1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/blkdev.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/string_helpers.h>
31 #include <linux/swiotlb.h>
32 #include <linux/sysfs.h>
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
34
35 #include "base.h"
36 #include "physical_location.h"
37 #include "power/power.h"
38
39 /* Device links support. */
40 static LIST_HEAD(deferred_sync);
41 static unsigned int defer_sync_state_count = 1;
42 static DEFINE_MUTEX(fwnode_link_lock);
43 static bool fw_devlink_is_permissive(void);
44 static void __fw_devlink_link_to_consumers(struct device *dev);
45 static bool fw_devlink_drv_reg_done;
46 static bool fw_devlink_best_effort;
47 static struct workqueue_struct *device_link_wq;
48
49 /**
50 * __fwnode_link_add - Create a link between two fwnode_handles.
51 * @con: Consumer end of the link.
52 * @sup: Supplier end of the link.
53 *
54 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
55 * represents the detail that the firmware lists @sup fwnode as supplying a
56 * resource to @con.
57 *
58 * The driver core will use the fwnode link to create a device link between the
59 * two device objects corresponding to @con and @sup when they are created. The
60 * driver core will automatically delete the fwnode link between @con and @sup
61 * after doing that.
62 *
63 * Attempts to create duplicate links between the same pair of fwnode handles
64 * are ignored and there is no reference counting.
65 */
__fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)66 static int __fwnode_link_add(struct fwnode_handle *con,
67 struct fwnode_handle *sup, u8 flags)
68 {
69 struct fwnode_link *link;
70
71 list_for_each_entry(link, &sup->consumers, s_hook)
72 if (link->consumer == con) {
73 link->flags |= flags;
74 return 0;
75 }
76
77 link = kzalloc(sizeof(*link), GFP_KERNEL);
78 if (!link)
79 return -ENOMEM;
80
81 link->supplier = sup;
82 INIT_LIST_HEAD(&link->s_hook);
83 link->consumer = con;
84 INIT_LIST_HEAD(&link->c_hook);
85 link->flags = flags;
86
87 list_add(&link->s_hook, &sup->consumers);
88 list_add(&link->c_hook, &con->suppliers);
89 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
90 con, sup);
91
92 return 0;
93 }
94
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup)95 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
96 {
97 int ret;
98
99 mutex_lock(&fwnode_link_lock);
100 ret = __fwnode_link_add(con, sup, 0);
101 mutex_unlock(&fwnode_link_lock);
102 return ret;
103 }
104
105 /**
106 * __fwnode_link_del - Delete a link between two fwnode_handles.
107 * @link: the fwnode_link to be deleted
108 *
109 * The fwnode_link_lock needs to be held when this function is called.
110 */
__fwnode_link_del(struct fwnode_link * link)111 static void __fwnode_link_del(struct fwnode_link *link)
112 {
113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
114 link->consumer, link->supplier);
115 list_del(&link->s_hook);
116 list_del(&link->c_hook);
117 kfree(link);
118 }
119
120 /**
121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
122 * @link: the fwnode_link to be marked
123 *
124 * The fwnode_link_lock needs to be held when this function is called.
125 */
__fwnode_link_cycle(struct fwnode_link * link)126 static void __fwnode_link_cycle(struct fwnode_link *link)
127 {
128 pr_debug("%pfwf: cycle: depends on %pfwf\n",
129 link->consumer, link->supplier);
130 link->flags |= FWLINK_FLAG_CYCLE;
131 }
132
133 /**
134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
135 * @fwnode: fwnode whose supplier links need to be deleted
136 *
137 * Deletes all supplier links connecting directly to @fwnode.
138 */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
140 {
141 struct fwnode_link *link, *tmp;
142
143 mutex_lock(&fwnode_link_lock);
144 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
145 __fwnode_link_del(link);
146 mutex_unlock(&fwnode_link_lock);
147 }
148
149 /**
150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
151 * @fwnode: fwnode whose consumer links need to be deleted
152 *
153 * Deletes all consumer links connecting directly to @fwnode.
154 */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
156 {
157 struct fwnode_link *link, *tmp;
158
159 mutex_lock(&fwnode_link_lock);
160 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
161 __fwnode_link_del(link);
162 mutex_unlock(&fwnode_link_lock);
163 }
164
165 /**
166 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
167 * @fwnode: fwnode whose links needs to be deleted
168 *
169 * Deletes all links connecting directly to a fwnode.
170 */
fwnode_links_purge(struct fwnode_handle * fwnode)171 void fwnode_links_purge(struct fwnode_handle *fwnode)
172 {
173 fwnode_links_purge_suppliers(fwnode);
174 fwnode_links_purge_consumers(fwnode);
175 }
176
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
178 {
179 struct fwnode_handle *child;
180
181 /* Don't purge consumer links of an added child */
182 if (fwnode->dev)
183 return;
184
185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
186 fwnode_links_purge_consumers(fwnode);
187
188 fwnode_for_each_available_child_node(fwnode, child)
189 fw_devlink_purge_absent_suppliers(child);
190 }
191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
192
193 /**
194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
195 * @from: move consumers away from this fwnode
196 * @to: move consumers to this fwnode
197 *
198 * Move all consumer links from @from fwnode to @to fwnode.
199 */
__fwnode_links_move_consumers(struct fwnode_handle * from,struct fwnode_handle * to)200 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
201 struct fwnode_handle *to)
202 {
203 struct fwnode_link *link, *tmp;
204
205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
206 __fwnode_link_add(link->consumer, to, link->flags);
207 __fwnode_link_del(link);
208 }
209 }
210
211 /**
212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
213 * @fwnode: fwnode from which to pick up dangling consumers
214 * @new_sup: fwnode of new supplier
215 *
216 * If the @fwnode has a corresponding struct device and the device supports
217 * probing (that is, added to a bus), then we want to let fw_devlink create
218 * MANAGED device links to this device, so leave @fwnode and its descendant's
219 * fwnode links alone.
220 *
221 * Otherwise, move its consumers to the new supplier @new_sup.
222 */
__fw_devlink_pickup_dangling_consumers(struct fwnode_handle * fwnode,struct fwnode_handle * new_sup)223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
224 struct fwnode_handle *new_sup)
225 {
226 struct fwnode_handle *child;
227
228 if (fwnode->dev && fwnode->dev->bus)
229 return;
230
231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
232 __fwnode_links_move_consumers(fwnode, new_sup);
233
234 fwnode_for_each_available_child_node(fwnode, child)
235 __fw_devlink_pickup_dangling_consumers(child, new_sup);
236 }
237
238 static DEFINE_MUTEX(device_links_lock);
239 DEFINE_STATIC_SRCU(device_links_srcu);
240
device_links_write_lock(void)241 static inline void device_links_write_lock(void)
242 {
243 mutex_lock(&device_links_lock);
244 }
245
device_links_write_unlock(void)246 static inline void device_links_write_unlock(void)
247 {
248 mutex_unlock(&device_links_lock);
249 }
250
device_links_read_lock(void)251 int device_links_read_lock(void) __acquires(&device_links_srcu)
252 {
253 return srcu_read_lock(&device_links_srcu);
254 }
255
device_links_read_unlock(int idx)256 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
257 {
258 srcu_read_unlock(&device_links_srcu, idx);
259 }
260
device_links_read_lock_held(void)261 int device_links_read_lock_held(void)
262 {
263 return srcu_read_lock_held(&device_links_srcu);
264 }
265
device_link_synchronize_removal(void)266 static void device_link_synchronize_removal(void)
267 {
268 synchronize_srcu(&device_links_srcu);
269 }
270
device_link_remove_from_lists(struct device_link * link)271 static void device_link_remove_from_lists(struct device_link *link)
272 {
273 list_del_rcu(&link->s_node);
274 list_del_rcu(&link->c_node);
275 }
276
device_is_ancestor(struct device * dev,struct device * target)277 static bool device_is_ancestor(struct device *dev, struct device *target)
278 {
279 while (target->parent) {
280 target = target->parent;
281 if (dev == target)
282 return true;
283 }
284 return false;
285 }
286
287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \
288 DL_FLAG_CYCLE | \
289 DL_FLAG_MANAGED)
device_link_flag_is_sync_state_only(u32 flags)290 static inline bool device_link_flag_is_sync_state_only(u32 flags)
291 {
292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
293 }
294
295 /**
296 * device_is_dependent - Check if one device depends on another one
297 * @dev: Device to check dependencies for.
298 * @target: Device to check against.
299 *
300 * Check if @target depends on @dev or any device dependent on it (its child or
301 * its consumer etc). Return 1 if that is the case or 0 otherwise.
302 */
device_is_dependent(struct device * dev,void * target)303 int device_is_dependent(struct device *dev, void *target)
304 {
305 struct device_link *link;
306 int ret;
307
308 /*
309 * The "ancestors" check is needed to catch the case when the target
310 * device has not been completely initialized yet and it is still
311 * missing from the list of children of its parent device.
312 */
313 if (dev == target || device_is_ancestor(dev, target))
314 return 1;
315
316 ret = device_for_each_child(dev, target, device_is_dependent);
317 if (ret)
318 return ret;
319
320 list_for_each_entry(link, &dev->links.consumers, s_node) {
321 if (device_link_flag_is_sync_state_only(link->flags))
322 continue;
323
324 if (link->consumer == target)
325 return 1;
326
327 ret = device_is_dependent(link->consumer, target);
328 if (ret)
329 break;
330 }
331 return ret;
332 }
333
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)334 static void device_link_init_status(struct device_link *link,
335 struct device *consumer,
336 struct device *supplier)
337 {
338 switch (supplier->links.status) {
339 case DL_DEV_PROBING:
340 switch (consumer->links.status) {
341 case DL_DEV_PROBING:
342 /*
343 * A consumer driver can create a link to a supplier
344 * that has not completed its probing yet as long as it
345 * knows that the supplier is already functional (for
346 * example, it has just acquired some resources from the
347 * supplier).
348 */
349 link->status = DL_STATE_CONSUMER_PROBE;
350 break;
351 default:
352 link->status = DL_STATE_DORMANT;
353 break;
354 }
355 break;
356 case DL_DEV_DRIVER_BOUND:
357 switch (consumer->links.status) {
358 case DL_DEV_PROBING:
359 link->status = DL_STATE_CONSUMER_PROBE;
360 break;
361 case DL_DEV_DRIVER_BOUND:
362 link->status = DL_STATE_ACTIVE;
363 break;
364 default:
365 link->status = DL_STATE_AVAILABLE;
366 break;
367 }
368 break;
369 case DL_DEV_UNBINDING:
370 link->status = DL_STATE_SUPPLIER_UNBIND;
371 break;
372 default:
373 link->status = DL_STATE_DORMANT;
374 break;
375 }
376 }
377
device_reorder_to_tail(struct device * dev,void * not_used)378 static int device_reorder_to_tail(struct device *dev, void *not_used)
379 {
380 struct device_link *link;
381
382 /*
383 * Devices that have not been registered yet will be put to the ends
384 * of the lists during the registration, so skip them here.
385 */
386 if (device_is_registered(dev))
387 devices_kset_move_last(dev);
388
389 if (device_pm_initialized(dev))
390 device_pm_move_last(dev);
391
392 device_for_each_child(dev, NULL, device_reorder_to_tail);
393 list_for_each_entry(link, &dev->links.consumers, s_node) {
394 if (device_link_flag_is_sync_state_only(link->flags))
395 continue;
396 device_reorder_to_tail(link->consumer, NULL);
397 }
398
399 return 0;
400 }
401
402 /**
403 * device_pm_move_to_tail - Move set of devices to the end of device lists
404 * @dev: Device to move
405 *
406 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
407 *
408 * It moves the @dev along with all of its children and all of its consumers
409 * to the ends of the device_kset and dpm_list, recursively.
410 */
device_pm_move_to_tail(struct device * dev)411 void device_pm_move_to_tail(struct device *dev)
412 {
413 int idx;
414
415 idx = device_links_read_lock();
416 device_pm_lock();
417 device_reorder_to_tail(dev, NULL);
418 device_pm_unlock();
419 device_links_read_unlock(idx);
420 }
421
422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
423
status_show(struct device * dev,struct device_attribute * attr,char * buf)424 static ssize_t status_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426 {
427 const char *output;
428
429 switch (to_devlink(dev)->status) {
430 case DL_STATE_NONE:
431 output = "not tracked";
432 break;
433 case DL_STATE_DORMANT:
434 output = "dormant";
435 break;
436 case DL_STATE_AVAILABLE:
437 output = "available";
438 break;
439 case DL_STATE_CONSUMER_PROBE:
440 output = "consumer probing";
441 break;
442 case DL_STATE_ACTIVE:
443 output = "active";
444 break;
445 case DL_STATE_SUPPLIER_UNBIND:
446 output = "supplier unbinding";
447 break;
448 default:
449 output = "unknown";
450 break;
451 }
452
453 return sysfs_emit(buf, "%s\n", output);
454 }
455 static DEVICE_ATTR_RO(status);
456
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)457 static ssize_t auto_remove_on_show(struct device *dev,
458 struct device_attribute *attr, char *buf)
459 {
460 struct device_link *link = to_devlink(dev);
461 const char *output;
462
463 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
464 output = "supplier unbind";
465 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
466 output = "consumer unbind";
467 else
468 output = "never";
469
470 return sysfs_emit(buf, "%s\n", output);
471 }
472 static DEVICE_ATTR_RO(auto_remove_on);
473
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)474 static ssize_t runtime_pm_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
476 {
477 struct device_link *link = to_devlink(dev);
478
479 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
480 }
481 static DEVICE_ATTR_RO(runtime_pm);
482
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)483 static ssize_t sync_state_only_show(struct device *dev,
484 struct device_attribute *attr, char *buf)
485 {
486 struct device_link *link = to_devlink(dev);
487
488 return sysfs_emit(buf, "%d\n",
489 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
490 }
491 static DEVICE_ATTR_RO(sync_state_only);
492
493 static struct attribute *devlink_attrs[] = {
494 &dev_attr_status.attr,
495 &dev_attr_auto_remove_on.attr,
496 &dev_attr_runtime_pm.attr,
497 &dev_attr_sync_state_only.attr,
498 NULL,
499 };
500 ATTRIBUTE_GROUPS(devlink);
501
device_link_release_fn(struct work_struct * work)502 static void device_link_release_fn(struct work_struct *work)
503 {
504 struct device_link *link = container_of(work, struct device_link, rm_work);
505
506 /* Ensure that all references to the link object have been dropped. */
507 device_link_synchronize_removal();
508
509 pm_runtime_release_supplier(link);
510 /*
511 * If supplier_preactivated is set, the link has been dropped between
512 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
513 * in __driver_probe_device(). In that case, drop the supplier's
514 * PM-runtime usage counter to remove the reference taken by
515 * pm_runtime_get_suppliers().
516 */
517 if (link->supplier_preactivated)
518 pm_runtime_put_noidle(link->supplier);
519
520 pm_request_idle(link->supplier);
521
522 put_device(link->consumer);
523 put_device(link->supplier);
524 kfree(link);
525 }
526
devlink_dev_release(struct device * dev)527 static void devlink_dev_release(struct device *dev)
528 {
529 struct device_link *link = to_devlink(dev);
530
531 INIT_WORK(&link->rm_work, device_link_release_fn);
532 /*
533 * It may take a while to complete this work because of the SRCU
534 * synchronization in device_link_release_fn() and if the consumer or
535 * supplier devices get deleted when it runs, so put it into the
536 * dedicated workqueue.
537 */
538 queue_work(device_link_wq, &link->rm_work);
539 }
540
541 /**
542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
543 */
device_link_wait_removal(void)544 void device_link_wait_removal(void)
545 {
546 /*
547 * devlink removal jobs are queued in the dedicated work queue.
548 * To be sure that all removal jobs are terminated, ensure that any
549 * scheduled work has run to completion.
550 */
551 flush_workqueue(device_link_wq);
552 }
553 EXPORT_SYMBOL_GPL(device_link_wait_removal);
554
555 static struct class devlink_class = {
556 .name = "devlink",
557 .dev_groups = devlink_groups,
558 .dev_release = devlink_dev_release,
559 };
560
devlink_add_symlinks(struct device * dev)561 static int devlink_add_symlinks(struct device *dev)
562 {
563 int ret;
564 size_t len;
565 struct device_link *link = to_devlink(dev);
566 struct device *sup = link->supplier;
567 struct device *con = link->consumer;
568 char *buf;
569
570 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
571 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
572 len += strlen(":");
573 len += strlen("supplier:") + 1;
574 buf = kzalloc(len, GFP_KERNEL);
575 if (!buf)
576 return -ENOMEM;
577
578 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
579 if (ret)
580 goto out;
581
582 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
583 if (ret)
584 goto err_con;
585
586 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
587 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
588 if (ret)
589 goto err_con_dev;
590
591 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
592 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
593 if (ret)
594 goto err_sup_dev;
595
596 goto out;
597
598 err_sup_dev:
599 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
600 sysfs_remove_link(&sup->kobj, buf);
601 err_con_dev:
602 sysfs_remove_link(&link->link_dev.kobj, "consumer");
603 err_con:
604 sysfs_remove_link(&link->link_dev.kobj, "supplier");
605 out:
606 kfree(buf);
607 return ret;
608 }
609
devlink_remove_symlinks(struct device * dev)610 static void devlink_remove_symlinks(struct device *dev)
611 {
612 struct device_link *link = to_devlink(dev);
613 size_t len;
614 struct device *sup = link->supplier;
615 struct device *con = link->consumer;
616 char *buf;
617
618 sysfs_remove_link(&link->link_dev.kobj, "consumer");
619 sysfs_remove_link(&link->link_dev.kobj, "supplier");
620
621 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
622 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
623 len += strlen(":");
624 len += strlen("supplier:") + 1;
625 buf = kzalloc(len, GFP_KERNEL);
626 if (!buf) {
627 WARN(1, "Unable to properly free device link symlinks!\n");
628 return;
629 }
630
631 if (device_is_registered(con)) {
632 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
633 sysfs_remove_link(&con->kobj, buf);
634 }
635 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
636 sysfs_remove_link(&sup->kobj, buf);
637 kfree(buf);
638 }
639
640 static struct class_interface devlink_class_intf = {
641 .class = &devlink_class,
642 .add_dev = devlink_add_symlinks,
643 .remove_dev = devlink_remove_symlinks,
644 };
645
devlink_class_init(void)646 static int __init devlink_class_init(void)
647 {
648 int ret;
649
650 ret = class_register(&devlink_class);
651 if (ret)
652 return ret;
653
654 ret = class_interface_register(&devlink_class_intf);
655 if (ret)
656 class_unregister(&devlink_class);
657
658 return ret;
659 }
660 postcore_initcall(devlink_class_init);
661
662 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
663 DL_FLAG_AUTOREMOVE_SUPPLIER | \
664 DL_FLAG_AUTOPROBE_CONSUMER | \
665 DL_FLAG_SYNC_STATE_ONLY | \
666 DL_FLAG_INFERRED | \
667 DL_FLAG_CYCLE)
668
669 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
670 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
671
672 /**
673 * device_link_add - Create a link between two devices.
674 * @consumer: Consumer end of the link.
675 * @supplier: Supplier end of the link.
676 * @flags: Link flags.
677 *
678 * The caller is responsible for the proper synchronization of the link creation
679 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
680 * runtime PM framework to take the link into account. Second, if the
681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
682 * be forced into the active meta state and reference-counted upon the creation
683 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
684 * ignored.
685 *
686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
687 * expected to release the link returned by it directly with the help of either
688 * device_link_del() or device_link_remove().
689 *
690 * If that flag is not set, however, the caller of this function is handing the
691 * management of the link over to the driver core entirely and its return value
692 * can only be used to check whether or not the link is present. In that case,
693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
694 * flags can be used to indicate to the driver core when the link can be safely
695 * deleted. Namely, setting one of them in @flags indicates to the driver core
696 * that the link is not going to be used (by the given caller of this function)
697 * after unbinding the consumer or supplier driver, respectively, from its
698 * device, so the link can be deleted at that point. If none of them is set,
699 * the link will be maintained until one of the devices pointed to by it (either
700 * the consumer or the supplier) is unregistered.
701 *
702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
705 * be used to request the driver core to automatically probe for a consumer
706 * driver after successfully binding a driver to the supplier device.
707 *
708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
710 * the same time is invalid and will cause NULL to be returned upfront.
711 * However, if a device link between the given @consumer and @supplier pair
712 * exists already when this function is called for them, the existing link will
713 * be returned regardless of its current type and status (the link's flags may
714 * be modified then). The caller of this function is then expected to treat
715 * the link as though it has just been created, so (in particular) if
716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
717 * explicitly when not needed any more (as stated above).
718 *
719 * A side effect of the link creation is re-ordering of dpm_list and the
720 * devices_kset list by moving the consumer device and all devices depending
721 * on it to the ends of these lists (that does not happen to devices that have
722 * not been registered when this function is called).
723 *
724 * The supplier device is required to be registered when this function is called
725 * and NULL will be returned if that is not the case. The consumer device need
726 * not be registered, however.
727 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)728 struct device_link *device_link_add(struct device *consumer,
729 struct device *supplier, u32 flags)
730 {
731 struct device_link *link;
732
733 if (!consumer || !supplier || consumer == supplier ||
734 flags & ~DL_ADD_VALID_FLAGS ||
735 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
736 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
737 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
738 DL_FLAG_AUTOREMOVE_SUPPLIER)))
739 return NULL;
740
741 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
742 if (pm_runtime_get_sync(supplier) < 0) {
743 pm_runtime_put_noidle(supplier);
744 return NULL;
745 }
746 }
747
748 if (!(flags & DL_FLAG_STATELESS))
749 flags |= DL_FLAG_MANAGED;
750
751 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
752 !device_link_flag_is_sync_state_only(flags))
753 return NULL;
754
755 device_links_write_lock();
756 device_pm_lock();
757
758 /*
759 * If the supplier has not been fully registered yet or there is a
760 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
761 * the supplier already in the graph, return NULL. If the link is a
762 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
763 * because it only affects sync_state() callbacks.
764 */
765 if (!device_pm_initialized(supplier)
766 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
767 device_is_dependent(consumer, supplier))) {
768 link = NULL;
769 goto out;
770 }
771
772 /*
773 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
774 * So, only create it if the consumer hasn't probed yet.
775 */
776 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
777 consumer->links.status != DL_DEV_NO_DRIVER &&
778 consumer->links.status != DL_DEV_PROBING) {
779 link = NULL;
780 goto out;
781 }
782
783 /*
784 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
785 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
786 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
787 */
788 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
789 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
790
791 list_for_each_entry(link, &supplier->links.consumers, s_node) {
792 if (link->consumer != consumer)
793 continue;
794
795 if (link->flags & DL_FLAG_INFERRED &&
796 !(flags & DL_FLAG_INFERRED))
797 link->flags &= ~DL_FLAG_INFERRED;
798
799 if (flags & DL_FLAG_PM_RUNTIME) {
800 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
801 pm_runtime_new_link(consumer);
802 link->flags |= DL_FLAG_PM_RUNTIME;
803 }
804 if (flags & DL_FLAG_RPM_ACTIVE)
805 refcount_inc(&link->rpm_active);
806 }
807
808 if (flags & DL_FLAG_STATELESS) {
809 kref_get(&link->kref);
810 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
811 !(link->flags & DL_FLAG_STATELESS)) {
812 link->flags |= DL_FLAG_STATELESS;
813 goto reorder;
814 } else {
815 link->flags |= DL_FLAG_STATELESS;
816 goto out;
817 }
818 }
819
820 /*
821 * If the life time of the link following from the new flags is
822 * longer than indicated by the flags of the existing link,
823 * update the existing link to stay around longer.
824 */
825 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
826 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
827 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
828 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
829 }
830 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
831 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
832 DL_FLAG_AUTOREMOVE_SUPPLIER);
833 }
834 if (!(link->flags & DL_FLAG_MANAGED)) {
835 kref_get(&link->kref);
836 link->flags |= DL_FLAG_MANAGED;
837 device_link_init_status(link, consumer, supplier);
838 }
839 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
840 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
841 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
842 goto reorder;
843 }
844
845 goto out;
846 }
847
848 link = kzalloc(sizeof(*link), GFP_KERNEL);
849 if (!link)
850 goto out;
851
852 refcount_set(&link->rpm_active, 1);
853
854 get_device(supplier);
855 link->supplier = supplier;
856 INIT_LIST_HEAD(&link->s_node);
857 get_device(consumer);
858 link->consumer = consumer;
859 INIT_LIST_HEAD(&link->c_node);
860 link->flags = flags;
861 kref_init(&link->kref);
862
863 link->link_dev.class = &devlink_class;
864 device_set_pm_not_required(&link->link_dev);
865 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
866 dev_bus_name(supplier), dev_name(supplier),
867 dev_bus_name(consumer), dev_name(consumer));
868 if (device_register(&link->link_dev)) {
869 put_device(&link->link_dev);
870 link = NULL;
871 goto out;
872 }
873
874 if (flags & DL_FLAG_PM_RUNTIME) {
875 if (flags & DL_FLAG_RPM_ACTIVE)
876 refcount_inc(&link->rpm_active);
877
878 pm_runtime_new_link(consumer);
879 }
880
881 /* Determine the initial link state. */
882 if (flags & DL_FLAG_STATELESS)
883 link->status = DL_STATE_NONE;
884 else
885 device_link_init_status(link, consumer, supplier);
886
887 /*
888 * Some callers expect the link creation during consumer driver probe to
889 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
890 */
891 if (link->status == DL_STATE_CONSUMER_PROBE &&
892 flags & DL_FLAG_PM_RUNTIME)
893 pm_runtime_resume(supplier);
894
895 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
896 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
897
898 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
899 dev_dbg(consumer,
900 "Linked as a sync state only consumer to %s\n",
901 dev_name(supplier));
902 goto out;
903 }
904
905 reorder:
906 /*
907 * Move the consumer and all of the devices depending on it to the end
908 * of dpm_list and the devices_kset list.
909 *
910 * It is necessary to hold dpm_list locked throughout all that or else
911 * we may end up suspending with a wrong ordering of it.
912 */
913 device_reorder_to_tail(consumer, NULL);
914
915 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
916
917 out:
918 device_pm_unlock();
919 device_links_write_unlock();
920
921 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
922 pm_runtime_put(supplier);
923
924 return link;
925 }
926 EXPORT_SYMBOL_GPL(device_link_add);
927
__device_link_del(struct kref * kref)928 static void __device_link_del(struct kref *kref)
929 {
930 struct device_link *link = container_of(kref, struct device_link, kref);
931
932 dev_dbg(link->consumer, "Dropping the link to %s\n",
933 dev_name(link->supplier));
934
935 pm_runtime_drop_link(link);
936
937 device_link_remove_from_lists(link);
938 device_unregister(&link->link_dev);
939 }
940
device_link_put_kref(struct device_link * link)941 static void device_link_put_kref(struct device_link *link)
942 {
943 if (link->flags & DL_FLAG_STATELESS)
944 kref_put(&link->kref, __device_link_del);
945 else if (!device_is_registered(link->consumer))
946 __device_link_del(&link->kref);
947 else
948 WARN(1, "Unable to drop a managed device link reference\n");
949 }
950
951 /**
952 * device_link_del - Delete a stateless link between two devices.
953 * @link: Device link to delete.
954 *
955 * The caller must ensure proper synchronization of this function with runtime
956 * PM. If the link was added multiple times, it needs to be deleted as often.
957 * Care is required for hotplugged devices: Their links are purged on removal
958 * and calling device_link_del() is then no longer allowed.
959 */
device_link_del(struct device_link * link)960 void device_link_del(struct device_link *link)
961 {
962 device_links_write_lock();
963 device_link_put_kref(link);
964 device_links_write_unlock();
965 }
966 EXPORT_SYMBOL_GPL(device_link_del);
967
968 /**
969 * device_link_remove - Delete a stateless link between two devices.
970 * @consumer: Consumer end of the link.
971 * @supplier: Supplier end of the link.
972 *
973 * The caller must ensure proper synchronization of this function with runtime
974 * PM.
975 */
device_link_remove(void * consumer,struct device * supplier)976 void device_link_remove(void *consumer, struct device *supplier)
977 {
978 struct device_link *link;
979
980 if (WARN_ON(consumer == supplier))
981 return;
982
983 device_links_write_lock();
984
985 list_for_each_entry(link, &supplier->links.consumers, s_node) {
986 if (link->consumer == consumer) {
987 device_link_put_kref(link);
988 break;
989 }
990 }
991
992 device_links_write_unlock();
993 }
994 EXPORT_SYMBOL_GPL(device_link_remove);
995
device_links_missing_supplier(struct device * dev)996 static void device_links_missing_supplier(struct device *dev)
997 {
998 struct device_link *link;
999
1000 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1001 if (link->status != DL_STATE_CONSUMER_PROBE)
1002 continue;
1003
1004 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1005 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1006 } else {
1007 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1008 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1009 }
1010 }
1011 }
1012
dev_is_best_effort(struct device * dev)1013 static bool dev_is_best_effort(struct device *dev)
1014 {
1015 return (fw_devlink_best_effort && dev->can_match) ||
1016 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1017 }
1018
fwnode_links_check_suppliers(struct fwnode_handle * fwnode)1019 static struct fwnode_handle *fwnode_links_check_suppliers(
1020 struct fwnode_handle *fwnode)
1021 {
1022 struct fwnode_link *link;
1023
1024 if (!fwnode || fw_devlink_is_permissive())
1025 return NULL;
1026
1027 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1028 if (!(link->flags &
1029 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1030 return link->supplier;
1031
1032 return NULL;
1033 }
1034
1035 /**
1036 * device_links_check_suppliers - Check presence of supplier drivers.
1037 * @dev: Consumer device.
1038 *
1039 * Check links from this device to any suppliers. Walk the list of the device's
1040 * links to suppliers and see if all of them are available. If not, simply
1041 * return -EPROBE_DEFER.
1042 *
1043 * We need to guarantee that the supplier will not go away after the check has
1044 * been positive here. It only can go away in __device_release_driver() and
1045 * that function checks the device's links to consumers. This means we need to
1046 * mark the link as "consumer probe in progress" to make the supplier removal
1047 * wait for us to complete (or bad things may happen).
1048 *
1049 * Links without the DL_FLAG_MANAGED flag set are ignored.
1050 */
device_links_check_suppliers(struct device * dev)1051 int device_links_check_suppliers(struct device *dev)
1052 {
1053 struct device_link *link;
1054 int ret = 0, fwnode_ret = 0;
1055 struct fwnode_handle *sup_fw;
1056
1057 /*
1058 * Device waiting for supplier to become available is not allowed to
1059 * probe.
1060 */
1061 mutex_lock(&fwnode_link_lock);
1062 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1063 if (sup_fw) {
1064 if (!dev_is_best_effort(dev)) {
1065 fwnode_ret = -EPROBE_DEFER;
1066 dev_err_probe(dev, -EPROBE_DEFER,
1067 "wait for supplier %pfwf\n", sup_fw);
1068 } else {
1069 fwnode_ret = -EAGAIN;
1070 }
1071 }
1072 mutex_unlock(&fwnode_link_lock);
1073 if (fwnode_ret == -EPROBE_DEFER)
1074 return fwnode_ret;
1075
1076 device_links_write_lock();
1077
1078 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1079 if (!(link->flags & DL_FLAG_MANAGED))
1080 continue;
1081
1082 if (link->status != DL_STATE_AVAILABLE &&
1083 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1084
1085 if (dev_is_best_effort(dev) &&
1086 link->flags & DL_FLAG_INFERRED &&
1087 !link->supplier->can_match) {
1088 ret = -EAGAIN;
1089 continue;
1090 }
1091
1092 device_links_missing_supplier(dev);
1093 dev_err_probe(dev, -EPROBE_DEFER,
1094 "supplier %s not ready\n",
1095 dev_name(link->supplier));
1096 ret = -EPROBE_DEFER;
1097 break;
1098 }
1099 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1100 }
1101 dev->links.status = DL_DEV_PROBING;
1102
1103 device_links_write_unlock();
1104
1105 return ret ? ret : fwnode_ret;
1106 }
1107
1108 /**
1109 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1110 * @dev: Device to call sync_state() on
1111 * @list: List head to queue the @dev on
1112 *
1113 * Queues a device for a sync_state() callback when the device links write lock
1114 * isn't held. This allows the sync_state() execution flow to use device links
1115 * APIs. The caller must ensure this function is called with
1116 * device_links_write_lock() held.
1117 *
1118 * This function does a get_device() to make sure the device is not freed while
1119 * on this list.
1120 *
1121 * So the caller must also ensure that device_links_flush_sync_list() is called
1122 * as soon as the caller releases device_links_write_lock(). This is necessary
1123 * to make sure the sync_state() is called in a timely fashion and the
1124 * put_device() is called on this device.
1125 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1126 static void __device_links_queue_sync_state(struct device *dev,
1127 struct list_head *list)
1128 {
1129 struct device_link *link;
1130
1131 if (!dev_has_sync_state(dev))
1132 return;
1133 if (dev->state_synced)
1134 return;
1135
1136 list_for_each_entry(link, &dev->links.consumers, s_node) {
1137 if (!(link->flags & DL_FLAG_MANAGED))
1138 continue;
1139 if (link->status != DL_STATE_ACTIVE)
1140 return;
1141 }
1142
1143 /*
1144 * Set the flag here to avoid adding the same device to a list more
1145 * than once. This can happen if new consumers get added to the device
1146 * and probed before the list is flushed.
1147 */
1148 dev->state_synced = true;
1149
1150 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1151 return;
1152
1153 get_device(dev);
1154 list_add_tail(&dev->links.defer_sync, list);
1155 }
1156
1157 /**
1158 * device_links_flush_sync_list - Call sync_state() on a list of devices
1159 * @list: List of devices to call sync_state() on
1160 * @dont_lock_dev: Device for which lock is already held by the caller
1161 *
1162 * Calls sync_state() on all the devices that have been queued for it. This
1163 * function is used in conjunction with __device_links_queue_sync_state(). The
1164 * @dont_lock_dev parameter is useful when this function is called from a
1165 * context where a device lock is already held.
1166 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1167 static void device_links_flush_sync_list(struct list_head *list,
1168 struct device *dont_lock_dev)
1169 {
1170 struct device *dev, *tmp;
1171
1172 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1173 list_del_init(&dev->links.defer_sync);
1174
1175 if (dev != dont_lock_dev)
1176 device_lock(dev);
1177
1178 dev_sync_state(dev);
1179
1180 if (dev != dont_lock_dev)
1181 device_unlock(dev);
1182
1183 put_device(dev);
1184 }
1185 }
1186
device_links_supplier_sync_state_pause(void)1187 void device_links_supplier_sync_state_pause(void)
1188 {
1189 device_links_write_lock();
1190 defer_sync_state_count++;
1191 device_links_write_unlock();
1192 }
1193
device_links_supplier_sync_state_resume(void)1194 void device_links_supplier_sync_state_resume(void)
1195 {
1196 struct device *dev, *tmp;
1197 LIST_HEAD(sync_list);
1198
1199 device_links_write_lock();
1200 if (!defer_sync_state_count) {
1201 WARN(true, "Unmatched sync_state pause/resume!");
1202 goto out;
1203 }
1204 defer_sync_state_count--;
1205 if (defer_sync_state_count)
1206 goto out;
1207
1208 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1209 /*
1210 * Delete from deferred_sync list before queuing it to
1211 * sync_list because defer_sync is used for both lists.
1212 */
1213 list_del_init(&dev->links.defer_sync);
1214 __device_links_queue_sync_state(dev, &sync_list);
1215 }
1216 out:
1217 device_links_write_unlock();
1218
1219 device_links_flush_sync_list(&sync_list, NULL);
1220 }
1221
sync_state_resume_initcall(void)1222 static int sync_state_resume_initcall(void)
1223 {
1224 device_links_supplier_sync_state_resume();
1225 return 0;
1226 }
1227 late_initcall(sync_state_resume_initcall);
1228
__device_links_supplier_defer_sync(struct device * sup)1229 static void __device_links_supplier_defer_sync(struct device *sup)
1230 {
1231 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1232 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1233 }
1234
device_link_drop_managed(struct device_link * link)1235 static void device_link_drop_managed(struct device_link *link)
1236 {
1237 link->flags &= ~DL_FLAG_MANAGED;
1238 WRITE_ONCE(link->status, DL_STATE_NONE);
1239 kref_put(&link->kref, __device_link_del);
1240 }
1241
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1242 static ssize_t waiting_for_supplier_show(struct device *dev,
1243 struct device_attribute *attr,
1244 char *buf)
1245 {
1246 bool val;
1247
1248 device_lock(dev);
1249 mutex_lock(&fwnode_link_lock);
1250 val = !!fwnode_links_check_suppliers(dev->fwnode);
1251 mutex_unlock(&fwnode_link_lock);
1252 device_unlock(dev);
1253 return sysfs_emit(buf, "%u\n", val);
1254 }
1255 static DEVICE_ATTR_RO(waiting_for_supplier);
1256
1257 /**
1258 * device_links_force_bind - Prepares device to be force bound
1259 * @dev: Consumer device.
1260 *
1261 * device_bind_driver() force binds a device to a driver without calling any
1262 * driver probe functions. So the consumer really isn't going to wait for any
1263 * supplier before it's bound to the driver. We still want the device link
1264 * states to be sensible when this happens.
1265 *
1266 * In preparation for device_bind_driver(), this function goes through each
1267 * supplier device links and checks if the supplier is bound. If it is, then
1268 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1269 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1270 */
device_links_force_bind(struct device * dev)1271 void device_links_force_bind(struct device *dev)
1272 {
1273 struct device_link *link, *ln;
1274
1275 device_links_write_lock();
1276
1277 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1278 if (!(link->flags & DL_FLAG_MANAGED))
1279 continue;
1280
1281 if (link->status != DL_STATE_AVAILABLE) {
1282 device_link_drop_managed(link);
1283 continue;
1284 }
1285 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1286 }
1287 dev->links.status = DL_DEV_PROBING;
1288
1289 device_links_write_unlock();
1290 }
1291
1292 /**
1293 * device_links_driver_bound - Update device links after probing its driver.
1294 * @dev: Device to update the links for.
1295 *
1296 * The probe has been successful, so update links from this device to any
1297 * consumers by changing their status to "available".
1298 *
1299 * Also change the status of @dev's links to suppliers to "active".
1300 *
1301 * Links without the DL_FLAG_MANAGED flag set are ignored.
1302 */
device_links_driver_bound(struct device * dev)1303 void device_links_driver_bound(struct device *dev)
1304 {
1305 struct device_link *link, *ln;
1306 LIST_HEAD(sync_list);
1307
1308 /*
1309 * If a device binds successfully, it's expected to have created all
1310 * the device links it needs to or make new device links as it needs
1311 * them. So, fw_devlink no longer needs to create device links to any
1312 * of the device's suppliers.
1313 *
1314 * Also, if a child firmware node of this bound device is not added as a
1315 * device by now, assume it is never going to be added. Make this bound
1316 * device the fallback supplier to the dangling consumers of the child
1317 * firmware node because this bound device is probably implementing the
1318 * child firmware node functionality and we don't want the dangling
1319 * consumers to defer probe indefinitely waiting for a device for the
1320 * child firmware node.
1321 */
1322 if (dev->fwnode && dev->fwnode->dev == dev) {
1323 struct fwnode_handle *child;
1324 fwnode_links_purge_suppliers(dev->fwnode);
1325 mutex_lock(&fwnode_link_lock);
1326 fwnode_for_each_available_child_node(dev->fwnode, child)
1327 __fw_devlink_pickup_dangling_consumers(child,
1328 dev->fwnode);
1329 __fw_devlink_link_to_consumers(dev);
1330 mutex_unlock(&fwnode_link_lock);
1331 }
1332 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1333
1334 device_links_write_lock();
1335
1336 list_for_each_entry(link, &dev->links.consumers, s_node) {
1337 if (!(link->flags & DL_FLAG_MANAGED))
1338 continue;
1339
1340 /*
1341 * Links created during consumer probe may be in the "consumer
1342 * probe" state to start with if the supplier is still probing
1343 * when they are created and they may become "active" if the
1344 * consumer probe returns first. Skip them here.
1345 */
1346 if (link->status == DL_STATE_CONSUMER_PROBE ||
1347 link->status == DL_STATE_ACTIVE)
1348 continue;
1349
1350 WARN_ON(link->status != DL_STATE_DORMANT);
1351 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1352
1353 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1354 driver_deferred_probe_add(link->consumer);
1355 }
1356
1357 if (defer_sync_state_count)
1358 __device_links_supplier_defer_sync(dev);
1359 else
1360 __device_links_queue_sync_state(dev, &sync_list);
1361
1362 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1363 struct device *supplier;
1364
1365 if (!(link->flags & DL_FLAG_MANAGED))
1366 continue;
1367
1368 supplier = link->supplier;
1369 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1370 /*
1371 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1372 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1373 * save to drop the managed link completely.
1374 */
1375 device_link_drop_managed(link);
1376 } else if (dev_is_best_effort(dev) &&
1377 link->flags & DL_FLAG_INFERRED &&
1378 link->status != DL_STATE_CONSUMER_PROBE &&
1379 !link->supplier->can_match) {
1380 /*
1381 * When dev_is_best_effort() is true, we ignore device
1382 * links to suppliers that don't have a driver. If the
1383 * consumer device still managed to probe, there's no
1384 * point in maintaining a device link in a weird state
1385 * (consumer probed before supplier). So delete it.
1386 */
1387 device_link_drop_managed(link);
1388 } else {
1389 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1390 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1391 }
1392
1393 /*
1394 * This needs to be done even for the deleted
1395 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1396 * device link that was preventing the supplier from getting a
1397 * sync_state() call.
1398 */
1399 if (defer_sync_state_count)
1400 __device_links_supplier_defer_sync(supplier);
1401 else
1402 __device_links_queue_sync_state(supplier, &sync_list);
1403 }
1404
1405 dev->links.status = DL_DEV_DRIVER_BOUND;
1406
1407 device_links_write_unlock();
1408
1409 device_links_flush_sync_list(&sync_list, dev);
1410 }
1411
1412 /**
1413 * __device_links_no_driver - Update links of a device without a driver.
1414 * @dev: Device without a drvier.
1415 *
1416 * Delete all non-persistent links from this device to any suppliers.
1417 *
1418 * Persistent links stay around, but their status is changed to "available",
1419 * unless they already are in the "supplier unbind in progress" state in which
1420 * case they need not be updated.
1421 *
1422 * Links without the DL_FLAG_MANAGED flag set are ignored.
1423 */
__device_links_no_driver(struct device * dev)1424 static void __device_links_no_driver(struct device *dev)
1425 {
1426 struct device_link *link, *ln;
1427
1428 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1429 if (!(link->flags & DL_FLAG_MANAGED))
1430 continue;
1431
1432 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1433 device_link_drop_managed(link);
1434 continue;
1435 }
1436
1437 if (link->status != DL_STATE_CONSUMER_PROBE &&
1438 link->status != DL_STATE_ACTIVE)
1439 continue;
1440
1441 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1442 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1443 } else {
1444 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1445 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1446 }
1447 }
1448
1449 dev->links.status = DL_DEV_NO_DRIVER;
1450 }
1451
1452 /**
1453 * device_links_no_driver - Update links after failing driver probe.
1454 * @dev: Device whose driver has just failed to probe.
1455 *
1456 * Clean up leftover links to consumers for @dev and invoke
1457 * %__device_links_no_driver() to update links to suppliers for it as
1458 * appropriate.
1459 *
1460 * Links without the DL_FLAG_MANAGED flag set are ignored.
1461 */
device_links_no_driver(struct device * dev)1462 void device_links_no_driver(struct device *dev)
1463 {
1464 struct device_link *link;
1465
1466 device_links_write_lock();
1467
1468 list_for_each_entry(link, &dev->links.consumers, s_node) {
1469 if (!(link->flags & DL_FLAG_MANAGED))
1470 continue;
1471
1472 /*
1473 * The probe has failed, so if the status of the link is
1474 * "consumer probe" or "active", it must have been added by
1475 * a probing consumer while this device was still probing.
1476 * Change its state to "dormant", as it represents a valid
1477 * relationship, but it is not functionally meaningful.
1478 */
1479 if (link->status == DL_STATE_CONSUMER_PROBE ||
1480 link->status == DL_STATE_ACTIVE)
1481 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1482 }
1483
1484 __device_links_no_driver(dev);
1485
1486 device_links_write_unlock();
1487 }
1488
1489 /**
1490 * device_links_driver_cleanup - Update links after driver removal.
1491 * @dev: Device whose driver has just gone away.
1492 *
1493 * Update links to consumers for @dev by changing their status to "dormant" and
1494 * invoke %__device_links_no_driver() to update links to suppliers for it as
1495 * appropriate.
1496 *
1497 * Links without the DL_FLAG_MANAGED flag set are ignored.
1498 */
device_links_driver_cleanup(struct device * dev)1499 void device_links_driver_cleanup(struct device *dev)
1500 {
1501 struct device_link *link, *ln;
1502
1503 device_links_write_lock();
1504
1505 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1506 if (!(link->flags & DL_FLAG_MANAGED))
1507 continue;
1508
1509 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1510 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1511
1512 /*
1513 * autoremove the links between this @dev and its consumer
1514 * devices that are not active, i.e. where the link state
1515 * has moved to DL_STATE_SUPPLIER_UNBIND.
1516 */
1517 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1518 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1519 device_link_drop_managed(link);
1520
1521 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1522 }
1523
1524 list_del_init(&dev->links.defer_sync);
1525 __device_links_no_driver(dev);
1526
1527 device_links_write_unlock();
1528 }
1529
1530 /**
1531 * device_links_busy - Check if there are any busy links to consumers.
1532 * @dev: Device to check.
1533 *
1534 * Check each consumer of the device and return 'true' if its link's status
1535 * is one of "consumer probe" or "active" (meaning that the given consumer is
1536 * probing right now or its driver is present). Otherwise, change the link
1537 * state to "supplier unbind" to prevent the consumer from being probed
1538 * successfully going forward.
1539 *
1540 * Return 'false' if there are no probing or active consumers.
1541 *
1542 * Links without the DL_FLAG_MANAGED flag set are ignored.
1543 */
device_links_busy(struct device * dev)1544 bool device_links_busy(struct device *dev)
1545 {
1546 struct device_link *link;
1547 bool ret = false;
1548
1549 device_links_write_lock();
1550
1551 list_for_each_entry(link, &dev->links.consumers, s_node) {
1552 if (!(link->flags & DL_FLAG_MANAGED))
1553 continue;
1554
1555 if (link->status == DL_STATE_CONSUMER_PROBE
1556 || link->status == DL_STATE_ACTIVE) {
1557 ret = true;
1558 break;
1559 }
1560 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1561 }
1562
1563 dev->links.status = DL_DEV_UNBINDING;
1564
1565 device_links_write_unlock();
1566 return ret;
1567 }
1568
1569 /**
1570 * device_links_unbind_consumers - Force unbind consumers of the given device.
1571 * @dev: Device to unbind the consumers of.
1572 *
1573 * Walk the list of links to consumers for @dev and if any of them is in the
1574 * "consumer probe" state, wait for all device probes in progress to complete
1575 * and start over.
1576 *
1577 * If that's not the case, change the status of the link to "supplier unbind"
1578 * and check if the link was in the "active" state. If so, force the consumer
1579 * driver to unbind and start over (the consumer will not re-probe as we have
1580 * changed the state of the link already).
1581 *
1582 * Links without the DL_FLAG_MANAGED flag set are ignored.
1583 */
device_links_unbind_consumers(struct device * dev)1584 void device_links_unbind_consumers(struct device *dev)
1585 {
1586 struct device_link *link;
1587
1588 start:
1589 device_links_write_lock();
1590
1591 list_for_each_entry(link, &dev->links.consumers, s_node) {
1592 enum device_link_state status;
1593
1594 if (!(link->flags & DL_FLAG_MANAGED) ||
1595 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1596 continue;
1597
1598 status = link->status;
1599 if (status == DL_STATE_CONSUMER_PROBE) {
1600 device_links_write_unlock();
1601
1602 wait_for_device_probe();
1603 goto start;
1604 }
1605 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1606 if (status == DL_STATE_ACTIVE) {
1607 struct device *consumer = link->consumer;
1608
1609 get_device(consumer);
1610
1611 device_links_write_unlock();
1612
1613 device_release_driver_internal(consumer, NULL,
1614 consumer->parent);
1615 put_device(consumer);
1616 goto start;
1617 }
1618 }
1619
1620 device_links_write_unlock();
1621 }
1622
1623 /**
1624 * device_links_purge - Delete existing links to other devices.
1625 * @dev: Target device.
1626 */
device_links_purge(struct device * dev)1627 static void device_links_purge(struct device *dev)
1628 {
1629 struct device_link *link, *ln;
1630
1631 if (dev->class == &devlink_class)
1632 return;
1633
1634 /*
1635 * Delete all of the remaining links from this device to any other
1636 * devices (either consumers or suppliers).
1637 */
1638 device_links_write_lock();
1639
1640 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1641 WARN_ON(link->status == DL_STATE_ACTIVE);
1642 __device_link_del(&link->kref);
1643 }
1644
1645 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1646 WARN_ON(link->status != DL_STATE_DORMANT &&
1647 link->status != DL_STATE_NONE);
1648 __device_link_del(&link->kref);
1649 }
1650
1651 device_links_write_unlock();
1652 }
1653
1654 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1655 DL_FLAG_SYNC_STATE_ONLY)
1656 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1657 DL_FLAG_AUTOPROBE_CONSUMER)
1658 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1659 DL_FLAG_PM_RUNTIME)
1660
1661 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
fw_devlink_setup(char * arg)1662 static int __init fw_devlink_setup(char *arg)
1663 {
1664 if (!arg)
1665 return -EINVAL;
1666
1667 if (strcmp(arg, "off") == 0) {
1668 fw_devlink_flags = 0;
1669 } else if (strcmp(arg, "permissive") == 0) {
1670 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1671 } else if (strcmp(arg, "on") == 0) {
1672 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1673 } else if (strcmp(arg, "rpm") == 0) {
1674 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1675 }
1676 return 0;
1677 }
1678 early_param("fw_devlink", fw_devlink_setup);
1679
1680 static bool fw_devlink_strict;
fw_devlink_strict_setup(char * arg)1681 static int __init fw_devlink_strict_setup(char *arg)
1682 {
1683 return kstrtobool(arg, &fw_devlink_strict);
1684 }
1685 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1686
1687 #define FW_DEVLINK_SYNC_STATE_STRICT 0
1688 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1
1689
1690 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1691 static int fw_devlink_sync_state;
1692 #else
1693 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1694 #endif
1695
fw_devlink_sync_state_setup(char * arg)1696 static int __init fw_devlink_sync_state_setup(char *arg)
1697 {
1698 if (!arg)
1699 return -EINVAL;
1700
1701 if (strcmp(arg, "strict") == 0) {
1702 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1703 return 0;
1704 } else if (strcmp(arg, "timeout") == 0) {
1705 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1706 return 0;
1707 }
1708 return -EINVAL;
1709 }
1710 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1711
fw_devlink_get_flags(u8 fwlink_flags)1712 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1713 {
1714 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1715 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1716
1717 return fw_devlink_flags;
1718 }
1719
fw_devlink_is_permissive(void)1720 static bool fw_devlink_is_permissive(void)
1721 {
1722 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1723 }
1724
fw_devlink_is_strict(void)1725 bool fw_devlink_is_strict(void)
1726 {
1727 return fw_devlink_strict && !fw_devlink_is_permissive();
1728 }
1729
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1730 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1731 {
1732 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1733 return;
1734
1735 fwnode_call_int_op(fwnode, add_links);
1736 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1737 }
1738
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1739 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1740 {
1741 struct fwnode_handle *child = NULL;
1742
1743 fw_devlink_parse_fwnode(fwnode);
1744
1745 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1746 fw_devlink_parse_fwtree(child);
1747 }
1748
fw_devlink_relax_link(struct device_link * link)1749 static void fw_devlink_relax_link(struct device_link *link)
1750 {
1751 if (!(link->flags & DL_FLAG_INFERRED))
1752 return;
1753
1754 if (device_link_flag_is_sync_state_only(link->flags))
1755 return;
1756
1757 pm_runtime_drop_link(link);
1758 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1759 dev_dbg(link->consumer, "Relaxing link with %s\n",
1760 dev_name(link->supplier));
1761 }
1762
fw_devlink_no_driver(struct device * dev,void * data)1763 static int fw_devlink_no_driver(struct device *dev, void *data)
1764 {
1765 struct device_link *link = to_devlink(dev);
1766
1767 if (!link->supplier->can_match)
1768 fw_devlink_relax_link(link);
1769
1770 return 0;
1771 }
1772
fw_devlink_drivers_done(void)1773 void fw_devlink_drivers_done(void)
1774 {
1775 fw_devlink_drv_reg_done = true;
1776 device_links_write_lock();
1777 class_for_each_device(&devlink_class, NULL, NULL,
1778 fw_devlink_no_driver);
1779 device_links_write_unlock();
1780 }
1781
fw_devlink_dev_sync_state(struct device * dev,void * data)1782 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1783 {
1784 struct device_link *link = to_devlink(dev);
1785 struct device *sup = link->supplier;
1786
1787 if (!(link->flags & DL_FLAG_MANAGED) ||
1788 link->status == DL_STATE_ACTIVE || sup->state_synced ||
1789 !dev_has_sync_state(sup))
1790 return 0;
1791
1792 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1793 dev_warn(sup, "sync_state() pending due to %s\n",
1794 dev_name(link->consumer));
1795 return 0;
1796 }
1797
1798 if (!list_empty(&sup->links.defer_sync))
1799 return 0;
1800
1801 dev_warn(sup, "Timed out. Forcing sync_state()\n");
1802 sup->state_synced = true;
1803 get_device(sup);
1804 list_add_tail(&sup->links.defer_sync, data);
1805
1806 return 0;
1807 }
1808
fw_devlink_probing_done(void)1809 void fw_devlink_probing_done(void)
1810 {
1811 LIST_HEAD(sync_list);
1812
1813 device_links_write_lock();
1814 class_for_each_device(&devlink_class, NULL, &sync_list,
1815 fw_devlink_dev_sync_state);
1816 device_links_write_unlock();
1817 device_links_flush_sync_list(&sync_list, NULL);
1818 }
1819
1820 /**
1821 * wait_for_init_devices_probe - Try to probe any device needed for init
1822 *
1823 * Some devices might need to be probed and bound successfully before the kernel
1824 * boot sequence can finish and move on to init/userspace. For example, a
1825 * network interface might need to be bound to be able to mount a NFS rootfs.
1826 *
1827 * With fw_devlink=on by default, some of these devices might be blocked from
1828 * probing because they are waiting on a optional supplier that doesn't have a
1829 * driver. While fw_devlink will eventually identify such devices and unblock
1830 * the probing automatically, it might be too late by the time it unblocks the
1831 * probing of devices. For example, the IP4 autoconfig might timeout before
1832 * fw_devlink unblocks probing of the network interface.
1833 *
1834 * This function is available to temporarily try and probe all devices that have
1835 * a driver even if some of their suppliers haven't been added or don't have
1836 * drivers.
1837 *
1838 * The drivers can then decide which of the suppliers are optional vs mandatory
1839 * and probe the device if possible. By the time this function returns, all such
1840 * "best effort" probes are guaranteed to be completed. If a device successfully
1841 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1842 * device where the supplier hasn't yet probed successfully because they have to
1843 * be optional dependencies.
1844 *
1845 * Any devices that didn't successfully probe go back to being treated as if
1846 * this function was never called.
1847 *
1848 * This also means that some devices that aren't needed for init and could have
1849 * waited for their optional supplier to probe (when the supplier's module is
1850 * loaded later on) would end up probing prematurely with limited functionality.
1851 * So call this function only when boot would fail without it.
1852 */
wait_for_init_devices_probe(void)1853 void __init wait_for_init_devices_probe(void)
1854 {
1855 if (!fw_devlink_flags || fw_devlink_is_permissive())
1856 return;
1857
1858 /*
1859 * Wait for all ongoing probes to finish so that the "best effort" is
1860 * only applied to devices that can't probe otherwise.
1861 */
1862 wait_for_device_probe();
1863
1864 pr_info("Trying to probe devices needed for running init ...\n");
1865 fw_devlink_best_effort = true;
1866 driver_deferred_probe_trigger();
1867
1868 /*
1869 * Wait for all "best effort" probes to finish before going back to
1870 * normal enforcement.
1871 */
1872 wait_for_device_probe();
1873 fw_devlink_best_effort = false;
1874 }
1875
fw_devlink_unblock_consumers(struct device * dev)1876 static void fw_devlink_unblock_consumers(struct device *dev)
1877 {
1878 struct device_link *link;
1879
1880 if (!fw_devlink_flags || fw_devlink_is_permissive())
1881 return;
1882
1883 device_links_write_lock();
1884 list_for_each_entry(link, &dev->links.consumers, s_node)
1885 fw_devlink_relax_link(link);
1886 device_links_write_unlock();
1887 }
1888
1889
fwnode_init_without_drv(struct fwnode_handle * fwnode)1890 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1891 {
1892 struct device *dev;
1893 bool ret;
1894
1895 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1896 return false;
1897
1898 dev = get_dev_from_fwnode(fwnode);
1899 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1900 put_device(dev);
1901
1902 return ret;
1903 }
1904
fwnode_ancestor_init_without_drv(struct fwnode_handle * fwnode)1905 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1906 {
1907 struct fwnode_handle *parent;
1908
1909 fwnode_for_each_parent_node(fwnode, parent) {
1910 if (fwnode_init_without_drv(parent)) {
1911 fwnode_handle_put(parent);
1912 return true;
1913 }
1914 }
1915
1916 return false;
1917 }
1918
1919 /**
1920 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1921 * @con: Potential consumer device.
1922 * @sup_handle: Potential supplier's fwnode.
1923 *
1924 * Needs to be called with fwnode_lock and device link lock held.
1925 *
1926 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1927 * depend on @con. This function can detect multiple cyles between @sup_handle
1928 * and @con. When such dependency cycles are found, convert all device links
1929 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1930 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1931 * converted into a device link in the future, they are created as
1932 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1933 * fw_devlink=permissive just between the devices in the cycle. We need to do
1934 * this because, at this point, fw_devlink can't tell which of these
1935 * dependencies is not a real dependency.
1936 *
1937 * Return true if one or more cycles were found. Otherwise, return false.
1938 */
__fw_devlink_relax_cycles(struct fwnode_handle * con_handle,struct fwnode_handle * sup_handle)1939 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle,
1940 struct fwnode_handle *sup_handle)
1941 {
1942 struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL;
1943 struct fwnode_link *link;
1944 struct device_link *dev_link;
1945 bool ret = false;
1946
1947 if (!sup_handle)
1948 return false;
1949
1950 /*
1951 * We aren't trying to find all cycles. Just a cycle between con and
1952 * sup_handle.
1953 */
1954 if (sup_handle->flags & FWNODE_FLAG_VISITED)
1955 return false;
1956
1957 sup_handle->flags |= FWNODE_FLAG_VISITED;
1958
1959 /* Termination condition. */
1960 if (sup_handle == con_handle) {
1961 pr_debug("----- cycle: start -----\n");
1962 ret = true;
1963 goto out;
1964 }
1965
1966 sup_dev = get_dev_from_fwnode(sup_handle);
1967 con_dev = get_dev_from_fwnode(con_handle);
1968 /*
1969 * If sup_dev is bound to a driver and @con hasn't started binding to a
1970 * driver, sup_dev can't be a consumer of @con. So, no need to check
1971 * further.
1972 */
1973 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
1974 con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) {
1975 ret = false;
1976 goto out;
1977 }
1978
1979 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
1980 if (link->flags & FWLINK_FLAG_IGNORE)
1981 continue;
1982
1983 if (__fw_devlink_relax_cycles(con_handle, link->supplier)) {
1984 __fwnode_link_cycle(link);
1985 ret = true;
1986 }
1987 }
1988
1989 /*
1990 * Give priority to device parent over fwnode parent to account for any
1991 * quirks in how fwnodes are converted to devices.
1992 */
1993 if (sup_dev)
1994 par_dev = get_device(sup_dev->parent);
1995 else
1996 par_dev = fwnode_get_next_parent_dev(sup_handle);
1997
1998 if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) {
1999 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2000 par_dev->fwnode);
2001 ret = true;
2002 }
2003
2004 if (!sup_dev)
2005 goto out;
2006
2007 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2008 /*
2009 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2010 * such due to a cycle.
2011 */
2012 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2013 !(dev_link->flags & DL_FLAG_CYCLE))
2014 continue;
2015
2016 if (__fw_devlink_relax_cycles(con_handle,
2017 dev_link->supplier->fwnode)) {
2018 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2019 dev_link->supplier->fwnode);
2020 fw_devlink_relax_link(dev_link);
2021 dev_link->flags |= DL_FLAG_CYCLE;
2022 ret = true;
2023 }
2024 }
2025
2026 out:
2027 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2028 put_device(sup_dev);
2029 put_device(con_dev);
2030 put_device(par_dev);
2031 return ret;
2032 }
2033
2034 /**
2035 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2036 * @con: consumer device for the device link
2037 * @sup_handle: fwnode handle of supplier
2038 * @link: fwnode link that's being converted to a device link
2039 *
2040 * This function will try to create a device link between the consumer device
2041 * @con and the supplier device represented by @sup_handle.
2042 *
2043 * The supplier has to be provided as a fwnode because incorrect cycles in
2044 * fwnode links can sometimes cause the supplier device to never be created.
2045 * This function detects such cases and returns an error if it cannot create a
2046 * device link from the consumer to a missing supplier.
2047 *
2048 * Returns,
2049 * 0 on successfully creating a device link
2050 * -EINVAL if the device link cannot be created as expected
2051 * -EAGAIN if the device link cannot be created right now, but it may be
2052 * possible to do that in the future
2053 */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,struct fwnode_link * link)2054 static int fw_devlink_create_devlink(struct device *con,
2055 struct fwnode_handle *sup_handle,
2056 struct fwnode_link *link)
2057 {
2058 struct device *sup_dev;
2059 int ret = 0;
2060 u32 flags;
2061
2062 if (link->flags & FWLINK_FLAG_IGNORE)
2063 return 0;
2064
2065 /*
2066 * In some cases, a device P might also be a supplier to its child node
2067 * C. However, this would defer the probe of C until the probe of P
2068 * completes successfully. This is perfectly fine in the device driver
2069 * model. device_add() doesn't guarantee probe completion of the device
2070 * by the time it returns.
2071 *
2072 * However, there are a few drivers that assume C will finish probing
2073 * as soon as it's added and before P finishes probing. So, we provide
2074 * a flag to let fw_devlink know not to delay the probe of C until the
2075 * probe of P completes successfully.
2076 *
2077 * When such a flag is set, we can't create device links where P is the
2078 * supplier of C as that would delay the probe of C.
2079 */
2080 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2081 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2082 return -EINVAL;
2083
2084 /*
2085 * Don't try to optimize by not calling the cycle detection logic under
2086 * certain conditions. There's always some corner case that won't get
2087 * detected.
2088 */
2089 device_links_write_lock();
2090 if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) {
2091 __fwnode_link_cycle(link);
2092 pr_debug("----- cycle: end -----\n");
2093 pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n",
2094 link->consumer, sup_handle);
2095 }
2096 device_links_write_unlock();
2097
2098 if (con->fwnode == link->consumer)
2099 flags = fw_devlink_get_flags(link->flags);
2100 else
2101 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2102
2103 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2104 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2105 else
2106 sup_dev = get_dev_from_fwnode(sup_handle);
2107
2108 if (sup_dev) {
2109 /*
2110 * If it's one of those drivers that don't actually bind to
2111 * their device using driver core, then don't wait on this
2112 * supplier device indefinitely.
2113 */
2114 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2115 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2116 dev_dbg(con,
2117 "Not linking %pfwf - dev might never probe\n",
2118 sup_handle);
2119 ret = -EINVAL;
2120 goto out;
2121 }
2122
2123 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2124 dev_err(con, "Failed to create device link (0x%x) with %s\n",
2125 flags, dev_name(sup_dev));
2126 ret = -EINVAL;
2127 }
2128
2129 goto out;
2130 }
2131
2132 /*
2133 * Supplier or supplier's ancestor already initialized without a struct
2134 * device or being probed by a driver.
2135 */
2136 if (fwnode_init_without_drv(sup_handle) ||
2137 fwnode_ancestor_init_without_drv(sup_handle)) {
2138 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2139 sup_handle);
2140 return -EINVAL;
2141 }
2142
2143 ret = -EAGAIN;
2144 out:
2145 put_device(sup_dev);
2146 return ret;
2147 }
2148
2149 /**
2150 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2151 * @dev: Device that needs to be linked to its consumers
2152 *
2153 * This function looks at all the consumer fwnodes of @dev and creates device
2154 * links between the consumer device and @dev (supplier).
2155 *
2156 * If the consumer device has not been added yet, then this function creates a
2157 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2158 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2159 * sync_state() callback before the real consumer device gets to be added and
2160 * then probed.
2161 *
2162 * Once device links are created from the real consumer to @dev (supplier), the
2163 * fwnode links are deleted.
2164 */
__fw_devlink_link_to_consumers(struct device * dev)2165 static void __fw_devlink_link_to_consumers(struct device *dev)
2166 {
2167 struct fwnode_handle *fwnode = dev->fwnode;
2168 struct fwnode_link *link, *tmp;
2169
2170 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2171 struct device *con_dev;
2172 bool own_link = true;
2173 int ret;
2174
2175 con_dev = get_dev_from_fwnode(link->consumer);
2176 /*
2177 * If consumer device is not available yet, make a "proxy"
2178 * SYNC_STATE_ONLY link from the consumer's parent device to
2179 * the supplier device. This is necessary to make sure the
2180 * supplier doesn't get a sync_state() callback before the real
2181 * consumer can create a device link to the supplier.
2182 *
2183 * This proxy link step is needed to handle the case where the
2184 * consumer's parent device is added before the supplier.
2185 */
2186 if (!con_dev) {
2187 con_dev = fwnode_get_next_parent_dev(link->consumer);
2188 /*
2189 * However, if the consumer's parent device is also the
2190 * parent of the supplier, don't create a
2191 * consumer-supplier link from the parent to its child
2192 * device. Such a dependency is impossible.
2193 */
2194 if (con_dev &&
2195 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2196 put_device(con_dev);
2197 con_dev = NULL;
2198 } else {
2199 own_link = false;
2200 }
2201 }
2202
2203 if (!con_dev)
2204 continue;
2205
2206 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2207 put_device(con_dev);
2208 if (!own_link || ret == -EAGAIN)
2209 continue;
2210
2211 __fwnode_link_del(link);
2212 }
2213 }
2214
2215 /**
2216 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2217 * @dev: The consumer device that needs to be linked to its suppliers
2218 * @fwnode: Root of the fwnode tree that is used to create device links
2219 *
2220 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2221 * @fwnode and creates device links between @dev (consumer) and all the
2222 * supplier devices of the entire fwnode tree at @fwnode.
2223 *
2224 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2225 * and the real suppliers of @dev. Once these device links are created, the
2226 * fwnode links are deleted.
2227 *
2228 * In addition, it also looks at all the suppliers of the entire fwnode tree
2229 * because some of the child devices of @dev that have not been added yet
2230 * (because @dev hasn't probed) might already have their suppliers added to
2231 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2232 * @dev (consumer) and these suppliers to make sure they don't execute their
2233 * sync_state() callbacks before these child devices have a chance to create
2234 * their device links. The fwnode links that correspond to the child devices
2235 * aren't delete because they are needed later to create the device links
2236 * between the real consumer and supplier devices.
2237 */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)2238 static void __fw_devlink_link_to_suppliers(struct device *dev,
2239 struct fwnode_handle *fwnode)
2240 {
2241 bool own_link = (dev->fwnode == fwnode);
2242 struct fwnode_link *link, *tmp;
2243 struct fwnode_handle *child = NULL;
2244
2245 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2246 int ret;
2247 struct fwnode_handle *sup = link->supplier;
2248
2249 ret = fw_devlink_create_devlink(dev, sup, link);
2250 if (!own_link || ret == -EAGAIN)
2251 continue;
2252
2253 __fwnode_link_del(link);
2254 }
2255
2256 /*
2257 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2258 * all the descendants. This proxy link step is needed to handle the
2259 * case where the supplier is added before the consumer's parent device
2260 * (@dev).
2261 */
2262 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2263 __fw_devlink_link_to_suppliers(dev, child);
2264 }
2265
fw_devlink_link_device(struct device * dev)2266 static void fw_devlink_link_device(struct device *dev)
2267 {
2268 struct fwnode_handle *fwnode = dev->fwnode;
2269
2270 if (!fw_devlink_flags)
2271 return;
2272
2273 fw_devlink_parse_fwtree(fwnode);
2274
2275 mutex_lock(&fwnode_link_lock);
2276 __fw_devlink_link_to_consumers(dev);
2277 __fw_devlink_link_to_suppliers(dev, fwnode);
2278 mutex_unlock(&fwnode_link_lock);
2279 }
2280
2281 /* Device links support end. */
2282
2283 int (*platform_notify)(struct device *dev) = NULL;
2284 int (*platform_notify_remove)(struct device *dev) = NULL;
2285 static struct kobject *dev_kobj;
2286
2287 /* /sys/dev/char */
2288 static struct kobject *sysfs_dev_char_kobj;
2289
2290 /* /sys/dev/block */
2291 static struct kobject *sysfs_dev_block_kobj;
2292
2293 static DEFINE_MUTEX(device_hotplug_lock);
2294
lock_device_hotplug(void)2295 void lock_device_hotplug(void)
2296 {
2297 mutex_lock(&device_hotplug_lock);
2298 }
2299
unlock_device_hotplug(void)2300 void unlock_device_hotplug(void)
2301 {
2302 mutex_unlock(&device_hotplug_lock);
2303 }
2304
lock_device_hotplug_sysfs(void)2305 int lock_device_hotplug_sysfs(void)
2306 {
2307 if (mutex_trylock(&device_hotplug_lock))
2308 return 0;
2309
2310 /* Avoid busy looping (5 ms of sleep should do). */
2311 msleep(5);
2312 return restart_syscall();
2313 }
2314
2315 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2316 static inline int device_is_not_partition(struct device *dev)
2317 {
2318 return !(dev->type == &part_type);
2319 }
2320 #else
device_is_not_partition(struct device * dev)2321 static inline int device_is_not_partition(struct device *dev)
2322 {
2323 return 1;
2324 }
2325 #endif
2326
device_platform_notify(struct device * dev)2327 static void device_platform_notify(struct device *dev)
2328 {
2329 acpi_device_notify(dev);
2330
2331 software_node_notify(dev);
2332
2333 if (platform_notify)
2334 platform_notify(dev);
2335 }
2336
device_platform_notify_remove(struct device * dev)2337 static void device_platform_notify_remove(struct device *dev)
2338 {
2339 if (platform_notify_remove)
2340 platform_notify_remove(dev);
2341
2342 software_node_notify_remove(dev);
2343
2344 acpi_device_notify_remove(dev);
2345 }
2346
2347 /**
2348 * dev_driver_string - Return a device's driver name, if at all possible
2349 * @dev: struct device to get the name of
2350 *
2351 * Will return the device's driver's name if it is bound to a device. If
2352 * the device is not bound to a driver, it will return the name of the bus
2353 * it is attached to. If it is not attached to a bus either, an empty
2354 * string will be returned.
2355 */
dev_driver_string(const struct device * dev)2356 const char *dev_driver_string(const struct device *dev)
2357 {
2358 struct device_driver *drv;
2359
2360 /* dev->driver can change to NULL underneath us because of unbinding,
2361 * so be careful about accessing it. dev->bus and dev->class should
2362 * never change once they are set, so they don't need special care.
2363 */
2364 drv = READ_ONCE(dev->driver);
2365 return drv ? drv->name : dev_bus_name(dev);
2366 }
2367 EXPORT_SYMBOL(dev_driver_string);
2368
2369 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2370
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2371 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2372 char *buf)
2373 {
2374 struct device_attribute *dev_attr = to_dev_attr(attr);
2375 struct device *dev = kobj_to_dev(kobj);
2376 ssize_t ret = -EIO;
2377
2378 if (dev_attr->show)
2379 ret = dev_attr->show(dev, dev_attr, buf);
2380 if (ret >= (ssize_t)PAGE_SIZE) {
2381 printk("dev_attr_show: %pS returned bad count\n",
2382 dev_attr->show);
2383 }
2384 return ret;
2385 }
2386
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2387 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2388 const char *buf, size_t count)
2389 {
2390 struct device_attribute *dev_attr = to_dev_attr(attr);
2391 struct device *dev = kobj_to_dev(kobj);
2392 ssize_t ret = -EIO;
2393
2394 if (dev_attr->store)
2395 ret = dev_attr->store(dev, dev_attr, buf, count);
2396 return ret;
2397 }
2398
2399 static const struct sysfs_ops dev_sysfs_ops = {
2400 .show = dev_attr_show,
2401 .store = dev_attr_store,
2402 };
2403
2404 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2405
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2406 ssize_t device_store_ulong(struct device *dev,
2407 struct device_attribute *attr,
2408 const char *buf, size_t size)
2409 {
2410 struct dev_ext_attribute *ea = to_ext_attr(attr);
2411 int ret;
2412 unsigned long new;
2413
2414 ret = kstrtoul(buf, 0, &new);
2415 if (ret)
2416 return ret;
2417 *(unsigned long *)(ea->var) = new;
2418 /* Always return full write size even if we didn't consume all */
2419 return size;
2420 }
2421 EXPORT_SYMBOL_GPL(device_store_ulong);
2422
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2423 ssize_t device_show_ulong(struct device *dev,
2424 struct device_attribute *attr,
2425 char *buf)
2426 {
2427 struct dev_ext_attribute *ea = to_ext_attr(attr);
2428 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2429 }
2430 EXPORT_SYMBOL_GPL(device_show_ulong);
2431
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2432 ssize_t device_store_int(struct device *dev,
2433 struct device_attribute *attr,
2434 const char *buf, size_t size)
2435 {
2436 struct dev_ext_attribute *ea = to_ext_attr(attr);
2437 int ret;
2438 long new;
2439
2440 ret = kstrtol(buf, 0, &new);
2441 if (ret)
2442 return ret;
2443
2444 if (new > INT_MAX || new < INT_MIN)
2445 return -EINVAL;
2446 *(int *)(ea->var) = new;
2447 /* Always return full write size even if we didn't consume all */
2448 return size;
2449 }
2450 EXPORT_SYMBOL_GPL(device_store_int);
2451
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2452 ssize_t device_show_int(struct device *dev,
2453 struct device_attribute *attr,
2454 char *buf)
2455 {
2456 struct dev_ext_attribute *ea = to_ext_attr(attr);
2457
2458 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2459 }
2460 EXPORT_SYMBOL_GPL(device_show_int);
2461
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2462 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2463 const char *buf, size_t size)
2464 {
2465 struct dev_ext_attribute *ea = to_ext_attr(attr);
2466
2467 if (kstrtobool(buf, ea->var) < 0)
2468 return -EINVAL;
2469
2470 return size;
2471 }
2472 EXPORT_SYMBOL_GPL(device_store_bool);
2473
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2474 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2475 char *buf)
2476 {
2477 struct dev_ext_attribute *ea = to_ext_attr(attr);
2478
2479 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2480 }
2481 EXPORT_SYMBOL_GPL(device_show_bool);
2482
2483 /**
2484 * device_release - free device structure.
2485 * @kobj: device's kobject.
2486 *
2487 * This is called once the reference count for the object
2488 * reaches 0. We forward the call to the device's release
2489 * method, which should handle actually freeing the structure.
2490 */
device_release(struct kobject * kobj)2491 static void device_release(struct kobject *kobj)
2492 {
2493 struct device *dev = kobj_to_dev(kobj);
2494 struct device_private *p = dev->p;
2495
2496 /*
2497 * Some platform devices are driven without driver attached
2498 * and managed resources may have been acquired. Make sure
2499 * all resources are released.
2500 *
2501 * Drivers still can add resources into device after device
2502 * is deleted but alive, so release devres here to avoid
2503 * possible memory leak.
2504 */
2505 devres_release_all(dev);
2506
2507 kfree(dev->dma_range_map);
2508
2509 if (dev->release)
2510 dev->release(dev);
2511 else if (dev->type && dev->type->release)
2512 dev->type->release(dev);
2513 else if (dev->class && dev->class->dev_release)
2514 dev->class->dev_release(dev);
2515 else
2516 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2517 dev_name(dev));
2518 kfree(p);
2519 }
2520
device_namespace(const struct kobject * kobj)2521 static const void *device_namespace(const struct kobject *kobj)
2522 {
2523 const struct device *dev = kobj_to_dev(kobj);
2524 const void *ns = NULL;
2525
2526 if (dev->class && dev->class->ns_type)
2527 ns = dev->class->namespace(dev);
2528
2529 return ns;
2530 }
2531
device_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)2532 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2533 {
2534 const struct device *dev = kobj_to_dev(kobj);
2535
2536 if (dev->class && dev->class->get_ownership)
2537 dev->class->get_ownership(dev, uid, gid);
2538 }
2539
2540 static const struct kobj_type device_ktype = {
2541 .release = device_release,
2542 .sysfs_ops = &dev_sysfs_ops,
2543 .namespace = device_namespace,
2544 .get_ownership = device_get_ownership,
2545 };
2546
2547
dev_uevent_filter(const struct kobject * kobj)2548 static int dev_uevent_filter(const struct kobject *kobj)
2549 {
2550 const struct kobj_type *ktype = get_ktype(kobj);
2551
2552 if (ktype == &device_ktype) {
2553 const struct device *dev = kobj_to_dev(kobj);
2554 if (dev->bus)
2555 return 1;
2556 if (dev->class)
2557 return 1;
2558 }
2559 return 0;
2560 }
2561
dev_uevent_name(const struct kobject * kobj)2562 static const char *dev_uevent_name(const struct kobject *kobj)
2563 {
2564 const struct device *dev = kobj_to_dev(kobj);
2565
2566 if (dev->bus)
2567 return dev->bus->name;
2568 if (dev->class)
2569 return dev->class->name;
2570 return NULL;
2571 }
2572
dev_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)2573 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2574 {
2575 const struct device *dev = kobj_to_dev(kobj);
2576 int retval = 0;
2577
2578 /* add device node properties if present */
2579 if (MAJOR(dev->devt)) {
2580 const char *tmp;
2581 const char *name;
2582 umode_t mode = 0;
2583 kuid_t uid = GLOBAL_ROOT_UID;
2584 kgid_t gid = GLOBAL_ROOT_GID;
2585
2586 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2587 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2588 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2589 if (name) {
2590 add_uevent_var(env, "DEVNAME=%s", name);
2591 if (mode)
2592 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2593 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2594 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2595 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2596 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2597 kfree(tmp);
2598 }
2599 }
2600
2601 if (dev->type && dev->type->name)
2602 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2603
2604 if (dev->driver)
2605 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2606
2607 /* Add common DT information about the device */
2608 of_device_uevent(dev, env);
2609
2610 /* have the bus specific function add its stuff */
2611 if (dev->bus && dev->bus->uevent) {
2612 retval = dev->bus->uevent(dev, env);
2613 if (retval)
2614 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2615 dev_name(dev), __func__, retval);
2616 }
2617
2618 /* have the class specific function add its stuff */
2619 if (dev->class && dev->class->dev_uevent) {
2620 retval = dev->class->dev_uevent(dev, env);
2621 if (retval)
2622 pr_debug("device: '%s': %s: class uevent() "
2623 "returned %d\n", dev_name(dev),
2624 __func__, retval);
2625 }
2626
2627 /* have the device type specific function add its stuff */
2628 if (dev->type && dev->type->uevent) {
2629 retval = dev->type->uevent(dev, env);
2630 if (retval)
2631 pr_debug("device: '%s': %s: dev_type uevent() "
2632 "returned %d\n", dev_name(dev),
2633 __func__, retval);
2634 }
2635
2636 return retval;
2637 }
2638
2639 static const struct kset_uevent_ops device_uevent_ops = {
2640 .filter = dev_uevent_filter,
2641 .name = dev_uevent_name,
2642 .uevent = dev_uevent,
2643 };
2644
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2645 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2646 char *buf)
2647 {
2648 struct kobject *top_kobj;
2649 struct kset *kset;
2650 struct kobj_uevent_env *env = NULL;
2651 int i;
2652 int len = 0;
2653 int retval;
2654
2655 /* search the kset, the device belongs to */
2656 top_kobj = &dev->kobj;
2657 while (!top_kobj->kset && top_kobj->parent)
2658 top_kobj = top_kobj->parent;
2659 if (!top_kobj->kset)
2660 goto out;
2661
2662 kset = top_kobj->kset;
2663 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2664 goto out;
2665
2666 /* respect filter */
2667 if (kset->uevent_ops && kset->uevent_ops->filter)
2668 if (!kset->uevent_ops->filter(&dev->kobj))
2669 goto out;
2670
2671 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2672 if (!env)
2673 return -ENOMEM;
2674
2675 /* Synchronize with really_probe() */
2676 device_lock(dev);
2677 /* let the kset specific function add its keys */
2678 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2679 device_unlock(dev);
2680 if (retval)
2681 goto out;
2682
2683 /* copy keys to file */
2684 for (i = 0; i < env->envp_idx; i++)
2685 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2686 out:
2687 kfree(env);
2688 return len;
2689 }
2690
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2691 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2692 const char *buf, size_t count)
2693 {
2694 int rc;
2695
2696 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2697
2698 if (rc) {
2699 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2700 return rc;
2701 }
2702
2703 return count;
2704 }
2705 static DEVICE_ATTR_RW(uevent);
2706
online_show(struct device * dev,struct device_attribute * attr,char * buf)2707 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2708 char *buf)
2709 {
2710 bool val;
2711
2712 device_lock(dev);
2713 val = !dev->offline;
2714 device_unlock(dev);
2715 return sysfs_emit(buf, "%u\n", val);
2716 }
2717
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2718 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2719 const char *buf, size_t count)
2720 {
2721 bool val;
2722 int ret;
2723
2724 ret = kstrtobool(buf, &val);
2725 if (ret < 0)
2726 return ret;
2727
2728 ret = lock_device_hotplug_sysfs();
2729 if (ret)
2730 return ret;
2731
2732 ret = val ? device_online(dev) : device_offline(dev);
2733 unlock_device_hotplug();
2734 return ret < 0 ? ret : count;
2735 }
2736 static DEVICE_ATTR_RW(online);
2737
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2738 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2739 char *buf)
2740 {
2741 const char *loc;
2742
2743 switch (dev->removable) {
2744 case DEVICE_REMOVABLE:
2745 loc = "removable";
2746 break;
2747 case DEVICE_FIXED:
2748 loc = "fixed";
2749 break;
2750 default:
2751 loc = "unknown";
2752 }
2753 return sysfs_emit(buf, "%s\n", loc);
2754 }
2755 static DEVICE_ATTR_RO(removable);
2756
device_add_groups(struct device * dev,const struct attribute_group ** groups)2757 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2758 {
2759 return sysfs_create_groups(&dev->kobj, groups);
2760 }
2761 EXPORT_SYMBOL_GPL(device_add_groups);
2762
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2763 void device_remove_groups(struct device *dev,
2764 const struct attribute_group **groups)
2765 {
2766 sysfs_remove_groups(&dev->kobj, groups);
2767 }
2768 EXPORT_SYMBOL_GPL(device_remove_groups);
2769
2770 union device_attr_group_devres {
2771 const struct attribute_group *group;
2772 const struct attribute_group **groups;
2773 };
2774
devm_attr_group_remove(struct device * dev,void * res)2775 static void devm_attr_group_remove(struct device *dev, void *res)
2776 {
2777 union device_attr_group_devres *devres = res;
2778 const struct attribute_group *group = devres->group;
2779
2780 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2781 sysfs_remove_group(&dev->kobj, group);
2782 }
2783
devm_attr_groups_remove(struct device * dev,void * res)2784 static void devm_attr_groups_remove(struct device *dev, void *res)
2785 {
2786 union device_attr_group_devres *devres = res;
2787 const struct attribute_group **groups = devres->groups;
2788
2789 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2790 sysfs_remove_groups(&dev->kobj, groups);
2791 }
2792
2793 /**
2794 * devm_device_add_group - given a device, create a managed attribute group
2795 * @dev: The device to create the group for
2796 * @grp: The attribute group to create
2797 *
2798 * This function creates a group for the first time. It will explicitly
2799 * warn and error if any of the attribute files being created already exist.
2800 *
2801 * Returns 0 on success or error code on failure.
2802 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2803 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2804 {
2805 union device_attr_group_devres *devres;
2806 int error;
2807
2808 devres = devres_alloc(devm_attr_group_remove,
2809 sizeof(*devres), GFP_KERNEL);
2810 if (!devres)
2811 return -ENOMEM;
2812
2813 error = sysfs_create_group(&dev->kobj, grp);
2814 if (error) {
2815 devres_free(devres);
2816 return error;
2817 }
2818
2819 devres->group = grp;
2820 devres_add(dev, devres);
2821 return 0;
2822 }
2823 EXPORT_SYMBOL_GPL(devm_device_add_group);
2824
2825 /**
2826 * devm_device_add_groups - create a bunch of managed attribute groups
2827 * @dev: The device to create the group for
2828 * @groups: The attribute groups to create, NULL terminated
2829 *
2830 * This function creates a bunch of managed attribute groups. If an error
2831 * occurs when creating a group, all previously created groups will be
2832 * removed, unwinding everything back to the original state when this
2833 * function was called. It will explicitly warn and error if any of the
2834 * attribute files being created already exist.
2835 *
2836 * Returns 0 on success or error code from sysfs_create_group on failure.
2837 */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)2838 int devm_device_add_groups(struct device *dev,
2839 const struct attribute_group **groups)
2840 {
2841 union device_attr_group_devres *devres;
2842 int error;
2843
2844 devres = devres_alloc(devm_attr_groups_remove,
2845 sizeof(*devres), GFP_KERNEL);
2846 if (!devres)
2847 return -ENOMEM;
2848
2849 error = sysfs_create_groups(&dev->kobj, groups);
2850 if (error) {
2851 devres_free(devres);
2852 return error;
2853 }
2854
2855 devres->groups = groups;
2856 devres_add(dev, devres);
2857 return 0;
2858 }
2859 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2860
device_add_attrs(struct device * dev)2861 static int device_add_attrs(struct device *dev)
2862 {
2863 const struct class *class = dev->class;
2864 const struct device_type *type = dev->type;
2865 int error;
2866
2867 if (class) {
2868 error = device_add_groups(dev, class->dev_groups);
2869 if (error)
2870 return error;
2871 }
2872
2873 if (type) {
2874 error = device_add_groups(dev, type->groups);
2875 if (error)
2876 goto err_remove_class_groups;
2877 }
2878
2879 error = device_add_groups(dev, dev->groups);
2880 if (error)
2881 goto err_remove_type_groups;
2882
2883 if (device_supports_offline(dev) && !dev->offline_disabled) {
2884 error = device_create_file(dev, &dev_attr_online);
2885 if (error)
2886 goto err_remove_dev_groups;
2887 }
2888
2889 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2890 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2891 if (error)
2892 goto err_remove_dev_online;
2893 }
2894
2895 if (dev_removable_is_valid(dev)) {
2896 error = device_create_file(dev, &dev_attr_removable);
2897 if (error)
2898 goto err_remove_dev_waiting_for_supplier;
2899 }
2900
2901 if (dev_add_physical_location(dev)) {
2902 error = device_add_group(dev,
2903 &dev_attr_physical_location_group);
2904 if (error)
2905 goto err_remove_dev_removable;
2906 }
2907
2908 return 0;
2909
2910 err_remove_dev_removable:
2911 device_remove_file(dev, &dev_attr_removable);
2912 err_remove_dev_waiting_for_supplier:
2913 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2914 err_remove_dev_online:
2915 device_remove_file(dev, &dev_attr_online);
2916 err_remove_dev_groups:
2917 device_remove_groups(dev, dev->groups);
2918 err_remove_type_groups:
2919 if (type)
2920 device_remove_groups(dev, type->groups);
2921 err_remove_class_groups:
2922 if (class)
2923 device_remove_groups(dev, class->dev_groups);
2924
2925 return error;
2926 }
2927
device_remove_attrs(struct device * dev)2928 static void device_remove_attrs(struct device *dev)
2929 {
2930 const struct class *class = dev->class;
2931 const struct device_type *type = dev->type;
2932
2933 if (dev->physical_location) {
2934 device_remove_group(dev, &dev_attr_physical_location_group);
2935 kfree(dev->physical_location);
2936 }
2937
2938 device_remove_file(dev, &dev_attr_removable);
2939 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2940 device_remove_file(dev, &dev_attr_online);
2941 device_remove_groups(dev, dev->groups);
2942
2943 if (type)
2944 device_remove_groups(dev, type->groups);
2945
2946 if (class)
2947 device_remove_groups(dev, class->dev_groups);
2948 }
2949
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2950 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2951 char *buf)
2952 {
2953 return print_dev_t(buf, dev->devt);
2954 }
2955 static DEVICE_ATTR_RO(dev);
2956
2957 /* /sys/devices/ */
2958 struct kset *devices_kset;
2959
2960 /**
2961 * devices_kset_move_before - Move device in the devices_kset's list.
2962 * @deva: Device to move.
2963 * @devb: Device @deva should come before.
2964 */
devices_kset_move_before(struct device * deva,struct device * devb)2965 static void devices_kset_move_before(struct device *deva, struct device *devb)
2966 {
2967 if (!devices_kset)
2968 return;
2969 pr_debug("devices_kset: Moving %s before %s\n",
2970 dev_name(deva), dev_name(devb));
2971 spin_lock(&devices_kset->list_lock);
2972 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2973 spin_unlock(&devices_kset->list_lock);
2974 }
2975
2976 /**
2977 * devices_kset_move_after - Move device in the devices_kset's list.
2978 * @deva: Device to move
2979 * @devb: Device @deva should come after.
2980 */
devices_kset_move_after(struct device * deva,struct device * devb)2981 static void devices_kset_move_after(struct device *deva, struct device *devb)
2982 {
2983 if (!devices_kset)
2984 return;
2985 pr_debug("devices_kset: Moving %s after %s\n",
2986 dev_name(deva), dev_name(devb));
2987 spin_lock(&devices_kset->list_lock);
2988 list_move(&deva->kobj.entry, &devb->kobj.entry);
2989 spin_unlock(&devices_kset->list_lock);
2990 }
2991
2992 /**
2993 * devices_kset_move_last - move the device to the end of devices_kset's list.
2994 * @dev: device to move
2995 */
devices_kset_move_last(struct device * dev)2996 void devices_kset_move_last(struct device *dev)
2997 {
2998 if (!devices_kset)
2999 return;
3000 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3001 spin_lock(&devices_kset->list_lock);
3002 list_move_tail(&dev->kobj.entry, &devices_kset->list);
3003 spin_unlock(&devices_kset->list_lock);
3004 }
3005
3006 /**
3007 * device_create_file - create sysfs attribute file for device.
3008 * @dev: device.
3009 * @attr: device attribute descriptor.
3010 */
device_create_file(struct device * dev,const struct device_attribute * attr)3011 int device_create_file(struct device *dev,
3012 const struct device_attribute *attr)
3013 {
3014 int error = 0;
3015
3016 if (dev) {
3017 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3018 "Attribute %s: write permission without 'store'\n",
3019 attr->attr.name);
3020 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3021 "Attribute %s: read permission without 'show'\n",
3022 attr->attr.name);
3023 error = sysfs_create_file(&dev->kobj, &attr->attr);
3024 }
3025
3026 return error;
3027 }
3028 EXPORT_SYMBOL_GPL(device_create_file);
3029
3030 /**
3031 * device_remove_file - remove sysfs attribute file.
3032 * @dev: device.
3033 * @attr: device attribute descriptor.
3034 */
device_remove_file(struct device * dev,const struct device_attribute * attr)3035 void device_remove_file(struct device *dev,
3036 const struct device_attribute *attr)
3037 {
3038 if (dev)
3039 sysfs_remove_file(&dev->kobj, &attr->attr);
3040 }
3041 EXPORT_SYMBOL_GPL(device_remove_file);
3042
3043 /**
3044 * device_remove_file_self - remove sysfs attribute file from its own method.
3045 * @dev: device.
3046 * @attr: device attribute descriptor.
3047 *
3048 * See kernfs_remove_self() for details.
3049 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)3050 bool device_remove_file_self(struct device *dev,
3051 const struct device_attribute *attr)
3052 {
3053 if (dev)
3054 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3055 else
3056 return false;
3057 }
3058 EXPORT_SYMBOL_GPL(device_remove_file_self);
3059
3060 /**
3061 * device_create_bin_file - create sysfs binary attribute file for device.
3062 * @dev: device.
3063 * @attr: device binary attribute descriptor.
3064 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)3065 int device_create_bin_file(struct device *dev,
3066 const struct bin_attribute *attr)
3067 {
3068 int error = -EINVAL;
3069 if (dev)
3070 error = sysfs_create_bin_file(&dev->kobj, attr);
3071 return error;
3072 }
3073 EXPORT_SYMBOL_GPL(device_create_bin_file);
3074
3075 /**
3076 * device_remove_bin_file - remove sysfs binary attribute file
3077 * @dev: device.
3078 * @attr: device binary attribute descriptor.
3079 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)3080 void device_remove_bin_file(struct device *dev,
3081 const struct bin_attribute *attr)
3082 {
3083 if (dev)
3084 sysfs_remove_bin_file(&dev->kobj, attr);
3085 }
3086 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3087
klist_children_get(struct klist_node * n)3088 static void klist_children_get(struct klist_node *n)
3089 {
3090 struct device_private *p = to_device_private_parent(n);
3091 struct device *dev = p->device;
3092
3093 get_device(dev);
3094 }
3095
klist_children_put(struct klist_node * n)3096 static void klist_children_put(struct klist_node *n)
3097 {
3098 struct device_private *p = to_device_private_parent(n);
3099 struct device *dev = p->device;
3100
3101 put_device(dev);
3102 }
3103
3104 /**
3105 * device_initialize - init device structure.
3106 * @dev: device.
3107 *
3108 * This prepares the device for use by other layers by initializing
3109 * its fields.
3110 * It is the first half of device_register(), if called by
3111 * that function, though it can also be called separately, so one
3112 * may use @dev's fields. In particular, get_device()/put_device()
3113 * may be used for reference counting of @dev after calling this
3114 * function.
3115 *
3116 * All fields in @dev must be initialized by the caller to 0, except
3117 * for those explicitly set to some other value. The simplest
3118 * approach is to use kzalloc() to allocate the structure containing
3119 * @dev.
3120 *
3121 * NOTE: Use put_device() to give up your reference instead of freeing
3122 * @dev directly once you have called this function.
3123 */
device_initialize(struct device * dev)3124 void device_initialize(struct device *dev)
3125 {
3126 dev->kobj.kset = devices_kset;
3127 kobject_init(&dev->kobj, &device_ktype);
3128 INIT_LIST_HEAD(&dev->dma_pools);
3129 mutex_init(&dev->mutex);
3130 lockdep_set_novalidate_class(&dev->mutex);
3131 spin_lock_init(&dev->devres_lock);
3132 INIT_LIST_HEAD(&dev->devres_head);
3133 device_pm_init(dev);
3134 set_dev_node(dev, NUMA_NO_NODE);
3135 INIT_LIST_HEAD(&dev->links.consumers);
3136 INIT_LIST_HEAD(&dev->links.suppliers);
3137 INIT_LIST_HEAD(&dev->links.defer_sync);
3138 dev->links.status = DL_DEV_NO_DRIVER;
3139 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3140 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3141 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3142 dev->dma_coherent = dma_default_coherent;
3143 #endif
3144 swiotlb_dev_init(dev);
3145 }
3146 EXPORT_SYMBOL_GPL(device_initialize);
3147
virtual_device_parent(struct device * dev)3148 struct kobject *virtual_device_parent(struct device *dev)
3149 {
3150 static struct kobject *virtual_dir = NULL;
3151
3152 if (!virtual_dir)
3153 virtual_dir = kobject_create_and_add("virtual",
3154 &devices_kset->kobj);
3155
3156 return virtual_dir;
3157 }
3158
3159 struct class_dir {
3160 struct kobject kobj;
3161 const struct class *class;
3162 };
3163
3164 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3165
class_dir_release(struct kobject * kobj)3166 static void class_dir_release(struct kobject *kobj)
3167 {
3168 struct class_dir *dir = to_class_dir(kobj);
3169 kfree(dir);
3170 }
3171
3172 static const
class_dir_child_ns_type(const struct kobject * kobj)3173 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3174 {
3175 const struct class_dir *dir = to_class_dir(kobj);
3176 return dir->class->ns_type;
3177 }
3178
3179 static const struct kobj_type class_dir_ktype = {
3180 .release = class_dir_release,
3181 .sysfs_ops = &kobj_sysfs_ops,
3182 .child_ns_type = class_dir_child_ns_type
3183 };
3184
class_dir_create_and_add(struct subsys_private * sp,struct kobject * parent_kobj)3185 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3186 struct kobject *parent_kobj)
3187 {
3188 struct class_dir *dir;
3189 int retval;
3190
3191 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3192 if (!dir)
3193 return ERR_PTR(-ENOMEM);
3194
3195 dir->class = sp->class;
3196 kobject_init(&dir->kobj, &class_dir_ktype);
3197
3198 dir->kobj.kset = &sp->glue_dirs;
3199
3200 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3201 if (retval < 0) {
3202 kobject_put(&dir->kobj);
3203 return ERR_PTR(retval);
3204 }
3205 return &dir->kobj;
3206 }
3207
3208 static DEFINE_MUTEX(gdp_mutex);
3209
get_device_parent(struct device * dev,struct device * parent)3210 static struct kobject *get_device_parent(struct device *dev,
3211 struct device *parent)
3212 {
3213 struct subsys_private *sp = class_to_subsys(dev->class);
3214 struct kobject *kobj = NULL;
3215
3216 if (sp) {
3217 struct kobject *parent_kobj;
3218 struct kobject *k;
3219
3220 /*
3221 * If we have no parent, we live in "virtual".
3222 * Class-devices with a non class-device as parent, live
3223 * in a "glue" directory to prevent namespace collisions.
3224 */
3225 if (parent == NULL)
3226 parent_kobj = virtual_device_parent(dev);
3227 else if (parent->class && !dev->class->ns_type) {
3228 subsys_put(sp);
3229 return &parent->kobj;
3230 } else {
3231 parent_kobj = &parent->kobj;
3232 }
3233
3234 mutex_lock(&gdp_mutex);
3235
3236 /* find our class-directory at the parent and reference it */
3237 spin_lock(&sp->glue_dirs.list_lock);
3238 list_for_each_entry(k, &sp->glue_dirs.list, entry)
3239 if (k->parent == parent_kobj) {
3240 kobj = kobject_get(k);
3241 break;
3242 }
3243 spin_unlock(&sp->glue_dirs.list_lock);
3244 if (kobj) {
3245 mutex_unlock(&gdp_mutex);
3246 subsys_put(sp);
3247 return kobj;
3248 }
3249
3250 /* or create a new class-directory at the parent device */
3251 k = class_dir_create_and_add(sp, parent_kobj);
3252 /* do not emit an uevent for this simple "glue" directory */
3253 mutex_unlock(&gdp_mutex);
3254 subsys_put(sp);
3255 return k;
3256 }
3257
3258 /* subsystems can specify a default root directory for their devices */
3259 if (!parent && dev->bus) {
3260 struct device *dev_root = bus_get_dev_root(dev->bus);
3261
3262 if (dev_root) {
3263 kobj = &dev_root->kobj;
3264 put_device(dev_root);
3265 return kobj;
3266 }
3267 }
3268
3269 if (parent)
3270 return &parent->kobj;
3271 return NULL;
3272 }
3273
live_in_glue_dir(struct kobject * kobj,struct device * dev)3274 static inline bool live_in_glue_dir(struct kobject *kobj,
3275 struct device *dev)
3276 {
3277 struct subsys_private *sp;
3278 bool retval;
3279
3280 if (!kobj || !dev->class)
3281 return false;
3282
3283 sp = class_to_subsys(dev->class);
3284 if (!sp)
3285 return false;
3286
3287 if (kobj->kset == &sp->glue_dirs)
3288 retval = true;
3289 else
3290 retval = false;
3291
3292 subsys_put(sp);
3293 return retval;
3294 }
3295
get_glue_dir(struct device * dev)3296 static inline struct kobject *get_glue_dir(struct device *dev)
3297 {
3298 return dev->kobj.parent;
3299 }
3300
3301 /**
3302 * kobject_has_children - Returns whether a kobject has children.
3303 * @kobj: the object to test
3304 *
3305 * This will return whether a kobject has other kobjects as children.
3306 *
3307 * It does NOT account for the presence of attribute files, only sub
3308 * directories. It also assumes there is no concurrent addition or
3309 * removal of such children, and thus relies on external locking.
3310 */
kobject_has_children(struct kobject * kobj)3311 static inline bool kobject_has_children(struct kobject *kobj)
3312 {
3313 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3314
3315 return kobj->sd && kobj->sd->dir.subdirs;
3316 }
3317
3318 /*
3319 * make sure cleaning up dir as the last step, we need to make
3320 * sure .release handler of kobject is run with holding the
3321 * global lock
3322 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3323 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3324 {
3325 unsigned int ref;
3326
3327 /* see if we live in a "glue" directory */
3328 if (!live_in_glue_dir(glue_dir, dev))
3329 return;
3330
3331 mutex_lock(&gdp_mutex);
3332 /**
3333 * There is a race condition between removing glue directory
3334 * and adding a new device under the glue directory.
3335 *
3336 * CPU1: CPU2:
3337 *
3338 * device_add()
3339 * get_device_parent()
3340 * class_dir_create_and_add()
3341 * kobject_add_internal()
3342 * create_dir() // create glue_dir
3343 *
3344 * device_add()
3345 * get_device_parent()
3346 * kobject_get() // get glue_dir
3347 *
3348 * device_del()
3349 * cleanup_glue_dir()
3350 * kobject_del(glue_dir)
3351 *
3352 * kobject_add()
3353 * kobject_add_internal()
3354 * create_dir() // in glue_dir
3355 * sysfs_create_dir_ns()
3356 * kernfs_create_dir_ns(sd)
3357 *
3358 * sysfs_remove_dir() // glue_dir->sd=NULL
3359 * sysfs_put() // free glue_dir->sd
3360 *
3361 * // sd is freed
3362 * kernfs_new_node(sd)
3363 * kernfs_get(glue_dir)
3364 * kernfs_add_one()
3365 * kernfs_put()
3366 *
3367 * Before CPU1 remove last child device under glue dir, if CPU2 add
3368 * a new device under glue dir, the glue_dir kobject reference count
3369 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3370 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3371 * and sysfs_put(). This result in glue_dir->sd is freed.
3372 *
3373 * Then the CPU2 will see a stale "empty" but still potentially used
3374 * glue dir around in kernfs_new_node().
3375 *
3376 * In order to avoid this happening, we also should make sure that
3377 * kernfs_node for glue_dir is released in CPU1 only when refcount
3378 * for glue_dir kobj is 1.
3379 */
3380 ref = kref_read(&glue_dir->kref);
3381 if (!kobject_has_children(glue_dir) && !--ref)
3382 kobject_del(glue_dir);
3383 kobject_put(glue_dir);
3384 mutex_unlock(&gdp_mutex);
3385 }
3386
device_add_class_symlinks(struct device * dev)3387 static int device_add_class_symlinks(struct device *dev)
3388 {
3389 struct device_node *of_node = dev_of_node(dev);
3390 struct subsys_private *sp;
3391 int error;
3392
3393 if (of_node) {
3394 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3395 if (error)
3396 dev_warn(dev, "Error %d creating of_node link\n",error);
3397 /* An error here doesn't warrant bringing down the device */
3398 }
3399
3400 sp = class_to_subsys(dev->class);
3401 if (!sp)
3402 return 0;
3403
3404 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3405 if (error)
3406 goto out_devnode;
3407
3408 if (dev->parent && device_is_not_partition(dev)) {
3409 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3410 "device");
3411 if (error)
3412 goto out_subsys;
3413 }
3414
3415 /* link in the class directory pointing to the device */
3416 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3417 if (error)
3418 goto out_device;
3419 goto exit;
3420
3421 out_device:
3422 sysfs_remove_link(&dev->kobj, "device");
3423 out_subsys:
3424 sysfs_remove_link(&dev->kobj, "subsystem");
3425 out_devnode:
3426 sysfs_remove_link(&dev->kobj, "of_node");
3427 exit:
3428 subsys_put(sp);
3429 return error;
3430 }
3431
device_remove_class_symlinks(struct device * dev)3432 static void device_remove_class_symlinks(struct device *dev)
3433 {
3434 struct subsys_private *sp = class_to_subsys(dev->class);
3435
3436 if (dev_of_node(dev))
3437 sysfs_remove_link(&dev->kobj, "of_node");
3438
3439 if (!sp)
3440 return;
3441
3442 if (dev->parent && device_is_not_partition(dev))
3443 sysfs_remove_link(&dev->kobj, "device");
3444 sysfs_remove_link(&dev->kobj, "subsystem");
3445 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3446 subsys_put(sp);
3447 }
3448
3449 /**
3450 * dev_set_name - set a device name
3451 * @dev: device
3452 * @fmt: format string for the device's name
3453 */
dev_set_name(struct device * dev,const char * fmt,...)3454 int dev_set_name(struct device *dev, const char *fmt, ...)
3455 {
3456 va_list vargs;
3457 int err;
3458
3459 va_start(vargs, fmt);
3460 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3461 va_end(vargs);
3462 return err;
3463 }
3464 EXPORT_SYMBOL_GPL(dev_set_name);
3465
3466 /* select a /sys/dev/ directory for the device */
device_to_dev_kobj(struct device * dev)3467 static struct kobject *device_to_dev_kobj(struct device *dev)
3468 {
3469 if (is_blockdev(dev))
3470 return sysfs_dev_block_kobj;
3471 else
3472 return sysfs_dev_char_kobj;
3473 }
3474
device_create_sys_dev_entry(struct device * dev)3475 static int device_create_sys_dev_entry(struct device *dev)
3476 {
3477 struct kobject *kobj = device_to_dev_kobj(dev);
3478 int error = 0;
3479 char devt_str[15];
3480
3481 if (kobj) {
3482 format_dev_t(devt_str, dev->devt);
3483 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3484 }
3485
3486 return error;
3487 }
3488
device_remove_sys_dev_entry(struct device * dev)3489 static void device_remove_sys_dev_entry(struct device *dev)
3490 {
3491 struct kobject *kobj = device_to_dev_kobj(dev);
3492 char devt_str[15];
3493
3494 if (kobj) {
3495 format_dev_t(devt_str, dev->devt);
3496 sysfs_remove_link(kobj, devt_str);
3497 }
3498 }
3499
device_private_init(struct device * dev)3500 static int device_private_init(struct device *dev)
3501 {
3502 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3503 if (!dev->p)
3504 return -ENOMEM;
3505 dev->p->device = dev;
3506 klist_init(&dev->p->klist_children, klist_children_get,
3507 klist_children_put);
3508 INIT_LIST_HEAD(&dev->p->deferred_probe);
3509 return 0;
3510 }
3511
3512 /**
3513 * device_add - add device to device hierarchy.
3514 * @dev: device.
3515 *
3516 * This is part 2 of device_register(), though may be called
3517 * separately _iff_ device_initialize() has been called separately.
3518 *
3519 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3520 * to the global and sibling lists for the device, then
3521 * adds it to the other relevant subsystems of the driver model.
3522 *
3523 * Do not call this routine or device_register() more than once for
3524 * any device structure. The driver model core is not designed to work
3525 * with devices that get unregistered and then spring back to life.
3526 * (Among other things, it's very hard to guarantee that all references
3527 * to the previous incarnation of @dev have been dropped.) Allocate
3528 * and register a fresh new struct device instead.
3529 *
3530 * NOTE: _Never_ directly free @dev after calling this function, even
3531 * if it returned an error! Always use put_device() to give up your
3532 * reference instead.
3533 *
3534 * Rule of thumb is: if device_add() succeeds, you should call
3535 * device_del() when you want to get rid of it. If device_add() has
3536 * *not* succeeded, use *only* put_device() to drop the reference
3537 * count.
3538 */
device_add(struct device * dev)3539 int device_add(struct device *dev)
3540 {
3541 struct subsys_private *sp;
3542 struct device *parent;
3543 struct kobject *kobj;
3544 struct class_interface *class_intf;
3545 int error = -EINVAL;
3546 struct kobject *glue_dir = NULL;
3547
3548 dev = get_device(dev);
3549 if (!dev)
3550 goto done;
3551
3552 if (!dev->p) {
3553 error = device_private_init(dev);
3554 if (error)
3555 goto done;
3556 }
3557
3558 /*
3559 * for statically allocated devices, which should all be converted
3560 * some day, we need to initialize the name. We prevent reading back
3561 * the name, and force the use of dev_name()
3562 */
3563 if (dev->init_name) {
3564 error = dev_set_name(dev, "%s", dev->init_name);
3565 dev->init_name = NULL;
3566 }
3567
3568 if (dev_name(dev))
3569 error = 0;
3570 /* subsystems can specify simple device enumeration */
3571 else if (dev->bus && dev->bus->dev_name)
3572 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3573 else
3574 error = -EINVAL;
3575 if (error)
3576 goto name_error;
3577
3578 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3579
3580 parent = get_device(dev->parent);
3581 kobj = get_device_parent(dev, parent);
3582 if (IS_ERR(kobj)) {
3583 error = PTR_ERR(kobj);
3584 goto parent_error;
3585 }
3586 if (kobj)
3587 dev->kobj.parent = kobj;
3588
3589 /* use parent numa_node */
3590 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3591 set_dev_node(dev, dev_to_node(parent));
3592
3593 /* first, register with generic layer. */
3594 /* we require the name to be set before, and pass NULL */
3595 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3596 if (error) {
3597 glue_dir = kobj;
3598 goto Error;
3599 }
3600
3601 /* notify platform of device entry */
3602 device_platform_notify(dev);
3603
3604 error = device_create_file(dev, &dev_attr_uevent);
3605 if (error)
3606 goto attrError;
3607
3608 error = device_add_class_symlinks(dev);
3609 if (error)
3610 goto SymlinkError;
3611 error = device_add_attrs(dev);
3612 if (error)
3613 goto AttrsError;
3614 error = bus_add_device(dev);
3615 if (error)
3616 goto BusError;
3617 error = dpm_sysfs_add(dev);
3618 if (error)
3619 goto DPMError;
3620 device_pm_add(dev);
3621
3622 if (MAJOR(dev->devt)) {
3623 error = device_create_file(dev, &dev_attr_dev);
3624 if (error)
3625 goto DevAttrError;
3626
3627 error = device_create_sys_dev_entry(dev);
3628 if (error)
3629 goto SysEntryError;
3630
3631 devtmpfs_create_node(dev);
3632 }
3633
3634 /* Notify clients of device addition. This call must come
3635 * after dpm_sysfs_add() and before kobject_uevent().
3636 */
3637 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3638 kobject_uevent(&dev->kobj, KOBJ_ADD);
3639
3640 /*
3641 * Check if any of the other devices (consumers) have been waiting for
3642 * this device (supplier) to be added so that they can create a device
3643 * link to it.
3644 *
3645 * This needs to happen after device_pm_add() because device_link_add()
3646 * requires the supplier be registered before it's called.
3647 *
3648 * But this also needs to happen before bus_probe_device() to make sure
3649 * waiting consumers can link to it before the driver is bound to the
3650 * device and the driver sync_state callback is called for this device.
3651 */
3652 if (dev->fwnode && !dev->fwnode->dev) {
3653 dev->fwnode->dev = dev;
3654 fw_devlink_link_device(dev);
3655 }
3656
3657 bus_probe_device(dev);
3658
3659 /*
3660 * If all driver registration is done and a newly added device doesn't
3661 * match with any driver, don't block its consumers from probing in
3662 * case the consumer device is able to operate without this supplier.
3663 */
3664 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3665 fw_devlink_unblock_consumers(dev);
3666
3667 if (parent)
3668 klist_add_tail(&dev->p->knode_parent,
3669 &parent->p->klist_children);
3670
3671 sp = class_to_subsys(dev->class);
3672 if (sp) {
3673 mutex_lock(&sp->mutex);
3674 /* tie the class to the device */
3675 klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3676
3677 /* notify any interfaces that the device is here */
3678 list_for_each_entry(class_intf, &sp->interfaces, node)
3679 if (class_intf->add_dev)
3680 class_intf->add_dev(dev);
3681 mutex_unlock(&sp->mutex);
3682 subsys_put(sp);
3683 }
3684 done:
3685 put_device(dev);
3686 return error;
3687 SysEntryError:
3688 if (MAJOR(dev->devt))
3689 device_remove_file(dev, &dev_attr_dev);
3690 DevAttrError:
3691 device_pm_remove(dev);
3692 dpm_sysfs_remove(dev);
3693 DPMError:
3694 dev->driver = NULL;
3695 bus_remove_device(dev);
3696 BusError:
3697 device_remove_attrs(dev);
3698 AttrsError:
3699 device_remove_class_symlinks(dev);
3700 SymlinkError:
3701 device_remove_file(dev, &dev_attr_uevent);
3702 attrError:
3703 device_platform_notify_remove(dev);
3704 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3705 glue_dir = get_glue_dir(dev);
3706 kobject_del(&dev->kobj);
3707 Error:
3708 cleanup_glue_dir(dev, glue_dir);
3709 parent_error:
3710 put_device(parent);
3711 name_error:
3712 kfree(dev->p);
3713 dev->p = NULL;
3714 goto done;
3715 }
3716 EXPORT_SYMBOL_GPL(device_add);
3717
3718 /**
3719 * device_register - register a device with the system.
3720 * @dev: pointer to the device structure
3721 *
3722 * This happens in two clean steps - initialize the device
3723 * and add it to the system. The two steps can be called
3724 * separately, but this is the easiest and most common.
3725 * I.e. you should only call the two helpers separately if
3726 * have a clearly defined need to use and refcount the device
3727 * before it is added to the hierarchy.
3728 *
3729 * For more information, see the kerneldoc for device_initialize()
3730 * and device_add().
3731 *
3732 * NOTE: _Never_ directly free @dev after calling this function, even
3733 * if it returned an error! Always use put_device() to give up the
3734 * reference initialized in this function instead.
3735 */
device_register(struct device * dev)3736 int device_register(struct device *dev)
3737 {
3738 device_initialize(dev);
3739 return device_add(dev);
3740 }
3741 EXPORT_SYMBOL_GPL(device_register);
3742
3743 /**
3744 * get_device - increment reference count for device.
3745 * @dev: device.
3746 *
3747 * This simply forwards the call to kobject_get(), though
3748 * we do take care to provide for the case that we get a NULL
3749 * pointer passed in.
3750 */
get_device(struct device * dev)3751 struct device *get_device(struct device *dev)
3752 {
3753 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3754 }
3755 EXPORT_SYMBOL_GPL(get_device);
3756
3757 /**
3758 * put_device - decrement reference count.
3759 * @dev: device in question.
3760 */
put_device(struct device * dev)3761 void put_device(struct device *dev)
3762 {
3763 /* might_sleep(); */
3764 if (dev)
3765 kobject_put(&dev->kobj);
3766 }
3767 EXPORT_SYMBOL_GPL(put_device);
3768
kill_device(struct device * dev)3769 bool kill_device(struct device *dev)
3770 {
3771 /*
3772 * Require the device lock and set the "dead" flag to guarantee that
3773 * the update behavior is consistent with the other bitfields near
3774 * it and that we cannot have an asynchronous probe routine trying
3775 * to run while we are tearing out the bus/class/sysfs from
3776 * underneath the device.
3777 */
3778 device_lock_assert(dev);
3779
3780 if (dev->p->dead)
3781 return false;
3782 dev->p->dead = true;
3783 return true;
3784 }
3785 EXPORT_SYMBOL_GPL(kill_device);
3786
3787 /**
3788 * device_del - delete device from system.
3789 * @dev: device.
3790 *
3791 * This is the first part of the device unregistration
3792 * sequence. This removes the device from the lists we control
3793 * from here, has it removed from the other driver model
3794 * subsystems it was added to in device_add(), and removes it
3795 * from the kobject hierarchy.
3796 *
3797 * NOTE: this should be called manually _iff_ device_add() was
3798 * also called manually.
3799 */
device_del(struct device * dev)3800 void device_del(struct device *dev)
3801 {
3802 struct subsys_private *sp;
3803 struct device *parent = dev->parent;
3804 struct kobject *glue_dir = NULL;
3805 struct class_interface *class_intf;
3806 unsigned int noio_flag;
3807
3808 device_lock(dev);
3809 kill_device(dev);
3810 device_unlock(dev);
3811
3812 if (dev->fwnode && dev->fwnode->dev == dev)
3813 dev->fwnode->dev = NULL;
3814
3815 /* Notify clients of device removal. This call must come
3816 * before dpm_sysfs_remove().
3817 */
3818 noio_flag = memalloc_noio_save();
3819 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3820
3821 dpm_sysfs_remove(dev);
3822 if (parent)
3823 klist_del(&dev->p->knode_parent);
3824 if (MAJOR(dev->devt)) {
3825 devtmpfs_delete_node(dev);
3826 device_remove_sys_dev_entry(dev);
3827 device_remove_file(dev, &dev_attr_dev);
3828 }
3829
3830 sp = class_to_subsys(dev->class);
3831 if (sp) {
3832 device_remove_class_symlinks(dev);
3833
3834 mutex_lock(&sp->mutex);
3835 /* notify any interfaces that the device is now gone */
3836 list_for_each_entry(class_intf, &sp->interfaces, node)
3837 if (class_intf->remove_dev)
3838 class_intf->remove_dev(dev);
3839 /* remove the device from the class list */
3840 klist_del(&dev->p->knode_class);
3841 mutex_unlock(&sp->mutex);
3842 subsys_put(sp);
3843 }
3844 device_remove_file(dev, &dev_attr_uevent);
3845 device_remove_attrs(dev);
3846 bus_remove_device(dev);
3847 device_pm_remove(dev);
3848 driver_deferred_probe_del(dev);
3849 device_platform_notify_remove(dev);
3850 device_links_purge(dev);
3851
3852 /*
3853 * If a device does not have a driver attached, we need to clean
3854 * up any managed resources. We do this in device_release(), but
3855 * it's never called (and we leak the device) if a managed
3856 * resource holds a reference to the device. So release all
3857 * managed resources here, like we do in driver_detach(). We
3858 * still need to do so again in device_release() in case someone
3859 * adds a new resource after this point, though.
3860 */
3861 devres_release_all(dev);
3862
3863 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3864 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3865 glue_dir = get_glue_dir(dev);
3866 kobject_del(&dev->kobj);
3867 cleanup_glue_dir(dev, glue_dir);
3868 memalloc_noio_restore(noio_flag);
3869 put_device(parent);
3870 }
3871 EXPORT_SYMBOL_GPL(device_del);
3872
3873 /**
3874 * device_unregister - unregister device from system.
3875 * @dev: device going away.
3876 *
3877 * We do this in two parts, like we do device_register(). First,
3878 * we remove it from all the subsystems with device_del(), then
3879 * we decrement the reference count via put_device(). If that
3880 * is the final reference count, the device will be cleaned up
3881 * via device_release() above. Otherwise, the structure will
3882 * stick around until the final reference to the device is dropped.
3883 */
device_unregister(struct device * dev)3884 void device_unregister(struct device *dev)
3885 {
3886 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3887 device_del(dev);
3888 put_device(dev);
3889 }
3890 EXPORT_SYMBOL_GPL(device_unregister);
3891
prev_device(struct klist_iter * i)3892 static struct device *prev_device(struct klist_iter *i)
3893 {
3894 struct klist_node *n = klist_prev(i);
3895 struct device *dev = NULL;
3896 struct device_private *p;
3897
3898 if (n) {
3899 p = to_device_private_parent(n);
3900 dev = p->device;
3901 }
3902 return dev;
3903 }
3904
next_device(struct klist_iter * i)3905 static struct device *next_device(struct klist_iter *i)
3906 {
3907 struct klist_node *n = klist_next(i);
3908 struct device *dev = NULL;
3909 struct device_private *p;
3910
3911 if (n) {
3912 p = to_device_private_parent(n);
3913 dev = p->device;
3914 }
3915 return dev;
3916 }
3917
3918 /**
3919 * device_get_devnode - path of device node file
3920 * @dev: device
3921 * @mode: returned file access mode
3922 * @uid: returned file owner
3923 * @gid: returned file group
3924 * @tmp: possibly allocated string
3925 *
3926 * Return the relative path of a possible device node.
3927 * Non-default names may need to allocate a memory to compose
3928 * a name. This memory is returned in tmp and needs to be
3929 * freed by the caller.
3930 */
device_get_devnode(const struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3931 const char *device_get_devnode(const struct device *dev,
3932 umode_t *mode, kuid_t *uid, kgid_t *gid,
3933 const char **tmp)
3934 {
3935 char *s;
3936
3937 *tmp = NULL;
3938
3939 /* the device type may provide a specific name */
3940 if (dev->type && dev->type->devnode)
3941 *tmp = dev->type->devnode(dev, mode, uid, gid);
3942 if (*tmp)
3943 return *tmp;
3944
3945 /* the class may provide a specific name */
3946 if (dev->class && dev->class->devnode)
3947 *tmp = dev->class->devnode(dev, mode);
3948 if (*tmp)
3949 return *tmp;
3950
3951 /* return name without allocation, tmp == NULL */
3952 if (strchr(dev_name(dev), '!') == NULL)
3953 return dev_name(dev);
3954
3955 /* replace '!' in the name with '/' */
3956 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3957 if (!s)
3958 return NULL;
3959 return *tmp = s;
3960 }
3961
3962 /**
3963 * device_for_each_child - device child iterator.
3964 * @parent: parent struct device.
3965 * @fn: function to be called for each device.
3966 * @data: data for the callback.
3967 *
3968 * Iterate over @parent's child devices, and call @fn for each,
3969 * passing it @data.
3970 *
3971 * We check the return of @fn each time. If it returns anything
3972 * other than 0, we break out and return that value.
3973 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3974 int device_for_each_child(struct device *parent, void *data,
3975 int (*fn)(struct device *dev, void *data))
3976 {
3977 struct klist_iter i;
3978 struct device *child;
3979 int error = 0;
3980
3981 if (!parent->p)
3982 return 0;
3983
3984 klist_iter_init(&parent->p->klist_children, &i);
3985 while (!error && (child = next_device(&i)))
3986 error = fn(child, data);
3987 klist_iter_exit(&i);
3988 return error;
3989 }
3990 EXPORT_SYMBOL_GPL(device_for_each_child);
3991
3992 /**
3993 * device_for_each_child_reverse - device child iterator in reversed order.
3994 * @parent: parent struct device.
3995 * @fn: function to be called for each device.
3996 * @data: data for the callback.
3997 *
3998 * Iterate over @parent's child devices, and call @fn for each,
3999 * passing it @data.
4000 *
4001 * We check the return of @fn each time. If it returns anything
4002 * other than 0, we break out and return that value.
4003 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))4004 int device_for_each_child_reverse(struct device *parent, void *data,
4005 int (*fn)(struct device *dev, void *data))
4006 {
4007 struct klist_iter i;
4008 struct device *child;
4009 int error = 0;
4010
4011 if (!parent->p)
4012 return 0;
4013
4014 klist_iter_init(&parent->p->klist_children, &i);
4015 while ((child = prev_device(&i)) && !error)
4016 error = fn(child, data);
4017 klist_iter_exit(&i);
4018 return error;
4019 }
4020 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4021
4022 /**
4023 * device_for_each_child_reverse_from - device child iterator in reversed order.
4024 * @parent: parent struct device.
4025 * @from: optional starting point in child list
4026 * @fn: function to be called for each device.
4027 * @data: data for the callback.
4028 *
4029 * Iterate over @parent's child devices, starting at @from, and call @fn
4030 * for each, passing it @data. This helper is identical to
4031 * device_for_each_child_reverse() when @from is NULL.
4032 *
4033 * @fn is checked each iteration. If it returns anything other than 0,
4034 * iteration stop and that value is returned to the caller of
4035 * device_for_each_child_reverse_from();
4036 */
device_for_each_child_reverse_from(struct device * parent,struct device * from,const void * data,int (* fn)(struct device *,const void *))4037 int device_for_each_child_reverse_from(struct device *parent,
4038 struct device *from, const void *data,
4039 int (*fn)(struct device *, const void *))
4040 {
4041 struct klist_iter i;
4042 struct device *child;
4043 int error = 0;
4044
4045 if (!parent->p)
4046 return 0;
4047
4048 klist_iter_init_node(&parent->p->klist_children, &i,
4049 (from ? &from->p->knode_parent : NULL));
4050 while ((child = prev_device(&i)) && !error)
4051 error = fn(child, data);
4052 klist_iter_exit(&i);
4053 return error;
4054 }
4055 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4056
4057 /**
4058 * device_find_child - device iterator for locating a particular device.
4059 * @parent: parent struct device
4060 * @match: Callback function to check device
4061 * @data: Data to pass to match function
4062 *
4063 * This is similar to the device_for_each_child() function above, but it
4064 * returns a reference to a device that is 'found' for later use, as
4065 * determined by the @match callback.
4066 *
4067 * The callback should return 0 if the device doesn't match and non-zero
4068 * if it does. If the callback returns non-zero and a reference to the
4069 * current device can be obtained, this function will return to the caller
4070 * and not iterate over any more devices.
4071 *
4072 * NOTE: you will need to drop the reference with put_device() after use.
4073 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))4074 struct device *device_find_child(struct device *parent, void *data,
4075 int (*match)(struct device *dev, void *data))
4076 {
4077 struct klist_iter i;
4078 struct device *child;
4079
4080 if (!parent)
4081 return NULL;
4082
4083 klist_iter_init(&parent->p->klist_children, &i);
4084 while ((child = next_device(&i)))
4085 if (match(child, data) && get_device(child))
4086 break;
4087 klist_iter_exit(&i);
4088 return child;
4089 }
4090 EXPORT_SYMBOL_GPL(device_find_child);
4091
4092 /**
4093 * device_find_child_by_name - device iterator for locating a child device.
4094 * @parent: parent struct device
4095 * @name: name of the child device
4096 *
4097 * This is similar to the device_find_child() function above, but it
4098 * returns a reference to a device that has the name @name.
4099 *
4100 * NOTE: you will need to drop the reference with put_device() after use.
4101 */
device_find_child_by_name(struct device * parent,const char * name)4102 struct device *device_find_child_by_name(struct device *parent,
4103 const char *name)
4104 {
4105 struct klist_iter i;
4106 struct device *child;
4107
4108 if (!parent)
4109 return NULL;
4110
4111 klist_iter_init(&parent->p->klist_children, &i);
4112 while ((child = next_device(&i)))
4113 if (sysfs_streq(dev_name(child), name) && get_device(child))
4114 break;
4115 klist_iter_exit(&i);
4116 return child;
4117 }
4118 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4119
match_any(struct device * dev,void * unused)4120 static int match_any(struct device *dev, void *unused)
4121 {
4122 return 1;
4123 }
4124
4125 /**
4126 * device_find_any_child - device iterator for locating a child device, if any.
4127 * @parent: parent struct device
4128 *
4129 * This is similar to the device_find_child() function above, but it
4130 * returns a reference to a child device, if any.
4131 *
4132 * NOTE: you will need to drop the reference with put_device() after use.
4133 */
device_find_any_child(struct device * parent)4134 struct device *device_find_any_child(struct device *parent)
4135 {
4136 return device_find_child(parent, NULL, match_any);
4137 }
4138 EXPORT_SYMBOL_GPL(device_find_any_child);
4139
devices_init(void)4140 int __init devices_init(void)
4141 {
4142 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4143 if (!devices_kset)
4144 return -ENOMEM;
4145 dev_kobj = kobject_create_and_add("dev", NULL);
4146 if (!dev_kobj)
4147 goto dev_kobj_err;
4148 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4149 if (!sysfs_dev_block_kobj)
4150 goto block_kobj_err;
4151 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4152 if (!sysfs_dev_char_kobj)
4153 goto char_kobj_err;
4154 device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4155 if (!device_link_wq)
4156 goto wq_err;
4157
4158 return 0;
4159
4160 wq_err:
4161 kobject_put(sysfs_dev_char_kobj);
4162 char_kobj_err:
4163 kobject_put(sysfs_dev_block_kobj);
4164 block_kobj_err:
4165 kobject_put(dev_kobj);
4166 dev_kobj_err:
4167 kset_unregister(devices_kset);
4168 return -ENOMEM;
4169 }
4170
device_check_offline(struct device * dev,void * not_used)4171 static int device_check_offline(struct device *dev, void *not_used)
4172 {
4173 int ret;
4174
4175 ret = device_for_each_child(dev, NULL, device_check_offline);
4176 if (ret)
4177 return ret;
4178
4179 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4180 }
4181
4182 /**
4183 * device_offline - Prepare the device for hot-removal.
4184 * @dev: Device to be put offline.
4185 *
4186 * Execute the device bus type's .offline() callback, if present, to prepare
4187 * the device for a subsequent hot-removal. If that succeeds, the device must
4188 * not be used until either it is removed or its bus type's .online() callback
4189 * is executed.
4190 *
4191 * Call under device_hotplug_lock.
4192 */
device_offline(struct device * dev)4193 int device_offline(struct device *dev)
4194 {
4195 int ret;
4196
4197 if (dev->offline_disabled)
4198 return -EPERM;
4199
4200 ret = device_for_each_child(dev, NULL, device_check_offline);
4201 if (ret)
4202 return ret;
4203
4204 device_lock(dev);
4205 if (device_supports_offline(dev)) {
4206 if (dev->offline) {
4207 ret = 1;
4208 } else {
4209 ret = dev->bus->offline(dev);
4210 if (!ret) {
4211 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4212 dev->offline = true;
4213 }
4214 }
4215 }
4216 device_unlock(dev);
4217
4218 return ret;
4219 }
4220
4221 /**
4222 * device_online - Put the device back online after successful device_offline().
4223 * @dev: Device to be put back online.
4224 *
4225 * If device_offline() has been successfully executed for @dev, but the device
4226 * has not been removed subsequently, execute its bus type's .online() callback
4227 * to indicate that the device can be used again.
4228 *
4229 * Call under device_hotplug_lock.
4230 */
device_online(struct device * dev)4231 int device_online(struct device *dev)
4232 {
4233 int ret = 0;
4234
4235 device_lock(dev);
4236 if (device_supports_offline(dev)) {
4237 if (dev->offline) {
4238 ret = dev->bus->online(dev);
4239 if (!ret) {
4240 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4241 dev->offline = false;
4242 }
4243 } else {
4244 ret = 1;
4245 }
4246 }
4247 device_unlock(dev);
4248
4249 return ret;
4250 }
4251
4252 struct root_device {
4253 struct device dev;
4254 struct module *owner;
4255 };
4256
to_root_device(struct device * d)4257 static inline struct root_device *to_root_device(struct device *d)
4258 {
4259 return container_of(d, struct root_device, dev);
4260 }
4261
root_device_release(struct device * dev)4262 static void root_device_release(struct device *dev)
4263 {
4264 kfree(to_root_device(dev));
4265 }
4266
4267 /**
4268 * __root_device_register - allocate and register a root device
4269 * @name: root device name
4270 * @owner: owner module of the root device, usually THIS_MODULE
4271 *
4272 * This function allocates a root device and registers it
4273 * using device_register(). In order to free the returned
4274 * device, use root_device_unregister().
4275 *
4276 * Root devices are dummy devices which allow other devices
4277 * to be grouped under /sys/devices. Use this function to
4278 * allocate a root device and then use it as the parent of
4279 * any device which should appear under /sys/devices/{name}
4280 *
4281 * The /sys/devices/{name} directory will also contain a
4282 * 'module' symlink which points to the @owner directory
4283 * in sysfs.
4284 *
4285 * Returns &struct device pointer on success, or ERR_PTR() on error.
4286 *
4287 * Note: You probably want to use root_device_register().
4288 */
__root_device_register(const char * name,struct module * owner)4289 struct device *__root_device_register(const char *name, struct module *owner)
4290 {
4291 struct root_device *root;
4292 int err = -ENOMEM;
4293
4294 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4295 if (!root)
4296 return ERR_PTR(err);
4297
4298 err = dev_set_name(&root->dev, "%s", name);
4299 if (err) {
4300 kfree(root);
4301 return ERR_PTR(err);
4302 }
4303
4304 root->dev.release = root_device_release;
4305
4306 err = device_register(&root->dev);
4307 if (err) {
4308 put_device(&root->dev);
4309 return ERR_PTR(err);
4310 }
4311
4312 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4313 if (owner) {
4314 struct module_kobject *mk = &owner->mkobj;
4315
4316 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4317 if (err) {
4318 device_unregister(&root->dev);
4319 return ERR_PTR(err);
4320 }
4321 root->owner = owner;
4322 }
4323 #endif
4324
4325 return &root->dev;
4326 }
4327 EXPORT_SYMBOL_GPL(__root_device_register);
4328
4329 /**
4330 * root_device_unregister - unregister and free a root device
4331 * @dev: device going away
4332 *
4333 * This function unregisters and cleans up a device that was created by
4334 * root_device_register().
4335 */
root_device_unregister(struct device * dev)4336 void root_device_unregister(struct device *dev)
4337 {
4338 struct root_device *root = to_root_device(dev);
4339
4340 if (root->owner)
4341 sysfs_remove_link(&root->dev.kobj, "module");
4342
4343 device_unregister(dev);
4344 }
4345 EXPORT_SYMBOL_GPL(root_device_unregister);
4346
4347
device_create_release(struct device * dev)4348 static void device_create_release(struct device *dev)
4349 {
4350 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4351 kfree(dev);
4352 }
4353
4354 static __printf(6, 0) struct device *
device_create_groups_vargs(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4355 device_create_groups_vargs(const struct class *class, struct device *parent,
4356 dev_t devt, void *drvdata,
4357 const struct attribute_group **groups,
4358 const char *fmt, va_list args)
4359 {
4360 struct device *dev = NULL;
4361 int retval = -ENODEV;
4362
4363 if (IS_ERR_OR_NULL(class))
4364 goto error;
4365
4366 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4367 if (!dev) {
4368 retval = -ENOMEM;
4369 goto error;
4370 }
4371
4372 device_initialize(dev);
4373 dev->devt = devt;
4374 dev->class = class;
4375 dev->parent = parent;
4376 dev->groups = groups;
4377 dev->release = device_create_release;
4378 dev_set_drvdata(dev, drvdata);
4379
4380 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4381 if (retval)
4382 goto error;
4383
4384 retval = device_add(dev);
4385 if (retval)
4386 goto error;
4387
4388 return dev;
4389
4390 error:
4391 put_device(dev);
4392 return ERR_PTR(retval);
4393 }
4394
4395 /**
4396 * device_create - creates a device and registers it with sysfs
4397 * @class: pointer to the struct class that this device should be registered to
4398 * @parent: pointer to the parent struct device of this new device, if any
4399 * @devt: the dev_t for the char device to be added
4400 * @drvdata: the data to be added to the device for callbacks
4401 * @fmt: string for the device's name
4402 *
4403 * This function can be used by char device classes. A struct device
4404 * will be created in sysfs, registered to the specified class.
4405 *
4406 * A "dev" file will be created, showing the dev_t for the device, if
4407 * the dev_t is not 0,0.
4408 * If a pointer to a parent struct device is passed in, the newly created
4409 * struct device will be a child of that device in sysfs.
4410 * The pointer to the struct device will be returned from the call.
4411 * Any further sysfs files that might be required can be created using this
4412 * pointer.
4413 *
4414 * Returns &struct device pointer on success, or ERR_PTR() on error.
4415 */
device_create(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4416 struct device *device_create(const struct class *class, struct device *parent,
4417 dev_t devt, void *drvdata, const char *fmt, ...)
4418 {
4419 va_list vargs;
4420 struct device *dev;
4421
4422 va_start(vargs, fmt);
4423 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4424 fmt, vargs);
4425 va_end(vargs);
4426 return dev;
4427 }
4428 EXPORT_SYMBOL_GPL(device_create);
4429
4430 /**
4431 * device_create_with_groups - creates a device and registers it with sysfs
4432 * @class: pointer to the struct class that this device should be registered to
4433 * @parent: pointer to the parent struct device of this new device, if any
4434 * @devt: the dev_t for the char device to be added
4435 * @drvdata: the data to be added to the device for callbacks
4436 * @groups: NULL-terminated list of attribute groups to be created
4437 * @fmt: string for the device's name
4438 *
4439 * This function can be used by char device classes. A struct device
4440 * will be created in sysfs, registered to the specified class.
4441 * Additional attributes specified in the groups parameter will also
4442 * be created automatically.
4443 *
4444 * A "dev" file will be created, showing the dev_t for the device, if
4445 * the dev_t is not 0,0.
4446 * If a pointer to a parent struct device is passed in, the newly created
4447 * struct device will be a child of that device in sysfs.
4448 * The pointer to the struct device will be returned from the call.
4449 * Any further sysfs files that might be required can be created using this
4450 * pointer.
4451 *
4452 * Returns &struct device pointer on success, or ERR_PTR() on error.
4453 */
device_create_with_groups(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4454 struct device *device_create_with_groups(const struct class *class,
4455 struct device *parent, dev_t devt,
4456 void *drvdata,
4457 const struct attribute_group **groups,
4458 const char *fmt, ...)
4459 {
4460 va_list vargs;
4461 struct device *dev;
4462
4463 va_start(vargs, fmt);
4464 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4465 fmt, vargs);
4466 va_end(vargs);
4467 return dev;
4468 }
4469 EXPORT_SYMBOL_GPL(device_create_with_groups);
4470
4471 /**
4472 * device_destroy - removes a device that was created with device_create()
4473 * @class: pointer to the struct class that this device was registered with
4474 * @devt: the dev_t of the device that was previously registered
4475 *
4476 * This call unregisters and cleans up a device that was created with a
4477 * call to device_create().
4478 */
device_destroy(const struct class * class,dev_t devt)4479 void device_destroy(const struct class *class, dev_t devt)
4480 {
4481 struct device *dev;
4482
4483 dev = class_find_device_by_devt(class, devt);
4484 if (dev) {
4485 put_device(dev);
4486 device_unregister(dev);
4487 }
4488 }
4489 EXPORT_SYMBOL_GPL(device_destroy);
4490
4491 /**
4492 * device_rename - renames a device
4493 * @dev: the pointer to the struct device to be renamed
4494 * @new_name: the new name of the device
4495 *
4496 * It is the responsibility of the caller to provide mutual
4497 * exclusion between two different calls of device_rename
4498 * on the same device to ensure that new_name is valid and
4499 * won't conflict with other devices.
4500 *
4501 * Note: given that some subsystems (networking and infiniband) use this
4502 * function, with no immediate plans for this to change, we cannot assume or
4503 * require that this function not be called at all.
4504 *
4505 * However, if you're writing new code, do not call this function. The following
4506 * text from Kay Sievers offers some insight:
4507 *
4508 * Renaming devices is racy at many levels, symlinks and other stuff are not
4509 * replaced atomically, and you get a "move" uevent, but it's not easy to
4510 * connect the event to the old and new device. Device nodes are not renamed at
4511 * all, there isn't even support for that in the kernel now.
4512 *
4513 * In the meantime, during renaming, your target name might be taken by another
4514 * driver, creating conflicts. Or the old name is taken directly after you
4515 * renamed it -- then you get events for the same DEVPATH, before you even see
4516 * the "move" event. It's just a mess, and nothing new should ever rely on
4517 * kernel device renaming. Besides that, it's not even implemented now for
4518 * other things than (driver-core wise very simple) network devices.
4519 *
4520 * Make up a "real" name in the driver before you register anything, or add
4521 * some other attributes for userspace to find the device, or use udev to add
4522 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4523 * don't even want to get into that and try to implement the missing pieces in
4524 * the core. We really have other pieces to fix in the driver core mess. :)
4525 */
device_rename(struct device * dev,const char * new_name)4526 int device_rename(struct device *dev, const char *new_name)
4527 {
4528 struct subsys_private *sp = NULL;
4529 struct kobject *kobj = &dev->kobj;
4530 char *old_device_name = NULL;
4531 int error;
4532 bool is_link_renamed = false;
4533
4534 dev = get_device(dev);
4535 if (!dev)
4536 return -EINVAL;
4537
4538 dev_dbg(dev, "renaming to %s\n", new_name);
4539
4540 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4541 if (!old_device_name) {
4542 error = -ENOMEM;
4543 goto out;
4544 }
4545
4546 if (dev->class) {
4547 sp = class_to_subsys(dev->class);
4548
4549 if (!sp) {
4550 error = -EINVAL;
4551 goto out;
4552 }
4553
4554 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4555 new_name, kobject_namespace(kobj));
4556 if (error)
4557 goto out;
4558
4559 is_link_renamed = true;
4560 }
4561
4562 error = kobject_rename(kobj, new_name);
4563 out:
4564 if (error && is_link_renamed)
4565 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4566 old_device_name, kobject_namespace(kobj));
4567 subsys_put(sp);
4568
4569 put_device(dev);
4570
4571 kfree(old_device_name);
4572
4573 return error;
4574 }
4575 EXPORT_SYMBOL_GPL(device_rename);
4576
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4577 static int device_move_class_links(struct device *dev,
4578 struct device *old_parent,
4579 struct device *new_parent)
4580 {
4581 int error = 0;
4582
4583 if (old_parent)
4584 sysfs_remove_link(&dev->kobj, "device");
4585 if (new_parent)
4586 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4587 "device");
4588 return error;
4589 }
4590
4591 /**
4592 * device_move - moves a device to a new parent
4593 * @dev: the pointer to the struct device to be moved
4594 * @new_parent: the new parent of the device (can be NULL)
4595 * @dpm_order: how to reorder the dpm_list
4596 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4597 int device_move(struct device *dev, struct device *new_parent,
4598 enum dpm_order dpm_order)
4599 {
4600 int error;
4601 struct device *old_parent;
4602 struct kobject *new_parent_kobj;
4603
4604 dev = get_device(dev);
4605 if (!dev)
4606 return -EINVAL;
4607
4608 device_pm_lock();
4609 new_parent = get_device(new_parent);
4610 new_parent_kobj = get_device_parent(dev, new_parent);
4611 if (IS_ERR(new_parent_kobj)) {
4612 error = PTR_ERR(new_parent_kobj);
4613 put_device(new_parent);
4614 goto out;
4615 }
4616
4617 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4618 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4619 error = kobject_move(&dev->kobj, new_parent_kobj);
4620 if (error) {
4621 cleanup_glue_dir(dev, new_parent_kobj);
4622 put_device(new_parent);
4623 goto out;
4624 }
4625 old_parent = dev->parent;
4626 dev->parent = new_parent;
4627 if (old_parent)
4628 klist_remove(&dev->p->knode_parent);
4629 if (new_parent) {
4630 klist_add_tail(&dev->p->knode_parent,
4631 &new_parent->p->klist_children);
4632 set_dev_node(dev, dev_to_node(new_parent));
4633 }
4634
4635 if (dev->class) {
4636 error = device_move_class_links(dev, old_parent, new_parent);
4637 if (error) {
4638 /* We ignore errors on cleanup since we're hosed anyway... */
4639 device_move_class_links(dev, new_parent, old_parent);
4640 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4641 if (new_parent)
4642 klist_remove(&dev->p->knode_parent);
4643 dev->parent = old_parent;
4644 if (old_parent) {
4645 klist_add_tail(&dev->p->knode_parent,
4646 &old_parent->p->klist_children);
4647 set_dev_node(dev, dev_to_node(old_parent));
4648 }
4649 }
4650 cleanup_glue_dir(dev, new_parent_kobj);
4651 put_device(new_parent);
4652 goto out;
4653 }
4654 }
4655 switch (dpm_order) {
4656 case DPM_ORDER_NONE:
4657 break;
4658 case DPM_ORDER_DEV_AFTER_PARENT:
4659 device_pm_move_after(dev, new_parent);
4660 devices_kset_move_after(dev, new_parent);
4661 break;
4662 case DPM_ORDER_PARENT_BEFORE_DEV:
4663 device_pm_move_before(new_parent, dev);
4664 devices_kset_move_before(new_parent, dev);
4665 break;
4666 case DPM_ORDER_DEV_LAST:
4667 device_pm_move_last(dev);
4668 devices_kset_move_last(dev);
4669 break;
4670 }
4671
4672 put_device(old_parent);
4673 out:
4674 device_pm_unlock();
4675 put_device(dev);
4676 return error;
4677 }
4678 EXPORT_SYMBOL_GPL(device_move);
4679
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4680 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4681 kgid_t kgid)
4682 {
4683 struct kobject *kobj = &dev->kobj;
4684 const struct class *class = dev->class;
4685 const struct device_type *type = dev->type;
4686 int error;
4687
4688 if (class) {
4689 /*
4690 * Change the device groups of the device class for @dev to
4691 * @kuid/@kgid.
4692 */
4693 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4694 kgid);
4695 if (error)
4696 return error;
4697 }
4698
4699 if (type) {
4700 /*
4701 * Change the device groups of the device type for @dev to
4702 * @kuid/@kgid.
4703 */
4704 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4705 kgid);
4706 if (error)
4707 return error;
4708 }
4709
4710 /* Change the device groups of @dev to @kuid/@kgid. */
4711 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4712 if (error)
4713 return error;
4714
4715 if (device_supports_offline(dev) && !dev->offline_disabled) {
4716 /* Change online device attributes of @dev to @kuid/@kgid. */
4717 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4718 kuid, kgid);
4719 if (error)
4720 return error;
4721 }
4722
4723 return 0;
4724 }
4725
4726 /**
4727 * device_change_owner - change the owner of an existing device.
4728 * @dev: device.
4729 * @kuid: new owner's kuid
4730 * @kgid: new owner's kgid
4731 *
4732 * This changes the owner of @dev and its corresponding sysfs entries to
4733 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4734 * core.
4735 *
4736 * Returns 0 on success or error code on failure.
4737 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4738 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4739 {
4740 int error;
4741 struct kobject *kobj = &dev->kobj;
4742 struct subsys_private *sp;
4743
4744 dev = get_device(dev);
4745 if (!dev)
4746 return -EINVAL;
4747
4748 /*
4749 * Change the kobject and the default attributes and groups of the
4750 * ktype associated with it to @kuid/@kgid.
4751 */
4752 error = sysfs_change_owner(kobj, kuid, kgid);
4753 if (error)
4754 goto out;
4755
4756 /*
4757 * Change the uevent file for @dev to the new owner. The uevent file
4758 * was created in a separate step when @dev got added and we mirror
4759 * that step here.
4760 */
4761 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4762 kgid);
4763 if (error)
4764 goto out;
4765
4766 /*
4767 * Change the device groups, the device groups associated with the
4768 * device class, and the groups associated with the device type of @dev
4769 * to @kuid/@kgid.
4770 */
4771 error = device_attrs_change_owner(dev, kuid, kgid);
4772 if (error)
4773 goto out;
4774
4775 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4776 if (error)
4777 goto out;
4778
4779 /*
4780 * Change the owner of the symlink located in the class directory of
4781 * the device class associated with @dev which points to the actual
4782 * directory entry for @dev to @kuid/@kgid. This ensures that the
4783 * symlink shows the same permissions as its target.
4784 */
4785 sp = class_to_subsys(dev->class);
4786 if (!sp) {
4787 error = -EINVAL;
4788 goto out;
4789 }
4790 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4791 subsys_put(sp);
4792
4793 out:
4794 put_device(dev);
4795 return error;
4796 }
4797 EXPORT_SYMBOL_GPL(device_change_owner);
4798
4799 /**
4800 * device_shutdown - call ->shutdown() on each device to shutdown.
4801 */
device_shutdown(void)4802 void device_shutdown(void)
4803 {
4804 struct device *dev, *parent;
4805
4806 wait_for_device_probe();
4807 device_block_probing();
4808
4809 cpufreq_suspend();
4810
4811 spin_lock(&devices_kset->list_lock);
4812 /*
4813 * Walk the devices list backward, shutting down each in turn.
4814 * Beware that device unplug events may also start pulling
4815 * devices offline, even as the system is shutting down.
4816 */
4817 while (!list_empty(&devices_kset->list)) {
4818 dev = list_entry(devices_kset->list.prev, struct device,
4819 kobj.entry);
4820
4821 /*
4822 * hold reference count of device's parent to
4823 * prevent it from being freed because parent's
4824 * lock is to be held
4825 */
4826 parent = get_device(dev->parent);
4827 get_device(dev);
4828 /*
4829 * Make sure the device is off the kset list, in the
4830 * event that dev->*->shutdown() doesn't remove it.
4831 */
4832 list_del_init(&dev->kobj.entry);
4833 spin_unlock(&devices_kset->list_lock);
4834
4835 /* hold lock to avoid race with probe/release */
4836 if (parent)
4837 device_lock(parent);
4838 device_lock(dev);
4839
4840 /* Don't allow any more runtime suspends */
4841 pm_runtime_get_noresume(dev);
4842 pm_runtime_barrier(dev);
4843
4844 if (dev->class && dev->class->shutdown_pre) {
4845 if (initcall_debug)
4846 dev_info(dev, "shutdown_pre\n");
4847 dev->class->shutdown_pre(dev);
4848 }
4849 if (dev->bus && dev->bus->shutdown) {
4850 if (initcall_debug)
4851 dev_info(dev, "shutdown\n");
4852 dev->bus->shutdown(dev);
4853 } else if (dev->driver && dev->driver->shutdown) {
4854 if (initcall_debug)
4855 dev_info(dev, "shutdown\n");
4856 dev->driver->shutdown(dev);
4857 }
4858
4859 device_unlock(dev);
4860 if (parent)
4861 device_unlock(parent);
4862
4863 put_device(dev);
4864 put_device(parent);
4865
4866 spin_lock(&devices_kset->list_lock);
4867 }
4868 spin_unlock(&devices_kset->list_lock);
4869 }
4870
4871 /*
4872 * Device logging functions
4873 */
4874
4875 #ifdef CONFIG_PRINTK
4876 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4877 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4878 {
4879 const char *subsys;
4880
4881 memset(dev_info, 0, sizeof(*dev_info));
4882
4883 if (dev->class)
4884 subsys = dev->class->name;
4885 else if (dev->bus)
4886 subsys = dev->bus->name;
4887 else
4888 return;
4889
4890 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4891
4892 /*
4893 * Add device identifier DEVICE=:
4894 * b12:8 block dev_t
4895 * c127:3 char dev_t
4896 * n8 netdev ifindex
4897 * +sound:card0 subsystem:devname
4898 */
4899 if (MAJOR(dev->devt)) {
4900 char c;
4901
4902 if (strcmp(subsys, "block") == 0)
4903 c = 'b';
4904 else
4905 c = 'c';
4906
4907 snprintf(dev_info->device, sizeof(dev_info->device),
4908 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4909 } else if (strcmp(subsys, "net") == 0) {
4910 struct net_device *net = to_net_dev(dev);
4911
4912 snprintf(dev_info->device, sizeof(dev_info->device),
4913 "n%u", net->ifindex);
4914 } else {
4915 snprintf(dev_info->device, sizeof(dev_info->device),
4916 "+%s:%s", subsys, dev_name(dev));
4917 }
4918 }
4919
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4920 int dev_vprintk_emit(int level, const struct device *dev,
4921 const char *fmt, va_list args)
4922 {
4923 struct dev_printk_info dev_info;
4924
4925 set_dev_info(dev, &dev_info);
4926
4927 return vprintk_emit(0, level, &dev_info, fmt, args);
4928 }
4929 EXPORT_SYMBOL(dev_vprintk_emit);
4930
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4931 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4932 {
4933 va_list args;
4934 int r;
4935
4936 va_start(args, fmt);
4937
4938 r = dev_vprintk_emit(level, dev, fmt, args);
4939
4940 va_end(args);
4941
4942 return r;
4943 }
4944 EXPORT_SYMBOL(dev_printk_emit);
4945
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4946 static void __dev_printk(const char *level, const struct device *dev,
4947 struct va_format *vaf)
4948 {
4949 if (dev)
4950 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4951 dev_driver_string(dev), dev_name(dev), vaf);
4952 else
4953 printk("%s(NULL device *): %pV", level, vaf);
4954 }
4955
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4956 void _dev_printk(const char *level, const struct device *dev,
4957 const char *fmt, ...)
4958 {
4959 struct va_format vaf;
4960 va_list args;
4961
4962 va_start(args, fmt);
4963
4964 vaf.fmt = fmt;
4965 vaf.va = &args;
4966
4967 __dev_printk(level, dev, &vaf);
4968
4969 va_end(args);
4970 }
4971 EXPORT_SYMBOL(_dev_printk);
4972
4973 #define define_dev_printk_level(func, kern_level) \
4974 void func(const struct device *dev, const char *fmt, ...) \
4975 { \
4976 struct va_format vaf; \
4977 va_list args; \
4978 \
4979 va_start(args, fmt); \
4980 \
4981 vaf.fmt = fmt; \
4982 vaf.va = &args; \
4983 \
4984 __dev_printk(kern_level, dev, &vaf); \
4985 \
4986 va_end(args); \
4987 } \
4988 EXPORT_SYMBOL(func);
4989
4990 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4991 define_dev_printk_level(_dev_alert, KERN_ALERT);
4992 define_dev_printk_level(_dev_crit, KERN_CRIT);
4993 define_dev_printk_level(_dev_err, KERN_ERR);
4994 define_dev_printk_level(_dev_warn, KERN_WARNING);
4995 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4996 define_dev_printk_level(_dev_info, KERN_INFO);
4997
4998 #endif
4999
5000 /**
5001 * dev_err_probe - probe error check and log helper
5002 * @dev: the pointer to the struct device
5003 * @err: error value to test
5004 * @fmt: printf-style format string
5005 * @...: arguments as specified in the format string
5006 *
5007 * This helper implements common pattern present in probe functions for error
5008 * checking: print debug or error message depending if the error value is
5009 * -EPROBE_DEFER and propagate error upwards.
5010 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5011 * checked later by reading devices_deferred debugfs attribute.
5012 * It replaces code sequence::
5013 *
5014 * if (err != -EPROBE_DEFER)
5015 * dev_err(dev, ...);
5016 * else
5017 * dev_dbg(dev, ...);
5018 * return err;
5019 *
5020 * with::
5021 *
5022 * return dev_err_probe(dev, err, ...);
5023 *
5024 * Note that it is deemed acceptable to use this function for error
5025 * prints during probe even if the @err is known to never be -EPROBE_DEFER.
5026 * The benefit compared to a normal dev_err() is the standardized format
5027 * of the error code and the fact that the error code is returned.
5028 *
5029 * Returns @err.
5030 *
5031 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)5032 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5033 {
5034 struct va_format vaf;
5035 va_list args;
5036
5037 va_start(args, fmt);
5038 vaf.fmt = fmt;
5039 vaf.va = &args;
5040
5041 if (err != -EPROBE_DEFER) {
5042 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5043 } else {
5044 device_set_deferred_probe_reason(dev, &vaf);
5045 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5046 }
5047
5048 va_end(args);
5049
5050 return err;
5051 }
5052 EXPORT_SYMBOL_GPL(dev_err_probe);
5053
fwnode_is_primary(struct fwnode_handle * fwnode)5054 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5055 {
5056 return fwnode && !IS_ERR(fwnode->secondary);
5057 }
5058
5059 /**
5060 * set_primary_fwnode - Change the primary firmware node of a given device.
5061 * @dev: Device to handle.
5062 * @fwnode: New primary firmware node of the device.
5063 *
5064 * Set the device's firmware node pointer to @fwnode, but if a secondary
5065 * firmware node of the device is present, preserve it.
5066 *
5067 * Valid fwnode cases are:
5068 * - primary --> secondary --> -ENODEV
5069 * - primary --> NULL
5070 * - secondary --> -ENODEV
5071 * - NULL
5072 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5073 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5074 {
5075 struct device *parent = dev->parent;
5076 struct fwnode_handle *fn = dev->fwnode;
5077
5078 if (fwnode) {
5079 if (fwnode_is_primary(fn))
5080 fn = fn->secondary;
5081
5082 if (fn) {
5083 WARN_ON(fwnode->secondary);
5084 fwnode->secondary = fn;
5085 }
5086 dev->fwnode = fwnode;
5087 } else {
5088 if (fwnode_is_primary(fn)) {
5089 dev->fwnode = fn->secondary;
5090
5091 /* Skip nullifying fn->secondary if the primary is shared */
5092 if (parent && fn == parent->fwnode)
5093 return;
5094
5095 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5096 fn->secondary = NULL;
5097 } else {
5098 dev->fwnode = NULL;
5099 }
5100 }
5101 }
5102 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5103
5104 /**
5105 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5106 * @dev: Device to handle.
5107 * @fwnode: New secondary firmware node of the device.
5108 *
5109 * If a primary firmware node of the device is present, set its secondary
5110 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5111 * @fwnode.
5112 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5113 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5114 {
5115 if (fwnode)
5116 fwnode->secondary = ERR_PTR(-ENODEV);
5117
5118 if (fwnode_is_primary(dev->fwnode))
5119 dev->fwnode->secondary = fwnode;
5120 else
5121 dev->fwnode = fwnode;
5122 }
5123 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5124
5125 /**
5126 * device_set_of_node_from_dev - reuse device-tree node of another device
5127 * @dev: device whose device-tree node is being set
5128 * @dev2: device whose device-tree node is being reused
5129 *
5130 * Takes another reference to the new device-tree node after first dropping
5131 * any reference held to the old node.
5132 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)5133 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5134 {
5135 of_node_put(dev->of_node);
5136 dev->of_node = of_node_get(dev2->of_node);
5137 dev->of_node_reused = true;
5138 }
5139 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5140
device_set_node(struct device * dev,struct fwnode_handle * fwnode)5141 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5142 {
5143 dev->fwnode = fwnode;
5144 dev->of_node = to_of_node(fwnode);
5145 }
5146 EXPORT_SYMBOL_GPL(device_set_node);
5147
device_match_name(struct device * dev,const void * name)5148 int device_match_name(struct device *dev, const void *name)
5149 {
5150 return sysfs_streq(dev_name(dev), name);
5151 }
5152 EXPORT_SYMBOL_GPL(device_match_name);
5153
device_match_of_node(struct device * dev,const void * np)5154 int device_match_of_node(struct device *dev, const void *np)
5155 {
5156 return dev->of_node == np;
5157 }
5158 EXPORT_SYMBOL_GPL(device_match_of_node);
5159
device_match_fwnode(struct device * dev,const void * fwnode)5160 int device_match_fwnode(struct device *dev, const void *fwnode)
5161 {
5162 return dev_fwnode(dev) == fwnode;
5163 }
5164 EXPORT_SYMBOL_GPL(device_match_fwnode);
5165
device_match_devt(struct device * dev,const void * pdevt)5166 int device_match_devt(struct device *dev, const void *pdevt)
5167 {
5168 return dev->devt == *(dev_t *)pdevt;
5169 }
5170 EXPORT_SYMBOL_GPL(device_match_devt);
5171
device_match_acpi_dev(struct device * dev,const void * adev)5172 int device_match_acpi_dev(struct device *dev, const void *adev)
5173 {
5174 return ACPI_COMPANION(dev) == adev;
5175 }
5176 EXPORT_SYMBOL(device_match_acpi_dev);
5177
device_match_acpi_handle(struct device * dev,const void * handle)5178 int device_match_acpi_handle(struct device *dev, const void *handle)
5179 {
5180 return ACPI_HANDLE(dev) == handle;
5181 }
5182 EXPORT_SYMBOL(device_match_acpi_handle);
5183
device_match_any(struct device * dev,const void * unused)5184 int device_match_any(struct device *dev, const void *unused)
5185 {
5186 return 1;
5187 }
5188 EXPORT_SYMBOL_GPL(device_match_any);
5189