1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156
157 #include "dev.h"
158 #include "net-sysfs.h"
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly; /* Taps */
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * semaphore.
173 *
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
dev_base_seq_inc(struct net * net)202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 while (++net->dev_base_seq == 0)
205 ;
206 }
207
dev_name_hash(struct net * net,const char * name)208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
dev_index_hash(struct net * net,int ifindex)215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
rps_lock_irqsave(struct softnet_data * sd,unsigned long * flags)220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
222 {
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
227 }
228
rps_lock_irq_disable(struct softnet_data * sd)229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 local_irq_disable();
235 }
236
rps_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
239 {
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
244 }
245
rps_unlock_irq_enable(struct softnet_data * sd)246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 local_irq_enable();
252 }
253
netdev_name_node_alloc(struct net_device * dev,const char * name)254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 const char *name)
256 {
257 struct netdev_name_node *name_node;
258
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 if (!name_node)
261 return NULL;
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
265 return name_node;
266 }
267
268 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 struct netdev_name_node *name_node;
272
273 name_node = netdev_name_node_alloc(dev, dev->name);
274 if (!name_node)
275 return NULL;
276 INIT_LIST_HEAD(&name_node->list);
277 return name_node;
278 }
279
netdev_name_node_free(struct netdev_name_node * name_node)280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 kfree(name_node);
283 }
284
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)285 static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
287 {
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
290 }
291
netdev_name_node_del(struct netdev_name_node * name_node)292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 hlist_del_rcu(&name_node->hlist);
295 }
296
netdev_name_node_lookup(struct net * net,const char * name)297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 const char *name)
299 {
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
302
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
305 return name_node;
306 return NULL;
307 }
308
netdev_name_node_lookup_rcu(struct net * net,const char * name)309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 const char *name)
311 {
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
314
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
317 return name_node;
318 return NULL;
319 }
320
netdev_name_in_use(struct net * net,const char * name)321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
netdev_name_node_alt_create(struct net_device * dev,const char * name)327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (name_node)
334 return -EEXIST;
335 name_node = netdev_name_node_alloc(dev, name);
336 if (!name_node)
337 return -ENOMEM;
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
341
342 return 0;
343 }
344
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 list_del(&name_node->list);
348 kfree(name_node->name);
349 netdev_name_node_free(name_node);
350 }
351
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354 struct netdev_name_node *name_node;
355 struct net *net = dev_net(dev);
356
357 name_node = netdev_name_node_lookup(net, name);
358 if (!name_node)
359 return -ENOENT;
360 /* lookup might have found our primary name or a name belonging
361 * to another device.
362 */
363 if (name_node == dev->name_node || name_node->dev != dev)
364 return -EINVAL;
365
366 netdev_name_node_del(name_node);
367 synchronize_rcu();
368 __netdev_name_node_alt_destroy(name_node);
369
370 return 0;
371 }
372
netdev_name_node_alt_flush(struct net_device * dev)373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375 struct netdev_name_node *name_node, *tmp;
376
377 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 __netdev_name_node_alt_destroy(name_node);
379 }
380
381 /* Device list insertion */
list_netdevice(struct net_device * dev)382 static void list_netdevice(struct net_device *dev)
383 {
384 struct netdev_name_node *name_node;
385 struct net *net = dev_net(dev);
386
387 ASSERT_RTNL();
388
389 write_lock(&dev_base_lock);
390 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391 netdev_name_node_add(net, dev->name_node);
392 hlist_add_head_rcu(&dev->index_hlist,
393 dev_index_hash(net, dev->ifindex));
394 write_unlock(&dev_base_lock);
395
396 netdev_for_each_altname(dev, name_node)
397 netdev_name_node_add(net, name_node);
398
399 /* We reserved the ifindex, this can't fail */
400 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401
402 dev_base_seq_inc(net);
403 }
404
405 /* Device list removal
406 * caller must respect a RCU grace period before freeing/reusing dev
407 */
unlist_netdevice(struct net_device * dev,bool lock)408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410 struct netdev_name_node *name_node;
411 struct net *net = dev_net(dev);
412
413 ASSERT_RTNL();
414
415 xa_erase(&net->dev_by_index, dev->ifindex);
416
417 netdev_for_each_altname(dev, name_node)
418 netdev_name_node_del(name_node);
419
420 /* Unlink dev from the device chain */
421 if (lock)
422 write_lock(&dev_base_lock);
423 list_del_rcu(&dev->dev_list);
424 netdev_name_node_del(dev->name_node);
425 hlist_del_rcu(&dev->index_hlist);
426 if (lock)
427 write_unlock(&dev_base_lock);
428
429 dev_base_seq_inc(dev_net(dev));
430 }
431
432 /*
433 * Our notifier list
434 */
435
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437
438 /*
439 * Device drivers call our routines to queue packets here. We empty the
440 * queue in the local softnet handler.
441 */
442
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445
446 #ifdef CONFIG_LOCKDEP
447 /*
448 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449 * according to dev->type
450 */
451 static const unsigned short netdev_lock_type[] = {
452 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467
468 static const char *const netdev_lock_name[] = {
469 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487
netdev_lock_pos(unsigned short dev_type)488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490 int i;
491
492 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493 if (netdev_lock_type[i] == dev_type)
494 return i;
495 /* the last key is used by default */
496 return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500 unsigned short dev_type)
501 {
502 int i;
503
504 i = netdev_lock_pos(dev_type);
505 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506 netdev_lock_name[i]);
507 }
508
netdev_set_addr_lockdep_class(struct net_device * dev)509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511 int i;
512
513 i = netdev_lock_pos(dev->type);
514 lockdep_set_class_and_name(&dev->addr_list_lock,
515 &netdev_addr_lock_key[i],
516 netdev_lock_name[i]);
517 }
518 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 unsigned short dev_type)
521 {
522 }
523
netdev_set_addr_lockdep_class(struct net_device * dev)524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528
529 /*******************************************************************************
530 *
531 * Protocol management and registration routines
532 *
533 *******************************************************************************/
534
535
536 /*
537 * Add a protocol ID to the list. Now that the input handler is
538 * smarter we can dispense with all the messy stuff that used to be
539 * here.
540 *
541 * BEWARE!!! Protocol handlers, mangling input packets,
542 * MUST BE last in hash buckets and checking protocol handlers
543 * MUST start from promiscuous ptype_all chain in net_bh.
544 * It is true now, do not change it.
545 * Explanation follows: if protocol handler, mangling packet, will
546 * be the first on list, it is not able to sense, that packet
547 * is cloned and should be copied-on-write, so that it will
548 * change it and subsequent readers will get broken packet.
549 * --ANK (980803)
550 */
551
ptype_head(const struct packet_type * pt)552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554 if (pt->type == htons(ETH_P_ALL))
555 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556 else
557 return pt->dev ? &pt->dev->ptype_specific :
558 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560
561 /**
562 * dev_add_pack - add packet handler
563 * @pt: packet type declaration
564 *
565 * Add a protocol handler to the networking stack. The passed &packet_type
566 * is linked into kernel lists and may not be freed until it has been
567 * removed from the kernel lists.
568 *
569 * This call does not sleep therefore it can not
570 * guarantee all CPU's that are in middle of receiving packets
571 * will see the new packet type (until the next received packet).
572 */
573
dev_add_pack(struct packet_type * pt)574 void dev_add_pack(struct packet_type *pt)
575 {
576 struct list_head *head = ptype_head(pt);
577
578 spin_lock(&ptype_lock);
579 list_add_rcu(&pt->list, head);
580 spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583
584 /**
585 * __dev_remove_pack - remove packet handler
586 * @pt: packet type declaration
587 *
588 * Remove a protocol handler that was previously added to the kernel
589 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
590 * from the kernel lists and can be freed or reused once this function
591 * returns.
592 *
593 * The packet type might still be in use by receivers
594 * and must not be freed until after all the CPU's have gone
595 * through a quiescent state.
596 */
__dev_remove_pack(struct packet_type * pt)597 void __dev_remove_pack(struct packet_type *pt)
598 {
599 struct list_head *head = ptype_head(pt);
600 struct packet_type *pt1;
601
602 spin_lock(&ptype_lock);
603
604 list_for_each_entry(pt1, head, list) {
605 if (pt == pt1) {
606 list_del_rcu(&pt->list);
607 goto out;
608 }
609 }
610
611 pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613 spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616
617 /**
618 * dev_remove_pack - remove packet handler
619 * @pt: packet type declaration
620 *
621 * Remove a protocol handler that was previously added to the kernel
622 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
623 * from the kernel lists and can be freed or reused once this function
624 * returns.
625 *
626 * This call sleeps to guarantee that no CPU is looking at the packet
627 * type after return.
628 */
dev_remove_pack(struct packet_type * pt)629 void dev_remove_pack(struct packet_type *pt)
630 {
631 __dev_remove_pack(pt);
632
633 synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636
637
638 /*******************************************************************************
639 *
640 * Device Interface Subroutines
641 *
642 *******************************************************************************/
643
644 /**
645 * dev_get_iflink - get 'iflink' value of a interface
646 * @dev: targeted interface
647 *
648 * Indicates the ifindex the interface is linked to.
649 * Physical interfaces have the same 'ifindex' and 'iflink' values.
650 */
651
dev_get_iflink(const struct net_device * dev)652 int dev_get_iflink(const struct net_device *dev)
653 {
654 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655 return dev->netdev_ops->ndo_get_iflink(dev);
656
657 return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660
661 /**
662 * dev_fill_metadata_dst - Retrieve tunnel egress information.
663 * @dev: targeted interface
664 * @skb: The packet.
665 *
666 * For better visibility of tunnel traffic OVS needs to retrieve
667 * egress tunnel information for a packet. Following API allows
668 * user to get this info.
669 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672 struct ip_tunnel_info *info;
673
674 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
675 return -EINVAL;
676
677 info = skb_tunnel_info_unclone(skb);
678 if (!info)
679 return -ENOMEM;
680 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681 return -EINVAL;
682
683 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686
dev_fwd_path(struct net_device_path_stack * stack)687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689 int k = stack->num_paths++;
690
691 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692 return NULL;
693
694 return &stack->path[k];
695 }
696
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698 struct net_device_path_stack *stack)
699 {
700 const struct net_device *last_dev;
701 struct net_device_path_ctx ctx = {
702 .dev = dev,
703 };
704 struct net_device_path *path;
705 int ret = 0;
706
707 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708 stack->num_paths = 0;
709 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710 last_dev = ctx.dev;
711 path = dev_fwd_path(stack);
712 if (!path)
713 return -1;
714
715 memset(path, 0, sizeof(struct net_device_path));
716 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717 if (ret < 0)
718 return -1;
719
720 if (WARN_ON_ONCE(last_dev == ctx.dev))
721 return -1;
722 }
723
724 if (!ctx.dev)
725 return ret;
726
727 path = dev_fwd_path(stack);
728 if (!path)
729 return -1;
730 path->type = DEV_PATH_ETHERNET;
731 path->dev = ctx.dev;
732
733 return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736
737 /**
738 * __dev_get_by_name - find a device by its name
739 * @net: the applicable net namespace
740 * @name: name to find
741 *
742 * Find an interface by name. Must be called under RTNL semaphore
743 * or @dev_base_lock. If the name is found a pointer to the device
744 * is returned. If the name is not found then %NULL is returned. The
745 * reference counters are not incremented so the caller must be
746 * careful with locks.
747 */
748
__dev_get_by_name(struct net * net,const char * name)749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751 struct netdev_name_node *node_name;
752
753 node_name = netdev_name_node_lookup(net, name);
754 return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757
758 /**
759 * dev_get_by_name_rcu - find a device by its name
760 * @net: the applicable net namespace
761 * @name: name to find
762 *
763 * Find an interface by name.
764 * If the name is found a pointer to the device is returned.
765 * If the name is not found then %NULL is returned.
766 * The reference counters are not incremented so the caller must be
767 * careful with locks. The caller must hold RCU lock.
768 */
769
dev_get_by_name_rcu(struct net * net,const char * name)770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772 struct netdev_name_node *node_name;
773
774 node_name = netdev_name_node_lookup_rcu(net, name);
775 return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778
779 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782 struct net_device *dev;
783
784 rcu_read_lock();
785 dev = dev_get_by_name_rcu(net, name);
786 dev_hold(dev);
787 rcu_read_unlock();
788 return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791
792 /**
793 * netdev_get_by_name() - find a device by its name
794 * @net: the applicable net namespace
795 * @name: name to find
796 * @tracker: tracking object for the acquired reference
797 * @gfp: allocation flags for the tracker
798 *
799 * Find an interface by name. This can be called from any
800 * context and does its own locking. The returned handle has
801 * the usage count incremented and the caller must use netdev_put() to
802 * release it when it is no longer needed. %NULL is returned if no
803 * matching device is found.
804 */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806 netdevice_tracker *tracker, gfp_t gfp)
807 {
808 struct net_device *dev;
809
810 dev = dev_get_by_name(net, name);
811 if (dev)
812 netdev_tracker_alloc(dev, tracker, gfp);
813 return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816
817 /**
818 * __dev_get_by_index - find a device by its ifindex
819 * @net: the applicable net namespace
820 * @ifindex: index of device
821 *
822 * Search for an interface by index. Returns %NULL if the device
823 * is not found or a pointer to the device. The device has not
824 * had its reference counter increased so the caller must be careful
825 * about locking. The caller must hold either the RTNL semaphore
826 * or @dev_base_lock.
827 */
828
__dev_get_by_index(struct net * net,int ifindex)829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831 struct net_device *dev;
832 struct hlist_head *head = dev_index_hash(net, ifindex);
833
834 hlist_for_each_entry(dev, head, index_hlist)
835 if (dev->ifindex == ifindex)
836 return dev;
837
838 return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841
842 /**
843 * dev_get_by_index_rcu - find a device by its ifindex
844 * @net: the applicable net namespace
845 * @ifindex: index of device
846 *
847 * Search for an interface by index. Returns %NULL if the device
848 * is not found or a pointer to the device. The device has not
849 * had its reference counter increased so the caller must be careful
850 * about locking. The caller must hold RCU lock.
851 */
852
dev_get_by_index_rcu(struct net * net,int ifindex)853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855 struct net_device *dev;
856 struct hlist_head *head = dev_index_hash(net, ifindex);
857
858 hlist_for_each_entry_rcu(dev, head, index_hlist)
859 if (dev->ifindex == ifindex)
860 return dev;
861
862 return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865
866 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869 struct net_device *dev;
870
871 rcu_read_lock();
872 dev = dev_get_by_index_rcu(net, ifindex);
873 dev_hold(dev);
874 rcu_read_unlock();
875 return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878
879 /**
880 * netdev_get_by_index() - find a device by its ifindex
881 * @net: the applicable net namespace
882 * @ifindex: index of device
883 * @tracker: tracking object for the acquired reference
884 * @gfp: allocation flags for the tracker
885 *
886 * Search for an interface by index. Returns NULL if the device
887 * is not found or a pointer to the device. The device returned has
888 * had a reference added and the pointer is safe until the user calls
889 * netdev_put() to indicate they have finished with it.
890 */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892 netdevice_tracker *tracker, gfp_t gfp)
893 {
894 struct net_device *dev;
895
896 dev = dev_get_by_index(net, ifindex);
897 if (dev)
898 netdev_tracker_alloc(dev, tracker, gfp);
899 return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902
903 /**
904 * dev_get_by_napi_id - find a device by napi_id
905 * @napi_id: ID of the NAPI struct
906 *
907 * Search for an interface by NAPI ID. Returns %NULL if the device
908 * is not found or a pointer to the device. The device has not had
909 * its reference counter increased so the caller must be careful
910 * about locking. The caller must hold RCU lock.
911 */
912
dev_get_by_napi_id(unsigned int napi_id)913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 struct napi_struct *napi;
916
917 WARN_ON_ONCE(!rcu_read_lock_held());
918
919 if (napi_id < MIN_NAPI_ID)
920 return NULL;
921
922 napi = napi_by_id(napi_id);
923
924 return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927
928 /**
929 * netdev_get_name - get a netdevice name, knowing its ifindex.
930 * @net: network namespace
931 * @name: a pointer to the buffer where the name will be stored.
932 * @ifindex: the ifindex of the interface to get the name from.
933 */
netdev_get_name(struct net * net,char * name,int ifindex)934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936 struct net_device *dev;
937 int ret;
938
939 down_read(&devnet_rename_sem);
940 rcu_read_lock();
941
942 dev = dev_get_by_index_rcu(net, ifindex);
943 if (!dev) {
944 ret = -ENODEV;
945 goto out;
946 }
947
948 strcpy(name, dev->name);
949
950 ret = 0;
951 out:
952 rcu_read_unlock();
953 up_read(&devnet_rename_sem);
954 return ret;
955 }
956
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)957 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
958 const char *ha)
959 {
960 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
961 }
962
963 /**
964 * dev_getbyhwaddr_rcu - find a device by its hardware address
965 * @net: the applicable net namespace
966 * @type: media type of device
967 * @ha: hardware address
968 *
969 * Search for an interface by MAC address. Returns NULL if the device
970 * is not found or a pointer to the device.
971 * The caller must hold RCU.
972 * The returned device has not had its ref count increased
973 * and the caller must therefore be careful about locking
974 *
975 */
976
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)977 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
978 const char *ha)
979 {
980 struct net_device *dev;
981
982 for_each_netdev_rcu(net, dev)
983 if (dev_addr_cmp(dev, type, ha))
984 return dev;
985
986 return NULL;
987 }
988 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
989
990 /**
991 * dev_getbyhwaddr() - find a device by its hardware address
992 * @net: the applicable net namespace
993 * @type: media type of device
994 * @ha: hardware address
995 *
996 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
997 * rtnl_lock.
998 *
999 * Context: rtnl_lock() must be held.
1000 * Return: pointer to the net_device, or NULL if not found
1001 */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1002 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1003 const char *ha)
1004 {
1005 struct net_device *dev;
1006
1007 ASSERT_RTNL();
1008 for_each_netdev(net, dev)
1009 if (dev_addr_cmp(dev, type, ha))
1010 return dev;
1011
1012 return NULL;
1013 }
1014 EXPORT_SYMBOL(dev_getbyhwaddr);
1015
dev_getfirstbyhwtype(struct net * net,unsigned short type)1016 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1017 {
1018 struct net_device *dev, *ret = NULL;
1019
1020 rcu_read_lock();
1021 for_each_netdev_rcu(net, dev)
1022 if (dev->type == type) {
1023 dev_hold(dev);
1024 ret = dev;
1025 break;
1026 }
1027 rcu_read_unlock();
1028 return ret;
1029 }
1030 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1031
1032 /**
1033 * __dev_get_by_flags - find any device with given flags
1034 * @net: the applicable net namespace
1035 * @if_flags: IFF_* values
1036 * @mask: bitmask of bits in if_flags to check
1037 *
1038 * Search for any interface with the given flags. Returns NULL if a device
1039 * is not found or a pointer to the device. Must be called inside
1040 * rtnl_lock(), and result refcount is unchanged.
1041 */
1042
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1043 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1044 unsigned short mask)
1045 {
1046 struct net_device *dev, *ret;
1047
1048 ASSERT_RTNL();
1049
1050 ret = NULL;
1051 for_each_netdev(net, dev) {
1052 if (((dev->flags ^ if_flags) & mask) == 0) {
1053 ret = dev;
1054 break;
1055 }
1056 }
1057 return ret;
1058 }
1059 EXPORT_SYMBOL(__dev_get_by_flags);
1060
1061 /**
1062 * dev_valid_name - check if name is okay for network device
1063 * @name: name string
1064 *
1065 * Network device names need to be valid file names to
1066 * allow sysfs to work. We also disallow any kind of
1067 * whitespace.
1068 */
dev_valid_name(const char * name)1069 bool dev_valid_name(const char *name)
1070 {
1071 if (*name == '\0')
1072 return false;
1073 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1074 return false;
1075 if (!strcmp(name, ".") || !strcmp(name, ".."))
1076 return false;
1077
1078 while (*name) {
1079 if (*name == '/' || *name == ':' || isspace(*name))
1080 return false;
1081 name++;
1082 }
1083 return true;
1084 }
1085 EXPORT_SYMBOL(dev_valid_name);
1086
1087 /**
1088 * __dev_alloc_name - allocate a name for a device
1089 * @net: network namespace to allocate the device name in
1090 * @name: name format string
1091 * @buf: scratch buffer and result name string
1092 *
1093 * Passed a format string - eg "lt%d" it will try and find a suitable
1094 * id. It scans list of devices to build up a free map, then chooses
1095 * the first empty slot. The caller must hold the dev_base or rtnl lock
1096 * while allocating the name and adding the device in order to avoid
1097 * duplicates.
1098 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1099 * Returns the number of the unit assigned or a negative errno code.
1100 */
1101
__dev_alloc_name(struct net * net,const char * name,char * buf)1102 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1103 {
1104 int i = 0;
1105 const char *p;
1106 const int max_netdevices = 8*PAGE_SIZE;
1107 unsigned long *inuse;
1108 struct net_device *d;
1109
1110 if (!dev_valid_name(name))
1111 return -EINVAL;
1112
1113 p = strchr(name, '%');
1114 if (p) {
1115 /*
1116 * Verify the string as this thing may have come from
1117 * the user. There must be either one "%d" and no other "%"
1118 * characters.
1119 */
1120 if (p[1] != 'd' || strchr(p + 2, '%'))
1121 return -EINVAL;
1122
1123 /* Use one page as a bit array of possible slots */
1124 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1125 if (!inuse)
1126 return -ENOMEM;
1127
1128 for_each_netdev(net, d) {
1129 struct netdev_name_node *name_node;
1130
1131 netdev_for_each_altname(d, name_node) {
1132 if (!sscanf(name_node->name, name, &i))
1133 continue;
1134 if (i < 0 || i >= max_netdevices)
1135 continue;
1136
1137 /* avoid cases where sscanf is not exact inverse of printf */
1138 snprintf(buf, IFNAMSIZ, name, i);
1139 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1140 __set_bit(i, inuse);
1141 }
1142 if (!sscanf(d->name, name, &i))
1143 continue;
1144 if (i < 0 || i >= max_netdevices)
1145 continue;
1146
1147 /* avoid cases where sscanf is not exact inverse of printf */
1148 snprintf(buf, IFNAMSIZ, name, i);
1149 if (!strncmp(buf, d->name, IFNAMSIZ))
1150 __set_bit(i, inuse);
1151 }
1152
1153 i = find_first_zero_bit(inuse, max_netdevices);
1154 bitmap_free(inuse);
1155 }
1156
1157 snprintf(buf, IFNAMSIZ, name, i);
1158 if (!netdev_name_in_use(net, buf))
1159 return i;
1160
1161 /* It is possible to run out of possible slots
1162 * when the name is long and there isn't enough space left
1163 * for the digits, or if all bits are used.
1164 */
1165 return -ENFILE;
1166 }
1167
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name)1168 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1169 const char *want_name, char *out_name)
1170 {
1171 int ret;
1172
1173 if (!dev_valid_name(want_name))
1174 return -EINVAL;
1175
1176 if (strchr(want_name, '%')) {
1177 ret = __dev_alloc_name(net, want_name, out_name);
1178 return ret < 0 ? ret : 0;
1179 } else if (netdev_name_in_use(net, want_name)) {
1180 return -EEXIST;
1181 } else if (out_name != want_name) {
1182 strscpy(out_name, want_name, IFNAMSIZ);
1183 }
1184
1185 return 0;
1186 }
1187
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1188 static int dev_alloc_name_ns(struct net *net,
1189 struct net_device *dev,
1190 const char *name)
1191 {
1192 char buf[IFNAMSIZ];
1193 int ret;
1194
1195 BUG_ON(!net);
1196 ret = __dev_alloc_name(net, name, buf);
1197 if (ret >= 0)
1198 strscpy(dev->name, buf, IFNAMSIZ);
1199 return ret;
1200 }
1201
1202 /**
1203 * dev_alloc_name - allocate a name for a device
1204 * @dev: device
1205 * @name: name format string
1206 *
1207 * Passed a format string - eg "lt%d" it will try and find a suitable
1208 * id. It scans list of devices to build up a free map, then chooses
1209 * the first empty slot. The caller must hold the dev_base or rtnl lock
1210 * while allocating the name and adding the device in order to avoid
1211 * duplicates.
1212 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1213 * Returns the number of the unit assigned or a negative errno code.
1214 */
1215
dev_alloc_name(struct net_device * dev,const char * name)1216 int dev_alloc_name(struct net_device *dev, const char *name)
1217 {
1218 return dev_alloc_name_ns(dev_net(dev), dev, name);
1219 }
1220 EXPORT_SYMBOL(dev_alloc_name);
1221
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1222 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1223 const char *name)
1224 {
1225 char buf[IFNAMSIZ];
1226 int ret;
1227
1228 ret = dev_prep_valid_name(net, dev, name, buf);
1229 if (ret >= 0)
1230 strscpy(dev->name, buf, IFNAMSIZ);
1231 return ret;
1232 }
1233
1234 /**
1235 * dev_change_name - change name of a device
1236 * @dev: device
1237 * @newname: name (or format string) must be at least IFNAMSIZ
1238 *
1239 * Change name of a device, can pass format strings "eth%d".
1240 * for wildcarding.
1241 */
dev_change_name(struct net_device * dev,const char * newname)1242 int dev_change_name(struct net_device *dev, const char *newname)
1243 {
1244 unsigned char old_assign_type;
1245 char oldname[IFNAMSIZ];
1246 int err = 0;
1247 int ret;
1248 struct net *net;
1249
1250 ASSERT_RTNL();
1251 BUG_ON(!dev_net(dev));
1252
1253 net = dev_net(dev);
1254
1255 down_write(&devnet_rename_sem);
1256
1257 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1258 up_write(&devnet_rename_sem);
1259 return 0;
1260 }
1261
1262 memcpy(oldname, dev->name, IFNAMSIZ);
1263
1264 err = dev_get_valid_name(net, dev, newname);
1265 if (err < 0) {
1266 up_write(&devnet_rename_sem);
1267 return err;
1268 }
1269
1270 if (oldname[0] && !strchr(oldname, '%'))
1271 netdev_info(dev, "renamed from %s%s\n", oldname,
1272 dev->flags & IFF_UP ? " (while UP)" : "");
1273
1274 old_assign_type = dev->name_assign_type;
1275 dev->name_assign_type = NET_NAME_RENAMED;
1276
1277 rollback:
1278 ret = device_rename(&dev->dev, dev->name);
1279 if (ret) {
1280 memcpy(dev->name, oldname, IFNAMSIZ);
1281 dev->name_assign_type = old_assign_type;
1282 up_write(&devnet_rename_sem);
1283 return ret;
1284 }
1285
1286 up_write(&devnet_rename_sem);
1287
1288 netdev_adjacent_rename_links(dev, oldname);
1289
1290 write_lock(&dev_base_lock);
1291 netdev_name_node_del(dev->name_node);
1292 write_unlock(&dev_base_lock);
1293
1294 synchronize_rcu();
1295
1296 write_lock(&dev_base_lock);
1297 netdev_name_node_add(net, dev->name_node);
1298 write_unlock(&dev_base_lock);
1299
1300 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1301 ret = notifier_to_errno(ret);
1302
1303 if (ret) {
1304 /* err >= 0 after dev_alloc_name() or stores the first errno */
1305 if (err >= 0) {
1306 err = ret;
1307 down_write(&devnet_rename_sem);
1308 memcpy(dev->name, oldname, IFNAMSIZ);
1309 memcpy(oldname, newname, IFNAMSIZ);
1310 dev->name_assign_type = old_assign_type;
1311 old_assign_type = NET_NAME_RENAMED;
1312 goto rollback;
1313 } else {
1314 netdev_err(dev, "name change rollback failed: %d\n",
1315 ret);
1316 }
1317 }
1318
1319 return err;
1320 }
1321
1322 /**
1323 * dev_set_alias - change ifalias of a device
1324 * @dev: device
1325 * @alias: name up to IFALIASZ
1326 * @len: limit of bytes to copy from info
1327 *
1328 * Set ifalias for a device,
1329 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1330 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1331 {
1332 struct dev_ifalias *new_alias = NULL;
1333
1334 if (len >= IFALIASZ)
1335 return -EINVAL;
1336
1337 if (len) {
1338 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1339 if (!new_alias)
1340 return -ENOMEM;
1341
1342 memcpy(new_alias->ifalias, alias, len);
1343 new_alias->ifalias[len] = 0;
1344 }
1345
1346 mutex_lock(&ifalias_mutex);
1347 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1348 mutex_is_locked(&ifalias_mutex));
1349 mutex_unlock(&ifalias_mutex);
1350
1351 if (new_alias)
1352 kfree_rcu(new_alias, rcuhead);
1353
1354 return len;
1355 }
1356 EXPORT_SYMBOL(dev_set_alias);
1357
1358 /**
1359 * dev_get_alias - get ifalias of a device
1360 * @dev: device
1361 * @name: buffer to store name of ifalias
1362 * @len: size of buffer
1363 *
1364 * get ifalias for a device. Caller must make sure dev cannot go
1365 * away, e.g. rcu read lock or own a reference count to device.
1366 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1367 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1368 {
1369 const struct dev_ifalias *alias;
1370 int ret = 0;
1371
1372 rcu_read_lock();
1373 alias = rcu_dereference(dev->ifalias);
1374 if (alias)
1375 ret = snprintf(name, len, "%s", alias->ifalias);
1376 rcu_read_unlock();
1377
1378 return ret;
1379 }
1380
1381 /**
1382 * netdev_features_change - device changes features
1383 * @dev: device to cause notification
1384 *
1385 * Called to indicate a device has changed features.
1386 */
netdev_features_change(struct net_device * dev)1387 void netdev_features_change(struct net_device *dev)
1388 {
1389 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1390 }
1391 EXPORT_SYMBOL(netdev_features_change);
1392
1393 /**
1394 * netdev_state_change - device changes state
1395 * @dev: device to cause notification
1396 *
1397 * Called to indicate a device has changed state. This function calls
1398 * the notifier chains for netdev_chain and sends a NEWLINK message
1399 * to the routing socket.
1400 */
netdev_state_change(struct net_device * dev)1401 void netdev_state_change(struct net_device *dev)
1402 {
1403 if (dev->flags & IFF_UP) {
1404 struct netdev_notifier_change_info change_info = {
1405 .info.dev = dev,
1406 };
1407
1408 call_netdevice_notifiers_info(NETDEV_CHANGE,
1409 &change_info.info);
1410 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1411 }
1412 }
1413 EXPORT_SYMBOL(netdev_state_change);
1414
1415 /**
1416 * __netdev_notify_peers - notify network peers about existence of @dev,
1417 * to be called when rtnl lock is already held.
1418 * @dev: network device
1419 *
1420 * Generate traffic such that interested network peers are aware of
1421 * @dev, such as by generating a gratuitous ARP. This may be used when
1422 * a device wants to inform the rest of the network about some sort of
1423 * reconfiguration such as a failover event or virtual machine
1424 * migration.
1425 */
__netdev_notify_peers(struct net_device * dev)1426 void __netdev_notify_peers(struct net_device *dev)
1427 {
1428 ASSERT_RTNL();
1429 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1430 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1431 }
1432 EXPORT_SYMBOL(__netdev_notify_peers);
1433
1434 /**
1435 * netdev_notify_peers - notify network peers about existence of @dev
1436 * @dev: network device
1437 *
1438 * Generate traffic such that interested network peers are aware of
1439 * @dev, such as by generating a gratuitous ARP. This may be used when
1440 * a device wants to inform the rest of the network about some sort of
1441 * reconfiguration such as a failover event or virtual machine
1442 * migration.
1443 */
netdev_notify_peers(struct net_device * dev)1444 void netdev_notify_peers(struct net_device *dev)
1445 {
1446 rtnl_lock();
1447 __netdev_notify_peers(dev);
1448 rtnl_unlock();
1449 }
1450 EXPORT_SYMBOL(netdev_notify_peers);
1451
1452 static int napi_threaded_poll(void *data);
1453
napi_kthread_create(struct napi_struct * n)1454 static int napi_kthread_create(struct napi_struct *n)
1455 {
1456 int err = 0;
1457
1458 /* Create and wake up the kthread once to put it in
1459 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1460 * warning and work with loadavg.
1461 */
1462 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1463 n->dev->name, n->napi_id);
1464 if (IS_ERR(n->thread)) {
1465 err = PTR_ERR(n->thread);
1466 pr_err("kthread_run failed with err %d\n", err);
1467 n->thread = NULL;
1468 }
1469
1470 return err;
1471 }
1472
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1473 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1474 {
1475 const struct net_device_ops *ops = dev->netdev_ops;
1476 int ret;
1477
1478 ASSERT_RTNL();
1479 dev_addr_check(dev);
1480
1481 if (!netif_device_present(dev)) {
1482 /* may be detached because parent is runtime-suspended */
1483 if (dev->dev.parent)
1484 pm_runtime_resume(dev->dev.parent);
1485 if (!netif_device_present(dev))
1486 return -ENODEV;
1487 }
1488
1489 /* Block netpoll from trying to do any rx path servicing.
1490 * If we don't do this there is a chance ndo_poll_controller
1491 * or ndo_poll may be running while we open the device
1492 */
1493 netpoll_poll_disable(dev);
1494
1495 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1496 ret = notifier_to_errno(ret);
1497 if (ret)
1498 return ret;
1499
1500 set_bit(__LINK_STATE_START, &dev->state);
1501
1502 if (ops->ndo_validate_addr)
1503 ret = ops->ndo_validate_addr(dev);
1504
1505 if (!ret && ops->ndo_open)
1506 ret = ops->ndo_open(dev);
1507
1508 netpoll_poll_enable(dev);
1509
1510 if (ret)
1511 clear_bit(__LINK_STATE_START, &dev->state);
1512 else {
1513 dev->flags |= IFF_UP;
1514 dev_set_rx_mode(dev);
1515 dev_activate(dev);
1516 add_device_randomness(dev->dev_addr, dev->addr_len);
1517 }
1518
1519 return ret;
1520 }
1521
1522 /**
1523 * dev_open - prepare an interface for use.
1524 * @dev: device to open
1525 * @extack: netlink extended ack
1526 *
1527 * Takes a device from down to up state. The device's private open
1528 * function is invoked and then the multicast lists are loaded. Finally
1529 * the device is moved into the up state and a %NETDEV_UP message is
1530 * sent to the netdev notifier chain.
1531 *
1532 * Calling this function on an active interface is a nop. On a failure
1533 * a negative errno code is returned.
1534 */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1535 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1536 {
1537 int ret;
1538
1539 if (dev->flags & IFF_UP)
1540 return 0;
1541
1542 ret = __dev_open(dev, extack);
1543 if (ret < 0)
1544 return ret;
1545
1546 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1547 call_netdevice_notifiers(NETDEV_UP, dev);
1548
1549 return ret;
1550 }
1551 EXPORT_SYMBOL(dev_open);
1552
__dev_close_many(struct list_head * head)1553 static void __dev_close_many(struct list_head *head)
1554 {
1555 struct net_device *dev;
1556
1557 ASSERT_RTNL();
1558 might_sleep();
1559
1560 list_for_each_entry(dev, head, close_list) {
1561 /* Temporarily disable netpoll until the interface is down */
1562 netpoll_poll_disable(dev);
1563
1564 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1565
1566 clear_bit(__LINK_STATE_START, &dev->state);
1567
1568 /* Synchronize to scheduled poll. We cannot touch poll list, it
1569 * can be even on different cpu. So just clear netif_running().
1570 *
1571 * dev->stop() will invoke napi_disable() on all of it's
1572 * napi_struct instances on this device.
1573 */
1574 smp_mb__after_atomic(); /* Commit netif_running(). */
1575 }
1576
1577 dev_deactivate_many(head);
1578
1579 list_for_each_entry(dev, head, close_list) {
1580 const struct net_device_ops *ops = dev->netdev_ops;
1581
1582 /*
1583 * Call the device specific close. This cannot fail.
1584 * Only if device is UP
1585 *
1586 * We allow it to be called even after a DETACH hot-plug
1587 * event.
1588 */
1589 if (ops->ndo_stop)
1590 ops->ndo_stop(dev);
1591
1592 dev->flags &= ~IFF_UP;
1593 netpoll_poll_enable(dev);
1594 }
1595 }
1596
__dev_close(struct net_device * dev)1597 static void __dev_close(struct net_device *dev)
1598 {
1599 LIST_HEAD(single);
1600
1601 list_add(&dev->close_list, &single);
1602 __dev_close_many(&single);
1603 list_del(&single);
1604 }
1605
dev_close_many(struct list_head * head,bool unlink)1606 void dev_close_many(struct list_head *head, bool unlink)
1607 {
1608 struct net_device *dev, *tmp;
1609
1610 /* Remove the devices that don't need to be closed */
1611 list_for_each_entry_safe(dev, tmp, head, close_list)
1612 if (!(dev->flags & IFF_UP))
1613 list_del_init(&dev->close_list);
1614
1615 __dev_close_many(head);
1616
1617 list_for_each_entry_safe(dev, tmp, head, close_list) {
1618 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1619 call_netdevice_notifiers(NETDEV_DOWN, dev);
1620 if (unlink)
1621 list_del_init(&dev->close_list);
1622 }
1623 }
1624 EXPORT_SYMBOL(dev_close_many);
1625
1626 /**
1627 * dev_close - shutdown an interface.
1628 * @dev: device to shutdown
1629 *
1630 * This function moves an active device into down state. A
1631 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1632 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1633 * chain.
1634 */
dev_close(struct net_device * dev)1635 void dev_close(struct net_device *dev)
1636 {
1637 if (dev->flags & IFF_UP) {
1638 LIST_HEAD(single);
1639
1640 list_add(&dev->close_list, &single);
1641 dev_close_many(&single, true);
1642 list_del(&single);
1643 }
1644 }
1645 EXPORT_SYMBOL(dev_close);
1646
1647
1648 /**
1649 * dev_disable_lro - disable Large Receive Offload on a device
1650 * @dev: device
1651 *
1652 * Disable Large Receive Offload (LRO) on a net device. Must be
1653 * called under RTNL. This is needed if received packets may be
1654 * forwarded to another interface.
1655 */
dev_disable_lro(struct net_device * dev)1656 void dev_disable_lro(struct net_device *dev)
1657 {
1658 struct net_device *lower_dev;
1659 struct list_head *iter;
1660
1661 dev->wanted_features &= ~NETIF_F_LRO;
1662 netdev_update_features(dev);
1663
1664 if (unlikely(dev->features & NETIF_F_LRO))
1665 netdev_WARN(dev, "failed to disable LRO!\n");
1666
1667 netdev_for_each_lower_dev(dev, lower_dev, iter)
1668 dev_disable_lro(lower_dev);
1669 }
1670 EXPORT_SYMBOL(dev_disable_lro);
1671
1672 /**
1673 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1674 * @dev: device
1675 *
1676 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1677 * called under RTNL. This is needed if Generic XDP is installed on
1678 * the device.
1679 */
dev_disable_gro_hw(struct net_device * dev)1680 static void dev_disable_gro_hw(struct net_device *dev)
1681 {
1682 dev->wanted_features &= ~NETIF_F_GRO_HW;
1683 netdev_update_features(dev);
1684
1685 if (unlikely(dev->features & NETIF_F_GRO_HW))
1686 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1687 }
1688
netdev_cmd_to_name(enum netdev_cmd cmd)1689 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1690 {
1691 #define N(val) \
1692 case NETDEV_##val: \
1693 return "NETDEV_" __stringify(val);
1694 switch (cmd) {
1695 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1696 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1697 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1698 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1699 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1700 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1701 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1702 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1703 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1704 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1705 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1706 N(XDP_FEAT_CHANGE)
1707 }
1708 #undef N
1709 return "UNKNOWN_NETDEV_EVENT";
1710 }
1711 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1712
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1713 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1714 struct net_device *dev)
1715 {
1716 struct netdev_notifier_info info = {
1717 .dev = dev,
1718 };
1719
1720 return nb->notifier_call(nb, val, &info);
1721 }
1722
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1723 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1724 struct net_device *dev)
1725 {
1726 int err;
1727
1728 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1729 err = notifier_to_errno(err);
1730 if (err)
1731 return err;
1732
1733 if (!(dev->flags & IFF_UP))
1734 return 0;
1735
1736 call_netdevice_notifier(nb, NETDEV_UP, dev);
1737 return 0;
1738 }
1739
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1740 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1741 struct net_device *dev)
1742 {
1743 if (dev->flags & IFF_UP) {
1744 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1745 dev);
1746 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1747 }
1748 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1749 }
1750
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1751 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1752 struct net *net)
1753 {
1754 struct net_device *dev;
1755 int err;
1756
1757 for_each_netdev(net, dev) {
1758 err = call_netdevice_register_notifiers(nb, dev);
1759 if (err)
1760 goto rollback;
1761 }
1762 return 0;
1763
1764 rollback:
1765 for_each_netdev_continue_reverse(net, dev)
1766 call_netdevice_unregister_notifiers(nb, dev);
1767 return err;
1768 }
1769
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1770 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1771 struct net *net)
1772 {
1773 struct net_device *dev;
1774
1775 for_each_netdev(net, dev)
1776 call_netdevice_unregister_notifiers(nb, dev);
1777 }
1778
1779 static int dev_boot_phase = 1;
1780
1781 /**
1782 * register_netdevice_notifier - register a network notifier block
1783 * @nb: notifier
1784 *
1785 * Register a notifier to be called when network device events occur.
1786 * The notifier passed is linked into the kernel structures and must
1787 * not be reused until it has been unregistered. A negative errno code
1788 * is returned on a failure.
1789 *
1790 * When registered all registration and up events are replayed
1791 * to the new notifier to allow device to have a race free
1792 * view of the network device list.
1793 */
1794
register_netdevice_notifier(struct notifier_block * nb)1795 int register_netdevice_notifier(struct notifier_block *nb)
1796 {
1797 struct net *net;
1798 int err;
1799
1800 /* Close race with setup_net() and cleanup_net() */
1801 down_write(&pernet_ops_rwsem);
1802 rtnl_lock();
1803 err = raw_notifier_chain_register(&netdev_chain, nb);
1804 if (err)
1805 goto unlock;
1806 if (dev_boot_phase)
1807 goto unlock;
1808 for_each_net(net) {
1809 err = call_netdevice_register_net_notifiers(nb, net);
1810 if (err)
1811 goto rollback;
1812 }
1813
1814 unlock:
1815 rtnl_unlock();
1816 up_write(&pernet_ops_rwsem);
1817 return err;
1818
1819 rollback:
1820 for_each_net_continue_reverse(net)
1821 call_netdevice_unregister_net_notifiers(nb, net);
1822
1823 raw_notifier_chain_unregister(&netdev_chain, nb);
1824 goto unlock;
1825 }
1826 EXPORT_SYMBOL(register_netdevice_notifier);
1827
1828 /**
1829 * unregister_netdevice_notifier - unregister a network notifier block
1830 * @nb: notifier
1831 *
1832 * Unregister a notifier previously registered by
1833 * register_netdevice_notifier(). The notifier is unlinked into the
1834 * kernel structures and may then be reused. A negative errno code
1835 * is returned on a failure.
1836 *
1837 * After unregistering unregister and down device events are synthesized
1838 * for all devices on the device list to the removed notifier to remove
1839 * the need for special case cleanup code.
1840 */
1841
unregister_netdevice_notifier(struct notifier_block * nb)1842 int unregister_netdevice_notifier(struct notifier_block *nb)
1843 {
1844 struct net *net;
1845 int err;
1846
1847 /* Close race with setup_net() and cleanup_net() */
1848 down_write(&pernet_ops_rwsem);
1849 rtnl_lock();
1850 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1851 if (err)
1852 goto unlock;
1853
1854 for_each_net(net)
1855 call_netdevice_unregister_net_notifiers(nb, net);
1856
1857 unlock:
1858 rtnl_unlock();
1859 up_write(&pernet_ops_rwsem);
1860 return err;
1861 }
1862 EXPORT_SYMBOL(unregister_netdevice_notifier);
1863
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1864 static int __register_netdevice_notifier_net(struct net *net,
1865 struct notifier_block *nb,
1866 bool ignore_call_fail)
1867 {
1868 int err;
1869
1870 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1871 if (err)
1872 return err;
1873 if (dev_boot_phase)
1874 return 0;
1875
1876 err = call_netdevice_register_net_notifiers(nb, net);
1877 if (err && !ignore_call_fail)
1878 goto chain_unregister;
1879
1880 return 0;
1881
1882 chain_unregister:
1883 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1884 return err;
1885 }
1886
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1887 static int __unregister_netdevice_notifier_net(struct net *net,
1888 struct notifier_block *nb)
1889 {
1890 int err;
1891
1892 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1893 if (err)
1894 return err;
1895
1896 call_netdevice_unregister_net_notifiers(nb, net);
1897 return 0;
1898 }
1899
1900 /**
1901 * register_netdevice_notifier_net - register a per-netns network notifier block
1902 * @net: network namespace
1903 * @nb: notifier
1904 *
1905 * Register a notifier to be called when network device events occur.
1906 * The notifier passed is linked into the kernel structures and must
1907 * not be reused until it has been unregistered. A negative errno code
1908 * is returned on a failure.
1909 *
1910 * When registered all registration and up events are replayed
1911 * to the new notifier to allow device to have a race free
1912 * view of the network device list.
1913 */
1914
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1915 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1916 {
1917 int err;
1918
1919 rtnl_lock();
1920 err = __register_netdevice_notifier_net(net, nb, false);
1921 rtnl_unlock();
1922 return err;
1923 }
1924 EXPORT_SYMBOL(register_netdevice_notifier_net);
1925
1926 /**
1927 * unregister_netdevice_notifier_net - unregister a per-netns
1928 * network notifier block
1929 * @net: network namespace
1930 * @nb: notifier
1931 *
1932 * Unregister a notifier previously registered by
1933 * register_netdevice_notifier_net(). The notifier is unlinked from the
1934 * kernel structures and may then be reused. A negative errno code
1935 * is returned on a failure.
1936 *
1937 * After unregistering unregister and down device events are synthesized
1938 * for all devices on the device list to the removed notifier to remove
1939 * the need for special case cleanup code.
1940 */
1941
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1942 int unregister_netdevice_notifier_net(struct net *net,
1943 struct notifier_block *nb)
1944 {
1945 int err;
1946
1947 rtnl_lock();
1948 err = __unregister_netdevice_notifier_net(net, nb);
1949 rtnl_unlock();
1950 return err;
1951 }
1952 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1953
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)1954 static void __move_netdevice_notifier_net(struct net *src_net,
1955 struct net *dst_net,
1956 struct notifier_block *nb)
1957 {
1958 __unregister_netdevice_notifier_net(src_net, nb);
1959 __register_netdevice_notifier_net(dst_net, nb, true);
1960 }
1961
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1962 int register_netdevice_notifier_dev_net(struct net_device *dev,
1963 struct notifier_block *nb,
1964 struct netdev_net_notifier *nn)
1965 {
1966 int err;
1967
1968 rtnl_lock();
1969 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1970 if (!err) {
1971 nn->nb = nb;
1972 list_add(&nn->list, &dev->net_notifier_list);
1973 }
1974 rtnl_unlock();
1975 return err;
1976 }
1977 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1978
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1979 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1980 struct notifier_block *nb,
1981 struct netdev_net_notifier *nn)
1982 {
1983 int err;
1984
1985 rtnl_lock();
1986 list_del(&nn->list);
1987 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1988 rtnl_unlock();
1989 return err;
1990 }
1991 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1992
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)1993 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1994 struct net *net)
1995 {
1996 struct netdev_net_notifier *nn;
1997
1998 list_for_each_entry(nn, &dev->net_notifier_list, list)
1999 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2000 }
2001
2002 /**
2003 * call_netdevice_notifiers_info - call all network notifier blocks
2004 * @val: value passed unmodified to notifier function
2005 * @info: notifier information data
2006 *
2007 * Call all network notifier blocks. Parameters and return value
2008 * are as for raw_notifier_call_chain().
2009 */
2010
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2011 int call_netdevice_notifiers_info(unsigned long val,
2012 struct netdev_notifier_info *info)
2013 {
2014 struct net *net = dev_net(info->dev);
2015 int ret;
2016
2017 ASSERT_RTNL();
2018
2019 /* Run per-netns notifier block chain first, then run the global one.
2020 * Hopefully, one day, the global one is going to be removed after
2021 * all notifier block registrators get converted to be per-netns.
2022 */
2023 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2024 if (ret & NOTIFY_STOP_MASK)
2025 return ret;
2026 return raw_notifier_call_chain(&netdev_chain, val, info);
2027 }
2028
2029 /**
2030 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2031 * for and rollback on error
2032 * @val_up: value passed unmodified to notifier function
2033 * @val_down: value passed unmodified to the notifier function when
2034 * recovering from an error on @val_up
2035 * @info: notifier information data
2036 *
2037 * Call all per-netns network notifier blocks, but not notifier blocks on
2038 * the global notifier chain. Parameters and return value are as for
2039 * raw_notifier_call_chain_robust().
2040 */
2041
2042 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2043 call_netdevice_notifiers_info_robust(unsigned long val_up,
2044 unsigned long val_down,
2045 struct netdev_notifier_info *info)
2046 {
2047 struct net *net = dev_net(info->dev);
2048
2049 ASSERT_RTNL();
2050
2051 return raw_notifier_call_chain_robust(&net->netdev_chain,
2052 val_up, val_down, info);
2053 }
2054
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2055 static int call_netdevice_notifiers_extack(unsigned long val,
2056 struct net_device *dev,
2057 struct netlink_ext_ack *extack)
2058 {
2059 struct netdev_notifier_info info = {
2060 .dev = dev,
2061 .extack = extack,
2062 };
2063
2064 return call_netdevice_notifiers_info(val, &info);
2065 }
2066
2067 /**
2068 * call_netdevice_notifiers - call all network notifier blocks
2069 * @val: value passed unmodified to notifier function
2070 * @dev: net_device pointer passed unmodified to notifier function
2071 *
2072 * Call all network notifier blocks. Parameters and return value
2073 * are as for raw_notifier_call_chain().
2074 */
2075
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2076 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2077 {
2078 return call_netdevice_notifiers_extack(val, dev, NULL);
2079 }
2080 EXPORT_SYMBOL(call_netdevice_notifiers);
2081
2082 /**
2083 * call_netdevice_notifiers_mtu - call all network notifier blocks
2084 * @val: value passed unmodified to notifier function
2085 * @dev: net_device pointer passed unmodified to notifier function
2086 * @arg: additional u32 argument passed to the notifier function
2087 *
2088 * Call all network notifier blocks. Parameters and return value
2089 * are as for raw_notifier_call_chain().
2090 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2091 static int call_netdevice_notifiers_mtu(unsigned long val,
2092 struct net_device *dev, u32 arg)
2093 {
2094 struct netdev_notifier_info_ext info = {
2095 .info.dev = dev,
2096 .ext.mtu = arg,
2097 };
2098
2099 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2100
2101 return call_netdevice_notifiers_info(val, &info.info);
2102 }
2103
2104 #ifdef CONFIG_NET_INGRESS
2105 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2106
net_inc_ingress_queue(void)2107 void net_inc_ingress_queue(void)
2108 {
2109 static_branch_inc(&ingress_needed_key);
2110 }
2111 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2112
net_dec_ingress_queue(void)2113 void net_dec_ingress_queue(void)
2114 {
2115 static_branch_dec(&ingress_needed_key);
2116 }
2117 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2118 #endif
2119
2120 #ifdef CONFIG_NET_EGRESS
2121 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2122
net_inc_egress_queue(void)2123 void net_inc_egress_queue(void)
2124 {
2125 static_branch_inc(&egress_needed_key);
2126 }
2127 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2128
net_dec_egress_queue(void)2129 void net_dec_egress_queue(void)
2130 {
2131 static_branch_dec(&egress_needed_key);
2132 }
2133 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2134 #endif
2135
2136 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2137 EXPORT_SYMBOL(netstamp_needed_key);
2138 #ifdef CONFIG_JUMP_LABEL
2139 static atomic_t netstamp_needed_deferred;
2140 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2141 static void netstamp_clear(struct work_struct *work)
2142 {
2143 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2144 int wanted;
2145
2146 wanted = atomic_add_return(deferred, &netstamp_wanted);
2147 if (wanted > 0)
2148 static_branch_enable(&netstamp_needed_key);
2149 else
2150 static_branch_disable(&netstamp_needed_key);
2151 }
2152 static DECLARE_WORK(netstamp_work, netstamp_clear);
2153 #endif
2154
net_enable_timestamp(void)2155 void net_enable_timestamp(void)
2156 {
2157 #ifdef CONFIG_JUMP_LABEL
2158 int wanted = atomic_read(&netstamp_wanted);
2159
2160 while (wanted > 0) {
2161 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2162 return;
2163 }
2164 atomic_inc(&netstamp_needed_deferred);
2165 schedule_work(&netstamp_work);
2166 #else
2167 static_branch_inc(&netstamp_needed_key);
2168 #endif
2169 }
2170 EXPORT_SYMBOL(net_enable_timestamp);
2171
net_disable_timestamp(void)2172 void net_disable_timestamp(void)
2173 {
2174 #ifdef CONFIG_JUMP_LABEL
2175 int wanted = atomic_read(&netstamp_wanted);
2176
2177 while (wanted > 1) {
2178 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2179 return;
2180 }
2181 atomic_dec(&netstamp_needed_deferred);
2182 schedule_work(&netstamp_work);
2183 #else
2184 static_branch_dec(&netstamp_needed_key);
2185 #endif
2186 }
2187 EXPORT_SYMBOL(net_disable_timestamp);
2188
net_timestamp_set(struct sk_buff * skb)2189 static inline void net_timestamp_set(struct sk_buff *skb)
2190 {
2191 skb->tstamp = 0;
2192 skb->mono_delivery_time = 0;
2193 if (static_branch_unlikely(&netstamp_needed_key))
2194 skb->tstamp = ktime_get_real();
2195 }
2196
2197 #define net_timestamp_check(COND, SKB) \
2198 if (static_branch_unlikely(&netstamp_needed_key)) { \
2199 if ((COND) && !(SKB)->tstamp) \
2200 (SKB)->tstamp = ktime_get_real(); \
2201 } \
2202
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2203 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2204 {
2205 return __is_skb_forwardable(dev, skb, true);
2206 }
2207 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2208
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2209 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2210 bool check_mtu)
2211 {
2212 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2213
2214 if (likely(!ret)) {
2215 skb->protocol = eth_type_trans(skb, dev);
2216 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2217 }
2218
2219 return ret;
2220 }
2221
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2222 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2223 {
2224 return __dev_forward_skb2(dev, skb, true);
2225 }
2226 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2227
2228 /**
2229 * dev_forward_skb - loopback an skb to another netif
2230 *
2231 * @dev: destination network device
2232 * @skb: buffer to forward
2233 *
2234 * return values:
2235 * NET_RX_SUCCESS (no congestion)
2236 * NET_RX_DROP (packet was dropped, but freed)
2237 *
2238 * dev_forward_skb can be used for injecting an skb from the
2239 * start_xmit function of one device into the receive queue
2240 * of another device.
2241 *
2242 * The receiving device may be in another namespace, so
2243 * we have to clear all information in the skb that could
2244 * impact namespace isolation.
2245 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2246 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2247 {
2248 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2249 }
2250 EXPORT_SYMBOL_GPL(dev_forward_skb);
2251
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2252 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2253 {
2254 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2255 }
2256
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2257 static inline int deliver_skb(struct sk_buff *skb,
2258 struct packet_type *pt_prev,
2259 struct net_device *orig_dev)
2260 {
2261 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2262 return -ENOMEM;
2263 refcount_inc(&skb->users);
2264 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2265 }
2266
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2267 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2268 struct packet_type **pt,
2269 struct net_device *orig_dev,
2270 __be16 type,
2271 struct list_head *ptype_list)
2272 {
2273 struct packet_type *ptype, *pt_prev = *pt;
2274
2275 list_for_each_entry_rcu(ptype, ptype_list, list) {
2276 if (ptype->type != type)
2277 continue;
2278 if (pt_prev)
2279 deliver_skb(skb, pt_prev, orig_dev);
2280 pt_prev = ptype;
2281 }
2282 *pt = pt_prev;
2283 }
2284
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2285 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2286 {
2287 if (!ptype->af_packet_priv || !skb->sk)
2288 return false;
2289
2290 if (ptype->id_match)
2291 return ptype->id_match(ptype, skb->sk);
2292 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2293 return true;
2294
2295 return false;
2296 }
2297
2298 /**
2299 * dev_nit_active - return true if any network interface taps are in use
2300 *
2301 * @dev: network device to check for the presence of taps
2302 */
dev_nit_active(struct net_device * dev)2303 bool dev_nit_active(struct net_device *dev)
2304 {
2305 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2306 }
2307 EXPORT_SYMBOL_GPL(dev_nit_active);
2308
2309 /*
2310 * Support routine. Sends outgoing frames to any network
2311 * taps currently in use.
2312 */
2313
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2314 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2315 {
2316 struct packet_type *ptype;
2317 struct sk_buff *skb2 = NULL;
2318 struct packet_type *pt_prev = NULL;
2319 struct list_head *ptype_list = &ptype_all;
2320
2321 rcu_read_lock();
2322 again:
2323 list_for_each_entry_rcu(ptype, ptype_list, list) {
2324 if (READ_ONCE(ptype->ignore_outgoing))
2325 continue;
2326
2327 /* Never send packets back to the socket
2328 * they originated from - MvS (miquels@drinkel.ow.org)
2329 */
2330 if (skb_loop_sk(ptype, skb))
2331 continue;
2332
2333 if (pt_prev) {
2334 deliver_skb(skb2, pt_prev, skb->dev);
2335 pt_prev = ptype;
2336 continue;
2337 }
2338
2339 /* need to clone skb, done only once */
2340 skb2 = skb_clone(skb, GFP_ATOMIC);
2341 if (!skb2)
2342 goto out_unlock;
2343
2344 net_timestamp_set(skb2);
2345
2346 /* skb->nh should be correctly
2347 * set by sender, so that the second statement is
2348 * just protection against buggy protocols.
2349 */
2350 skb_reset_mac_header(skb2);
2351
2352 if (skb_network_header(skb2) < skb2->data ||
2353 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2354 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2355 ntohs(skb2->protocol),
2356 dev->name);
2357 skb_reset_network_header(skb2);
2358 }
2359
2360 skb2->transport_header = skb2->network_header;
2361 skb2->pkt_type = PACKET_OUTGOING;
2362 pt_prev = ptype;
2363 }
2364
2365 if (ptype_list == &ptype_all) {
2366 ptype_list = &dev->ptype_all;
2367 goto again;
2368 }
2369 out_unlock:
2370 if (pt_prev) {
2371 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2372 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2373 else
2374 kfree_skb(skb2);
2375 }
2376 rcu_read_unlock();
2377 }
2378 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2379
2380 /**
2381 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2382 * @dev: Network device
2383 * @txq: number of queues available
2384 *
2385 * If real_num_tx_queues is changed the tc mappings may no longer be
2386 * valid. To resolve this verify the tc mapping remains valid and if
2387 * not NULL the mapping. With no priorities mapping to this
2388 * offset/count pair it will no longer be used. In the worst case TC0
2389 * is invalid nothing can be done so disable priority mappings. If is
2390 * expected that drivers will fix this mapping if they can before
2391 * calling netif_set_real_num_tx_queues.
2392 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2393 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2394 {
2395 int i;
2396 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2397
2398 /* If TC0 is invalidated disable TC mapping */
2399 if (tc->offset + tc->count > txq) {
2400 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2401 dev->num_tc = 0;
2402 return;
2403 }
2404
2405 /* Invalidated prio to tc mappings set to TC0 */
2406 for (i = 1; i < TC_BITMASK + 1; i++) {
2407 int q = netdev_get_prio_tc_map(dev, i);
2408
2409 tc = &dev->tc_to_txq[q];
2410 if (tc->offset + tc->count > txq) {
2411 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2412 i, q);
2413 netdev_set_prio_tc_map(dev, i, 0);
2414 }
2415 }
2416 }
2417
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2418 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2419 {
2420 if (dev->num_tc) {
2421 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2422 int i;
2423
2424 /* walk through the TCs and see if it falls into any of them */
2425 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2426 if ((txq - tc->offset) < tc->count)
2427 return i;
2428 }
2429
2430 /* didn't find it, just return -1 to indicate no match */
2431 return -1;
2432 }
2433
2434 return 0;
2435 }
2436 EXPORT_SYMBOL(netdev_txq_to_tc);
2437
2438 #ifdef CONFIG_XPS
2439 static struct static_key xps_needed __read_mostly;
2440 static struct static_key xps_rxqs_needed __read_mostly;
2441 static DEFINE_MUTEX(xps_map_mutex);
2442 #define xmap_dereference(P) \
2443 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2444
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2445 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2446 struct xps_dev_maps *old_maps, int tci, u16 index)
2447 {
2448 struct xps_map *map = NULL;
2449 int pos;
2450
2451 map = xmap_dereference(dev_maps->attr_map[tci]);
2452 if (!map)
2453 return false;
2454
2455 for (pos = map->len; pos--;) {
2456 if (map->queues[pos] != index)
2457 continue;
2458
2459 if (map->len > 1) {
2460 map->queues[pos] = map->queues[--map->len];
2461 break;
2462 }
2463
2464 if (old_maps)
2465 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2466 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2467 kfree_rcu(map, rcu);
2468 return false;
2469 }
2470
2471 return true;
2472 }
2473
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2474 static bool remove_xps_queue_cpu(struct net_device *dev,
2475 struct xps_dev_maps *dev_maps,
2476 int cpu, u16 offset, u16 count)
2477 {
2478 int num_tc = dev_maps->num_tc;
2479 bool active = false;
2480 int tci;
2481
2482 for (tci = cpu * num_tc; num_tc--; tci++) {
2483 int i, j;
2484
2485 for (i = count, j = offset; i--; j++) {
2486 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2487 break;
2488 }
2489
2490 active |= i < 0;
2491 }
2492
2493 return active;
2494 }
2495
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2496 static void reset_xps_maps(struct net_device *dev,
2497 struct xps_dev_maps *dev_maps,
2498 enum xps_map_type type)
2499 {
2500 static_key_slow_dec_cpuslocked(&xps_needed);
2501 if (type == XPS_RXQS)
2502 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2503
2504 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2505
2506 kfree_rcu(dev_maps, rcu);
2507 }
2508
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2509 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2510 u16 offset, u16 count)
2511 {
2512 struct xps_dev_maps *dev_maps;
2513 bool active = false;
2514 int i, j;
2515
2516 dev_maps = xmap_dereference(dev->xps_maps[type]);
2517 if (!dev_maps)
2518 return;
2519
2520 for (j = 0; j < dev_maps->nr_ids; j++)
2521 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2522 if (!active)
2523 reset_xps_maps(dev, dev_maps, type);
2524
2525 if (type == XPS_CPUS) {
2526 for (i = offset + (count - 1); count--; i--)
2527 netdev_queue_numa_node_write(
2528 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2529 }
2530 }
2531
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2532 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2533 u16 count)
2534 {
2535 if (!static_key_false(&xps_needed))
2536 return;
2537
2538 cpus_read_lock();
2539 mutex_lock(&xps_map_mutex);
2540
2541 if (static_key_false(&xps_rxqs_needed))
2542 clean_xps_maps(dev, XPS_RXQS, offset, count);
2543
2544 clean_xps_maps(dev, XPS_CPUS, offset, count);
2545
2546 mutex_unlock(&xps_map_mutex);
2547 cpus_read_unlock();
2548 }
2549
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2550 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2551 {
2552 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2553 }
2554
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2555 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2556 u16 index, bool is_rxqs_map)
2557 {
2558 struct xps_map *new_map;
2559 int alloc_len = XPS_MIN_MAP_ALLOC;
2560 int i, pos;
2561
2562 for (pos = 0; map && pos < map->len; pos++) {
2563 if (map->queues[pos] != index)
2564 continue;
2565 return map;
2566 }
2567
2568 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2569 if (map) {
2570 if (pos < map->alloc_len)
2571 return map;
2572
2573 alloc_len = map->alloc_len * 2;
2574 }
2575
2576 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2577 * map
2578 */
2579 if (is_rxqs_map)
2580 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2581 else
2582 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2583 cpu_to_node(attr_index));
2584 if (!new_map)
2585 return NULL;
2586
2587 for (i = 0; i < pos; i++)
2588 new_map->queues[i] = map->queues[i];
2589 new_map->alloc_len = alloc_len;
2590 new_map->len = pos;
2591
2592 return new_map;
2593 }
2594
2595 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2596 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2597 struct xps_dev_maps *new_dev_maps, int index,
2598 int tc, bool skip_tc)
2599 {
2600 int i, tci = index * dev_maps->num_tc;
2601 struct xps_map *map;
2602
2603 /* copy maps belonging to foreign traffic classes */
2604 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2605 if (i == tc && skip_tc)
2606 continue;
2607
2608 /* fill in the new device map from the old device map */
2609 map = xmap_dereference(dev_maps->attr_map[tci]);
2610 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2611 }
2612 }
2613
2614 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2615 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2616 u16 index, enum xps_map_type type)
2617 {
2618 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2619 const unsigned long *online_mask = NULL;
2620 bool active = false, copy = false;
2621 int i, j, tci, numa_node_id = -2;
2622 int maps_sz, num_tc = 1, tc = 0;
2623 struct xps_map *map, *new_map;
2624 unsigned int nr_ids;
2625
2626 WARN_ON_ONCE(index >= dev->num_tx_queues);
2627
2628 if (dev->num_tc) {
2629 /* Do not allow XPS on subordinate device directly */
2630 num_tc = dev->num_tc;
2631 if (num_tc < 0)
2632 return -EINVAL;
2633
2634 /* If queue belongs to subordinate dev use its map */
2635 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2636
2637 tc = netdev_txq_to_tc(dev, index);
2638 if (tc < 0)
2639 return -EINVAL;
2640 }
2641
2642 mutex_lock(&xps_map_mutex);
2643
2644 dev_maps = xmap_dereference(dev->xps_maps[type]);
2645 if (type == XPS_RXQS) {
2646 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2647 nr_ids = dev->num_rx_queues;
2648 } else {
2649 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2650 if (num_possible_cpus() > 1)
2651 online_mask = cpumask_bits(cpu_online_mask);
2652 nr_ids = nr_cpu_ids;
2653 }
2654
2655 if (maps_sz < L1_CACHE_BYTES)
2656 maps_sz = L1_CACHE_BYTES;
2657
2658 /* The old dev_maps could be larger or smaller than the one we're
2659 * setting up now, as dev->num_tc or nr_ids could have been updated in
2660 * between. We could try to be smart, but let's be safe instead and only
2661 * copy foreign traffic classes if the two map sizes match.
2662 */
2663 if (dev_maps &&
2664 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2665 copy = true;
2666
2667 /* allocate memory for queue storage */
2668 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2669 j < nr_ids;) {
2670 if (!new_dev_maps) {
2671 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2672 if (!new_dev_maps) {
2673 mutex_unlock(&xps_map_mutex);
2674 return -ENOMEM;
2675 }
2676
2677 new_dev_maps->nr_ids = nr_ids;
2678 new_dev_maps->num_tc = num_tc;
2679 }
2680
2681 tci = j * num_tc + tc;
2682 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2683
2684 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2685 if (!map)
2686 goto error;
2687
2688 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2689 }
2690
2691 if (!new_dev_maps)
2692 goto out_no_new_maps;
2693
2694 if (!dev_maps) {
2695 /* Increment static keys at most once per type */
2696 static_key_slow_inc_cpuslocked(&xps_needed);
2697 if (type == XPS_RXQS)
2698 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2699 }
2700
2701 for (j = 0; j < nr_ids; j++) {
2702 bool skip_tc = false;
2703
2704 tci = j * num_tc + tc;
2705 if (netif_attr_test_mask(j, mask, nr_ids) &&
2706 netif_attr_test_online(j, online_mask, nr_ids)) {
2707 /* add tx-queue to CPU/rx-queue maps */
2708 int pos = 0;
2709
2710 skip_tc = true;
2711
2712 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2713 while ((pos < map->len) && (map->queues[pos] != index))
2714 pos++;
2715
2716 if (pos == map->len)
2717 map->queues[map->len++] = index;
2718 #ifdef CONFIG_NUMA
2719 if (type == XPS_CPUS) {
2720 if (numa_node_id == -2)
2721 numa_node_id = cpu_to_node(j);
2722 else if (numa_node_id != cpu_to_node(j))
2723 numa_node_id = -1;
2724 }
2725 #endif
2726 }
2727
2728 if (copy)
2729 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2730 skip_tc);
2731 }
2732
2733 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2734
2735 /* Cleanup old maps */
2736 if (!dev_maps)
2737 goto out_no_old_maps;
2738
2739 for (j = 0; j < dev_maps->nr_ids; j++) {
2740 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2741 map = xmap_dereference(dev_maps->attr_map[tci]);
2742 if (!map)
2743 continue;
2744
2745 if (copy) {
2746 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2747 if (map == new_map)
2748 continue;
2749 }
2750
2751 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2752 kfree_rcu(map, rcu);
2753 }
2754 }
2755
2756 old_dev_maps = dev_maps;
2757
2758 out_no_old_maps:
2759 dev_maps = new_dev_maps;
2760 active = true;
2761
2762 out_no_new_maps:
2763 if (type == XPS_CPUS)
2764 /* update Tx queue numa node */
2765 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2766 (numa_node_id >= 0) ?
2767 numa_node_id : NUMA_NO_NODE);
2768
2769 if (!dev_maps)
2770 goto out_no_maps;
2771
2772 /* removes tx-queue from unused CPUs/rx-queues */
2773 for (j = 0; j < dev_maps->nr_ids; j++) {
2774 tci = j * dev_maps->num_tc;
2775
2776 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2777 if (i == tc &&
2778 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2779 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2780 continue;
2781
2782 active |= remove_xps_queue(dev_maps,
2783 copy ? old_dev_maps : NULL,
2784 tci, index);
2785 }
2786 }
2787
2788 if (old_dev_maps)
2789 kfree_rcu(old_dev_maps, rcu);
2790
2791 /* free map if not active */
2792 if (!active)
2793 reset_xps_maps(dev, dev_maps, type);
2794
2795 out_no_maps:
2796 mutex_unlock(&xps_map_mutex);
2797
2798 return 0;
2799 error:
2800 /* remove any maps that we added */
2801 for (j = 0; j < nr_ids; j++) {
2802 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2803 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2804 map = copy ?
2805 xmap_dereference(dev_maps->attr_map[tci]) :
2806 NULL;
2807 if (new_map && new_map != map)
2808 kfree(new_map);
2809 }
2810 }
2811
2812 mutex_unlock(&xps_map_mutex);
2813
2814 kfree(new_dev_maps);
2815 return -ENOMEM;
2816 }
2817 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2818
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2819 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2820 u16 index)
2821 {
2822 int ret;
2823
2824 cpus_read_lock();
2825 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2826 cpus_read_unlock();
2827
2828 return ret;
2829 }
2830 EXPORT_SYMBOL(netif_set_xps_queue);
2831
2832 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2833 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2834 {
2835 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2836
2837 /* Unbind any subordinate channels */
2838 while (txq-- != &dev->_tx[0]) {
2839 if (txq->sb_dev)
2840 netdev_unbind_sb_channel(dev, txq->sb_dev);
2841 }
2842 }
2843
netdev_reset_tc(struct net_device * dev)2844 void netdev_reset_tc(struct net_device *dev)
2845 {
2846 #ifdef CONFIG_XPS
2847 netif_reset_xps_queues_gt(dev, 0);
2848 #endif
2849 netdev_unbind_all_sb_channels(dev);
2850
2851 /* Reset TC configuration of device */
2852 dev->num_tc = 0;
2853 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2854 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2855 }
2856 EXPORT_SYMBOL(netdev_reset_tc);
2857
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2858 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2859 {
2860 if (tc >= dev->num_tc)
2861 return -EINVAL;
2862
2863 #ifdef CONFIG_XPS
2864 netif_reset_xps_queues(dev, offset, count);
2865 #endif
2866 dev->tc_to_txq[tc].count = count;
2867 dev->tc_to_txq[tc].offset = offset;
2868 return 0;
2869 }
2870 EXPORT_SYMBOL(netdev_set_tc_queue);
2871
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2872 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2873 {
2874 if (num_tc > TC_MAX_QUEUE)
2875 return -EINVAL;
2876
2877 #ifdef CONFIG_XPS
2878 netif_reset_xps_queues_gt(dev, 0);
2879 #endif
2880 netdev_unbind_all_sb_channels(dev);
2881
2882 dev->num_tc = num_tc;
2883 return 0;
2884 }
2885 EXPORT_SYMBOL(netdev_set_num_tc);
2886
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2887 void netdev_unbind_sb_channel(struct net_device *dev,
2888 struct net_device *sb_dev)
2889 {
2890 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2891
2892 #ifdef CONFIG_XPS
2893 netif_reset_xps_queues_gt(sb_dev, 0);
2894 #endif
2895 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2896 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2897
2898 while (txq-- != &dev->_tx[0]) {
2899 if (txq->sb_dev == sb_dev)
2900 txq->sb_dev = NULL;
2901 }
2902 }
2903 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2904
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2905 int netdev_bind_sb_channel_queue(struct net_device *dev,
2906 struct net_device *sb_dev,
2907 u8 tc, u16 count, u16 offset)
2908 {
2909 /* Make certain the sb_dev and dev are already configured */
2910 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2911 return -EINVAL;
2912
2913 /* We cannot hand out queues we don't have */
2914 if ((offset + count) > dev->real_num_tx_queues)
2915 return -EINVAL;
2916
2917 /* Record the mapping */
2918 sb_dev->tc_to_txq[tc].count = count;
2919 sb_dev->tc_to_txq[tc].offset = offset;
2920
2921 /* Provide a way for Tx queue to find the tc_to_txq map or
2922 * XPS map for itself.
2923 */
2924 while (count--)
2925 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2926
2927 return 0;
2928 }
2929 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2930
netdev_set_sb_channel(struct net_device * dev,u16 channel)2931 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2932 {
2933 /* Do not use a multiqueue device to represent a subordinate channel */
2934 if (netif_is_multiqueue(dev))
2935 return -ENODEV;
2936
2937 /* We allow channels 1 - 32767 to be used for subordinate channels.
2938 * Channel 0 is meant to be "native" mode and used only to represent
2939 * the main root device. We allow writing 0 to reset the device back
2940 * to normal mode after being used as a subordinate channel.
2941 */
2942 if (channel > S16_MAX)
2943 return -EINVAL;
2944
2945 dev->num_tc = -channel;
2946
2947 return 0;
2948 }
2949 EXPORT_SYMBOL(netdev_set_sb_channel);
2950
2951 /*
2952 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2953 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2954 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2955 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2956 {
2957 bool disabling;
2958 int rc;
2959
2960 disabling = txq < dev->real_num_tx_queues;
2961
2962 if (txq < 1 || txq > dev->num_tx_queues)
2963 return -EINVAL;
2964
2965 if (dev->reg_state == NETREG_REGISTERED ||
2966 dev->reg_state == NETREG_UNREGISTERING) {
2967 ASSERT_RTNL();
2968
2969 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2970 txq);
2971 if (rc)
2972 return rc;
2973
2974 if (dev->num_tc)
2975 netif_setup_tc(dev, txq);
2976
2977 dev_qdisc_change_real_num_tx(dev, txq);
2978
2979 dev->real_num_tx_queues = txq;
2980
2981 if (disabling) {
2982 synchronize_net();
2983 qdisc_reset_all_tx_gt(dev, txq);
2984 #ifdef CONFIG_XPS
2985 netif_reset_xps_queues_gt(dev, txq);
2986 #endif
2987 }
2988 } else {
2989 dev->real_num_tx_queues = txq;
2990 }
2991
2992 return 0;
2993 }
2994 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2995
2996 #ifdef CONFIG_SYSFS
2997 /**
2998 * netif_set_real_num_rx_queues - set actual number of RX queues used
2999 * @dev: Network device
3000 * @rxq: Actual number of RX queues
3001 *
3002 * This must be called either with the rtnl_lock held or before
3003 * registration of the net device. Returns 0 on success, or a
3004 * negative error code. If called before registration, it always
3005 * succeeds.
3006 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3007 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3008 {
3009 int rc;
3010
3011 if (rxq < 1 || rxq > dev->num_rx_queues)
3012 return -EINVAL;
3013
3014 if (dev->reg_state == NETREG_REGISTERED) {
3015 ASSERT_RTNL();
3016
3017 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3018 rxq);
3019 if (rc)
3020 return rc;
3021 }
3022
3023 dev->real_num_rx_queues = rxq;
3024 return 0;
3025 }
3026 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3027 #endif
3028
3029 /**
3030 * netif_set_real_num_queues - set actual number of RX and TX queues used
3031 * @dev: Network device
3032 * @txq: Actual number of TX queues
3033 * @rxq: Actual number of RX queues
3034 *
3035 * Set the real number of both TX and RX queues.
3036 * Does nothing if the number of queues is already correct.
3037 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3038 int netif_set_real_num_queues(struct net_device *dev,
3039 unsigned int txq, unsigned int rxq)
3040 {
3041 unsigned int old_rxq = dev->real_num_rx_queues;
3042 int err;
3043
3044 if (txq < 1 || txq > dev->num_tx_queues ||
3045 rxq < 1 || rxq > dev->num_rx_queues)
3046 return -EINVAL;
3047
3048 /* Start from increases, so the error path only does decreases -
3049 * decreases can't fail.
3050 */
3051 if (rxq > dev->real_num_rx_queues) {
3052 err = netif_set_real_num_rx_queues(dev, rxq);
3053 if (err)
3054 return err;
3055 }
3056 if (txq > dev->real_num_tx_queues) {
3057 err = netif_set_real_num_tx_queues(dev, txq);
3058 if (err)
3059 goto undo_rx;
3060 }
3061 if (rxq < dev->real_num_rx_queues)
3062 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3063 if (txq < dev->real_num_tx_queues)
3064 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3065
3066 return 0;
3067 undo_rx:
3068 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3069 return err;
3070 }
3071 EXPORT_SYMBOL(netif_set_real_num_queues);
3072
3073 /**
3074 * netif_set_tso_max_size() - set the max size of TSO frames supported
3075 * @dev: netdev to update
3076 * @size: max skb->len of a TSO frame
3077 *
3078 * Set the limit on the size of TSO super-frames the device can handle.
3079 * Unless explicitly set the stack will assume the value of
3080 * %GSO_LEGACY_MAX_SIZE.
3081 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3082 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3083 {
3084 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3085 if (size < READ_ONCE(dev->gso_max_size))
3086 netif_set_gso_max_size(dev, size);
3087 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3088 netif_set_gso_ipv4_max_size(dev, size);
3089 }
3090 EXPORT_SYMBOL(netif_set_tso_max_size);
3091
3092 /**
3093 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3094 * @dev: netdev to update
3095 * @segs: max number of TCP segments
3096 *
3097 * Set the limit on the number of TCP segments the device can generate from
3098 * a single TSO super-frame.
3099 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3100 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3101 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3102 {
3103 dev->tso_max_segs = segs;
3104 if (segs < READ_ONCE(dev->gso_max_segs))
3105 netif_set_gso_max_segs(dev, segs);
3106 }
3107 EXPORT_SYMBOL(netif_set_tso_max_segs);
3108
3109 /**
3110 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3111 * @to: netdev to update
3112 * @from: netdev from which to copy the limits
3113 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3114 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3115 {
3116 netif_set_tso_max_size(to, from->tso_max_size);
3117 netif_set_tso_max_segs(to, from->tso_max_segs);
3118 }
3119 EXPORT_SYMBOL(netif_inherit_tso_max);
3120
3121 /**
3122 * netif_get_num_default_rss_queues - default number of RSS queues
3123 *
3124 * Default value is the number of physical cores if there are only 1 or 2, or
3125 * divided by 2 if there are more.
3126 */
netif_get_num_default_rss_queues(void)3127 int netif_get_num_default_rss_queues(void)
3128 {
3129 cpumask_var_t cpus;
3130 int cpu, count = 0;
3131
3132 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3133 return 1;
3134
3135 cpumask_copy(cpus, cpu_online_mask);
3136 for_each_cpu(cpu, cpus) {
3137 ++count;
3138 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3139 }
3140 free_cpumask_var(cpus);
3141
3142 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3143 }
3144 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3145
__netif_reschedule(struct Qdisc * q)3146 static void __netif_reschedule(struct Qdisc *q)
3147 {
3148 struct softnet_data *sd;
3149 unsigned long flags;
3150
3151 local_irq_save(flags);
3152 sd = this_cpu_ptr(&softnet_data);
3153 q->next_sched = NULL;
3154 *sd->output_queue_tailp = q;
3155 sd->output_queue_tailp = &q->next_sched;
3156 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3157 local_irq_restore(flags);
3158 }
3159
__netif_schedule(struct Qdisc * q)3160 void __netif_schedule(struct Qdisc *q)
3161 {
3162 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3163 __netif_reschedule(q);
3164 }
3165 EXPORT_SYMBOL(__netif_schedule);
3166
3167 struct dev_kfree_skb_cb {
3168 enum skb_drop_reason reason;
3169 };
3170
get_kfree_skb_cb(const struct sk_buff * skb)3171 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3172 {
3173 return (struct dev_kfree_skb_cb *)skb->cb;
3174 }
3175
netif_schedule_queue(struct netdev_queue * txq)3176 void netif_schedule_queue(struct netdev_queue *txq)
3177 {
3178 rcu_read_lock();
3179 if (!netif_xmit_stopped(txq)) {
3180 struct Qdisc *q = rcu_dereference(txq->qdisc);
3181
3182 __netif_schedule(q);
3183 }
3184 rcu_read_unlock();
3185 }
3186 EXPORT_SYMBOL(netif_schedule_queue);
3187
netif_tx_wake_queue(struct netdev_queue * dev_queue)3188 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3189 {
3190 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3191 struct Qdisc *q;
3192
3193 rcu_read_lock();
3194 q = rcu_dereference(dev_queue->qdisc);
3195 __netif_schedule(q);
3196 rcu_read_unlock();
3197 }
3198 }
3199 EXPORT_SYMBOL(netif_tx_wake_queue);
3200
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3201 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3202 {
3203 unsigned long flags;
3204
3205 if (unlikely(!skb))
3206 return;
3207
3208 if (likely(refcount_read(&skb->users) == 1)) {
3209 smp_rmb();
3210 refcount_set(&skb->users, 0);
3211 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3212 return;
3213 }
3214 get_kfree_skb_cb(skb)->reason = reason;
3215 local_irq_save(flags);
3216 skb->next = __this_cpu_read(softnet_data.completion_queue);
3217 __this_cpu_write(softnet_data.completion_queue, skb);
3218 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3219 local_irq_restore(flags);
3220 }
3221 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3222
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3223 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3224 {
3225 if (in_hardirq() || irqs_disabled())
3226 dev_kfree_skb_irq_reason(skb, reason);
3227 else
3228 kfree_skb_reason(skb, reason);
3229 }
3230 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3231
3232
3233 /**
3234 * netif_device_detach - mark device as removed
3235 * @dev: network device
3236 *
3237 * Mark device as removed from system and therefore no longer available.
3238 */
netif_device_detach(struct net_device * dev)3239 void netif_device_detach(struct net_device *dev)
3240 {
3241 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3242 netif_running(dev)) {
3243 netif_tx_stop_all_queues(dev);
3244 }
3245 }
3246 EXPORT_SYMBOL(netif_device_detach);
3247
3248 /**
3249 * netif_device_attach - mark device as attached
3250 * @dev: network device
3251 *
3252 * Mark device as attached from system and restart if needed.
3253 */
netif_device_attach(struct net_device * dev)3254 void netif_device_attach(struct net_device *dev)
3255 {
3256 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3257 netif_running(dev)) {
3258 netif_tx_wake_all_queues(dev);
3259 __netdev_watchdog_up(dev);
3260 }
3261 }
3262 EXPORT_SYMBOL(netif_device_attach);
3263
3264 /*
3265 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3266 * to be used as a distribution range.
3267 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3268 static u16 skb_tx_hash(const struct net_device *dev,
3269 const struct net_device *sb_dev,
3270 struct sk_buff *skb)
3271 {
3272 u32 hash;
3273 u16 qoffset = 0;
3274 u16 qcount = dev->real_num_tx_queues;
3275
3276 if (dev->num_tc) {
3277 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3278
3279 qoffset = sb_dev->tc_to_txq[tc].offset;
3280 qcount = sb_dev->tc_to_txq[tc].count;
3281 if (unlikely(!qcount)) {
3282 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3283 sb_dev->name, qoffset, tc);
3284 qoffset = 0;
3285 qcount = dev->real_num_tx_queues;
3286 }
3287 }
3288
3289 if (skb_rx_queue_recorded(skb)) {
3290 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3291 hash = skb_get_rx_queue(skb);
3292 if (hash >= qoffset)
3293 hash -= qoffset;
3294 while (unlikely(hash >= qcount))
3295 hash -= qcount;
3296 return hash + qoffset;
3297 }
3298
3299 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3300 }
3301
skb_warn_bad_offload(const struct sk_buff * skb)3302 void skb_warn_bad_offload(const struct sk_buff *skb)
3303 {
3304 static const netdev_features_t null_features;
3305 struct net_device *dev = skb->dev;
3306 const char *name = "";
3307
3308 if (!net_ratelimit())
3309 return;
3310
3311 if (dev) {
3312 if (dev->dev.parent)
3313 name = dev_driver_string(dev->dev.parent);
3314 else
3315 name = netdev_name(dev);
3316 }
3317 skb_dump(KERN_WARNING, skb, false);
3318 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3319 name, dev ? &dev->features : &null_features,
3320 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3321 }
3322
3323 /*
3324 * Invalidate hardware checksum when packet is to be mangled, and
3325 * complete checksum manually on outgoing path.
3326 */
skb_checksum_help(struct sk_buff * skb)3327 int skb_checksum_help(struct sk_buff *skb)
3328 {
3329 __wsum csum;
3330 int ret = 0, offset;
3331
3332 if (skb->ip_summed == CHECKSUM_COMPLETE)
3333 goto out_set_summed;
3334
3335 if (unlikely(skb_is_gso(skb))) {
3336 skb_warn_bad_offload(skb);
3337 return -EINVAL;
3338 }
3339
3340 /* Before computing a checksum, we should make sure no frag could
3341 * be modified by an external entity : checksum could be wrong.
3342 */
3343 if (skb_has_shared_frag(skb)) {
3344 ret = __skb_linearize(skb);
3345 if (ret)
3346 goto out;
3347 }
3348
3349 offset = skb_checksum_start_offset(skb);
3350 ret = -EINVAL;
3351 if (unlikely(offset >= skb_headlen(skb))) {
3352 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3353 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3354 offset, skb_headlen(skb));
3355 goto out;
3356 }
3357 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3358
3359 offset += skb->csum_offset;
3360 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3361 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3362 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3363 offset + sizeof(__sum16), skb_headlen(skb));
3364 goto out;
3365 }
3366 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3367 if (ret)
3368 goto out;
3369
3370 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3371 out_set_summed:
3372 skb->ip_summed = CHECKSUM_NONE;
3373 out:
3374 return ret;
3375 }
3376 EXPORT_SYMBOL(skb_checksum_help);
3377
skb_crc32c_csum_help(struct sk_buff * skb)3378 int skb_crc32c_csum_help(struct sk_buff *skb)
3379 {
3380 __le32 crc32c_csum;
3381 int ret = 0, offset, start;
3382
3383 if (skb->ip_summed != CHECKSUM_PARTIAL)
3384 goto out;
3385
3386 if (unlikely(skb_is_gso(skb)))
3387 goto out;
3388
3389 /* Before computing a checksum, we should make sure no frag could
3390 * be modified by an external entity : checksum could be wrong.
3391 */
3392 if (unlikely(skb_has_shared_frag(skb))) {
3393 ret = __skb_linearize(skb);
3394 if (ret)
3395 goto out;
3396 }
3397 start = skb_checksum_start_offset(skb);
3398 offset = start + offsetof(struct sctphdr, checksum);
3399 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3400 ret = -EINVAL;
3401 goto out;
3402 }
3403
3404 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3405 if (ret)
3406 goto out;
3407
3408 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3409 skb->len - start, ~(__u32)0,
3410 crc32c_csum_stub));
3411 *(__le32 *)(skb->data + offset) = crc32c_csum;
3412 skb_reset_csum_not_inet(skb);
3413 out:
3414 return ret;
3415 }
3416
skb_network_protocol(struct sk_buff * skb,int * depth)3417 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3418 {
3419 __be16 type = skb->protocol;
3420
3421 /* Tunnel gso handlers can set protocol to ethernet. */
3422 if (type == htons(ETH_P_TEB)) {
3423 struct ethhdr *eth;
3424
3425 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3426 return 0;
3427
3428 eth = (struct ethhdr *)skb->data;
3429 type = eth->h_proto;
3430 }
3431
3432 return vlan_get_protocol_and_depth(skb, type, depth);
3433 }
3434
3435
3436 /* Take action when hardware reception checksum errors are detected. */
3437 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3438 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3439 {
3440 netdev_err(dev, "hw csum failure\n");
3441 skb_dump(KERN_ERR, skb, true);
3442 dump_stack();
3443 }
3444
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3445 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3446 {
3447 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3448 }
3449 EXPORT_SYMBOL(netdev_rx_csum_fault);
3450 #endif
3451
3452 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3453 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3454 {
3455 #ifdef CONFIG_HIGHMEM
3456 int i;
3457
3458 if (!(dev->features & NETIF_F_HIGHDMA)) {
3459 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3460 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3461
3462 if (PageHighMem(skb_frag_page(frag)))
3463 return 1;
3464 }
3465 }
3466 #endif
3467 return 0;
3468 }
3469
3470 /* If MPLS offload request, verify we are testing hardware MPLS features
3471 * instead of standard features for the netdev.
3472 */
3473 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3474 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3475 netdev_features_t features,
3476 __be16 type)
3477 {
3478 if (eth_p_mpls(type))
3479 features &= skb->dev->mpls_features;
3480
3481 return features;
3482 }
3483 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3484 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3485 netdev_features_t features,
3486 __be16 type)
3487 {
3488 return features;
3489 }
3490 #endif
3491
harmonize_features(struct sk_buff * skb,netdev_features_t features)3492 static netdev_features_t harmonize_features(struct sk_buff *skb,
3493 netdev_features_t features)
3494 {
3495 __be16 type;
3496
3497 type = skb_network_protocol(skb, NULL);
3498 features = net_mpls_features(skb, features, type);
3499
3500 if (skb->ip_summed != CHECKSUM_NONE &&
3501 !can_checksum_protocol(features, type)) {
3502 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3503 }
3504 if (illegal_highdma(skb->dev, skb))
3505 features &= ~NETIF_F_SG;
3506
3507 return features;
3508 }
3509
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3510 netdev_features_t passthru_features_check(struct sk_buff *skb,
3511 struct net_device *dev,
3512 netdev_features_t features)
3513 {
3514 return features;
3515 }
3516 EXPORT_SYMBOL(passthru_features_check);
3517
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3518 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3519 struct net_device *dev,
3520 netdev_features_t features)
3521 {
3522 return vlan_features_check(skb, features);
3523 }
3524
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3525 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3526 struct net_device *dev,
3527 netdev_features_t features)
3528 {
3529 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3530
3531 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3532 return features & ~NETIF_F_GSO_MASK;
3533
3534 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3535 return features & ~NETIF_F_GSO_MASK;
3536
3537 if (!skb_shinfo(skb)->gso_type) {
3538 skb_warn_bad_offload(skb);
3539 return features & ~NETIF_F_GSO_MASK;
3540 }
3541
3542 /* Support for GSO partial features requires software
3543 * intervention before we can actually process the packets
3544 * so we need to strip support for any partial features now
3545 * and we can pull them back in after we have partially
3546 * segmented the frame.
3547 */
3548 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3549 features &= ~dev->gso_partial_features;
3550
3551 /* Make sure to clear the IPv4 ID mangling feature if the
3552 * IPv4 header has the potential to be fragmented.
3553 */
3554 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3555 struct iphdr *iph = skb->encapsulation ?
3556 inner_ip_hdr(skb) : ip_hdr(skb);
3557
3558 if (!(iph->frag_off & htons(IP_DF)))
3559 features &= ~NETIF_F_TSO_MANGLEID;
3560 }
3561
3562 return features;
3563 }
3564
netif_skb_features(struct sk_buff * skb)3565 netdev_features_t netif_skb_features(struct sk_buff *skb)
3566 {
3567 struct net_device *dev = skb->dev;
3568 netdev_features_t features = dev->features;
3569
3570 if (skb_is_gso(skb))
3571 features = gso_features_check(skb, dev, features);
3572
3573 /* If encapsulation offload request, verify we are testing
3574 * hardware encapsulation features instead of standard
3575 * features for the netdev
3576 */
3577 if (skb->encapsulation)
3578 features &= dev->hw_enc_features;
3579
3580 if (skb_vlan_tagged(skb))
3581 features = netdev_intersect_features(features,
3582 dev->vlan_features |
3583 NETIF_F_HW_VLAN_CTAG_TX |
3584 NETIF_F_HW_VLAN_STAG_TX);
3585
3586 if (dev->netdev_ops->ndo_features_check)
3587 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3588 features);
3589 else
3590 features &= dflt_features_check(skb, dev, features);
3591
3592 return harmonize_features(skb, features);
3593 }
3594 EXPORT_SYMBOL(netif_skb_features);
3595
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3596 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3597 struct netdev_queue *txq, bool more)
3598 {
3599 unsigned int len;
3600 int rc;
3601
3602 if (dev_nit_active(dev))
3603 dev_queue_xmit_nit(skb, dev);
3604
3605 len = skb->len;
3606 trace_net_dev_start_xmit(skb, dev);
3607 rc = netdev_start_xmit(skb, dev, txq, more);
3608 trace_net_dev_xmit(skb, rc, dev, len);
3609
3610 return rc;
3611 }
3612
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3613 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3614 struct netdev_queue *txq, int *ret)
3615 {
3616 struct sk_buff *skb = first;
3617 int rc = NETDEV_TX_OK;
3618
3619 while (skb) {
3620 struct sk_buff *next = skb->next;
3621
3622 skb_mark_not_on_list(skb);
3623 rc = xmit_one(skb, dev, txq, next != NULL);
3624 if (unlikely(!dev_xmit_complete(rc))) {
3625 skb->next = next;
3626 goto out;
3627 }
3628
3629 skb = next;
3630 if (netif_tx_queue_stopped(txq) && skb) {
3631 rc = NETDEV_TX_BUSY;
3632 break;
3633 }
3634 }
3635
3636 out:
3637 *ret = rc;
3638 return skb;
3639 }
3640
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3641 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3642 netdev_features_t features)
3643 {
3644 if (skb_vlan_tag_present(skb) &&
3645 !vlan_hw_offload_capable(features, skb->vlan_proto))
3646 skb = __vlan_hwaccel_push_inside(skb);
3647 return skb;
3648 }
3649
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3650 int skb_csum_hwoffload_help(struct sk_buff *skb,
3651 const netdev_features_t features)
3652 {
3653 if (unlikely(skb_csum_is_sctp(skb)))
3654 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3655 skb_crc32c_csum_help(skb);
3656
3657 if (features & NETIF_F_HW_CSUM)
3658 return 0;
3659
3660 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3661 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3662 skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3663 !ipv6_has_hopopt_jumbo(skb))
3664 goto sw_checksum;
3665
3666 switch (skb->csum_offset) {
3667 case offsetof(struct tcphdr, check):
3668 case offsetof(struct udphdr, check):
3669 return 0;
3670 }
3671 }
3672
3673 sw_checksum:
3674 return skb_checksum_help(skb);
3675 }
3676 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3677
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3678 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3679 {
3680 netdev_features_t features;
3681
3682 features = netif_skb_features(skb);
3683 skb = validate_xmit_vlan(skb, features);
3684 if (unlikely(!skb))
3685 goto out_null;
3686
3687 skb = sk_validate_xmit_skb(skb, dev);
3688 if (unlikely(!skb))
3689 goto out_null;
3690
3691 if (netif_needs_gso(skb, features)) {
3692 struct sk_buff *segs;
3693
3694 segs = skb_gso_segment(skb, features);
3695 if (IS_ERR(segs)) {
3696 goto out_kfree_skb;
3697 } else if (segs) {
3698 consume_skb(skb);
3699 skb = segs;
3700 }
3701 } else {
3702 if (skb_needs_linearize(skb, features) &&
3703 __skb_linearize(skb))
3704 goto out_kfree_skb;
3705
3706 /* If packet is not checksummed and device does not
3707 * support checksumming for this protocol, complete
3708 * checksumming here.
3709 */
3710 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3711 if (skb->encapsulation)
3712 skb_set_inner_transport_header(skb,
3713 skb_checksum_start_offset(skb));
3714 else
3715 skb_set_transport_header(skb,
3716 skb_checksum_start_offset(skb));
3717 if (skb_csum_hwoffload_help(skb, features))
3718 goto out_kfree_skb;
3719 }
3720 }
3721
3722 skb = validate_xmit_xfrm(skb, features, again);
3723
3724 return skb;
3725
3726 out_kfree_skb:
3727 kfree_skb(skb);
3728 out_null:
3729 dev_core_stats_tx_dropped_inc(dev);
3730 return NULL;
3731 }
3732
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3733 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3734 {
3735 struct sk_buff *next, *head = NULL, *tail;
3736
3737 for (; skb != NULL; skb = next) {
3738 next = skb->next;
3739 skb_mark_not_on_list(skb);
3740
3741 /* in case skb wont be segmented, point to itself */
3742 skb->prev = skb;
3743
3744 skb = validate_xmit_skb(skb, dev, again);
3745 if (!skb)
3746 continue;
3747
3748 if (!head)
3749 head = skb;
3750 else
3751 tail->next = skb;
3752 /* If skb was segmented, skb->prev points to
3753 * the last segment. If not, it still contains skb.
3754 */
3755 tail = skb->prev;
3756 }
3757 return head;
3758 }
3759 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3760
qdisc_pkt_len_init(struct sk_buff * skb)3761 static void qdisc_pkt_len_init(struct sk_buff *skb)
3762 {
3763 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3764
3765 qdisc_skb_cb(skb)->pkt_len = skb->len;
3766
3767 /* To get more precise estimation of bytes sent on wire,
3768 * we add to pkt_len the headers size of all segments
3769 */
3770 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3771 u16 gso_segs = shinfo->gso_segs;
3772 unsigned int hdr_len;
3773
3774 /* mac layer + network layer */
3775 hdr_len = skb_transport_offset(skb);
3776
3777 /* + transport layer */
3778 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3779 const struct tcphdr *th;
3780 struct tcphdr _tcphdr;
3781
3782 th = skb_header_pointer(skb, hdr_len,
3783 sizeof(_tcphdr), &_tcphdr);
3784 if (likely(th))
3785 hdr_len += __tcp_hdrlen(th);
3786 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3787 struct udphdr _udphdr;
3788
3789 if (skb_header_pointer(skb, hdr_len,
3790 sizeof(_udphdr), &_udphdr))
3791 hdr_len += sizeof(struct udphdr);
3792 }
3793
3794 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3795 int payload = skb->len - hdr_len;
3796
3797 /* Malicious packet. */
3798 if (payload <= 0)
3799 return;
3800 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3801 }
3802 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3803 }
3804 }
3805
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3806 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3807 struct sk_buff **to_free,
3808 struct netdev_queue *txq)
3809 {
3810 int rc;
3811
3812 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3813 if (rc == NET_XMIT_SUCCESS)
3814 trace_qdisc_enqueue(q, txq, skb);
3815 return rc;
3816 }
3817
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3818 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3819 struct net_device *dev,
3820 struct netdev_queue *txq)
3821 {
3822 spinlock_t *root_lock = qdisc_lock(q);
3823 struct sk_buff *to_free = NULL;
3824 bool contended;
3825 int rc;
3826
3827 qdisc_calculate_pkt_len(skb, q);
3828
3829 if (q->flags & TCQ_F_NOLOCK) {
3830 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3831 qdisc_run_begin(q)) {
3832 /* Retest nolock_qdisc_is_empty() within the protection
3833 * of q->seqlock to protect from racing with requeuing.
3834 */
3835 if (unlikely(!nolock_qdisc_is_empty(q))) {
3836 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3837 __qdisc_run(q);
3838 qdisc_run_end(q);
3839
3840 goto no_lock_out;
3841 }
3842
3843 qdisc_bstats_cpu_update(q, skb);
3844 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3845 !nolock_qdisc_is_empty(q))
3846 __qdisc_run(q);
3847
3848 qdisc_run_end(q);
3849 return NET_XMIT_SUCCESS;
3850 }
3851
3852 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3853 qdisc_run(q);
3854
3855 no_lock_out:
3856 if (unlikely(to_free))
3857 kfree_skb_list_reason(to_free,
3858 SKB_DROP_REASON_QDISC_DROP);
3859 return rc;
3860 }
3861
3862 /*
3863 * Heuristic to force contended enqueues to serialize on a
3864 * separate lock before trying to get qdisc main lock.
3865 * This permits qdisc->running owner to get the lock more
3866 * often and dequeue packets faster.
3867 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3868 * and then other tasks will only enqueue packets. The packets will be
3869 * sent after the qdisc owner is scheduled again. To prevent this
3870 * scenario the task always serialize on the lock.
3871 */
3872 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3873 if (unlikely(contended))
3874 spin_lock(&q->busylock);
3875
3876 spin_lock(root_lock);
3877 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3878 __qdisc_drop(skb, &to_free);
3879 rc = NET_XMIT_DROP;
3880 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3881 qdisc_run_begin(q)) {
3882 /*
3883 * This is a work-conserving queue; there are no old skbs
3884 * waiting to be sent out; and the qdisc is not running -
3885 * xmit the skb directly.
3886 */
3887
3888 qdisc_bstats_update(q, skb);
3889
3890 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3891 if (unlikely(contended)) {
3892 spin_unlock(&q->busylock);
3893 contended = false;
3894 }
3895 __qdisc_run(q);
3896 }
3897
3898 qdisc_run_end(q);
3899 rc = NET_XMIT_SUCCESS;
3900 } else {
3901 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3902 if (qdisc_run_begin(q)) {
3903 if (unlikely(contended)) {
3904 spin_unlock(&q->busylock);
3905 contended = false;
3906 }
3907 __qdisc_run(q);
3908 qdisc_run_end(q);
3909 }
3910 }
3911 spin_unlock(root_lock);
3912 if (unlikely(to_free))
3913 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3914 if (unlikely(contended))
3915 spin_unlock(&q->busylock);
3916 return rc;
3917 }
3918
3919 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3920 static void skb_update_prio(struct sk_buff *skb)
3921 {
3922 const struct netprio_map *map;
3923 const struct sock *sk;
3924 unsigned int prioidx;
3925
3926 if (skb->priority)
3927 return;
3928 map = rcu_dereference_bh(skb->dev->priomap);
3929 if (!map)
3930 return;
3931 sk = skb_to_full_sk(skb);
3932 if (!sk)
3933 return;
3934
3935 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3936
3937 if (prioidx < map->priomap_len)
3938 skb->priority = map->priomap[prioidx];
3939 }
3940 #else
3941 #define skb_update_prio(skb)
3942 #endif
3943
3944 /**
3945 * dev_loopback_xmit - loop back @skb
3946 * @net: network namespace this loopback is happening in
3947 * @sk: sk needed to be a netfilter okfn
3948 * @skb: buffer to transmit
3949 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3950 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3951 {
3952 skb_reset_mac_header(skb);
3953 __skb_pull(skb, skb_network_offset(skb));
3954 skb->pkt_type = PACKET_LOOPBACK;
3955 if (skb->ip_summed == CHECKSUM_NONE)
3956 skb->ip_summed = CHECKSUM_UNNECESSARY;
3957 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3958 skb_dst_force(skb);
3959 netif_rx(skb);
3960 return 0;
3961 }
3962 EXPORT_SYMBOL(dev_loopback_xmit);
3963
3964 #ifdef CONFIG_NET_EGRESS
3965 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)3966 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3967 {
3968 int qm = skb_get_queue_mapping(skb);
3969
3970 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3971 }
3972
netdev_xmit_txqueue_skipped(void)3973 static bool netdev_xmit_txqueue_skipped(void)
3974 {
3975 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3976 }
3977
netdev_xmit_skip_txqueue(bool skip)3978 void netdev_xmit_skip_txqueue(bool skip)
3979 {
3980 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3981 }
3982 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3983 #endif /* CONFIG_NET_EGRESS */
3984
3985 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb)3986 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3987 {
3988 int ret = TC_ACT_UNSPEC;
3989 #ifdef CONFIG_NET_CLS_ACT
3990 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3991 struct tcf_result res;
3992
3993 if (!miniq)
3994 return ret;
3995
3996 tc_skb_cb(skb)->mru = 0;
3997 tc_skb_cb(skb)->post_ct = false;
3998
3999 mini_qdisc_bstats_cpu_update(miniq, skb);
4000 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4001 /* Only tcf related quirks below. */
4002 switch (ret) {
4003 case TC_ACT_SHOT:
4004 mini_qdisc_qstats_cpu_drop(miniq);
4005 break;
4006 case TC_ACT_OK:
4007 case TC_ACT_RECLASSIFY:
4008 skb->tc_index = TC_H_MIN(res.classid);
4009 break;
4010 }
4011 #endif /* CONFIG_NET_CLS_ACT */
4012 return ret;
4013 }
4014
4015 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4016
tcx_inc(void)4017 void tcx_inc(void)
4018 {
4019 static_branch_inc(&tcx_needed_key);
4020 }
4021
tcx_dec(void)4022 void tcx_dec(void)
4023 {
4024 static_branch_dec(&tcx_needed_key);
4025 }
4026
4027 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4028 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4029 const bool needs_mac)
4030 {
4031 const struct bpf_mprog_fp *fp;
4032 const struct bpf_prog *prog;
4033 int ret = TCX_NEXT;
4034
4035 if (needs_mac)
4036 __skb_push(skb, skb->mac_len);
4037 bpf_mprog_foreach_prog(entry, fp, prog) {
4038 bpf_compute_data_pointers(skb);
4039 ret = bpf_prog_run(prog, skb);
4040 if (ret != TCX_NEXT)
4041 break;
4042 }
4043 if (needs_mac)
4044 __skb_pull(skb, skb->mac_len);
4045 return tcx_action_code(skb, ret);
4046 }
4047
4048 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4049 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4050 struct net_device *orig_dev, bool *another)
4051 {
4052 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4053 int sch_ret;
4054
4055 if (!entry)
4056 return skb;
4057 if (*pt_prev) {
4058 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4059 *pt_prev = NULL;
4060 }
4061
4062 qdisc_skb_cb(skb)->pkt_len = skb->len;
4063 tcx_set_ingress(skb, true);
4064
4065 if (static_branch_unlikely(&tcx_needed_key)) {
4066 sch_ret = tcx_run(entry, skb, true);
4067 if (sch_ret != TC_ACT_UNSPEC)
4068 goto ingress_verdict;
4069 }
4070 sch_ret = tc_run(tcx_entry(entry), skb);
4071 ingress_verdict:
4072 switch (sch_ret) {
4073 case TC_ACT_REDIRECT:
4074 /* skb_mac_header check was done by BPF, so we can safely
4075 * push the L2 header back before redirecting to another
4076 * netdev.
4077 */
4078 __skb_push(skb, skb->mac_len);
4079 if (skb_do_redirect(skb) == -EAGAIN) {
4080 __skb_pull(skb, skb->mac_len);
4081 *another = true;
4082 break;
4083 }
4084 *ret = NET_RX_SUCCESS;
4085 return NULL;
4086 case TC_ACT_SHOT:
4087 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4088 *ret = NET_RX_DROP;
4089 return NULL;
4090 /* used by tc_run */
4091 case TC_ACT_STOLEN:
4092 case TC_ACT_QUEUED:
4093 case TC_ACT_TRAP:
4094 consume_skb(skb);
4095 fallthrough;
4096 case TC_ACT_CONSUMED:
4097 *ret = NET_RX_SUCCESS;
4098 return NULL;
4099 }
4100
4101 return skb;
4102 }
4103
4104 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4105 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4106 {
4107 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4108 int sch_ret;
4109
4110 if (!entry)
4111 return skb;
4112
4113 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4114 * already set by the caller.
4115 */
4116 if (static_branch_unlikely(&tcx_needed_key)) {
4117 sch_ret = tcx_run(entry, skb, false);
4118 if (sch_ret != TC_ACT_UNSPEC)
4119 goto egress_verdict;
4120 }
4121 sch_ret = tc_run(tcx_entry(entry), skb);
4122 egress_verdict:
4123 switch (sch_ret) {
4124 case TC_ACT_REDIRECT:
4125 /* No need to push/pop skb's mac_header here on egress! */
4126 skb_do_redirect(skb);
4127 *ret = NET_XMIT_SUCCESS;
4128 return NULL;
4129 case TC_ACT_SHOT:
4130 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4131 *ret = NET_XMIT_DROP;
4132 return NULL;
4133 /* used by tc_run */
4134 case TC_ACT_STOLEN:
4135 case TC_ACT_QUEUED:
4136 case TC_ACT_TRAP:
4137 consume_skb(skb);
4138 fallthrough;
4139 case TC_ACT_CONSUMED:
4140 *ret = NET_XMIT_SUCCESS;
4141 return NULL;
4142 }
4143
4144 return skb;
4145 }
4146 #else
4147 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4148 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4149 struct net_device *orig_dev, bool *another)
4150 {
4151 return skb;
4152 }
4153
4154 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4155 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4156 {
4157 return skb;
4158 }
4159 #endif /* CONFIG_NET_XGRESS */
4160
4161 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4162 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4163 struct xps_dev_maps *dev_maps, unsigned int tci)
4164 {
4165 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4166 struct xps_map *map;
4167 int queue_index = -1;
4168
4169 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4170 return queue_index;
4171
4172 tci *= dev_maps->num_tc;
4173 tci += tc;
4174
4175 map = rcu_dereference(dev_maps->attr_map[tci]);
4176 if (map) {
4177 if (map->len == 1)
4178 queue_index = map->queues[0];
4179 else
4180 queue_index = map->queues[reciprocal_scale(
4181 skb_get_hash(skb), map->len)];
4182 if (unlikely(queue_index >= dev->real_num_tx_queues))
4183 queue_index = -1;
4184 }
4185 return queue_index;
4186 }
4187 #endif
4188
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4189 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4190 struct sk_buff *skb)
4191 {
4192 #ifdef CONFIG_XPS
4193 struct xps_dev_maps *dev_maps;
4194 struct sock *sk = skb->sk;
4195 int queue_index = -1;
4196
4197 if (!static_key_false(&xps_needed))
4198 return -1;
4199
4200 rcu_read_lock();
4201 if (!static_key_false(&xps_rxqs_needed))
4202 goto get_cpus_map;
4203
4204 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4205 if (dev_maps) {
4206 int tci = sk_rx_queue_get(sk);
4207
4208 if (tci >= 0)
4209 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4210 tci);
4211 }
4212
4213 get_cpus_map:
4214 if (queue_index < 0) {
4215 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4216 if (dev_maps) {
4217 unsigned int tci = skb->sender_cpu - 1;
4218
4219 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4220 tci);
4221 }
4222 }
4223 rcu_read_unlock();
4224
4225 return queue_index;
4226 #else
4227 return -1;
4228 #endif
4229 }
4230
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4231 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4232 struct net_device *sb_dev)
4233 {
4234 return 0;
4235 }
4236 EXPORT_SYMBOL(dev_pick_tx_zero);
4237
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4238 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4239 struct net_device *sb_dev)
4240 {
4241 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4242 }
4243 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4244
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4245 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4246 struct net_device *sb_dev)
4247 {
4248 struct sock *sk = skb->sk;
4249 int queue_index = sk_tx_queue_get(sk);
4250
4251 sb_dev = sb_dev ? : dev;
4252
4253 if (queue_index < 0 || skb->ooo_okay ||
4254 queue_index >= dev->real_num_tx_queues) {
4255 int new_index = get_xps_queue(dev, sb_dev, skb);
4256
4257 if (new_index < 0)
4258 new_index = skb_tx_hash(dev, sb_dev, skb);
4259
4260 if (queue_index != new_index && sk &&
4261 sk_fullsock(sk) &&
4262 rcu_access_pointer(sk->sk_dst_cache))
4263 sk_tx_queue_set(sk, new_index);
4264
4265 queue_index = new_index;
4266 }
4267
4268 return queue_index;
4269 }
4270 EXPORT_SYMBOL(netdev_pick_tx);
4271
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4272 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4273 struct sk_buff *skb,
4274 struct net_device *sb_dev)
4275 {
4276 int queue_index = 0;
4277
4278 #ifdef CONFIG_XPS
4279 u32 sender_cpu = skb->sender_cpu - 1;
4280
4281 if (sender_cpu >= (u32)NR_CPUS)
4282 skb->sender_cpu = raw_smp_processor_id() + 1;
4283 #endif
4284
4285 if (dev->real_num_tx_queues != 1) {
4286 const struct net_device_ops *ops = dev->netdev_ops;
4287
4288 if (ops->ndo_select_queue)
4289 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4290 else
4291 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4292
4293 queue_index = netdev_cap_txqueue(dev, queue_index);
4294 }
4295
4296 skb_set_queue_mapping(skb, queue_index);
4297 return netdev_get_tx_queue(dev, queue_index);
4298 }
4299
4300 /**
4301 * __dev_queue_xmit() - transmit a buffer
4302 * @skb: buffer to transmit
4303 * @sb_dev: suboordinate device used for L2 forwarding offload
4304 *
4305 * Queue a buffer for transmission to a network device. The caller must
4306 * have set the device and priority and built the buffer before calling
4307 * this function. The function can be called from an interrupt.
4308 *
4309 * When calling this method, interrupts MUST be enabled. This is because
4310 * the BH enable code must have IRQs enabled so that it will not deadlock.
4311 *
4312 * Regardless of the return value, the skb is consumed, so it is currently
4313 * difficult to retry a send to this method. (You can bump the ref count
4314 * before sending to hold a reference for retry if you are careful.)
4315 *
4316 * Return:
4317 * * 0 - buffer successfully transmitted
4318 * * positive qdisc return code - NET_XMIT_DROP etc.
4319 * * negative errno - other errors
4320 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4321 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4322 {
4323 struct net_device *dev = skb->dev;
4324 struct netdev_queue *txq = NULL;
4325 struct Qdisc *q;
4326 int rc = -ENOMEM;
4327 bool again = false;
4328
4329 skb_reset_mac_header(skb);
4330 skb_assert_len(skb);
4331
4332 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4333 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4334
4335 /* Disable soft irqs for various locks below. Also
4336 * stops preemption for RCU.
4337 */
4338 rcu_read_lock_bh();
4339
4340 skb_update_prio(skb);
4341
4342 qdisc_pkt_len_init(skb);
4343 tcx_set_ingress(skb, false);
4344 #ifdef CONFIG_NET_EGRESS
4345 if (static_branch_unlikely(&egress_needed_key)) {
4346 if (nf_hook_egress_active()) {
4347 skb = nf_hook_egress(skb, &rc, dev);
4348 if (!skb)
4349 goto out;
4350 }
4351
4352 netdev_xmit_skip_txqueue(false);
4353
4354 nf_skip_egress(skb, true);
4355 skb = sch_handle_egress(skb, &rc, dev);
4356 if (!skb)
4357 goto out;
4358 nf_skip_egress(skb, false);
4359
4360 if (netdev_xmit_txqueue_skipped())
4361 txq = netdev_tx_queue_mapping(dev, skb);
4362 }
4363 #endif
4364 /* If device/qdisc don't need skb->dst, release it right now while
4365 * its hot in this cpu cache.
4366 */
4367 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4368 skb_dst_drop(skb);
4369 else
4370 skb_dst_force(skb);
4371
4372 if (!txq)
4373 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4374
4375 q = rcu_dereference_bh(txq->qdisc);
4376
4377 trace_net_dev_queue(skb);
4378 if (q->enqueue) {
4379 rc = __dev_xmit_skb(skb, q, dev, txq);
4380 goto out;
4381 }
4382
4383 /* The device has no queue. Common case for software devices:
4384 * loopback, all the sorts of tunnels...
4385
4386 * Really, it is unlikely that netif_tx_lock protection is necessary
4387 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4388 * counters.)
4389 * However, it is possible, that they rely on protection
4390 * made by us here.
4391
4392 * Check this and shot the lock. It is not prone from deadlocks.
4393 *Either shot noqueue qdisc, it is even simpler 8)
4394 */
4395 if (dev->flags & IFF_UP) {
4396 int cpu = smp_processor_id(); /* ok because BHs are off */
4397
4398 /* Other cpus might concurrently change txq->xmit_lock_owner
4399 * to -1 or to their cpu id, but not to our id.
4400 */
4401 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4402 if (dev_xmit_recursion())
4403 goto recursion_alert;
4404
4405 skb = validate_xmit_skb(skb, dev, &again);
4406 if (!skb)
4407 goto out;
4408
4409 HARD_TX_LOCK(dev, txq, cpu);
4410
4411 if (!netif_xmit_stopped(txq)) {
4412 dev_xmit_recursion_inc();
4413 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4414 dev_xmit_recursion_dec();
4415 if (dev_xmit_complete(rc)) {
4416 HARD_TX_UNLOCK(dev, txq);
4417 goto out;
4418 }
4419 }
4420 HARD_TX_UNLOCK(dev, txq);
4421 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4422 dev->name);
4423 } else {
4424 /* Recursion is detected! It is possible,
4425 * unfortunately
4426 */
4427 recursion_alert:
4428 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4429 dev->name);
4430 }
4431 }
4432
4433 rc = -ENETDOWN;
4434 rcu_read_unlock_bh();
4435
4436 dev_core_stats_tx_dropped_inc(dev);
4437 kfree_skb_list(skb);
4438 return rc;
4439 out:
4440 rcu_read_unlock_bh();
4441 return rc;
4442 }
4443 EXPORT_SYMBOL(__dev_queue_xmit);
4444
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4445 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4446 {
4447 struct net_device *dev = skb->dev;
4448 struct sk_buff *orig_skb = skb;
4449 struct netdev_queue *txq;
4450 int ret = NETDEV_TX_BUSY;
4451 bool again = false;
4452
4453 if (unlikely(!netif_running(dev) ||
4454 !netif_carrier_ok(dev)))
4455 goto drop;
4456
4457 skb = validate_xmit_skb_list(skb, dev, &again);
4458 if (skb != orig_skb)
4459 goto drop;
4460
4461 skb_set_queue_mapping(skb, queue_id);
4462 txq = skb_get_tx_queue(dev, skb);
4463
4464 local_bh_disable();
4465
4466 dev_xmit_recursion_inc();
4467 HARD_TX_LOCK(dev, txq, smp_processor_id());
4468 if (!netif_xmit_frozen_or_drv_stopped(txq))
4469 ret = netdev_start_xmit(skb, dev, txq, false);
4470 HARD_TX_UNLOCK(dev, txq);
4471 dev_xmit_recursion_dec();
4472
4473 local_bh_enable();
4474 return ret;
4475 drop:
4476 dev_core_stats_tx_dropped_inc(dev);
4477 kfree_skb_list(skb);
4478 return NET_XMIT_DROP;
4479 }
4480 EXPORT_SYMBOL(__dev_direct_xmit);
4481
4482 /*************************************************************************
4483 * Receiver routines
4484 *************************************************************************/
4485
4486 int netdev_max_backlog __read_mostly = 1000;
4487 EXPORT_SYMBOL(netdev_max_backlog);
4488
4489 int netdev_tstamp_prequeue __read_mostly = 1;
4490 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4491 int netdev_budget __read_mostly = 300;
4492 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4493 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4494 int weight_p __read_mostly = 64; /* old backlog weight */
4495 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4496 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4497 int dev_rx_weight __read_mostly = 64;
4498 int dev_tx_weight __read_mostly = 64;
4499
4500 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4501 static inline void ____napi_schedule(struct softnet_data *sd,
4502 struct napi_struct *napi)
4503 {
4504 struct task_struct *thread;
4505
4506 lockdep_assert_irqs_disabled();
4507
4508 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4509 /* Paired with smp_mb__before_atomic() in
4510 * napi_enable()/dev_set_threaded().
4511 * Use READ_ONCE() to guarantee a complete
4512 * read on napi->thread. Only call
4513 * wake_up_process() when it's not NULL.
4514 */
4515 thread = READ_ONCE(napi->thread);
4516 if (thread) {
4517 /* Avoid doing set_bit() if the thread is in
4518 * INTERRUPTIBLE state, cause napi_thread_wait()
4519 * makes sure to proceed with napi polling
4520 * if the thread is explicitly woken from here.
4521 */
4522 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4523 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4524 wake_up_process(thread);
4525 return;
4526 }
4527 }
4528
4529 list_add_tail(&napi->poll_list, &sd->poll_list);
4530 WRITE_ONCE(napi->list_owner, smp_processor_id());
4531 /* If not called from net_rx_action()
4532 * we have to raise NET_RX_SOFTIRQ.
4533 */
4534 if (!sd->in_net_rx_action)
4535 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4536 }
4537
4538 #ifdef CONFIG_RPS
4539
4540 /* One global table that all flow-based protocols share. */
4541 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4542 EXPORT_SYMBOL(rps_sock_flow_table);
4543 u32 rps_cpu_mask __read_mostly;
4544 EXPORT_SYMBOL(rps_cpu_mask);
4545
4546 struct static_key_false rps_needed __read_mostly;
4547 EXPORT_SYMBOL(rps_needed);
4548 struct static_key_false rfs_needed __read_mostly;
4549 EXPORT_SYMBOL(rfs_needed);
4550
4551 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4552 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4553 struct rps_dev_flow *rflow, u16 next_cpu)
4554 {
4555 if (next_cpu < nr_cpu_ids) {
4556 #ifdef CONFIG_RFS_ACCEL
4557 struct netdev_rx_queue *rxqueue;
4558 struct rps_dev_flow_table *flow_table;
4559 struct rps_dev_flow *old_rflow;
4560 u32 flow_id;
4561 u16 rxq_index;
4562 int rc;
4563
4564 /* Should we steer this flow to a different hardware queue? */
4565 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4566 !(dev->features & NETIF_F_NTUPLE))
4567 goto out;
4568 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4569 if (rxq_index == skb_get_rx_queue(skb))
4570 goto out;
4571
4572 rxqueue = dev->_rx + rxq_index;
4573 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4574 if (!flow_table)
4575 goto out;
4576 flow_id = skb_get_hash(skb) & flow_table->mask;
4577 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4578 rxq_index, flow_id);
4579 if (rc < 0)
4580 goto out;
4581 old_rflow = rflow;
4582 rflow = &flow_table->flows[flow_id];
4583 rflow->filter = rc;
4584 if (old_rflow->filter == rflow->filter)
4585 old_rflow->filter = RPS_NO_FILTER;
4586 out:
4587 #endif
4588 rflow->last_qtail =
4589 per_cpu(softnet_data, next_cpu).input_queue_head;
4590 }
4591
4592 rflow->cpu = next_cpu;
4593 return rflow;
4594 }
4595
4596 /*
4597 * get_rps_cpu is called from netif_receive_skb and returns the target
4598 * CPU from the RPS map of the receiving queue for a given skb.
4599 * rcu_read_lock must be held on entry.
4600 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4601 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4602 struct rps_dev_flow **rflowp)
4603 {
4604 const struct rps_sock_flow_table *sock_flow_table;
4605 struct netdev_rx_queue *rxqueue = dev->_rx;
4606 struct rps_dev_flow_table *flow_table;
4607 struct rps_map *map;
4608 int cpu = -1;
4609 u32 tcpu;
4610 u32 hash;
4611
4612 if (skb_rx_queue_recorded(skb)) {
4613 u16 index = skb_get_rx_queue(skb);
4614
4615 if (unlikely(index >= dev->real_num_rx_queues)) {
4616 WARN_ONCE(dev->real_num_rx_queues > 1,
4617 "%s received packet on queue %u, but number "
4618 "of RX queues is %u\n",
4619 dev->name, index, dev->real_num_rx_queues);
4620 goto done;
4621 }
4622 rxqueue += index;
4623 }
4624
4625 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4626
4627 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4628 map = rcu_dereference(rxqueue->rps_map);
4629 if (!flow_table && !map)
4630 goto done;
4631
4632 skb_reset_network_header(skb);
4633 hash = skb_get_hash(skb);
4634 if (!hash)
4635 goto done;
4636
4637 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4638 if (flow_table && sock_flow_table) {
4639 struct rps_dev_flow *rflow;
4640 u32 next_cpu;
4641 u32 ident;
4642
4643 /* First check into global flow table if there is a match.
4644 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4645 */
4646 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4647 if ((ident ^ hash) & ~rps_cpu_mask)
4648 goto try_rps;
4649
4650 next_cpu = ident & rps_cpu_mask;
4651
4652 /* OK, now we know there is a match,
4653 * we can look at the local (per receive queue) flow table
4654 */
4655 rflow = &flow_table->flows[hash & flow_table->mask];
4656 tcpu = rflow->cpu;
4657
4658 /*
4659 * If the desired CPU (where last recvmsg was done) is
4660 * different from current CPU (one in the rx-queue flow
4661 * table entry), switch if one of the following holds:
4662 * - Current CPU is unset (>= nr_cpu_ids).
4663 * - Current CPU is offline.
4664 * - The current CPU's queue tail has advanced beyond the
4665 * last packet that was enqueued using this table entry.
4666 * This guarantees that all previous packets for the flow
4667 * have been dequeued, thus preserving in order delivery.
4668 */
4669 if (unlikely(tcpu != next_cpu) &&
4670 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4671 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4672 rflow->last_qtail)) >= 0)) {
4673 tcpu = next_cpu;
4674 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4675 }
4676
4677 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4678 *rflowp = rflow;
4679 cpu = tcpu;
4680 goto done;
4681 }
4682 }
4683
4684 try_rps:
4685
4686 if (map) {
4687 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4688 if (cpu_online(tcpu)) {
4689 cpu = tcpu;
4690 goto done;
4691 }
4692 }
4693
4694 done:
4695 return cpu;
4696 }
4697
4698 #ifdef CONFIG_RFS_ACCEL
4699
4700 /**
4701 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4702 * @dev: Device on which the filter was set
4703 * @rxq_index: RX queue index
4704 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4705 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4706 *
4707 * Drivers that implement ndo_rx_flow_steer() should periodically call
4708 * this function for each installed filter and remove the filters for
4709 * which it returns %true.
4710 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4711 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4712 u32 flow_id, u16 filter_id)
4713 {
4714 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4715 struct rps_dev_flow_table *flow_table;
4716 struct rps_dev_flow *rflow;
4717 bool expire = true;
4718 unsigned int cpu;
4719
4720 rcu_read_lock();
4721 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4722 if (flow_table && flow_id <= flow_table->mask) {
4723 rflow = &flow_table->flows[flow_id];
4724 cpu = READ_ONCE(rflow->cpu);
4725 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4726 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4727 rflow->last_qtail) <
4728 (int)(10 * flow_table->mask)))
4729 expire = false;
4730 }
4731 rcu_read_unlock();
4732 return expire;
4733 }
4734 EXPORT_SYMBOL(rps_may_expire_flow);
4735
4736 #endif /* CONFIG_RFS_ACCEL */
4737
4738 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4739 static void rps_trigger_softirq(void *data)
4740 {
4741 struct softnet_data *sd = data;
4742
4743 ____napi_schedule(sd, &sd->backlog);
4744 sd->received_rps++;
4745 }
4746
4747 #endif /* CONFIG_RPS */
4748
4749 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)4750 static void trigger_rx_softirq(void *data)
4751 {
4752 struct softnet_data *sd = data;
4753
4754 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4755 smp_store_release(&sd->defer_ipi_scheduled, 0);
4756 }
4757
4758 /*
4759 * After we queued a packet into sd->input_pkt_queue,
4760 * we need to make sure this queue is serviced soon.
4761 *
4762 * - If this is another cpu queue, link it to our rps_ipi_list,
4763 * and make sure we will process rps_ipi_list from net_rx_action().
4764 *
4765 * - If this is our own queue, NAPI schedule our backlog.
4766 * Note that this also raises NET_RX_SOFTIRQ.
4767 */
napi_schedule_rps(struct softnet_data * sd)4768 static void napi_schedule_rps(struct softnet_data *sd)
4769 {
4770 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4771
4772 #ifdef CONFIG_RPS
4773 if (sd != mysd) {
4774 sd->rps_ipi_next = mysd->rps_ipi_list;
4775 mysd->rps_ipi_list = sd;
4776
4777 /* If not called from net_rx_action() or napi_threaded_poll()
4778 * we have to raise NET_RX_SOFTIRQ.
4779 */
4780 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4781 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4782 return;
4783 }
4784 #endif /* CONFIG_RPS */
4785 __napi_schedule_irqoff(&mysd->backlog);
4786 }
4787
4788 #ifdef CONFIG_NET_FLOW_LIMIT
4789 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4790 #endif
4791
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4792 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4793 {
4794 #ifdef CONFIG_NET_FLOW_LIMIT
4795 struct sd_flow_limit *fl;
4796 struct softnet_data *sd;
4797 unsigned int old_flow, new_flow;
4798
4799 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4800 return false;
4801
4802 sd = this_cpu_ptr(&softnet_data);
4803
4804 rcu_read_lock();
4805 fl = rcu_dereference(sd->flow_limit);
4806 if (fl) {
4807 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4808 old_flow = fl->history[fl->history_head];
4809 fl->history[fl->history_head] = new_flow;
4810
4811 fl->history_head++;
4812 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4813
4814 if (likely(fl->buckets[old_flow]))
4815 fl->buckets[old_flow]--;
4816
4817 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4818 fl->count++;
4819 rcu_read_unlock();
4820 return true;
4821 }
4822 }
4823 rcu_read_unlock();
4824 #endif
4825 return false;
4826 }
4827
4828 /*
4829 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4830 * queue (may be a remote CPU queue).
4831 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4832 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4833 unsigned int *qtail)
4834 {
4835 enum skb_drop_reason reason;
4836 struct softnet_data *sd;
4837 unsigned long flags;
4838 unsigned int qlen;
4839
4840 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4841 sd = &per_cpu(softnet_data, cpu);
4842
4843 rps_lock_irqsave(sd, &flags);
4844 if (!netif_running(skb->dev))
4845 goto drop;
4846 qlen = skb_queue_len(&sd->input_pkt_queue);
4847 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4848 if (qlen) {
4849 enqueue:
4850 __skb_queue_tail(&sd->input_pkt_queue, skb);
4851 input_queue_tail_incr_save(sd, qtail);
4852 rps_unlock_irq_restore(sd, &flags);
4853 return NET_RX_SUCCESS;
4854 }
4855
4856 /* Schedule NAPI for backlog device
4857 * We can use non atomic operation since we own the queue lock
4858 */
4859 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4860 napi_schedule_rps(sd);
4861 goto enqueue;
4862 }
4863 reason = SKB_DROP_REASON_CPU_BACKLOG;
4864
4865 drop:
4866 sd->dropped++;
4867 rps_unlock_irq_restore(sd, &flags);
4868
4869 dev_core_stats_rx_dropped_inc(skb->dev);
4870 kfree_skb_reason(skb, reason);
4871 return NET_RX_DROP;
4872 }
4873
netif_get_rxqueue(struct sk_buff * skb)4874 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4875 {
4876 struct net_device *dev = skb->dev;
4877 struct netdev_rx_queue *rxqueue;
4878
4879 rxqueue = dev->_rx;
4880
4881 if (skb_rx_queue_recorded(skb)) {
4882 u16 index = skb_get_rx_queue(skb);
4883
4884 if (unlikely(index >= dev->real_num_rx_queues)) {
4885 WARN_ONCE(dev->real_num_rx_queues > 1,
4886 "%s received packet on queue %u, but number "
4887 "of RX queues is %u\n",
4888 dev->name, index, dev->real_num_rx_queues);
4889
4890 return rxqueue; /* Return first rxqueue */
4891 }
4892 rxqueue += index;
4893 }
4894 return rxqueue;
4895 }
4896
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4897 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4898 struct bpf_prog *xdp_prog)
4899 {
4900 void *orig_data, *orig_data_end, *hard_start;
4901 struct netdev_rx_queue *rxqueue;
4902 bool orig_bcast, orig_host;
4903 u32 mac_len, frame_sz;
4904 __be16 orig_eth_type;
4905 struct ethhdr *eth;
4906 u32 metalen, act;
4907 int off;
4908
4909 /* The XDP program wants to see the packet starting at the MAC
4910 * header.
4911 */
4912 mac_len = skb->data - skb_mac_header(skb);
4913 hard_start = skb->data - skb_headroom(skb);
4914
4915 /* SKB "head" area always have tailroom for skb_shared_info */
4916 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4917 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4918
4919 rxqueue = netif_get_rxqueue(skb);
4920 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4921 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4922 skb_headlen(skb) + mac_len, true);
4923
4924 orig_data_end = xdp->data_end;
4925 orig_data = xdp->data;
4926 eth = (struct ethhdr *)xdp->data;
4927 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4928 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4929 orig_eth_type = eth->h_proto;
4930
4931 act = bpf_prog_run_xdp(xdp_prog, xdp);
4932
4933 /* check if bpf_xdp_adjust_head was used */
4934 off = xdp->data - orig_data;
4935 if (off) {
4936 if (off > 0)
4937 __skb_pull(skb, off);
4938 else if (off < 0)
4939 __skb_push(skb, -off);
4940
4941 skb->mac_header += off;
4942 skb_reset_network_header(skb);
4943 }
4944
4945 /* check if bpf_xdp_adjust_tail was used */
4946 off = xdp->data_end - orig_data_end;
4947 if (off != 0) {
4948 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4949 skb->len += off; /* positive on grow, negative on shrink */
4950 }
4951
4952 /* check if XDP changed eth hdr such SKB needs update */
4953 eth = (struct ethhdr *)xdp->data;
4954 if ((orig_eth_type != eth->h_proto) ||
4955 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4956 skb->dev->dev_addr)) ||
4957 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4958 __skb_push(skb, ETH_HLEN);
4959 skb->pkt_type = PACKET_HOST;
4960 skb->protocol = eth_type_trans(skb, skb->dev);
4961 }
4962
4963 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4964 * before calling us again on redirect path. We do not call do_redirect
4965 * as we leave that up to the caller.
4966 *
4967 * Caller is responsible for managing lifetime of skb (i.e. calling
4968 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4969 */
4970 switch (act) {
4971 case XDP_REDIRECT:
4972 case XDP_TX:
4973 __skb_push(skb, mac_len);
4974 break;
4975 case XDP_PASS:
4976 metalen = xdp->data - xdp->data_meta;
4977 if (metalen)
4978 skb_metadata_set(skb, metalen);
4979 break;
4980 }
4981
4982 return act;
4983 }
4984
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4985 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4986 struct xdp_buff *xdp,
4987 struct bpf_prog *xdp_prog)
4988 {
4989 u32 act = XDP_DROP;
4990
4991 /* Reinjected packets coming from act_mirred or similar should
4992 * not get XDP generic processing.
4993 */
4994 if (skb_is_redirected(skb))
4995 return XDP_PASS;
4996
4997 /* XDP packets must be linear and must have sufficient headroom
4998 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4999 * native XDP provides, thus we need to do it here as well.
5000 */
5001 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5002 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5003 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5004 int troom = skb->tail + skb->data_len - skb->end;
5005
5006 /* In case we have to go down the path and also linearize,
5007 * then lets do the pskb_expand_head() work just once here.
5008 */
5009 if (pskb_expand_head(skb,
5010 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5011 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
5012 goto do_drop;
5013 if (skb_linearize(skb))
5014 goto do_drop;
5015 }
5016
5017 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
5018 switch (act) {
5019 case XDP_REDIRECT:
5020 case XDP_TX:
5021 case XDP_PASS:
5022 break;
5023 default:
5024 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
5025 fallthrough;
5026 case XDP_ABORTED:
5027 trace_xdp_exception(skb->dev, xdp_prog, act);
5028 fallthrough;
5029 case XDP_DROP:
5030 do_drop:
5031 kfree_skb(skb);
5032 break;
5033 }
5034
5035 return act;
5036 }
5037
5038 /* When doing generic XDP we have to bypass the qdisc layer and the
5039 * network taps in order to match in-driver-XDP behavior. This also means
5040 * that XDP packets are able to starve other packets going through a qdisc,
5041 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5042 * queues, so they do not have this starvation issue.
5043 */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)5044 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5045 {
5046 struct net_device *dev = skb->dev;
5047 struct netdev_queue *txq;
5048 bool free_skb = true;
5049 int cpu, rc;
5050
5051 txq = netdev_core_pick_tx(dev, skb, NULL);
5052 cpu = smp_processor_id();
5053 HARD_TX_LOCK(dev, txq, cpu);
5054 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5055 rc = netdev_start_xmit(skb, dev, txq, 0);
5056 if (dev_xmit_complete(rc))
5057 free_skb = false;
5058 }
5059 HARD_TX_UNLOCK(dev, txq);
5060 if (free_skb) {
5061 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5062 dev_core_stats_tx_dropped_inc(dev);
5063 kfree_skb(skb);
5064 }
5065 }
5066
5067 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5068
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)5069 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5070 {
5071 if (xdp_prog) {
5072 struct xdp_buff xdp;
5073 u32 act;
5074 int err;
5075
5076 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5077 if (act != XDP_PASS) {
5078 switch (act) {
5079 case XDP_REDIRECT:
5080 err = xdp_do_generic_redirect(skb->dev, skb,
5081 &xdp, xdp_prog);
5082 if (err)
5083 goto out_redir;
5084 break;
5085 case XDP_TX:
5086 generic_xdp_tx(skb, xdp_prog);
5087 break;
5088 }
5089 return XDP_DROP;
5090 }
5091 }
5092 return XDP_PASS;
5093 out_redir:
5094 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5095 return XDP_DROP;
5096 }
5097 EXPORT_SYMBOL_GPL(do_xdp_generic);
5098
netif_rx_internal(struct sk_buff * skb)5099 static int netif_rx_internal(struct sk_buff *skb)
5100 {
5101 int ret;
5102
5103 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5104
5105 trace_netif_rx(skb);
5106
5107 #ifdef CONFIG_RPS
5108 if (static_branch_unlikely(&rps_needed)) {
5109 struct rps_dev_flow voidflow, *rflow = &voidflow;
5110 int cpu;
5111
5112 rcu_read_lock();
5113
5114 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5115 if (cpu < 0)
5116 cpu = smp_processor_id();
5117
5118 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5119
5120 rcu_read_unlock();
5121 } else
5122 #endif
5123 {
5124 unsigned int qtail;
5125
5126 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5127 }
5128 return ret;
5129 }
5130
5131 /**
5132 * __netif_rx - Slightly optimized version of netif_rx
5133 * @skb: buffer to post
5134 *
5135 * This behaves as netif_rx except that it does not disable bottom halves.
5136 * As a result this function may only be invoked from the interrupt context
5137 * (either hard or soft interrupt).
5138 */
__netif_rx(struct sk_buff * skb)5139 int __netif_rx(struct sk_buff *skb)
5140 {
5141 int ret;
5142
5143 lockdep_assert_once(hardirq_count() | softirq_count());
5144
5145 trace_netif_rx_entry(skb);
5146 ret = netif_rx_internal(skb);
5147 trace_netif_rx_exit(ret);
5148 return ret;
5149 }
5150 EXPORT_SYMBOL(__netif_rx);
5151
5152 /**
5153 * netif_rx - post buffer to the network code
5154 * @skb: buffer to post
5155 *
5156 * This function receives a packet from a device driver and queues it for
5157 * the upper (protocol) levels to process via the backlog NAPI device. It
5158 * always succeeds. The buffer may be dropped during processing for
5159 * congestion control or by the protocol layers.
5160 * The network buffer is passed via the backlog NAPI device. Modern NIC
5161 * driver should use NAPI and GRO.
5162 * This function can used from interrupt and from process context. The
5163 * caller from process context must not disable interrupts before invoking
5164 * this function.
5165 *
5166 * return values:
5167 * NET_RX_SUCCESS (no congestion)
5168 * NET_RX_DROP (packet was dropped)
5169 *
5170 */
netif_rx(struct sk_buff * skb)5171 int netif_rx(struct sk_buff *skb)
5172 {
5173 bool need_bh_off = !(hardirq_count() | softirq_count());
5174 int ret;
5175
5176 if (need_bh_off)
5177 local_bh_disable();
5178 trace_netif_rx_entry(skb);
5179 ret = netif_rx_internal(skb);
5180 trace_netif_rx_exit(ret);
5181 if (need_bh_off)
5182 local_bh_enable();
5183 return ret;
5184 }
5185 EXPORT_SYMBOL(netif_rx);
5186
net_tx_action(struct softirq_action * h)5187 static __latent_entropy void net_tx_action(struct softirq_action *h)
5188 {
5189 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5190
5191 if (sd->completion_queue) {
5192 struct sk_buff *clist;
5193
5194 local_irq_disable();
5195 clist = sd->completion_queue;
5196 sd->completion_queue = NULL;
5197 local_irq_enable();
5198
5199 while (clist) {
5200 struct sk_buff *skb = clist;
5201
5202 clist = clist->next;
5203
5204 WARN_ON(refcount_read(&skb->users));
5205 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5206 trace_consume_skb(skb, net_tx_action);
5207 else
5208 trace_kfree_skb(skb, net_tx_action,
5209 get_kfree_skb_cb(skb)->reason);
5210
5211 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5212 __kfree_skb(skb);
5213 else
5214 __napi_kfree_skb(skb,
5215 get_kfree_skb_cb(skb)->reason);
5216 }
5217 }
5218
5219 if (sd->output_queue) {
5220 struct Qdisc *head;
5221
5222 local_irq_disable();
5223 head = sd->output_queue;
5224 sd->output_queue = NULL;
5225 sd->output_queue_tailp = &sd->output_queue;
5226 local_irq_enable();
5227
5228 rcu_read_lock();
5229
5230 while (head) {
5231 struct Qdisc *q = head;
5232 spinlock_t *root_lock = NULL;
5233
5234 head = head->next_sched;
5235
5236 /* We need to make sure head->next_sched is read
5237 * before clearing __QDISC_STATE_SCHED
5238 */
5239 smp_mb__before_atomic();
5240
5241 if (!(q->flags & TCQ_F_NOLOCK)) {
5242 root_lock = qdisc_lock(q);
5243 spin_lock(root_lock);
5244 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5245 &q->state))) {
5246 /* There is a synchronize_net() between
5247 * STATE_DEACTIVATED flag being set and
5248 * qdisc_reset()/some_qdisc_is_busy() in
5249 * dev_deactivate(), so we can safely bail out
5250 * early here to avoid data race between
5251 * qdisc_deactivate() and some_qdisc_is_busy()
5252 * for lockless qdisc.
5253 */
5254 clear_bit(__QDISC_STATE_SCHED, &q->state);
5255 continue;
5256 }
5257
5258 clear_bit(__QDISC_STATE_SCHED, &q->state);
5259 qdisc_run(q);
5260 if (root_lock)
5261 spin_unlock(root_lock);
5262 }
5263
5264 rcu_read_unlock();
5265 }
5266
5267 xfrm_dev_backlog(sd);
5268 }
5269
5270 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5271 /* This hook is defined here for ATM LANE */
5272 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5273 unsigned char *addr) __read_mostly;
5274 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5275 #endif
5276
5277 /**
5278 * netdev_is_rx_handler_busy - check if receive handler is registered
5279 * @dev: device to check
5280 *
5281 * Check if a receive handler is already registered for a given device.
5282 * Return true if there one.
5283 *
5284 * The caller must hold the rtnl_mutex.
5285 */
netdev_is_rx_handler_busy(struct net_device * dev)5286 bool netdev_is_rx_handler_busy(struct net_device *dev)
5287 {
5288 ASSERT_RTNL();
5289 return dev && rtnl_dereference(dev->rx_handler);
5290 }
5291 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5292
5293 /**
5294 * netdev_rx_handler_register - register receive handler
5295 * @dev: device to register a handler for
5296 * @rx_handler: receive handler to register
5297 * @rx_handler_data: data pointer that is used by rx handler
5298 *
5299 * Register a receive handler for a device. This handler will then be
5300 * called from __netif_receive_skb. A negative errno code is returned
5301 * on a failure.
5302 *
5303 * The caller must hold the rtnl_mutex.
5304 *
5305 * For a general description of rx_handler, see enum rx_handler_result.
5306 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5307 int netdev_rx_handler_register(struct net_device *dev,
5308 rx_handler_func_t *rx_handler,
5309 void *rx_handler_data)
5310 {
5311 if (netdev_is_rx_handler_busy(dev))
5312 return -EBUSY;
5313
5314 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5315 return -EINVAL;
5316
5317 /* Note: rx_handler_data must be set before rx_handler */
5318 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5319 rcu_assign_pointer(dev->rx_handler, rx_handler);
5320
5321 return 0;
5322 }
5323 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5324
5325 /**
5326 * netdev_rx_handler_unregister - unregister receive handler
5327 * @dev: device to unregister a handler from
5328 *
5329 * Unregister a receive handler from a device.
5330 *
5331 * The caller must hold the rtnl_mutex.
5332 */
netdev_rx_handler_unregister(struct net_device * dev)5333 void netdev_rx_handler_unregister(struct net_device *dev)
5334 {
5335
5336 ASSERT_RTNL();
5337 RCU_INIT_POINTER(dev->rx_handler, NULL);
5338 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5339 * section has a guarantee to see a non NULL rx_handler_data
5340 * as well.
5341 */
5342 synchronize_net();
5343 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5344 }
5345 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5346
5347 /*
5348 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5349 * the special handling of PFMEMALLOC skbs.
5350 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5351 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5352 {
5353 switch (skb->protocol) {
5354 case htons(ETH_P_ARP):
5355 case htons(ETH_P_IP):
5356 case htons(ETH_P_IPV6):
5357 case htons(ETH_P_8021Q):
5358 case htons(ETH_P_8021AD):
5359 return true;
5360 default:
5361 return false;
5362 }
5363 }
5364
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5365 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5366 int *ret, struct net_device *orig_dev)
5367 {
5368 if (nf_hook_ingress_active(skb)) {
5369 int ingress_retval;
5370
5371 if (*pt_prev) {
5372 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5373 *pt_prev = NULL;
5374 }
5375
5376 rcu_read_lock();
5377 ingress_retval = nf_hook_ingress(skb);
5378 rcu_read_unlock();
5379 return ingress_retval;
5380 }
5381 return 0;
5382 }
5383
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5384 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5385 struct packet_type **ppt_prev)
5386 {
5387 struct packet_type *ptype, *pt_prev;
5388 rx_handler_func_t *rx_handler;
5389 struct sk_buff *skb = *pskb;
5390 struct net_device *orig_dev;
5391 bool deliver_exact = false;
5392 int ret = NET_RX_DROP;
5393 __be16 type;
5394
5395 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5396
5397 trace_netif_receive_skb(skb);
5398
5399 orig_dev = skb->dev;
5400
5401 skb_reset_network_header(skb);
5402 if (!skb_transport_header_was_set(skb))
5403 skb_reset_transport_header(skb);
5404 skb_reset_mac_len(skb);
5405
5406 pt_prev = NULL;
5407
5408 another_round:
5409 skb->skb_iif = skb->dev->ifindex;
5410
5411 __this_cpu_inc(softnet_data.processed);
5412
5413 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5414 int ret2;
5415
5416 migrate_disable();
5417 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5418 migrate_enable();
5419
5420 if (ret2 != XDP_PASS) {
5421 ret = NET_RX_DROP;
5422 goto out;
5423 }
5424 }
5425
5426 if (eth_type_vlan(skb->protocol)) {
5427 skb = skb_vlan_untag(skb);
5428 if (unlikely(!skb))
5429 goto out;
5430 }
5431
5432 if (skb_skip_tc_classify(skb))
5433 goto skip_classify;
5434
5435 if (pfmemalloc)
5436 goto skip_taps;
5437
5438 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5439 if (pt_prev)
5440 ret = deliver_skb(skb, pt_prev, orig_dev);
5441 pt_prev = ptype;
5442 }
5443
5444 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5445 if (pt_prev)
5446 ret = deliver_skb(skb, pt_prev, orig_dev);
5447 pt_prev = ptype;
5448 }
5449
5450 skip_taps:
5451 #ifdef CONFIG_NET_INGRESS
5452 if (static_branch_unlikely(&ingress_needed_key)) {
5453 bool another = false;
5454
5455 nf_skip_egress(skb, true);
5456 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5457 &another);
5458 if (another)
5459 goto another_round;
5460 if (!skb)
5461 goto out;
5462
5463 nf_skip_egress(skb, false);
5464 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5465 goto out;
5466 }
5467 #endif
5468 skb_reset_redirect(skb);
5469 skip_classify:
5470 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5471 goto drop;
5472
5473 if (skb_vlan_tag_present(skb)) {
5474 if (pt_prev) {
5475 ret = deliver_skb(skb, pt_prev, orig_dev);
5476 pt_prev = NULL;
5477 }
5478 if (vlan_do_receive(&skb))
5479 goto another_round;
5480 else if (unlikely(!skb))
5481 goto out;
5482 }
5483
5484 rx_handler = rcu_dereference(skb->dev->rx_handler);
5485 if (rx_handler) {
5486 if (pt_prev) {
5487 ret = deliver_skb(skb, pt_prev, orig_dev);
5488 pt_prev = NULL;
5489 }
5490 switch (rx_handler(&skb)) {
5491 case RX_HANDLER_CONSUMED:
5492 ret = NET_RX_SUCCESS;
5493 goto out;
5494 case RX_HANDLER_ANOTHER:
5495 goto another_round;
5496 case RX_HANDLER_EXACT:
5497 deliver_exact = true;
5498 break;
5499 case RX_HANDLER_PASS:
5500 break;
5501 default:
5502 BUG();
5503 }
5504 }
5505
5506 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5507 check_vlan_id:
5508 if (skb_vlan_tag_get_id(skb)) {
5509 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5510 * find vlan device.
5511 */
5512 skb->pkt_type = PACKET_OTHERHOST;
5513 } else if (eth_type_vlan(skb->protocol)) {
5514 /* Outer header is 802.1P with vlan 0, inner header is
5515 * 802.1Q or 802.1AD and vlan_do_receive() above could
5516 * not find vlan dev for vlan id 0.
5517 */
5518 __vlan_hwaccel_clear_tag(skb);
5519 skb = skb_vlan_untag(skb);
5520 if (unlikely(!skb))
5521 goto out;
5522 if (vlan_do_receive(&skb))
5523 /* After stripping off 802.1P header with vlan 0
5524 * vlan dev is found for inner header.
5525 */
5526 goto another_round;
5527 else if (unlikely(!skb))
5528 goto out;
5529 else
5530 /* We have stripped outer 802.1P vlan 0 header.
5531 * But could not find vlan dev.
5532 * check again for vlan id to set OTHERHOST.
5533 */
5534 goto check_vlan_id;
5535 }
5536 /* Note: we might in the future use prio bits
5537 * and set skb->priority like in vlan_do_receive()
5538 * For the time being, just ignore Priority Code Point
5539 */
5540 __vlan_hwaccel_clear_tag(skb);
5541 }
5542
5543 type = skb->protocol;
5544
5545 /* deliver only exact match when indicated */
5546 if (likely(!deliver_exact)) {
5547 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5548 &ptype_base[ntohs(type) &
5549 PTYPE_HASH_MASK]);
5550 }
5551
5552 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5553 &orig_dev->ptype_specific);
5554
5555 if (unlikely(skb->dev != orig_dev)) {
5556 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5557 &skb->dev->ptype_specific);
5558 }
5559
5560 if (pt_prev) {
5561 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5562 goto drop;
5563 *ppt_prev = pt_prev;
5564 } else {
5565 drop:
5566 if (!deliver_exact)
5567 dev_core_stats_rx_dropped_inc(skb->dev);
5568 else
5569 dev_core_stats_rx_nohandler_inc(skb->dev);
5570 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5571 /* Jamal, now you will not able to escape explaining
5572 * me how you were going to use this. :-)
5573 */
5574 ret = NET_RX_DROP;
5575 }
5576
5577 out:
5578 /* The invariant here is that if *ppt_prev is not NULL
5579 * then skb should also be non-NULL.
5580 *
5581 * Apparently *ppt_prev assignment above holds this invariant due to
5582 * skb dereferencing near it.
5583 */
5584 *pskb = skb;
5585 return ret;
5586 }
5587
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5588 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5589 {
5590 struct net_device *orig_dev = skb->dev;
5591 struct packet_type *pt_prev = NULL;
5592 int ret;
5593
5594 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5595 if (pt_prev)
5596 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5597 skb->dev, pt_prev, orig_dev);
5598 return ret;
5599 }
5600
5601 /**
5602 * netif_receive_skb_core - special purpose version of netif_receive_skb
5603 * @skb: buffer to process
5604 *
5605 * More direct receive version of netif_receive_skb(). It should
5606 * only be used by callers that have a need to skip RPS and Generic XDP.
5607 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5608 *
5609 * This function may only be called from softirq context and interrupts
5610 * should be enabled.
5611 *
5612 * Return values (usually ignored):
5613 * NET_RX_SUCCESS: no congestion
5614 * NET_RX_DROP: packet was dropped
5615 */
netif_receive_skb_core(struct sk_buff * skb)5616 int netif_receive_skb_core(struct sk_buff *skb)
5617 {
5618 int ret;
5619
5620 rcu_read_lock();
5621 ret = __netif_receive_skb_one_core(skb, false);
5622 rcu_read_unlock();
5623
5624 return ret;
5625 }
5626 EXPORT_SYMBOL(netif_receive_skb_core);
5627
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5628 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5629 struct packet_type *pt_prev,
5630 struct net_device *orig_dev)
5631 {
5632 struct sk_buff *skb, *next;
5633
5634 if (!pt_prev)
5635 return;
5636 if (list_empty(head))
5637 return;
5638 if (pt_prev->list_func != NULL)
5639 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5640 ip_list_rcv, head, pt_prev, orig_dev);
5641 else
5642 list_for_each_entry_safe(skb, next, head, list) {
5643 skb_list_del_init(skb);
5644 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5645 }
5646 }
5647
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5648 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5649 {
5650 /* Fast-path assumptions:
5651 * - There is no RX handler.
5652 * - Only one packet_type matches.
5653 * If either of these fails, we will end up doing some per-packet
5654 * processing in-line, then handling the 'last ptype' for the whole
5655 * sublist. This can't cause out-of-order delivery to any single ptype,
5656 * because the 'last ptype' must be constant across the sublist, and all
5657 * other ptypes are handled per-packet.
5658 */
5659 /* Current (common) ptype of sublist */
5660 struct packet_type *pt_curr = NULL;
5661 /* Current (common) orig_dev of sublist */
5662 struct net_device *od_curr = NULL;
5663 struct list_head sublist;
5664 struct sk_buff *skb, *next;
5665
5666 INIT_LIST_HEAD(&sublist);
5667 list_for_each_entry_safe(skb, next, head, list) {
5668 struct net_device *orig_dev = skb->dev;
5669 struct packet_type *pt_prev = NULL;
5670
5671 skb_list_del_init(skb);
5672 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5673 if (!pt_prev)
5674 continue;
5675 if (pt_curr != pt_prev || od_curr != orig_dev) {
5676 /* dispatch old sublist */
5677 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5678 /* start new sublist */
5679 INIT_LIST_HEAD(&sublist);
5680 pt_curr = pt_prev;
5681 od_curr = orig_dev;
5682 }
5683 list_add_tail(&skb->list, &sublist);
5684 }
5685
5686 /* dispatch final sublist */
5687 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5688 }
5689
__netif_receive_skb(struct sk_buff * skb)5690 static int __netif_receive_skb(struct sk_buff *skb)
5691 {
5692 int ret;
5693
5694 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5695 unsigned int noreclaim_flag;
5696
5697 /*
5698 * PFMEMALLOC skbs are special, they should
5699 * - be delivered to SOCK_MEMALLOC sockets only
5700 * - stay away from userspace
5701 * - have bounded memory usage
5702 *
5703 * Use PF_MEMALLOC as this saves us from propagating the allocation
5704 * context down to all allocation sites.
5705 */
5706 noreclaim_flag = memalloc_noreclaim_save();
5707 ret = __netif_receive_skb_one_core(skb, true);
5708 memalloc_noreclaim_restore(noreclaim_flag);
5709 } else
5710 ret = __netif_receive_skb_one_core(skb, false);
5711
5712 return ret;
5713 }
5714
__netif_receive_skb_list(struct list_head * head)5715 static void __netif_receive_skb_list(struct list_head *head)
5716 {
5717 unsigned long noreclaim_flag = 0;
5718 struct sk_buff *skb, *next;
5719 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5720
5721 list_for_each_entry_safe(skb, next, head, list) {
5722 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5723 struct list_head sublist;
5724
5725 /* Handle the previous sublist */
5726 list_cut_before(&sublist, head, &skb->list);
5727 if (!list_empty(&sublist))
5728 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5729 pfmemalloc = !pfmemalloc;
5730 /* See comments in __netif_receive_skb */
5731 if (pfmemalloc)
5732 noreclaim_flag = memalloc_noreclaim_save();
5733 else
5734 memalloc_noreclaim_restore(noreclaim_flag);
5735 }
5736 }
5737 /* Handle the remaining sublist */
5738 if (!list_empty(head))
5739 __netif_receive_skb_list_core(head, pfmemalloc);
5740 /* Restore pflags */
5741 if (pfmemalloc)
5742 memalloc_noreclaim_restore(noreclaim_flag);
5743 }
5744
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5745 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5746 {
5747 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5748 struct bpf_prog *new = xdp->prog;
5749 int ret = 0;
5750
5751 switch (xdp->command) {
5752 case XDP_SETUP_PROG:
5753 rcu_assign_pointer(dev->xdp_prog, new);
5754 if (old)
5755 bpf_prog_put(old);
5756
5757 if (old && !new) {
5758 static_branch_dec(&generic_xdp_needed_key);
5759 } else if (new && !old) {
5760 static_branch_inc(&generic_xdp_needed_key);
5761 dev_disable_lro(dev);
5762 dev_disable_gro_hw(dev);
5763 }
5764 break;
5765
5766 default:
5767 ret = -EINVAL;
5768 break;
5769 }
5770
5771 return ret;
5772 }
5773
netif_receive_skb_internal(struct sk_buff * skb)5774 static int netif_receive_skb_internal(struct sk_buff *skb)
5775 {
5776 int ret;
5777
5778 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5779
5780 if (skb_defer_rx_timestamp(skb))
5781 return NET_RX_SUCCESS;
5782
5783 rcu_read_lock();
5784 #ifdef CONFIG_RPS
5785 if (static_branch_unlikely(&rps_needed)) {
5786 struct rps_dev_flow voidflow, *rflow = &voidflow;
5787 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5788
5789 if (cpu >= 0) {
5790 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5791 rcu_read_unlock();
5792 return ret;
5793 }
5794 }
5795 #endif
5796 ret = __netif_receive_skb(skb);
5797 rcu_read_unlock();
5798 return ret;
5799 }
5800
netif_receive_skb_list_internal(struct list_head * head)5801 void netif_receive_skb_list_internal(struct list_head *head)
5802 {
5803 struct sk_buff *skb, *next;
5804 struct list_head sublist;
5805
5806 INIT_LIST_HEAD(&sublist);
5807 list_for_each_entry_safe(skb, next, head, list) {
5808 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5809 skb_list_del_init(skb);
5810 if (!skb_defer_rx_timestamp(skb))
5811 list_add_tail(&skb->list, &sublist);
5812 }
5813 list_splice_init(&sublist, head);
5814
5815 rcu_read_lock();
5816 #ifdef CONFIG_RPS
5817 if (static_branch_unlikely(&rps_needed)) {
5818 list_for_each_entry_safe(skb, next, head, list) {
5819 struct rps_dev_flow voidflow, *rflow = &voidflow;
5820 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5821
5822 if (cpu >= 0) {
5823 /* Will be handled, remove from list */
5824 skb_list_del_init(skb);
5825 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5826 }
5827 }
5828 }
5829 #endif
5830 __netif_receive_skb_list(head);
5831 rcu_read_unlock();
5832 }
5833
5834 /**
5835 * netif_receive_skb - process receive buffer from network
5836 * @skb: buffer to process
5837 *
5838 * netif_receive_skb() is the main receive data processing function.
5839 * It always succeeds. The buffer may be dropped during processing
5840 * for congestion control or by the protocol layers.
5841 *
5842 * This function may only be called from softirq context and interrupts
5843 * should be enabled.
5844 *
5845 * Return values (usually ignored):
5846 * NET_RX_SUCCESS: no congestion
5847 * NET_RX_DROP: packet was dropped
5848 */
netif_receive_skb(struct sk_buff * skb)5849 int netif_receive_skb(struct sk_buff *skb)
5850 {
5851 int ret;
5852
5853 trace_netif_receive_skb_entry(skb);
5854
5855 ret = netif_receive_skb_internal(skb);
5856 trace_netif_receive_skb_exit(ret);
5857
5858 return ret;
5859 }
5860 EXPORT_SYMBOL(netif_receive_skb);
5861
5862 /**
5863 * netif_receive_skb_list - process many receive buffers from network
5864 * @head: list of skbs to process.
5865 *
5866 * Since return value of netif_receive_skb() is normally ignored, and
5867 * wouldn't be meaningful for a list, this function returns void.
5868 *
5869 * This function may only be called from softirq context and interrupts
5870 * should be enabled.
5871 */
netif_receive_skb_list(struct list_head * head)5872 void netif_receive_skb_list(struct list_head *head)
5873 {
5874 struct sk_buff *skb;
5875
5876 if (list_empty(head))
5877 return;
5878 if (trace_netif_receive_skb_list_entry_enabled()) {
5879 list_for_each_entry(skb, head, list)
5880 trace_netif_receive_skb_list_entry(skb);
5881 }
5882 netif_receive_skb_list_internal(head);
5883 trace_netif_receive_skb_list_exit(0);
5884 }
5885 EXPORT_SYMBOL(netif_receive_skb_list);
5886
5887 static DEFINE_PER_CPU(struct work_struct, flush_works);
5888
5889 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5890 static void flush_backlog(struct work_struct *work)
5891 {
5892 struct sk_buff *skb, *tmp;
5893 struct softnet_data *sd;
5894
5895 local_bh_disable();
5896 sd = this_cpu_ptr(&softnet_data);
5897
5898 rps_lock_irq_disable(sd);
5899 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5900 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5901 __skb_unlink(skb, &sd->input_pkt_queue);
5902 dev_kfree_skb_irq(skb);
5903 input_queue_head_incr(sd);
5904 }
5905 }
5906 rps_unlock_irq_enable(sd);
5907
5908 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5909 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5910 __skb_unlink(skb, &sd->process_queue);
5911 kfree_skb(skb);
5912 input_queue_head_incr(sd);
5913 }
5914 }
5915 local_bh_enable();
5916 }
5917
flush_required(int cpu)5918 static bool flush_required(int cpu)
5919 {
5920 #if IS_ENABLED(CONFIG_RPS)
5921 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5922 bool do_flush;
5923
5924 rps_lock_irq_disable(sd);
5925
5926 /* as insertion into process_queue happens with the rps lock held,
5927 * process_queue access may race only with dequeue
5928 */
5929 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5930 !skb_queue_empty_lockless(&sd->process_queue);
5931 rps_unlock_irq_enable(sd);
5932
5933 return do_flush;
5934 #endif
5935 /* without RPS we can't safely check input_pkt_queue: during a
5936 * concurrent remote skb_queue_splice() we can detect as empty both
5937 * input_pkt_queue and process_queue even if the latter could end-up
5938 * containing a lot of packets.
5939 */
5940 return true;
5941 }
5942
flush_all_backlogs(void)5943 static void flush_all_backlogs(void)
5944 {
5945 static cpumask_t flush_cpus;
5946 unsigned int cpu;
5947
5948 /* since we are under rtnl lock protection we can use static data
5949 * for the cpumask and avoid allocating on stack the possibly
5950 * large mask
5951 */
5952 ASSERT_RTNL();
5953
5954 cpus_read_lock();
5955
5956 cpumask_clear(&flush_cpus);
5957 for_each_online_cpu(cpu) {
5958 if (flush_required(cpu)) {
5959 queue_work_on(cpu, system_highpri_wq,
5960 per_cpu_ptr(&flush_works, cpu));
5961 cpumask_set_cpu(cpu, &flush_cpus);
5962 }
5963 }
5964
5965 /* we can have in flight packet[s] on the cpus we are not flushing,
5966 * synchronize_net() in unregister_netdevice_many() will take care of
5967 * them
5968 */
5969 for_each_cpu(cpu, &flush_cpus)
5970 flush_work(per_cpu_ptr(&flush_works, cpu));
5971
5972 cpus_read_unlock();
5973 }
5974
net_rps_send_ipi(struct softnet_data * remsd)5975 static void net_rps_send_ipi(struct softnet_data *remsd)
5976 {
5977 #ifdef CONFIG_RPS
5978 while (remsd) {
5979 struct softnet_data *next = remsd->rps_ipi_next;
5980
5981 if (cpu_online(remsd->cpu))
5982 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5983 remsd = next;
5984 }
5985 #endif
5986 }
5987
5988 /*
5989 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5990 * Note: called with local irq disabled, but exits with local irq enabled.
5991 */
net_rps_action_and_irq_enable(struct softnet_data * sd)5992 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5993 {
5994 #ifdef CONFIG_RPS
5995 struct softnet_data *remsd = sd->rps_ipi_list;
5996
5997 if (remsd) {
5998 sd->rps_ipi_list = NULL;
5999
6000 local_irq_enable();
6001
6002 /* Send pending IPI's to kick RPS processing on remote cpus. */
6003 net_rps_send_ipi(remsd);
6004 } else
6005 #endif
6006 local_irq_enable();
6007 }
6008
sd_has_rps_ipi_waiting(struct softnet_data * sd)6009 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6010 {
6011 #ifdef CONFIG_RPS
6012 return sd->rps_ipi_list != NULL;
6013 #else
6014 return false;
6015 #endif
6016 }
6017
process_backlog(struct napi_struct * napi,int quota)6018 static int process_backlog(struct napi_struct *napi, int quota)
6019 {
6020 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6021 bool again = true;
6022 int work = 0;
6023
6024 /* Check if we have pending ipi, its better to send them now,
6025 * not waiting net_rx_action() end.
6026 */
6027 if (sd_has_rps_ipi_waiting(sd)) {
6028 local_irq_disable();
6029 net_rps_action_and_irq_enable(sd);
6030 }
6031
6032 napi->weight = READ_ONCE(dev_rx_weight);
6033 while (again) {
6034 struct sk_buff *skb;
6035
6036 while ((skb = __skb_dequeue(&sd->process_queue))) {
6037 rcu_read_lock();
6038 __netif_receive_skb(skb);
6039 rcu_read_unlock();
6040 input_queue_head_incr(sd);
6041 if (++work >= quota)
6042 return work;
6043
6044 }
6045
6046 rps_lock_irq_disable(sd);
6047 if (skb_queue_empty(&sd->input_pkt_queue)) {
6048 /*
6049 * Inline a custom version of __napi_complete().
6050 * only current cpu owns and manipulates this napi,
6051 * and NAPI_STATE_SCHED is the only possible flag set
6052 * on backlog.
6053 * We can use a plain write instead of clear_bit(),
6054 * and we dont need an smp_mb() memory barrier.
6055 */
6056 napi->state = 0;
6057 again = false;
6058 } else {
6059 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6060 &sd->process_queue);
6061 }
6062 rps_unlock_irq_enable(sd);
6063 }
6064
6065 return work;
6066 }
6067
6068 /**
6069 * __napi_schedule - schedule for receive
6070 * @n: entry to schedule
6071 *
6072 * The entry's receive function will be scheduled to run.
6073 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6074 */
__napi_schedule(struct napi_struct * n)6075 void __napi_schedule(struct napi_struct *n)
6076 {
6077 unsigned long flags;
6078
6079 local_irq_save(flags);
6080 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6081 local_irq_restore(flags);
6082 }
6083 EXPORT_SYMBOL(__napi_schedule);
6084
6085 /**
6086 * napi_schedule_prep - check if napi can be scheduled
6087 * @n: napi context
6088 *
6089 * Test if NAPI routine is already running, and if not mark
6090 * it as running. This is used as a condition variable to
6091 * insure only one NAPI poll instance runs. We also make
6092 * sure there is no pending NAPI disable.
6093 */
napi_schedule_prep(struct napi_struct * n)6094 bool napi_schedule_prep(struct napi_struct *n)
6095 {
6096 unsigned long new, val = READ_ONCE(n->state);
6097
6098 do {
6099 if (unlikely(val & NAPIF_STATE_DISABLE))
6100 return false;
6101 new = val | NAPIF_STATE_SCHED;
6102
6103 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6104 * This was suggested by Alexander Duyck, as compiler
6105 * emits better code than :
6106 * if (val & NAPIF_STATE_SCHED)
6107 * new |= NAPIF_STATE_MISSED;
6108 */
6109 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6110 NAPIF_STATE_MISSED;
6111 } while (!try_cmpxchg(&n->state, &val, new));
6112
6113 return !(val & NAPIF_STATE_SCHED);
6114 }
6115 EXPORT_SYMBOL(napi_schedule_prep);
6116
6117 /**
6118 * __napi_schedule_irqoff - schedule for receive
6119 * @n: entry to schedule
6120 *
6121 * Variant of __napi_schedule() assuming hard irqs are masked.
6122 *
6123 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6124 * because the interrupt disabled assumption might not be true
6125 * due to force-threaded interrupts and spinlock substitution.
6126 */
__napi_schedule_irqoff(struct napi_struct * n)6127 void __napi_schedule_irqoff(struct napi_struct *n)
6128 {
6129 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6130 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6131 else
6132 __napi_schedule(n);
6133 }
6134 EXPORT_SYMBOL(__napi_schedule_irqoff);
6135
napi_complete_done(struct napi_struct * n,int work_done)6136 bool napi_complete_done(struct napi_struct *n, int work_done)
6137 {
6138 unsigned long flags, val, new, timeout = 0;
6139 bool ret = true;
6140
6141 /*
6142 * 1) Don't let napi dequeue from the cpu poll list
6143 * just in case its running on a different cpu.
6144 * 2) If we are busy polling, do nothing here, we have
6145 * the guarantee we will be called later.
6146 */
6147 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6148 NAPIF_STATE_IN_BUSY_POLL)))
6149 return false;
6150
6151 if (work_done) {
6152 if (n->gro_bitmask)
6153 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6154 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6155 }
6156 if (n->defer_hard_irqs_count > 0) {
6157 n->defer_hard_irqs_count--;
6158 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6159 if (timeout)
6160 ret = false;
6161 }
6162 if (n->gro_bitmask) {
6163 /* When the NAPI instance uses a timeout and keeps postponing
6164 * it, we need to bound somehow the time packets are kept in
6165 * the GRO layer
6166 */
6167 napi_gro_flush(n, !!timeout);
6168 }
6169
6170 gro_normal_list(n);
6171
6172 if (unlikely(!list_empty(&n->poll_list))) {
6173 /* If n->poll_list is not empty, we need to mask irqs */
6174 local_irq_save(flags);
6175 list_del_init(&n->poll_list);
6176 local_irq_restore(flags);
6177 }
6178 WRITE_ONCE(n->list_owner, -1);
6179
6180 val = READ_ONCE(n->state);
6181 do {
6182 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6183
6184 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6185 NAPIF_STATE_SCHED_THREADED |
6186 NAPIF_STATE_PREFER_BUSY_POLL);
6187
6188 /* If STATE_MISSED was set, leave STATE_SCHED set,
6189 * because we will call napi->poll() one more time.
6190 * This C code was suggested by Alexander Duyck to help gcc.
6191 */
6192 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6193 NAPIF_STATE_SCHED;
6194 } while (!try_cmpxchg(&n->state, &val, new));
6195
6196 if (unlikely(val & NAPIF_STATE_MISSED)) {
6197 __napi_schedule(n);
6198 return false;
6199 }
6200
6201 if (timeout)
6202 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6203 HRTIMER_MODE_REL_PINNED);
6204 return ret;
6205 }
6206 EXPORT_SYMBOL(napi_complete_done);
6207
6208 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6209 static struct napi_struct *napi_by_id(unsigned int napi_id)
6210 {
6211 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6212 struct napi_struct *napi;
6213
6214 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6215 if (napi->napi_id == napi_id)
6216 return napi;
6217
6218 return NULL;
6219 }
6220
6221 #if defined(CONFIG_NET_RX_BUSY_POLL)
6222
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6223 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6224 {
6225 if (!skip_schedule) {
6226 gro_normal_list(napi);
6227 __napi_schedule(napi);
6228 return;
6229 }
6230
6231 if (napi->gro_bitmask) {
6232 /* flush too old packets
6233 * If HZ < 1000, flush all packets.
6234 */
6235 napi_gro_flush(napi, HZ >= 1000);
6236 }
6237
6238 gro_normal_list(napi);
6239 clear_bit(NAPI_STATE_SCHED, &napi->state);
6240 }
6241
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,bool prefer_busy_poll,u16 budget)6242 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6243 u16 budget)
6244 {
6245 bool skip_schedule = false;
6246 unsigned long timeout;
6247 int rc;
6248
6249 /* Busy polling means there is a high chance device driver hard irq
6250 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6251 * set in napi_schedule_prep().
6252 * Since we are about to call napi->poll() once more, we can safely
6253 * clear NAPI_STATE_MISSED.
6254 *
6255 * Note: x86 could use a single "lock and ..." instruction
6256 * to perform these two clear_bit()
6257 */
6258 clear_bit(NAPI_STATE_MISSED, &napi->state);
6259 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6260
6261 local_bh_disable();
6262
6263 if (prefer_busy_poll) {
6264 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6265 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6266 if (napi->defer_hard_irqs_count && timeout) {
6267 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6268 skip_schedule = true;
6269 }
6270 }
6271
6272 /* All we really want here is to re-enable device interrupts.
6273 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6274 */
6275 rc = napi->poll(napi, budget);
6276 /* We can't gro_normal_list() here, because napi->poll() might have
6277 * rearmed the napi (napi_complete_done()) in which case it could
6278 * already be running on another CPU.
6279 */
6280 trace_napi_poll(napi, rc, budget);
6281 netpoll_poll_unlock(have_poll_lock);
6282 if (rc == budget)
6283 __busy_poll_stop(napi, skip_schedule);
6284 local_bh_enable();
6285 }
6286
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6287 void napi_busy_loop(unsigned int napi_id,
6288 bool (*loop_end)(void *, unsigned long),
6289 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6290 {
6291 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6292 int (*napi_poll)(struct napi_struct *napi, int budget);
6293 void *have_poll_lock = NULL;
6294 struct napi_struct *napi;
6295
6296 restart:
6297 napi_poll = NULL;
6298
6299 rcu_read_lock();
6300
6301 napi = napi_by_id(napi_id);
6302 if (!napi)
6303 goto out;
6304
6305 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6306 preempt_disable();
6307 for (;;) {
6308 int work = 0;
6309
6310 local_bh_disable();
6311 if (!napi_poll) {
6312 unsigned long val = READ_ONCE(napi->state);
6313
6314 /* If multiple threads are competing for this napi,
6315 * we avoid dirtying napi->state as much as we can.
6316 */
6317 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6318 NAPIF_STATE_IN_BUSY_POLL)) {
6319 if (prefer_busy_poll)
6320 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6321 goto count;
6322 }
6323 if (cmpxchg(&napi->state, val,
6324 val | NAPIF_STATE_IN_BUSY_POLL |
6325 NAPIF_STATE_SCHED) != val) {
6326 if (prefer_busy_poll)
6327 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6328 goto count;
6329 }
6330 have_poll_lock = netpoll_poll_lock(napi);
6331 napi_poll = napi->poll;
6332 }
6333 work = napi_poll(napi, budget);
6334 trace_napi_poll(napi, work, budget);
6335 gro_normal_list(napi);
6336 count:
6337 if (work > 0)
6338 __NET_ADD_STATS(dev_net(napi->dev),
6339 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6340 local_bh_enable();
6341
6342 if (!loop_end || loop_end(loop_end_arg, start_time))
6343 break;
6344
6345 if (unlikely(need_resched())) {
6346 if (napi_poll)
6347 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6348 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6349 preempt_enable();
6350 rcu_read_unlock();
6351 cond_resched();
6352 if (loop_end(loop_end_arg, start_time))
6353 return;
6354 goto restart;
6355 }
6356 cpu_relax();
6357 }
6358 if (napi_poll)
6359 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6360 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6361 preempt_enable();
6362 out:
6363 rcu_read_unlock();
6364 }
6365 EXPORT_SYMBOL(napi_busy_loop);
6366
6367 #endif /* CONFIG_NET_RX_BUSY_POLL */
6368
napi_hash_add(struct napi_struct * napi)6369 static void napi_hash_add(struct napi_struct *napi)
6370 {
6371 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6372 return;
6373
6374 spin_lock(&napi_hash_lock);
6375
6376 /* 0..NR_CPUS range is reserved for sender_cpu use */
6377 do {
6378 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6379 napi_gen_id = MIN_NAPI_ID;
6380 } while (napi_by_id(napi_gen_id));
6381 napi->napi_id = napi_gen_id;
6382
6383 hlist_add_head_rcu(&napi->napi_hash_node,
6384 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6385
6386 spin_unlock(&napi_hash_lock);
6387 }
6388
6389 /* Warning : caller is responsible to make sure rcu grace period
6390 * is respected before freeing memory containing @napi
6391 */
napi_hash_del(struct napi_struct * napi)6392 static void napi_hash_del(struct napi_struct *napi)
6393 {
6394 spin_lock(&napi_hash_lock);
6395
6396 hlist_del_init_rcu(&napi->napi_hash_node);
6397
6398 spin_unlock(&napi_hash_lock);
6399 }
6400
napi_watchdog(struct hrtimer * timer)6401 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6402 {
6403 struct napi_struct *napi;
6404
6405 napi = container_of(timer, struct napi_struct, timer);
6406
6407 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6408 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6409 */
6410 if (!napi_disable_pending(napi) &&
6411 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6412 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6413 __napi_schedule_irqoff(napi);
6414 }
6415
6416 return HRTIMER_NORESTART;
6417 }
6418
init_gro_hash(struct napi_struct * napi)6419 static void init_gro_hash(struct napi_struct *napi)
6420 {
6421 int i;
6422
6423 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6424 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6425 napi->gro_hash[i].count = 0;
6426 }
6427 napi->gro_bitmask = 0;
6428 }
6429
dev_set_threaded(struct net_device * dev,bool threaded)6430 int dev_set_threaded(struct net_device *dev, bool threaded)
6431 {
6432 struct napi_struct *napi;
6433 int err = 0;
6434
6435 if (dev->threaded == threaded)
6436 return 0;
6437
6438 if (threaded) {
6439 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6440 if (!napi->thread) {
6441 err = napi_kthread_create(napi);
6442 if (err) {
6443 threaded = false;
6444 break;
6445 }
6446 }
6447 }
6448 }
6449
6450 dev->threaded = threaded;
6451
6452 /* Make sure kthread is created before THREADED bit
6453 * is set.
6454 */
6455 smp_mb__before_atomic();
6456
6457 /* Setting/unsetting threaded mode on a napi might not immediately
6458 * take effect, if the current napi instance is actively being
6459 * polled. In this case, the switch between threaded mode and
6460 * softirq mode will happen in the next round of napi_schedule().
6461 * This should not cause hiccups/stalls to the live traffic.
6462 */
6463 list_for_each_entry(napi, &dev->napi_list, dev_list)
6464 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6465
6466 return err;
6467 }
6468 EXPORT_SYMBOL(dev_set_threaded);
6469
netif_napi_add_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6470 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6471 int (*poll)(struct napi_struct *, int), int weight)
6472 {
6473 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6474 return;
6475
6476 INIT_LIST_HEAD(&napi->poll_list);
6477 INIT_HLIST_NODE(&napi->napi_hash_node);
6478 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6479 napi->timer.function = napi_watchdog;
6480 init_gro_hash(napi);
6481 napi->skb = NULL;
6482 INIT_LIST_HEAD(&napi->rx_list);
6483 napi->rx_count = 0;
6484 napi->poll = poll;
6485 if (weight > NAPI_POLL_WEIGHT)
6486 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6487 weight);
6488 napi->weight = weight;
6489 napi->dev = dev;
6490 #ifdef CONFIG_NETPOLL
6491 napi->poll_owner = -1;
6492 #endif
6493 napi->list_owner = -1;
6494 set_bit(NAPI_STATE_SCHED, &napi->state);
6495 set_bit(NAPI_STATE_NPSVC, &napi->state);
6496 list_add_rcu(&napi->dev_list, &dev->napi_list);
6497 napi_hash_add(napi);
6498 napi_get_frags_check(napi);
6499 /* Create kthread for this napi if dev->threaded is set.
6500 * Clear dev->threaded if kthread creation failed so that
6501 * threaded mode will not be enabled in napi_enable().
6502 */
6503 if (dev->threaded && napi_kthread_create(napi))
6504 dev->threaded = 0;
6505 }
6506 EXPORT_SYMBOL(netif_napi_add_weight);
6507
napi_disable(struct napi_struct * n)6508 void napi_disable(struct napi_struct *n)
6509 {
6510 unsigned long val, new;
6511
6512 might_sleep();
6513 set_bit(NAPI_STATE_DISABLE, &n->state);
6514
6515 val = READ_ONCE(n->state);
6516 do {
6517 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6518 usleep_range(20, 200);
6519 val = READ_ONCE(n->state);
6520 }
6521
6522 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6523 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6524 } while (!try_cmpxchg(&n->state, &val, new));
6525
6526 hrtimer_cancel(&n->timer);
6527
6528 clear_bit(NAPI_STATE_DISABLE, &n->state);
6529 }
6530 EXPORT_SYMBOL(napi_disable);
6531
6532 /**
6533 * napi_enable - enable NAPI scheduling
6534 * @n: NAPI context
6535 *
6536 * Resume NAPI from being scheduled on this context.
6537 * Must be paired with napi_disable.
6538 */
napi_enable(struct napi_struct * n)6539 void napi_enable(struct napi_struct *n)
6540 {
6541 unsigned long new, val = READ_ONCE(n->state);
6542
6543 do {
6544 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6545
6546 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6547 if (n->dev->threaded && n->thread)
6548 new |= NAPIF_STATE_THREADED;
6549 } while (!try_cmpxchg(&n->state, &val, new));
6550 }
6551 EXPORT_SYMBOL(napi_enable);
6552
flush_gro_hash(struct napi_struct * napi)6553 static void flush_gro_hash(struct napi_struct *napi)
6554 {
6555 int i;
6556
6557 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6558 struct sk_buff *skb, *n;
6559
6560 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6561 kfree_skb(skb);
6562 napi->gro_hash[i].count = 0;
6563 }
6564 }
6565
6566 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6567 void __netif_napi_del(struct napi_struct *napi)
6568 {
6569 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6570 return;
6571
6572 napi_hash_del(napi);
6573 list_del_rcu(&napi->dev_list);
6574 napi_free_frags(napi);
6575
6576 flush_gro_hash(napi);
6577 napi->gro_bitmask = 0;
6578
6579 if (napi->thread) {
6580 kthread_stop(napi->thread);
6581 napi->thread = NULL;
6582 }
6583 }
6584 EXPORT_SYMBOL(__netif_napi_del);
6585
__napi_poll(struct napi_struct * n,bool * repoll)6586 static int __napi_poll(struct napi_struct *n, bool *repoll)
6587 {
6588 int work, weight;
6589
6590 weight = n->weight;
6591
6592 /* This NAPI_STATE_SCHED test is for avoiding a race
6593 * with netpoll's poll_napi(). Only the entity which
6594 * obtains the lock and sees NAPI_STATE_SCHED set will
6595 * actually make the ->poll() call. Therefore we avoid
6596 * accidentally calling ->poll() when NAPI is not scheduled.
6597 */
6598 work = 0;
6599 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6600 work = n->poll(n, weight);
6601 trace_napi_poll(n, work, weight);
6602 }
6603
6604 if (unlikely(work > weight))
6605 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6606 n->poll, work, weight);
6607
6608 if (likely(work < weight))
6609 return work;
6610
6611 /* Drivers must not modify the NAPI state if they
6612 * consume the entire weight. In such cases this code
6613 * still "owns" the NAPI instance and therefore can
6614 * move the instance around on the list at-will.
6615 */
6616 if (unlikely(napi_disable_pending(n))) {
6617 napi_complete(n);
6618 return work;
6619 }
6620
6621 /* The NAPI context has more processing work, but busy-polling
6622 * is preferred. Exit early.
6623 */
6624 if (napi_prefer_busy_poll(n)) {
6625 if (napi_complete_done(n, work)) {
6626 /* If timeout is not set, we need to make sure
6627 * that the NAPI is re-scheduled.
6628 */
6629 napi_schedule(n);
6630 }
6631 return work;
6632 }
6633
6634 if (n->gro_bitmask) {
6635 /* flush too old packets
6636 * If HZ < 1000, flush all packets.
6637 */
6638 napi_gro_flush(n, HZ >= 1000);
6639 }
6640
6641 gro_normal_list(n);
6642
6643 /* Some drivers may have called napi_schedule
6644 * prior to exhausting their budget.
6645 */
6646 if (unlikely(!list_empty(&n->poll_list))) {
6647 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6648 n->dev ? n->dev->name : "backlog");
6649 return work;
6650 }
6651
6652 *repoll = true;
6653
6654 return work;
6655 }
6656
napi_poll(struct napi_struct * n,struct list_head * repoll)6657 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6658 {
6659 bool do_repoll = false;
6660 void *have;
6661 int work;
6662
6663 list_del_init(&n->poll_list);
6664
6665 have = netpoll_poll_lock(n);
6666
6667 work = __napi_poll(n, &do_repoll);
6668
6669 if (do_repoll)
6670 list_add_tail(&n->poll_list, repoll);
6671
6672 netpoll_poll_unlock(have);
6673
6674 return work;
6675 }
6676
napi_thread_wait(struct napi_struct * napi)6677 static int napi_thread_wait(struct napi_struct *napi)
6678 {
6679 bool woken = false;
6680
6681 set_current_state(TASK_INTERRUPTIBLE);
6682
6683 while (!kthread_should_stop()) {
6684 /* Testing SCHED_THREADED bit here to make sure the current
6685 * kthread owns this napi and could poll on this napi.
6686 * Testing SCHED bit is not enough because SCHED bit might be
6687 * set by some other busy poll thread or by napi_disable().
6688 */
6689 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6690 WARN_ON(!list_empty(&napi->poll_list));
6691 __set_current_state(TASK_RUNNING);
6692 return 0;
6693 }
6694
6695 schedule();
6696 /* woken being true indicates this thread owns this napi. */
6697 woken = true;
6698 set_current_state(TASK_INTERRUPTIBLE);
6699 }
6700 __set_current_state(TASK_RUNNING);
6701
6702 return -1;
6703 }
6704
skb_defer_free_flush(struct softnet_data * sd)6705 static void skb_defer_free_flush(struct softnet_data *sd)
6706 {
6707 struct sk_buff *skb, *next;
6708
6709 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6710 if (!READ_ONCE(sd->defer_list))
6711 return;
6712
6713 spin_lock(&sd->defer_lock);
6714 skb = sd->defer_list;
6715 sd->defer_list = NULL;
6716 sd->defer_count = 0;
6717 spin_unlock(&sd->defer_lock);
6718
6719 while (skb != NULL) {
6720 next = skb->next;
6721 napi_consume_skb(skb, 1);
6722 skb = next;
6723 }
6724 }
6725
napi_threaded_poll(void * data)6726 static int napi_threaded_poll(void *data)
6727 {
6728 struct napi_struct *napi = data;
6729 struct softnet_data *sd;
6730 void *have;
6731
6732 while (!napi_thread_wait(napi)) {
6733 unsigned long last_qs = jiffies;
6734
6735 for (;;) {
6736 bool repoll = false;
6737
6738 local_bh_disable();
6739 sd = this_cpu_ptr(&softnet_data);
6740 sd->in_napi_threaded_poll = true;
6741
6742 have = netpoll_poll_lock(napi);
6743 __napi_poll(napi, &repoll);
6744 netpoll_poll_unlock(have);
6745
6746 sd->in_napi_threaded_poll = false;
6747 barrier();
6748
6749 if (sd_has_rps_ipi_waiting(sd)) {
6750 local_irq_disable();
6751 net_rps_action_and_irq_enable(sd);
6752 }
6753 skb_defer_free_flush(sd);
6754 local_bh_enable();
6755
6756 if (!repoll)
6757 break;
6758
6759 rcu_softirq_qs_periodic(last_qs);
6760 cond_resched();
6761 }
6762 }
6763 return 0;
6764 }
6765
net_rx_action(struct softirq_action * h)6766 static __latent_entropy void net_rx_action(struct softirq_action *h)
6767 {
6768 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6769 unsigned long time_limit = jiffies +
6770 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6771 int budget = READ_ONCE(netdev_budget);
6772 LIST_HEAD(list);
6773 LIST_HEAD(repoll);
6774
6775 start:
6776 sd->in_net_rx_action = true;
6777 local_irq_disable();
6778 list_splice_init(&sd->poll_list, &list);
6779 local_irq_enable();
6780
6781 for (;;) {
6782 struct napi_struct *n;
6783
6784 skb_defer_free_flush(sd);
6785
6786 if (list_empty(&list)) {
6787 if (list_empty(&repoll)) {
6788 sd->in_net_rx_action = false;
6789 barrier();
6790 /* We need to check if ____napi_schedule()
6791 * had refilled poll_list while
6792 * sd->in_net_rx_action was true.
6793 */
6794 if (!list_empty(&sd->poll_list))
6795 goto start;
6796 if (!sd_has_rps_ipi_waiting(sd))
6797 goto end;
6798 }
6799 break;
6800 }
6801
6802 n = list_first_entry(&list, struct napi_struct, poll_list);
6803 budget -= napi_poll(n, &repoll);
6804
6805 /* If softirq window is exhausted then punt.
6806 * Allow this to run for 2 jiffies since which will allow
6807 * an average latency of 1.5/HZ.
6808 */
6809 if (unlikely(budget <= 0 ||
6810 time_after_eq(jiffies, time_limit))) {
6811 sd->time_squeeze++;
6812 break;
6813 }
6814 }
6815
6816 local_irq_disable();
6817
6818 list_splice_tail_init(&sd->poll_list, &list);
6819 list_splice_tail(&repoll, &list);
6820 list_splice(&list, &sd->poll_list);
6821 if (!list_empty(&sd->poll_list))
6822 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6823 else
6824 sd->in_net_rx_action = false;
6825
6826 net_rps_action_and_irq_enable(sd);
6827 end:;
6828 }
6829
6830 struct netdev_adjacent {
6831 struct net_device *dev;
6832 netdevice_tracker dev_tracker;
6833
6834 /* upper master flag, there can only be one master device per list */
6835 bool master;
6836
6837 /* lookup ignore flag */
6838 bool ignore;
6839
6840 /* counter for the number of times this device was added to us */
6841 u16 ref_nr;
6842
6843 /* private field for the users */
6844 void *private;
6845
6846 struct list_head list;
6847 struct rcu_head rcu;
6848 };
6849
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6850 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6851 struct list_head *adj_list)
6852 {
6853 struct netdev_adjacent *adj;
6854
6855 list_for_each_entry(adj, adj_list, list) {
6856 if (adj->dev == adj_dev)
6857 return adj;
6858 }
6859 return NULL;
6860 }
6861
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6862 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6863 struct netdev_nested_priv *priv)
6864 {
6865 struct net_device *dev = (struct net_device *)priv->data;
6866
6867 return upper_dev == dev;
6868 }
6869
6870 /**
6871 * netdev_has_upper_dev - Check if device is linked to an upper device
6872 * @dev: device
6873 * @upper_dev: upper device to check
6874 *
6875 * Find out if a device is linked to specified upper device and return true
6876 * in case it is. Note that this checks only immediate upper device,
6877 * not through a complete stack of devices. The caller must hold the RTNL lock.
6878 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6879 bool netdev_has_upper_dev(struct net_device *dev,
6880 struct net_device *upper_dev)
6881 {
6882 struct netdev_nested_priv priv = {
6883 .data = (void *)upper_dev,
6884 };
6885
6886 ASSERT_RTNL();
6887
6888 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6889 &priv);
6890 }
6891 EXPORT_SYMBOL(netdev_has_upper_dev);
6892
6893 /**
6894 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6895 * @dev: device
6896 * @upper_dev: upper device to check
6897 *
6898 * Find out if a device is linked to specified upper device and return true
6899 * in case it is. Note that this checks the entire upper device chain.
6900 * The caller must hold rcu lock.
6901 */
6902
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)6903 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6904 struct net_device *upper_dev)
6905 {
6906 struct netdev_nested_priv priv = {
6907 .data = (void *)upper_dev,
6908 };
6909
6910 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6911 &priv);
6912 }
6913 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6914
6915 /**
6916 * netdev_has_any_upper_dev - Check if device is linked to some device
6917 * @dev: device
6918 *
6919 * Find out if a device is linked to an upper device and return true in case
6920 * it is. The caller must hold the RTNL lock.
6921 */
netdev_has_any_upper_dev(struct net_device * dev)6922 bool netdev_has_any_upper_dev(struct net_device *dev)
6923 {
6924 ASSERT_RTNL();
6925
6926 return !list_empty(&dev->adj_list.upper);
6927 }
6928 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6929
6930 /**
6931 * netdev_master_upper_dev_get - Get master upper device
6932 * @dev: device
6933 *
6934 * Find a master upper device and return pointer to it or NULL in case
6935 * it's not there. The caller must hold the RTNL lock.
6936 */
netdev_master_upper_dev_get(struct net_device * dev)6937 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6938 {
6939 struct netdev_adjacent *upper;
6940
6941 ASSERT_RTNL();
6942
6943 if (list_empty(&dev->adj_list.upper))
6944 return NULL;
6945
6946 upper = list_first_entry(&dev->adj_list.upper,
6947 struct netdev_adjacent, list);
6948 if (likely(upper->master))
6949 return upper->dev;
6950 return NULL;
6951 }
6952 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6953
__netdev_master_upper_dev_get(struct net_device * dev)6954 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6955 {
6956 struct netdev_adjacent *upper;
6957
6958 ASSERT_RTNL();
6959
6960 if (list_empty(&dev->adj_list.upper))
6961 return NULL;
6962
6963 upper = list_first_entry(&dev->adj_list.upper,
6964 struct netdev_adjacent, list);
6965 if (likely(upper->master) && !upper->ignore)
6966 return upper->dev;
6967 return NULL;
6968 }
6969
6970 /**
6971 * netdev_has_any_lower_dev - Check if device is linked to some device
6972 * @dev: device
6973 *
6974 * Find out if a device is linked to a lower device and return true in case
6975 * it is. The caller must hold the RTNL lock.
6976 */
netdev_has_any_lower_dev(struct net_device * dev)6977 static bool netdev_has_any_lower_dev(struct net_device *dev)
6978 {
6979 ASSERT_RTNL();
6980
6981 return !list_empty(&dev->adj_list.lower);
6982 }
6983
netdev_adjacent_get_private(struct list_head * adj_list)6984 void *netdev_adjacent_get_private(struct list_head *adj_list)
6985 {
6986 struct netdev_adjacent *adj;
6987
6988 adj = list_entry(adj_list, struct netdev_adjacent, list);
6989
6990 return adj->private;
6991 }
6992 EXPORT_SYMBOL(netdev_adjacent_get_private);
6993
6994 /**
6995 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6996 * @dev: device
6997 * @iter: list_head ** of the current position
6998 *
6999 * Gets the next device from the dev's upper list, starting from iter
7000 * position. The caller must hold RCU read lock.
7001 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7002 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7003 struct list_head **iter)
7004 {
7005 struct netdev_adjacent *upper;
7006
7007 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7008
7009 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7010
7011 if (&upper->list == &dev->adj_list.upper)
7012 return NULL;
7013
7014 *iter = &upper->list;
7015
7016 return upper->dev;
7017 }
7018 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7019
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7020 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7021 struct list_head **iter,
7022 bool *ignore)
7023 {
7024 struct netdev_adjacent *upper;
7025
7026 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7027
7028 if (&upper->list == &dev->adj_list.upper)
7029 return NULL;
7030
7031 *iter = &upper->list;
7032 *ignore = upper->ignore;
7033
7034 return upper->dev;
7035 }
7036
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7037 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7038 struct list_head **iter)
7039 {
7040 struct netdev_adjacent *upper;
7041
7042 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7043
7044 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7045
7046 if (&upper->list == &dev->adj_list.upper)
7047 return NULL;
7048
7049 *iter = &upper->list;
7050
7051 return upper->dev;
7052 }
7053
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7054 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7055 int (*fn)(struct net_device *dev,
7056 struct netdev_nested_priv *priv),
7057 struct netdev_nested_priv *priv)
7058 {
7059 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7060 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7061 int ret, cur = 0;
7062 bool ignore;
7063
7064 now = dev;
7065 iter = &dev->adj_list.upper;
7066
7067 while (1) {
7068 if (now != dev) {
7069 ret = fn(now, priv);
7070 if (ret)
7071 return ret;
7072 }
7073
7074 next = NULL;
7075 while (1) {
7076 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7077 if (!udev)
7078 break;
7079 if (ignore)
7080 continue;
7081
7082 next = udev;
7083 niter = &udev->adj_list.upper;
7084 dev_stack[cur] = now;
7085 iter_stack[cur++] = iter;
7086 break;
7087 }
7088
7089 if (!next) {
7090 if (!cur)
7091 return 0;
7092 next = dev_stack[--cur];
7093 niter = iter_stack[cur];
7094 }
7095
7096 now = next;
7097 iter = niter;
7098 }
7099
7100 return 0;
7101 }
7102
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7103 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7104 int (*fn)(struct net_device *dev,
7105 struct netdev_nested_priv *priv),
7106 struct netdev_nested_priv *priv)
7107 {
7108 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7109 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7110 int ret, cur = 0;
7111
7112 now = dev;
7113 iter = &dev->adj_list.upper;
7114
7115 while (1) {
7116 if (now != dev) {
7117 ret = fn(now, priv);
7118 if (ret)
7119 return ret;
7120 }
7121
7122 next = NULL;
7123 while (1) {
7124 udev = netdev_next_upper_dev_rcu(now, &iter);
7125 if (!udev)
7126 break;
7127
7128 next = udev;
7129 niter = &udev->adj_list.upper;
7130 dev_stack[cur] = now;
7131 iter_stack[cur++] = iter;
7132 break;
7133 }
7134
7135 if (!next) {
7136 if (!cur)
7137 return 0;
7138 next = dev_stack[--cur];
7139 niter = iter_stack[cur];
7140 }
7141
7142 now = next;
7143 iter = niter;
7144 }
7145
7146 return 0;
7147 }
7148 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7149
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7150 static bool __netdev_has_upper_dev(struct net_device *dev,
7151 struct net_device *upper_dev)
7152 {
7153 struct netdev_nested_priv priv = {
7154 .flags = 0,
7155 .data = (void *)upper_dev,
7156 };
7157
7158 ASSERT_RTNL();
7159
7160 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7161 &priv);
7162 }
7163
7164 /**
7165 * netdev_lower_get_next_private - Get the next ->private from the
7166 * lower neighbour list
7167 * @dev: device
7168 * @iter: list_head ** of the current position
7169 *
7170 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7171 * list, starting from iter position. The caller must hold either hold the
7172 * RTNL lock or its own locking that guarantees that the neighbour lower
7173 * list will remain unchanged.
7174 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7175 void *netdev_lower_get_next_private(struct net_device *dev,
7176 struct list_head **iter)
7177 {
7178 struct netdev_adjacent *lower;
7179
7180 lower = list_entry(*iter, struct netdev_adjacent, list);
7181
7182 if (&lower->list == &dev->adj_list.lower)
7183 return NULL;
7184
7185 *iter = lower->list.next;
7186
7187 return lower->private;
7188 }
7189 EXPORT_SYMBOL(netdev_lower_get_next_private);
7190
7191 /**
7192 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7193 * lower neighbour list, RCU
7194 * variant
7195 * @dev: device
7196 * @iter: list_head ** of the current position
7197 *
7198 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7199 * list, starting from iter position. The caller must hold RCU read lock.
7200 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7201 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7202 struct list_head **iter)
7203 {
7204 struct netdev_adjacent *lower;
7205
7206 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7207
7208 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7209
7210 if (&lower->list == &dev->adj_list.lower)
7211 return NULL;
7212
7213 *iter = &lower->list;
7214
7215 return lower->private;
7216 }
7217 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7218
7219 /**
7220 * netdev_lower_get_next - Get the next device from the lower neighbour
7221 * list
7222 * @dev: device
7223 * @iter: list_head ** of the current position
7224 *
7225 * Gets the next netdev_adjacent from the dev's lower neighbour
7226 * list, starting from iter position. The caller must hold RTNL lock or
7227 * its own locking that guarantees that the neighbour lower
7228 * list will remain unchanged.
7229 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7230 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7231 {
7232 struct netdev_adjacent *lower;
7233
7234 lower = list_entry(*iter, struct netdev_adjacent, list);
7235
7236 if (&lower->list == &dev->adj_list.lower)
7237 return NULL;
7238
7239 *iter = lower->list.next;
7240
7241 return lower->dev;
7242 }
7243 EXPORT_SYMBOL(netdev_lower_get_next);
7244
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7245 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7246 struct list_head **iter)
7247 {
7248 struct netdev_adjacent *lower;
7249
7250 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7251
7252 if (&lower->list == &dev->adj_list.lower)
7253 return NULL;
7254
7255 *iter = &lower->list;
7256
7257 return lower->dev;
7258 }
7259
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7260 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7261 struct list_head **iter,
7262 bool *ignore)
7263 {
7264 struct netdev_adjacent *lower;
7265
7266 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7267
7268 if (&lower->list == &dev->adj_list.lower)
7269 return NULL;
7270
7271 *iter = &lower->list;
7272 *ignore = lower->ignore;
7273
7274 return lower->dev;
7275 }
7276
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7277 int netdev_walk_all_lower_dev(struct net_device *dev,
7278 int (*fn)(struct net_device *dev,
7279 struct netdev_nested_priv *priv),
7280 struct netdev_nested_priv *priv)
7281 {
7282 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7283 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7284 int ret, cur = 0;
7285
7286 now = dev;
7287 iter = &dev->adj_list.lower;
7288
7289 while (1) {
7290 if (now != dev) {
7291 ret = fn(now, priv);
7292 if (ret)
7293 return ret;
7294 }
7295
7296 next = NULL;
7297 while (1) {
7298 ldev = netdev_next_lower_dev(now, &iter);
7299 if (!ldev)
7300 break;
7301
7302 next = ldev;
7303 niter = &ldev->adj_list.lower;
7304 dev_stack[cur] = now;
7305 iter_stack[cur++] = iter;
7306 break;
7307 }
7308
7309 if (!next) {
7310 if (!cur)
7311 return 0;
7312 next = dev_stack[--cur];
7313 niter = iter_stack[cur];
7314 }
7315
7316 now = next;
7317 iter = niter;
7318 }
7319
7320 return 0;
7321 }
7322 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7323
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7324 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7325 int (*fn)(struct net_device *dev,
7326 struct netdev_nested_priv *priv),
7327 struct netdev_nested_priv *priv)
7328 {
7329 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7330 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7331 int ret, cur = 0;
7332 bool ignore;
7333
7334 now = dev;
7335 iter = &dev->adj_list.lower;
7336
7337 while (1) {
7338 if (now != dev) {
7339 ret = fn(now, priv);
7340 if (ret)
7341 return ret;
7342 }
7343
7344 next = NULL;
7345 while (1) {
7346 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7347 if (!ldev)
7348 break;
7349 if (ignore)
7350 continue;
7351
7352 next = ldev;
7353 niter = &ldev->adj_list.lower;
7354 dev_stack[cur] = now;
7355 iter_stack[cur++] = iter;
7356 break;
7357 }
7358
7359 if (!next) {
7360 if (!cur)
7361 return 0;
7362 next = dev_stack[--cur];
7363 niter = iter_stack[cur];
7364 }
7365
7366 now = next;
7367 iter = niter;
7368 }
7369
7370 return 0;
7371 }
7372
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7373 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7374 struct list_head **iter)
7375 {
7376 struct netdev_adjacent *lower;
7377
7378 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7379 if (&lower->list == &dev->adj_list.lower)
7380 return NULL;
7381
7382 *iter = &lower->list;
7383
7384 return lower->dev;
7385 }
7386 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7387
__netdev_upper_depth(struct net_device * dev)7388 static u8 __netdev_upper_depth(struct net_device *dev)
7389 {
7390 struct net_device *udev;
7391 struct list_head *iter;
7392 u8 max_depth = 0;
7393 bool ignore;
7394
7395 for (iter = &dev->adj_list.upper,
7396 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7397 udev;
7398 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7399 if (ignore)
7400 continue;
7401 if (max_depth < udev->upper_level)
7402 max_depth = udev->upper_level;
7403 }
7404
7405 return max_depth;
7406 }
7407
__netdev_lower_depth(struct net_device * dev)7408 static u8 __netdev_lower_depth(struct net_device *dev)
7409 {
7410 struct net_device *ldev;
7411 struct list_head *iter;
7412 u8 max_depth = 0;
7413 bool ignore;
7414
7415 for (iter = &dev->adj_list.lower,
7416 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7417 ldev;
7418 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7419 if (ignore)
7420 continue;
7421 if (max_depth < ldev->lower_level)
7422 max_depth = ldev->lower_level;
7423 }
7424
7425 return max_depth;
7426 }
7427
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7428 static int __netdev_update_upper_level(struct net_device *dev,
7429 struct netdev_nested_priv *__unused)
7430 {
7431 dev->upper_level = __netdev_upper_depth(dev) + 1;
7432 return 0;
7433 }
7434
7435 #ifdef CONFIG_LOCKDEP
7436 static LIST_HEAD(net_unlink_list);
7437
net_unlink_todo(struct net_device * dev)7438 static void net_unlink_todo(struct net_device *dev)
7439 {
7440 if (list_empty(&dev->unlink_list))
7441 list_add_tail(&dev->unlink_list, &net_unlink_list);
7442 }
7443 #endif
7444
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7445 static int __netdev_update_lower_level(struct net_device *dev,
7446 struct netdev_nested_priv *priv)
7447 {
7448 dev->lower_level = __netdev_lower_depth(dev) + 1;
7449
7450 #ifdef CONFIG_LOCKDEP
7451 if (!priv)
7452 return 0;
7453
7454 if (priv->flags & NESTED_SYNC_IMM)
7455 dev->nested_level = dev->lower_level - 1;
7456 if (priv->flags & NESTED_SYNC_TODO)
7457 net_unlink_todo(dev);
7458 #endif
7459 return 0;
7460 }
7461
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7462 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7463 int (*fn)(struct net_device *dev,
7464 struct netdev_nested_priv *priv),
7465 struct netdev_nested_priv *priv)
7466 {
7467 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7468 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7469 int ret, cur = 0;
7470
7471 now = dev;
7472 iter = &dev->adj_list.lower;
7473
7474 while (1) {
7475 if (now != dev) {
7476 ret = fn(now, priv);
7477 if (ret)
7478 return ret;
7479 }
7480
7481 next = NULL;
7482 while (1) {
7483 ldev = netdev_next_lower_dev_rcu(now, &iter);
7484 if (!ldev)
7485 break;
7486
7487 next = ldev;
7488 niter = &ldev->adj_list.lower;
7489 dev_stack[cur] = now;
7490 iter_stack[cur++] = iter;
7491 break;
7492 }
7493
7494 if (!next) {
7495 if (!cur)
7496 return 0;
7497 next = dev_stack[--cur];
7498 niter = iter_stack[cur];
7499 }
7500
7501 now = next;
7502 iter = niter;
7503 }
7504
7505 return 0;
7506 }
7507 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7508
7509 /**
7510 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7511 * lower neighbour list, RCU
7512 * variant
7513 * @dev: device
7514 *
7515 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7516 * list. The caller must hold RCU read lock.
7517 */
netdev_lower_get_first_private_rcu(struct net_device * dev)7518 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7519 {
7520 struct netdev_adjacent *lower;
7521
7522 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7523 struct netdev_adjacent, list);
7524 if (lower)
7525 return lower->private;
7526 return NULL;
7527 }
7528 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7529
7530 /**
7531 * netdev_master_upper_dev_get_rcu - Get master upper device
7532 * @dev: device
7533 *
7534 * Find a master upper device and return pointer to it or NULL in case
7535 * it's not there. The caller must hold the RCU read lock.
7536 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7537 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7538 {
7539 struct netdev_adjacent *upper;
7540
7541 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7542 struct netdev_adjacent, list);
7543 if (upper && likely(upper->master))
7544 return upper->dev;
7545 return NULL;
7546 }
7547 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7548
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7549 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7550 struct net_device *adj_dev,
7551 struct list_head *dev_list)
7552 {
7553 char linkname[IFNAMSIZ+7];
7554
7555 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7556 "upper_%s" : "lower_%s", adj_dev->name);
7557 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7558 linkname);
7559 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7560 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7561 char *name,
7562 struct list_head *dev_list)
7563 {
7564 char linkname[IFNAMSIZ+7];
7565
7566 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7567 "upper_%s" : "lower_%s", name);
7568 sysfs_remove_link(&(dev->dev.kobj), linkname);
7569 }
7570
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7571 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7572 struct net_device *adj_dev,
7573 struct list_head *dev_list)
7574 {
7575 return (dev_list == &dev->adj_list.upper ||
7576 dev_list == &dev->adj_list.lower) &&
7577 net_eq(dev_net(dev), dev_net(adj_dev));
7578 }
7579
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7580 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7581 struct net_device *adj_dev,
7582 struct list_head *dev_list,
7583 void *private, bool master)
7584 {
7585 struct netdev_adjacent *adj;
7586 int ret;
7587
7588 adj = __netdev_find_adj(adj_dev, dev_list);
7589
7590 if (adj) {
7591 adj->ref_nr += 1;
7592 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7593 dev->name, adj_dev->name, adj->ref_nr);
7594
7595 return 0;
7596 }
7597
7598 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7599 if (!adj)
7600 return -ENOMEM;
7601
7602 adj->dev = adj_dev;
7603 adj->master = master;
7604 adj->ref_nr = 1;
7605 adj->private = private;
7606 adj->ignore = false;
7607 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7608
7609 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7610 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7611
7612 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7613 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7614 if (ret)
7615 goto free_adj;
7616 }
7617
7618 /* Ensure that master link is always the first item in list. */
7619 if (master) {
7620 ret = sysfs_create_link(&(dev->dev.kobj),
7621 &(adj_dev->dev.kobj), "master");
7622 if (ret)
7623 goto remove_symlinks;
7624
7625 list_add_rcu(&adj->list, dev_list);
7626 } else {
7627 list_add_tail_rcu(&adj->list, dev_list);
7628 }
7629
7630 return 0;
7631
7632 remove_symlinks:
7633 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7634 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7635 free_adj:
7636 netdev_put(adj_dev, &adj->dev_tracker);
7637 kfree(adj);
7638
7639 return ret;
7640 }
7641
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7642 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7643 struct net_device *adj_dev,
7644 u16 ref_nr,
7645 struct list_head *dev_list)
7646 {
7647 struct netdev_adjacent *adj;
7648
7649 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7650 dev->name, adj_dev->name, ref_nr);
7651
7652 adj = __netdev_find_adj(adj_dev, dev_list);
7653
7654 if (!adj) {
7655 pr_err("Adjacency does not exist for device %s from %s\n",
7656 dev->name, adj_dev->name);
7657 WARN_ON(1);
7658 return;
7659 }
7660
7661 if (adj->ref_nr > ref_nr) {
7662 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7663 dev->name, adj_dev->name, ref_nr,
7664 adj->ref_nr - ref_nr);
7665 adj->ref_nr -= ref_nr;
7666 return;
7667 }
7668
7669 if (adj->master)
7670 sysfs_remove_link(&(dev->dev.kobj), "master");
7671
7672 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7673 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7674
7675 list_del_rcu(&adj->list);
7676 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7677 adj_dev->name, dev->name, adj_dev->name);
7678 netdev_put(adj_dev, &adj->dev_tracker);
7679 kfree_rcu(adj, rcu);
7680 }
7681
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7682 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7683 struct net_device *upper_dev,
7684 struct list_head *up_list,
7685 struct list_head *down_list,
7686 void *private, bool master)
7687 {
7688 int ret;
7689
7690 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7691 private, master);
7692 if (ret)
7693 return ret;
7694
7695 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7696 private, false);
7697 if (ret) {
7698 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7699 return ret;
7700 }
7701
7702 return 0;
7703 }
7704
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7705 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7706 struct net_device *upper_dev,
7707 u16 ref_nr,
7708 struct list_head *up_list,
7709 struct list_head *down_list)
7710 {
7711 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7712 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7713 }
7714
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7715 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7716 struct net_device *upper_dev,
7717 void *private, bool master)
7718 {
7719 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7720 &dev->adj_list.upper,
7721 &upper_dev->adj_list.lower,
7722 private, master);
7723 }
7724
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7725 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7726 struct net_device *upper_dev)
7727 {
7728 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7729 &dev->adj_list.upper,
7730 &upper_dev->adj_list.lower);
7731 }
7732
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7733 static int __netdev_upper_dev_link(struct net_device *dev,
7734 struct net_device *upper_dev, bool master,
7735 void *upper_priv, void *upper_info,
7736 struct netdev_nested_priv *priv,
7737 struct netlink_ext_ack *extack)
7738 {
7739 struct netdev_notifier_changeupper_info changeupper_info = {
7740 .info = {
7741 .dev = dev,
7742 .extack = extack,
7743 },
7744 .upper_dev = upper_dev,
7745 .master = master,
7746 .linking = true,
7747 .upper_info = upper_info,
7748 };
7749 struct net_device *master_dev;
7750 int ret = 0;
7751
7752 ASSERT_RTNL();
7753
7754 if (dev == upper_dev)
7755 return -EBUSY;
7756
7757 /* To prevent loops, check if dev is not upper device to upper_dev. */
7758 if (__netdev_has_upper_dev(upper_dev, dev))
7759 return -EBUSY;
7760
7761 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7762 return -EMLINK;
7763
7764 if (!master) {
7765 if (__netdev_has_upper_dev(dev, upper_dev))
7766 return -EEXIST;
7767 } else {
7768 master_dev = __netdev_master_upper_dev_get(dev);
7769 if (master_dev)
7770 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7771 }
7772
7773 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7774 &changeupper_info.info);
7775 ret = notifier_to_errno(ret);
7776 if (ret)
7777 return ret;
7778
7779 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7780 master);
7781 if (ret)
7782 return ret;
7783
7784 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7785 &changeupper_info.info);
7786 ret = notifier_to_errno(ret);
7787 if (ret)
7788 goto rollback;
7789
7790 __netdev_update_upper_level(dev, NULL);
7791 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7792
7793 __netdev_update_lower_level(upper_dev, priv);
7794 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7795 priv);
7796
7797 return 0;
7798
7799 rollback:
7800 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7801
7802 return ret;
7803 }
7804
7805 /**
7806 * netdev_upper_dev_link - Add a link to the upper device
7807 * @dev: device
7808 * @upper_dev: new upper device
7809 * @extack: netlink extended ack
7810 *
7811 * Adds a link to device which is upper to this one. The caller must hold
7812 * the RTNL lock. On a failure a negative errno code is returned.
7813 * On success the reference counts are adjusted and the function
7814 * returns zero.
7815 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7816 int netdev_upper_dev_link(struct net_device *dev,
7817 struct net_device *upper_dev,
7818 struct netlink_ext_ack *extack)
7819 {
7820 struct netdev_nested_priv priv = {
7821 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7822 .data = NULL,
7823 };
7824
7825 return __netdev_upper_dev_link(dev, upper_dev, false,
7826 NULL, NULL, &priv, extack);
7827 }
7828 EXPORT_SYMBOL(netdev_upper_dev_link);
7829
7830 /**
7831 * netdev_master_upper_dev_link - Add a master link to the upper device
7832 * @dev: device
7833 * @upper_dev: new upper device
7834 * @upper_priv: upper device private
7835 * @upper_info: upper info to be passed down via notifier
7836 * @extack: netlink extended ack
7837 *
7838 * Adds a link to device which is upper to this one. In this case, only
7839 * one master upper device can be linked, although other non-master devices
7840 * might be linked as well. The caller must hold the RTNL lock.
7841 * On a failure a negative errno code is returned. On success the reference
7842 * counts are adjusted and the function returns zero.
7843 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7844 int netdev_master_upper_dev_link(struct net_device *dev,
7845 struct net_device *upper_dev,
7846 void *upper_priv, void *upper_info,
7847 struct netlink_ext_ack *extack)
7848 {
7849 struct netdev_nested_priv priv = {
7850 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7851 .data = NULL,
7852 };
7853
7854 return __netdev_upper_dev_link(dev, upper_dev, true,
7855 upper_priv, upper_info, &priv, extack);
7856 }
7857 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7858
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7859 static void __netdev_upper_dev_unlink(struct net_device *dev,
7860 struct net_device *upper_dev,
7861 struct netdev_nested_priv *priv)
7862 {
7863 struct netdev_notifier_changeupper_info changeupper_info = {
7864 .info = {
7865 .dev = dev,
7866 },
7867 .upper_dev = upper_dev,
7868 .linking = false,
7869 };
7870
7871 ASSERT_RTNL();
7872
7873 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7874
7875 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7876 &changeupper_info.info);
7877
7878 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7879
7880 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7881 &changeupper_info.info);
7882
7883 __netdev_update_upper_level(dev, NULL);
7884 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7885
7886 __netdev_update_lower_level(upper_dev, priv);
7887 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7888 priv);
7889 }
7890
7891 /**
7892 * netdev_upper_dev_unlink - Removes a link to upper device
7893 * @dev: device
7894 * @upper_dev: new upper device
7895 *
7896 * Removes a link to device which is upper to this one. The caller must hold
7897 * the RTNL lock.
7898 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7899 void netdev_upper_dev_unlink(struct net_device *dev,
7900 struct net_device *upper_dev)
7901 {
7902 struct netdev_nested_priv priv = {
7903 .flags = NESTED_SYNC_TODO,
7904 .data = NULL,
7905 };
7906
7907 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7908 }
7909 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7910
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)7911 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7912 struct net_device *lower_dev,
7913 bool val)
7914 {
7915 struct netdev_adjacent *adj;
7916
7917 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7918 if (adj)
7919 adj->ignore = val;
7920
7921 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7922 if (adj)
7923 adj->ignore = val;
7924 }
7925
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)7926 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7927 struct net_device *lower_dev)
7928 {
7929 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7930 }
7931
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)7932 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7933 struct net_device *lower_dev)
7934 {
7935 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7936 }
7937
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)7938 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7939 struct net_device *new_dev,
7940 struct net_device *dev,
7941 struct netlink_ext_ack *extack)
7942 {
7943 struct netdev_nested_priv priv = {
7944 .flags = 0,
7945 .data = NULL,
7946 };
7947 int err;
7948
7949 if (!new_dev)
7950 return 0;
7951
7952 if (old_dev && new_dev != old_dev)
7953 netdev_adjacent_dev_disable(dev, old_dev);
7954 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7955 extack);
7956 if (err) {
7957 if (old_dev && new_dev != old_dev)
7958 netdev_adjacent_dev_enable(dev, old_dev);
7959 return err;
7960 }
7961
7962 return 0;
7963 }
7964 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7965
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7966 void netdev_adjacent_change_commit(struct net_device *old_dev,
7967 struct net_device *new_dev,
7968 struct net_device *dev)
7969 {
7970 struct netdev_nested_priv priv = {
7971 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7972 .data = NULL,
7973 };
7974
7975 if (!new_dev || !old_dev)
7976 return;
7977
7978 if (new_dev == old_dev)
7979 return;
7980
7981 netdev_adjacent_dev_enable(dev, old_dev);
7982 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7983 }
7984 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7985
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7986 void netdev_adjacent_change_abort(struct net_device *old_dev,
7987 struct net_device *new_dev,
7988 struct net_device *dev)
7989 {
7990 struct netdev_nested_priv priv = {
7991 .flags = 0,
7992 .data = NULL,
7993 };
7994
7995 if (!new_dev)
7996 return;
7997
7998 if (old_dev && new_dev != old_dev)
7999 netdev_adjacent_dev_enable(dev, old_dev);
8000
8001 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8002 }
8003 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8004
8005 /**
8006 * netdev_bonding_info_change - Dispatch event about slave change
8007 * @dev: device
8008 * @bonding_info: info to dispatch
8009 *
8010 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8011 * The caller must hold the RTNL lock.
8012 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8013 void netdev_bonding_info_change(struct net_device *dev,
8014 struct netdev_bonding_info *bonding_info)
8015 {
8016 struct netdev_notifier_bonding_info info = {
8017 .info.dev = dev,
8018 };
8019
8020 memcpy(&info.bonding_info, bonding_info,
8021 sizeof(struct netdev_bonding_info));
8022 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8023 &info.info);
8024 }
8025 EXPORT_SYMBOL(netdev_bonding_info_change);
8026
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8027 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8028 struct netlink_ext_ack *extack)
8029 {
8030 struct netdev_notifier_offload_xstats_info info = {
8031 .info.dev = dev,
8032 .info.extack = extack,
8033 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8034 };
8035 int err;
8036 int rc;
8037
8038 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8039 GFP_KERNEL);
8040 if (!dev->offload_xstats_l3)
8041 return -ENOMEM;
8042
8043 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8044 NETDEV_OFFLOAD_XSTATS_DISABLE,
8045 &info.info);
8046 err = notifier_to_errno(rc);
8047 if (err)
8048 goto free_stats;
8049
8050 return 0;
8051
8052 free_stats:
8053 kfree(dev->offload_xstats_l3);
8054 dev->offload_xstats_l3 = NULL;
8055 return err;
8056 }
8057
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8058 int netdev_offload_xstats_enable(struct net_device *dev,
8059 enum netdev_offload_xstats_type type,
8060 struct netlink_ext_ack *extack)
8061 {
8062 ASSERT_RTNL();
8063
8064 if (netdev_offload_xstats_enabled(dev, type))
8065 return -EALREADY;
8066
8067 switch (type) {
8068 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8069 return netdev_offload_xstats_enable_l3(dev, extack);
8070 }
8071
8072 WARN_ON(1);
8073 return -EINVAL;
8074 }
8075 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8076
netdev_offload_xstats_disable_l3(struct net_device * dev)8077 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8078 {
8079 struct netdev_notifier_offload_xstats_info info = {
8080 .info.dev = dev,
8081 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8082 };
8083
8084 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8085 &info.info);
8086 kfree(dev->offload_xstats_l3);
8087 dev->offload_xstats_l3 = NULL;
8088 }
8089
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8090 int netdev_offload_xstats_disable(struct net_device *dev,
8091 enum netdev_offload_xstats_type type)
8092 {
8093 ASSERT_RTNL();
8094
8095 if (!netdev_offload_xstats_enabled(dev, type))
8096 return -EALREADY;
8097
8098 switch (type) {
8099 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8100 netdev_offload_xstats_disable_l3(dev);
8101 return 0;
8102 }
8103
8104 WARN_ON(1);
8105 return -EINVAL;
8106 }
8107 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8108
netdev_offload_xstats_disable_all(struct net_device * dev)8109 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8110 {
8111 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8112 }
8113
8114 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8115 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8116 enum netdev_offload_xstats_type type)
8117 {
8118 switch (type) {
8119 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8120 return dev->offload_xstats_l3;
8121 }
8122
8123 WARN_ON(1);
8124 return NULL;
8125 }
8126
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8127 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8128 enum netdev_offload_xstats_type type)
8129 {
8130 ASSERT_RTNL();
8131
8132 return netdev_offload_xstats_get_ptr(dev, type);
8133 }
8134 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8135
8136 struct netdev_notifier_offload_xstats_ru {
8137 bool used;
8138 };
8139
8140 struct netdev_notifier_offload_xstats_rd {
8141 struct rtnl_hw_stats64 stats;
8142 bool used;
8143 };
8144
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8145 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8146 const struct rtnl_hw_stats64 *src)
8147 {
8148 dest->rx_packets += src->rx_packets;
8149 dest->tx_packets += src->tx_packets;
8150 dest->rx_bytes += src->rx_bytes;
8151 dest->tx_bytes += src->tx_bytes;
8152 dest->rx_errors += src->rx_errors;
8153 dest->tx_errors += src->tx_errors;
8154 dest->rx_dropped += src->rx_dropped;
8155 dest->tx_dropped += src->tx_dropped;
8156 dest->multicast += src->multicast;
8157 }
8158
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8159 static int netdev_offload_xstats_get_used(struct net_device *dev,
8160 enum netdev_offload_xstats_type type,
8161 bool *p_used,
8162 struct netlink_ext_ack *extack)
8163 {
8164 struct netdev_notifier_offload_xstats_ru report_used = {};
8165 struct netdev_notifier_offload_xstats_info info = {
8166 .info.dev = dev,
8167 .info.extack = extack,
8168 .type = type,
8169 .report_used = &report_used,
8170 };
8171 int rc;
8172
8173 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8174 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8175 &info.info);
8176 *p_used = report_used.used;
8177 return notifier_to_errno(rc);
8178 }
8179
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8180 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8181 enum netdev_offload_xstats_type type,
8182 struct rtnl_hw_stats64 *p_stats,
8183 bool *p_used,
8184 struct netlink_ext_ack *extack)
8185 {
8186 struct netdev_notifier_offload_xstats_rd report_delta = {};
8187 struct netdev_notifier_offload_xstats_info info = {
8188 .info.dev = dev,
8189 .info.extack = extack,
8190 .type = type,
8191 .report_delta = &report_delta,
8192 };
8193 struct rtnl_hw_stats64 *stats;
8194 int rc;
8195
8196 stats = netdev_offload_xstats_get_ptr(dev, type);
8197 if (WARN_ON(!stats))
8198 return -EINVAL;
8199
8200 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8201 &info.info);
8202
8203 /* Cache whatever we got, even if there was an error, otherwise the
8204 * successful stats retrievals would get lost.
8205 */
8206 netdev_hw_stats64_add(stats, &report_delta.stats);
8207
8208 if (p_stats)
8209 *p_stats = *stats;
8210 *p_used = report_delta.used;
8211
8212 return notifier_to_errno(rc);
8213 }
8214
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8215 int netdev_offload_xstats_get(struct net_device *dev,
8216 enum netdev_offload_xstats_type type,
8217 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8218 struct netlink_ext_ack *extack)
8219 {
8220 ASSERT_RTNL();
8221
8222 if (p_stats)
8223 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8224 p_used, extack);
8225 else
8226 return netdev_offload_xstats_get_used(dev, type, p_used,
8227 extack);
8228 }
8229 EXPORT_SYMBOL(netdev_offload_xstats_get);
8230
8231 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8232 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8233 const struct rtnl_hw_stats64 *stats)
8234 {
8235 report_delta->used = true;
8236 netdev_hw_stats64_add(&report_delta->stats, stats);
8237 }
8238 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8239
8240 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8241 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8242 {
8243 report_used->used = true;
8244 }
8245 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8246
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8247 void netdev_offload_xstats_push_delta(struct net_device *dev,
8248 enum netdev_offload_xstats_type type,
8249 const struct rtnl_hw_stats64 *p_stats)
8250 {
8251 struct rtnl_hw_stats64 *stats;
8252
8253 ASSERT_RTNL();
8254
8255 stats = netdev_offload_xstats_get_ptr(dev, type);
8256 if (WARN_ON(!stats))
8257 return;
8258
8259 netdev_hw_stats64_add(stats, p_stats);
8260 }
8261 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8262
8263 /**
8264 * netdev_get_xmit_slave - Get the xmit slave of master device
8265 * @dev: device
8266 * @skb: The packet
8267 * @all_slaves: assume all the slaves are active
8268 *
8269 * The reference counters are not incremented so the caller must be
8270 * careful with locks. The caller must hold RCU lock.
8271 * %NULL is returned if no slave is found.
8272 */
8273
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8274 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8275 struct sk_buff *skb,
8276 bool all_slaves)
8277 {
8278 const struct net_device_ops *ops = dev->netdev_ops;
8279
8280 if (!ops->ndo_get_xmit_slave)
8281 return NULL;
8282 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8283 }
8284 EXPORT_SYMBOL(netdev_get_xmit_slave);
8285
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8286 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8287 struct sock *sk)
8288 {
8289 const struct net_device_ops *ops = dev->netdev_ops;
8290
8291 if (!ops->ndo_sk_get_lower_dev)
8292 return NULL;
8293 return ops->ndo_sk_get_lower_dev(dev, sk);
8294 }
8295
8296 /**
8297 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8298 * @dev: device
8299 * @sk: the socket
8300 *
8301 * %NULL is returned if no lower device is found.
8302 */
8303
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)8304 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8305 struct sock *sk)
8306 {
8307 struct net_device *lower;
8308
8309 lower = netdev_sk_get_lower_dev(dev, sk);
8310 while (lower) {
8311 dev = lower;
8312 lower = netdev_sk_get_lower_dev(dev, sk);
8313 }
8314
8315 return dev;
8316 }
8317 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8318
netdev_adjacent_add_links(struct net_device * dev)8319 static void netdev_adjacent_add_links(struct net_device *dev)
8320 {
8321 struct netdev_adjacent *iter;
8322
8323 struct net *net = dev_net(dev);
8324
8325 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8326 if (!net_eq(net, dev_net(iter->dev)))
8327 continue;
8328 netdev_adjacent_sysfs_add(iter->dev, dev,
8329 &iter->dev->adj_list.lower);
8330 netdev_adjacent_sysfs_add(dev, iter->dev,
8331 &dev->adj_list.upper);
8332 }
8333
8334 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8335 if (!net_eq(net, dev_net(iter->dev)))
8336 continue;
8337 netdev_adjacent_sysfs_add(iter->dev, dev,
8338 &iter->dev->adj_list.upper);
8339 netdev_adjacent_sysfs_add(dev, iter->dev,
8340 &dev->adj_list.lower);
8341 }
8342 }
8343
netdev_adjacent_del_links(struct net_device * dev)8344 static void netdev_adjacent_del_links(struct net_device *dev)
8345 {
8346 struct netdev_adjacent *iter;
8347
8348 struct net *net = dev_net(dev);
8349
8350 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8351 if (!net_eq(net, dev_net(iter->dev)))
8352 continue;
8353 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8354 &iter->dev->adj_list.lower);
8355 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8356 &dev->adj_list.upper);
8357 }
8358
8359 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8360 if (!net_eq(net, dev_net(iter->dev)))
8361 continue;
8362 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8363 &iter->dev->adj_list.upper);
8364 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8365 &dev->adj_list.lower);
8366 }
8367 }
8368
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8369 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8370 {
8371 struct netdev_adjacent *iter;
8372
8373 struct net *net = dev_net(dev);
8374
8375 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8376 if (!net_eq(net, dev_net(iter->dev)))
8377 continue;
8378 netdev_adjacent_sysfs_del(iter->dev, oldname,
8379 &iter->dev->adj_list.lower);
8380 netdev_adjacent_sysfs_add(iter->dev, dev,
8381 &iter->dev->adj_list.lower);
8382 }
8383
8384 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8385 if (!net_eq(net, dev_net(iter->dev)))
8386 continue;
8387 netdev_adjacent_sysfs_del(iter->dev, oldname,
8388 &iter->dev->adj_list.upper);
8389 netdev_adjacent_sysfs_add(iter->dev, dev,
8390 &iter->dev->adj_list.upper);
8391 }
8392 }
8393
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8394 void *netdev_lower_dev_get_private(struct net_device *dev,
8395 struct net_device *lower_dev)
8396 {
8397 struct netdev_adjacent *lower;
8398
8399 if (!lower_dev)
8400 return NULL;
8401 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8402 if (!lower)
8403 return NULL;
8404
8405 return lower->private;
8406 }
8407 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8408
8409
8410 /**
8411 * netdev_lower_state_changed - Dispatch event about lower device state change
8412 * @lower_dev: device
8413 * @lower_state_info: state to dispatch
8414 *
8415 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8416 * The caller must hold the RTNL lock.
8417 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8418 void netdev_lower_state_changed(struct net_device *lower_dev,
8419 void *lower_state_info)
8420 {
8421 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8422 .info.dev = lower_dev,
8423 };
8424
8425 ASSERT_RTNL();
8426 changelowerstate_info.lower_state_info = lower_state_info;
8427 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8428 &changelowerstate_info.info);
8429 }
8430 EXPORT_SYMBOL(netdev_lower_state_changed);
8431
dev_change_rx_flags(struct net_device * dev,int flags)8432 static void dev_change_rx_flags(struct net_device *dev, int flags)
8433 {
8434 const struct net_device_ops *ops = dev->netdev_ops;
8435
8436 if (ops->ndo_change_rx_flags)
8437 ops->ndo_change_rx_flags(dev, flags);
8438 }
8439
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8440 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8441 {
8442 unsigned int old_flags = dev->flags;
8443 kuid_t uid;
8444 kgid_t gid;
8445
8446 ASSERT_RTNL();
8447
8448 dev->flags |= IFF_PROMISC;
8449 dev->promiscuity += inc;
8450 if (dev->promiscuity == 0) {
8451 /*
8452 * Avoid overflow.
8453 * If inc causes overflow, untouch promisc and return error.
8454 */
8455 if (inc < 0)
8456 dev->flags &= ~IFF_PROMISC;
8457 else {
8458 dev->promiscuity -= inc;
8459 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8460 return -EOVERFLOW;
8461 }
8462 }
8463 if (dev->flags != old_flags) {
8464 netdev_info(dev, "%s promiscuous mode\n",
8465 dev->flags & IFF_PROMISC ? "entered" : "left");
8466 if (audit_enabled) {
8467 current_uid_gid(&uid, &gid);
8468 audit_log(audit_context(), GFP_ATOMIC,
8469 AUDIT_ANOM_PROMISCUOUS,
8470 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8471 dev->name, (dev->flags & IFF_PROMISC),
8472 (old_flags & IFF_PROMISC),
8473 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8474 from_kuid(&init_user_ns, uid),
8475 from_kgid(&init_user_ns, gid),
8476 audit_get_sessionid(current));
8477 }
8478
8479 dev_change_rx_flags(dev, IFF_PROMISC);
8480 }
8481 if (notify)
8482 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8483 return 0;
8484 }
8485
8486 /**
8487 * dev_set_promiscuity - update promiscuity count on a device
8488 * @dev: device
8489 * @inc: modifier
8490 *
8491 * Add or remove promiscuity from a device. While the count in the device
8492 * remains above zero the interface remains promiscuous. Once it hits zero
8493 * the device reverts back to normal filtering operation. A negative inc
8494 * value is used to drop promiscuity on the device.
8495 * Return 0 if successful or a negative errno code on error.
8496 */
dev_set_promiscuity(struct net_device * dev,int inc)8497 int dev_set_promiscuity(struct net_device *dev, int inc)
8498 {
8499 unsigned int old_flags = dev->flags;
8500 int err;
8501
8502 err = __dev_set_promiscuity(dev, inc, true);
8503 if (err < 0)
8504 return err;
8505 if (dev->flags != old_flags)
8506 dev_set_rx_mode(dev);
8507 return err;
8508 }
8509 EXPORT_SYMBOL(dev_set_promiscuity);
8510
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8511 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8512 {
8513 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8514
8515 ASSERT_RTNL();
8516
8517 dev->flags |= IFF_ALLMULTI;
8518 dev->allmulti += inc;
8519 if (dev->allmulti == 0) {
8520 /*
8521 * Avoid overflow.
8522 * If inc causes overflow, untouch allmulti and return error.
8523 */
8524 if (inc < 0)
8525 dev->flags &= ~IFF_ALLMULTI;
8526 else {
8527 dev->allmulti -= inc;
8528 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8529 return -EOVERFLOW;
8530 }
8531 }
8532 if (dev->flags ^ old_flags) {
8533 netdev_info(dev, "%s allmulticast mode\n",
8534 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8535 dev_change_rx_flags(dev, IFF_ALLMULTI);
8536 dev_set_rx_mode(dev);
8537 if (notify)
8538 __dev_notify_flags(dev, old_flags,
8539 dev->gflags ^ old_gflags, 0, NULL);
8540 }
8541 return 0;
8542 }
8543
8544 /**
8545 * dev_set_allmulti - update allmulti count on a device
8546 * @dev: device
8547 * @inc: modifier
8548 *
8549 * Add or remove reception of all multicast frames to a device. While the
8550 * count in the device remains above zero the interface remains listening
8551 * to all interfaces. Once it hits zero the device reverts back to normal
8552 * filtering operation. A negative @inc value is used to drop the counter
8553 * when releasing a resource needing all multicasts.
8554 * Return 0 if successful or a negative errno code on error.
8555 */
8556
dev_set_allmulti(struct net_device * dev,int inc)8557 int dev_set_allmulti(struct net_device *dev, int inc)
8558 {
8559 return __dev_set_allmulti(dev, inc, true);
8560 }
8561 EXPORT_SYMBOL(dev_set_allmulti);
8562
8563 /*
8564 * Upload unicast and multicast address lists to device and
8565 * configure RX filtering. When the device doesn't support unicast
8566 * filtering it is put in promiscuous mode while unicast addresses
8567 * are present.
8568 */
__dev_set_rx_mode(struct net_device * dev)8569 void __dev_set_rx_mode(struct net_device *dev)
8570 {
8571 const struct net_device_ops *ops = dev->netdev_ops;
8572
8573 /* dev_open will call this function so the list will stay sane. */
8574 if (!(dev->flags&IFF_UP))
8575 return;
8576
8577 if (!netif_device_present(dev))
8578 return;
8579
8580 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8581 /* Unicast addresses changes may only happen under the rtnl,
8582 * therefore calling __dev_set_promiscuity here is safe.
8583 */
8584 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8585 __dev_set_promiscuity(dev, 1, false);
8586 dev->uc_promisc = true;
8587 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8588 __dev_set_promiscuity(dev, -1, false);
8589 dev->uc_promisc = false;
8590 }
8591 }
8592
8593 if (ops->ndo_set_rx_mode)
8594 ops->ndo_set_rx_mode(dev);
8595 }
8596
dev_set_rx_mode(struct net_device * dev)8597 void dev_set_rx_mode(struct net_device *dev)
8598 {
8599 netif_addr_lock_bh(dev);
8600 __dev_set_rx_mode(dev);
8601 netif_addr_unlock_bh(dev);
8602 }
8603
8604 /**
8605 * dev_get_flags - get flags reported to userspace
8606 * @dev: device
8607 *
8608 * Get the combination of flag bits exported through APIs to userspace.
8609 */
dev_get_flags(const struct net_device * dev)8610 unsigned int dev_get_flags(const struct net_device *dev)
8611 {
8612 unsigned int flags;
8613
8614 flags = (dev->flags & ~(IFF_PROMISC |
8615 IFF_ALLMULTI |
8616 IFF_RUNNING |
8617 IFF_LOWER_UP |
8618 IFF_DORMANT)) |
8619 (dev->gflags & (IFF_PROMISC |
8620 IFF_ALLMULTI));
8621
8622 if (netif_running(dev)) {
8623 if (netif_oper_up(dev))
8624 flags |= IFF_RUNNING;
8625 if (netif_carrier_ok(dev))
8626 flags |= IFF_LOWER_UP;
8627 if (netif_dormant(dev))
8628 flags |= IFF_DORMANT;
8629 }
8630
8631 return flags;
8632 }
8633 EXPORT_SYMBOL(dev_get_flags);
8634
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8635 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8636 struct netlink_ext_ack *extack)
8637 {
8638 unsigned int old_flags = dev->flags;
8639 int ret;
8640
8641 ASSERT_RTNL();
8642
8643 /*
8644 * Set the flags on our device.
8645 */
8646
8647 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8648 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8649 IFF_AUTOMEDIA)) |
8650 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8651 IFF_ALLMULTI));
8652
8653 /*
8654 * Load in the correct multicast list now the flags have changed.
8655 */
8656
8657 if ((old_flags ^ flags) & IFF_MULTICAST)
8658 dev_change_rx_flags(dev, IFF_MULTICAST);
8659
8660 dev_set_rx_mode(dev);
8661
8662 /*
8663 * Have we downed the interface. We handle IFF_UP ourselves
8664 * according to user attempts to set it, rather than blindly
8665 * setting it.
8666 */
8667
8668 ret = 0;
8669 if ((old_flags ^ flags) & IFF_UP) {
8670 if (old_flags & IFF_UP)
8671 __dev_close(dev);
8672 else
8673 ret = __dev_open(dev, extack);
8674 }
8675
8676 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8677 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8678 unsigned int old_flags = dev->flags;
8679
8680 dev->gflags ^= IFF_PROMISC;
8681
8682 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8683 if (dev->flags != old_flags)
8684 dev_set_rx_mode(dev);
8685 }
8686
8687 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8688 * is important. Some (broken) drivers set IFF_PROMISC, when
8689 * IFF_ALLMULTI is requested not asking us and not reporting.
8690 */
8691 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8692 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8693
8694 dev->gflags ^= IFF_ALLMULTI;
8695 __dev_set_allmulti(dev, inc, false);
8696 }
8697
8698 return ret;
8699 }
8700
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)8701 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8702 unsigned int gchanges, u32 portid,
8703 const struct nlmsghdr *nlh)
8704 {
8705 unsigned int changes = dev->flags ^ old_flags;
8706
8707 if (gchanges)
8708 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8709
8710 if (changes & IFF_UP) {
8711 if (dev->flags & IFF_UP)
8712 call_netdevice_notifiers(NETDEV_UP, dev);
8713 else
8714 call_netdevice_notifiers(NETDEV_DOWN, dev);
8715 }
8716
8717 if (dev->flags & IFF_UP &&
8718 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8719 struct netdev_notifier_change_info change_info = {
8720 .info = {
8721 .dev = dev,
8722 },
8723 .flags_changed = changes,
8724 };
8725
8726 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8727 }
8728 }
8729
8730 /**
8731 * dev_change_flags - change device settings
8732 * @dev: device
8733 * @flags: device state flags
8734 * @extack: netlink extended ack
8735 *
8736 * Change settings on device based state flags. The flags are
8737 * in the userspace exported format.
8738 */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8739 int dev_change_flags(struct net_device *dev, unsigned int flags,
8740 struct netlink_ext_ack *extack)
8741 {
8742 int ret;
8743 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8744
8745 ret = __dev_change_flags(dev, flags, extack);
8746 if (ret < 0)
8747 return ret;
8748
8749 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8750 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8751 return ret;
8752 }
8753 EXPORT_SYMBOL(dev_change_flags);
8754
__dev_set_mtu(struct net_device * dev,int new_mtu)8755 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8756 {
8757 const struct net_device_ops *ops = dev->netdev_ops;
8758
8759 if (ops->ndo_change_mtu)
8760 return ops->ndo_change_mtu(dev, new_mtu);
8761
8762 /* Pairs with all the lockless reads of dev->mtu in the stack */
8763 WRITE_ONCE(dev->mtu, new_mtu);
8764 return 0;
8765 }
8766 EXPORT_SYMBOL(__dev_set_mtu);
8767
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8768 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8769 struct netlink_ext_ack *extack)
8770 {
8771 /* MTU must be positive, and in range */
8772 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8773 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8774 return -EINVAL;
8775 }
8776
8777 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8778 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8779 return -EINVAL;
8780 }
8781 return 0;
8782 }
8783
8784 /**
8785 * dev_set_mtu_ext - Change maximum transfer unit
8786 * @dev: device
8787 * @new_mtu: new transfer unit
8788 * @extack: netlink extended ack
8789 *
8790 * Change the maximum transfer size of the network device.
8791 */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8792 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8793 struct netlink_ext_ack *extack)
8794 {
8795 int err, orig_mtu;
8796
8797 if (new_mtu == dev->mtu)
8798 return 0;
8799
8800 err = dev_validate_mtu(dev, new_mtu, extack);
8801 if (err)
8802 return err;
8803
8804 if (!netif_device_present(dev))
8805 return -ENODEV;
8806
8807 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8808 err = notifier_to_errno(err);
8809 if (err)
8810 return err;
8811
8812 orig_mtu = dev->mtu;
8813 err = __dev_set_mtu(dev, new_mtu);
8814
8815 if (!err) {
8816 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8817 orig_mtu);
8818 err = notifier_to_errno(err);
8819 if (err) {
8820 /* setting mtu back and notifying everyone again,
8821 * so that they have a chance to revert changes.
8822 */
8823 __dev_set_mtu(dev, orig_mtu);
8824 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8825 new_mtu);
8826 }
8827 }
8828 return err;
8829 }
8830
dev_set_mtu(struct net_device * dev,int new_mtu)8831 int dev_set_mtu(struct net_device *dev, int new_mtu)
8832 {
8833 struct netlink_ext_ack extack;
8834 int err;
8835
8836 memset(&extack, 0, sizeof(extack));
8837 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8838 if (err && extack._msg)
8839 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8840 return err;
8841 }
8842 EXPORT_SYMBOL(dev_set_mtu);
8843
8844 /**
8845 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8846 * @dev: device
8847 * @new_len: new tx queue length
8848 */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8849 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8850 {
8851 unsigned int orig_len = dev->tx_queue_len;
8852 int res;
8853
8854 if (new_len != (unsigned int)new_len)
8855 return -ERANGE;
8856
8857 if (new_len != orig_len) {
8858 dev->tx_queue_len = new_len;
8859 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8860 res = notifier_to_errno(res);
8861 if (res)
8862 goto err_rollback;
8863 res = dev_qdisc_change_tx_queue_len(dev);
8864 if (res)
8865 goto err_rollback;
8866 }
8867
8868 return 0;
8869
8870 err_rollback:
8871 netdev_err(dev, "refused to change device tx_queue_len\n");
8872 dev->tx_queue_len = orig_len;
8873 return res;
8874 }
8875
8876 /**
8877 * dev_set_group - Change group this device belongs to
8878 * @dev: device
8879 * @new_group: group this device should belong to
8880 */
dev_set_group(struct net_device * dev,int new_group)8881 void dev_set_group(struct net_device *dev, int new_group)
8882 {
8883 dev->group = new_group;
8884 }
8885
8886 /**
8887 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8888 * @dev: device
8889 * @addr: new address
8890 * @extack: netlink extended ack
8891 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8892 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8893 struct netlink_ext_ack *extack)
8894 {
8895 struct netdev_notifier_pre_changeaddr_info info = {
8896 .info.dev = dev,
8897 .info.extack = extack,
8898 .dev_addr = addr,
8899 };
8900 int rc;
8901
8902 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8903 return notifier_to_errno(rc);
8904 }
8905 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8906
8907 /**
8908 * dev_set_mac_address - Change Media Access Control Address
8909 * @dev: device
8910 * @sa: new address
8911 * @extack: netlink extended ack
8912 *
8913 * Change the hardware (MAC) address of the device
8914 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8915 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8916 struct netlink_ext_ack *extack)
8917 {
8918 const struct net_device_ops *ops = dev->netdev_ops;
8919 int err;
8920
8921 if (!ops->ndo_set_mac_address)
8922 return -EOPNOTSUPP;
8923 if (sa->sa_family != dev->type)
8924 return -EINVAL;
8925 if (!netif_device_present(dev))
8926 return -ENODEV;
8927 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8928 if (err)
8929 return err;
8930 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8931 err = ops->ndo_set_mac_address(dev, sa);
8932 if (err)
8933 return err;
8934 }
8935 dev->addr_assign_type = NET_ADDR_SET;
8936 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8937 add_device_randomness(dev->dev_addr, dev->addr_len);
8938 return 0;
8939 }
8940 EXPORT_SYMBOL(dev_set_mac_address);
8941
8942 static DECLARE_RWSEM(dev_addr_sem);
8943
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8944 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8945 struct netlink_ext_ack *extack)
8946 {
8947 int ret;
8948
8949 down_write(&dev_addr_sem);
8950 ret = dev_set_mac_address(dev, sa, extack);
8951 up_write(&dev_addr_sem);
8952 return ret;
8953 }
8954 EXPORT_SYMBOL(dev_set_mac_address_user);
8955
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8956 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8957 {
8958 size_t size = sizeof(sa->sa_data_min);
8959 struct net_device *dev;
8960 int ret = 0;
8961
8962 down_read(&dev_addr_sem);
8963 rcu_read_lock();
8964
8965 dev = dev_get_by_name_rcu(net, dev_name);
8966 if (!dev) {
8967 ret = -ENODEV;
8968 goto unlock;
8969 }
8970 if (!dev->addr_len)
8971 memset(sa->sa_data, 0, size);
8972 else
8973 memcpy(sa->sa_data, dev->dev_addr,
8974 min_t(size_t, size, dev->addr_len));
8975 sa->sa_family = dev->type;
8976
8977 unlock:
8978 rcu_read_unlock();
8979 up_read(&dev_addr_sem);
8980 return ret;
8981 }
8982 EXPORT_SYMBOL(dev_get_mac_address);
8983
8984 /**
8985 * dev_change_carrier - Change device carrier
8986 * @dev: device
8987 * @new_carrier: new value
8988 *
8989 * Change device carrier
8990 */
dev_change_carrier(struct net_device * dev,bool new_carrier)8991 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8992 {
8993 const struct net_device_ops *ops = dev->netdev_ops;
8994
8995 if (!ops->ndo_change_carrier)
8996 return -EOPNOTSUPP;
8997 if (!netif_device_present(dev))
8998 return -ENODEV;
8999 return ops->ndo_change_carrier(dev, new_carrier);
9000 }
9001
9002 /**
9003 * dev_get_phys_port_id - Get device physical port ID
9004 * @dev: device
9005 * @ppid: port ID
9006 *
9007 * Get device physical port ID
9008 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9009 int dev_get_phys_port_id(struct net_device *dev,
9010 struct netdev_phys_item_id *ppid)
9011 {
9012 const struct net_device_ops *ops = dev->netdev_ops;
9013
9014 if (!ops->ndo_get_phys_port_id)
9015 return -EOPNOTSUPP;
9016 return ops->ndo_get_phys_port_id(dev, ppid);
9017 }
9018
9019 /**
9020 * dev_get_phys_port_name - Get device physical port name
9021 * @dev: device
9022 * @name: port name
9023 * @len: limit of bytes to copy to name
9024 *
9025 * Get device physical port name
9026 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9027 int dev_get_phys_port_name(struct net_device *dev,
9028 char *name, size_t len)
9029 {
9030 const struct net_device_ops *ops = dev->netdev_ops;
9031 int err;
9032
9033 if (ops->ndo_get_phys_port_name) {
9034 err = ops->ndo_get_phys_port_name(dev, name, len);
9035 if (err != -EOPNOTSUPP)
9036 return err;
9037 }
9038 return devlink_compat_phys_port_name_get(dev, name, len);
9039 }
9040
9041 /**
9042 * dev_get_port_parent_id - Get the device's port parent identifier
9043 * @dev: network device
9044 * @ppid: pointer to a storage for the port's parent identifier
9045 * @recurse: allow/disallow recursion to lower devices
9046 *
9047 * Get the devices's port parent identifier
9048 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9049 int dev_get_port_parent_id(struct net_device *dev,
9050 struct netdev_phys_item_id *ppid,
9051 bool recurse)
9052 {
9053 const struct net_device_ops *ops = dev->netdev_ops;
9054 struct netdev_phys_item_id first = { };
9055 struct net_device *lower_dev;
9056 struct list_head *iter;
9057 int err;
9058
9059 if (ops->ndo_get_port_parent_id) {
9060 err = ops->ndo_get_port_parent_id(dev, ppid);
9061 if (err != -EOPNOTSUPP)
9062 return err;
9063 }
9064
9065 err = devlink_compat_switch_id_get(dev, ppid);
9066 if (!recurse || err != -EOPNOTSUPP)
9067 return err;
9068
9069 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9070 err = dev_get_port_parent_id(lower_dev, ppid, true);
9071 if (err)
9072 break;
9073 if (!first.id_len)
9074 first = *ppid;
9075 else if (memcmp(&first, ppid, sizeof(*ppid)))
9076 return -EOPNOTSUPP;
9077 }
9078
9079 return err;
9080 }
9081 EXPORT_SYMBOL(dev_get_port_parent_id);
9082
9083 /**
9084 * netdev_port_same_parent_id - Indicate if two network devices have
9085 * the same port parent identifier
9086 * @a: first network device
9087 * @b: second network device
9088 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9089 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9090 {
9091 struct netdev_phys_item_id a_id = { };
9092 struct netdev_phys_item_id b_id = { };
9093
9094 if (dev_get_port_parent_id(a, &a_id, true) ||
9095 dev_get_port_parent_id(b, &b_id, true))
9096 return false;
9097
9098 return netdev_phys_item_id_same(&a_id, &b_id);
9099 }
9100 EXPORT_SYMBOL(netdev_port_same_parent_id);
9101
9102 /**
9103 * dev_change_proto_down - set carrier according to proto_down.
9104 *
9105 * @dev: device
9106 * @proto_down: new value
9107 */
dev_change_proto_down(struct net_device * dev,bool proto_down)9108 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9109 {
9110 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9111 return -EOPNOTSUPP;
9112 if (!netif_device_present(dev))
9113 return -ENODEV;
9114 if (proto_down)
9115 netif_carrier_off(dev);
9116 else
9117 netif_carrier_on(dev);
9118 dev->proto_down = proto_down;
9119 return 0;
9120 }
9121
9122 /**
9123 * dev_change_proto_down_reason - proto down reason
9124 *
9125 * @dev: device
9126 * @mask: proto down mask
9127 * @value: proto down value
9128 */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)9129 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9130 u32 value)
9131 {
9132 int b;
9133
9134 if (!mask) {
9135 dev->proto_down_reason = value;
9136 } else {
9137 for_each_set_bit(b, &mask, 32) {
9138 if (value & (1 << b))
9139 dev->proto_down_reason |= BIT(b);
9140 else
9141 dev->proto_down_reason &= ~BIT(b);
9142 }
9143 }
9144 }
9145
9146 struct bpf_xdp_link {
9147 struct bpf_link link;
9148 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9149 int flags;
9150 };
9151
dev_xdp_mode(struct net_device * dev,u32 flags)9152 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9153 {
9154 if (flags & XDP_FLAGS_HW_MODE)
9155 return XDP_MODE_HW;
9156 if (flags & XDP_FLAGS_DRV_MODE)
9157 return XDP_MODE_DRV;
9158 if (flags & XDP_FLAGS_SKB_MODE)
9159 return XDP_MODE_SKB;
9160 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9161 }
9162
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9163 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9164 {
9165 switch (mode) {
9166 case XDP_MODE_SKB:
9167 return generic_xdp_install;
9168 case XDP_MODE_DRV:
9169 case XDP_MODE_HW:
9170 return dev->netdev_ops->ndo_bpf;
9171 default:
9172 return NULL;
9173 }
9174 }
9175
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9176 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9177 enum bpf_xdp_mode mode)
9178 {
9179 return dev->xdp_state[mode].link;
9180 }
9181
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9182 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9183 enum bpf_xdp_mode mode)
9184 {
9185 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9186
9187 if (link)
9188 return link->link.prog;
9189 return dev->xdp_state[mode].prog;
9190 }
9191
dev_xdp_prog_count(struct net_device * dev)9192 u8 dev_xdp_prog_count(struct net_device *dev)
9193 {
9194 u8 count = 0;
9195 int i;
9196
9197 for (i = 0; i < __MAX_XDP_MODE; i++)
9198 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9199 count++;
9200 return count;
9201 }
9202 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9203
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9204 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9205 {
9206 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9207
9208 return prog ? prog->aux->id : 0;
9209 }
9210
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9211 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9212 struct bpf_xdp_link *link)
9213 {
9214 dev->xdp_state[mode].link = link;
9215 dev->xdp_state[mode].prog = NULL;
9216 }
9217
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9218 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9219 struct bpf_prog *prog)
9220 {
9221 dev->xdp_state[mode].link = NULL;
9222 dev->xdp_state[mode].prog = prog;
9223 }
9224
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9225 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9226 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9227 u32 flags, struct bpf_prog *prog)
9228 {
9229 struct netdev_bpf xdp;
9230 int err;
9231
9232 memset(&xdp, 0, sizeof(xdp));
9233 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9234 xdp.extack = extack;
9235 xdp.flags = flags;
9236 xdp.prog = prog;
9237
9238 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9239 * "moved" into driver), so they don't increment it on their own, but
9240 * they do decrement refcnt when program is detached or replaced.
9241 * Given net_device also owns link/prog, we need to bump refcnt here
9242 * to prevent drivers from underflowing it.
9243 */
9244 if (prog)
9245 bpf_prog_inc(prog);
9246 err = bpf_op(dev, &xdp);
9247 if (err) {
9248 if (prog)
9249 bpf_prog_put(prog);
9250 return err;
9251 }
9252
9253 if (mode != XDP_MODE_HW)
9254 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9255
9256 return 0;
9257 }
9258
dev_xdp_uninstall(struct net_device * dev)9259 static void dev_xdp_uninstall(struct net_device *dev)
9260 {
9261 struct bpf_xdp_link *link;
9262 struct bpf_prog *prog;
9263 enum bpf_xdp_mode mode;
9264 bpf_op_t bpf_op;
9265
9266 ASSERT_RTNL();
9267
9268 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9269 prog = dev_xdp_prog(dev, mode);
9270 if (!prog)
9271 continue;
9272
9273 bpf_op = dev_xdp_bpf_op(dev, mode);
9274 if (!bpf_op)
9275 continue;
9276
9277 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9278
9279 /* auto-detach link from net device */
9280 link = dev_xdp_link(dev, mode);
9281 if (link)
9282 link->dev = NULL;
9283 else
9284 bpf_prog_put(prog);
9285
9286 dev_xdp_set_link(dev, mode, NULL);
9287 }
9288 }
9289
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9290 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9291 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9292 struct bpf_prog *old_prog, u32 flags)
9293 {
9294 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9295 struct bpf_prog *cur_prog;
9296 struct net_device *upper;
9297 struct list_head *iter;
9298 enum bpf_xdp_mode mode;
9299 bpf_op_t bpf_op;
9300 int err;
9301
9302 ASSERT_RTNL();
9303
9304 /* either link or prog attachment, never both */
9305 if (link && (new_prog || old_prog))
9306 return -EINVAL;
9307 /* link supports only XDP mode flags */
9308 if (link && (flags & ~XDP_FLAGS_MODES)) {
9309 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9310 return -EINVAL;
9311 }
9312 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9313 if (num_modes > 1) {
9314 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9315 return -EINVAL;
9316 }
9317 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9318 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9319 NL_SET_ERR_MSG(extack,
9320 "More than one program loaded, unset mode is ambiguous");
9321 return -EINVAL;
9322 }
9323 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9324 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9325 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9326 return -EINVAL;
9327 }
9328
9329 mode = dev_xdp_mode(dev, flags);
9330 /* can't replace attached link */
9331 if (dev_xdp_link(dev, mode)) {
9332 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9333 return -EBUSY;
9334 }
9335
9336 /* don't allow if an upper device already has a program */
9337 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9338 if (dev_xdp_prog_count(upper) > 0) {
9339 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9340 return -EEXIST;
9341 }
9342 }
9343
9344 cur_prog = dev_xdp_prog(dev, mode);
9345 /* can't replace attached prog with link */
9346 if (link && cur_prog) {
9347 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9348 return -EBUSY;
9349 }
9350 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9351 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9352 return -EEXIST;
9353 }
9354
9355 /* put effective new program into new_prog */
9356 if (link)
9357 new_prog = link->link.prog;
9358
9359 if (new_prog) {
9360 bool offload = mode == XDP_MODE_HW;
9361 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9362 ? XDP_MODE_DRV : XDP_MODE_SKB;
9363
9364 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9365 NL_SET_ERR_MSG(extack, "XDP program already attached");
9366 return -EBUSY;
9367 }
9368 if (!offload && dev_xdp_prog(dev, other_mode)) {
9369 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9370 return -EEXIST;
9371 }
9372 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9373 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9374 return -EINVAL;
9375 }
9376 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9377 NL_SET_ERR_MSG(extack, "Program bound to different device");
9378 return -EINVAL;
9379 }
9380 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
9381 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
9382 return -EINVAL;
9383 }
9384 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9385 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9386 return -EINVAL;
9387 }
9388 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9389 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9390 return -EINVAL;
9391 }
9392 }
9393
9394 /* don't call drivers if the effective program didn't change */
9395 if (new_prog != cur_prog) {
9396 bpf_op = dev_xdp_bpf_op(dev, mode);
9397 if (!bpf_op) {
9398 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9399 return -EOPNOTSUPP;
9400 }
9401
9402 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9403 if (err)
9404 return err;
9405 }
9406
9407 if (link)
9408 dev_xdp_set_link(dev, mode, link);
9409 else
9410 dev_xdp_set_prog(dev, mode, new_prog);
9411 if (cur_prog)
9412 bpf_prog_put(cur_prog);
9413
9414 return 0;
9415 }
9416
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9417 static int dev_xdp_attach_link(struct net_device *dev,
9418 struct netlink_ext_ack *extack,
9419 struct bpf_xdp_link *link)
9420 {
9421 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9422 }
9423
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9424 static int dev_xdp_detach_link(struct net_device *dev,
9425 struct netlink_ext_ack *extack,
9426 struct bpf_xdp_link *link)
9427 {
9428 enum bpf_xdp_mode mode;
9429 bpf_op_t bpf_op;
9430
9431 ASSERT_RTNL();
9432
9433 mode = dev_xdp_mode(dev, link->flags);
9434 if (dev_xdp_link(dev, mode) != link)
9435 return -EINVAL;
9436
9437 bpf_op = dev_xdp_bpf_op(dev, mode);
9438 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9439 dev_xdp_set_link(dev, mode, NULL);
9440 return 0;
9441 }
9442
bpf_xdp_link_release(struct bpf_link * link)9443 static void bpf_xdp_link_release(struct bpf_link *link)
9444 {
9445 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9446
9447 rtnl_lock();
9448
9449 /* if racing with net_device's tear down, xdp_link->dev might be
9450 * already NULL, in which case link was already auto-detached
9451 */
9452 if (xdp_link->dev) {
9453 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9454 xdp_link->dev = NULL;
9455 }
9456
9457 rtnl_unlock();
9458 }
9459
bpf_xdp_link_detach(struct bpf_link * link)9460 static int bpf_xdp_link_detach(struct bpf_link *link)
9461 {
9462 bpf_xdp_link_release(link);
9463 return 0;
9464 }
9465
bpf_xdp_link_dealloc(struct bpf_link * link)9466 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9467 {
9468 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9469
9470 kfree(xdp_link);
9471 }
9472
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9473 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9474 struct seq_file *seq)
9475 {
9476 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9477 u32 ifindex = 0;
9478
9479 rtnl_lock();
9480 if (xdp_link->dev)
9481 ifindex = xdp_link->dev->ifindex;
9482 rtnl_unlock();
9483
9484 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9485 }
9486
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9487 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9488 struct bpf_link_info *info)
9489 {
9490 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9491 u32 ifindex = 0;
9492
9493 rtnl_lock();
9494 if (xdp_link->dev)
9495 ifindex = xdp_link->dev->ifindex;
9496 rtnl_unlock();
9497
9498 info->xdp.ifindex = ifindex;
9499 return 0;
9500 }
9501
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9502 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9503 struct bpf_prog *old_prog)
9504 {
9505 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9506 enum bpf_xdp_mode mode;
9507 bpf_op_t bpf_op;
9508 int err = 0;
9509
9510 rtnl_lock();
9511
9512 /* link might have been auto-released already, so fail */
9513 if (!xdp_link->dev) {
9514 err = -ENOLINK;
9515 goto out_unlock;
9516 }
9517
9518 if (old_prog && link->prog != old_prog) {
9519 err = -EPERM;
9520 goto out_unlock;
9521 }
9522 old_prog = link->prog;
9523 if (old_prog->type != new_prog->type ||
9524 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9525 err = -EINVAL;
9526 goto out_unlock;
9527 }
9528
9529 if (old_prog == new_prog) {
9530 /* no-op, don't disturb drivers */
9531 bpf_prog_put(new_prog);
9532 goto out_unlock;
9533 }
9534
9535 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9536 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9537 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9538 xdp_link->flags, new_prog);
9539 if (err)
9540 goto out_unlock;
9541
9542 old_prog = xchg(&link->prog, new_prog);
9543 bpf_prog_put(old_prog);
9544
9545 out_unlock:
9546 rtnl_unlock();
9547 return err;
9548 }
9549
9550 static const struct bpf_link_ops bpf_xdp_link_lops = {
9551 .release = bpf_xdp_link_release,
9552 .dealloc = bpf_xdp_link_dealloc,
9553 .detach = bpf_xdp_link_detach,
9554 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9555 .fill_link_info = bpf_xdp_link_fill_link_info,
9556 .update_prog = bpf_xdp_link_update,
9557 };
9558
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9559 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9560 {
9561 struct net *net = current->nsproxy->net_ns;
9562 struct bpf_link_primer link_primer;
9563 struct netlink_ext_ack extack = {};
9564 struct bpf_xdp_link *link;
9565 struct net_device *dev;
9566 int err, fd;
9567
9568 rtnl_lock();
9569 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9570 if (!dev) {
9571 rtnl_unlock();
9572 return -EINVAL;
9573 }
9574
9575 link = kzalloc(sizeof(*link), GFP_USER);
9576 if (!link) {
9577 err = -ENOMEM;
9578 goto unlock;
9579 }
9580
9581 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9582 link->dev = dev;
9583 link->flags = attr->link_create.flags;
9584
9585 err = bpf_link_prime(&link->link, &link_primer);
9586 if (err) {
9587 kfree(link);
9588 goto unlock;
9589 }
9590
9591 err = dev_xdp_attach_link(dev, &extack, link);
9592 rtnl_unlock();
9593
9594 if (err) {
9595 link->dev = NULL;
9596 bpf_link_cleanup(&link_primer);
9597 trace_bpf_xdp_link_attach_failed(extack._msg);
9598 goto out_put_dev;
9599 }
9600
9601 fd = bpf_link_settle(&link_primer);
9602 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9603 dev_put(dev);
9604 return fd;
9605
9606 unlock:
9607 rtnl_unlock();
9608
9609 out_put_dev:
9610 dev_put(dev);
9611 return err;
9612 }
9613
9614 /**
9615 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9616 * @dev: device
9617 * @extack: netlink extended ack
9618 * @fd: new program fd or negative value to clear
9619 * @expected_fd: old program fd that userspace expects to replace or clear
9620 * @flags: xdp-related flags
9621 *
9622 * Set or clear a bpf program for a device
9623 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9624 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9625 int fd, int expected_fd, u32 flags)
9626 {
9627 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9628 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9629 int err;
9630
9631 ASSERT_RTNL();
9632
9633 if (fd >= 0) {
9634 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9635 mode != XDP_MODE_SKB);
9636 if (IS_ERR(new_prog))
9637 return PTR_ERR(new_prog);
9638 }
9639
9640 if (expected_fd >= 0) {
9641 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9642 mode != XDP_MODE_SKB);
9643 if (IS_ERR(old_prog)) {
9644 err = PTR_ERR(old_prog);
9645 old_prog = NULL;
9646 goto err_out;
9647 }
9648 }
9649
9650 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9651
9652 err_out:
9653 if (err && new_prog)
9654 bpf_prog_put(new_prog);
9655 if (old_prog)
9656 bpf_prog_put(old_prog);
9657 return err;
9658 }
9659
9660 /**
9661 * dev_index_reserve() - allocate an ifindex in a namespace
9662 * @net: the applicable net namespace
9663 * @ifindex: requested ifindex, pass %0 to get one allocated
9664 *
9665 * Allocate a ifindex for a new device. Caller must either use the ifindex
9666 * to store the device (via list_netdevice()) or call dev_index_release()
9667 * to give the index up.
9668 *
9669 * Return: a suitable unique value for a new device interface number or -errno.
9670 */
dev_index_reserve(struct net * net,u32 ifindex)9671 static int dev_index_reserve(struct net *net, u32 ifindex)
9672 {
9673 int err;
9674
9675 if (ifindex > INT_MAX) {
9676 DEBUG_NET_WARN_ON_ONCE(1);
9677 return -EINVAL;
9678 }
9679
9680 if (!ifindex)
9681 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9682 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9683 else
9684 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9685 if (err < 0)
9686 return err;
9687
9688 return ifindex;
9689 }
9690
dev_index_release(struct net * net,int ifindex)9691 static void dev_index_release(struct net *net, int ifindex)
9692 {
9693 /* Expect only unused indexes, unlist_netdevice() removes the used */
9694 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9695 }
9696
9697 /* Delayed registration/unregisteration */
9698 LIST_HEAD(net_todo_list);
9699 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9700
net_set_todo(struct net_device * dev)9701 static void net_set_todo(struct net_device *dev)
9702 {
9703 list_add_tail(&dev->todo_list, &net_todo_list);
9704 atomic_inc(&dev_net(dev)->dev_unreg_count);
9705 }
9706
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9707 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9708 struct net_device *upper, netdev_features_t features)
9709 {
9710 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9711 netdev_features_t feature;
9712 int feature_bit;
9713
9714 for_each_netdev_feature(upper_disables, feature_bit) {
9715 feature = __NETIF_F_BIT(feature_bit);
9716 if (!(upper->wanted_features & feature)
9717 && (features & feature)) {
9718 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9719 &feature, upper->name);
9720 features &= ~feature;
9721 }
9722 }
9723
9724 return features;
9725 }
9726
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9727 static void netdev_sync_lower_features(struct net_device *upper,
9728 struct net_device *lower, netdev_features_t features)
9729 {
9730 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9731 netdev_features_t feature;
9732 int feature_bit;
9733
9734 for_each_netdev_feature(upper_disables, feature_bit) {
9735 feature = __NETIF_F_BIT(feature_bit);
9736 if (!(features & feature) && (lower->features & feature)) {
9737 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9738 &feature, lower->name);
9739 lower->wanted_features &= ~feature;
9740 __netdev_update_features(lower);
9741
9742 if (unlikely(lower->features & feature))
9743 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9744 &feature, lower->name);
9745 else
9746 netdev_features_change(lower);
9747 }
9748 }
9749 }
9750
netdev_fix_features(struct net_device * dev,netdev_features_t features)9751 static netdev_features_t netdev_fix_features(struct net_device *dev,
9752 netdev_features_t features)
9753 {
9754 /* Fix illegal checksum combinations */
9755 if ((features & NETIF_F_HW_CSUM) &&
9756 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9757 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9758 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9759 }
9760
9761 /* TSO requires that SG is present as well. */
9762 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9763 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9764 features &= ~NETIF_F_ALL_TSO;
9765 }
9766
9767 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9768 !(features & NETIF_F_IP_CSUM)) {
9769 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9770 features &= ~NETIF_F_TSO;
9771 features &= ~NETIF_F_TSO_ECN;
9772 }
9773
9774 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9775 !(features & NETIF_F_IPV6_CSUM)) {
9776 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9777 features &= ~NETIF_F_TSO6;
9778 }
9779
9780 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9781 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9782 features &= ~NETIF_F_TSO_MANGLEID;
9783
9784 /* TSO ECN requires that TSO is present as well. */
9785 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9786 features &= ~NETIF_F_TSO_ECN;
9787
9788 /* Software GSO depends on SG. */
9789 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9790 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9791 features &= ~NETIF_F_GSO;
9792 }
9793
9794 /* GSO partial features require GSO partial be set */
9795 if ((features & dev->gso_partial_features) &&
9796 !(features & NETIF_F_GSO_PARTIAL)) {
9797 netdev_dbg(dev,
9798 "Dropping partially supported GSO features since no GSO partial.\n");
9799 features &= ~dev->gso_partial_features;
9800 }
9801
9802 if (!(features & NETIF_F_RXCSUM)) {
9803 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9804 * successfully merged by hardware must also have the
9805 * checksum verified by hardware. If the user does not
9806 * want to enable RXCSUM, logically, we should disable GRO_HW.
9807 */
9808 if (features & NETIF_F_GRO_HW) {
9809 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9810 features &= ~NETIF_F_GRO_HW;
9811 }
9812 }
9813
9814 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9815 if (features & NETIF_F_RXFCS) {
9816 if (features & NETIF_F_LRO) {
9817 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9818 features &= ~NETIF_F_LRO;
9819 }
9820
9821 if (features & NETIF_F_GRO_HW) {
9822 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9823 features &= ~NETIF_F_GRO_HW;
9824 }
9825 }
9826
9827 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9828 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9829 features &= ~NETIF_F_LRO;
9830 }
9831
9832 if (features & NETIF_F_HW_TLS_TX) {
9833 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9834 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9835 bool hw_csum = features & NETIF_F_HW_CSUM;
9836
9837 if (!ip_csum && !hw_csum) {
9838 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9839 features &= ~NETIF_F_HW_TLS_TX;
9840 }
9841 }
9842
9843 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9844 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9845 features &= ~NETIF_F_HW_TLS_RX;
9846 }
9847
9848 return features;
9849 }
9850
__netdev_update_features(struct net_device * dev)9851 int __netdev_update_features(struct net_device *dev)
9852 {
9853 struct net_device *upper, *lower;
9854 netdev_features_t features;
9855 struct list_head *iter;
9856 int err = -1;
9857
9858 ASSERT_RTNL();
9859
9860 features = netdev_get_wanted_features(dev);
9861
9862 if (dev->netdev_ops->ndo_fix_features)
9863 features = dev->netdev_ops->ndo_fix_features(dev, features);
9864
9865 /* driver might be less strict about feature dependencies */
9866 features = netdev_fix_features(dev, features);
9867
9868 /* some features can't be enabled if they're off on an upper device */
9869 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9870 features = netdev_sync_upper_features(dev, upper, features);
9871
9872 if (dev->features == features)
9873 goto sync_lower;
9874
9875 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9876 &dev->features, &features);
9877
9878 if (dev->netdev_ops->ndo_set_features)
9879 err = dev->netdev_ops->ndo_set_features(dev, features);
9880 else
9881 err = 0;
9882
9883 if (unlikely(err < 0)) {
9884 netdev_err(dev,
9885 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9886 err, &features, &dev->features);
9887 /* return non-0 since some features might have changed and
9888 * it's better to fire a spurious notification than miss it
9889 */
9890 return -1;
9891 }
9892
9893 sync_lower:
9894 /* some features must be disabled on lower devices when disabled
9895 * on an upper device (think: bonding master or bridge)
9896 */
9897 netdev_for_each_lower_dev(dev, lower, iter)
9898 netdev_sync_lower_features(dev, lower, features);
9899
9900 if (!err) {
9901 netdev_features_t diff = features ^ dev->features;
9902
9903 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9904 /* udp_tunnel_{get,drop}_rx_info both need
9905 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9906 * device, or they won't do anything.
9907 * Thus we need to update dev->features
9908 * *before* calling udp_tunnel_get_rx_info,
9909 * but *after* calling udp_tunnel_drop_rx_info.
9910 */
9911 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9912 dev->features = features;
9913 udp_tunnel_get_rx_info(dev);
9914 } else {
9915 udp_tunnel_drop_rx_info(dev);
9916 }
9917 }
9918
9919 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9920 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9921 dev->features = features;
9922 err |= vlan_get_rx_ctag_filter_info(dev);
9923 } else {
9924 vlan_drop_rx_ctag_filter_info(dev);
9925 }
9926 }
9927
9928 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9929 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9930 dev->features = features;
9931 err |= vlan_get_rx_stag_filter_info(dev);
9932 } else {
9933 vlan_drop_rx_stag_filter_info(dev);
9934 }
9935 }
9936
9937 dev->features = features;
9938 }
9939
9940 return err < 0 ? 0 : 1;
9941 }
9942
9943 /**
9944 * netdev_update_features - recalculate device features
9945 * @dev: the device to check
9946 *
9947 * Recalculate dev->features set and send notifications if it
9948 * has changed. Should be called after driver or hardware dependent
9949 * conditions might have changed that influence the features.
9950 */
netdev_update_features(struct net_device * dev)9951 void netdev_update_features(struct net_device *dev)
9952 {
9953 if (__netdev_update_features(dev))
9954 netdev_features_change(dev);
9955 }
9956 EXPORT_SYMBOL(netdev_update_features);
9957
9958 /**
9959 * netdev_change_features - recalculate device features
9960 * @dev: the device to check
9961 *
9962 * Recalculate dev->features set and send notifications even
9963 * if they have not changed. Should be called instead of
9964 * netdev_update_features() if also dev->vlan_features might
9965 * have changed to allow the changes to be propagated to stacked
9966 * VLAN devices.
9967 */
netdev_change_features(struct net_device * dev)9968 void netdev_change_features(struct net_device *dev)
9969 {
9970 __netdev_update_features(dev);
9971 netdev_features_change(dev);
9972 }
9973 EXPORT_SYMBOL(netdev_change_features);
9974
9975 /**
9976 * netif_stacked_transfer_operstate - transfer operstate
9977 * @rootdev: the root or lower level device to transfer state from
9978 * @dev: the device to transfer operstate to
9979 *
9980 * Transfer operational state from root to device. This is normally
9981 * called when a stacking relationship exists between the root
9982 * device and the device(a leaf device).
9983 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9984 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9985 struct net_device *dev)
9986 {
9987 if (rootdev->operstate == IF_OPER_DORMANT)
9988 netif_dormant_on(dev);
9989 else
9990 netif_dormant_off(dev);
9991
9992 if (rootdev->operstate == IF_OPER_TESTING)
9993 netif_testing_on(dev);
9994 else
9995 netif_testing_off(dev);
9996
9997 if (netif_carrier_ok(rootdev))
9998 netif_carrier_on(dev);
9999 else
10000 netif_carrier_off(dev);
10001 }
10002 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10003
netif_alloc_rx_queues(struct net_device * dev)10004 static int netif_alloc_rx_queues(struct net_device *dev)
10005 {
10006 unsigned int i, count = dev->num_rx_queues;
10007 struct netdev_rx_queue *rx;
10008 size_t sz = count * sizeof(*rx);
10009 int err = 0;
10010
10011 BUG_ON(count < 1);
10012
10013 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10014 if (!rx)
10015 return -ENOMEM;
10016
10017 dev->_rx = rx;
10018
10019 for (i = 0; i < count; i++) {
10020 rx[i].dev = dev;
10021
10022 /* XDP RX-queue setup */
10023 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10024 if (err < 0)
10025 goto err_rxq_info;
10026 }
10027 return 0;
10028
10029 err_rxq_info:
10030 /* Rollback successful reg's and free other resources */
10031 while (i--)
10032 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10033 kvfree(dev->_rx);
10034 dev->_rx = NULL;
10035 return err;
10036 }
10037
netif_free_rx_queues(struct net_device * dev)10038 static void netif_free_rx_queues(struct net_device *dev)
10039 {
10040 unsigned int i, count = dev->num_rx_queues;
10041
10042 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10043 if (!dev->_rx)
10044 return;
10045
10046 for (i = 0; i < count; i++)
10047 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10048
10049 kvfree(dev->_rx);
10050 }
10051
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10052 static void netdev_init_one_queue(struct net_device *dev,
10053 struct netdev_queue *queue, void *_unused)
10054 {
10055 /* Initialize queue lock */
10056 spin_lock_init(&queue->_xmit_lock);
10057 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10058 queue->xmit_lock_owner = -1;
10059 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10060 queue->dev = dev;
10061 #ifdef CONFIG_BQL
10062 dql_init(&queue->dql, HZ);
10063 #endif
10064 }
10065
netif_free_tx_queues(struct net_device * dev)10066 static void netif_free_tx_queues(struct net_device *dev)
10067 {
10068 kvfree(dev->_tx);
10069 }
10070
netif_alloc_netdev_queues(struct net_device * dev)10071 static int netif_alloc_netdev_queues(struct net_device *dev)
10072 {
10073 unsigned int count = dev->num_tx_queues;
10074 struct netdev_queue *tx;
10075 size_t sz = count * sizeof(*tx);
10076
10077 if (count < 1 || count > 0xffff)
10078 return -EINVAL;
10079
10080 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10081 if (!tx)
10082 return -ENOMEM;
10083
10084 dev->_tx = tx;
10085
10086 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10087 spin_lock_init(&dev->tx_global_lock);
10088
10089 return 0;
10090 }
10091
netif_tx_stop_all_queues(struct net_device * dev)10092 void netif_tx_stop_all_queues(struct net_device *dev)
10093 {
10094 unsigned int i;
10095
10096 for (i = 0; i < dev->num_tx_queues; i++) {
10097 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10098
10099 netif_tx_stop_queue(txq);
10100 }
10101 }
10102 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10103
netdev_do_alloc_pcpu_stats(struct net_device * dev)10104 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10105 {
10106 void __percpu *v;
10107
10108 /* Drivers implementing ndo_get_peer_dev must support tstat
10109 * accounting, so that skb_do_redirect() can bump the dev's
10110 * RX stats upon network namespace switch.
10111 */
10112 if (dev->netdev_ops->ndo_get_peer_dev &&
10113 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10114 return -EOPNOTSUPP;
10115
10116 switch (dev->pcpu_stat_type) {
10117 case NETDEV_PCPU_STAT_NONE:
10118 return 0;
10119 case NETDEV_PCPU_STAT_LSTATS:
10120 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10121 break;
10122 case NETDEV_PCPU_STAT_TSTATS:
10123 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10124 break;
10125 case NETDEV_PCPU_STAT_DSTATS:
10126 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10127 break;
10128 default:
10129 return -EINVAL;
10130 }
10131
10132 return v ? 0 : -ENOMEM;
10133 }
10134
netdev_do_free_pcpu_stats(struct net_device * dev)10135 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10136 {
10137 switch (dev->pcpu_stat_type) {
10138 case NETDEV_PCPU_STAT_NONE:
10139 return;
10140 case NETDEV_PCPU_STAT_LSTATS:
10141 free_percpu(dev->lstats);
10142 break;
10143 case NETDEV_PCPU_STAT_TSTATS:
10144 free_percpu(dev->tstats);
10145 break;
10146 case NETDEV_PCPU_STAT_DSTATS:
10147 free_percpu(dev->dstats);
10148 break;
10149 }
10150 }
10151
10152 /**
10153 * register_netdevice() - register a network device
10154 * @dev: device to register
10155 *
10156 * Take a prepared network device structure and make it externally accessible.
10157 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10158 * Callers must hold the rtnl lock - you may want register_netdev()
10159 * instead of this.
10160 */
register_netdevice(struct net_device * dev)10161 int register_netdevice(struct net_device *dev)
10162 {
10163 int ret;
10164 struct net *net = dev_net(dev);
10165
10166 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10167 NETDEV_FEATURE_COUNT);
10168 BUG_ON(dev_boot_phase);
10169 ASSERT_RTNL();
10170
10171 might_sleep();
10172
10173 /* When net_device's are persistent, this will be fatal. */
10174 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10175 BUG_ON(!net);
10176
10177 ret = ethtool_check_ops(dev->ethtool_ops);
10178 if (ret)
10179 return ret;
10180
10181 spin_lock_init(&dev->addr_list_lock);
10182 netdev_set_addr_lockdep_class(dev);
10183
10184 ret = dev_get_valid_name(net, dev, dev->name);
10185 if (ret < 0)
10186 goto out;
10187
10188 ret = -ENOMEM;
10189 dev->name_node = netdev_name_node_head_alloc(dev);
10190 if (!dev->name_node)
10191 goto out;
10192
10193 /* Init, if this function is available */
10194 if (dev->netdev_ops->ndo_init) {
10195 ret = dev->netdev_ops->ndo_init(dev);
10196 if (ret) {
10197 if (ret > 0)
10198 ret = -EIO;
10199 goto err_free_name;
10200 }
10201 }
10202
10203 if (((dev->hw_features | dev->features) &
10204 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10205 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10206 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10207 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10208 ret = -EINVAL;
10209 goto err_uninit;
10210 }
10211
10212 ret = netdev_do_alloc_pcpu_stats(dev);
10213 if (ret)
10214 goto err_uninit;
10215
10216 ret = dev_index_reserve(net, dev->ifindex);
10217 if (ret < 0)
10218 goto err_free_pcpu;
10219 dev->ifindex = ret;
10220
10221 /* Transfer changeable features to wanted_features and enable
10222 * software offloads (GSO and GRO).
10223 */
10224 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10225 dev->features |= NETIF_F_SOFT_FEATURES;
10226
10227 if (dev->udp_tunnel_nic_info) {
10228 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10229 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10230 }
10231
10232 dev->wanted_features = dev->features & dev->hw_features;
10233
10234 if (!(dev->flags & IFF_LOOPBACK))
10235 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10236
10237 /* If IPv4 TCP segmentation offload is supported we should also
10238 * allow the device to enable segmenting the frame with the option
10239 * of ignoring a static IP ID value. This doesn't enable the
10240 * feature itself but allows the user to enable it later.
10241 */
10242 if (dev->hw_features & NETIF_F_TSO)
10243 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10244 if (dev->vlan_features & NETIF_F_TSO)
10245 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10246 if (dev->mpls_features & NETIF_F_TSO)
10247 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10248 if (dev->hw_enc_features & NETIF_F_TSO)
10249 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10250
10251 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10252 */
10253 dev->vlan_features |= NETIF_F_HIGHDMA;
10254
10255 /* Make NETIF_F_SG inheritable to tunnel devices.
10256 */
10257 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10258
10259 /* Make NETIF_F_SG inheritable to MPLS.
10260 */
10261 dev->mpls_features |= NETIF_F_SG;
10262
10263 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10264 ret = notifier_to_errno(ret);
10265 if (ret)
10266 goto err_ifindex_release;
10267
10268 ret = netdev_register_kobject(dev);
10269 write_lock(&dev_base_lock);
10270 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10271 write_unlock(&dev_base_lock);
10272 if (ret)
10273 goto err_uninit_notify;
10274
10275 __netdev_update_features(dev);
10276
10277 /*
10278 * Default initial state at registry is that the
10279 * device is present.
10280 */
10281
10282 set_bit(__LINK_STATE_PRESENT, &dev->state);
10283
10284 linkwatch_init_dev(dev);
10285
10286 dev_init_scheduler(dev);
10287
10288 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10289 list_netdevice(dev);
10290
10291 add_device_randomness(dev->dev_addr, dev->addr_len);
10292
10293 /* If the device has permanent device address, driver should
10294 * set dev_addr and also addr_assign_type should be set to
10295 * NET_ADDR_PERM (default value).
10296 */
10297 if (dev->addr_assign_type == NET_ADDR_PERM)
10298 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10299
10300 /* Notify protocols, that a new device appeared. */
10301 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10302 ret = notifier_to_errno(ret);
10303 if (ret) {
10304 /* Expect explicit free_netdev() on failure */
10305 dev->needs_free_netdev = false;
10306 unregister_netdevice_queue(dev, NULL);
10307 goto out;
10308 }
10309 /*
10310 * Prevent userspace races by waiting until the network
10311 * device is fully setup before sending notifications.
10312 */
10313 if (!dev->rtnl_link_ops ||
10314 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10315 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10316
10317 out:
10318 return ret;
10319
10320 err_uninit_notify:
10321 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10322 err_ifindex_release:
10323 dev_index_release(net, dev->ifindex);
10324 err_free_pcpu:
10325 netdev_do_free_pcpu_stats(dev);
10326 err_uninit:
10327 if (dev->netdev_ops->ndo_uninit)
10328 dev->netdev_ops->ndo_uninit(dev);
10329 if (dev->priv_destructor)
10330 dev->priv_destructor(dev);
10331 err_free_name:
10332 netdev_name_node_free(dev->name_node);
10333 goto out;
10334 }
10335 EXPORT_SYMBOL(register_netdevice);
10336
10337 /**
10338 * init_dummy_netdev - init a dummy network device for NAPI
10339 * @dev: device to init
10340 *
10341 * This takes a network device structure and initialize the minimum
10342 * amount of fields so it can be used to schedule NAPI polls without
10343 * registering a full blown interface. This is to be used by drivers
10344 * that need to tie several hardware interfaces to a single NAPI
10345 * poll scheduler due to HW limitations.
10346 */
init_dummy_netdev(struct net_device * dev)10347 int init_dummy_netdev(struct net_device *dev)
10348 {
10349 /* Clear everything. Note we don't initialize spinlocks
10350 * are they aren't supposed to be taken by any of the
10351 * NAPI code and this dummy netdev is supposed to be
10352 * only ever used for NAPI polls
10353 */
10354 memset(dev, 0, sizeof(struct net_device));
10355
10356 /* make sure we BUG if trying to hit standard
10357 * register/unregister code path
10358 */
10359 dev->reg_state = NETREG_DUMMY;
10360
10361 /* NAPI wants this */
10362 INIT_LIST_HEAD(&dev->napi_list);
10363
10364 /* a dummy interface is started by default */
10365 set_bit(__LINK_STATE_PRESENT, &dev->state);
10366 set_bit(__LINK_STATE_START, &dev->state);
10367
10368 /* napi_busy_loop stats accounting wants this */
10369 dev_net_set(dev, &init_net);
10370
10371 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10372 * because users of this 'device' dont need to change
10373 * its refcount.
10374 */
10375
10376 return 0;
10377 }
10378 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10379
10380
10381 /**
10382 * register_netdev - register a network device
10383 * @dev: device to register
10384 *
10385 * Take a completed network device structure and add it to the kernel
10386 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10387 * chain. 0 is returned on success. A negative errno code is returned
10388 * on a failure to set up the device, or if the name is a duplicate.
10389 *
10390 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10391 * and expands the device name if you passed a format string to
10392 * alloc_netdev.
10393 */
register_netdev(struct net_device * dev)10394 int register_netdev(struct net_device *dev)
10395 {
10396 int err;
10397
10398 if (rtnl_lock_killable())
10399 return -EINTR;
10400 err = register_netdevice(dev);
10401 rtnl_unlock();
10402 return err;
10403 }
10404 EXPORT_SYMBOL(register_netdev);
10405
netdev_refcnt_read(const struct net_device * dev)10406 int netdev_refcnt_read(const struct net_device *dev)
10407 {
10408 #ifdef CONFIG_PCPU_DEV_REFCNT
10409 int i, refcnt = 0;
10410
10411 for_each_possible_cpu(i)
10412 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10413 return refcnt;
10414 #else
10415 return refcount_read(&dev->dev_refcnt);
10416 #endif
10417 }
10418 EXPORT_SYMBOL(netdev_refcnt_read);
10419
10420 int netdev_unregister_timeout_secs __read_mostly = 10;
10421
10422 #define WAIT_REFS_MIN_MSECS 1
10423 #define WAIT_REFS_MAX_MSECS 250
10424 /**
10425 * netdev_wait_allrefs_any - wait until all references are gone.
10426 * @list: list of net_devices to wait on
10427 *
10428 * This is called when unregistering network devices.
10429 *
10430 * Any protocol or device that holds a reference should register
10431 * for netdevice notification, and cleanup and put back the
10432 * reference if they receive an UNREGISTER event.
10433 * We can get stuck here if buggy protocols don't correctly
10434 * call dev_put.
10435 */
netdev_wait_allrefs_any(struct list_head * list)10436 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10437 {
10438 unsigned long rebroadcast_time, warning_time;
10439 struct net_device *dev;
10440 int wait = 0;
10441
10442 rebroadcast_time = warning_time = jiffies;
10443
10444 list_for_each_entry(dev, list, todo_list)
10445 if (netdev_refcnt_read(dev) == 1)
10446 return dev;
10447
10448 while (true) {
10449 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10450 rtnl_lock();
10451
10452 /* Rebroadcast unregister notification */
10453 list_for_each_entry(dev, list, todo_list)
10454 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10455
10456 __rtnl_unlock();
10457 rcu_barrier();
10458 rtnl_lock();
10459
10460 list_for_each_entry(dev, list, todo_list)
10461 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10462 &dev->state)) {
10463 /* We must not have linkwatch events
10464 * pending on unregister. If this
10465 * happens, we simply run the queue
10466 * unscheduled, resulting in a noop
10467 * for this device.
10468 */
10469 linkwatch_run_queue();
10470 break;
10471 }
10472
10473 __rtnl_unlock();
10474
10475 rebroadcast_time = jiffies;
10476 }
10477
10478 rcu_barrier();
10479
10480 if (!wait) {
10481 wait = WAIT_REFS_MIN_MSECS;
10482 } else {
10483 msleep(wait);
10484 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10485 }
10486
10487 list_for_each_entry(dev, list, todo_list)
10488 if (netdev_refcnt_read(dev) == 1)
10489 return dev;
10490
10491 if (time_after(jiffies, warning_time +
10492 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10493 list_for_each_entry(dev, list, todo_list) {
10494 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10495 dev->name, netdev_refcnt_read(dev));
10496 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10497 }
10498
10499 warning_time = jiffies;
10500 }
10501 }
10502 }
10503
10504 /* The sequence is:
10505 *
10506 * rtnl_lock();
10507 * ...
10508 * register_netdevice(x1);
10509 * register_netdevice(x2);
10510 * ...
10511 * unregister_netdevice(y1);
10512 * unregister_netdevice(y2);
10513 * ...
10514 * rtnl_unlock();
10515 * free_netdev(y1);
10516 * free_netdev(y2);
10517 *
10518 * We are invoked by rtnl_unlock().
10519 * This allows us to deal with problems:
10520 * 1) We can delete sysfs objects which invoke hotplug
10521 * without deadlocking with linkwatch via keventd.
10522 * 2) Since we run with the RTNL semaphore not held, we can sleep
10523 * safely in order to wait for the netdev refcnt to drop to zero.
10524 *
10525 * We must not return until all unregister events added during
10526 * the interval the lock was held have been completed.
10527 */
netdev_run_todo(void)10528 void netdev_run_todo(void)
10529 {
10530 struct net_device *dev, *tmp;
10531 struct list_head list;
10532 #ifdef CONFIG_LOCKDEP
10533 struct list_head unlink_list;
10534
10535 list_replace_init(&net_unlink_list, &unlink_list);
10536
10537 while (!list_empty(&unlink_list)) {
10538 struct net_device *dev = list_first_entry(&unlink_list,
10539 struct net_device,
10540 unlink_list);
10541 list_del_init(&dev->unlink_list);
10542 dev->nested_level = dev->lower_level - 1;
10543 }
10544 #endif
10545
10546 /* Snapshot list, allow later requests */
10547 list_replace_init(&net_todo_list, &list);
10548
10549 __rtnl_unlock();
10550
10551 /* Wait for rcu callbacks to finish before next phase */
10552 if (!list_empty(&list))
10553 rcu_barrier();
10554
10555 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10556 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10557 netdev_WARN(dev, "run_todo but not unregistering\n");
10558 list_del(&dev->todo_list);
10559 continue;
10560 }
10561
10562 write_lock(&dev_base_lock);
10563 dev->reg_state = NETREG_UNREGISTERED;
10564 write_unlock(&dev_base_lock);
10565 linkwatch_forget_dev(dev);
10566 }
10567
10568 while (!list_empty(&list)) {
10569 dev = netdev_wait_allrefs_any(&list);
10570 list_del(&dev->todo_list);
10571
10572 /* paranoia */
10573 BUG_ON(netdev_refcnt_read(dev) != 1);
10574 BUG_ON(!list_empty(&dev->ptype_all));
10575 BUG_ON(!list_empty(&dev->ptype_specific));
10576 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10577 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10578
10579 netdev_do_free_pcpu_stats(dev);
10580 if (dev->priv_destructor)
10581 dev->priv_destructor(dev);
10582 if (dev->needs_free_netdev)
10583 free_netdev(dev);
10584
10585 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10586 wake_up(&netdev_unregistering_wq);
10587
10588 /* Free network device */
10589 kobject_put(&dev->dev.kobj);
10590 }
10591 }
10592
10593 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10594 * all the same fields in the same order as net_device_stats, with only
10595 * the type differing, but rtnl_link_stats64 may have additional fields
10596 * at the end for newer counters.
10597 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10598 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10599 const struct net_device_stats *netdev_stats)
10600 {
10601 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10602 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10603 u64 *dst = (u64 *)stats64;
10604
10605 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10606 for (i = 0; i < n; i++)
10607 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10608 /* zero out counters that only exist in rtnl_link_stats64 */
10609 memset((char *)stats64 + n * sizeof(u64), 0,
10610 sizeof(*stats64) - n * sizeof(u64));
10611 }
10612 EXPORT_SYMBOL(netdev_stats_to_stats64);
10613
netdev_core_stats_alloc(struct net_device * dev)10614 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10615 {
10616 struct net_device_core_stats __percpu *p;
10617
10618 p = alloc_percpu_gfp(struct net_device_core_stats,
10619 GFP_ATOMIC | __GFP_NOWARN);
10620
10621 if (p && cmpxchg(&dev->core_stats, NULL, p))
10622 free_percpu(p);
10623
10624 /* This READ_ONCE() pairs with the cmpxchg() above */
10625 return READ_ONCE(dev->core_stats);
10626 }
10627 EXPORT_SYMBOL(netdev_core_stats_alloc);
10628
10629 /**
10630 * dev_get_stats - get network device statistics
10631 * @dev: device to get statistics from
10632 * @storage: place to store stats
10633 *
10634 * Get network statistics from device. Return @storage.
10635 * The device driver may provide its own method by setting
10636 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10637 * otherwise the internal statistics structure is used.
10638 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10639 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10640 struct rtnl_link_stats64 *storage)
10641 {
10642 const struct net_device_ops *ops = dev->netdev_ops;
10643 const struct net_device_core_stats __percpu *p;
10644
10645 if (ops->ndo_get_stats64) {
10646 memset(storage, 0, sizeof(*storage));
10647 ops->ndo_get_stats64(dev, storage);
10648 } else if (ops->ndo_get_stats) {
10649 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10650 } else {
10651 netdev_stats_to_stats64(storage, &dev->stats);
10652 }
10653
10654 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10655 p = READ_ONCE(dev->core_stats);
10656 if (p) {
10657 const struct net_device_core_stats *core_stats;
10658 int i;
10659
10660 for_each_possible_cpu(i) {
10661 core_stats = per_cpu_ptr(p, i);
10662 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10663 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10664 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10665 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10666 }
10667 }
10668 return storage;
10669 }
10670 EXPORT_SYMBOL(dev_get_stats);
10671
10672 /**
10673 * dev_fetch_sw_netstats - get per-cpu network device statistics
10674 * @s: place to store stats
10675 * @netstats: per-cpu network stats to read from
10676 *
10677 * Read per-cpu network statistics and populate the related fields in @s.
10678 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10679 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10680 const struct pcpu_sw_netstats __percpu *netstats)
10681 {
10682 int cpu;
10683
10684 for_each_possible_cpu(cpu) {
10685 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10686 const struct pcpu_sw_netstats *stats;
10687 unsigned int start;
10688
10689 stats = per_cpu_ptr(netstats, cpu);
10690 do {
10691 start = u64_stats_fetch_begin(&stats->syncp);
10692 rx_packets = u64_stats_read(&stats->rx_packets);
10693 rx_bytes = u64_stats_read(&stats->rx_bytes);
10694 tx_packets = u64_stats_read(&stats->tx_packets);
10695 tx_bytes = u64_stats_read(&stats->tx_bytes);
10696 } while (u64_stats_fetch_retry(&stats->syncp, start));
10697
10698 s->rx_packets += rx_packets;
10699 s->rx_bytes += rx_bytes;
10700 s->tx_packets += tx_packets;
10701 s->tx_bytes += tx_bytes;
10702 }
10703 }
10704 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10705
10706 /**
10707 * dev_get_tstats64 - ndo_get_stats64 implementation
10708 * @dev: device to get statistics from
10709 * @s: place to store stats
10710 *
10711 * Populate @s from dev->stats and dev->tstats. Can be used as
10712 * ndo_get_stats64() callback.
10713 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)10714 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10715 {
10716 netdev_stats_to_stats64(s, &dev->stats);
10717 dev_fetch_sw_netstats(s, dev->tstats);
10718 }
10719 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10720
dev_ingress_queue_create(struct net_device * dev)10721 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10722 {
10723 struct netdev_queue *queue = dev_ingress_queue(dev);
10724
10725 #ifdef CONFIG_NET_CLS_ACT
10726 if (queue)
10727 return queue;
10728 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10729 if (!queue)
10730 return NULL;
10731 netdev_init_one_queue(dev, queue, NULL);
10732 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10733 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10734 rcu_assign_pointer(dev->ingress_queue, queue);
10735 #endif
10736 return queue;
10737 }
10738
10739 static const struct ethtool_ops default_ethtool_ops;
10740
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10741 void netdev_set_default_ethtool_ops(struct net_device *dev,
10742 const struct ethtool_ops *ops)
10743 {
10744 if (dev->ethtool_ops == &default_ethtool_ops)
10745 dev->ethtool_ops = ops;
10746 }
10747 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10748
10749 /**
10750 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10751 * @dev: netdev to enable the IRQ coalescing on
10752 *
10753 * Sets a conservative default for SW IRQ coalescing. Users can use
10754 * sysfs attributes to override the default values.
10755 */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)10756 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10757 {
10758 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10759
10760 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10761 dev->gro_flush_timeout = 20000;
10762 dev->napi_defer_hard_irqs = 1;
10763 }
10764 }
10765 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10766
netdev_freemem(struct net_device * dev)10767 void netdev_freemem(struct net_device *dev)
10768 {
10769 char *addr = (char *)dev - dev->padded;
10770
10771 kvfree(addr);
10772 }
10773
10774 /**
10775 * alloc_netdev_mqs - allocate network device
10776 * @sizeof_priv: size of private data to allocate space for
10777 * @name: device name format string
10778 * @name_assign_type: origin of device name
10779 * @setup: callback to initialize device
10780 * @txqs: the number of TX subqueues to allocate
10781 * @rxqs: the number of RX subqueues to allocate
10782 *
10783 * Allocates a struct net_device with private data area for driver use
10784 * and performs basic initialization. Also allocates subqueue structs
10785 * for each queue on the device.
10786 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10787 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10788 unsigned char name_assign_type,
10789 void (*setup)(struct net_device *),
10790 unsigned int txqs, unsigned int rxqs)
10791 {
10792 struct net_device *dev;
10793 unsigned int alloc_size;
10794 struct net_device *p;
10795
10796 BUG_ON(strlen(name) >= sizeof(dev->name));
10797
10798 if (txqs < 1) {
10799 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10800 return NULL;
10801 }
10802
10803 if (rxqs < 1) {
10804 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10805 return NULL;
10806 }
10807
10808 alloc_size = sizeof(struct net_device);
10809 if (sizeof_priv) {
10810 /* ensure 32-byte alignment of private area */
10811 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10812 alloc_size += sizeof_priv;
10813 }
10814 /* ensure 32-byte alignment of whole construct */
10815 alloc_size += NETDEV_ALIGN - 1;
10816
10817 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10818 if (!p)
10819 return NULL;
10820
10821 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10822 dev->padded = (char *)dev - (char *)p;
10823
10824 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10825 #ifdef CONFIG_PCPU_DEV_REFCNT
10826 dev->pcpu_refcnt = alloc_percpu(int);
10827 if (!dev->pcpu_refcnt)
10828 goto free_dev;
10829 __dev_hold(dev);
10830 #else
10831 refcount_set(&dev->dev_refcnt, 1);
10832 #endif
10833
10834 if (dev_addr_init(dev))
10835 goto free_pcpu;
10836
10837 dev_mc_init(dev);
10838 dev_uc_init(dev);
10839
10840 dev_net_set(dev, &init_net);
10841
10842 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10843 dev->xdp_zc_max_segs = 1;
10844 dev->gso_max_segs = GSO_MAX_SEGS;
10845 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10846 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10847 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10848 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10849 dev->tso_max_segs = TSO_MAX_SEGS;
10850 dev->upper_level = 1;
10851 dev->lower_level = 1;
10852 #ifdef CONFIG_LOCKDEP
10853 dev->nested_level = 0;
10854 INIT_LIST_HEAD(&dev->unlink_list);
10855 #endif
10856
10857 INIT_LIST_HEAD(&dev->napi_list);
10858 INIT_LIST_HEAD(&dev->unreg_list);
10859 INIT_LIST_HEAD(&dev->close_list);
10860 INIT_LIST_HEAD(&dev->link_watch_list);
10861 INIT_LIST_HEAD(&dev->adj_list.upper);
10862 INIT_LIST_HEAD(&dev->adj_list.lower);
10863 INIT_LIST_HEAD(&dev->ptype_all);
10864 INIT_LIST_HEAD(&dev->ptype_specific);
10865 INIT_LIST_HEAD(&dev->net_notifier_list);
10866 #ifdef CONFIG_NET_SCHED
10867 hash_init(dev->qdisc_hash);
10868 #endif
10869 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10870 setup(dev);
10871
10872 if (!dev->tx_queue_len) {
10873 dev->priv_flags |= IFF_NO_QUEUE;
10874 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10875 }
10876
10877 dev->num_tx_queues = txqs;
10878 dev->real_num_tx_queues = txqs;
10879 if (netif_alloc_netdev_queues(dev))
10880 goto free_all;
10881
10882 dev->num_rx_queues = rxqs;
10883 dev->real_num_rx_queues = rxqs;
10884 if (netif_alloc_rx_queues(dev))
10885 goto free_all;
10886
10887 strcpy(dev->name, name);
10888 dev->name_assign_type = name_assign_type;
10889 dev->group = INIT_NETDEV_GROUP;
10890 if (!dev->ethtool_ops)
10891 dev->ethtool_ops = &default_ethtool_ops;
10892
10893 nf_hook_netdev_init(dev);
10894
10895 return dev;
10896
10897 free_all:
10898 free_netdev(dev);
10899 return NULL;
10900
10901 free_pcpu:
10902 #ifdef CONFIG_PCPU_DEV_REFCNT
10903 free_percpu(dev->pcpu_refcnt);
10904 free_dev:
10905 #endif
10906 netdev_freemem(dev);
10907 return NULL;
10908 }
10909 EXPORT_SYMBOL(alloc_netdev_mqs);
10910
10911 /**
10912 * free_netdev - free network device
10913 * @dev: device
10914 *
10915 * This function does the last stage of destroying an allocated device
10916 * interface. The reference to the device object is released. If this
10917 * is the last reference then it will be freed.Must be called in process
10918 * context.
10919 */
free_netdev(struct net_device * dev)10920 void free_netdev(struct net_device *dev)
10921 {
10922 struct napi_struct *p, *n;
10923
10924 might_sleep();
10925
10926 /* When called immediately after register_netdevice() failed the unwind
10927 * handling may still be dismantling the device. Handle that case by
10928 * deferring the free.
10929 */
10930 if (dev->reg_state == NETREG_UNREGISTERING) {
10931 ASSERT_RTNL();
10932 dev->needs_free_netdev = true;
10933 return;
10934 }
10935
10936 netif_free_tx_queues(dev);
10937 netif_free_rx_queues(dev);
10938
10939 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10940
10941 /* Flush device addresses */
10942 dev_addr_flush(dev);
10943
10944 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10945 netif_napi_del(p);
10946
10947 ref_tracker_dir_exit(&dev->refcnt_tracker);
10948 #ifdef CONFIG_PCPU_DEV_REFCNT
10949 free_percpu(dev->pcpu_refcnt);
10950 dev->pcpu_refcnt = NULL;
10951 #endif
10952 free_percpu(dev->core_stats);
10953 dev->core_stats = NULL;
10954 free_percpu(dev->xdp_bulkq);
10955 dev->xdp_bulkq = NULL;
10956
10957 /* Compatibility with error handling in drivers */
10958 if (dev->reg_state == NETREG_UNINITIALIZED) {
10959 netdev_freemem(dev);
10960 return;
10961 }
10962
10963 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10964 dev->reg_state = NETREG_RELEASED;
10965
10966 /* will free via device release */
10967 put_device(&dev->dev);
10968 }
10969 EXPORT_SYMBOL(free_netdev);
10970
10971 /**
10972 * synchronize_net - Synchronize with packet receive processing
10973 *
10974 * Wait for packets currently being received to be done.
10975 * Does not block later packets from starting.
10976 */
synchronize_net(void)10977 void synchronize_net(void)
10978 {
10979 might_sleep();
10980 if (rtnl_is_locked())
10981 synchronize_rcu_expedited();
10982 else
10983 synchronize_rcu();
10984 }
10985 EXPORT_SYMBOL(synchronize_net);
10986
10987 /**
10988 * unregister_netdevice_queue - remove device from the kernel
10989 * @dev: device
10990 * @head: list
10991 *
10992 * This function shuts down a device interface and removes it
10993 * from the kernel tables.
10994 * If head not NULL, device is queued to be unregistered later.
10995 *
10996 * Callers must hold the rtnl semaphore. You may want
10997 * unregister_netdev() instead of this.
10998 */
10999
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)11000 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11001 {
11002 ASSERT_RTNL();
11003
11004 if (head) {
11005 list_move_tail(&dev->unreg_list, head);
11006 } else {
11007 LIST_HEAD(single);
11008
11009 list_add(&dev->unreg_list, &single);
11010 unregister_netdevice_many(&single);
11011 }
11012 }
11013 EXPORT_SYMBOL(unregister_netdevice_queue);
11014
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)11015 void unregister_netdevice_many_notify(struct list_head *head,
11016 u32 portid, const struct nlmsghdr *nlh)
11017 {
11018 struct net_device *dev, *tmp;
11019 LIST_HEAD(close_head);
11020
11021 BUG_ON(dev_boot_phase);
11022 ASSERT_RTNL();
11023
11024 if (list_empty(head))
11025 return;
11026
11027 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11028 /* Some devices call without registering
11029 * for initialization unwind. Remove those
11030 * devices and proceed with the remaining.
11031 */
11032 if (dev->reg_state == NETREG_UNINITIALIZED) {
11033 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11034 dev->name, dev);
11035
11036 WARN_ON(1);
11037 list_del(&dev->unreg_list);
11038 continue;
11039 }
11040 dev->dismantle = true;
11041 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11042 }
11043
11044 /* If device is running, close it first. */
11045 list_for_each_entry(dev, head, unreg_list)
11046 list_add_tail(&dev->close_list, &close_head);
11047 dev_close_many(&close_head, true);
11048
11049 list_for_each_entry(dev, head, unreg_list) {
11050 /* And unlink it from device chain. */
11051 write_lock(&dev_base_lock);
11052 unlist_netdevice(dev, false);
11053 dev->reg_state = NETREG_UNREGISTERING;
11054 write_unlock(&dev_base_lock);
11055 }
11056 flush_all_backlogs();
11057
11058 synchronize_net();
11059
11060 list_for_each_entry(dev, head, unreg_list) {
11061 struct sk_buff *skb = NULL;
11062
11063 /* Shutdown queueing discipline. */
11064 dev_shutdown(dev);
11065 dev_tcx_uninstall(dev);
11066 dev_xdp_uninstall(dev);
11067 bpf_dev_bound_netdev_unregister(dev);
11068
11069 netdev_offload_xstats_disable_all(dev);
11070
11071 /* Notify protocols, that we are about to destroy
11072 * this device. They should clean all the things.
11073 */
11074 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11075
11076 if (!dev->rtnl_link_ops ||
11077 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11078 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11079 GFP_KERNEL, NULL, 0,
11080 portid, nlh);
11081
11082 /*
11083 * Flush the unicast and multicast chains
11084 */
11085 dev_uc_flush(dev);
11086 dev_mc_flush(dev);
11087
11088 netdev_name_node_alt_flush(dev);
11089 netdev_name_node_free(dev->name_node);
11090
11091 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11092
11093 if (dev->netdev_ops->ndo_uninit)
11094 dev->netdev_ops->ndo_uninit(dev);
11095
11096 if (skb)
11097 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11098
11099 /* Notifier chain MUST detach us all upper devices. */
11100 WARN_ON(netdev_has_any_upper_dev(dev));
11101 WARN_ON(netdev_has_any_lower_dev(dev));
11102
11103 /* Remove entries from kobject tree */
11104 netdev_unregister_kobject(dev);
11105 #ifdef CONFIG_XPS
11106 /* Remove XPS queueing entries */
11107 netif_reset_xps_queues_gt(dev, 0);
11108 #endif
11109 }
11110
11111 synchronize_net();
11112
11113 list_for_each_entry(dev, head, unreg_list) {
11114 netdev_put(dev, &dev->dev_registered_tracker);
11115 net_set_todo(dev);
11116 }
11117
11118 list_del(head);
11119 }
11120
11121 /**
11122 * unregister_netdevice_many - unregister many devices
11123 * @head: list of devices
11124 *
11125 * Note: As most callers use a stack allocated list_head,
11126 * we force a list_del() to make sure stack wont be corrupted later.
11127 */
unregister_netdevice_many(struct list_head * head)11128 void unregister_netdevice_many(struct list_head *head)
11129 {
11130 unregister_netdevice_many_notify(head, 0, NULL);
11131 }
11132 EXPORT_SYMBOL(unregister_netdevice_many);
11133
11134 /**
11135 * unregister_netdev - remove device from the kernel
11136 * @dev: device
11137 *
11138 * This function shuts down a device interface and removes it
11139 * from the kernel tables.
11140 *
11141 * This is just a wrapper for unregister_netdevice that takes
11142 * the rtnl semaphore. In general you want to use this and not
11143 * unregister_netdevice.
11144 */
unregister_netdev(struct net_device * dev)11145 void unregister_netdev(struct net_device *dev)
11146 {
11147 rtnl_lock();
11148 unregister_netdevice(dev);
11149 rtnl_unlock();
11150 }
11151 EXPORT_SYMBOL(unregister_netdev);
11152
11153 /**
11154 * __dev_change_net_namespace - move device to different nethost namespace
11155 * @dev: device
11156 * @net: network namespace
11157 * @pat: If not NULL name pattern to try if the current device name
11158 * is already taken in the destination network namespace.
11159 * @new_ifindex: If not zero, specifies device index in the target
11160 * namespace.
11161 *
11162 * This function shuts down a device interface and moves it
11163 * to a new network namespace. On success 0 is returned, on
11164 * a failure a netagive errno code is returned.
11165 *
11166 * Callers must hold the rtnl semaphore.
11167 */
11168
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex)11169 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11170 const char *pat, int new_ifindex)
11171 {
11172 struct netdev_name_node *name_node;
11173 struct net *net_old = dev_net(dev);
11174 char new_name[IFNAMSIZ] = {};
11175 int err, new_nsid;
11176
11177 ASSERT_RTNL();
11178
11179 /* Don't allow namespace local devices to be moved. */
11180 err = -EINVAL;
11181 if (dev->features & NETIF_F_NETNS_LOCAL)
11182 goto out;
11183
11184 /* Ensure the device has been registrered */
11185 if (dev->reg_state != NETREG_REGISTERED)
11186 goto out;
11187
11188 /* Get out if there is nothing todo */
11189 err = 0;
11190 if (net_eq(net_old, net))
11191 goto out;
11192
11193 /* Pick the destination device name, and ensure
11194 * we can use it in the destination network namespace.
11195 */
11196 err = -EEXIST;
11197 if (netdev_name_in_use(net, dev->name)) {
11198 /* We get here if we can't use the current device name */
11199 if (!pat)
11200 goto out;
11201 err = dev_prep_valid_name(net, dev, pat, new_name);
11202 if (err < 0)
11203 goto out;
11204 }
11205 /* Check that none of the altnames conflicts. */
11206 err = -EEXIST;
11207 netdev_for_each_altname(dev, name_node)
11208 if (netdev_name_in_use(net, name_node->name))
11209 goto out;
11210
11211 /* Check that new_ifindex isn't used yet. */
11212 if (new_ifindex) {
11213 err = dev_index_reserve(net, new_ifindex);
11214 if (err < 0)
11215 goto out;
11216 } else {
11217 /* If there is an ifindex conflict assign a new one */
11218 err = dev_index_reserve(net, dev->ifindex);
11219 if (err == -EBUSY)
11220 err = dev_index_reserve(net, 0);
11221 if (err < 0)
11222 goto out;
11223 new_ifindex = err;
11224 }
11225
11226 /*
11227 * And now a mini version of register_netdevice unregister_netdevice.
11228 */
11229
11230 /* If device is running close it first. */
11231 dev_close(dev);
11232
11233 /* And unlink it from device chain */
11234 unlist_netdevice(dev, true);
11235
11236 synchronize_net();
11237
11238 /* Shutdown queueing discipline. */
11239 dev_shutdown(dev);
11240
11241 /* Notify protocols, that we are about to destroy
11242 * this device. They should clean all the things.
11243 *
11244 * Note that dev->reg_state stays at NETREG_REGISTERED.
11245 * This is wanted because this way 8021q and macvlan know
11246 * the device is just moving and can keep their slaves up.
11247 */
11248 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11249 rcu_barrier();
11250
11251 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11252
11253 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11254 new_ifindex);
11255
11256 /*
11257 * Flush the unicast and multicast chains
11258 */
11259 dev_uc_flush(dev);
11260 dev_mc_flush(dev);
11261
11262 /* Send a netdev-removed uevent to the old namespace */
11263 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11264 netdev_adjacent_del_links(dev);
11265
11266 /* Move per-net netdevice notifiers that are following the netdevice */
11267 move_netdevice_notifiers_dev_net(dev, net);
11268
11269 /* Actually switch the network namespace */
11270 dev_net_set(dev, net);
11271 dev->ifindex = new_ifindex;
11272
11273 /* Send a netdev-add uevent to the new namespace */
11274 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11275 netdev_adjacent_add_links(dev);
11276
11277 if (new_name[0]) /* Rename the netdev to prepared name */
11278 strscpy(dev->name, new_name, IFNAMSIZ);
11279
11280 /* Fixup kobjects */
11281 err = device_rename(&dev->dev, dev->name);
11282 WARN_ON(err);
11283
11284 /* Adapt owner in case owning user namespace of target network
11285 * namespace is different from the original one.
11286 */
11287 err = netdev_change_owner(dev, net_old, net);
11288 WARN_ON(err);
11289
11290 /* Add the device back in the hashes */
11291 list_netdevice(dev);
11292
11293 /* Notify protocols, that a new device appeared. */
11294 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11295
11296 /*
11297 * Prevent userspace races by waiting until the network
11298 * device is fully setup before sending notifications.
11299 */
11300 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11301
11302 synchronize_net();
11303 err = 0;
11304 out:
11305 return err;
11306 }
11307 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11308
dev_cpu_dead(unsigned int oldcpu)11309 static int dev_cpu_dead(unsigned int oldcpu)
11310 {
11311 struct sk_buff **list_skb;
11312 struct sk_buff *skb;
11313 unsigned int cpu;
11314 struct softnet_data *sd, *oldsd, *remsd = NULL;
11315
11316 local_irq_disable();
11317 cpu = smp_processor_id();
11318 sd = &per_cpu(softnet_data, cpu);
11319 oldsd = &per_cpu(softnet_data, oldcpu);
11320
11321 /* Find end of our completion_queue. */
11322 list_skb = &sd->completion_queue;
11323 while (*list_skb)
11324 list_skb = &(*list_skb)->next;
11325 /* Append completion queue from offline CPU. */
11326 *list_skb = oldsd->completion_queue;
11327 oldsd->completion_queue = NULL;
11328
11329 /* Append output queue from offline CPU. */
11330 if (oldsd->output_queue) {
11331 *sd->output_queue_tailp = oldsd->output_queue;
11332 sd->output_queue_tailp = oldsd->output_queue_tailp;
11333 oldsd->output_queue = NULL;
11334 oldsd->output_queue_tailp = &oldsd->output_queue;
11335 }
11336 /* Append NAPI poll list from offline CPU, with one exception :
11337 * process_backlog() must be called by cpu owning percpu backlog.
11338 * We properly handle process_queue & input_pkt_queue later.
11339 */
11340 while (!list_empty(&oldsd->poll_list)) {
11341 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11342 struct napi_struct,
11343 poll_list);
11344
11345 list_del_init(&napi->poll_list);
11346 if (napi->poll == process_backlog)
11347 napi->state = 0;
11348 else
11349 ____napi_schedule(sd, napi);
11350 }
11351
11352 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11353 local_irq_enable();
11354
11355 #ifdef CONFIG_RPS
11356 remsd = oldsd->rps_ipi_list;
11357 oldsd->rps_ipi_list = NULL;
11358 #endif
11359 /* send out pending IPI's on offline CPU */
11360 net_rps_send_ipi(remsd);
11361
11362 /* Process offline CPU's input_pkt_queue */
11363 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11364 netif_rx(skb);
11365 input_queue_head_incr(oldsd);
11366 }
11367 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11368 netif_rx(skb);
11369 input_queue_head_incr(oldsd);
11370 }
11371
11372 return 0;
11373 }
11374
11375 /**
11376 * netdev_increment_features - increment feature set by one
11377 * @all: current feature set
11378 * @one: new feature set
11379 * @mask: mask feature set
11380 *
11381 * Computes a new feature set after adding a device with feature set
11382 * @one to the master device with current feature set @all. Will not
11383 * enable anything that is off in @mask. Returns the new feature set.
11384 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11385 netdev_features_t netdev_increment_features(netdev_features_t all,
11386 netdev_features_t one, netdev_features_t mask)
11387 {
11388 if (mask & NETIF_F_HW_CSUM)
11389 mask |= NETIF_F_CSUM_MASK;
11390 mask |= NETIF_F_VLAN_CHALLENGED;
11391
11392 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11393 all &= one | ~NETIF_F_ALL_FOR_ALL;
11394
11395 /* If one device supports hw checksumming, set for all. */
11396 if (all & NETIF_F_HW_CSUM)
11397 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11398
11399 return all;
11400 }
11401 EXPORT_SYMBOL(netdev_increment_features);
11402
netdev_create_hash(void)11403 static struct hlist_head * __net_init netdev_create_hash(void)
11404 {
11405 int i;
11406 struct hlist_head *hash;
11407
11408 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11409 if (hash != NULL)
11410 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11411 INIT_HLIST_HEAD(&hash[i]);
11412
11413 return hash;
11414 }
11415
11416 /* Initialize per network namespace state */
netdev_init(struct net * net)11417 static int __net_init netdev_init(struct net *net)
11418 {
11419 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11420 8 * sizeof_field(struct napi_struct, gro_bitmask));
11421
11422 INIT_LIST_HEAD(&net->dev_base_head);
11423
11424 net->dev_name_head = netdev_create_hash();
11425 if (net->dev_name_head == NULL)
11426 goto err_name;
11427
11428 net->dev_index_head = netdev_create_hash();
11429 if (net->dev_index_head == NULL)
11430 goto err_idx;
11431
11432 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11433
11434 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11435
11436 return 0;
11437
11438 err_idx:
11439 kfree(net->dev_name_head);
11440 err_name:
11441 return -ENOMEM;
11442 }
11443
11444 /**
11445 * netdev_drivername - network driver for the device
11446 * @dev: network device
11447 *
11448 * Determine network driver for device.
11449 */
netdev_drivername(const struct net_device * dev)11450 const char *netdev_drivername(const struct net_device *dev)
11451 {
11452 const struct device_driver *driver;
11453 const struct device *parent;
11454 const char *empty = "";
11455
11456 parent = dev->dev.parent;
11457 if (!parent)
11458 return empty;
11459
11460 driver = parent->driver;
11461 if (driver && driver->name)
11462 return driver->name;
11463 return empty;
11464 }
11465
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11466 static void __netdev_printk(const char *level, const struct net_device *dev,
11467 struct va_format *vaf)
11468 {
11469 if (dev && dev->dev.parent) {
11470 dev_printk_emit(level[1] - '0',
11471 dev->dev.parent,
11472 "%s %s %s%s: %pV",
11473 dev_driver_string(dev->dev.parent),
11474 dev_name(dev->dev.parent),
11475 netdev_name(dev), netdev_reg_state(dev),
11476 vaf);
11477 } else if (dev) {
11478 printk("%s%s%s: %pV",
11479 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11480 } else {
11481 printk("%s(NULL net_device): %pV", level, vaf);
11482 }
11483 }
11484
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11485 void netdev_printk(const char *level, const struct net_device *dev,
11486 const char *format, ...)
11487 {
11488 struct va_format vaf;
11489 va_list args;
11490
11491 va_start(args, format);
11492
11493 vaf.fmt = format;
11494 vaf.va = &args;
11495
11496 __netdev_printk(level, dev, &vaf);
11497
11498 va_end(args);
11499 }
11500 EXPORT_SYMBOL(netdev_printk);
11501
11502 #define define_netdev_printk_level(func, level) \
11503 void func(const struct net_device *dev, const char *fmt, ...) \
11504 { \
11505 struct va_format vaf; \
11506 va_list args; \
11507 \
11508 va_start(args, fmt); \
11509 \
11510 vaf.fmt = fmt; \
11511 vaf.va = &args; \
11512 \
11513 __netdev_printk(level, dev, &vaf); \
11514 \
11515 va_end(args); \
11516 } \
11517 EXPORT_SYMBOL(func);
11518
11519 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11520 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11521 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11522 define_netdev_printk_level(netdev_err, KERN_ERR);
11523 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11524 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11525 define_netdev_printk_level(netdev_info, KERN_INFO);
11526
netdev_exit(struct net * net)11527 static void __net_exit netdev_exit(struct net *net)
11528 {
11529 kfree(net->dev_name_head);
11530 kfree(net->dev_index_head);
11531 xa_destroy(&net->dev_by_index);
11532 if (net != &init_net)
11533 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11534 }
11535
11536 static struct pernet_operations __net_initdata netdev_net_ops = {
11537 .init = netdev_init,
11538 .exit = netdev_exit,
11539 };
11540
default_device_exit_net(struct net * net)11541 static void __net_exit default_device_exit_net(struct net *net)
11542 {
11543 struct netdev_name_node *name_node, *tmp;
11544 struct net_device *dev, *aux;
11545 /*
11546 * Push all migratable network devices back to the
11547 * initial network namespace
11548 */
11549 ASSERT_RTNL();
11550 for_each_netdev_safe(net, dev, aux) {
11551 int err;
11552 char fb_name[IFNAMSIZ];
11553
11554 /* Ignore unmoveable devices (i.e. loopback) */
11555 if (dev->features & NETIF_F_NETNS_LOCAL)
11556 continue;
11557
11558 /* Leave virtual devices for the generic cleanup */
11559 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11560 continue;
11561
11562 /* Push remaining network devices to init_net */
11563 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11564 if (netdev_name_in_use(&init_net, fb_name))
11565 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11566
11567 netdev_for_each_altname_safe(dev, name_node, tmp)
11568 if (netdev_name_in_use(&init_net, name_node->name)) {
11569 netdev_name_node_del(name_node);
11570 synchronize_rcu();
11571 __netdev_name_node_alt_destroy(name_node);
11572 }
11573
11574 err = dev_change_net_namespace(dev, &init_net, fb_name);
11575 if (err) {
11576 pr_emerg("%s: failed to move %s to init_net: %d\n",
11577 __func__, dev->name, err);
11578 BUG();
11579 }
11580 }
11581 }
11582
default_device_exit_batch(struct list_head * net_list)11583 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11584 {
11585 /* At exit all network devices most be removed from a network
11586 * namespace. Do this in the reverse order of registration.
11587 * Do this across as many network namespaces as possible to
11588 * improve batching efficiency.
11589 */
11590 struct net_device *dev;
11591 struct net *net;
11592 LIST_HEAD(dev_kill_list);
11593
11594 rtnl_lock();
11595 list_for_each_entry(net, net_list, exit_list) {
11596 default_device_exit_net(net);
11597 cond_resched();
11598 }
11599
11600 list_for_each_entry(net, net_list, exit_list) {
11601 for_each_netdev_reverse(net, dev) {
11602 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11603 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11604 else
11605 unregister_netdevice_queue(dev, &dev_kill_list);
11606 }
11607 }
11608 unregister_netdevice_many(&dev_kill_list);
11609 rtnl_unlock();
11610 }
11611
11612 static struct pernet_operations __net_initdata default_device_ops = {
11613 .exit_batch = default_device_exit_batch,
11614 };
11615
11616 /*
11617 * Initialize the DEV module. At boot time this walks the device list and
11618 * unhooks any devices that fail to initialise (normally hardware not
11619 * present) and leaves us with a valid list of present and active devices.
11620 *
11621 */
11622
11623 /*
11624 * This is called single threaded during boot, so no need
11625 * to take the rtnl semaphore.
11626 */
net_dev_init(void)11627 static int __init net_dev_init(void)
11628 {
11629 int i, rc = -ENOMEM;
11630
11631 BUG_ON(!dev_boot_phase);
11632
11633 if (dev_proc_init())
11634 goto out;
11635
11636 if (netdev_kobject_init())
11637 goto out;
11638
11639 INIT_LIST_HEAD(&ptype_all);
11640 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11641 INIT_LIST_HEAD(&ptype_base[i]);
11642
11643 if (register_pernet_subsys(&netdev_net_ops))
11644 goto out;
11645
11646 /*
11647 * Initialise the packet receive queues.
11648 */
11649
11650 for_each_possible_cpu(i) {
11651 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11652 struct softnet_data *sd = &per_cpu(softnet_data, i);
11653
11654 INIT_WORK(flush, flush_backlog);
11655
11656 skb_queue_head_init(&sd->input_pkt_queue);
11657 skb_queue_head_init(&sd->process_queue);
11658 #ifdef CONFIG_XFRM_OFFLOAD
11659 skb_queue_head_init(&sd->xfrm_backlog);
11660 #endif
11661 INIT_LIST_HEAD(&sd->poll_list);
11662 sd->output_queue_tailp = &sd->output_queue;
11663 #ifdef CONFIG_RPS
11664 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11665 sd->cpu = i;
11666 #endif
11667 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11668 spin_lock_init(&sd->defer_lock);
11669
11670 init_gro_hash(&sd->backlog);
11671 sd->backlog.poll = process_backlog;
11672 sd->backlog.weight = weight_p;
11673 }
11674
11675 dev_boot_phase = 0;
11676
11677 /* The loopback device is special if any other network devices
11678 * is present in a network namespace the loopback device must
11679 * be present. Since we now dynamically allocate and free the
11680 * loopback device ensure this invariant is maintained by
11681 * keeping the loopback device as the first device on the
11682 * list of network devices. Ensuring the loopback devices
11683 * is the first device that appears and the last network device
11684 * that disappears.
11685 */
11686 if (register_pernet_device(&loopback_net_ops))
11687 goto out;
11688
11689 if (register_pernet_device(&default_device_ops))
11690 goto out;
11691
11692 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11693 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11694
11695 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11696 NULL, dev_cpu_dead);
11697 WARN_ON(rc < 0);
11698 rc = 0;
11699 out:
11700 return rc;
11701 }
11702
11703 subsys_initcall(net_dev_init);
11704