1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/blkdev.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/string_helpers.h>
31 #include <linux/swiotlb.h>
32 #include <linux/sysfs.h>
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
34
35 #include "base.h"
36 #include "physical_location.h"
37 #include "power/power.h"
38
39 /* Device links support. */
40 static LIST_HEAD(deferred_sync);
41 static unsigned int defer_sync_state_count = 1;
42 static DEFINE_MUTEX(fwnode_link_lock);
43 static bool fw_devlink_is_permissive(void);
44 static void __fw_devlink_link_to_consumers(struct device *dev);
45 static bool fw_devlink_drv_reg_done;
46 static bool fw_devlink_best_effort;
47 static struct workqueue_struct *device_link_wq;
48
49 /**
50 * __fwnode_link_add - Create a link between two fwnode_handles.
51 * @con: Consumer end of the link.
52 * @sup: Supplier end of the link.
53 *
54 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
55 * represents the detail that the firmware lists @sup fwnode as supplying a
56 * resource to @con.
57 *
58 * The driver core will use the fwnode link to create a device link between the
59 * two device objects corresponding to @con and @sup when they are created. The
60 * driver core will automatically delete the fwnode link between @con and @sup
61 * after doing that.
62 *
63 * Attempts to create duplicate links between the same pair of fwnode handles
64 * are ignored and there is no reference counting.
65 */
__fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)66 static int __fwnode_link_add(struct fwnode_handle *con,
67 struct fwnode_handle *sup, u8 flags)
68 {
69 struct fwnode_link *link;
70
71 list_for_each_entry(link, &sup->consumers, s_hook)
72 if (link->consumer == con) {
73 link->flags |= flags;
74 return 0;
75 }
76
77 link = kzalloc(sizeof(*link), GFP_KERNEL);
78 if (!link)
79 return -ENOMEM;
80
81 link->supplier = sup;
82 INIT_LIST_HEAD(&link->s_hook);
83 link->consumer = con;
84 INIT_LIST_HEAD(&link->c_hook);
85 link->flags = flags;
86
87 list_add(&link->s_hook, &sup->consumers);
88 list_add(&link->c_hook, &con->suppliers);
89 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
90 con, sup);
91
92 return 0;
93 }
94
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup)95 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
96 {
97 int ret;
98
99 mutex_lock(&fwnode_link_lock);
100 ret = __fwnode_link_add(con, sup, 0);
101 mutex_unlock(&fwnode_link_lock);
102 return ret;
103 }
104
105 /**
106 * __fwnode_link_del - Delete a link between two fwnode_handles.
107 * @link: the fwnode_link to be deleted
108 *
109 * The fwnode_link_lock needs to be held when this function is called.
110 */
__fwnode_link_del(struct fwnode_link * link)111 static void __fwnode_link_del(struct fwnode_link *link)
112 {
113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
114 link->consumer, link->supplier);
115 list_del(&link->s_hook);
116 list_del(&link->c_hook);
117 kfree(link);
118 }
119
120 /**
121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
122 * @link: the fwnode_link to be marked
123 *
124 * The fwnode_link_lock needs to be held when this function is called.
125 */
__fwnode_link_cycle(struct fwnode_link * link)126 static void __fwnode_link_cycle(struct fwnode_link *link)
127 {
128 pr_debug("%pfwf: Relaxing link with %pfwf\n",
129 link->consumer, link->supplier);
130 link->flags |= FWLINK_FLAG_CYCLE;
131 }
132
133 /**
134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
135 * @fwnode: fwnode whose supplier links need to be deleted
136 *
137 * Deletes all supplier links connecting directly to @fwnode.
138 */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
140 {
141 struct fwnode_link *link, *tmp;
142
143 mutex_lock(&fwnode_link_lock);
144 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
145 __fwnode_link_del(link);
146 mutex_unlock(&fwnode_link_lock);
147 }
148
149 /**
150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
151 * @fwnode: fwnode whose consumer links need to be deleted
152 *
153 * Deletes all consumer links connecting directly to @fwnode.
154 */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
156 {
157 struct fwnode_link *link, *tmp;
158
159 mutex_lock(&fwnode_link_lock);
160 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
161 __fwnode_link_del(link);
162 mutex_unlock(&fwnode_link_lock);
163 }
164
165 /**
166 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
167 * @fwnode: fwnode whose links needs to be deleted
168 *
169 * Deletes all links connecting directly to a fwnode.
170 */
fwnode_links_purge(struct fwnode_handle * fwnode)171 void fwnode_links_purge(struct fwnode_handle *fwnode)
172 {
173 fwnode_links_purge_suppliers(fwnode);
174 fwnode_links_purge_consumers(fwnode);
175 }
176
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
178 {
179 struct fwnode_handle *child;
180
181 /* Don't purge consumer links of an added child */
182 if (fwnode->dev)
183 return;
184
185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
186 fwnode_links_purge_consumers(fwnode);
187
188 fwnode_for_each_available_child_node(fwnode, child)
189 fw_devlink_purge_absent_suppliers(child);
190 }
191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
192
193 /**
194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
195 * @from: move consumers away from this fwnode
196 * @to: move consumers to this fwnode
197 *
198 * Move all consumer links from @from fwnode to @to fwnode.
199 */
__fwnode_links_move_consumers(struct fwnode_handle * from,struct fwnode_handle * to)200 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
201 struct fwnode_handle *to)
202 {
203 struct fwnode_link *link, *tmp;
204
205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
206 __fwnode_link_add(link->consumer, to, link->flags);
207 __fwnode_link_del(link);
208 }
209 }
210
211 /**
212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
213 * @fwnode: fwnode from which to pick up dangling consumers
214 * @new_sup: fwnode of new supplier
215 *
216 * If the @fwnode has a corresponding struct device and the device supports
217 * probing (that is, added to a bus), then we want to let fw_devlink create
218 * MANAGED device links to this device, so leave @fwnode and its descendant's
219 * fwnode links alone.
220 *
221 * Otherwise, move its consumers to the new supplier @new_sup.
222 */
__fw_devlink_pickup_dangling_consumers(struct fwnode_handle * fwnode,struct fwnode_handle * new_sup)223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
224 struct fwnode_handle *new_sup)
225 {
226 struct fwnode_handle *child;
227
228 if (fwnode->dev && fwnode->dev->bus)
229 return;
230
231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
232 __fwnode_links_move_consumers(fwnode, new_sup);
233
234 fwnode_for_each_available_child_node(fwnode, child)
235 __fw_devlink_pickup_dangling_consumers(child, new_sup);
236 }
237
238 static DEFINE_MUTEX(device_links_lock);
239 DEFINE_STATIC_SRCU(device_links_srcu);
240
device_links_write_lock(void)241 static inline void device_links_write_lock(void)
242 {
243 mutex_lock(&device_links_lock);
244 }
245
device_links_write_unlock(void)246 static inline void device_links_write_unlock(void)
247 {
248 mutex_unlock(&device_links_lock);
249 }
250
device_links_read_lock(void)251 int device_links_read_lock(void) __acquires(&device_links_srcu)
252 {
253 return srcu_read_lock(&device_links_srcu);
254 }
255
device_links_read_unlock(int idx)256 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
257 {
258 srcu_read_unlock(&device_links_srcu, idx);
259 }
260
device_links_read_lock_held(void)261 int device_links_read_lock_held(void)
262 {
263 return srcu_read_lock_held(&device_links_srcu);
264 }
265
device_link_synchronize_removal(void)266 static void device_link_synchronize_removal(void)
267 {
268 synchronize_srcu(&device_links_srcu);
269 }
270
device_link_remove_from_lists(struct device_link * link)271 static void device_link_remove_from_lists(struct device_link *link)
272 {
273 list_del_rcu(&link->s_node);
274 list_del_rcu(&link->c_node);
275 }
276
device_is_ancestor(struct device * dev,struct device * target)277 static bool device_is_ancestor(struct device *dev, struct device *target)
278 {
279 while (target->parent) {
280 target = target->parent;
281 if (dev == target)
282 return true;
283 }
284 return false;
285 }
286
287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \
288 DL_FLAG_CYCLE | \
289 DL_FLAG_MANAGED)
device_link_flag_is_sync_state_only(u32 flags)290 static inline bool device_link_flag_is_sync_state_only(u32 flags)
291 {
292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
293 }
294
295 /**
296 * device_is_dependent - Check if one device depends on another one
297 * @dev: Device to check dependencies for.
298 * @target: Device to check against.
299 *
300 * Check if @target depends on @dev or any device dependent on it (its child or
301 * its consumer etc). Return 1 if that is the case or 0 otherwise.
302 */
device_is_dependent(struct device * dev,void * target)303 int device_is_dependent(struct device *dev, void *target)
304 {
305 struct device_link *link;
306 int ret;
307
308 /*
309 * The "ancestors" check is needed to catch the case when the target
310 * device has not been completely initialized yet and it is still
311 * missing from the list of children of its parent device.
312 */
313 if (dev == target || device_is_ancestor(dev, target))
314 return 1;
315
316 ret = device_for_each_child(dev, target, device_is_dependent);
317 if (ret)
318 return ret;
319
320 list_for_each_entry(link, &dev->links.consumers, s_node) {
321 if (device_link_flag_is_sync_state_only(link->flags))
322 continue;
323
324 if (link->consumer == target)
325 return 1;
326
327 ret = device_is_dependent(link->consumer, target);
328 if (ret)
329 break;
330 }
331 return ret;
332 }
333
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)334 static void device_link_init_status(struct device_link *link,
335 struct device *consumer,
336 struct device *supplier)
337 {
338 switch (supplier->links.status) {
339 case DL_DEV_PROBING:
340 switch (consumer->links.status) {
341 case DL_DEV_PROBING:
342 /*
343 * A consumer driver can create a link to a supplier
344 * that has not completed its probing yet as long as it
345 * knows that the supplier is already functional (for
346 * example, it has just acquired some resources from the
347 * supplier).
348 */
349 link->status = DL_STATE_CONSUMER_PROBE;
350 break;
351 default:
352 link->status = DL_STATE_DORMANT;
353 break;
354 }
355 break;
356 case DL_DEV_DRIVER_BOUND:
357 switch (consumer->links.status) {
358 case DL_DEV_PROBING:
359 link->status = DL_STATE_CONSUMER_PROBE;
360 break;
361 case DL_DEV_DRIVER_BOUND:
362 link->status = DL_STATE_ACTIVE;
363 break;
364 default:
365 link->status = DL_STATE_AVAILABLE;
366 break;
367 }
368 break;
369 case DL_DEV_UNBINDING:
370 link->status = DL_STATE_SUPPLIER_UNBIND;
371 break;
372 default:
373 link->status = DL_STATE_DORMANT;
374 break;
375 }
376 }
377
device_reorder_to_tail(struct device * dev,void * not_used)378 static int device_reorder_to_tail(struct device *dev, void *not_used)
379 {
380 struct device_link *link;
381
382 /*
383 * Devices that have not been registered yet will be put to the ends
384 * of the lists during the registration, so skip them here.
385 */
386 if (device_is_registered(dev))
387 devices_kset_move_last(dev);
388
389 if (device_pm_initialized(dev))
390 device_pm_move_last(dev);
391
392 device_for_each_child(dev, NULL, device_reorder_to_tail);
393 list_for_each_entry(link, &dev->links.consumers, s_node) {
394 if (device_link_flag_is_sync_state_only(link->flags))
395 continue;
396 device_reorder_to_tail(link->consumer, NULL);
397 }
398
399 return 0;
400 }
401
402 /**
403 * device_pm_move_to_tail - Move set of devices to the end of device lists
404 * @dev: Device to move
405 *
406 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
407 *
408 * It moves the @dev along with all of its children and all of its consumers
409 * to the ends of the device_kset and dpm_list, recursively.
410 */
device_pm_move_to_tail(struct device * dev)411 void device_pm_move_to_tail(struct device *dev)
412 {
413 int idx;
414
415 idx = device_links_read_lock();
416 device_pm_lock();
417 device_reorder_to_tail(dev, NULL);
418 device_pm_unlock();
419 device_links_read_unlock(idx);
420 }
421
422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
423
status_show(struct device * dev,struct device_attribute * attr,char * buf)424 static ssize_t status_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426 {
427 const char *output;
428
429 switch (to_devlink(dev)->status) {
430 case DL_STATE_NONE:
431 output = "not tracked";
432 break;
433 case DL_STATE_DORMANT:
434 output = "dormant";
435 break;
436 case DL_STATE_AVAILABLE:
437 output = "available";
438 break;
439 case DL_STATE_CONSUMER_PROBE:
440 output = "consumer probing";
441 break;
442 case DL_STATE_ACTIVE:
443 output = "active";
444 break;
445 case DL_STATE_SUPPLIER_UNBIND:
446 output = "supplier unbinding";
447 break;
448 default:
449 output = "unknown";
450 break;
451 }
452
453 return sysfs_emit(buf, "%s\n", output);
454 }
455 static DEVICE_ATTR_RO(status);
456
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)457 static ssize_t auto_remove_on_show(struct device *dev,
458 struct device_attribute *attr, char *buf)
459 {
460 struct device_link *link = to_devlink(dev);
461 const char *output;
462
463 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
464 output = "supplier unbind";
465 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
466 output = "consumer unbind";
467 else
468 output = "never";
469
470 return sysfs_emit(buf, "%s\n", output);
471 }
472 static DEVICE_ATTR_RO(auto_remove_on);
473
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)474 static ssize_t runtime_pm_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
476 {
477 struct device_link *link = to_devlink(dev);
478
479 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
480 }
481 static DEVICE_ATTR_RO(runtime_pm);
482
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)483 static ssize_t sync_state_only_show(struct device *dev,
484 struct device_attribute *attr, char *buf)
485 {
486 struct device_link *link = to_devlink(dev);
487
488 return sysfs_emit(buf, "%d\n",
489 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
490 }
491 static DEVICE_ATTR_RO(sync_state_only);
492
493 static struct attribute *devlink_attrs[] = {
494 &dev_attr_status.attr,
495 &dev_attr_auto_remove_on.attr,
496 &dev_attr_runtime_pm.attr,
497 &dev_attr_sync_state_only.attr,
498 NULL,
499 };
500 ATTRIBUTE_GROUPS(devlink);
501
device_link_release_fn(struct work_struct * work)502 static void device_link_release_fn(struct work_struct *work)
503 {
504 struct device_link *link = container_of(work, struct device_link, rm_work);
505
506 /* Ensure that all references to the link object have been dropped. */
507 device_link_synchronize_removal();
508
509 pm_runtime_release_supplier(link);
510 /*
511 * If supplier_preactivated is set, the link has been dropped between
512 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
513 * in __driver_probe_device(). In that case, drop the supplier's
514 * PM-runtime usage counter to remove the reference taken by
515 * pm_runtime_get_suppliers().
516 */
517 if (link->supplier_preactivated)
518 pm_runtime_put_noidle(link->supplier);
519
520 pm_request_idle(link->supplier);
521
522 put_device(link->consumer);
523 put_device(link->supplier);
524 kfree(link);
525 }
526
devlink_dev_release(struct device * dev)527 static void devlink_dev_release(struct device *dev)
528 {
529 struct device_link *link = to_devlink(dev);
530
531 INIT_WORK(&link->rm_work, device_link_release_fn);
532 /*
533 * It may take a while to complete this work because of the SRCU
534 * synchronization in device_link_release_fn() and if the consumer or
535 * supplier devices get deleted when it runs, so put it into the
536 * dedicated workqueue.
537 */
538 queue_work(device_link_wq, &link->rm_work);
539 }
540
541 /**
542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
543 */
device_link_wait_removal(void)544 void device_link_wait_removal(void)
545 {
546 /*
547 * devlink removal jobs are queued in the dedicated work queue.
548 * To be sure that all removal jobs are terminated, ensure that any
549 * scheduled work has run to completion.
550 */
551 flush_workqueue(device_link_wq);
552 }
553 EXPORT_SYMBOL_GPL(device_link_wait_removal);
554
555 static struct class devlink_class = {
556 .name = "devlink",
557 .dev_groups = devlink_groups,
558 .dev_release = devlink_dev_release,
559 };
560
devlink_add_symlinks(struct device * dev)561 static int devlink_add_symlinks(struct device *dev)
562 {
563 int ret;
564 size_t len;
565 struct device_link *link = to_devlink(dev);
566 struct device *sup = link->supplier;
567 struct device *con = link->consumer;
568 char *buf;
569
570 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
571 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
572 len += strlen(":");
573 len += strlen("supplier:") + 1;
574 buf = kzalloc(len, GFP_KERNEL);
575 if (!buf)
576 return -ENOMEM;
577
578 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
579 if (ret)
580 goto out;
581
582 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
583 if (ret)
584 goto err_con;
585
586 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
587 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
588 if (ret)
589 goto err_con_dev;
590
591 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
592 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
593 if (ret)
594 goto err_sup_dev;
595
596 goto out;
597
598 err_sup_dev:
599 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
600 sysfs_remove_link(&sup->kobj, buf);
601 err_con_dev:
602 sysfs_remove_link(&link->link_dev.kobj, "consumer");
603 err_con:
604 sysfs_remove_link(&link->link_dev.kobj, "supplier");
605 out:
606 kfree(buf);
607 return ret;
608 }
609
devlink_remove_symlinks(struct device * dev)610 static void devlink_remove_symlinks(struct device *dev)
611 {
612 struct device_link *link = to_devlink(dev);
613 size_t len;
614 struct device *sup = link->supplier;
615 struct device *con = link->consumer;
616 char *buf;
617
618 sysfs_remove_link(&link->link_dev.kobj, "consumer");
619 sysfs_remove_link(&link->link_dev.kobj, "supplier");
620
621 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
622 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
623 len += strlen(":");
624 len += strlen("supplier:") + 1;
625 buf = kzalloc(len, GFP_KERNEL);
626 if (!buf) {
627 WARN(1, "Unable to properly free device link symlinks!\n");
628 return;
629 }
630
631 if (device_is_registered(con)) {
632 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
633 sysfs_remove_link(&con->kobj, buf);
634 }
635 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
636 sysfs_remove_link(&sup->kobj, buf);
637 kfree(buf);
638 }
639
640 static struct class_interface devlink_class_intf = {
641 .class = &devlink_class,
642 .add_dev = devlink_add_symlinks,
643 .remove_dev = devlink_remove_symlinks,
644 };
645
devlink_class_init(void)646 static int __init devlink_class_init(void)
647 {
648 int ret;
649
650 ret = class_register(&devlink_class);
651 if (ret)
652 return ret;
653
654 ret = class_interface_register(&devlink_class_intf);
655 if (ret)
656 class_unregister(&devlink_class);
657
658 return ret;
659 }
660 postcore_initcall(devlink_class_init);
661
662 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
663 DL_FLAG_AUTOREMOVE_SUPPLIER | \
664 DL_FLAG_AUTOPROBE_CONSUMER | \
665 DL_FLAG_SYNC_STATE_ONLY | \
666 DL_FLAG_INFERRED | \
667 DL_FLAG_CYCLE)
668
669 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
670 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
671
672 /**
673 * device_link_add - Create a link between two devices.
674 * @consumer: Consumer end of the link.
675 * @supplier: Supplier end of the link.
676 * @flags: Link flags.
677 *
678 * The caller is responsible for the proper synchronization of the link creation
679 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
680 * runtime PM framework to take the link into account. Second, if the
681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
682 * be forced into the active meta state and reference-counted upon the creation
683 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
684 * ignored.
685 *
686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
687 * expected to release the link returned by it directly with the help of either
688 * device_link_del() or device_link_remove().
689 *
690 * If that flag is not set, however, the caller of this function is handing the
691 * management of the link over to the driver core entirely and its return value
692 * can only be used to check whether or not the link is present. In that case,
693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
694 * flags can be used to indicate to the driver core when the link can be safely
695 * deleted. Namely, setting one of them in @flags indicates to the driver core
696 * that the link is not going to be used (by the given caller of this function)
697 * after unbinding the consumer or supplier driver, respectively, from its
698 * device, so the link can be deleted at that point. If none of them is set,
699 * the link will be maintained until one of the devices pointed to by it (either
700 * the consumer or the supplier) is unregistered.
701 *
702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
705 * be used to request the driver core to automatically probe for a consumer
706 * driver after successfully binding a driver to the supplier device.
707 *
708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
710 * the same time is invalid and will cause NULL to be returned upfront.
711 * However, if a device link between the given @consumer and @supplier pair
712 * exists already when this function is called for them, the existing link will
713 * be returned regardless of its current type and status (the link's flags may
714 * be modified then). The caller of this function is then expected to treat
715 * the link as though it has just been created, so (in particular) if
716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
717 * explicitly when not needed any more (as stated above).
718 *
719 * A side effect of the link creation is re-ordering of dpm_list and the
720 * devices_kset list by moving the consumer device and all devices depending
721 * on it to the ends of these lists (that does not happen to devices that have
722 * not been registered when this function is called).
723 *
724 * The supplier device is required to be registered when this function is called
725 * and NULL will be returned if that is not the case. The consumer device need
726 * not be registered, however.
727 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)728 struct device_link *device_link_add(struct device *consumer,
729 struct device *supplier, u32 flags)
730 {
731 struct device_link *link;
732
733 if (!consumer || !supplier || consumer == supplier ||
734 flags & ~DL_ADD_VALID_FLAGS ||
735 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
736 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
737 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
738 DL_FLAG_AUTOREMOVE_SUPPLIER)))
739 return NULL;
740
741 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
742 if (pm_runtime_get_sync(supplier) < 0) {
743 pm_runtime_put_noidle(supplier);
744 return NULL;
745 }
746 }
747
748 if (!(flags & DL_FLAG_STATELESS))
749 flags |= DL_FLAG_MANAGED;
750
751 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
752 !device_link_flag_is_sync_state_only(flags))
753 return NULL;
754
755 device_links_write_lock();
756 device_pm_lock();
757
758 /*
759 * If the supplier has not been fully registered yet or there is a
760 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
761 * the supplier already in the graph, return NULL. If the link is a
762 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
763 * because it only affects sync_state() callbacks.
764 */
765 if (!device_pm_initialized(supplier)
766 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
767 device_is_dependent(consumer, supplier))) {
768 link = NULL;
769 goto out;
770 }
771
772 /*
773 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
774 * So, only create it if the consumer hasn't probed yet.
775 */
776 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
777 consumer->links.status != DL_DEV_NO_DRIVER &&
778 consumer->links.status != DL_DEV_PROBING) {
779 link = NULL;
780 goto out;
781 }
782
783 /*
784 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
785 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
786 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
787 */
788 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
789 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
790
791 list_for_each_entry(link, &supplier->links.consumers, s_node) {
792 if (link->consumer != consumer)
793 continue;
794
795 if (link->flags & DL_FLAG_INFERRED &&
796 !(flags & DL_FLAG_INFERRED))
797 link->flags &= ~DL_FLAG_INFERRED;
798
799 if (flags & DL_FLAG_PM_RUNTIME) {
800 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
801 pm_runtime_new_link(consumer);
802 link->flags |= DL_FLAG_PM_RUNTIME;
803 }
804 if (flags & DL_FLAG_RPM_ACTIVE)
805 refcount_inc(&link->rpm_active);
806 }
807
808 if (flags & DL_FLAG_STATELESS) {
809 kref_get(&link->kref);
810 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
811 !(link->flags & DL_FLAG_STATELESS)) {
812 link->flags |= DL_FLAG_STATELESS;
813 goto reorder;
814 } else {
815 link->flags |= DL_FLAG_STATELESS;
816 goto out;
817 }
818 }
819
820 /*
821 * If the life time of the link following from the new flags is
822 * longer than indicated by the flags of the existing link,
823 * update the existing link to stay around longer.
824 */
825 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
826 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
827 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
828 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
829 }
830 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
831 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
832 DL_FLAG_AUTOREMOVE_SUPPLIER);
833 }
834 if (!(link->flags & DL_FLAG_MANAGED)) {
835 kref_get(&link->kref);
836 link->flags |= DL_FLAG_MANAGED;
837 device_link_init_status(link, consumer, supplier);
838 }
839 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
840 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
841 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
842 goto reorder;
843 }
844
845 goto out;
846 }
847
848 link = kzalloc(sizeof(*link), GFP_KERNEL);
849 if (!link)
850 goto out;
851
852 refcount_set(&link->rpm_active, 1);
853
854 get_device(supplier);
855 link->supplier = supplier;
856 INIT_LIST_HEAD(&link->s_node);
857 get_device(consumer);
858 link->consumer = consumer;
859 INIT_LIST_HEAD(&link->c_node);
860 link->flags = flags;
861 kref_init(&link->kref);
862
863 link->link_dev.class = &devlink_class;
864 device_set_pm_not_required(&link->link_dev);
865 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
866 dev_bus_name(supplier), dev_name(supplier),
867 dev_bus_name(consumer), dev_name(consumer));
868 if (device_register(&link->link_dev)) {
869 put_device(&link->link_dev);
870 link = NULL;
871 goto out;
872 }
873
874 if (flags & DL_FLAG_PM_RUNTIME) {
875 if (flags & DL_FLAG_RPM_ACTIVE)
876 refcount_inc(&link->rpm_active);
877
878 pm_runtime_new_link(consumer);
879 }
880
881 /* Determine the initial link state. */
882 if (flags & DL_FLAG_STATELESS)
883 link->status = DL_STATE_NONE;
884 else
885 device_link_init_status(link, consumer, supplier);
886
887 /*
888 * Some callers expect the link creation during consumer driver probe to
889 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
890 */
891 if (link->status == DL_STATE_CONSUMER_PROBE &&
892 flags & DL_FLAG_PM_RUNTIME)
893 pm_runtime_resume(supplier);
894
895 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
896 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
897
898 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
899 dev_dbg(consumer,
900 "Linked as a sync state only consumer to %s\n",
901 dev_name(supplier));
902 goto out;
903 }
904
905 reorder:
906 /*
907 * Move the consumer and all of the devices depending on it to the end
908 * of dpm_list and the devices_kset list.
909 *
910 * It is necessary to hold dpm_list locked throughout all that or else
911 * we may end up suspending with a wrong ordering of it.
912 */
913 device_reorder_to_tail(consumer, NULL);
914
915 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
916
917 out:
918 device_pm_unlock();
919 device_links_write_unlock();
920
921 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
922 pm_runtime_put(supplier);
923
924 return link;
925 }
926 EXPORT_SYMBOL_GPL(device_link_add);
927
__device_link_del(struct kref * kref)928 static void __device_link_del(struct kref *kref)
929 {
930 struct device_link *link = container_of(kref, struct device_link, kref);
931
932 dev_dbg(link->consumer, "Dropping the link to %s\n",
933 dev_name(link->supplier));
934
935 pm_runtime_drop_link(link);
936
937 device_link_remove_from_lists(link);
938 device_unregister(&link->link_dev);
939 }
940
device_link_put_kref(struct device_link * link)941 static void device_link_put_kref(struct device_link *link)
942 {
943 if (link->flags & DL_FLAG_STATELESS)
944 kref_put(&link->kref, __device_link_del);
945 else if (!device_is_registered(link->consumer))
946 __device_link_del(&link->kref);
947 else
948 WARN(1, "Unable to drop a managed device link reference\n");
949 }
950
951 /**
952 * device_link_del - Delete a stateless link between two devices.
953 * @link: Device link to delete.
954 *
955 * The caller must ensure proper synchronization of this function with runtime
956 * PM. If the link was added multiple times, it needs to be deleted as often.
957 * Care is required for hotplugged devices: Their links are purged on removal
958 * and calling device_link_del() is then no longer allowed.
959 */
device_link_del(struct device_link * link)960 void device_link_del(struct device_link *link)
961 {
962 device_links_write_lock();
963 device_link_put_kref(link);
964 device_links_write_unlock();
965 }
966 EXPORT_SYMBOL_GPL(device_link_del);
967
968 /**
969 * device_link_remove - Delete a stateless link between two devices.
970 * @consumer: Consumer end of the link.
971 * @supplier: Supplier end of the link.
972 *
973 * The caller must ensure proper synchronization of this function with runtime
974 * PM.
975 */
device_link_remove(void * consumer,struct device * supplier)976 void device_link_remove(void *consumer, struct device *supplier)
977 {
978 struct device_link *link;
979
980 if (WARN_ON(consumer == supplier))
981 return;
982
983 device_links_write_lock();
984
985 list_for_each_entry(link, &supplier->links.consumers, s_node) {
986 if (link->consumer == consumer) {
987 device_link_put_kref(link);
988 break;
989 }
990 }
991
992 device_links_write_unlock();
993 }
994 EXPORT_SYMBOL_GPL(device_link_remove);
995
device_links_missing_supplier(struct device * dev)996 static void device_links_missing_supplier(struct device *dev)
997 {
998 struct device_link *link;
999
1000 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1001 if (link->status != DL_STATE_CONSUMER_PROBE)
1002 continue;
1003
1004 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1005 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1006 } else {
1007 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1008 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1009 }
1010 }
1011 }
1012
dev_is_best_effort(struct device * dev)1013 static bool dev_is_best_effort(struct device *dev)
1014 {
1015 return (fw_devlink_best_effort && dev->can_match) ||
1016 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1017 }
1018
fwnode_links_check_suppliers(struct fwnode_handle * fwnode)1019 static struct fwnode_handle *fwnode_links_check_suppliers(
1020 struct fwnode_handle *fwnode)
1021 {
1022 struct fwnode_link *link;
1023
1024 if (!fwnode || fw_devlink_is_permissive())
1025 return NULL;
1026
1027 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1028 if (!(link->flags & FWLINK_FLAG_CYCLE))
1029 return link->supplier;
1030
1031 return NULL;
1032 }
1033
1034 /**
1035 * device_links_check_suppliers - Check presence of supplier drivers.
1036 * @dev: Consumer device.
1037 *
1038 * Check links from this device to any suppliers. Walk the list of the device's
1039 * links to suppliers and see if all of them are available. If not, simply
1040 * return -EPROBE_DEFER.
1041 *
1042 * We need to guarantee that the supplier will not go away after the check has
1043 * been positive here. It only can go away in __device_release_driver() and
1044 * that function checks the device's links to consumers. This means we need to
1045 * mark the link as "consumer probe in progress" to make the supplier removal
1046 * wait for us to complete (or bad things may happen).
1047 *
1048 * Links without the DL_FLAG_MANAGED flag set are ignored.
1049 */
device_links_check_suppliers(struct device * dev)1050 int device_links_check_suppliers(struct device *dev)
1051 {
1052 struct device_link *link;
1053 int ret = 0, fwnode_ret = 0;
1054 struct fwnode_handle *sup_fw;
1055
1056 /*
1057 * Device waiting for supplier to become available is not allowed to
1058 * probe.
1059 */
1060 mutex_lock(&fwnode_link_lock);
1061 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1062 if (sup_fw) {
1063 if (!dev_is_best_effort(dev)) {
1064 fwnode_ret = -EPROBE_DEFER;
1065 dev_err_probe(dev, -EPROBE_DEFER,
1066 "wait for supplier %pfwf\n", sup_fw);
1067 } else {
1068 fwnode_ret = -EAGAIN;
1069 }
1070 }
1071 mutex_unlock(&fwnode_link_lock);
1072 if (fwnode_ret == -EPROBE_DEFER)
1073 return fwnode_ret;
1074
1075 device_links_write_lock();
1076
1077 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1078 if (!(link->flags & DL_FLAG_MANAGED))
1079 continue;
1080
1081 if (link->status != DL_STATE_AVAILABLE &&
1082 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1083
1084 if (dev_is_best_effort(dev) &&
1085 link->flags & DL_FLAG_INFERRED &&
1086 !link->supplier->can_match) {
1087 ret = -EAGAIN;
1088 continue;
1089 }
1090
1091 device_links_missing_supplier(dev);
1092 dev_err_probe(dev, -EPROBE_DEFER,
1093 "supplier %s not ready\n",
1094 dev_name(link->supplier));
1095 ret = -EPROBE_DEFER;
1096 break;
1097 }
1098 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1099 }
1100 dev->links.status = DL_DEV_PROBING;
1101
1102 device_links_write_unlock();
1103
1104 return ret ? ret : fwnode_ret;
1105 }
1106
1107 /**
1108 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1109 * @dev: Device to call sync_state() on
1110 * @list: List head to queue the @dev on
1111 *
1112 * Queues a device for a sync_state() callback when the device links write lock
1113 * isn't held. This allows the sync_state() execution flow to use device links
1114 * APIs. The caller must ensure this function is called with
1115 * device_links_write_lock() held.
1116 *
1117 * This function does a get_device() to make sure the device is not freed while
1118 * on this list.
1119 *
1120 * So the caller must also ensure that device_links_flush_sync_list() is called
1121 * as soon as the caller releases device_links_write_lock(). This is necessary
1122 * to make sure the sync_state() is called in a timely fashion and the
1123 * put_device() is called on this device.
1124 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1125 static void __device_links_queue_sync_state(struct device *dev,
1126 struct list_head *list)
1127 {
1128 struct device_link *link;
1129
1130 if (!dev_has_sync_state(dev))
1131 return;
1132 if (dev->state_synced)
1133 return;
1134
1135 list_for_each_entry(link, &dev->links.consumers, s_node) {
1136 if (!(link->flags & DL_FLAG_MANAGED))
1137 continue;
1138 if (link->status != DL_STATE_ACTIVE)
1139 return;
1140 }
1141
1142 /*
1143 * Set the flag here to avoid adding the same device to a list more
1144 * than once. This can happen if new consumers get added to the device
1145 * and probed before the list is flushed.
1146 */
1147 dev->state_synced = true;
1148
1149 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1150 return;
1151
1152 get_device(dev);
1153 list_add_tail(&dev->links.defer_sync, list);
1154 }
1155
1156 /**
1157 * device_links_flush_sync_list - Call sync_state() on a list of devices
1158 * @list: List of devices to call sync_state() on
1159 * @dont_lock_dev: Device for which lock is already held by the caller
1160 *
1161 * Calls sync_state() on all the devices that have been queued for it. This
1162 * function is used in conjunction with __device_links_queue_sync_state(). The
1163 * @dont_lock_dev parameter is useful when this function is called from a
1164 * context where a device lock is already held.
1165 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1166 static void device_links_flush_sync_list(struct list_head *list,
1167 struct device *dont_lock_dev)
1168 {
1169 struct device *dev, *tmp;
1170
1171 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1172 list_del_init(&dev->links.defer_sync);
1173
1174 if (dev != dont_lock_dev)
1175 device_lock(dev);
1176
1177 dev_sync_state(dev);
1178
1179 if (dev != dont_lock_dev)
1180 device_unlock(dev);
1181
1182 put_device(dev);
1183 }
1184 }
1185
device_links_supplier_sync_state_pause(void)1186 void device_links_supplier_sync_state_pause(void)
1187 {
1188 device_links_write_lock();
1189 defer_sync_state_count++;
1190 device_links_write_unlock();
1191 }
1192
device_links_supplier_sync_state_resume(void)1193 void device_links_supplier_sync_state_resume(void)
1194 {
1195 struct device *dev, *tmp;
1196 LIST_HEAD(sync_list);
1197
1198 device_links_write_lock();
1199 if (!defer_sync_state_count) {
1200 WARN(true, "Unmatched sync_state pause/resume!");
1201 goto out;
1202 }
1203 defer_sync_state_count--;
1204 if (defer_sync_state_count)
1205 goto out;
1206
1207 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1208 /*
1209 * Delete from deferred_sync list before queuing it to
1210 * sync_list because defer_sync is used for both lists.
1211 */
1212 list_del_init(&dev->links.defer_sync);
1213 __device_links_queue_sync_state(dev, &sync_list);
1214 }
1215 out:
1216 device_links_write_unlock();
1217
1218 device_links_flush_sync_list(&sync_list, NULL);
1219 }
1220
sync_state_resume_initcall(void)1221 static int sync_state_resume_initcall(void)
1222 {
1223 device_links_supplier_sync_state_resume();
1224 return 0;
1225 }
1226 late_initcall(sync_state_resume_initcall);
1227
__device_links_supplier_defer_sync(struct device * sup)1228 static void __device_links_supplier_defer_sync(struct device *sup)
1229 {
1230 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1231 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1232 }
1233
device_link_drop_managed(struct device_link * link)1234 static void device_link_drop_managed(struct device_link *link)
1235 {
1236 link->flags &= ~DL_FLAG_MANAGED;
1237 WRITE_ONCE(link->status, DL_STATE_NONE);
1238 kref_put(&link->kref, __device_link_del);
1239 }
1240
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1241 static ssize_t waiting_for_supplier_show(struct device *dev,
1242 struct device_attribute *attr,
1243 char *buf)
1244 {
1245 bool val;
1246
1247 device_lock(dev);
1248 mutex_lock(&fwnode_link_lock);
1249 val = !!fwnode_links_check_suppliers(dev->fwnode);
1250 mutex_unlock(&fwnode_link_lock);
1251 device_unlock(dev);
1252 return sysfs_emit(buf, "%u\n", val);
1253 }
1254 static DEVICE_ATTR_RO(waiting_for_supplier);
1255
1256 /**
1257 * device_links_force_bind - Prepares device to be force bound
1258 * @dev: Consumer device.
1259 *
1260 * device_bind_driver() force binds a device to a driver without calling any
1261 * driver probe functions. So the consumer really isn't going to wait for any
1262 * supplier before it's bound to the driver. We still want the device link
1263 * states to be sensible when this happens.
1264 *
1265 * In preparation for device_bind_driver(), this function goes through each
1266 * supplier device links and checks if the supplier is bound. If it is, then
1267 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1268 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1269 */
device_links_force_bind(struct device * dev)1270 void device_links_force_bind(struct device *dev)
1271 {
1272 struct device_link *link, *ln;
1273
1274 device_links_write_lock();
1275
1276 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1277 if (!(link->flags & DL_FLAG_MANAGED))
1278 continue;
1279
1280 if (link->status != DL_STATE_AVAILABLE) {
1281 device_link_drop_managed(link);
1282 continue;
1283 }
1284 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1285 }
1286 dev->links.status = DL_DEV_PROBING;
1287
1288 device_links_write_unlock();
1289 }
1290
1291 /**
1292 * device_links_driver_bound - Update device links after probing its driver.
1293 * @dev: Device to update the links for.
1294 *
1295 * The probe has been successful, so update links from this device to any
1296 * consumers by changing their status to "available".
1297 *
1298 * Also change the status of @dev's links to suppliers to "active".
1299 *
1300 * Links without the DL_FLAG_MANAGED flag set are ignored.
1301 */
device_links_driver_bound(struct device * dev)1302 void device_links_driver_bound(struct device *dev)
1303 {
1304 struct device_link *link, *ln;
1305 LIST_HEAD(sync_list);
1306
1307 /*
1308 * If a device binds successfully, it's expected to have created all
1309 * the device links it needs to or make new device links as it needs
1310 * them. So, fw_devlink no longer needs to create device links to any
1311 * of the device's suppliers.
1312 *
1313 * Also, if a child firmware node of this bound device is not added as a
1314 * device by now, assume it is never going to be added. Make this bound
1315 * device the fallback supplier to the dangling consumers of the child
1316 * firmware node because this bound device is probably implementing the
1317 * child firmware node functionality and we don't want the dangling
1318 * consumers to defer probe indefinitely waiting for a device for the
1319 * child firmware node.
1320 */
1321 if (dev->fwnode && dev->fwnode->dev == dev) {
1322 struct fwnode_handle *child;
1323 fwnode_links_purge_suppliers(dev->fwnode);
1324 mutex_lock(&fwnode_link_lock);
1325 fwnode_for_each_available_child_node(dev->fwnode, child)
1326 __fw_devlink_pickup_dangling_consumers(child,
1327 dev->fwnode);
1328 __fw_devlink_link_to_consumers(dev);
1329 mutex_unlock(&fwnode_link_lock);
1330 }
1331 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1332
1333 device_links_write_lock();
1334
1335 list_for_each_entry(link, &dev->links.consumers, s_node) {
1336 if (!(link->flags & DL_FLAG_MANAGED))
1337 continue;
1338
1339 /*
1340 * Links created during consumer probe may be in the "consumer
1341 * probe" state to start with if the supplier is still probing
1342 * when they are created and they may become "active" if the
1343 * consumer probe returns first. Skip them here.
1344 */
1345 if (link->status == DL_STATE_CONSUMER_PROBE ||
1346 link->status == DL_STATE_ACTIVE)
1347 continue;
1348
1349 WARN_ON(link->status != DL_STATE_DORMANT);
1350 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1351
1352 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1353 driver_deferred_probe_add(link->consumer);
1354 }
1355
1356 if (defer_sync_state_count)
1357 __device_links_supplier_defer_sync(dev);
1358 else
1359 __device_links_queue_sync_state(dev, &sync_list);
1360
1361 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1362 struct device *supplier;
1363
1364 if (!(link->flags & DL_FLAG_MANAGED))
1365 continue;
1366
1367 supplier = link->supplier;
1368 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1369 /*
1370 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1371 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1372 * save to drop the managed link completely.
1373 */
1374 device_link_drop_managed(link);
1375 } else if (dev_is_best_effort(dev) &&
1376 link->flags & DL_FLAG_INFERRED &&
1377 link->status != DL_STATE_CONSUMER_PROBE &&
1378 !link->supplier->can_match) {
1379 /*
1380 * When dev_is_best_effort() is true, we ignore device
1381 * links to suppliers that don't have a driver. If the
1382 * consumer device still managed to probe, there's no
1383 * point in maintaining a device link in a weird state
1384 * (consumer probed before supplier). So delete it.
1385 */
1386 device_link_drop_managed(link);
1387 } else {
1388 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1389 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1390 }
1391
1392 /*
1393 * This needs to be done even for the deleted
1394 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1395 * device link that was preventing the supplier from getting a
1396 * sync_state() call.
1397 */
1398 if (defer_sync_state_count)
1399 __device_links_supplier_defer_sync(supplier);
1400 else
1401 __device_links_queue_sync_state(supplier, &sync_list);
1402 }
1403
1404 dev->links.status = DL_DEV_DRIVER_BOUND;
1405
1406 device_links_write_unlock();
1407
1408 device_links_flush_sync_list(&sync_list, dev);
1409 }
1410
1411 /**
1412 * __device_links_no_driver - Update links of a device without a driver.
1413 * @dev: Device without a drvier.
1414 *
1415 * Delete all non-persistent links from this device to any suppliers.
1416 *
1417 * Persistent links stay around, but their status is changed to "available",
1418 * unless they already are in the "supplier unbind in progress" state in which
1419 * case they need not be updated.
1420 *
1421 * Links without the DL_FLAG_MANAGED flag set are ignored.
1422 */
__device_links_no_driver(struct device * dev)1423 static void __device_links_no_driver(struct device *dev)
1424 {
1425 struct device_link *link, *ln;
1426
1427 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1428 if (!(link->flags & DL_FLAG_MANAGED))
1429 continue;
1430
1431 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1432 device_link_drop_managed(link);
1433 continue;
1434 }
1435
1436 if (link->status != DL_STATE_CONSUMER_PROBE &&
1437 link->status != DL_STATE_ACTIVE)
1438 continue;
1439
1440 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1441 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1442 } else {
1443 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1444 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1445 }
1446 }
1447
1448 dev->links.status = DL_DEV_NO_DRIVER;
1449 }
1450
1451 /**
1452 * device_links_no_driver - Update links after failing driver probe.
1453 * @dev: Device whose driver has just failed to probe.
1454 *
1455 * Clean up leftover links to consumers for @dev and invoke
1456 * %__device_links_no_driver() to update links to suppliers for it as
1457 * appropriate.
1458 *
1459 * Links without the DL_FLAG_MANAGED flag set are ignored.
1460 */
device_links_no_driver(struct device * dev)1461 void device_links_no_driver(struct device *dev)
1462 {
1463 struct device_link *link;
1464
1465 device_links_write_lock();
1466
1467 list_for_each_entry(link, &dev->links.consumers, s_node) {
1468 if (!(link->flags & DL_FLAG_MANAGED))
1469 continue;
1470
1471 /*
1472 * The probe has failed, so if the status of the link is
1473 * "consumer probe" or "active", it must have been added by
1474 * a probing consumer while this device was still probing.
1475 * Change its state to "dormant", as it represents a valid
1476 * relationship, but it is not functionally meaningful.
1477 */
1478 if (link->status == DL_STATE_CONSUMER_PROBE ||
1479 link->status == DL_STATE_ACTIVE)
1480 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1481 }
1482
1483 __device_links_no_driver(dev);
1484
1485 device_links_write_unlock();
1486 }
1487
1488 /**
1489 * device_links_driver_cleanup - Update links after driver removal.
1490 * @dev: Device whose driver has just gone away.
1491 *
1492 * Update links to consumers for @dev by changing their status to "dormant" and
1493 * invoke %__device_links_no_driver() to update links to suppliers for it as
1494 * appropriate.
1495 *
1496 * Links without the DL_FLAG_MANAGED flag set are ignored.
1497 */
device_links_driver_cleanup(struct device * dev)1498 void device_links_driver_cleanup(struct device *dev)
1499 {
1500 struct device_link *link, *ln;
1501
1502 device_links_write_lock();
1503
1504 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1505 if (!(link->flags & DL_FLAG_MANAGED))
1506 continue;
1507
1508 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1509 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1510
1511 /*
1512 * autoremove the links between this @dev and its consumer
1513 * devices that are not active, i.e. where the link state
1514 * has moved to DL_STATE_SUPPLIER_UNBIND.
1515 */
1516 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1517 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1518 device_link_drop_managed(link);
1519
1520 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1521 }
1522
1523 list_del_init(&dev->links.defer_sync);
1524 __device_links_no_driver(dev);
1525
1526 device_links_write_unlock();
1527 }
1528
1529 /**
1530 * device_links_busy - Check if there are any busy links to consumers.
1531 * @dev: Device to check.
1532 *
1533 * Check each consumer of the device and return 'true' if its link's status
1534 * is one of "consumer probe" or "active" (meaning that the given consumer is
1535 * probing right now or its driver is present). Otherwise, change the link
1536 * state to "supplier unbind" to prevent the consumer from being probed
1537 * successfully going forward.
1538 *
1539 * Return 'false' if there are no probing or active consumers.
1540 *
1541 * Links without the DL_FLAG_MANAGED flag set are ignored.
1542 */
device_links_busy(struct device * dev)1543 bool device_links_busy(struct device *dev)
1544 {
1545 struct device_link *link;
1546 bool ret = false;
1547
1548 device_links_write_lock();
1549
1550 list_for_each_entry(link, &dev->links.consumers, s_node) {
1551 if (!(link->flags & DL_FLAG_MANAGED))
1552 continue;
1553
1554 if (link->status == DL_STATE_CONSUMER_PROBE
1555 || link->status == DL_STATE_ACTIVE) {
1556 ret = true;
1557 break;
1558 }
1559 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1560 }
1561
1562 dev->links.status = DL_DEV_UNBINDING;
1563
1564 device_links_write_unlock();
1565 return ret;
1566 }
1567
1568 /**
1569 * device_links_unbind_consumers - Force unbind consumers of the given device.
1570 * @dev: Device to unbind the consumers of.
1571 *
1572 * Walk the list of links to consumers for @dev and if any of them is in the
1573 * "consumer probe" state, wait for all device probes in progress to complete
1574 * and start over.
1575 *
1576 * If that's not the case, change the status of the link to "supplier unbind"
1577 * and check if the link was in the "active" state. If so, force the consumer
1578 * driver to unbind and start over (the consumer will not re-probe as we have
1579 * changed the state of the link already).
1580 *
1581 * Links without the DL_FLAG_MANAGED flag set are ignored.
1582 */
device_links_unbind_consumers(struct device * dev)1583 void device_links_unbind_consumers(struct device *dev)
1584 {
1585 struct device_link *link;
1586
1587 start:
1588 device_links_write_lock();
1589
1590 list_for_each_entry(link, &dev->links.consumers, s_node) {
1591 enum device_link_state status;
1592
1593 if (!(link->flags & DL_FLAG_MANAGED) ||
1594 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1595 continue;
1596
1597 status = link->status;
1598 if (status == DL_STATE_CONSUMER_PROBE) {
1599 device_links_write_unlock();
1600
1601 wait_for_device_probe();
1602 goto start;
1603 }
1604 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1605 if (status == DL_STATE_ACTIVE) {
1606 struct device *consumer = link->consumer;
1607
1608 get_device(consumer);
1609
1610 device_links_write_unlock();
1611
1612 device_release_driver_internal(consumer, NULL,
1613 consumer->parent);
1614 put_device(consumer);
1615 goto start;
1616 }
1617 }
1618
1619 device_links_write_unlock();
1620 }
1621
1622 /**
1623 * device_links_purge - Delete existing links to other devices.
1624 * @dev: Target device.
1625 */
device_links_purge(struct device * dev)1626 static void device_links_purge(struct device *dev)
1627 {
1628 struct device_link *link, *ln;
1629
1630 if (dev->class == &devlink_class)
1631 return;
1632
1633 /*
1634 * Delete all of the remaining links from this device to any other
1635 * devices (either consumers or suppliers).
1636 */
1637 device_links_write_lock();
1638
1639 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1640 WARN_ON(link->status == DL_STATE_ACTIVE);
1641 __device_link_del(&link->kref);
1642 }
1643
1644 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1645 WARN_ON(link->status != DL_STATE_DORMANT &&
1646 link->status != DL_STATE_NONE);
1647 __device_link_del(&link->kref);
1648 }
1649
1650 device_links_write_unlock();
1651 }
1652
1653 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1654 DL_FLAG_SYNC_STATE_ONLY)
1655 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1656 DL_FLAG_AUTOPROBE_CONSUMER)
1657 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1658 DL_FLAG_PM_RUNTIME)
1659
1660 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
fw_devlink_setup(char * arg)1661 static int __init fw_devlink_setup(char *arg)
1662 {
1663 if (!arg)
1664 return -EINVAL;
1665
1666 if (strcmp(arg, "off") == 0) {
1667 fw_devlink_flags = 0;
1668 } else if (strcmp(arg, "permissive") == 0) {
1669 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1670 } else if (strcmp(arg, "on") == 0) {
1671 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1672 } else if (strcmp(arg, "rpm") == 0) {
1673 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1674 }
1675 return 0;
1676 }
1677 early_param("fw_devlink", fw_devlink_setup);
1678
1679 static bool fw_devlink_strict;
fw_devlink_strict_setup(char * arg)1680 static int __init fw_devlink_strict_setup(char *arg)
1681 {
1682 return kstrtobool(arg, &fw_devlink_strict);
1683 }
1684 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1685
1686 #define FW_DEVLINK_SYNC_STATE_STRICT 0
1687 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1
1688
1689 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1690 static int fw_devlink_sync_state;
1691 #else
1692 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1693 #endif
1694
fw_devlink_sync_state_setup(char * arg)1695 static int __init fw_devlink_sync_state_setup(char *arg)
1696 {
1697 if (!arg)
1698 return -EINVAL;
1699
1700 if (strcmp(arg, "strict") == 0) {
1701 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1702 return 0;
1703 } else if (strcmp(arg, "timeout") == 0) {
1704 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1705 return 0;
1706 }
1707 return -EINVAL;
1708 }
1709 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1710
fw_devlink_get_flags(u8 fwlink_flags)1711 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1712 {
1713 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1714 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1715
1716 return fw_devlink_flags;
1717 }
1718
fw_devlink_is_permissive(void)1719 static bool fw_devlink_is_permissive(void)
1720 {
1721 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1722 }
1723
fw_devlink_is_strict(void)1724 bool fw_devlink_is_strict(void)
1725 {
1726 return fw_devlink_strict && !fw_devlink_is_permissive();
1727 }
1728
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1729 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1730 {
1731 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1732 return;
1733
1734 fwnode_call_int_op(fwnode, add_links);
1735 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1736 }
1737
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1738 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1739 {
1740 struct fwnode_handle *child = NULL;
1741
1742 fw_devlink_parse_fwnode(fwnode);
1743
1744 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1745 fw_devlink_parse_fwtree(child);
1746 }
1747
fw_devlink_relax_link(struct device_link * link)1748 static void fw_devlink_relax_link(struct device_link *link)
1749 {
1750 if (!(link->flags & DL_FLAG_INFERRED))
1751 return;
1752
1753 if (device_link_flag_is_sync_state_only(link->flags))
1754 return;
1755
1756 pm_runtime_drop_link(link);
1757 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1758 dev_dbg(link->consumer, "Relaxing link with %s\n",
1759 dev_name(link->supplier));
1760 }
1761
fw_devlink_no_driver(struct device * dev,void * data)1762 static int fw_devlink_no_driver(struct device *dev, void *data)
1763 {
1764 struct device_link *link = to_devlink(dev);
1765
1766 if (!link->supplier->can_match)
1767 fw_devlink_relax_link(link);
1768
1769 return 0;
1770 }
1771
fw_devlink_drivers_done(void)1772 void fw_devlink_drivers_done(void)
1773 {
1774 fw_devlink_drv_reg_done = true;
1775 device_links_write_lock();
1776 class_for_each_device(&devlink_class, NULL, NULL,
1777 fw_devlink_no_driver);
1778 device_links_write_unlock();
1779 }
1780
fw_devlink_dev_sync_state(struct device * dev,void * data)1781 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1782 {
1783 struct device_link *link = to_devlink(dev);
1784 struct device *sup = link->supplier;
1785
1786 if (!(link->flags & DL_FLAG_MANAGED) ||
1787 link->status == DL_STATE_ACTIVE || sup->state_synced ||
1788 !dev_has_sync_state(sup))
1789 return 0;
1790
1791 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1792 dev_warn(sup, "sync_state() pending due to %s\n",
1793 dev_name(link->consumer));
1794 return 0;
1795 }
1796
1797 if (!list_empty(&sup->links.defer_sync))
1798 return 0;
1799
1800 dev_warn(sup, "Timed out. Forcing sync_state()\n");
1801 sup->state_synced = true;
1802 get_device(sup);
1803 list_add_tail(&sup->links.defer_sync, data);
1804
1805 return 0;
1806 }
1807
fw_devlink_probing_done(void)1808 void fw_devlink_probing_done(void)
1809 {
1810 LIST_HEAD(sync_list);
1811
1812 device_links_write_lock();
1813 class_for_each_device(&devlink_class, NULL, &sync_list,
1814 fw_devlink_dev_sync_state);
1815 device_links_write_unlock();
1816 device_links_flush_sync_list(&sync_list, NULL);
1817 }
1818
1819 /**
1820 * wait_for_init_devices_probe - Try to probe any device needed for init
1821 *
1822 * Some devices might need to be probed and bound successfully before the kernel
1823 * boot sequence can finish and move on to init/userspace. For example, a
1824 * network interface might need to be bound to be able to mount a NFS rootfs.
1825 *
1826 * With fw_devlink=on by default, some of these devices might be blocked from
1827 * probing because they are waiting on a optional supplier that doesn't have a
1828 * driver. While fw_devlink will eventually identify such devices and unblock
1829 * the probing automatically, it might be too late by the time it unblocks the
1830 * probing of devices. For example, the IP4 autoconfig might timeout before
1831 * fw_devlink unblocks probing of the network interface.
1832 *
1833 * This function is available to temporarily try and probe all devices that have
1834 * a driver even if some of their suppliers haven't been added or don't have
1835 * drivers.
1836 *
1837 * The drivers can then decide which of the suppliers are optional vs mandatory
1838 * and probe the device if possible. By the time this function returns, all such
1839 * "best effort" probes are guaranteed to be completed. If a device successfully
1840 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1841 * device where the supplier hasn't yet probed successfully because they have to
1842 * be optional dependencies.
1843 *
1844 * Any devices that didn't successfully probe go back to being treated as if
1845 * this function was never called.
1846 *
1847 * This also means that some devices that aren't needed for init and could have
1848 * waited for their optional supplier to probe (when the supplier's module is
1849 * loaded later on) would end up probing prematurely with limited functionality.
1850 * So call this function only when boot would fail without it.
1851 */
wait_for_init_devices_probe(void)1852 void __init wait_for_init_devices_probe(void)
1853 {
1854 if (!fw_devlink_flags || fw_devlink_is_permissive())
1855 return;
1856
1857 /*
1858 * Wait for all ongoing probes to finish so that the "best effort" is
1859 * only applied to devices that can't probe otherwise.
1860 */
1861 wait_for_device_probe();
1862
1863 pr_info("Trying to probe devices needed for running init ...\n");
1864 fw_devlink_best_effort = true;
1865 driver_deferred_probe_trigger();
1866
1867 /*
1868 * Wait for all "best effort" probes to finish before going back to
1869 * normal enforcement.
1870 */
1871 wait_for_device_probe();
1872 fw_devlink_best_effort = false;
1873 }
1874
fw_devlink_unblock_consumers(struct device * dev)1875 static void fw_devlink_unblock_consumers(struct device *dev)
1876 {
1877 struct device_link *link;
1878
1879 if (!fw_devlink_flags || fw_devlink_is_permissive())
1880 return;
1881
1882 device_links_write_lock();
1883 list_for_each_entry(link, &dev->links.consumers, s_node)
1884 fw_devlink_relax_link(link);
1885 device_links_write_unlock();
1886 }
1887
1888
fwnode_init_without_drv(struct fwnode_handle * fwnode)1889 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1890 {
1891 struct device *dev;
1892 bool ret;
1893
1894 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1895 return false;
1896
1897 dev = get_dev_from_fwnode(fwnode);
1898 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1899 put_device(dev);
1900
1901 return ret;
1902 }
1903
fwnode_ancestor_init_without_drv(struct fwnode_handle * fwnode)1904 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1905 {
1906 struct fwnode_handle *parent;
1907
1908 fwnode_for_each_parent_node(fwnode, parent) {
1909 if (fwnode_init_without_drv(parent)) {
1910 fwnode_handle_put(parent);
1911 return true;
1912 }
1913 }
1914
1915 return false;
1916 }
1917
1918 /**
1919 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1920 * @con: Potential consumer device.
1921 * @sup_handle: Potential supplier's fwnode.
1922 *
1923 * Needs to be called with fwnode_lock and device link lock held.
1924 *
1925 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1926 * depend on @con. This function can detect multiple cyles between @sup_handle
1927 * and @con. When such dependency cycles are found, convert all device links
1928 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1929 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1930 * converted into a device link in the future, they are created as
1931 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1932 * fw_devlink=permissive just between the devices in the cycle. We need to do
1933 * this because, at this point, fw_devlink can't tell which of these
1934 * dependencies is not a real dependency.
1935 *
1936 * Return true if one or more cycles were found. Otherwise, return false.
1937 */
__fw_devlink_relax_cycles(struct device * con,struct fwnode_handle * sup_handle)1938 static bool __fw_devlink_relax_cycles(struct device *con,
1939 struct fwnode_handle *sup_handle)
1940 {
1941 struct device *sup_dev = NULL, *par_dev = NULL;
1942 struct fwnode_link *link;
1943 struct device_link *dev_link;
1944 bool ret = false;
1945
1946 if (!sup_handle)
1947 return false;
1948
1949 /*
1950 * We aren't trying to find all cycles. Just a cycle between con and
1951 * sup_handle.
1952 */
1953 if (sup_handle->flags & FWNODE_FLAG_VISITED)
1954 return false;
1955
1956 sup_handle->flags |= FWNODE_FLAG_VISITED;
1957
1958 sup_dev = get_dev_from_fwnode(sup_handle);
1959
1960 /* Termination condition. */
1961 if (sup_dev == con) {
1962 ret = true;
1963 goto out;
1964 }
1965
1966 /*
1967 * If sup_dev is bound to a driver and @con hasn't started binding to a
1968 * driver, sup_dev can't be a consumer of @con. So, no need to check
1969 * further.
1970 */
1971 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
1972 con->links.status == DL_DEV_NO_DRIVER) {
1973 ret = false;
1974 goto out;
1975 }
1976
1977 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
1978 if (__fw_devlink_relax_cycles(con, link->supplier)) {
1979 __fwnode_link_cycle(link);
1980 ret = true;
1981 }
1982 }
1983
1984 /*
1985 * Give priority to device parent over fwnode parent to account for any
1986 * quirks in how fwnodes are converted to devices.
1987 */
1988 if (sup_dev)
1989 par_dev = get_device(sup_dev->parent);
1990 else
1991 par_dev = fwnode_get_next_parent_dev(sup_handle);
1992
1993 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode))
1994 ret = true;
1995
1996 if (!sup_dev)
1997 goto out;
1998
1999 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2000 /*
2001 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2002 * such due to a cycle.
2003 */
2004 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2005 !(dev_link->flags & DL_FLAG_CYCLE))
2006 continue;
2007
2008 if (__fw_devlink_relax_cycles(con,
2009 dev_link->supplier->fwnode)) {
2010 fw_devlink_relax_link(dev_link);
2011 dev_link->flags |= DL_FLAG_CYCLE;
2012 ret = true;
2013 }
2014 }
2015
2016 out:
2017 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2018 put_device(sup_dev);
2019 put_device(par_dev);
2020 return ret;
2021 }
2022
2023 /**
2024 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2025 * @con: consumer device for the device link
2026 * @sup_handle: fwnode handle of supplier
2027 * @link: fwnode link that's being converted to a device link
2028 *
2029 * This function will try to create a device link between the consumer device
2030 * @con and the supplier device represented by @sup_handle.
2031 *
2032 * The supplier has to be provided as a fwnode because incorrect cycles in
2033 * fwnode links can sometimes cause the supplier device to never be created.
2034 * This function detects such cases and returns an error if it cannot create a
2035 * device link from the consumer to a missing supplier.
2036 *
2037 * Returns,
2038 * 0 on successfully creating a device link
2039 * -EINVAL if the device link cannot be created as expected
2040 * -EAGAIN if the device link cannot be created right now, but it may be
2041 * possible to do that in the future
2042 */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,struct fwnode_link * link)2043 static int fw_devlink_create_devlink(struct device *con,
2044 struct fwnode_handle *sup_handle,
2045 struct fwnode_link *link)
2046 {
2047 struct device *sup_dev;
2048 int ret = 0;
2049 u32 flags;
2050
2051 if (con->fwnode == link->consumer)
2052 flags = fw_devlink_get_flags(link->flags);
2053 else
2054 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2055
2056 /*
2057 * In some cases, a device P might also be a supplier to its child node
2058 * C. However, this would defer the probe of C until the probe of P
2059 * completes successfully. This is perfectly fine in the device driver
2060 * model. device_add() doesn't guarantee probe completion of the device
2061 * by the time it returns.
2062 *
2063 * However, there are a few drivers that assume C will finish probing
2064 * as soon as it's added and before P finishes probing. So, we provide
2065 * a flag to let fw_devlink know not to delay the probe of C until the
2066 * probe of P completes successfully.
2067 *
2068 * When such a flag is set, we can't create device links where P is the
2069 * supplier of C as that would delay the probe of C.
2070 */
2071 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2072 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2073 return -EINVAL;
2074
2075 /*
2076 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2077 * So, one might expect that cycle detection isn't necessary for them.
2078 * However, if the device link was marked as SYNC_STATE_ONLY because
2079 * it's part of a cycle, then we still need to do cycle detection. This
2080 * is because the consumer and supplier might be part of multiple cycles
2081 * and we need to detect all those cycles.
2082 */
2083 if (!device_link_flag_is_sync_state_only(flags) ||
2084 flags & DL_FLAG_CYCLE) {
2085 device_links_write_lock();
2086 if (__fw_devlink_relax_cycles(con, sup_handle)) {
2087 __fwnode_link_cycle(link);
2088 flags = fw_devlink_get_flags(link->flags);
2089 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2090 sup_handle);
2091 }
2092 device_links_write_unlock();
2093 }
2094
2095 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2096 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2097 else
2098 sup_dev = get_dev_from_fwnode(sup_handle);
2099
2100 if (sup_dev) {
2101 /*
2102 * If it's one of those drivers that don't actually bind to
2103 * their device using driver core, then don't wait on this
2104 * supplier device indefinitely.
2105 */
2106 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2107 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2108 dev_dbg(con,
2109 "Not linking %pfwf - dev might never probe\n",
2110 sup_handle);
2111 ret = -EINVAL;
2112 goto out;
2113 }
2114
2115 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2116 dev_err(con, "Failed to create device link (0x%x) with %s\n",
2117 flags, dev_name(sup_dev));
2118 ret = -EINVAL;
2119 }
2120
2121 goto out;
2122 }
2123
2124 /*
2125 * Supplier or supplier's ancestor already initialized without a struct
2126 * device or being probed by a driver.
2127 */
2128 if (fwnode_init_without_drv(sup_handle) ||
2129 fwnode_ancestor_init_without_drv(sup_handle)) {
2130 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2131 sup_handle);
2132 return -EINVAL;
2133 }
2134
2135 ret = -EAGAIN;
2136 out:
2137 put_device(sup_dev);
2138 return ret;
2139 }
2140
2141 /**
2142 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2143 * @dev: Device that needs to be linked to its consumers
2144 *
2145 * This function looks at all the consumer fwnodes of @dev and creates device
2146 * links between the consumer device and @dev (supplier).
2147 *
2148 * If the consumer device has not been added yet, then this function creates a
2149 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2150 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2151 * sync_state() callback before the real consumer device gets to be added and
2152 * then probed.
2153 *
2154 * Once device links are created from the real consumer to @dev (supplier), the
2155 * fwnode links are deleted.
2156 */
__fw_devlink_link_to_consumers(struct device * dev)2157 static void __fw_devlink_link_to_consumers(struct device *dev)
2158 {
2159 struct fwnode_handle *fwnode = dev->fwnode;
2160 struct fwnode_link *link, *tmp;
2161
2162 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2163 struct device *con_dev;
2164 bool own_link = true;
2165 int ret;
2166
2167 con_dev = get_dev_from_fwnode(link->consumer);
2168 /*
2169 * If consumer device is not available yet, make a "proxy"
2170 * SYNC_STATE_ONLY link from the consumer's parent device to
2171 * the supplier device. This is necessary to make sure the
2172 * supplier doesn't get a sync_state() callback before the real
2173 * consumer can create a device link to the supplier.
2174 *
2175 * This proxy link step is needed to handle the case where the
2176 * consumer's parent device is added before the supplier.
2177 */
2178 if (!con_dev) {
2179 con_dev = fwnode_get_next_parent_dev(link->consumer);
2180 /*
2181 * However, if the consumer's parent device is also the
2182 * parent of the supplier, don't create a
2183 * consumer-supplier link from the parent to its child
2184 * device. Such a dependency is impossible.
2185 */
2186 if (con_dev &&
2187 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2188 put_device(con_dev);
2189 con_dev = NULL;
2190 } else {
2191 own_link = false;
2192 }
2193 }
2194
2195 if (!con_dev)
2196 continue;
2197
2198 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2199 put_device(con_dev);
2200 if (!own_link || ret == -EAGAIN)
2201 continue;
2202
2203 __fwnode_link_del(link);
2204 }
2205 }
2206
2207 /**
2208 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2209 * @dev: The consumer device that needs to be linked to its suppliers
2210 * @fwnode: Root of the fwnode tree that is used to create device links
2211 *
2212 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2213 * @fwnode and creates device links between @dev (consumer) and all the
2214 * supplier devices of the entire fwnode tree at @fwnode.
2215 *
2216 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2217 * and the real suppliers of @dev. Once these device links are created, the
2218 * fwnode links are deleted.
2219 *
2220 * In addition, it also looks at all the suppliers of the entire fwnode tree
2221 * because some of the child devices of @dev that have not been added yet
2222 * (because @dev hasn't probed) might already have their suppliers added to
2223 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2224 * @dev (consumer) and these suppliers to make sure they don't execute their
2225 * sync_state() callbacks before these child devices have a chance to create
2226 * their device links. The fwnode links that correspond to the child devices
2227 * aren't delete because they are needed later to create the device links
2228 * between the real consumer and supplier devices.
2229 */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)2230 static void __fw_devlink_link_to_suppliers(struct device *dev,
2231 struct fwnode_handle *fwnode)
2232 {
2233 bool own_link = (dev->fwnode == fwnode);
2234 struct fwnode_link *link, *tmp;
2235 struct fwnode_handle *child = NULL;
2236
2237 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2238 int ret;
2239 struct fwnode_handle *sup = link->supplier;
2240
2241 ret = fw_devlink_create_devlink(dev, sup, link);
2242 if (!own_link || ret == -EAGAIN)
2243 continue;
2244
2245 __fwnode_link_del(link);
2246 }
2247
2248 /*
2249 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2250 * all the descendants. This proxy link step is needed to handle the
2251 * case where the supplier is added before the consumer's parent device
2252 * (@dev).
2253 */
2254 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2255 __fw_devlink_link_to_suppliers(dev, child);
2256 }
2257
fw_devlink_link_device(struct device * dev)2258 static void fw_devlink_link_device(struct device *dev)
2259 {
2260 struct fwnode_handle *fwnode = dev->fwnode;
2261
2262 if (!fw_devlink_flags)
2263 return;
2264
2265 fw_devlink_parse_fwtree(fwnode);
2266
2267 mutex_lock(&fwnode_link_lock);
2268 __fw_devlink_link_to_consumers(dev);
2269 __fw_devlink_link_to_suppliers(dev, fwnode);
2270 mutex_unlock(&fwnode_link_lock);
2271 }
2272
2273 /* Device links support end. */
2274
2275 int (*platform_notify)(struct device *dev) = NULL;
2276 int (*platform_notify_remove)(struct device *dev) = NULL;
2277 static struct kobject *dev_kobj;
2278
2279 /* /sys/dev/char */
2280 static struct kobject *sysfs_dev_char_kobj;
2281
2282 /* /sys/dev/block */
2283 static struct kobject *sysfs_dev_block_kobj;
2284
2285 static DEFINE_MUTEX(device_hotplug_lock);
2286
lock_device_hotplug(void)2287 void lock_device_hotplug(void)
2288 {
2289 mutex_lock(&device_hotplug_lock);
2290 }
2291
unlock_device_hotplug(void)2292 void unlock_device_hotplug(void)
2293 {
2294 mutex_unlock(&device_hotplug_lock);
2295 }
2296
lock_device_hotplug_sysfs(void)2297 int lock_device_hotplug_sysfs(void)
2298 {
2299 if (mutex_trylock(&device_hotplug_lock))
2300 return 0;
2301
2302 /* Avoid busy looping (5 ms of sleep should do). */
2303 msleep(5);
2304 return restart_syscall();
2305 }
2306
2307 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2308 static inline int device_is_not_partition(struct device *dev)
2309 {
2310 return !(dev->type == &part_type);
2311 }
2312 #else
device_is_not_partition(struct device * dev)2313 static inline int device_is_not_partition(struct device *dev)
2314 {
2315 return 1;
2316 }
2317 #endif
2318
device_platform_notify(struct device * dev)2319 static void device_platform_notify(struct device *dev)
2320 {
2321 acpi_device_notify(dev);
2322
2323 software_node_notify(dev);
2324
2325 if (platform_notify)
2326 platform_notify(dev);
2327 }
2328
device_platform_notify_remove(struct device * dev)2329 static void device_platform_notify_remove(struct device *dev)
2330 {
2331 if (platform_notify_remove)
2332 platform_notify_remove(dev);
2333
2334 software_node_notify_remove(dev);
2335
2336 acpi_device_notify_remove(dev);
2337 }
2338
2339 /**
2340 * dev_driver_string - Return a device's driver name, if at all possible
2341 * @dev: struct device to get the name of
2342 *
2343 * Will return the device's driver's name if it is bound to a device. If
2344 * the device is not bound to a driver, it will return the name of the bus
2345 * it is attached to. If it is not attached to a bus either, an empty
2346 * string will be returned.
2347 */
dev_driver_string(const struct device * dev)2348 const char *dev_driver_string(const struct device *dev)
2349 {
2350 struct device_driver *drv;
2351
2352 /* dev->driver can change to NULL underneath us because of unbinding,
2353 * so be careful about accessing it. dev->bus and dev->class should
2354 * never change once they are set, so they don't need special care.
2355 */
2356 drv = READ_ONCE(dev->driver);
2357 return drv ? drv->name : dev_bus_name(dev);
2358 }
2359 EXPORT_SYMBOL(dev_driver_string);
2360
2361 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2362
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2363 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2364 char *buf)
2365 {
2366 struct device_attribute *dev_attr = to_dev_attr(attr);
2367 struct device *dev = kobj_to_dev(kobj);
2368 ssize_t ret = -EIO;
2369
2370 if (dev_attr->show)
2371 ret = dev_attr->show(dev, dev_attr, buf);
2372 if (ret >= (ssize_t)PAGE_SIZE) {
2373 printk("dev_attr_show: %pS returned bad count\n",
2374 dev_attr->show);
2375 }
2376 return ret;
2377 }
2378
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2379 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2380 const char *buf, size_t count)
2381 {
2382 struct device_attribute *dev_attr = to_dev_attr(attr);
2383 struct device *dev = kobj_to_dev(kobj);
2384 ssize_t ret = -EIO;
2385
2386 if (dev_attr->store)
2387 ret = dev_attr->store(dev, dev_attr, buf, count);
2388 return ret;
2389 }
2390
2391 static const struct sysfs_ops dev_sysfs_ops = {
2392 .show = dev_attr_show,
2393 .store = dev_attr_store,
2394 };
2395
2396 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2397
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2398 ssize_t device_store_ulong(struct device *dev,
2399 struct device_attribute *attr,
2400 const char *buf, size_t size)
2401 {
2402 struct dev_ext_attribute *ea = to_ext_attr(attr);
2403 int ret;
2404 unsigned long new;
2405
2406 ret = kstrtoul(buf, 0, &new);
2407 if (ret)
2408 return ret;
2409 *(unsigned long *)(ea->var) = new;
2410 /* Always return full write size even if we didn't consume all */
2411 return size;
2412 }
2413 EXPORT_SYMBOL_GPL(device_store_ulong);
2414
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2415 ssize_t device_show_ulong(struct device *dev,
2416 struct device_attribute *attr,
2417 char *buf)
2418 {
2419 struct dev_ext_attribute *ea = to_ext_attr(attr);
2420 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2421 }
2422 EXPORT_SYMBOL_GPL(device_show_ulong);
2423
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2424 ssize_t device_store_int(struct device *dev,
2425 struct device_attribute *attr,
2426 const char *buf, size_t size)
2427 {
2428 struct dev_ext_attribute *ea = to_ext_attr(attr);
2429 int ret;
2430 long new;
2431
2432 ret = kstrtol(buf, 0, &new);
2433 if (ret)
2434 return ret;
2435
2436 if (new > INT_MAX || new < INT_MIN)
2437 return -EINVAL;
2438 *(int *)(ea->var) = new;
2439 /* Always return full write size even if we didn't consume all */
2440 return size;
2441 }
2442 EXPORT_SYMBOL_GPL(device_store_int);
2443
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2444 ssize_t device_show_int(struct device *dev,
2445 struct device_attribute *attr,
2446 char *buf)
2447 {
2448 struct dev_ext_attribute *ea = to_ext_attr(attr);
2449
2450 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2451 }
2452 EXPORT_SYMBOL_GPL(device_show_int);
2453
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2454 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2455 const char *buf, size_t size)
2456 {
2457 struct dev_ext_attribute *ea = to_ext_attr(attr);
2458
2459 if (kstrtobool(buf, ea->var) < 0)
2460 return -EINVAL;
2461
2462 return size;
2463 }
2464 EXPORT_SYMBOL_GPL(device_store_bool);
2465
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2466 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2467 char *buf)
2468 {
2469 struct dev_ext_attribute *ea = to_ext_attr(attr);
2470
2471 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2472 }
2473 EXPORT_SYMBOL_GPL(device_show_bool);
2474
2475 /**
2476 * device_release - free device structure.
2477 * @kobj: device's kobject.
2478 *
2479 * This is called once the reference count for the object
2480 * reaches 0. We forward the call to the device's release
2481 * method, which should handle actually freeing the structure.
2482 */
device_release(struct kobject * kobj)2483 static void device_release(struct kobject *kobj)
2484 {
2485 struct device *dev = kobj_to_dev(kobj);
2486 struct device_private *p = dev->p;
2487
2488 /*
2489 * Some platform devices are driven without driver attached
2490 * and managed resources may have been acquired. Make sure
2491 * all resources are released.
2492 *
2493 * Drivers still can add resources into device after device
2494 * is deleted but alive, so release devres here to avoid
2495 * possible memory leak.
2496 */
2497 devres_release_all(dev);
2498
2499 kfree(dev->dma_range_map);
2500
2501 if (dev->release)
2502 dev->release(dev);
2503 else if (dev->type && dev->type->release)
2504 dev->type->release(dev);
2505 else if (dev->class && dev->class->dev_release)
2506 dev->class->dev_release(dev);
2507 else
2508 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2509 dev_name(dev));
2510 kfree(p);
2511 }
2512
device_namespace(const struct kobject * kobj)2513 static const void *device_namespace(const struct kobject *kobj)
2514 {
2515 const struct device *dev = kobj_to_dev(kobj);
2516 const void *ns = NULL;
2517
2518 if (dev->class && dev->class->ns_type)
2519 ns = dev->class->namespace(dev);
2520
2521 return ns;
2522 }
2523
device_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)2524 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2525 {
2526 const struct device *dev = kobj_to_dev(kobj);
2527
2528 if (dev->class && dev->class->get_ownership)
2529 dev->class->get_ownership(dev, uid, gid);
2530 }
2531
2532 static const struct kobj_type device_ktype = {
2533 .release = device_release,
2534 .sysfs_ops = &dev_sysfs_ops,
2535 .namespace = device_namespace,
2536 .get_ownership = device_get_ownership,
2537 };
2538
2539
dev_uevent_filter(const struct kobject * kobj)2540 static int dev_uevent_filter(const struct kobject *kobj)
2541 {
2542 const struct kobj_type *ktype = get_ktype(kobj);
2543
2544 if (ktype == &device_ktype) {
2545 const struct device *dev = kobj_to_dev(kobj);
2546 if (dev->bus)
2547 return 1;
2548 if (dev->class)
2549 return 1;
2550 }
2551 return 0;
2552 }
2553
dev_uevent_name(const struct kobject * kobj)2554 static const char *dev_uevent_name(const struct kobject *kobj)
2555 {
2556 const struct device *dev = kobj_to_dev(kobj);
2557
2558 if (dev->bus)
2559 return dev->bus->name;
2560 if (dev->class)
2561 return dev->class->name;
2562 return NULL;
2563 }
2564
dev_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)2565 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2566 {
2567 const struct device *dev = kobj_to_dev(kobj);
2568 int retval = 0;
2569
2570 /* add device node properties if present */
2571 if (MAJOR(dev->devt)) {
2572 const char *tmp;
2573 const char *name;
2574 umode_t mode = 0;
2575 kuid_t uid = GLOBAL_ROOT_UID;
2576 kgid_t gid = GLOBAL_ROOT_GID;
2577
2578 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2579 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2580 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2581 if (name) {
2582 add_uevent_var(env, "DEVNAME=%s", name);
2583 if (mode)
2584 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2585 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2586 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2587 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2588 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2589 kfree(tmp);
2590 }
2591 }
2592
2593 if (dev->type && dev->type->name)
2594 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2595
2596 if (dev->driver)
2597 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2598
2599 /* Add common DT information about the device */
2600 of_device_uevent(dev, env);
2601
2602 /* have the bus specific function add its stuff */
2603 if (dev->bus && dev->bus->uevent) {
2604 retval = dev->bus->uevent(dev, env);
2605 if (retval)
2606 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2607 dev_name(dev), __func__, retval);
2608 }
2609
2610 /* have the class specific function add its stuff */
2611 if (dev->class && dev->class->dev_uevent) {
2612 retval = dev->class->dev_uevent(dev, env);
2613 if (retval)
2614 pr_debug("device: '%s': %s: class uevent() "
2615 "returned %d\n", dev_name(dev),
2616 __func__, retval);
2617 }
2618
2619 /* have the device type specific function add its stuff */
2620 if (dev->type && dev->type->uevent) {
2621 retval = dev->type->uevent(dev, env);
2622 if (retval)
2623 pr_debug("device: '%s': %s: dev_type uevent() "
2624 "returned %d\n", dev_name(dev),
2625 __func__, retval);
2626 }
2627
2628 return retval;
2629 }
2630
2631 static const struct kset_uevent_ops device_uevent_ops = {
2632 .filter = dev_uevent_filter,
2633 .name = dev_uevent_name,
2634 .uevent = dev_uevent,
2635 };
2636
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2637 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2638 char *buf)
2639 {
2640 struct kobject *top_kobj;
2641 struct kset *kset;
2642 struct kobj_uevent_env *env = NULL;
2643 int i;
2644 int len = 0;
2645 int retval;
2646
2647 /* search the kset, the device belongs to */
2648 top_kobj = &dev->kobj;
2649 while (!top_kobj->kset && top_kobj->parent)
2650 top_kobj = top_kobj->parent;
2651 if (!top_kobj->kset)
2652 goto out;
2653
2654 kset = top_kobj->kset;
2655 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2656 goto out;
2657
2658 /* respect filter */
2659 if (kset->uevent_ops && kset->uevent_ops->filter)
2660 if (!kset->uevent_ops->filter(&dev->kobj))
2661 goto out;
2662
2663 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2664 if (!env)
2665 return -ENOMEM;
2666
2667 /* Synchronize with really_probe() */
2668 device_lock(dev);
2669 /* let the kset specific function add its keys */
2670 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2671 device_unlock(dev);
2672 if (retval)
2673 goto out;
2674
2675 /* copy keys to file */
2676 for (i = 0; i < env->envp_idx; i++)
2677 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2678 out:
2679 kfree(env);
2680 return len;
2681 }
2682
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2683 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2684 const char *buf, size_t count)
2685 {
2686 int rc;
2687
2688 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2689
2690 if (rc) {
2691 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2692 return rc;
2693 }
2694
2695 return count;
2696 }
2697 static DEVICE_ATTR_RW(uevent);
2698
online_show(struct device * dev,struct device_attribute * attr,char * buf)2699 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2700 char *buf)
2701 {
2702 bool val;
2703
2704 device_lock(dev);
2705 val = !dev->offline;
2706 device_unlock(dev);
2707 return sysfs_emit(buf, "%u\n", val);
2708 }
2709
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2710 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2711 const char *buf, size_t count)
2712 {
2713 bool val;
2714 int ret;
2715
2716 ret = kstrtobool(buf, &val);
2717 if (ret < 0)
2718 return ret;
2719
2720 ret = lock_device_hotplug_sysfs();
2721 if (ret)
2722 return ret;
2723
2724 ret = val ? device_online(dev) : device_offline(dev);
2725 unlock_device_hotplug();
2726 return ret < 0 ? ret : count;
2727 }
2728 static DEVICE_ATTR_RW(online);
2729
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2730 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2731 char *buf)
2732 {
2733 const char *loc;
2734
2735 switch (dev->removable) {
2736 case DEVICE_REMOVABLE:
2737 loc = "removable";
2738 break;
2739 case DEVICE_FIXED:
2740 loc = "fixed";
2741 break;
2742 default:
2743 loc = "unknown";
2744 }
2745 return sysfs_emit(buf, "%s\n", loc);
2746 }
2747 static DEVICE_ATTR_RO(removable);
2748
device_add_groups(struct device * dev,const struct attribute_group ** groups)2749 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2750 {
2751 return sysfs_create_groups(&dev->kobj, groups);
2752 }
2753 EXPORT_SYMBOL_GPL(device_add_groups);
2754
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2755 void device_remove_groups(struct device *dev,
2756 const struct attribute_group **groups)
2757 {
2758 sysfs_remove_groups(&dev->kobj, groups);
2759 }
2760 EXPORT_SYMBOL_GPL(device_remove_groups);
2761
2762 union device_attr_group_devres {
2763 const struct attribute_group *group;
2764 const struct attribute_group **groups;
2765 };
2766
devm_attr_group_remove(struct device * dev,void * res)2767 static void devm_attr_group_remove(struct device *dev, void *res)
2768 {
2769 union device_attr_group_devres *devres = res;
2770 const struct attribute_group *group = devres->group;
2771
2772 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2773 sysfs_remove_group(&dev->kobj, group);
2774 }
2775
devm_attr_groups_remove(struct device * dev,void * res)2776 static void devm_attr_groups_remove(struct device *dev, void *res)
2777 {
2778 union device_attr_group_devres *devres = res;
2779 const struct attribute_group **groups = devres->groups;
2780
2781 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2782 sysfs_remove_groups(&dev->kobj, groups);
2783 }
2784
2785 /**
2786 * devm_device_add_group - given a device, create a managed attribute group
2787 * @dev: The device to create the group for
2788 * @grp: The attribute group to create
2789 *
2790 * This function creates a group for the first time. It will explicitly
2791 * warn and error if any of the attribute files being created already exist.
2792 *
2793 * Returns 0 on success or error code on failure.
2794 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2795 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2796 {
2797 union device_attr_group_devres *devres;
2798 int error;
2799
2800 devres = devres_alloc(devm_attr_group_remove,
2801 sizeof(*devres), GFP_KERNEL);
2802 if (!devres)
2803 return -ENOMEM;
2804
2805 error = sysfs_create_group(&dev->kobj, grp);
2806 if (error) {
2807 devres_free(devres);
2808 return error;
2809 }
2810
2811 devres->group = grp;
2812 devres_add(dev, devres);
2813 return 0;
2814 }
2815 EXPORT_SYMBOL_GPL(devm_device_add_group);
2816
2817 /**
2818 * devm_device_add_groups - create a bunch of managed attribute groups
2819 * @dev: The device to create the group for
2820 * @groups: The attribute groups to create, NULL terminated
2821 *
2822 * This function creates a bunch of managed attribute groups. If an error
2823 * occurs when creating a group, all previously created groups will be
2824 * removed, unwinding everything back to the original state when this
2825 * function was called. It will explicitly warn and error if any of the
2826 * attribute files being created already exist.
2827 *
2828 * Returns 0 on success or error code from sysfs_create_group on failure.
2829 */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)2830 int devm_device_add_groups(struct device *dev,
2831 const struct attribute_group **groups)
2832 {
2833 union device_attr_group_devres *devres;
2834 int error;
2835
2836 devres = devres_alloc(devm_attr_groups_remove,
2837 sizeof(*devres), GFP_KERNEL);
2838 if (!devres)
2839 return -ENOMEM;
2840
2841 error = sysfs_create_groups(&dev->kobj, groups);
2842 if (error) {
2843 devres_free(devres);
2844 return error;
2845 }
2846
2847 devres->groups = groups;
2848 devres_add(dev, devres);
2849 return 0;
2850 }
2851 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2852
device_add_attrs(struct device * dev)2853 static int device_add_attrs(struct device *dev)
2854 {
2855 const struct class *class = dev->class;
2856 const struct device_type *type = dev->type;
2857 int error;
2858
2859 if (class) {
2860 error = device_add_groups(dev, class->dev_groups);
2861 if (error)
2862 return error;
2863 }
2864
2865 if (type) {
2866 error = device_add_groups(dev, type->groups);
2867 if (error)
2868 goto err_remove_class_groups;
2869 }
2870
2871 error = device_add_groups(dev, dev->groups);
2872 if (error)
2873 goto err_remove_type_groups;
2874
2875 if (device_supports_offline(dev) && !dev->offline_disabled) {
2876 error = device_create_file(dev, &dev_attr_online);
2877 if (error)
2878 goto err_remove_dev_groups;
2879 }
2880
2881 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2882 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2883 if (error)
2884 goto err_remove_dev_online;
2885 }
2886
2887 if (dev_removable_is_valid(dev)) {
2888 error = device_create_file(dev, &dev_attr_removable);
2889 if (error)
2890 goto err_remove_dev_waiting_for_supplier;
2891 }
2892
2893 if (dev_add_physical_location(dev)) {
2894 error = device_add_group(dev,
2895 &dev_attr_physical_location_group);
2896 if (error)
2897 goto err_remove_dev_removable;
2898 }
2899
2900 return 0;
2901
2902 err_remove_dev_removable:
2903 device_remove_file(dev, &dev_attr_removable);
2904 err_remove_dev_waiting_for_supplier:
2905 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2906 err_remove_dev_online:
2907 device_remove_file(dev, &dev_attr_online);
2908 err_remove_dev_groups:
2909 device_remove_groups(dev, dev->groups);
2910 err_remove_type_groups:
2911 if (type)
2912 device_remove_groups(dev, type->groups);
2913 err_remove_class_groups:
2914 if (class)
2915 device_remove_groups(dev, class->dev_groups);
2916
2917 return error;
2918 }
2919
device_remove_attrs(struct device * dev)2920 static void device_remove_attrs(struct device *dev)
2921 {
2922 const struct class *class = dev->class;
2923 const struct device_type *type = dev->type;
2924
2925 if (dev->physical_location) {
2926 device_remove_group(dev, &dev_attr_physical_location_group);
2927 kfree(dev->physical_location);
2928 }
2929
2930 device_remove_file(dev, &dev_attr_removable);
2931 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2932 device_remove_file(dev, &dev_attr_online);
2933 device_remove_groups(dev, dev->groups);
2934
2935 if (type)
2936 device_remove_groups(dev, type->groups);
2937
2938 if (class)
2939 device_remove_groups(dev, class->dev_groups);
2940 }
2941
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2942 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2943 char *buf)
2944 {
2945 return print_dev_t(buf, dev->devt);
2946 }
2947 static DEVICE_ATTR_RO(dev);
2948
2949 /* /sys/devices/ */
2950 struct kset *devices_kset;
2951
2952 /**
2953 * devices_kset_move_before - Move device in the devices_kset's list.
2954 * @deva: Device to move.
2955 * @devb: Device @deva should come before.
2956 */
devices_kset_move_before(struct device * deva,struct device * devb)2957 static void devices_kset_move_before(struct device *deva, struct device *devb)
2958 {
2959 if (!devices_kset)
2960 return;
2961 pr_debug("devices_kset: Moving %s before %s\n",
2962 dev_name(deva), dev_name(devb));
2963 spin_lock(&devices_kset->list_lock);
2964 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2965 spin_unlock(&devices_kset->list_lock);
2966 }
2967
2968 /**
2969 * devices_kset_move_after - Move device in the devices_kset's list.
2970 * @deva: Device to move
2971 * @devb: Device @deva should come after.
2972 */
devices_kset_move_after(struct device * deva,struct device * devb)2973 static void devices_kset_move_after(struct device *deva, struct device *devb)
2974 {
2975 if (!devices_kset)
2976 return;
2977 pr_debug("devices_kset: Moving %s after %s\n",
2978 dev_name(deva), dev_name(devb));
2979 spin_lock(&devices_kset->list_lock);
2980 list_move(&deva->kobj.entry, &devb->kobj.entry);
2981 spin_unlock(&devices_kset->list_lock);
2982 }
2983
2984 /**
2985 * devices_kset_move_last - move the device to the end of devices_kset's list.
2986 * @dev: device to move
2987 */
devices_kset_move_last(struct device * dev)2988 void devices_kset_move_last(struct device *dev)
2989 {
2990 if (!devices_kset)
2991 return;
2992 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2993 spin_lock(&devices_kset->list_lock);
2994 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2995 spin_unlock(&devices_kset->list_lock);
2996 }
2997
2998 /**
2999 * device_create_file - create sysfs attribute file for device.
3000 * @dev: device.
3001 * @attr: device attribute descriptor.
3002 */
device_create_file(struct device * dev,const struct device_attribute * attr)3003 int device_create_file(struct device *dev,
3004 const struct device_attribute *attr)
3005 {
3006 int error = 0;
3007
3008 if (dev) {
3009 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3010 "Attribute %s: write permission without 'store'\n",
3011 attr->attr.name);
3012 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3013 "Attribute %s: read permission without 'show'\n",
3014 attr->attr.name);
3015 error = sysfs_create_file(&dev->kobj, &attr->attr);
3016 }
3017
3018 return error;
3019 }
3020 EXPORT_SYMBOL_GPL(device_create_file);
3021
3022 /**
3023 * device_remove_file - remove sysfs attribute file.
3024 * @dev: device.
3025 * @attr: device attribute descriptor.
3026 */
device_remove_file(struct device * dev,const struct device_attribute * attr)3027 void device_remove_file(struct device *dev,
3028 const struct device_attribute *attr)
3029 {
3030 if (dev)
3031 sysfs_remove_file(&dev->kobj, &attr->attr);
3032 }
3033 EXPORT_SYMBOL_GPL(device_remove_file);
3034
3035 /**
3036 * device_remove_file_self - remove sysfs attribute file from its own method.
3037 * @dev: device.
3038 * @attr: device attribute descriptor.
3039 *
3040 * See kernfs_remove_self() for details.
3041 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)3042 bool device_remove_file_self(struct device *dev,
3043 const struct device_attribute *attr)
3044 {
3045 if (dev)
3046 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3047 else
3048 return false;
3049 }
3050 EXPORT_SYMBOL_GPL(device_remove_file_self);
3051
3052 /**
3053 * device_create_bin_file - create sysfs binary attribute file for device.
3054 * @dev: device.
3055 * @attr: device binary attribute descriptor.
3056 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)3057 int device_create_bin_file(struct device *dev,
3058 const struct bin_attribute *attr)
3059 {
3060 int error = -EINVAL;
3061 if (dev)
3062 error = sysfs_create_bin_file(&dev->kobj, attr);
3063 return error;
3064 }
3065 EXPORT_SYMBOL_GPL(device_create_bin_file);
3066
3067 /**
3068 * device_remove_bin_file - remove sysfs binary attribute file
3069 * @dev: device.
3070 * @attr: device binary attribute descriptor.
3071 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)3072 void device_remove_bin_file(struct device *dev,
3073 const struct bin_attribute *attr)
3074 {
3075 if (dev)
3076 sysfs_remove_bin_file(&dev->kobj, attr);
3077 }
3078 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3079
klist_children_get(struct klist_node * n)3080 static void klist_children_get(struct klist_node *n)
3081 {
3082 struct device_private *p = to_device_private_parent(n);
3083 struct device *dev = p->device;
3084
3085 get_device(dev);
3086 }
3087
klist_children_put(struct klist_node * n)3088 static void klist_children_put(struct klist_node *n)
3089 {
3090 struct device_private *p = to_device_private_parent(n);
3091 struct device *dev = p->device;
3092
3093 put_device(dev);
3094 }
3095
3096 /**
3097 * device_initialize - init device structure.
3098 * @dev: device.
3099 *
3100 * This prepares the device for use by other layers by initializing
3101 * its fields.
3102 * It is the first half of device_register(), if called by
3103 * that function, though it can also be called separately, so one
3104 * may use @dev's fields. In particular, get_device()/put_device()
3105 * may be used for reference counting of @dev after calling this
3106 * function.
3107 *
3108 * All fields in @dev must be initialized by the caller to 0, except
3109 * for those explicitly set to some other value. The simplest
3110 * approach is to use kzalloc() to allocate the structure containing
3111 * @dev.
3112 *
3113 * NOTE: Use put_device() to give up your reference instead of freeing
3114 * @dev directly once you have called this function.
3115 */
device_initialize(struct device * dev)3116 void device_initialize(struct device *dev)
3117 {
3118 dev->kobj.kset = devices_kset;
3119 kobject_init(&dev->kobj, &device_ktype);
3120 INIT_LIST_HEAD(&dev->dma_pools);
3121 mutex_init(&dev->mutex);
3122 lockdep_set_novalidate_class(&dev->mutex);
3123 spin_lock_init(&dev->devres_lock);
3124 INIT_LIST_HEAD(&dev->devres_head);
3125 device_pm_init(dev);
3126 set_dev_node(dev, NUMA_NO_NODE);
3127 INIT_LIST_HEAD(&dev->links.consumers);
3128 INIT_LIST_HEAD(&dev->links.suppliers);
3129 INIT_LIST_HEAD(&dev->links.defer_sync);
3130 dev->links.status = DL_DEV_NO_DRIVER;
3131 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3132 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3133 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3134 dev->dma_coherent = dma_default_coherent;
3135 #endif
3136 swiotlb_dev_init(dev);
3137 }
3138 EXPORT_SYMBOL_GPL(device_initialize);
3139
virtual_device_parent(struct device * dev)3140 struct kobject *virtual_device_parent(struct device *dev)
3141 {
3142 static struct kobject *virtual_dir = NULL;
3143
3144 if (!virtual_dir)
3145 virtual_dir = kobject_create_and_add("virtual",
3146 &devices_kset->kobj);
3147
3148 return virtual_dir;
3149 }
3150
3151 struct class_dir {
3152 struct kobject kobj;
3153 const struct class *class;
3154 };
3155
3156 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3157
class_dir_release(struct kobject * kobj)3158 static void class_dir_release(struct kobject *kobj)
3159 {
3160 struct class_dir *dir = to_class_dir(kobj);
3161 kfree(dir);
3162 }
3163
3164 static const
class_dir_child_ns_type(const struct kobject * kobj)3165 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3166 {
3167 const struct class_dir *dir = to_class_dir(kobj);
3168 return dir->class->ns_type;
3169 }
3170
3171 static const struct kobj_type class_dir_ktype = {
3172 .release = class_dir_release,
3173 .sysfs_ops = &kobj_sysfs_ops,
3174 .child_ns_type = class_dir_child_ns_type
3175 };
3176
class_dir_create_and_add(struct subsys_private * sp,struct kobject * parent_kobj)3177 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3178 struct kobject *parent_kobj)
3179 {
3180 struct class_dir *dir;
3181 int retval;
3182
3183 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3184 if (!dir)
3185 return ERR_PTR(-ENOMEM);
3186
3187 dir->class = sp->class;
3188 kobject_init(&dir->kobj, &class_dir_ktype);
3189
3190 dir->kobj.kset = &sp->glue_dirs;
3191
3192 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3193 if (retval < 0) {
3194 kobject_put(&dir->kobj);
3195 return ERR_PTR(retval);
3196 }
3197 return &dir->kobj;
3198 }
3199
3200 static DEFINE_MUTEX(gdp_mutex);
3201
get_device_parent(struct device * dev,struct device * parent)3202 static struct kobject *get_device_parent(struct device *dev,
3203 struct device *parent)
3204 {
3205 struct subsys_private *sp = class_to_subsys(dev->class);
3206 struct kobject *kobj = NULL;
3207
3208 if (sp) {
3209 struct kobject *parent_kobj;
3210 struct kobject *k;
3211
3212 /*
3213 * If we have no parent, we live in "virtual".
3214 * Class-devices with a non class-device as parent, live
3215 * in a "glue" directory to prevent namespace collisions.
3216 */
3217 if (parent == NULL)
3218 parent_kobj = virtual_device_parent(dev);
3219 else if (parent->class && !dev->class->ns_type) {
3220 subsys_put(sp);
3221 return &parent->kobj;
3222 } else {
3223 parent_kobj = &parent->kobj;
3224 }
3225
3226 mutex_lock(&gdp_mutex);
3227
3228 /* find our class-directory at the parent and reference it */
3229 spin_lock(&sp->glue_dirs.list_lock);
3230 list_for_each_entry(k, &sp->glue_dirs.list, entry)
3231 if (k->parent == parent_kobj) {
3232 kobj = kobject_get(k);
3233 break;
3234 }
3235 spin_unlock(&sp->glue_dirs.list_lock);
3236 if (kobj) {
3237 mutex_unlock(&gdp_mutex);
3238 subsys_put(sp);
3239 return kobj;
3240 }
3241
3242 /* or create a new class-directory at the parent device */
3243 k = class_dir_create_and_add(sp, parent_kobj);
3244 /* do not emit an uevent for this simple "glue" directory */
3245 mutex_unlock(&gdp_mutex);
3246 subsys_put(sp);
3247 return k;
3248 }
3249
3250 /* subsystems can specify a default root directory for their devices */
3251 if (!parent && dev->bus) {
3252 struct device *dev_root = bus_get_dev_root(dev->bus);
3253
3254 if (dev_root) {
3255 kobj = &dev_root->kobj;
3256 put_device(dev_root);
3257 return kobj;
3258 }
3259 }
3260
3261 if (parent)
3262 return &parent->kobj;
3263 return NULL;
3264 }
3265
live_in_glue_dir(struct kobject * kobj,struct device * dev)3266 static inline bool live_in_glue_dir(struct kobject *kobj,
3267 struct device *dev)
3268 {
3269 struct subsys_private *sp;
3270 bool retval;
3271
3272 if (!kobj || !dev->class)
3273 return false;
3274
3275 sp = class_to_subsys(dev->class);
3276 if (!sp)
3277 return false;
3278
3279 if (kobj->kset == &sp->glue_dirs)
3280 retval = true;
3281 else
3282 retval = false;
3283
3284 subsys_put(sp);
3285 return retval;
3286 }
3287
get_glue_dir(struct device * dev)3288 static inline struct kobject *get_glue_dir(struct device *dev)
3289 {
3290 return dev->kobj.parent;
3291 }
3292
3293 /**
3294 * kobject_has_children - Returns whether a kobject has children.
3295 * @kobj: the object to test
3296 *
3297 * This will return whether a kobject has other kobjects as children.
3298 *
3299 * It does NOT account for the presence of attribute files, only sub
3300 * directories. It also assumes there is no concurrent addition or
3301 * removal of such children, and thus relies on external locking.
3302 */
kobject_has_children(struct kobject * kobj)3303 static inline bool kobject_has_children(struct kobject *kobj)
3304 {
3305 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3306
3307 return kobj->sd && kobj->sd->dir.subdirs;
3308 }
3309
3310 /*
3311 * make sure cleaning up dir as the last step, we need to make
3312 * sure .release handler of kobject is run with holding the
3313 * global lock
3314 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3315 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3316 {
3317 unsigned int ref;
3318
3319 /* see if we live in a "glue" directory */
3320 if (!live_in_glue_dir(glue_dir, dev))
3321 return;
3322
3323 mutex_lock(&gdp_mutex);
3324 /**
3325 * There is a race condition between removing glue directory
3326 * and adding a new device under the glue directory.
3327 *
3328 * CPU1: CPU2:
3329 *
3330 * device_add()
3331 * get_device_parent()
3332 * class_dir_create_and_add()
3333 * kobject_add_internal()
3334 * create_dir() // create glue_dir
3335 *
3336 * device_add()
3337 * get_device_parent()
3338 * kobject_get() // get glue_dir
3339 *
3340 * device_del()
3341 * cleanup_glue_dir()
3342 * kobject_del(glue_dir)
3343 *
3344 * kobject_add()
3345 * kobject_add_internal()
3346 * create_dir() // in glue_dir
3347 * sysfs_create_dir_ns()
3348 * kernfs_create_dir_ns(sd)
3349 *
3350 * sysfs_remove_dir() // glue_dir->sd=NULL
3351 * sysfs_put() // free glue_dir->sd
3352 *
3353 * // sd is freed
3354 * kernfs_new_node(sd)
3355 * kernfs_get(glue_dir)
3356 * kernfs_add_one()
3357 * kernfs_put()
3358 *
3359 * Before CPU1 remove last child device under glue dir, if CPU2 add
3360 * a new device under glue dir, the glue_dir kobject reference count
3361 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3362 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3363 * and sysfs_put(). This result in glue_dir->sd is freed.
3364 *
3365 * Then the CPU2 will see a stale "empty" but still potentially used
3366 * glue dir around in kernfs_new_node().
3367 *
3368 * In order to avoid this happening, we also should make sure that
3369 * kernfs_node for glue_dir is released in CPU1 only when refcount
3370 * for glue_dir kobj is 1.
3371 */
3372 ref = kref_read(&glue_dir->kref);
3373 if (!kobject_has_children(glue_dir) && !--ref)
3374 kobject_del(glue_dir);
3375 kobject_put(glue_dir);
3376 mutex_unlock(&gdp_mutex);
3377 }
3378
device_add_class_symlinks(struct device * dev)3379 static int device_add_class_symlinks(struct device *dev)
3380 {
3381 struct device_node *of_node = dev_of_node(dev);
3382 struct subsys_private *sp;
3383 int error;
3384
3385 if (of_node) {
3386 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3387 if (error)
3388 dev_warn(dev, "Error %d creating of_node link\n",error);
3389 /* An error here doesn't warrant bringing down the device */
3390 }
3391
3392 sp = class_to_subsys(dev->class);
3393 if (!sp)
3394 return 0;
3395
3396 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3397 if (error)
3398 goto out_devnode;
3399
3400 if (dev->parent && device_is_not_partition(dev)) {
3401 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3402 "device");
3403 if (error)
3404 goto out_subsys;
3405 }
3406
3407 /* link in the class directory pointing to the device */
3408 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3409 if (error)
3410 goto out_device;
3411 goto exit;
3412
3413 out_device:
3414 sysfs_remove_link(&dev->kobj, "device");
3415 out_subsys:
3416 sysfs_remove_link(&dev->kobj, "subsystem");
3417 out_devnode:
3418 sysfs_remove_link(&dev->kobj, "of_node");
3419 exit:
3420 subsys_put(sp);
3421 return error;
3422 }
3423
device_remove_class_symlinks(struct device * dev)3424 static void device_remove_class_symlinks(struct device *dev)
3425 {
3426 struct subsys_private *sp = class_to_subsys(dev->class);
3427
3428 if (dev_of_node(dev))
3429 sysfs_remove_link(&dev->kobj, "of_node");
3430
3431 if (!sp)
3432 return;
3433
3434 if (dev->parent && device_is_not_partition(dev))
3435 sysfs_remove_link(&dev->kobj, "device");
3436 sysfs_remove_link(&dev->kobj, "subsystem");
3437 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3438 subsys_put(sp);
3439 }
3440
3441 /**
3442 * dev_set_name - set a device name
3443 * @dev: device
3444 * @fmt: format string for the device's name
3445 */
dev_set_name(struct device * dev,const char * fmt,...)3446 int dev_set_name(struct device *dev, const char *fmt, ...)
3447 {
3448 va_list vargs;
3449 int err;
3450
3451 va_start(vargs, fmt);
3452 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3453 va_end(vargs);
3454 return err;
3455 }
3456 EXPORT_SYMBOL_GPL(dev_set_name);
3457
3458 /* select a /sys/dev/ directory for the device */
device_to_dev_kobj(struct device * dev)3459 static struct kobject *device_to_dev_kobj(struct device *dev)
3460 {
3461 if (is_blockdev(dev))
3462 return sysfs_dev_block_kobj;
3463 else
3464 return sysfs_dev_char_kobj;
3465 }
3466
device_create_sys_dev_entry(struct device * dev)3467 static int device_create_sys_dev_entry(struct device *dev)
3468 {
3469 struct kobject *kobj = device_to_dev_kobj(dev);
3470 int error = 0;
3471 char devt_str[15];
3472
3473 if (kobj) {
3474 format_dev_t(devt_str, dev->devt);
3475 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3476 }
3477
3478 return error;
3479 }
3480
device_remove_sys_dev_entry(struct device * dev)3481 static void device_remove_sys_dev_entry(struct device *dev)
3482 {
3483 struct kobject *kobj = device_to_dev_kobj(dev);
3484 char devt_str[15];
3485
3486 if (kobj) {
3487 format_dev_t(devt_str, dev->devt);
3488 sysfs_remove_link(kobj, devt_str);
3489 }
3490 }
3491
device_private_init(struct device * dev)3492 static int device_private_init(struct device *dev)
3493 {
3494 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3495 if (!dev->p)
3496 return -ENOMEM;
3497 dev->p->device = dev;
3498 klist_init(&dev->p->klist_children, klist_children_get,
3499 klist_children_put);
3500 INIT_LIST_HEAD(&dev->p->deferred_probe);
3501 return 0;
3502 }
3503
3504 /**
3505 * device_add - add device to device hierarchy.
3506 * @dev: device.
3507 *
3508 * This is part 2 of device_register(), though may be called
3509 * separately _iff_ device_initialize() has been called separately.
3510 *
3511 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3512 * to the global and sibling lists for the device, then
3513 * adds it to the other relevant subsystems of the driver model.
3514 *
3515 * Do not call this routine or device_register() more than once for
3516 * any device structure. The driver model core is not designed to work
3517 * with devices that get unregistered and then spring back to life.
3518 * (Among other things, it's very hard to guarantee that all references
3519 * to the previous incarnation of @dev have been dropped.) Allocate
3520 * and register a fresh new struct device instead.
3521 *
3522 * NOTE: _Never_ directly free @dev after calling this function, even
3523 * if it returned an error! Always use put_device() to give up your
3524 * reference instead.
3525 *
3526 * Rule of thumb is: if device_add() succeeds, you should call
3527 * device_del() when you want to get rid of it. If device_add() has
3528 * *not* succeeded, use *only* put_device() to drop the reference
3529 * count.
3530 */
device_add(struct device * dev)3531 int device_add(struct device *dev)
3532 {
3533 struct subsys_private *sp;
3534 struct device *parent;
3535 struct kobject *kobj;
3536 struct class_interface *class_intf;
3537 int error = -EINVAL;
3538 struct kobject *glue_dir = NULL;
3539
3540 dev = get_device(dev);
3541 if (!dev)
3542 goto done;
3543
3544 if (!dev->p) {
3545 error = device_private_init(dev);
3546 if (error)
3547 goto done;
3548 }
3549
3550 /*
3551 * for statically allocated devices, which should all be converted
3552 * some day, we need to initialize the name. We prevent reading back
3553 * the name, and force the use of dev_name()
3554 */
3555 if (dev->init_name) {
3556 error = dev_set_name(dev, "%s", dev->init_name);
3557 dev->init_name = NULL;
3558 }
3559
3560 if (dev_name(dev))
3561 error = 0;
3562 /* subsystems can specify simple device enumeration */
3563 else if (dev->bus && dev->bus->dev_name)
3564 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3565 else
3566 error = -EINVAL;
3567 if (error)
3568 goto name_error;
3569
3570 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3571
3572 parent = get_device(dev->parent);
3573 kobj = get_device_parent(dev, parent);
3574 if (IS_ERR(kobj)) {
3575 error = PTR_ERR(kobj);
3576 goto parent_error;
3577 }
3578 if (kobj)
3579 dev->kobj.parent = kobj;
3580
3581 /* use parent numa_node */
3582 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3583 set_dev_node(dev, dev_to_node(parent));
3584
3585 /* first, register with generic layer. */
3586 /* we require the name to be set before, and pass NULL */
3587 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3588 if (error) {
3589 glue_dir = kobj;
3590 goto Error;
3591 }
3592
3593 /* notify platform of device entry */
3594 device_platform_notify(dev);
3595
3596 error = device_create_file(dev, &dev_attr_uevent);
3597 if (error)
3598 goto attrError;
3599
3600 error = device_add_class_symlinks(dev);
3601 if (error)
3602 goto SymlinkError;
3603 error = device_add_attrs(dev);
3604 if (error)
3605 goto AttrsError;
3606 error = bus_add_device(dev);
3607 if (error)
3608 goto BusError;
3609 error = dpm_sysfs_add(dev);
3610 if (error)
3611 goto DPMError;
3612 device_pm_add(dev);
3613
3614 if (MAJOR(dev->devt)) {
3615 error = device_create_file(dev, &dev_attr_dev);
3616 if (error)
3617 goto DevAttrError;
3618
3619 error = device_create_sys_dev_entry(dev);
3620 if (error)
3621 goto SysEntryError;
3622
3623 devtmpfs_create_node(dev);
3624 }
3625
3626 /* Notify clients of device addition. This call must come
3627 * after dpm_sysfs_add() and before kobject_uevent().
3628 */
3629 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3630 kobject_uevent(&dev->kobj, KOBJ_ADD);
3631
3632 /*
3633 * Check if any of the other devices (consumers) have been waiting for
3634 * this device (supplier) to be added so that they can create a device
3635 * link to it.
3636 *
3637 * This needs to happen after device_pm_add() because device_link_add()
3638 * requires the supplier be registered before it's called.
3639 *
3640 * But this also needs to happen before bus_probe_device() to make sure
3641 * waiting consumers can link to it before the driver is bound to the
3642 * device and the driver sync_state callback is called for this device.
3643 */
3644 if (dev->fwnode && !dev->fwnode->dev) {
3645 dev->fwnode->dev = dev;
3646 fw_devlink_link_device(dev);
3647 }
3648
3649 bus_probe_device(dev);
3650
3651 /*
3652 * If all driver registration is done and a newly added device doesn't
3653 * match with any driver, don't block its consumers from probing in
3654 * case the consumer device is able to operate without this supplier.
3655 */
3656 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3657 fw_devlink_unblock_consumers(dev);
3658
3659 if (parent)
3660 klist_add_tail(&dev->p->knode_parent,
3661 &parent->p->klist_children);
3662
3663 sp = class_to_subsys(dev->class);
3664 if (sp) {
3665 mutex_lock(&sp->mutex);
3666 /* tie the class to the device */
3667 klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3668
3669 /* notify any interfaces that the device is here */
3670 list_for_each_entry(class_intf, &sp->interfaces, node)
3671 if (class_intf->add_dev)
3672 class_intf->add_dev(dev);
3673 mutex_unlock(&sp->mutex);
3674 subsys_put(sp);
3675 }
3676 done:
3677 put_device(dev);
3678 return error;
3679 SysEntryError:
3680 if (MAJOR(dev->devt))
3681 device_remove_file(dev, &dev_attr_dev);
3682 DevAttrError:
3683 device_pm_remove(dev);
3684 dpm_sysfs_remove(dev);
3685 DPMError:
3686 dev->driver = NULL;
3687 bus_remove_device(dev);
3688 BusError:
3689 device_remove_attrs(dev);
3690 AttrsError:
3691 device_remove_class_symlinks(dev);
3692 SymlinkError:
3693 device_remove_file(dev, &dev_attr_uevent);
3694 attrError:
3695 device_platform_notify_remove(dev);
3696 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3697 glue_dir = get_glue_dir(dev);
3698 kobject_del(&dev->kobj);
3699 Error:
3700 cleanup_glue_dir(dev, glue_dir);
3701 parent_error:
3702 put_device(parent);
3703 name_error:
3704 kfree(dev->p);
3705 dev->p = NULL;
3706 goto done;
3707 }
3708 EXPORT_SYMBOL_GPL(device_add);
3709
3710 /**
3711 * device_register - register a device with the system.
3712 * @dev: pointer to the device structure
3713 *
3714 * This happens in two clean steps - initialize the device
3715 * and add it to the system. The two steps can be called
3716 * separately, but this is the easiest and most common.
3717 * I.e. you should only call the two helpers separately if
3718 * have a clearly defined need to use and refcount the device
3719 * before it is added to the hierarchy.
3720 *
3721 * For more information, see the kerneldoc for device_initialize()
3722 * and device_add().
3723 *
3724 * NOTE: _Never_ directly free @dev after calling this function, even
3725 * if it returned an error! Always use put_device() to give up the
3726 * reference initialized in this function instead.
3727 */
device_register(struct device * dev)3728 int device_register(struct device *dev)
3729 {
3730 device_initialize(dev);
3731 return device_add(dev);
3732 }
3733 EXPORT_SYMBOL_GPL(device_register);
3734
3735 /**
3736 * get_device - increment reference count for device.
3737 * @dev: device.
3738 *
3739 * This simply forwards the call to kobject_get(), though
3740 * we do take care to provide for the case that we get a NULL
3741 * pointer passed in.
3742 */
get_device(struct device * dev)3743 struct device *get_device(struct device *dev)
3744 {
3745 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3746 }
3747 EXPORT_SYMBOL_GPL(get_device);
3748
3749 /**
3750 * put_device - decrement reference count.
3751 * @dev: device in question.
3752 */
put_device(struct device * dev)3753 void put_device(struct device *dev)
3754 {
3755 /* might_sleep(); */
3756 if (dev)
3757 kobject_put(&dev->kobj);
3758 }
3759 EXPORT_SYMBOL_GPL(put_device);
3760
kill_device(struct device * dev)3761 bool kill_device(struct device *dev)
3762 {
3763 /*
3764 * Require the device lock and set the "dead" flag to guarantee that
3765 * the update behavior is consistent with the other bitfields near
3766 * it and that we cannot have an asynchronous probe routine trying
3767 * to run while we are tearing out the bus/class/sysfs from
3768 * underneath the device.
3769 */
3770 device_lock_assert(dev);
3771
3772 if (dev->p->dead)
3773 return false;
3774 dev->p->dead = true;
3775 return true;
3776 }
3777 EXPORT_SYMBOL_GPL(kill_device);
3778
3779 /**
3780 * device_del - delete device from system.
3781 * @dev: device.
3782 *
3783 * This is the first part of the device unregistration
3784 * sequence. This removes the device from the lists we control
3785 * from here, has it removed from the other driver model
3786 * subsystems it was added to in device_add(), and removes it
3787 * from the kobject hierarchy.
3788 *
3789 * NOTE: this should be called manually _iff_ device_add() was
3790 * also called manually.
3791 */
device_del(struct device * dev)3792 void device_del(struct device *dev)
3793 {
3794 struct subsys_private *sp;
3795 struct device *parent = dev->parent;
3796 struct kobject *glue_dir = NULL;
3797 struct class_interface *class_intf;
3798 unsigned int noio_flag;
3799
3800 device_lock(dev);
3801 kill_device(dev);
3802 device_unlock(dev);
3803
3804 if (dev->fwnode && dev->fwnode->dev == dev)
3805 dev->fwnode->dev = NULL;
3806
3807 /* Notify clients of device removal. This call must come
3808 * before dpm_sysfs_remove().
3809 */
3810 noio_flag = memalloc_noio_save();
3811 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3812
3813 dpm_sysfs_remove(dev);
3814 if (parent)
3815 klist_del(&dev->p->knode_parent);
3816 if (MAJOR(dev->devt)) {
3817 devtmpfs_delete_node(dev);
3818 device_remove_sys_dev_entry(dev);
3819 device_remove_file(dev, &dev_attr_dev);
3820 }
3821
3822 sp = class_to_subsys(dev->class);
3823 if (sp) {
3824 device_remove_class_symlinks(dev);
3825
3826 mutex_lock(&sp->mutex);
3827 /* notify any interfaces that the device is now gone */
3828 list_for_each_entry(class_intf, &sp->interfaces, node)
3829 if (class_intf->remove_dev)
3830 class_intf->remove_dev(dev);
3831 /* remove the device from the class list */
3832 klist_del(&dev->p->knode_class);
3833 mutex_unlock(&sp->mutex);
3834 subsys_put(sp);
3835 }
3836 device_remove_file(dev, &dev_attr_uevent);
3837 device_remove_attrs(dev);
3838 bus_remove_device(dev);
3839 device_pm_remove(dev);
3840 driver_deferred_probe_del(dev);
3841 device_platform_notify_remove(dev);
3842 device_links_purge(dev);
3843
3844 /*
3845 * If a device does not have a driver attached, we need to clean
3846 * up any managed resources. We do this in device_release(), but
3847 * it's never called (and we leak the device) if a managed
3848 * resource holds a reference to the device. So release all
3849 * managed resources here, like we do in driver_detach(). We
3850 * still need to do so again in device_release() in case someone
3851 * adds a new resource after this point, though.
3852 */
3853 devres_release_all(dev);
3854
3855 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3856 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3857 glue_dir = get_glue_dir(dev);
3858 kobject_del(&dev->kobj);
3859 cleanup_glue_dir(dev, glue_dir);
3860 memalloc_noio_restore(noio_flag);
3861 put_device(parent);
3862 }
3863 EXPORT_SYMBOL_GPL(device_del);
3864
3865 /**
3866 * device_unregister - unregister device from system.
3867 * @dev: device going away.
3868 *
3869 * We do this in two parts, like we do device_register(). First,
3870 * we remove it from all the subsystems with device_del(), then
3871 * we decrement the reference count via put_device(). If that
3872 * is the final reference count, the device will be cleaned up
3873 * via device_release() above. Otherwise, the structure will
3874 * stick around until the final reference to the device is dropped.
3875 */
device_unregister(struct device * dev)3876 void device_unregister(struct device *dev)
3877 {
3878 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3879 device_del(dev);
3880 put_device(dev);
3881 }
3882 EXPORT_SYMBOL_GPL(device_unregister);
3883
prev_device(struct klist_iter * i)3884 static struct device *prev_device(struct klist_iter *i)
3885 {
3886 struct klist_node *n = klist_prev(i);
3887 struct device *dev = NULL;
3888 struct device_private *p;
3889
3890 if (n) {
3891 p = to_device_private_parent(n);
3892 dev = p->device;
3893 }
3894 return dev;
3895 }
3896
next_device(struct klist_iter * i)3897 static struct device *next_device(struct klist_iter *i)
3898 {
3899 struct klist_node *n = klist_next(i);
3900 struct device *dev = NULL;
3901 struct device_private *p;
3902
3903 if (n) {
3904 p = to_device_private_parent(n);
3905 dev = p->device;
3906 }
3907 return dev;
3908 }
3909
3910 /**
3911 * device_get_devnode - path of device node file
3912 * @dev: device
3913 * @mode: returned file access mode
3914 * @uid: returned file owner
3915 * @gid: returned file group
3916 * @tmp: possibly allocated string
3917 *
3918 * Return the relative path of a possible device node.
3919 * Non-default names may need to allocate a memory to compose
3920 * a name. This memory is returned in tmp and needs to be
3921 * freed by the caller.
3922 */
device_get_devnode(const struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3923 const char *device_get_devnode(const struct device *dev,
3924 umode_t *mode, kuid_t *uid, kgid_t *gid,
3925 const char **tmp)
3926 {
3927 char *s;
3928
3929 *tmp = NULL;
3930
3931 /* the device type may provide a specific name */
3932 if (dev->type && dev->type->devnode)
3933 *tmp = dev->type->devnode(dev, mode, uid, gid);
3934 if (*tmp)
3935 return *tmp;
3936
3937 /* the class may provide a specific name */
3938 if (dev->class && dev->class->devnode)
3939 *tmp = dev->class->devnode(dev, mode);
3940 if (*tmp)
3941 return *tmp;
3942
3943 /* return name without allocation, tmp == NULL */
3944 if (strchr(dev_name(dev), '!') == NULL)
3945 return dev_name(dev);
3946
3947 /* replace '!' in the name with '/' */
3948 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3949 if (!s)
3950 return NULL;
3951 return *tmp = s;
3952 }
3953
3954 /**
3955 * device_for_each_child - device child iterator.
3956 * @parent: parent struct device.
3957 * @fn: function to be called for each device.
3958 * @data: data for the callback.
3959 *
3960 * Iterate over @parent's child devices, and call @fn for each,
3961 * passing it @data.
3962 *
3963 * We check the return of @fn each time. If it returns anything
3964 * other than 0, we break out and return that value.
3965 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3966 int device_for_each_child(struct device *parent, void *data,
3967 int (*fn)(struct device *dev, void *data))
3968 {
3969 struct klist_iter i;
3970 struct device *child;
3971 int error = 0;
3972
3973 if (!parent->p)
3974 return 0;
3975
3976 klist_iter_init(&parent->p->klist_children, &i);
3977 while (!error && (child = next_device(&i)))
3978 error = fn(child, data);
3979 klist_iter_exit(&i);
3980 return error;
3981 }
3982 EXPORT_SYMBOL_GPL(device_for_each_child);
3983
3984 /**
3985 * device_for_each_child_reverse - device child iterator in reversed order.
3986 * @parent: parent struct device.
3987 * @fn: function to be called for each device.
3988 * @data: data for the callback.
3989 *
3990 * Iterate over @parent's child devices, and call @fn for each,
3991 * passing it @data.
3992 *
3993 * We check the return of @fn each time. If it returns anything
3994 * other than 0, we break out and return that value.
3995 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3996 int device_for_each_child_reverse(struct device *parent, void *data,
3997 int (*fn)(struct device *dev, void *data))
3998 {
3999 struct klist_iter i;
4000 struct device *child;
4001 int error = 0;
4002
4003 if (!parent->p)
4004 return 0;
4005
4006 klist_iter_init(&parent->p->klist_children, &i);
4007 while ((child = prev_device(&i)) && !error)
4008 error = fn(child, data);
4009 klist_iter_exit(&i);
4010 return error;
4011 }
4012 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4013
4014 /**
4015 * device_for_each_child_reverse_from - device child iterator in reversed order.
4016 * @parent: parent struct device.
4017 * @from: optional starting point in child list
4018 * @fn: function to be called for each device.
4019 * @data: data for the callback.
4020 *
4021 * Iterate over @parent's child devices, starting at @from, and call @fn
4022 * for each, passing it @data. This helper is identical to
4023 * device_for_each_child_reverse() when @from is NULL.
4024 *
4025 * @fn is checked each iteration. If it returns anything other than 0,
4026 * iteration stop and that value is returned to the caller of
4027 * device_for_each_child_reverse_from();
4028 */
device_for_each_child_reverse_from(struct device * parent,struct device * from,const void * data,int (* fn)(struct device *,const void *))4029 int device_for_each_child_reverse_from(struct device *parent,
4030 struct device *from, const void *data,
4031 int (*fn)(struct device *, const void *))
4032 {
4033 struct klist_iter i;
4034 struct device *child;
4035 int error = 0;
4036
4037 if (!parent->p)
4038 return 0;
4039
4040 klist_iter_init_node(&parent->p->klist_children, &i,
4041 (from ? &from->p->knode_parent : NULL));
4042 while ((child = prev_device(&i)) && !error)
4043 error = fn(child, data);
4044 klist_iter_exit(&i);
4045 return error;
4046 }
4047 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4048
4049 /**
4050 * device_find_child - device iterator for locating a particular device.
4051 * @parent: parent struct device
4052 * @match: Callback function to check device
4053 * @data: Data to pass to match function
4054 *
4055 * This is similar to the device_for_each_child() function above, but it
4056 * returns a reference to a device that is 'found' for later use, as
4057 * determined by the @match callback.
4058 *
4059 * The callback should return 0 if the device doesn't match and non-zero
4060 * if it does. If the callback returns non-zero and a reference to the
4061 * current device can be obtained, this function will return to the caller
4062 * and not iterate over any more devices.
4063 *
4064 * NOTE: you will need to drop the reference with put_device() after use.
4065 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))4066 struct device *device_find_child(struct device *parent, void *data,
4067 int (*match)(struct device *dev, void *data))
4068 {
4069 struct klist_iter i;
4070 struct device *child;
4071
4072 if (!parent)
4073 return NULL;
4074
4075 klist_iter_init(&parent->p->klist_children, &i);
4076 while ((child = next_device(&i)))
4077 if (match(child, data) && get_device(child))
4078 break;
4079 klist_iter_exit(&i);
4080 return child;
4081 }
4082 EXPORT_SYMBOL_GPL(device_find_child);
4083
4084 /**
4085 * device_find_child_by_name - device iterator for locating a child device.
4086 * @parent: parent struct device
4087 * @name: name of the child device
4088 *
4089 * This is similar to the device_find_child() function above, but it
4090 * returns a reference to a device that has the name @name.
4091 *
4092 * NOTE: you will need to drop the reference with put_device() after use.
4093 */
device_find_child_by_name(struct device * parent,const char * name)4094 struct device *device_find_child_by_name(struct device *parent,
4095 const char *name)
4096 {
4097 struct klist_iter i;
4098 struct device *child;
4099
4100 if (!parent)
4101 return NULL;
4102
4103 klist_iter_init(&parent->p->klist_children, &i);
4104 while ((child = next_device(&i)))
4105 if (sysfs_streq(dev_name(child), name) && get_device(child))
4106 break;
4107 klist_iter_exit(&i);
4108 return child;
4109 }
4110 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4111
match_any(struct device * dev,void * unused)4112 static int match_any(struct device *dev, void *unused)
4113 {
4114 return 1;
4115 }
4116
4117 /**
4118 * device_find_any_child - device iterator for locating a child device, if any.
4119 * @parent: parent struct device
4120 *
4121 * This is similar to the device_find_child() function above, but it
4122 * returns a reference to a child device, if any.
4123 *
4124 * NOTE: you will need to drop the reference with put_device() after use.
4125 */
device_find_any_child(struct device * parent)4126 struct device *device_find_any_child(struct device *parent)
4127 {
4128 return device_find_child(parent, NULL, match_any);
4129 }
4130 EXPORT_SYMBOL_GPL(device_find_any_child);
4131
devices_init(void)4132 int __init devices_init(void)
4133 {
4134 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4135 if (!devices_kset)
4136 return -ENOMEM;
4137 dev_kobj = kobject_create_and_add("dev", NULL);
4138 if (!dev_kobj)
4139 goto dev_kobj_err;
4140 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4141 if (!sysfs_dev_block_kobj)
4142 goto block_kobj_err;
4143 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4144 if (!sysfs_dev_char_kobj)
4145 goto char_kobj_err;
4146 device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4147 if (!device_link_wq)
4148 goto wq_err;
4149
4150 return 0;
4151
4152 wq_err:
4153 kobject_put(sysfs_dev_char_kobj);
4154 char_kobj_err:
4155 kobject_put(sysfs_dev_block_kobj);
4156 block_kobj_err:
4157 kobject_put(dev_kobj);
4158 dev_kobj_err:
4159 kset_unregister(devices_kset);
4160 return -ENOMEM;
4161 }
4162
device_check_offline(struct device * dev,void * not_used)4163 static int device_check_offline(struct device *dev, void *not_used)
4164 {
4165 int ret;
4166
4167 ret = device_for_each_child(dev, NULL, device_check_offline);
4168 if (ret)
4169 return ret;
4170
4171 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4172 }
4173
4174 /**
4175 * device_offline - Prepare the device for hot-removal.
4176 * @dev: Device to be put offline.
4177 *
4178 * Execute the device bus type's .offline() callback, if present, to prepare
4179 * the device for a subsequent hot-removal. If that succeeds, the device must
4180 * not be used until either it is removed or its bus type's .online() callback
4181 * is executed.
4182 *
4183 * Call under device_hotplug_lock.
4184 */
device_offline(struct device * dev)4185 int device_offline(struct device *dev)
4186 {
4187 int ret;
4188
4189 if (dev->offline_disabled)
4190 return -EPERM;
4191
4192 ret = device_for_each_child(dev, NULL, device_check_offline);
4193 if (ret)
4194 return ret;
4195
4196 device_lock(dev);
4197 if (device_supports_offline(dev)) {
4198 if (dev->offline) {
4199 ret = 1;
4200 } else {
4201 ret = dev->bus->offline(dev);
4202 if (!ret) {
4203 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4204 dev->offline = true;
4205 }
4206 }
4207 }
4208 device_unlock(dev);
4209
4210 return ret;
4211 }
4212
4213 /**
4214 * device_online - Put the device back online after successful device_offline().
4215 * @dev: Device to be put back online.
4216 *
4217 * If device_offline() has been successfully executed for @dev, but the device
4218 * has not been removed subsequently, execute its bus type's .online() callback
4219 * to indicate that the device can be used again.
4220 *
4221 * Call under device_hotplug_lock.
4222 */
device_online(struct device * dev)4223 int device_online(struct device *dev)
4224 {
4225 int ret = 0;
4226
4227 device_lock(dev);
4228 if (device_supports_offline(dev)) {
4229 if (dev->offline) {
4230 ret = dev->bus->online(dev);
4231 if (!ret) {
4232 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4233 dev->offline = false;
4234 }
4235 } else {
4236 ret = 1;
4237 }
4238 }
4239 device_unlock(dev);
4240
4241 return ret;
4242 }
4243
4244 struct root_device {
4245 struct device dev;
4246 struct module *owner;
4247 };
4248
to_root_device(struct device * d)4249 static inline struct root_device *to_root_device(struct device *d)
4250 {
4251 return container_of(d, struct root_device, dev);
4252 }
4253
root_device_release(struct device * dev)4254 static void root_device_release(struct device *dev)
4255 {
4256 kfree(to_root_device(dev));
4257 }
4258
4259 /**
4260 * __root_device_register - allocate and register a root device
4261 * @name: root device name
4262 * @owner: owner module of the root device, usually THIS_MODULE
4263 *
4264 * This function allocates a root device and registers it
4265 * using device_register(). In order to free the returned
4266 * device, use root_device_unregister().
4267 *
4268 * Root devices are dummy devices which allow other devices
4269 * to be grouped under /sys/devices. Use this function to
4270 * allocate a root device and then use it as the parent of
4271 * any device which should appear under /sys/devices/{name}
4272 *
4273 * The /sys/devices/{name} directory will also contain a
4274 * 'module' symlink which points to the @owner directory
4275 * in sysfs.
4276 *
4277 * Returns &struct device pointer on success, or ERR_PTR() on error.
4278 *
4279 * Note: You probably want to use root_device_register().
4280 */
__root_device_register(const char * name,struct module * owner)4281 struct device *__root_device_register(const char *name, struct module *owner)
4282 {
4283 struct root_device *root;
4284 int err = -ENOMEM;
4285
4286 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4287 if (!root)
4288 return ERR_PTR(err);
4289
4290 err = dev_set_name(&root->dev, "%s", name);
4291 if (err) {
4292 kfree(root);
4293 return ERR_PTR(err);
4294 }
4295
4296 root->dev.release = root_device_release;
4297
4298 err = device_register(&root->dev);
4299 if (err) {
4300 put_device(&root->dev);
4301 return ERR_PTR(err);
4302 }
4303
4304 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4305 if (owner) {
4306 struct module_kobject *mk = &owner->mkobj;
4307
4308 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4309 if (err) {
4310 device_unregister(&root->dev);
4311 return ERR_PTR(err);
4312 }
4313 root->owner = owner;
4314 }
4315 #endif
4316
4317 return &root->dev;
4318 }
4319 EXPORT_SYMBOL_GPL(__root_device_register);
4320
4321 /**
4322 * root_device_unregister - unregister and free a root device
4323 * @dev: device going away
4324 *
4325 * This function unregisters and cleans up a device that was created by
4326 * root_device_register().
4327 */
root_device_unregister(struct device * dev)4328 void root_device_unregister(struct device *dev)
4329 {
4330 struct root_device *root = to_root_device(dev);
4331
4332 if (root->owner)
4333 sysfs_remove_link(&root->dev.kobj, "module");
4334
4335 device_unregister(dev);
4336 }
4337 EXPORT_SYMBOL_GPL(root_device_unregister);
4338
4339
device_create_release(struct device * dev)4340 static void device_create_release(struct device *dev)
4341 {
4342 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4343 kfree(dev);
4344 }
4345
4346 static __printf(6, 0) struct device *
device_create_groups_vargs(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4347 device_create_groups_vargs(const struct class *class, struct device *parent,
4348 dev_t devt, void *drvdata,
4349 const struct attribute_group **groups,
4350 const char *fmt, va_list args)
4351 {
4352 struct device *dev = NULL;
4353 int retval = -ENODEV;
4354
4355 if (IS_ERR_OR_NULL(class))
4356 goto error;
4357
4358 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4359 if (!dev) {
4360 retval = -ENOMEM;
4361 goto error;
4362 }
4363
4364 device_initialize(dev);
4365 dev->devt = devt;
4366 dev->class = class;
4367 dev->parent = parent;
4368 dev->groups = groups;
4369 dev->release = device_create_release;
4370 dev_set_drvdata(dev, drvdata);
4371
4372 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4373 if (retval)
4374 goto error;
4375
4376 retval = device_add(dev);
4377 if (retval)
4378 goto error;
4379
4380 return dev;
4381
4382 error:
4383 put_device(dev);
4384 return ERR_PTR(retval);
4385 }
4386
4387 /**
4388 * device_create - creates a device and registers it with sysfs
4389 * @class: pointer to the struct class that this device should be registered to
4390 * @parent: pointer to the parent struct device of this new device, if any
4391 * @devt: the dev_t for the char device to be added
4392 * @drvdata: the data to be added to the device for callbacks
4393 * @fmt: string for the device's name
4394 *
4395 * This function can be used by char device classes. A struct device
4396 * will be created in sysfs, registered to the specified class.
4397 *
4398 * A "dev" file will be created, showing the dev_t for the device, if
4399 * the dev_t is not 0,0.
4400 * If a pointer to a parent struct device is passed in, the newly created
4401 * struct device will be a child of that device in sysfs.
4402 * The pointer to the struct device will be returned from the call.
4403 * Any further sysfs files that might be required can be created using this
4404 * pointer.
4405 *
4406 * Returns &struct device pointer on success, or ERR_PTR() on error.
4407 */
device_create(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4408 struct device *device_create(const struct class *class, struct device *parent,
4409 dev_t devt, void *drvdata, const char *fmt, ...)
4410 {
4411 va_list vargs;
4412 struct device *dev;
4413
4414 va_start(vargs, fmt);
4415 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4416 fmt, vargs);
4417 va_end(vargs);
4418 return dev;
4419 }
4420 EXPORT_SYMBOL_GPL(device_create);
4421
4422 /**
4423 * device_create_with_groups - creates a device and registers it with sysfs
4424 * @class: pointer to the struct class that this device should be registered to
4425 * @parent: pointer to the parent struct device of this new device, if any
4426 * @devt: the dev_t for the char device to be added
4427 * @drvdata: the data to be added to the device for callbacks
4428 * @groups: NULL-terminated list of attribute groups to be created
4429 * @fmt: string for the device's name
4430 *
4431 * This function can be used by char device classes. A struct device
4432 * will be created in sysfs, registered to the specified class.
4433 * Additional attributes specified in the groups parameter will also
4434 * be created automatically.
4435 *
4436 * A "dev" file will be created, showing the dev_t for the device, if
4437 * the dev_t is not 0,0.
4438 * If a pointer to a parent struct device is passed in, the newly created
4439 * struct device will be a child of that device in sysfs.
4440 * The pointer to the struct device will be returned from the call.
4441 * Any further sysfs files that might be required can be created using this
4442 * pointer.
4443 *
4444 * Returns &struct device pointer on success, or ERR_PTR() on error.
4445 */
device_create_with_groups(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4446 struct device *device_create_with_groups(const struct class *class,
4447 struct device *parent, dev_t devt,
4448 void *drvdata,
4449 const struct attribute_group **groups,
4450 const char *fmt, ...)
4451 {
4452 va_list vargs;
4453 struct device *dev;
4454
4455 va_start(vargs, fmt);
4456 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4457 fmt, vargs);
4458 va_end(vargs);
4459 return dev;
4460 }
4461 EXPORT_SYMBOL_GPL(device_create_with_groups);
4462
4463 /**
4464 * device_destroy - removes a device that was created with device_create()
4465 * @class: pointer to the struct class that this device was registered with
4466 * @devt: the dev_t of the device that was previously registered
4467 *
4468 * This call unregisters and cleans up a device that was created with a
4469 * call to device_create().
4470 */
device_destroy(const struct class * class,dev_t devt)4471 void device_destroy(const struct class *class, dev_t devt)
4472 {
4473 struct device *dev;
4474
4475 dev = class_find_device_by_devt(class, devt);
4476 if (dev) {
4477 put_device(dev);
4478 device_unregister(dev);
4479 }
4480 }
4481 EXPORT_SYMBOL_GPL(device_destroy);
4482
4483 /**
4484 * device_rename - renames a device
4485 * @dev: the pointer to the struct device to be renamed
4486 * @new_name: the new name of the device
4487 *
4488 * It is the responsibility of the caller to provide mutual
4489 * exclusion between two different calls of device_rename
4490 * on the same device to ensure that new_name is valid and
4491 * won't conflict with other devices.
4492 *
4493 * Note: given that some subsystems (networking and infiniband) use this
4494 * function, with no immediate plans for this to change, we cannot assume or
4495 * require that this function not be called at all.
4496 *
4497 * However, if you're writing new code, do not call this function. The following
4498 * text from Kay Sievers offers some insight:
4499 *
4500 * Renaming devices is racy at many levels, symlinks and other stuff are not
4501 * replaced atomically, and you get a "move" uevent, but it's not easy to
4502 * connect the event to the old and new device. Device nodes are not renamed at
4503 * all, there isn't even support for that in the kernel now.
4504 *
4505 * In the meantime, during renaming, your target name might be taken by another
4506 * driver, creating conflicts. Or the old name is taken directly after you
4507 * renamed it -- then you get events for the same DEVPATH, before you even see
4508 * the "move" event. It's just a mess, and nothing new should ever rely on
4509 * kernel device renaming. Besides that, it's not even implemented now for
4510 * other things than (driver-core wise very simple) network devices.
4511 *
4512 * Make up a "real" name in the driver before you register anything, or add
4513 * some other attributes for userspace to find the device, or use udev to add
4514 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4515 * don't even want to get into that and try to implement the missing pieces in
4516 * the core. We really have other pieces to fix in the driver core mess. :)
4517 */
device_rename(struct device * dev,const char * new_name)4518 int device_rename(struct device *dev, const char *new_name)
4519 {
4520 struct subsys_private *sp = NULL;
4521 struct kobject *kobj = &dev->kobj;
4522 char *old_device_name = NULL;
4523 int error;
4524 bool is_link_renamed = false;
4525
4526 dev = get_device(dev);
4527 if (!dev)
4528 return -EINVAL;
4529
4530 dev_dbg(dev, "renaming to %s\n", new_name);
4531
4532 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4533 if (!old_device_name) {
4534 error = -ENOMEM;
4535 goto out;
4536 }
4537
4538 if (dev->class) {
4539 sp = class_to_subsys(dev->class);
4540
4541 if (!sp) {
4542 error = -EINVAL;
4543 goto out;
4544 }
4545
4546 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4547 new_name, kobject_namespace(kobj));
4548 if (error)
4549 goto out;
4550
4551 is_link_renamed = true;
4552 }
4553
4554 error = kobject_rename(kobj, new_name);
4555 out:
4556 if (error && is_link_renamed)
4557 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4558 old_device_name, kobject_namespace(kobj));
4559 subsys_put(sp);
4560
4561 put_device(dev);
4562
4563 kfree(old_device_name);
4564
4565 return error;
4566 }
4567 EXPORT_SYMBOL_GPL(device_rename);
4568
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4569 static int device_move_class_links(struct device *dev,
4570 struct device *old_parent,
4571 struct device *new_parent)
4572 {
4573 int error = 0;
4574
4575 if (old_parent)
4576 sysfs_remove_link(&dev->kobj, "device");
4577 if (new_parent)
4578 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4579 "device");
4580 return error;
4581 }
4582
4583 /**
4584 * device_move - moves a device to a new parent
4585 * @dev: the pointer to the struct device to be moved
4586 * @new_parent: the new parent of the device (can be NULL)
4587 * @dpm_order: how to reorder the dpm_list
4588 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4589 int device_move(struct device *dev, struct device *new_parent,
4590 enum dpm_order dpm_order)
4591 {
4592 int error;
4593 struct device *old_parent;
4594 struct kobject *new_parent_kobj;
4595
4596 dev = get_device(dev);
4597 if (!dev)
4598 return -EINVAL;
4599
4600 device_pm_lock();
4601 new_parent = get_device(new_parent);
4602 new_parent_kobj = get_device_parent(dev, new_parent);
4603 if (IS_ERR(new_parent_kobj)) {
4604 error = PTR_ERR(new_parent_kobj);
4605 put_device(new_parent);
4606 goto out;
4607 }
4608
4609 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4610 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4611 error = kobject_move(&dev->kobj, new_parent_kobj);
4612 if (error) {
4613 cleanup_glue_dir(dev, new_parent_kobj);
4614 put_device(new_parent);
4615 goto out;
4616 }
4617 old_parent = dev->parent;
4618 dev->parent = new_parent;
4619 if (old_parent)
4620 klist_remove(&dev->p->knode_parent);
4621 if (new_parent) {
4622 klist_add_tail(&dev->p->knode_parent,
4623 &new_parent->p->klist_children);
4624 set_dev_node(dev, dev_to_node(new_parent));
4625 }
4626
4627 if (dev->class) {
4628 error = device_move_class_links(dev, old_parent, new_parent);
4629 if (error) {
4630 /* We ignore errors on cleanup since we're hosed anyway... */
4631 device_move_class_links(dev, new_parent, old_parent);
4632 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4633 if (new_parent)
4634 klist_remove(&dev->p->knode_parent);
4635 dev->parent = old_parent;
4636 if (old_parent) {
4637 klist_add_tail(&dev->p->knode_parent,
4638 &old_parent->p->klist_children);
4639 set_dev_node(dev, dev_to_node(old_parent));
4640 }
4641 }
4642 cleanup_glue_dir(dev, new_parent_kobj);
4643 put_device(new_parent);
4644 goto out;
4645 }
4646 }
4647 switch (dpm_order) {
4648 case DPM_ORDER_NONE:
4649 break;
4650 case DPM_ORDER_DEV_AFTER_PARENT:
4651 device_pm_move_after(dev, new_parent);
4652 devices_kset_move_after(dev, new_parent);
4653 break;
4654 case DPM_ORDER_PARENT_BEFORE_DEV:
4655 device_pm_move_before(new_parent, dev);
4656 devices_kset_move_before(new_parent, dev);
4657 break;
4658 case DPM_ORDER_DEV_LAST:
4659 device_pm_move_last(dev);
4660 devices_kset_move_last(dev);
4661 break;
4662 }
4663
4664 put_device(old_parent);
4665 out:
4666 device_pm_unlock();
4667 put_device(dev);
4668 return error;
4669 }
4670 EXPORT_SYMBOL_GPL(device_move);
4671
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4672 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4673 kgid_t kgid)
4674 {
4675 struct kobject *kobj = &dev->kobj;
4676 const struct class *class = dev->class;
4677 const struct device_type *type = dev->type;
4678 int error;
4679
4680 if (class) {
4681 /*
4682 * Change the device groups of the device class for @dev to
4683 * @kuid/@kgid.
4684 */
4685 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4686 kgid);
4687 if (error)
4688 return error;
4689 }
4690
4691 if (type) {
4692 /*
4693 * Change the device groups of the device type for @dev to
4694 * @kuid/@kgid.
4695 */
4696 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4697 kgid);
4698 if (error)
4699 return error;
4700 }
4701
4702 /* Change the device groups of @dev to @kuid/@kgid. */
4703 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4704 if (error)
4705 return error;
4706
4707 if (device_supports_offline(dev) && !dev->offline_disabled) {
4708 /* Change online device attributes of @dev to @kuid/@kgid. */
4709 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4710 kuid, kgid);
4711 if (error)
4712 return error;
4713 }
4714
4715 return 0;
4716 }
4717
4718 /**
4719 * device_change_owner - change the owner of an existing device.
4720 * @dev: device.
4721 * @kuid: new owner's kuid
4722 * @kgid: new owner's kgid
4723 *
4724 * This changes the owner of @dev and its corresponding sysfs entries to
4725 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4726 * core.
4727 *
4728 * Returns 0 on success or error code on failure.
4729 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4730 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4731 {
4732 int error;
4733 struct kobject *kobj = &dev->kobj;
4734 struct subsys_private *sp;
4735
4736 dev = get_device(dev);
4737 if (!dev)
4738 return -EINVAL;
4739
4740 /*
4741 * Change the kobject and the default attributes and groups of the
4742 * ktype associated with it to @kuid/@kgid.
4743 */
4744 error = sysfs_change_owner(kobj, kuid, kgid);
4745 if (error)
4746 goto out;
4747
4748 /*
4749 * Change the uevent file for @dev to the new owner. The uevent file
4750 * was created in a separate step when @dev got added and we mirror
4751 * that step here.
4752 */
4753 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4754 kgid);
4755 if (error)
4756 goto out;
4757
4758 /*
4759 * Change the device groups, the device groups associated with the
4760 * device class, and the groups associated with the device type of @dev
4761 * to @kuid/@kgid.
4762 */
4763 error = device_attrs_change_owner(dev, kuid, kgid);
4764 if (error)
4765 goto out;
4766
4767 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4768 if (error)
4769 goto out;
4770
4771 /*
4772 * Change the owner of the symlink located in the class directory of
4773 * the device class associated with @dev which points to the actual
4774 * directory entry for @dev to @kuid/@kgid. This ensures that the
4775 * symlink shows the same permissions as its target.
4776 */
4777 sp = class_to_subsys(dev->class);
4778 if (!sp) {
4779 error = -EINVAL;
4780 goto out;
4781 }
4782 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4783 subsys_put(sp);
4784
4785 out:
4786 put_device(dev);
4787 return error;
4788 }
4789 EXPORT_SYMBOL_GPL(device_change_owner);
4790
4791 /**
4792 * device_shutdown - call ->shutdown() on each device to shutdown.
4793 */
device_shutdown(void)4794 void device_shutdown(void)
4795 {
4796 struct device *dev, *parent;
4797
4798 wait_for_device_probe();
4799 device_block_probing();
4800
4801 cpufreq_suspend();
4802
4803 spin_lock(&devices_kset->list_lock);
4804 /*
4805 * Walk the devices list backward, shutting down each in turn.
4806 * Beware that device unplug events may also start pulling
4807 * devices offline, even as the system is shutting down.
4808 */
4809 while (!list_empty(&devices_kset->list)) {
4810 dev = list_entry(devices_kset->list.prev, struct device,
4811 kobj.entry);
4812
4813 /*
4814 * hold reference count of device's parent to
4815 * prevent it from being freed because parent's
4816 * lock is to be held
4817 */
4818 parent = get_device(dev->parent);
4819 get_device(dev);
4820 /*
4821 * Make sure the device is off the kset list, in the
4822 * event that dev->*->shutdown() doesn't remove it.
4823 */
4824 list_del_init(&dev->kobj.entry);
4825 spin_unlock(&devices_kset->list_lock);
4826
4827 /* hold lock to avoid race with probe/release */
4828 if (parent)
4829 device_lock(parent);
4830 device_lock(dev);
4831
4832 /* Don't allow any more runtime suspends */
4833 pm_runtime_get_noresume(dev);
4834 pm_runtime_barrier(dev);
4835
4836 if (dev->class && dev->class->shutdown_pre) {
4837 if (initcall_debug)
4838 dev_info(dev, "shutdown_pre\n");
4839 dev->class->shutdown_pre(dev);
4840 }
4841 if (dev->bus && dev->bus->shutdown) {
4842 if (initcall_debug)
4843 dev_info(dev, "shutdown\n");
4844 dev->bus->shutdown(dev);
4845 } else if (dev->driver && dev->driver->shutdown) {
4846 if (initcall_debug)
4847 dev_info(dev, "shutdown\n");
4848 dev->driver->shutdown(dev);
4849 }
4850
4851 device_unlock(dev);
4852 if (parent)
4853 device_unlock(parent);
4854
4855 put_device(dev);
4856 put_device(parent);
4857
4858 spin_lock(&devices_kset->list_lock);
4859 }
4860 spin_unlock(&devices_kset->list_lock);
4861 }
4862
4863 /*
4864 * Device logging functions
4865 */
4866
4867 #ifdef CONFIG_PRINTK
4868 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4869 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4870 {
4871 const char *subsys;
4872
4873 memset(dev_info, 0, sizeof(*dev_info));
4874
4875 if (dev->class)
4876 subsys = dev->class->name;
4877 else if (dev->bus)
4878 subsys = dev->bus->name;
4879 else
4880 return;
4881
4882 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4883
4884 /*
4885 * Add device identifier DEVICE=:
4886 * b12:8 block dev_t
4887 * c127:3 char dev_t
4888 * n8 netdev ifindex
4889 * +sound:card0 subsystem:devname
4890 */
4891 if (MAJOR(dev->devt)) {
4892 char c;
4893
4894 if (strcmp(subsys, "block") == 0)
4895 c = 'b';
4896 else
4897 c = 'c';
4898
4899 snprintf(dev_info->device, sizeof(dev_info->device),
4900 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4901 } else if (strcmp(subsys, "net") == 0) {
4902 struct net_device *net = to_net_dev(dev);
4903
4904 snprintf(dev_info->device, sizeof(dev_info->device),
4905 "n%u", net->ifindex);
4906 } else {
4907 snprintf(dev_info->device, sizeof(dev_info->device),
4908 "+%s:%s", subsys, dev_name(dev));
4909 }
4910 }
4911
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4912 int dev_vprintk_emit(int level, const struct device *dev,
4913 const char *fmt, va_list args)
4914 {
4915 struct dev_printk_info dev_info;
4916
4917 set_dev_info(dev, &dev_info);
4918
4919 return vprintk_emit(0, level, &dev_info, fmt, args);
4920 }
4921 EXPORT_SYMBOL(dev_vprintk_emit);
4922
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4923 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4924 {
4925 va_list args;
4926 int r;
4927
4928 va_start(args, fmt);
4929
4930 r = dev_vprintk_emit(level, dev, fmt, args);
4931
4932 va_end(args);
4933
4934 return r;
4935 }
4936 EXPORT_SYMBOL(dev_printk_emit);
4937
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4938 static void __dev_printk(const char *level, const struct device *dev,
4939 struct va_format *vaf)
4940 {
4941 if (dev)
4942 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4943 dev_driver_string(dev), dev_name(dev), vaf);
4944 else
4945 printk("%s(NULL device *): %pV", level, vaf);
4946 }
4947
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4948 void _dev_printk(const char *level, const struct device *dev,
4949 const char *fmt, ...)
4950 {
4951 struct va_format vaf;
4952 va_list args;
4953
4954 va_start(args, fmt);
4955
4956 vaf.fmt = fmt;
4957 vaf.va = &args;
4958
4959 __dev_printk(level, dev, &vaf);
4960
4961 va_end(args);
4962 }
4963 EXPORT_SYMBOL(_dev_printk);
4964
4965 #define define_dev_printk_level(func, kern_level) \
4966 void func(const struct device *dev, const char *fmt, ...) \
4967 { \
4968 struct va_format vaf; \
4969 va_list args; \
4970 \
4971 va_start(args, fmt); \
4972 \
4973 vaf.fmt = fmt; \
4974 vaf.va = &args; \
4975 \
4976 __dev_printk(kern_level, dev, &vaf); \
4977 \
4978 va_end(args); \
4979 } \
4980 EXPORT_SYMBOL(func);
4981
4982 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4983 define_dev_printk_level(_dev_alert, KERN_ALERT);
4984 define_dev_printk_level(_dev_crit, KERN_CRIT);
4985 define_dev_printk_level(_dev_err, KERN_ERR);
4986 define_dev_printk_level(_dev_warn, KERN_WARNING);
4987 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4988 define_dev_printk_level(_dev_info, KERN_INFO);
4989
4990 #endif
4991
4992 /**
4993 * dev_err_probe - probe error check and log helper
4994 * @dev: the pointer to the struct device
4995 * @err: error value to test
4996 * @fmt: printf-style format string
4997 * @...: arguments as specified in the format string
4998 *
4999 * This helper implements common pattern present in probe functions for error
5000 * checking: print debug or error message depending if the error value is
5001 * -EPROBE_DEFER and propagate error upwards.
5002 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5003 * checked later by reading devices_deferred debugfs attribute.
5004 * It replaces code sequence::
5005 *
5006 * if (err != -EPROBE_DEFER)
5007 * dev_err(dev, ...);
5008 * else
5009 * dev_dbg(dev, ...);
5010 * return err;
5011 *
5012 * with::
5013 *
5014 * return dev_err_probe(dev, err, ...);
5015 *
5016 * Note that it is deemed acceptable to use this function for error
5017 * prints during probe even if the @err is known to never be -EPROBE_DEFER.
5018 * The benefit compared to a normal dev_err() is the standardized format
5019 * of the error code and the fact that the error code is returned.
5020 *
5021 * Returns @err.
5022 *
5023 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)5024 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5025 {
5026 struct va_format vaf;
5027 va_list args;
5028
5029 va_start(args, fmt);
5030 vaf.fmt = fmt;
5031 vaf.va = &args;
5032
5033 if (err != -EPROBE_DEFER) {
5034 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5035 } else {
5036 device_set_deferred_probe_reason(dev, &vaf);
5037 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5038 }
5039
5040 va_end(args);
5041
5042 return err;
5043 }
5044 EXPORT_SYMBOL_GPL(dev_err_probe);
5045
fwnode_is_primary(struct fwnode_handle * fwnode)5046 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5047 {
5048 return fwnode && !IS_ERR(fwnode->secondary);
5049 }
5050
5051 /**
5052 * set_primary_fwnode - Change the primary firmware node of a given device.
5053 * @dev: Device to handle.
5054 * @fwnode: New primary firmware node of the device.
5055 *
5056 * Set the device's firmware node pointer to @fwnode, but if a secondary
5057 * firmware node of the device is present, preserve it.
5058 *
5059 * Valid fwnode cases are:
5060 * - primary --> secondary --> -ENODEV
5061 * - primary --> NULL
5062 * - secondary --> -ENODEV
5063 * - NULL
5064 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5065 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5066 {
5067 struct device *parent = dev->parent;
5068 struct fwnode_handle *fn = dev->fwnode;
5069
5070 if (fwnode) {
5071 if (fwnode_is_primary(fn))
5072 fn = fn->secondary;
5073
5074 if (fn) {
5075 WARN_ON(fwnode->secondary);
5076 fwnode->secondary = fn;
5077 }
5078 dev->fwnode = fwnode;
5079 } else {
5080 if (fwnode_is_primary(fn)) {
5081 dev->fwnode = fn->secondary;
5082
5083 /* Skip nullifying fn->secondary if the primary is shared */
5084 if (parent && fn == parent->fwnode)
5085 return;
5086
5087 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5088 fn->secondary = NULL;
5089 } else {
5090 dev->fwnode = NULL;
5091 }
5092 }
5093 }
5094 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5095
5096 /**
5097 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5098 * @dev: Device to handle.
5099 * @fwnode: New secondary firmware node of the device.
5100 *
5101 * If a primary firmware node of the device is present, set its secondary
5102 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5103 * @fwnode.
5104 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5105 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5106 {
5107 if (fwnode)
5108 fwnode->secondary = ERR_PTR(-ENODEV);
5109
5110 if (fwnode_is_primary(dev->fwnode))
5111 dev->fwnode->secondary = fwnode;
5112 else
5113 dev->fwnode = fwnode;
5114 }
5115 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5116
5117 /**
5118 * device_set_of_node_from_dev - reuse device-tree node of another device
5119 * @dev: device whose device-tree node is being set
5120 * @dev2: device whose device-tree node is being reused
5121 *
5122 * Takes another reference to the new device-tree node after first dropping
5123 * any reference held to the old node.
5124 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)5125 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5126 {
5127 of_node_put(dev->of_node);
5128 dev->of_node = of_node_get(dev2->of_node);
5129 dev->of_node_reused = true;
5130 }
5131 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5132
device_set_node(struct device * dev,struct fwnode_handle * fwnode)5133 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5134 {
5135 dev->fwnode = fwnode;
5136 dev->of_node = to_of_node(fwnode);
5137 }
5138 EXPORT_SYMBOL_GPL(device_set_node);
5139
device_match_name(struct device * dev,const void * name)5140 int device_match_name(struct device *dev, const void *name)
5141 {
5142 return sysfs_streq(dev_name(dev), name);
5143 }
5144 EXPORT_SYMBOL_GPL(device_match_name);
5145
device_match_of_node(struct device * dev,const void * np)5146 int device_match_of_node(struct device *dev, const void *np)
5147 {
5148 return dev->of_node == np;
5149 }
5150 EXPORT_SYMBOL_GPL(device_match_of_node);
5151
device_match_fwnode(struct device * dev,const void * fwnode)5152 int device_match_fwnode(struct device *dev, const void *fwnode)
5153 {
5154 return dev_fwnode(dev) == fwnode;
5155 }
5156 EXPORT_SYMBOL_GPL(device_match_fwnode);
5157
device_match_devt(struct device * dev,const void * pdevt)5158 int device_match_devt(struct device *dev, const void *pdevt)
5159 {
5160 return dev->devt == *(dev_t *)pdevt;
5161 }
5162 EXPORT_SYMBOL_GPL(device_match_devt);
5163
device_match_acpi_dev(struct device * dev,const void * adev)5164 int device_match_acpi_dev(struct device *dev, const void *adev)
5165 {
5166 return ACPI_COMPANION(dev) == adev;
5167 }
5168 EXPORT_SYMBOL(device_match_acpi_dev);
5169
device_match_acpi_handle(struct device * dev,const void * handle)5170 int device_match_acpi_handle(struct device *dev, const void *handle)
5171 {
5172 return ACPI_HANDLE(dev) == handle;
5173 }
5174 EXPORT_SYMBOL(device_match_acpi_handle);
5175
device_match_any(struct device * dev,const void * unused)5176 int device_match_any(struct device *dev, const void *unused)
5177 {
5178 return 1;
5179 }
5180 EXPORT_SYMBOL_GPL(device_match_any);
5181