1 /**
2 * Describes utility functions for parsing CPER into JSON IR.
3 *
4 * Author: Lawrence.Tang@arm.com
5 **/
6
7 #include <stdio.h>
8 #include <json.h>
9 #include <string.h>
10 #include <libcper/Cper.h>
11 #include <libcper/cper-utils.h>
12
13 //The available severity types for CPER.
14 const char *CPER_SEVERITY_TYPES[4] = { "Recoverable", "Fatal", "Corrected",
15 "Informational" };
16
17 //Converts the given generic CPER error status to JSON IR.
18 json_object *
cper_generic_error_status_to_ir(EFI_GENERIC_ERROR_STATUS * error_status)19 cper_generic_error_status_to_ir(EFI_GENERIC_ERROR_STATUS *error_status)
20 {
21 json_object *error_status_ir = json_object_new_object();
22
23 //Error type.
24 json_object_object_add(error_status_ir, "errorType",
25 integer_to_readable_pair_with_desc(
26 error_status->Type, 18,
27 CPER_GENERIC_ERROR_TYPES_KEYS,
28 CPER_GENERIC_ERROR_TYPES_VALUES,
29 CPER_GENERIC_ERROR_TYPES_DESCRIPTIONS,
30 "Unknown (Reserved)"));
31
32 //Boolean bit fields.
33 json_object_object_add(
34 error_status_ir, "addressSignal",
35 json_object_new_boolean(error_status->AddressSignal));
36 json_object_object_add(
37 error_status_ir, "controlSignal",
38 json_object_new_boolean(error_status->ControlSignal));
39 json_object_object_add(
40 error_status_ir, "dataSignal",
41 json_object_new_boolean(error_status->DataSignal));
42 json_object_object_add(
43 error_status_ir, "detectedByResponder",
44 json_object_new_boolean(error_status->DetectedByResponder));
45 json_object_object_add(
46 error_status_ir, "detectedByRequester",
47 json_object_new_boolean(error_status->DetectedByRequester));
48 json_object_object_add(
49 error_status_ir, "firstError",
50 json_object_new_boolean(error_status->FirstError));
51 json_object_object_add(
52 error_status_ir, "overflowDroppedLogs",
53 json_object_new_boolean(error_status->OverflowNotLogged));
54
55 return error_status_ir;
56 }
57
58 //Converts the given CPER-JSON generic error status into a CPER structure.
ir_generic_error_status_to_cper(json_object * error_status,EFI_GENERIC_ERROR_STATUS * error_status_cper)59 void ir_generic_error_status_to_cper(
60 json_object *error_status, EFI_GENERIC_ERROR_STATUS *error_status_cper)
61 {
62 error_status_cper->Type = readable_pair_to_integer(
63 json_object_object_get(error_status, "errorType"));
64 error_status_cper->AddressSignal = json_object_get_boolean(
65 json_object_object_get(error_status, "addressSignal"));
66 error_status_cper->ControlSignal = json_object_get_boolean(
67 json_object_object_get(error_status, "controlSignal"));
68 error_status_cper->DataSignal = json_object_get_boolean(
69 json_object_object_get(error_status, "dataSignal"));
70 error_status_cper->DetectedByResponder = json_object_get_boolean(
71 json_object_object_get(error_status, "detectedByResponder"));
72 error_status_cper->DetectedByRequester = json_object_get_boolean(
73 json_object_object_get(error_status, "detectedByRequester"));
74 error_status_cper->FirstError = json_object_get_boolean(
75 json_object_object_get(error_status, "firstError"));
76 error_status_cper->OverflowNotLogged = json_object_get_boolean(
77 json_object_object_get(error_status, "overflowDroppedLogs"));
78 }
79
80 //Converts a single uniform struct of UINT64s into intermediate JSON IR format, given names for each field in byte order.
uniform_struct64_to_ir(UINT64 * start,int len,const char * names[])81 json_object *uniform_struct64_to_ir(UINT64 *start, int len, const char *names[])
82 {
83 json_object *result = json_object_new_object();
84
85 UINT64 *cur = start;
86 for (int i = 0; i < len; i++) {
87 json_object_object_add(result, names[i],
88 json_object_new_uint64(*cur));
89 cur++;
90 }
91
92 return result;
93 }
94
95 //Converts a single uniform struct of UINT32s into intermediate JSON IR format, given names for each field in byte order.
uniform_struct_to_ir(UINT32 * start,int len,const char * names[])96 json_object *uniform_struct_to_ir(UINT32 *start, int len, const char *names[])
97 {
98 json_object *result = json_object_new_object();
99
100 UINT32 *cur = start;
101 for (int i = 0; i < len; i++) {
102 UINT32 value;
103 memcpy(&value, cur, sizeof(UINT32));
104 json_object_object_add(result, names[i],
105 json_object_new_uint64(value));
106 cur++;
107 }
108
109 return result;
110 }
111
112 //Converts a single object containing UINT32s into a uniform struct.
ir_to_uniform_struct64(json_object * ir,UINT64 * start,int len,const char * names[])113 void ir_to_uniform_struct64(json_object *ir, UINT64 *start, int len,
114 const char *names[])
115 {
116 UINT64 *cur = start;
117 for (int i = 0; i < len; i++) {
118 *cur = json_object_get_uint64(
119 json_object_object_get(ir, names[i]));
120 cur++;
121 }
122 }
123
124 //Converts a single object containing UINT32s into a uniform struct.
ir_to_uniform_struct(json_object * ir,UINT32 * start,int len,const char * names[])125 void ir_to_uniform_struct(json_object *ir, UINT32 *start, int len,
126 const char *names[])
127 {
128 UINT32 *cur = start;
129 for (int i = 0; i < len; i++) {
130 *cur = (UINT32)json_object_get_uint64(
131 json_object_object_get(ir, names[i]));
132 cur++;
133 }
134 }
135
136 //Converts a single integer value to an object containing a value, and a readable name if possible.
integer_to_readable_pair(UINT64 value,int len,const int keys[],const char * values[],const char * default_value)137 json_object *integer_to_readable_pair(UINT64 value, int len, const int keys[],
138 const char *values[],
139 const char *default_value)
140 {
141 json_object *result = json_object_new_object();
142 json_object_object_add(result, "value", json_object_new_uint64(value));
143
144 //Search for human readable name, add.
145 const char *name = default_value;
146 for (int i = 0; i < len; i++) {
147 if ((UINT64)keys[i] == value) {
148 name = values[i];
149 }
150 }
151
152 json_object_object_add(result, "name", json_object_new_string(name));
153 return result;
154 }
155
156 //Converts a single integer value to an object containing a value, readable name and description if possible.
integer_to_readable_pair_with_desc(int value,int len,const int keys[],const char * values[],const char * descriptions[],const char * default_value)157 json_object *integer_to_readable_pair_with_desc(int value, int len,
158 const int keys[],
159 const char *values[],
160 const char *descriptions[],
161 const char *default_value)
162 {
163 json_object *result = json_object_new_object();
164 json_object_object_add(result, "value", json_object_new_int(value));
165
166 //Search for human readable name, add.
167 const char *name = default_value;
168 for (int i = 0; i < len; i++) {
169 if (keys[i] == value) {
170 name = values[i];
171 json_object_object_add(
172 result, "description",
173 json_object_new_string(descriptions[i]));
174 }
175 }
176
177 json_object_object_add(result, "name", json_object_new_string(name));
178 return result;
179 }
180
181 //Returns a single UINT64 value from the given readable pair object.
182 //Assumes the integer value is held in the "value" field.
readable_pair_to_integer(json_object * pair)183 UINT64 readable_pair_to_integer(json_object *pair)
184 {
185 return json_object_get_uint64(json_object_object_get(pair, "value"));
186 }
187
188 //Converts the given 64 bit bitfield to IR, assuming bit 0 starts on the left.
bitfield_to_ir(UINT64 bitfield,int num_fields,const char * names[])189 json_object *bitfield_to_ir(UINT64 bitfield, int num_fields,
190 const char *names[])
191 {
192 json_object *result = json_object_new_object();
193 for (int i = 0; i < num_fields; i++) {
194 json_object_object_add(result, names[i],
195 json_object_new_boolean((bitfield >> i) &
196 0x1));
197 }
198
199 return result;
200 }
201
202 //Filters properties based on Validation Bits.
203 // Refer to CPER spec for vbit_idx to be passed here.
add_to_valid_bitfield(ValidationTypes * val,int vbit_idx)204 void add_to_valid_bitfield(ValidationTypes *val, int vbit_idx)
205 {
206 switch (val->size) {
207 case UINT_8T:
208 val->value.ui8 |= (0x01 << vbit_idx);
209 break;
210 case UINT_16T:
211 val->value.ui16 |= (0x01 << vbit_idx);
212 break;
213 case UINT_32T:
214 val->value.ui32 |= (0x01 << vbit_idx);
215 break;
216 case UINT_64T:
217 val->value.ui64 |= (0x01 << vbit_idx);
218 break;
219 default:
220 printf("IR to CPER: Unknown validation bits size passed, Enum IntType=%d",
221 val->size);
222 }
223 }
224
225 //Converts the given IR bitfield into a standard UINT64 bitfield, with fields beginning from bit 0.
ir_to_bitfield(json_object * ir,int num_fields,const char * names[])226 UINT64 ir_to_bitfield(json_object *ir, int num_fields, const char *names[])
227 {
228 UINT64 result = 0x0;
229 for (int i = 0; i < num_fields; i++) {
230 if (json_object_get_boolean(
231 json_object_object_get(ir, names[i]))) {
232 result |= (0x1 << i);
233 }
234 }
235
236 return result;
237 }
238
239 // Filters properties based on Validation Bits.
240 // Refer to CPER spec for vbit_idx to be passed here.
241 // Overload function for 16, 32, 64b
isvalid_prop_to_ir(ValidationTypes * val,int vbit_idx)242 bool isvalid_prop_to_ir(ValidationTypes *val, int vbit_idx)
243 {
244 // If the option is enabled, output invalid properties
245 // as well as valid ones.
246 #ifdef OUTPUT_ALL_PROPERTIES
247 return true;
248 #endif //OUTPUT_ALL_PROPERTIES
249 UINT64 vbit_mask = 0x01 << vbit_idx;
250 switch (val->size) {
251 case UINT_16T:
252 return (vbit_mask & val->value.ui16);
253
254 case UINT_32T:
255 return (vbit_mask & val->value.ui32);
256
257 case UINT_64T:
258 return (vbit_mask & val->value.ui64);
259
260 default:
261 printf("CPER to IR:Unknown validation bits size passed. Enum IntType: %d",
262 val->size);
263 }
264 return 0;
265 }
266
print_val(ValidationTypes * val)267 void print_val(ValidationTypes *val)
268 {
269 switch (val->size) {
270 case UINT_8T:
271 printf("Validation bits: %x\n", val->value.ui8);
272 break;
273 case UINT_16T:
274 printf("Validation bits: %x\n", val->value.ui16);
275 break;
276
277 case UINT_32T:
278 printf("Validation bits: %x\n", val->value.ui32);
279 break;
280
281 case UINT_64T:
282 printf("Validation bits: %llx\n", val->value.ui64);
283 break;
284
285 default:
286 printf("CPER to IR:Unknown validation bits size passed. Enum IntType: %d",
287 val->size);
288 }
289 }
290
291 //Converts the given UINT64 array into a JSON IR array, given the length.
uint64_array_to_ir_array(UINT64 * array,int len)292 json_object *uint64_array_to_ir_array(UINT64 *array, int len)
293 {
294 json_object *array_ir = json_object_new_array();
295 for (int i = 0; i < len; i++) {
296 json_object_array_add(array_ir,
297 json_object_new_uint64(array[i]));
298 }
299 return array_ir;
300 }
301
302 //Converts a single UINT16 revision number into JSON IR representation.
revision_to_ir(UINT16 revision)303 json_object *revision_to_ir(UINT16 revision)
304 {
305 json_object *revision_info = json_object_new_object();
306 json_object_object_add(revision_info, "major",
307 json_object_new_int(revision >> 8));
308 json_object_object_add(revision_info, "minor",
309 json_object_new_int(revision & 0xFF));
310 return revision_info;
311 }
312
313 //Returns the appropriate string for the given integer severity.
severity_to_string(UINT32 severity)314 const char *severity_to_string(UINT32 severity)
315 {
316 return severity < 4 ? CPER_SEVERITY_TYPES[severity] : "Unknown";
317 }
318
319 //Converts a single EFI timestamp to string, at the given output.
320 //Output must be at least TIMESTAMP_LENGTH bytes long.
timestamp_to_string(char * out,int out_len,EFI_ERROR_TIME_STAMP * timestamp)321 void timestamp_to_string(char *out, int out_len,
322 EFI_ERROR_TIME_STAMP *timestamp)
323 {
324 int written = snprintf(
325 out, out_len,
326 "%02hhu%02hhu-%02hhu-%02hhuT%02hhu:%02hhu:%02hhu+00:00",
327 bcd_to_int(timestamp->Century) %
328 100, //Cannot go to three digits.
329 bcd_to_int(timestamp->Year) % 100, //Cannot go to three digits.
330 bcd_to_int(timestamp->Month), bcd_to_int(timestamp->Day),
331 bcd_to_int(timestamp->Hours), bcd_to_int(timestamp->Minutes),
332 bcd_to_int(timestamp->Seconds));
333
334 if (written < 0 || written >= out_len) {
335 printf("Timestamp buffer of insufficient size\n");
336 }
337 }
338
339 //Converts a single timestamp string to an EFI timestamp.
string_to_timestamp(EFI_ERROR_TIME_STAMP * out,const char * timestamp)340 void string_to_timestamp(EFI_ERROR_TIME_STAMP *out, const char *timestamp)
341 {
342 //Ignore invalid timestamps.
343 if (timestamp == NULL) {
344 return;
345 }
346
347 sscanf(timestamp, "%2hhu%2hhu-%hhu-%hhuT%hhu:%hhu:%hhu+00:00",
348 &out->Century, &out->Year, &out->Month, &out->Day, &out->Hours,
349 &out->Minutes, &out->Seconds);
350
351 //Convert back to BCD.
352 out->Century = int_to_bcd(out->Century);
353 out->Year = int_to_bcd(out->Year);
354 out->Month = int_to_bcd(out->Month);
355 out->Day = int_to_bcd(out->Day);
356 out->Hours = int_to_bcd(out->Hours);
357 out->Minutes = int_to_bcd(out->Minutes);
358 out->Seconds = int_to_bcd(out->Seconds);
359 }
360
361 //Helper function to convert an EDK EFI GUID into a string for intermediate use.
guid_to_string(char * out,EFI_GUID * guid)362 void guid_to_string(char *out, EFI_GUID *guid)
363 {
364 sprintf(out, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
365 guid->Data1, guid->Data2, guid->Data3, guid->Data4[0],
366 guid->Data4[1], guid->Data4[2], guid->Data4[3], guid->Data4[4],
367 guid->Data4[5], guid->Data4[6], guid->Data4[7]);
368 }
369
370 //Helper function to convert a string into an EDK EFI GUID.
string_to_guid(EFI_GUID * out,const char * guid)371 void string_to_guid(EFI_GUID *out, const char *guid)
372 {
373 //Ignore invalid GUIDs.
374 if (guid == NULL) {
375 return;
376 }
377
378 sscanf(guid,
379 "%08x-%04hx-%04hx-%02hhx%02hhx-%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx",
380 &out->Data1, &out->Data2, &out->Data3, out->Data4,
381 out->Data4 + 1, out->Data4 + 2, out->Data4 + 3, out->Data4 + 4,
382 out->Data4 + 5, out->Data4 + 6, out->Data4 + 7);
383 }
384
385 //Returns one if two EFI GUIDs are equal, zero otherwise.
guid_equal(EFI_GUID * a,EFI_GUID * b)386 int guid_equal(EFI_GUID *a, EFI_GUID *b)
387 {
388 //Check top base 3 components.
389 if (a->Data1 != b->Data1 || a->Data2 != b->Data2 ||
390 a->Data3 != b->Data3) {
391 return 0;
392 }
393
394 //Check Data4 array for equality.
395 for (int i = 0; i < 8; i++) {
396 if (a->Data4[i] != b->Data4[i]) {
397 return 0;
398 }
399 }
400
401 return 1;
402 }
403