfs_init(void)1129 static int __init pwm_debugfs_init(void)
1130 {
1131 debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
1132
1133 return 0;
1134 }
1135 subsys_initcall(pwm_debugfs_init);
1136 #endif /* CONFIG_DEBUG_FS */
1137