1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3 */
4
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7 * spent some effort to ensure the datapath with redirect maps does not use
8 * any locking. This is a quick note on the details.
9 *
10 * We have three possible paths to get into the devmap control plane bpf
11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12 * will invoke an update, delete, or lookup operation. To ensure updates and
13 * deletes appear atomic from the datapath side xchg() is used to modify the
14 * netdev_map array. Then because the datapath does a lookup into the netdev_map
15 * array (read-only) from an RCU critical section we use call_rcu() to wait for
16 * an rcu grace period before free'ing the old data structures. This ensures the
17 * datapath always has a valid copy. However, the datapath does a "flush"
18 * operation that pushes any pending packets in the driver outside the RCU
19 * critical section. Each bpf_dtab_netdev tracks these pending operations using
20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until
21 * this list is empty, indicating outstanding flush operations have completed.
22 *
23 * BPF syscalls may race with BPF program calls on any of the update, delete
24 * or lookup operations. As noted above the xchg() operation also keep the
25 * netdev_map consistent in this case. From the devmap side BPF programs
26 * calling into these operations are the same as multiple user space threads
27 * making system calls.
28 *
29 * Finally, any of the above may race with a netdev_unregister notifier. The
30 * unregister notifier must search for net devices in the map structure that
31 * contain a reference to the net device and remove them. This is a two step
32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33 * check to see if the ifindex is the same as the net_device being removed.
34 * When removing the dev a cmpxchg() is used to ensure the correct dev is
35 * removed, in the case of a concurrent update or delete operation it is
36 * possible that the initially referenced dev is no longer in the map. As the
37 * notifier hook walks the map we know that new dev references can not be
38 * added by the user because core infrastructure ensures dev_get_by_index()
39 * calls will fail at this point.
40 *
41 * The devmap_hash type is a map type which interprets keys as ifindexes and
42 * indexes these using a hashmap. This allows maps that use ifindex as key to be
43 * densely packed instead of having holes in the lookup array for unused
44 * ifindexes. The setup and packet enqueue/send code is shared between the two
45 * types of devmap; only the lookup and insertion is different.
46 */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51 #include <linux/btf_ids.h>
52
53 #define DEV_CREATE_FLAG_MASK \
54 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
55
56 struct xdp_dev_bulk_queue {
57 struct xdp_frame *q[DEV_MAP_BULK_SIZE];
58 struct list_head flush_node;
59 struct net_device *dev;
60 struct net_device *dev_rx;
61 struct bpf_prog *xdp_prog;
62 unsigned int count;
63 };
64
65 struct bpf_dtab_netdev {
66 struct net_device *dev; /* must be first member, due to tracepoint */
67 struct hlist_node index_hlist;
68 struct bpf_prog *xdp_prog;
69 struct rcu_head rcu;
70 unsigned int idx;
71 struct bpf_devmap_val val;
72 };
73
74 struct bpf_dtab {
75 struct bpf_map map;
76 struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */
77 struct list_head list;
78
79 /* these are only used for DEVMAP_HASH type maps */
80 struct hlist_head *dev_index_head;
81 spinlock_t index_lock;
82 unsigned int items;
83 u32 n_buckets;
84 };
85
86 static DEFINE_PER_CPU(struct list_head, dev_flush_list);
87 static DEFINE_SPINLOCK(dev_map_lock);
88 static LIST_HEAD(dev_map_list);
89
dev_map_create_hash(unsigned int entries,int numa_node)90 static struct hlist_head *dev_map_create_hash(unsigned int entries,
91 int numa_node)
92 {
93 int i;
94 struct hlist_head *hash;
95
96 hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node);
97 if (hash != NULL)
98 for (i = 0; i < entries; i++)
99 INIT_HLIST_HEAD(&hash[i]);
100
101 return hash;
102 }
103
dev_map_index_hash(struct bpf_dtab * dtab,int idx)104 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
105 int idx)
106 {
107 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
108 }
109
dev_map_init_map(struct bpf_dtab * dtab,union bpf_attr * attr)110 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
111 {
112 u32 valsize = attr->value_size;
113
114 /* check sanity of attributes. 2 value sizes supported:
115 * 4 bytes: ifindex
116 * 8 bytes: ifindex + prog fd
117 */
118 if (attr->max_entries == 0 || attr->key_size != 4 ||
119 (valsize != offsetofend(struct bpf_devmap_val, ifindex) &&
120 valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) ||
121 attr->map_flags & ~DEV_CREATE_FLAG_MASK)
122 return -EINVAL;
123
124 /* Lookup returns a pointer straight to dev->ifindex, so make sure the
125 * verifier prevents writes from the BPF side
126 */
127 attr->map_flags |= BPF_F_RDONLY_PROG;
128
129
130 bpf_map_init_from_attr(&dtab->map, attr);
131
132 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
133 /* hash table size must be power of 2; roundup_pow_of_two() can
134 * overflow into UB on 32-bit arches, so check that first
135 */
136 if (dtab->map.max_entries > 1UL << 31)
137 return -EINVAL;
138
139 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
140
141 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets,
142 dtab->map.numa_node);
143 if (!dtab->dev_index_head)
144 return -ENOMEM;
145
146 spin_lock_init(&dtab->index_lock);
147 } else {
148 dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries *
149 sizeof(struct bpf_dtab_netdev *),
150 dtab->map.numa_node);
151 if (!dtab->netdev_map)
152 return -ENOMEM;
153 }
154
155 return 0;
156 }
157
dev_map_alloc(union bpf_attr * attr)158 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
159 {
160 struct bpf_dtab *dtab;
161 int err;
162
163 dtab = bpf_map_area_alloc(sizeof(*dtab), NUMA_NO_NODE);
164 if (!dtab)
165 return ERR_PTR(-ENOMEM);
166
167 err = dev_map_init_map(dtab, attr);
168 if (err) {
169 bpf_map_area_free(dtab);
170 return ERR_PTR(err);
171 }
172
173 spin_lock(&dev_map_lock);
174 list_add_tail_rcu(&dtab->list, &dev_map_list);
175 spin_unlock(&dev_map_lock);
176
177 return &dtab->map;
178 }
179
dev_map_free(struct bpf_map * map)180 static void dev_map_free(struct bpf_map *map)
181 {
182 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
183 int i;
184
185 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
186 * so the programs (can be more than one that used this map) were
187 * disconnected from events. The following synchronize_rcu() guarantees
188 * both rcu read critical sections complete and waits for
189 * preempt-disable regions (NAPI being the relevant context here) so we
190 * are certain there will be no further reads against the netdev_map and
191 * all flush operations are complete. Flush operations can only be done
192 * from NAPI context for this reason.
193 */
194
195 spin_lock(&dev_map_lock);
196 list_del_rcu(&dtab->list);
197 spin_unlock(&dev_map_lock);
198
199 bpf_clear_redirect_map(map);
200 synchronize_rcu();
201
202 /* Make sure prior __dev_map_entry_free() have completed. */
203 rcu_barrier();
204
205 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
206 for (i = 0; i < dtab->n_buckets; i++) {
207 struct bpf_dtab_netdev *dev;
208 struct hlist_head *head;
209 struct hlist_node *next;
210
211 head = dev_map_index_hash(dtab, i);
212
213 hlist_for_each_entry_safe(dev, next, head, index_hlist) {
214 hlist_del_rcu(&dev->index_hlist);
215 if (dev->xdp_prog)
216 bpf_prog_put(dev->xdp_prog);
217 dev_put(dev->dev);
218 kfree(dev);
219 }
220 }
221
222 bpf_map_area_free(dtab->dev_index_head);
223 } else {
224 for (i = 0; i < dtab->map.max_entries; i++) {
225 struct bpf_dtab_netdev *dev;
226
227 dev = rcu_dereference_raw(dtab->netdev_map[i]);
228 if (!dev)
229 continue;
230
231 if (dev->xdp_prog)
232 bpf_prog_put(dev->xdp_prog);
233 dev_put(dev->dev);
234 kfree(dev);
235 }
236
237 bpf_map_area_free(dtab->netdev_map);
238 }
239
240 bpf_map_area_free(dtab);
241 }
242
dev_map_get_next_key(struct bpf_map * map,void * key,void * next_key)243 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
244 {
245 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
246 u32 index = key ? *(u32 *)key : U32_MAX;
247 u32 *next = next_key;
248
249 if (index >= dtab->map.max_entries) {
250 *next = 0;
251 return 0;
252 }
253
254 if (index == dtab->map.max_entries - 1)
255 return -ENOENT;
256 *next = index + 1;
257 return 0;
258 }
259
260 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
261 * by local_bh_disable() (from XDP calls inside NAPI). The
262 * rcu_read_lock_bh_held() below makes lockdep accept both.
263 */
__dev_map_hash_lookup_elem(struct bpf_map * map,u32 key)264 static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
265 {
266 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
267 struct hlist_head *head = dev_map_index_hash(dtab, key);
268 struct bpf_dtab_netdev *dev;
269
270 hlist_for_each_entry_rcu(dev, head, index_hlist,
271 lockdep_is_held(&dtab->index_lock))
272 if (dev->idx == key)
273 return dev;
274
275 return NULL;
276 }
277
dev_map_hash_get_next_key(struct bpf_map * map,void * key,void * next_key)278 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
279 void *next_key)
280 {
281 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
282 u32 idx, *next = next_key;
283 struct bpf_dtab_netdev *dev, *next_dev;
284 struct hlist_head *head;
285 int i = 0;
286
287 if (!key)
288 goto find_first;
289
290 idx = *(u32 *)key;
291
292 dev = __dev_map_hash_lookup_elem(map, idx);
293 if (!dev)
294 goto find_first;
295
296 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
297 struct bpf_dtab_netdev, index_hlist);
298
299 if (next_dev) {
300 *next = next_dev->idx;
301 return 0;
302 }
303
304 i = idx & (dtab->n_buckets - 1);
305 i++;
306
307 find_first:
308 for (; i < dtab->n_buckets; i++) {
309 head = dev_map_index_hash(dtab, i);
310
311 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
312 struct bpf_dtab_netdev,
313 index_hlist);
314 if (next_dev) {
315 *next = next_dev->idx;
316 return 0;
317 }
318 }
319
320 return -ENOENT;
321 }
322
dev_map_bpf_prog_run(struct bpf_prog * xdp_prog,struct xdp_frame ** frames,int n,struct net_device * tx_dev,struct net_device * rx_dev)323 static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog,
324 struct xdp_frame **frames, int n,
325 struct net_device *tx_dev,
326 struct net_device *rx_dev)
327 {
328 struct xdp_txq_info txq = { .dev = tx_dev };
329 struct xdp_rxq_info rxq = { .dev = rx_dev };
330 struct xdp_buff xdp;
331 int i, nframes = 0;
332
333 for (i = 0; i < n; i++) {
334 struct xdp_frame *xdpf = frames[i];
335 u32 act;
336 int err;
337
338 xdp_convert_frame_to_buff(xdpf, &xdp);
339 xdp.txq = &txq;
340 xdp.rxq = &rxq;
341
342 act = bpf_prog_run_xdp(xdp_prog, &xdp);
343 switch (act) {
344 case XDP_PASS:
345 err = xdp_update_frame_from_buff(&xdp, xdpf);
346 if (unlikely(err < 0))
347 xdp_return_frame_rx_napi(xdpf);
348 else
349 frames[nframes++] = xdpf;
350 break;
351 default:
352 bpf_warn_invalid_xdp_action(NULL, xdp_prog, act);
353 fallthrough;
354 case XDP_ABORTED:
355 trace_xdp_exception(tx_dev, xdp_prog, act);
356 fallthrough;
357 case XDP_DROP:
358 xdp_return_frame_rx_napi(xdpf);
359 break;
360 }
361 }
362 return nframes; /* sent frames count */
363 }
364
bq_xmit_all(struct xdp_dev_bulk_queue * bq,u32 flags)365 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
366 {
367 struct net_device *dev = bq->dev;
368 unsigned int cnt = bq->count;
369 int sent = 0, err = 0;
370 int to_send = cnt;
371 int i;
372
373 if (unlikely(!cnt))
374 return;
375
376 for (i = 0; i < cnt; i++) {
377 struct xdp_frame *xdpf = bq->q[i];
378
379 prefetch(xdpf);
380 }
381
382 if (bq->xdp_prog) {
383 to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev, bq->dev_rx);
384 if (!to_send)
385 goto out;
386 }
387
388 sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags);
389 if (sent < 0) {
390 /* If ndo_xdp_xmit fails with an errno, no frames have
391 * been xmit'ed.
392 */
393 err = sent;
394 sent = 0;
395 }
396
397 /* If not all frames have been transmitted, it is our
398 * responsibility to free them
399 */
400 for (i = sent; unlikely(i < to_send); i++)
401 xdp_return_frame_rx_napi(bq->q[i]);
402
403 out:
404 bq->count = 0;
405 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err);
406 }
407
408 /* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the
409 * driver before returning from its napi->poll() routine. See the comment above
410 * xdp_do_flush() in filter.c.
411 */
__dev_flush(void)412 void __dev_flush(void)
413 {
414 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
415 struct xdp_dev_bulk_queue *bq, *tmp;
416
417 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
418 bq_xmit_all(bq, XDP_XMIT_FLUSH);
419 bq->dev_rx = NULL;
420 bq->xdp_prog = NULL;
421 __list_del_clearprev(&bq->flush_node);
422 }
423 }
424
425 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
426 * by local_bh_disable() (from XDP calls inside NAPI). The
427 * rcu_read_lock_bh_held() below makes lockdep accept both.
428 */
__dev_map_lookup_elem(struct bpf_map * map,u32 key)429 static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
430 {
431 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
432 struct bpf_dtab_netdev *obj;
433
434 if (key >= map->max_entries)
435 return NULL;
436
437 obj = rcu_dereference_check(dtab->netdev_map[key],
438 rcu_read_lock_bh_held());
439 return obj;
440 }
441
442 /* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu
443 * variable access, and map elements stick around. See comment above
444 * xdp_do_flush() in filter.c.
445 */
bq_enqueue(struct net_device * dev,struct xdp_frame * xdpf,struct net_device * dev_rx,struct bpf_prog * xdp_prog)446 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
447 struct net_device *dev_rx, struct bpf_prog *xdp_prog)
448 {
449 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
450 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
451
452 if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
453 bq_xmit_all(bq, 0);
454
455 /* Ingress dev_rx will be the same for all xdp_frame's in
456 * bulk_queue, because bq stored per-CPU and must be flushed
457 * from net_device drivers NAPI func end.
458 *
459 * Do the same with xdp_prog and flush_list since these fields
460 * are only ever modified together.
461 */
462 if (!bq->dev_rx) {
463 bq->dev_rx = dev_rx;
464 bq->xdp_prog = xdp_prog;
465 list_add(&bq->flush_node, flush_list);
466 }
467
468 bq->q[bq->count++] = xdpf;
469 }
470
__xdp_enqueue(struct net_device * dev,struct xdp_frame * xdpf,struct net_device * dev_rx,struct bpf_prog * xdp_prog)471 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
472 struct net_device *dev_rx,
473 struct bpf_prog *xdp_prog)
474 {
475 int err;
476
477 if (!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT))
478 return -EOPNOTSUPP;
479
480 if (unlikely(!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) &&
481 xdp_frame_has_frags(xdpf)))
482 return -EOPNOTSUPP;
483
484 err = xdp_ok_fwd_dev(dev, xdp_get_frame_len(xdpf));
485 if (unlikely(err))
486 return err;
487
488 bq_enqueue(dev, xdpf, dev_rx, xdp_prog);
489 return 0;
490 }
491
dev_map_bpf_prog_run_skb(struct sk_buff * skb,struct bpf_dtab_netdev * dst)492 static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst)
493 {
494 struct xdp_txq_info txq = { .dev = dst->dev };
495 struct xdp_buff xdp;
496 u32 act;
497
498 if (!dst->xdp_prog)
499 return XDP_PASS;
500
501 __skb_pull(skb, skb->mac_len);
502 xdp.txq = &txq;
503
504 act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog);
505 switch (act) {
506 case XDP_PASS:
507 __skb_push(skb, skb->mac_len);
508 break;
509 default:
510 bpf_warn_invalid_xdp_action(NULL, dst->xdp_prog, act);
511 fallthrough;
512 case XDP_ABORTED:
513 trace_xdp_exception(dst->dev, dst->xdp_prog, act);
514 fallthrough;
515 case XDP_DROP:
516 kfree_skb(skb);
517 break;
518 }
519
520 return act;
521 }
522
dev_xdp_enqueue(struct net_device * dev,struct xdp_frame * xdpf,struct net_device * dev_rx)523 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
524 struct net_device *dev_rx)
525 {
526 return __xdp_enqueue(dev, xdpf, dev_rx, NULL);
527 }
528
dev_map_enqueue(struct bpf_dtab_netdev * dst,struct xdp_frame * xdpf,struct net_device * dev_rx)529 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
530 struct net_device *dev_rx)
531 {
532 struct net_device *dev = dst->dev;
533
534 return __xdp_enqueue(dev, xdpf, dev_rx, dst->xdp_prog);
535 }
536
is_valid_dst(struct bpf_dtab_netdev * obj,struct xdp_frame * xdpf)537 static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf)
538 {
539 if (!obj)
540 return false;
541
542 if (!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT))
543 return false;
544
545 if (unlikely(!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) &&
546 xdp_frame_has_frags(xdpf)))
547 return false;
548
549 if (xdp_ok_fwd_dev(obj->dev, xdp_get_frame_len(xdpf)))
550 return false;
551
552 return true;
553 }
554
dev_map_enqueue_clone(struct bpf_dtab_netdev * obj,struct net_device * dev_rx,struct xdp_frame * xdpf)555 static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj,
556 struct net_device *dev_rx,
557 struct xdp_frame *xdpf)
558 {
559 struct xdp_frame *nxdpf;
560
561 nxdpf = xdpf_clone(xdpf);
562 if (!nxdpf)
563 return -ENOMEM;
564
565 bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog);
566
567 return 0;
568 }
569
is_ifindex_excluded(int * excluded,int num_excluded,int ifindex)570 static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex)
571 {
572 while (num_excluded--) {
573 if (ifindex == excluded[num_excluded])
574 return true;
575 }
576 return false;
577 }
578
579 /* Get ifindex of each upper device. 'indexes' must be able to hold at
580 * least MAX_NEST_DEV elements.
581 * Returns the number of ifindexes added.
582 */
get_upper_ifindexes(struct net_device * dev,int * indexes)583 static int get_upper_ifindexes(struct net_device *dev, int *indexes)
584 {
585 struct net_device *upper;
586 struct list_head *iter;
587 int n = 0;
588
589 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
590 indexes[n++] = upper->ifindex;
591 }
592 return n;
593 }
594
dev_map_enqueue_multi(struct xdp_frame * xdpf,struct net_device * dev_rx,struct bpf_map * map,bool exclude_ingress)595 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
596 struct bpf_map *map, bool exclude_ingress)
597 {
598 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
599 struct bpf_dtab_netdev *dst, *last_dst = NULL;
600 int excluded_devices[1+MAX_NEST_DEV];
601 struct hlist_head *head;
602 int num_excluded = 0;
603 unsigned int i;
604 int err;
605
606 if (exclude_ingress) {
607 num_excluded = get_upper_ifindexes(dev_rx, excluded_devices);
608 excluded_devices[num_excluded++] = dev_rx->ifindex;
609 }
610
611 if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
612 for (i = 0; i < map->max_entries; i++) {
613 dst = rcu_dereference_check(dtab->netdev_map[i],
614 rcu_read_lock_bh_held());
615 if (!is_valid_dst(dst, xdpf))
616 continue;
617
618 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex))
619 continue;
620
621 /* we only need n-1 clones; last_dst enqueued below */
622 if (!last_dst) {
623 last_dst = dst;
624 continue;
625 }
626
627 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf);
628 if (err)
629 return err;
630
631 last_dst = dst;
632 }
633 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */
634 for (i = 0; i < dtab->n_buckets; i++) {
635 head = dev_map_index_hash(dtab, i);
636 hlist_for_each_entry_rcu(dst, head, index_hlist,
637 lockdep_is_held(&dtab->index_lock)) {
638 if (!is_valid_dst(dst, xdpf))
639 continue;
640
641 if (is_ifindex_excluded(excluded_devices, num_excluded,
642 dst->dev->ifindex))
643 continue;
644
645 /* we only need n-1 clones; last_dst enqueued below */
646 if (!last_dst) {
647 last_dst = dst;
648 continue;
649 }
650
651 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf);
652 if (err)
653 return err;
654
655 last_dst = dst;
656 }
657 }
658 }
659
660 /* consume the last copy of the frame */
661 if (last_dst)
662 bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog);
663 else
664 xdp_return_frame_rx_napi(xdpf); /* dtab is empty */
665
666 return 0;
667 }
668
dev_map_generic_redirect(struct bpf_dtab_netdev * dst,struct sk_buff * skb,struct bpf_prog * xdp_prog)669 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
670 struct bpf_prog *xdp_prog)
671 {
672 int err;
673
674 err = xdp_ok_fwd_dev(dst->dev, skb->len);
675 if (unlikely(err))
676 return err;
677
678 /* Redirect has already succeeded semantically at this point, so we just
679 * return 0 even if packet is dropped. Helper below takes care of
680 * freeing skb.
681 */
682 if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS)
683 return 0;
684
685 skb->dev = dst->dev;
686 generic_xdp_tx(skb, xdp_prog);
687
688 return 0;
689 }
690
dev_map_redirect_clone(struct bpf_dtab_netdev * dst,struct sk_buff * skb,struct bpf_prog * xdp_prog)691 static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst,
692 struct sk_buff *skb,
693 struct bpf_prog *xdp_prog)
694 {
695 struct sk_buff *nskb;
696 int err;
697
698 nskb = skb_clone(skb, GFP_ATOMIC);
699 if (!nskb)
700 return -ENOMEM;
701
702 err = dev_map_generic_redirect(dst, nskb, xdp_prog);
703 if (unlikely(err)) {
704 consume_skb(nskb);
705 return err;
706 }
707
708 return 0;
709 }
710
dev_map_redirect_multi(struct net_device * dev,struct sk_buff * skb,struct bpf_prog * xdp_prog,struct bpf_map * map,bool exclude_ingress)711 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
712 struct bpf_prog *xdp_prog, struct bpf_map *map,
713 bool exclude_ingress)
714 {
715 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
716 struct bpf_dtab_netdev *dst, *last_dst = NULL;
717 int excluded_devices[1+MAX_NEST_DEV];
718 struct hlist_head *head;
719 struct hlist_node *next;
720 int num_excluded = 0;
721 unsigned int i;
722 int err;
723
724 if (exclude_ingress) {
725 num_excluded = get_upper_ifindexes(dev, excluded_devices);
726 excluded_devices[num_excluded++] = dev->ifindex;
727 }
728
729 if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
730 for (i = 0; i < map->max_entries; i++) {
731 dst = rcu_dereference_check(dtab->netdev_map[i],
732 rcu_read_lock_bh_held());
733 if (!dst)
734 continue;
735
736 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex))
737 continue;
738
739 /* we only need n-1 clones; last_dst enqueued below */
740 if (!last_dst) {
741 last_dst = dst;
742 continue;
743 }
744
745 err = dev_map_redirect_clone(last_dst, skb, xdp_prog);
746 if (err)
747 return err;
748
749 last_dst = dst;
750
751 }
752 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */
753 for (i = 0; i < dtab->n_buckets; i++) {
754 head = dev_map_index_hash(dtab, i);
755 hlist_for_each_entry_safe(dst, next, head, index_hlist) {
756 if (!dst)
757 continue;
758
759 if (is_ifindex_excluded(excluded_devices, num_excluded,
760 dst->dev->ifindex))
761 continue;
762
763 /* we only need n-1 clones; last_dst enqueued below */
764 if (!last_dst) {
765 last_dst = dst;
766 continue;
767 }
768
769 err = dev_map_redirect_clone(last_dst, skb, xdp_prog);
770 if (err)
771 return err;
772
773 last_dst = dst;
774 }
775 }
776 }
777
778 /* consume the first skb and return */
779 if (last_dst)
780 return dev_map_generic_redirect(last_dst, skb, xdp_prog);
781
782 /* dtab is empty */
783 consume_skb(skb);
784 return 0;
785 }
786
dev_map_lookup_elem(struct bpf_map * map,void * key)787 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
788 {
789 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
790
791 return obj ? &obj->val : NULL;
792 }
793
dev_map_hash_lookup_elem(struct bpf_map * map,void * key)794 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
795 {
796 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
797 *(u32 *)key);
798 return obj ? &obj->val : NULL;
799 }
800
__dev_map_entry_free(struct rcu_head * rcu)801 static void __dev_map_entry_free(struct rcu_head *rcu)
802 {
803 struct bpf_dtab_netdev *dev;
804
805 dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
806 if (dev->xdp_prog)
807 bpf_prog_put(dev->xdp_prog);
808 dev_put(dev->dev);
809 kfree(dev);
810 }
811
dev_map_delete_elem(struct bpf_map * map,void * key)812 static long dev_map_delete_elem(struct bpf_map *map, void *key)
813 {
814 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
815 struct bpf_dtab_netdev *old_dev;
816 int k = *(u32 *)key;
817
818 if (k >= map->max_entries)
819 return -EINVAL;
820
821 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL));
822 if (old_dev) {
823 call_rcu(&old_dev->rcu, __dev_map_entry_free);
824 atomic_dec((atomic_t *)&dtab->items);
825 }
826 return 0;
827 }
828
dev_map_hash_delete_elem(struct bpf_map * map,void * key)829 static long dev_map_hash_delete_elem(struct bpf_map *map, void *key)
830 {
831 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
832 struct bpf_dtab_netdev *old_dev;
833 int k = *(u32 *)key;
834 unsigned long flags;
835 int ret = -ENOENT;
836
837 spin_lock_irqsave(&dtab->index_lock, flags);
838
839 old_dev = __dev_map_hash_lookup_elem(map, k);
840 if (old_dev) {
841 dtab->items--;
842 hlist_del_init_rcu(&old_dev->index_hlist);
843 call_rcu(&old_dev->rcu, __dev_map_entry_free);
844 ret = 0;
845 }
846 spin_unlock_irqrestore(&dtab->index_lock, flags);
847
848 return ret;
849 }
850
__dev_map_alloc_node(struct net * net,struct bpf_dtab * dtab,struct bpf_devmap_val * val,unsigned int idx)851 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
852 struct bpf_dtab *dtab,
853 struct bpf_devmap_val *val,
854 unsigned int idx)
855 {
856 struct bpf_prog *prog = NULL;
857 struct bpf_dtab_netdev *dev;
858
859 dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev),
860 GFP_NOWAIT | __GFP_NOWARN,
861 dtab->map.numa_node);
862 if (!dev)
863 return ERR_PTR(-ENOMEM);
864
865 dev->dev = dev_get_by_index(net, val->ifindex);
866 if (!dev->dev)
867 goto err_out;
868
869 if (val->bpf_prog.fd > 0) {
870 prog = bpf_prog_get_type_dev(val->bpf_prog.fd,
871 BPF_PROG_TYPE_XDP, false);
872 if (IS_ERR(prog))
873 goto err_put_dev;
874 if (prog->expected_attach_type != BPF_XDP_DEVMAP ||
875 !bpf_prog_map_compatible(&dtab->map, prog))
876 goto err_put_prog;
877 }
878
879 dev->idx = idx;
880 if (prog) {
881 dev->xdp_prog = prog;
882 dev->val.bpf_prog.id = prog->aux->id;
883 } else {
884 dev->xdp_prog = NULL;
885 dev->val.bpf_prog.id = 0;
886 }
887 dev->val.ifindex = val->ifindex;
888
889 return dev;
890 err_put_prog:
891 bpf_prog_put(prog);
892 err_put_dev:
893 dev_put(dev->dev);
894 err_out:
895 kfree(dev);
896 return ERR_PTR(-EINVAL);
897 }
898
__dev_map_update_elem(struct net * net,struct bpf_map * map,void * key,void * value,u64 map_flags)899 static long __dev_map_update_elem(struct net *net, struct bpf_map *map,
900 void *key, void *value, u64 map_flags)
901 {
902 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
903 struct bpf_dtab_netdev *dev, *old_dev;
904 struct bpf_devmap_val val = {};
905 u32 i = *(u32 *)key;
906
907 if (unlikely(map_flags > BPF_EXIST))
908 return -EINVAL;
909 if (unlikely(i >= dtab->map.max_entries))
910 return -E2BIG;
911 if (unlikely(map_flags == BPF_NOEXIST))
912 return -EEXIST;
913
914 /* already verified value_size <= sizeof val */
915 memcpy(&val, value, map->value_size);
916
917 if (!val.ifindex) {
918 dev = NULL;
919 /* can not specify fd if ifindex is 0 */
920 if (val.bpf_prog.fd > 0)
921 return -EINVAL;
922 } else {
923 dev = __dev_map_alloc_node(net, dtab, &val, i);
924 if (IS_ERR(dev))
925 return PTR_ERR(dev);
926 }
927
928 /* Use call_rcu() here to ensure rcu critical sections have completed
929 * Remembering the driver side flush operation will happen before the
930 * net device is removed.
931 */
932 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev)));
933 if (old_dev)
934 call_rcu(&old_dev->rcu, __dev_map_entry_free);
935 else
936 atomic_inc((atomic_t *)&dtab->items);
937
938 return 0;
939 }
940
dev_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)941 static long dev_map_update_elem(struct bpf_map *map, void *key, void *value,
942 u64 map_flags)
943 {
944 return __dev_map_update_elem(current->nsproxy->net_ns,
945 map, key, value, map_flags);
946 }
947
__dev_map_hash_update_elem(struct net * net,struct bpf_map * map,void * key,void * value,u64 map_flags)948 static long __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
949 void *key, void *value, u64 map_flags)
950 {
951 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
952 struct bpf_dtab_netdev *dev, *old_dev;
953 struct bpf_devmap_val val = {};
954 u32 idx = *(u32 *)key;
955 unsigned long flags;
956 int err = -EEXIST;
957
958 /* already verified value_size <= sizeof val */
959 memcpy(&val, value, map->value_size);
960
961 if (unlikely(map_flags > BPF_EXIST || !val.ifindex))
962 return -EINVAL;
963
964 spin_lock_irqsave(&dtab->index_lock, flags);
965
966 old_dev = __dev_map_hash_lookup_elem(map, idx);
967 if (old_dev && (map_flags & BPF_NOEXIST))
968 goto out_err;
969
970 dev = __dev_map_alloc_node(net, dtab, &val, idx);
971 if (IS_ERR(dev)) {
972 err = PTR_ERR(dev);
973 goto out_err;
974 }
975
976 if (old_dev) {
977 hlist_del_rcu(&old_dev->index_hlist);
978 } else {
979 if (dtab->items >= dtab->map.max_entries) {
980 spin_unlock_irqrestore(&dtab->index_lock, flags);
981 call_rcu(&dev->rcu, __dev_map_entry_free);
982 return -E2BIG;
983 }
984 dtab->items++;
985 }
986
987 hlist_add_head_rcu(&dev->index_hlist,
988 dev_map_index_hash(dtab, idx));
989 spin_unlock_irqrestore(&dtab->index_lock, flags);
990
991 if (old_dev)
992 call_rcu(&old_dev->rcu, __dev_map_entry_free);
993
994 return 0;
995
996 out_err:
997 spin_unlock_irqrestore(&dtab->index_lock, flags);
998 return err;
999 }
1000
dev_map_hash_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)1001 static long dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
1002 u64 map_flags)
1003 {
1004 return __dev_map_hash_update_elem(current->nsproxy->net_ns,
1005 map, key, value, map_flags);
1006 }
1007
dev_map_redirect(struct bpf_map * map,u64 ifindex,u64 flags)1008 static long dev_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags)
1009 {
1010 return __bpf_xdp_redirect_map(map, ifindex, flags,
1011 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS,
1012 __dev_map_lookup_elem);
1013 }
1014
dev_hash_map_redirect(struct bpf_map * map,u64 ifindex,u64 flags)1015 static long dev_hash_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags)
1016 {
1017 return __bpf_xdp_redirect_map(map, ifindex, flags,
1018 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS,
1019 __dev_map_hash_lookup_elem);
1020 }
1021
dev_map_mem_usage(const struct bpf_map * map)1022 static u64 dev_map_mem_usage(const struct bpf_map *map)
1023 {
1024 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
1025 u64 usage = sizeof(struct bpf_dtab);
1026
1027 if (map->map_type == BPF_MAP_TYPE_DEVMAP_HASH)
1028 usage += (u64)dtab->n_buckets * sizeof(struct hlist_head);
1029 else
1030 usage += (u64)map->max_entries * sizeof(struct bpf_dtab_netdev *);
1031 usage += atomic_read((atomic_t *)&dtab->items) *
1032 (u64)sizeof(struct bpf_dtab_netdev);
1033 return usage;
1034 }
1035
1036 BTF_ID_LIST_SINGLE(dev_map_btf_ids, struct, bpf_dtab)
1037 const struct bpf_map_ops dev_map_ops = {
1038 .map_meta_equal = bpf_map_meta_equal,
1039 .map_alloc = dev_map_alloc,
1040 .map_free = dev_map_free,
1041 .map_get_next_key = dev_map_get_next_key,
1042 .map_lookup_elem = dev_map_lookup_elem,
1043 .map_update_elem = dev_map_update_elem,
1044 .map_delete_elem = dev_map_delete_elem,
1045 .map_check_btf = map_check_no_btf,
1046 .map_mem_usage = dev_map_mem_usage,
1047 .map_btf_id = &dev_map_btf_ids[0],
1048 .map_redirect = dev_map_redirect,
1049 };
1050
1051 const struct bpf_map_ops dev_map_hash_ops = {
1052 .map_meta_equal = bpf_map_meta_equal,
1053 .map_alloc = dev_map_alloc,
1054 .map_free = dev_map_free,
1055 .map_get_next_key = dev_map_hash_get_next_key,
1056 .map_lookup_elem = dev_map_hash_lookup_elem,
1057 .map_update_elem = dev_map_hash_update_elem,
1058 .map_delete_elem = dev_map_hash_delete_elem,
1059 .map_check_btf = map_check_no_btf,
1060 .map_mem_usage = dev_map_mem_usage,
1061 .map_btf_id = &dev_map_btf_ids[0],
1062 .map_redirect = dev_hash_map_redirect,
1063 };
1064
dev_map_hash_remove_netdev(struct bpf_dtab * dtab,struct net_device * netdev)1065 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
1066 struct net_device *netdev)
1067 {
1068 unsigned long flags;
1069 u32 i;
1070
1071 spin_lock_irqsave(&dtab->index_lock, flags);
1072 for (i = 0; i < dtab->n_buckets; i++) {
1073 struct bpf_dtab_netdev *dev;
1074 struct hlist_head *head;
1075 struct hlist_node *next;
1076
1077 head = dev_map_index_hash(dtab, i);
1078
1079 hlist_for_each_entry_safe(dev, next, head, index_hlist) {
1080 if (netdev != dev->dev)
1081 continue;
1082
1083 dtab->items--;
1084 hlist_del_rcu(&dev->index_hlist);
1085 call_rcu(&dev->rcu, __dev_map_entry_free);
1086 }
1087 }
1088 spin_unlock_irqrestore(&dtab->index_lock, flags);
1089 }
1090
dev_map_notification(struct notifier_block * notifier,ulong event,void * ptr)1091 static int dev_map_notification(struct notifier_block *notifier,
1092 ulong event, void *ptr)
1093 {
1094 struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
1095 struct bpf_dtab *dtab;
1096 int i, cpu;
1097
1098 switch (event) {
1099 case NETDEV_REGISTER:
1100 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
1101 break;
1102
1103 /* will be freed in free_netdev() */
1104 netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue);
1105 if (!netdev->xdp_bulkq)
1106 return NOTIFY_BAD;
1107
1108 for_each_possible_cpu(cpu)
1109 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
1110 break;
1111 case NETDEV_UNREGISTER:
1112 /* This rcu_read_lock/unlock pair is needed because
1113 * dev_map_list is an RCU list AND to ensure a delete
1114 * operation does not free a netdev_map entry while we
1115 * are comparing it against the netdev being unregistered.
1116 */
1117 rcu_read_lock();
1118 list_for_each_entry_rcu(dtab, &dev_map_list, list) {
1119 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
1120 dev_map_hash_remove_netdev(dtab, netdev);
1121 continue;
1122 }
1123
1124 for (i = 0; i < dtab->map.max_entries; i++) {
1125 struct bpf_dtab_netdev *dev, *odev;
1126
1127 dev = rcu_dereference(dtab->netdev_map[i]);
1128 if (!dev || netdev != dev->dev)
1129 continue;
1130 odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL));
1131 if (dev == odev) {
1132 call_rcu(&dev->rcu,
1133 __dev_map_entry_free);
1134 atomic_dec((atomic_t *)&dtab->items);
1135 }
1136 }
1137 }
1138 rcu_read_unlock();
1139 break;
1140 default:
1141 break;
1142 }
1143 return NOTIFY_OK;
1144 }
1145
1146 static struct notifier_block dev_map_notifier = {
1147 .notifier_call = dev_map_notification,
1148 };
1149
dev_map_init(void)1150 static int __init dev_map_init(void)
1151 {
1152 int cpu;
1153
1154 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
1155 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
1156 offsetof(struct _bpf_dtab_netdev, dev));
1157 register_netdevice_notifier(&dev_map_notifier);
1158
1159 for_each_possible_cpu(cpu)
1160 INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
1161 return 0;
1162 }
1163
1164 subsys_initcall(dev_map_init);
1165