xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 060f35a317ef09101b128f399dce7ed13d019461)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
tcp_mstamp_refresh(struct tcp_sock * tp)53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 	tcp_check_space(sk);
86 }
87 
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89  * window scaling factor due to loss of precision.
90  * If window has been shrunk, what should we make? It is not clear at all.
91  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93  * invalid. OK, let's make this for now:
94  */
tcp_acceptable_seq(const struct sock * sk)95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 	const struct tcp_sock *tp = tcp_sk(sk);
98 
99 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 	    (tp->rx_opt.wscale_ok &&
101 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
tcp_advertise_mss(struct sock * sk)121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism.
141  */
tcp_cwnd_restart(struct sock * sk,s32 delta)142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 	u32 cwnd = tcp_snd_cwnd(tp);
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 	tp->snd_cwnd_stamp = tcp_jiffies32;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_jiffies32;
166 
167 	if (tcp_packets_in_flight(tp) == 0)
168 		tcp_ca_event(sk, CA_EVENT_TX_START);
169 
170 	tp->lsndtime = now;
171 
172 	/* If it is a reply for ato after last received
173 	 * packet, enter pingpong mode.
174 	 */
175 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_enter_pingpong_mode(sk);
177 }
178 
179 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
181 {
182 	struct tcp_sock *tp = tcp_sk(sk);
183 
184 	if (unlikely(tp->compressed_ack)) {
185 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
186 			      tp->compressed_ack);
187 		tp->compressed_ack = 0;
188 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
189 			__sock_put(sk);
190 	}
191 
192 	if (unlikely(rcv_nxt != tp->rcv_nxt))
193 		return;  /* Special ACK sent by DCTCP to reflect ECN */
194 	tcp_dec_quickack_mode(sk);
195 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
196 }
197 
198 /* Determine a window scaling and initial window to offer.
199  * Based on the assumption that the given amount of space
200  * will be offered. Store the results in the tp structure.
201  * NOTE: for smooth operation initial space offering should
202  * be a multiple of mss if possible. We assume here that mss >= 1.
203  * This MUST be enforced by all callers.
204  */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * __window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
206 			       __u32 *rcv_wnd, __u32 *__window_clamp,
207 			       int wscale_ok, __u8 *rcv_wscale,
208 			       __u32 init_rcv_wnd)
209 {
210 	unsigned int space = (__space < 0 ? 0 : __space);
211 	u32 window_clamp = READ_ONCE(*__window_clamp);
212 
213 	/* If no clamp set the clamp to the max possible scaled window */
214 	if (window_clamp == 0)
215 		window_clamp = (U16_MAX << TCP_MAX_WSCALE);
216 	space = min(window_clamp, space);
217 
218 	/* Quantize space offering to a multiple of mss if possible. */
219 	if (space > mss)
220 		space = rounddown(space, mss);
221 
222 	/* NOTE: offering an initial window larger than 32767
223 	 * will break some buggy TCP stacks. If the admin tells us
224 	 * it is likely we could be speaking with such a buggy stack
225 	 * we will truncate our initial window offering to 32K-1
226 	 * unless the remote has sent us a window scaling option,
227 	 * which we interpret as a sign the remote TCP is not
228 	 * misinterpreting the window field as a signed quantity.
229 	 */
230 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
231 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 	else
233 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
234 
235 	if (init_rcv_wnd)
236 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
237 
238 	*rcv_wscale = 0;
239 	if (wscale_ok) {
240 		/* Set window scaling on max possible window */
241 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
242 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
243 		space = min_t(u32, space, window_clamp);
244 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
245 				      0, TCP_MAX_WSCALE);
246 	}
247 	/* Set the clamp no higher than max representable value */
248 	WRITE_ONCE(*__window_clamp,
249 		   min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
250 }
251 EXPORT_SYMBOL(tcp_select_initial_window);
252 
253 /* Chose a new window to advertise, update state in tcp_sock for the
254  * socket, and return result with RFC1323 scaling applied.  The return
255  * value can be stuffed directly into th->window for an outgoing
256  * frame.
257  */
tcp_select_window(struct sock * sk)258 static u16 tcp_select_window(struct sock *sk)
259 {
260 	struct tcp_sock *tp = tcp_sk(sk);
261 	struct net *net = sock_net(sk);
262 	u32 old_win = tp->rcv_wnd;
263 	u32 cur_win, new_win;
264 
265 	/* Make the window 0 if we failed to queue the data because we
266 	 * are out of memory.
267 	 */
268 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) {
269 		tp->pred_flags = 0;
270 		tp->rcv_wnd = 0;
271 		tp->rcv_wup = tp->rcv_nxt;
272 		return 0;
273 	}
274 
275 	cur_win = tcp_receive_window(tp);
276 	new_win = __tcp_select_window(sk);
277 	if (new_win < cur_win) {
278 		/* Danger Will Robinson!
279 		 * Don't update rcv_wup/rcv_wnd here or else
280 		 * we will not be able to advertise a zero
281 		 * window in time.  --DaveM
282 		 *
283 		 * Relax Will Robinson.
284 		 */
285 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
286 			/* Never shrink the offered window */
287 			if (new_win == 0)
288 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
289 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
290 		}
291 	}
292 
293 	tp->rcv_wnd = new_win;
294 	tp->rcv_wup = tp->rcv_nxt;
295 
296 	/* Make sure we do not exceed the maximum possible
297 	 * scaled window.
298 	 */
299 	if (!tp->rx_opt.rcv_wscale &&
300 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
301 		new_win = min(new_win, MAX_TCP_WINDOW);
302 	else
303 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
304 
305 	/* RFC1323 scaling applied */
306 	new_win >>= tp->rx_opt.rcv_wscale;
307 
308 	/* If we advertise zero window, disable fast path. */
309 	if (new_win == 0) {
310 		tp->pred_flags = 0;
311 		if (old_win)
312 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
313 	} else if (old_win == 0) {
314 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
315 	}
316 
317 	return new_win;
318 }
319 
320 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)321 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
322 {
323 	const struct tcp_sock *tp = tcp_sk(sk);
324 
325 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
326 	if (!(tp->ecn_flags & TCP_ECN_OK))
327 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
328 	else if (tcp_ca_needs_ecn(sk) ||
329 		 tcp_bpf_ca_needs_ecn(sk))
330 		INET_ECN_xmit(sk);
331 }
332 
333 /* Packet ECN state for a SYN.  */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)334 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
335 {
336 	struct tcp_sock *tp = tcp_sk(sk);
337 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
338 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
339 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
340 
341 	if (!use_ecn) {
342 		const struct dst_entry *dst = __sk_dst_get(sk);
343 
344 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
345 			use_ecn = true;
346 	}
347 
348 	tp->ecn_flags = 0;
349 
350 	if (use_ecn) {
351 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
352 		tp->ecn_flags = TCP_ECN_OK;
353 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
354 			INET_ECN_xmit(sk);
355 	}
356 }
357 
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)358 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
359 {
360 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
361 		/* tp->ecn_flags are cleared at a later point in time when
362 		 * SYN ACK is ultimatively being received.
363 		 */
364 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
365 }
366 
367 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)368 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
369 {
370 	if (inet_rsk(req)->ecn_ok)
371 		th->ece = 1;
372 }
373 
374 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
375  * be sent.
376  */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)377 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
378 			 struct tcphdr *th, int tcp_header_len)
379 {
380 	struct tcp_sock *tp = tcp_sk(sk);
381 
382 	if (tp->ecn_flags & TCP_ECN_OK) {
383 		/* Not-retransmitted data segment: set ECT and inject CWR. */
384 		if (skb->len != tcp_header_len &&
385 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
386 			INET_ECN_xmit(sk);
387 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
388 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
389 				th->cwr = 1;
390 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
391 			}
392 		} else if (!tcp_ca_needs_ecn(sk)) {
393 			/* ACK or retransmitted segment: clear ECT|CE */
394 			INET_ECN_dontxmit(sk);
395 		}
396 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
397 			th->ece = 1;
398 	}
399 }
400 
401 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
402  * auto increment end seqno.
403  */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)404 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
405 {
406 	skb->ip_summed = CHECKSUM_PARTIAL;
407 
408 	TCP_SKB_CB(skb)->tcp_flags = flags;
409 
410 	tcp_skb_pcount_set(skb, 1);
411 
412 	TCP_SKB_CB(skb)->seq = seq;
413 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
414 		seq++;
415 	TCP_SKB_CB(skb)->end_seq = seq;
416 }
417 
tcp_urg_mode(const struct tcp_sock * tp)418 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
419 {
420 	return tp->snd_una != tp->snd_up;
421 }
422 
423 #define OPTION_SACK_ADVERTISE	BIT(0)
424 #define OPTION_TS		BIT(1)
425 #define OPTION_MD5		BIT(2)
426 #define OPTION_WSCALE		BIT(3)
427 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
428 #define OPTION_SMC		BIT(9)
429 #define OPTION_MPTCP		BIT(10)
430 
smc_options_write(__be32 * ptr,u16 * options)431 static void smc_options_write(__be32 *ptr, u16 *options)
432 {
433 #if IS_ENABLED(CONFIG_SMC)
434 	if (static_branch_unlikely(&tcp_have_smc)) {
435 		if (unlikely(OPTION_SMC & *options)) {
436 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
437 				       (TCPOPT_NOP  << 16) |
438 				       (TCPOPT_EXP <<  8) |
439 				       (TCPOLEN_EXP_SMC_BASE));
440 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
441 		}
442 	}
443 #endif
444 }
445 
446 struct tcp_out_options {
447 	u16 options;		/* bit field of OPTION_* */
448 	u16 mss;		/* 0 to disable */
449 	u8 ws;			/* window scale, 0 to disable */
450 	u8 num_sack_blocks;	/* number of SACK blocks to include */
451 	u8 hash_size;		/* bytes in hash_location */
452 	u8 bpf_opt_len;		/* length of BPF hdr option */
453 	__u8 *hash_location;	/* temporary pointer, overloaded */
454 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
455 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
456 	struct mptcp_out_options mptcp;
457 };
458 
mptcp_options_write(struct tcphdr * th,__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)459 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
460 				struct tcp_sock *tp,
461 				struct tcp_out_options *opts)
462 {
463 #if IS_ENABLED(CONFIG_MPTCP)
464 	if (unlikely(OPTION_MPTCP & opts->options))
465 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
466 #endif
467 }
468 
469 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)470 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
471 					enum tcp_synack_type synack_type)
472 {
473 	if (unlikely(!skb))
474 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
475 
476 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
477 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
478 
479 	return 0;
480 }
481 
482 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)483 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
484 				  struct request_sock *req,
485 				  struct sk_buff *syn_skb,
486 				  enum tcp_synack_type synack_type,
487 				  struct tcp_out_options *opts,
488 				  unsigned int *remaining)
489 {
490 	struct bpf_sock_ops_kern sock_ops;
491 	int err;
492 
493 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
494 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
495 	    !*remaining)
496 		return;
497 
498 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
499 
500 	/* init sock_ops */
501 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
502 
503 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
504 
505 	if (req) {
506 		/* The listen "sk" cannot be passed here because
507 		 * it is not locked.  It would not make too much
508 		 * sense to do bpf_setsockopt(listen_sk) based
509 		 * on individual connection request also.
510 		 *
511 		 * Thus, "req" is passed here and the cgroup-bpf-progs
512 		 * of the listen "sk" will be run.
513 		 *
514 		 * "req" is also used here for fastopen even the "sk" here is
515 		 * a fullsock "child" sk.  It is to keep the behavior
516 		 * consistent between fastopen and non-fastopen on
517 		 * the bpf programming side.
518 		 */
519 		sock_ops.sk = (struct sock *)req;
520 		sock_ops.syn_skb = syn_skb;
521 	} else {
522 		sock_owned_by_me(sk);
523 
524 		sock_ops.is_fullsock = 1;
525 		sock_ops.sk = sk;
526 	}
527 
528 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
529 	sock_ops.remaining_opt_len = *remaining;
530 	/* tcp_current_mss() does not pass a skb */
531 	if (skb)
532 		bpf_skops_init_skb(&sock_ops, skb, 0);
533 
534 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
535 
536 	if (err || sock_ops.remaining_opt_len == *remaining)
537 		return;
538 
539 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
540 	/* round up to 4 bytes */
541 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
542 
543 	*remaining -= opts->bpf_opt_len;
544 }
545 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)546 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
547 				    struct request_sock *req,
548 				    struct sk_buff *syn_skb,
549 				    enum tcp_synack_type synack_type,
550 				    struct tcp_out_options *opts)
551 {
552 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
553 	struct bpf_sock_ops_kern sock_ops;
554 	int err;
555 
556 	if (likely(!max_opt_len))
557 		return;
558 
559 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
560 
561 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
562 
563 	if (req) {
564 		sock_ops.sk = (struct sock *)req;
565 		sock_ops.syn_skb = syn_skb;
566 	} else {
567 		sock_owned_by_me(sk);
568 
569 		sock_ops.is_fullsock = 1;
570 		sock_ops.sk = sk;
571 	}
572 
573 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
574 	sock_ops.remaining_opt_len = max_opt_len;
575 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
576 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
577 
578 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
579 
580 	if (err)
581 		nr_written = 0;
582 	else
583 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
584 
585 	if (nr_written < max_opt_len)
586 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
587 		       max_opt_len - nr_written);
588 }
589 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)590 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
591 				  struct request_sock *req,
592 				  struct sk_buff *syn_skb,
593 				  enum tcp_synack_type synack_type,
594 				  struct tcp_out_options *opts,
595 				  unsigned int *remaining)
596 {
597 }
598 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)599 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
600 				    struct request_sock *req,
601 				    struct sk_buff *syn_skb,
602 				    enum tcp_synack_type synack_type,
603 				    struct tcp_out_options *opts)
604 {
605 }
606 #endif
607 
608 /* Write previously computed TCP options to the packet.
609  *
610  * Beware: Something in the Internet is very sensitive to the ordering of
611  * TCP options, we learned this through the hard way, so be careful here.
612  * Luckily we can at least blame others for their non-compliance but from
613  * inter-operability perspective it seems that we're somewhat stuck with
614  * the ordering which we have been using if we want to keep working with
615  * those broken things (not that it currently hurts anybody as there isn't
616  * particular reason why the ordering would need to be changed).
617  *
618  * At least SACK_PERM as the first option is known to lead to a disaster
619  * (but it may well be that other scenarios fail similarly).
620  */
tcp_options_write(struct tcphdr * th,struct tcp_sock * tp,struct tcp_out_options * opts)621 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
622 			      struct tcp_out_options *opts)
623 {
624 	__be32 *ptr = (__be32 *)(th + 1);
625 	u16 options = opts->options;	/* mungable copy */
626 
627 	if (unlikely(OPTION_MD5 & options)) {
628 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
629 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
630 		/* overload cookie hash location */
631 		opts->hash_location = (__u8 *)ptr;
632 		ptr += 4;
633 	}
634 
635 	if (unlikely(opts->mss)) {
636 		*ptr++ = htonl((TCPOPT_MSS << 24) |
637 			       (TCPOLEN_MSS << 16) |
638 			       opts->mss);
639 	}
640 
641 	if (likely(OPTION_TS & options)) {
642 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
643 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
644 				       (TCPOLEN_SACK_PERM << 16) |
645 				       (TCPOPT_TIMESTAMP << 8) |
646 				       TCPOLEN_TIMESTAMP);
647 			options &= ~OPTION_SACK_ADVERTISE;
648 		} else {
649 			*ptr++ = htonl((TCPOPT_NOP << 24) |
650 				       (TCPOPT_NOP << 16) |
651 				       (TCPOPT_TIMESTAMP << 8) |
652 				       TCPOLEN_TIMESTAMP);
653 		}
654 		*ptr++ = htonl(opts->tsval);
655 		*ptr++ = htonl(opts->tsecr);
656 	}
657 
658 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
659 		*ptr++ = htonl((TCPOPT_NOP << 24) |
660 			       (TCPOPT_NOP << 16) |
661 			       (TCPOPT_SACK_PERM << 8) |
662 			       TCPOLEN_SACK_PERM);
663 	}
664 
665 	if (unlikely(OPTION_WSCALE & options)) {
666 		*ptr++ = htonl((TCPOPT_NOP << 24) |
667 			       (TCPOPT_WINDOW << 16) |
668 			       (TCPOLEN_WINDOW << 8) |
669 			       opts->ws);
670 	}
671 
672 	if (unlikely(opts->num_sack_blocks)) {
673 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
674 			tp->duplicate_sack : tp->selective_acks;
675 		int this_sack;
676 
677 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
678 			       (TCPOPT_NOP  << 16) |
679 			       (TCPOPT_SACK <<  8) |
680 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
681 						     TCPOLEN_SACK_PERBLOCK)));
682 
683 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
684 		     ++this_sack) {
685 			*ptr++ = htonl(sp[this_sack].start_seq);
686 			*ptr++ = htonl(sp[this_sack].end_seq);
687 		}
688 
689 		tp->rx_opt.dsack = 0;
690 	}
691 
692 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
693 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
694 		u8 *p = (u8 *)ptr;
695 		u32 len; /* Fast Open option length */
696 
697 		if (foc->exp) {
698 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
699 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
700 				     TCPOPT_FASTOPEN_MAGIC);
701 			p += TCPOLEN_EXP_FASTOPEN_BASE;
702 		} else {
703 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
704 			*p++ = TCPOPT_FASTOPEN;
705 			*p++ = len;
706 		}
707 
708 		memcpy(p, foc->val, foc->len);
709 		if ((len & 3) == 2) {
710 			p[foc->len] = TCPOPT_NOP;
711 			p[foc->len + 1] = TCPOPT_NOP;
712 		}
713 		ptr += (len + 3) >> 2;
714 	}
715 
716 	smc_options_write(ptr, &options);
717 
718 	mptcp_options_write(th, ptr, tp, opts);
719 }
720 
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)721 static void smc_set_option(const struct tcp_sock *tp,
722 			   struct tcp_out_options *opts,
723 			   unsigned int *remaining)
724 {
725 #if IS_ENABLED(CONFIG_SMC)
726 	if (static_branch_unlikely(&tcp_have_smc)) {
727 		if (tp->syn_smc) {
728 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
729 				opts->options |= OPTION_SMC;
730 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
731 			}
732 		}
733 	}
734 #endif
735 }
736 
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)737 static void smc_set_option_cond(const struct tcp_sock *tp,
738 				const struct inet_request_sock *ireq,
739 				struct tcp_out_options *opts,
740 				unsigned int *remaining)
741 {
742 #if IS_ENABLED(CONFIG_SMC)
743 	if (static_branch_unlikely(&tcp_have_smc)) {
744 		if (tp->syn_smc && ireq->smc_ok) {
745 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
746 				opts->options |= OPTION_SMC;
747 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
748 			}
749 		}
750 	}
751 #endif
752 }
753 
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)754 static void mptcp_set_option_cond(const struct request_sock *req,
755 				  struct tcp_out_options *opts,
756 				  unsigned int *remaining)
757 {
758 	if (rsk_is_mptcp(req)) {
759 		unsigned int size;
760 
761 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
762 			if (*remaining >= size) {
763 				opts->options |= OPTION_MPTCP;
764 				*remaining -= size;
765 			}
766 		}
767 	}
768 }
769 
770 /* Compute TCP options for SYN packets. This is not the final
771  * network wire format yet.
772  */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)773 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
774 				struct tcp_out_options *opts,
775 				struct tcp_md5sig_key **md5)
776 {
777 	struct tcp_sock *tp = tcp_sk(sk);
778 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
779 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
780 
781 	*md5 = NULL;
782 #ifdef CONFIG_TCP_MD5SIG
783 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
784 	    rcu_access_pointer(tp->md5sig_info)) {
785 		*md5 = tp->af_specific->md5_lookup(sk, sk);
786 		if (*md5) {
787 			opts->options |= OPTION_MD5;
788 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
789 		}
790 	}
791 #endif
792 
793 	/* We always get an MSS option.  The option bytes which will be seen in
794 	 * normal data packets should timestamps be used, must be in the MSS
795 	 * advertised.  But we subtract them from tp->mss_cache so that
796 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
797 	 * fact here if necessary.  If we don't do this correctly, as a
798 	 * receiver we won't recognize data packets as being full sized when we
799 	 * should, and thus we won't abide by the delayed ACK rules correctly.
800 	 * SACKs don't matter, we never delay an ACK when we have any of those
801 	 * going out.  */
802 	opts->mss = tcp_advertise_mss(sk);
803 	remaining -= TCPOLEN_MSS_ALIGNED;
804 
805 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
806 		opts->options |= OPTION_TS;
807 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
808 		opts->tsecr = tp->rx_opt.ts_recent;
809 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
810 	}
811 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
812 		opts->ws = tp->rx_opt.rcv_wscale;
813 		opts->options |= OPTION_WSCALE;
814 		remaining -= TCPOLEN_WSCALE_ALIGNED;
815 	}
816 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
817 		opts->options |= OPTION_SACK_ADVERTISE;
818 		if (unlikely(!(OPTION_TS & opts->options)))
819 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
820 	}
821 
822 	if (fastopen && fastopen->cookie.len >= 0) {
823 		u32 need = fastopen->cookie.len;
824 
825 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
826 					       TCPOLEN_FASTOPEN_BASE;
827 		need = (need + 3) & ~3U;  /* Align to 32 bits */
828 		if (remaining >= need) {
829 			opts->options |= OPTION_FAST_OPEN_COOKIE;
830 			opts->fastopen_cookie = &fastopen->cookie;
831 			remaining -= need;
832 			tp->syn_fastopen = 1;
833 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
834 		}
835 	}
836 
837 	smc_set_option(tp, opts, &remaining);
838 
839 	if (sk_is_mptcp(sk)) {
840 		unsigned int size;
841 
842 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
843 			if (remaining >= size) {
844 				opts->options |= OPTION_MPTCP;
845 				remaining -= size;
846 			}
847 		}
848 	}
849 
850 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
851 
852 	return MAX_TCP_OPTION_SPACE - remaining;
853 }
854 
855 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)856 static unsigned int tcp_synack_options(const struct sock *sk,
857 				       struct request_sock *req,
858 				       unsigned int mss, struct sk_buff *skb,
859 				       struct tcp_out_options *opts,
860 				       const struct tcp_md5sig_key *md5,
861 				       struct tcp_fastopen_cookie *foc,
862 				       enum tcp_synack_type synack_type,
863 				       struct sk_buff *syn_skb)
864 {
865 	struct inet_request_sock *ireq = inet_rsk(req);
866 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
867 
868 #ifdef CONFIG_TCP_MD5SIG
869 	if (md5) {
870 		opts->options |= OPTION_MD5;
871 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
872 
873 		/* We can't fit any SACK blocks in a packet with MD5 + TS
874 		 * options. There was discussion about disabling SACK
875 		 * rather than TS in order to fit in better with old,
876 		 * buggy kernels, but that was deemed to be unnecessary.
877 		 */
878 		if (synack_type != TCP_SYNACK_COOKIE)
879 			ireq->tstamp_ok &= !ireq->sack_ok;
880 	}
881 #endif
882 
883 	/* We always send an MSS option. */
884 	opts->mss = mss;
885 	remaining -= TCPOLEN_MSS_ALIGNED;
886 
887 	if (likely(ireq->wscale_ok)) {
888 		opts->ws = ireq->rcv_wscale;
889 		opts->options |= OPTION_WSCALE;
890 		remaining -= TCPOLEN_WSCALE_ALIGNED;
891 	}
892 	if (likely(ireq->tstamp_ok)) {
893 		opts->options |= OPTION_TS;
894 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
895 		opts->tsecr = READ_ONCE(req->ts_recent);
896 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
897 	}
898 	if (likely(ireq->sack_ok)) {
899 		opts->options |= OPTION_SACK_ADVERTISE;
900 		if (unlikely(!ireq->tstamp_ok))
901 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
902 	}
903 	if (foc != NULL && foc->len >= 0) {
904 		u32 need = foc->len;
905 
906 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
907 				   TCPOLEN_FASTOPEN_BASE;
908 		need = (need + 3) & ~3U;  /* Align to 32 bits */
909 		if (remaining >= need) {
910 			opts->options |= OPTION_FAST_OPEN_COOKIE;
911 			opts->fastopen_cookie = foc;
912 			remaining -= need;
913 		}
914 	}
915 
916 	mptcp_set_option_cond(req, opts, &remaining);
917 
918 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
919 
920 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
921 			      synack_type, opts, &remaining);
922 
923 	return MAX_TCP_OPTION_SPACE - remaining;
924 }
925 
926 /* Compute TCP options for ESTABLISHED sockets. This is not the
927  * final wire format yet.
928  */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)929 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
930 					struct tcp_out_options *opts,
931 					struct tcp_md5sig_key **md5)
932 {
933 	struct tcp_sock *tp = tcp_sk(sk);
934 	unsigned int size = 0;
935 	unsigned int eff_sacks;
936 
937 	opts->options = 0;
938 
939 	*md5 = NULL;
940 #ifdef CONFIG_TCP_MD5SIG
941 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
942 	    rcu_access_pointer(tp->md5sig_info)) {
943 		*md5 = tp->af_specific->md5_lookup(sk, sk);
944 		if (*md5) {
945 			opts->options |= OPTION_MD5;
946 			size += TCPOLEN_MD5SIG_ALIGNED;
947 		}
948 	}
949 #endif
950 
951 	if (likely(tp->rx_opt.tstamp_ok)) {
952 		opts->options |= OPTION_TS;
953 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
954 		opts->tsecr = tp->rx_opt.ts_recent;
955 		size += TCPOLEN_TSTAMP_ALIGNED;
956 	}
957 
958 	/* MPTCP options have precedence over SACK for the limited TCP
959 	 * option space because a MPTCP connection would be forced to
960 	 * fall back to regular TCP if a required multipath option is
961 	 * missing. SACK still gets a chance to use whatever space is
962 	 * left.
963 	 */
964 	if (sk_is_mptcp(sk)) {
965 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
966 		unsigned int opt_size = 0;
967 
968 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
969 					      &opts->mptcp)) {
970 			opts->options |= OPTION_MPTCP;
971 			size += opt_size;
972 		}
973 	}
974 
975 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
976 	if (unlikely(eff_sacks)) {
977 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
978 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
979 					 TCPOLEN_SACK_PERBLOCK))
980 			return size;
981 
982 		opts->num_sack_blocks =
983 			min_t(unsigned int, eff_sacks,
984 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
985 			      TCPOLEN_SACK_PERBLOCK);
986 
987 		size += TCPOLEN_SACK_BASE_ALIGNED +
988 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
989 	}
990 
991 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
992 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
993 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
994 
995 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
996 
997 		size = MAX_TCP_OPTION_SPACE - remaining;
998 	}
999 
1000 	return size;
1001 }
1002 
1003 
1004 /* TCP SMALL QUEUES (TSQ)
1005  *
1006  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1007  * to reduce RTT and bufferbloat.
1008  * We do this using a special skb destructor (tcp_wfree).
1009  *
1010  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1011  * needs to be reallocated in a driver.
1012  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1013  *
1014  * Since transmit from skb destructor is forbidden, we use a tasklet
1015  * to process all sockets that eventually need to send more skbs.
1016  * We use one tasklet per cpu, with its own queue of sockets.
1017  */
1018 struct tsq_tasklet {
1019 	struct tasklet_struct	tasklet;
1020 	struct list_head	head; /* queue of tcp sockets */
1021 };
1022 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1023 
tcp_tsq_write(struct sock * sk)1024 static void tcp_tsq_write(struct sock *sk)
1025 {
1026 	if ((1 << sk->sk_state) &
1027 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1028 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1029 		struct tcp_sock *tp = tcp_sk(sk);
1030 
1031 		if (tp->lost_out > tp->retrans_out &&
1032 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1033 			tcp_mstamp_refresh(tp);
1034 			tcp_xmit_retransmit_queue(sk);
1035 		}
1036 
1037 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1038 			       0, GFP_ATOMIC);
1039 	}
1040 }
1041 
tcp_tsq_handler(struct sock * sk)1042 static void tcp_tsq_handler(struct sock *sk)
1043 {
1044 	bh_lock_sock(sk);
1045 	if (!sock_owned_by_user(sk))
1046 		tcp_tsq_write(sk);
1047 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1048 		sock_hold(sk);
1049 	bh_unlock_sock(sk);
1050 }
1051 /*
1052  * One tasklet per cpu tries to send more skbs.
1053  * We run in tasklet context but need to disable irqs when
1054  * transferring tsq->head because tcp_wfree() might
1055  * interrupt us (non NAPI drivers)
1056  */
tcp_tasklet_func(struct tasklet_struct * t)1057 static void tcp_tasklet_func(struct tasklet_struct *t)
1058 {
1059 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1060 	LIST_HEAD(list);
1061 	unsigned long flags;
1062 	struct list_head *q, *n;
1063 	struct tcp_sock *tp;
1064 	struct sock *sk;
1065 
1066 	local_irq_save(flags);
1067 	list_splice_init(&tsq->head, &list);
1068 	local_irq_restore(flags);
1069 
1070 	list_for_each_safe(q, n, &list) {
1071 		tp = list_entry(q, struct tcp_sock, tsq_node);
1072 		list_del(&tp->tsq_node);
1073 
1074 		sk = (struct sock *)tp;
1075 		smp_mb__before_atomic();
1076 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1077 
1078 		tcp_tsq_handler(sk);
1079 		sk_free(sk);
1080 	}
1081 }
1082 
1083 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1084 			  TCPF_WRITE_TIMER_DEFERRED |	\
1085 			  TCPF_DELACK_TIMER_DEFERRED |	\
1086 			  TCPF_MTU_REDUCED_DEFERRED)
1087 /**
1088  * tcp_release_cb - tcp release_sock() callback
1089  * @sk: socket
1090  *
1091  * called from release_sock() to perform protocol dependent
1092  * actions before socket release.
1093  */
tcp_release_cb(struct sock * sk)1094 void tcp_release_cb(struct sock *sk)
1095 {
1096 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1097 	unsigned long nflags;
1098 
1099 	/* perform an atomic operation only if at least one flag is set */
1100 	do {
1101 		if (!(flags & TCP_DEFERRED_ALL))
1102 			return;
1103 		nflags = flags & ~TCP_DEFERRED_ALL;
1104 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1105 
1106 	if (flags & TCPF_TSQ_DEFERRED) {
1107 		tcp_tsq_write(sk);
1108 		__sock_put(sk);
1109 	}
1110 	/* Here begins the tricky part :
1111 	 * We are called from release_sock() with :
1112 	 * 1) BH disabled
1113 	 * 2) sk_lock.slock spinlock held
1114 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1115 	 *
1116 	 * But following code is meant to be called from BH handlers,
1117 	 * so we should keep BH disabled, but early release socket ownership
1118 	 */
1119 	sock_release_ownership(sk);
1120 
1121 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1122 		tcp_write_timer_handler(sk);
1123 		__sock_put(sk);
1124 	}
1125 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1126 		tcp_delack_timer_handler(sk);
1127 		__sock_put(sk);
1128 	}
1129 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1130 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1131 		__sock_put(sk);
1132 	}
1133 }
1134 EXPORT_SYMBOL(tcp_release_cb);
1135 
tcp_tasklet_init(void)1136 void __init tcp_tasklet_init(void)
1137 {
1138 	int i;
1139 
1140 	for_each_possible_cpu(i) {
1141 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1142 
1143 		INIT_LIST_HEAD(&tsq->head);
1144 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1145 	}
1146 }
1147 
1148 /*
1149  * Write buffer destructor automatically called from kfree_skb.
1150  * We can't xmit new skbs from this context, as we might already
1151  * hold qdisc lock.
1152  */
tcp_wfree(struct sk_buff * skb)1153 void tcp_wfree(struct sk_buff *skb)
1154 {
1155 	struct sock *sk = skb->sk;
1156 	struct tcp_sock *tp = tcp_sk(sk);
1157 	unsigned long flags, nval, oval;
1158 	struct tsq_tasklet *tsq;
1159 	bool empty;
1160 
1161 	/* Keep one reference on sk_wmem_alloc.
1162 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1163 	 */
1164 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1165 
1166 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1167 	 * Wait until our queues (qdisc + devices) are drained.
1168 	 * This gives :
1169 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1170 	 * - chance for incoming ACK (processed by another cpu maybe)
1171 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1172 	 */
1173 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1174 		goto out;
1175 
1176 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1177 	do {
1178 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1179 			goto out;
1180 
1181 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1182 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1183 
1184 	/* queue this socket to tasklet queue */
1185 	local_irq_save(flags);
1186 	tsq = this_cpu_ptr(&tsq_tasklet);
1187 	empty = list_empty(&tsq->head);
1188 	list_add(&tp->tsq_node, &tsq->head);
1189 	if (empty)
1190 		tasklet_schedule(&tsq->tasklet);
1191 	local_irq_restore(flags);
1192 	return;
1193 out:
1194 	sk_free(sk);
1195 }
1196 
1197 /* Note: Called under soft irq.
1198  * We can call TCP stack right away, unless socket is owned by user.
1199  */
tcp_pace_kick(struct hrtimer * timer)1200 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1201 {
1202 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1203 	struct sock *sk = (struct sock *)tp;
1204 
1205 	tcp_tsq_handler(sk);
1206 	sock_put(sk);
1207 
1208 	return HRTIMER_NORESTART;
1209 }
1210 
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1211 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1212 				      u64 prior_wstamp)
1213 {
1214 	struct tcp_sock *tp = tcp_sk(sk);
1215 
1216 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1217 		unsigned long rate = sk->sk_pacing_rate;
1218 
1219 		/* Original sch_fq does not pace first 10 MSS
1220 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1221 		 * this is a minor annoyance.
1222 		 */
1223 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1224 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1225 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1226 
1227 			/* take into account OS jitter */
1228 			len_ns -= min_t(u64, len_ns / 2, credit);
1229 			tp->tcp_wstamp_ns += len_ns;
1230 		}
1231 	}
1232 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1233 }
1234 
1235 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1236 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1237 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1238 
1239 /* This routine actually transmits TCP packets queued in by
1240  * tcp_do_sendmsg().  This is used by both the initial
1241  * transmission and possible later retransmissions.
1242  * All SKB's seen here are completely headerless.  It is our
1243  * job to build the TCP header, and pass the packet down to
1244  * IP so it can do the same plus pass the packet off to the
1245  * device.
1246  *
1247  * We are working here with either a clone of the original
1248  * SKB, or a fresh unique copy made by the retransmit engine.
1249  */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1250 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1251 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1252 {
1253 	const struct inet_connection_sock *icsk = inet_csk(sk);
1254 	struct inet_sock *inet;
1255 	struct tcp_sock *tp;
1256 	struct tcp_skb_cb *tcb;
1257 	struct tcp_out_options opts;
1258 	unsigned int tcp_options_size, tcp_header_size;
1259 	struct sk_buff *oskb = NULL;
1260 	struct tcp_md5sig_key *md5;
1261 	struct tcphdr *th;
1262 	u64 prior_wstamp;
1263 	int err;
1264 
1265 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1266 	tp = tcp_sk(sk);
1267 	prior_wstamp = tp->tcp_wstamp_ns;
1268 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1269 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1270 	if (clone_it) {
1271 		oskb = skb;
1272 
1273 		tcp_skb_tsorted_save(oskb) {
1274 			if (unlikely(skb_cloned(oskb)))
1275 				skb = pskb_copy(oskb, gfp_mask);
1276 			else
1277 				skb = skb_clone(oskb, gfp_mask);
1278 		} tcp_skb_tsorted_restore(oskb);
1279 
1280 		if (unlikely(!skb))
1281 			return -ENOBUFS;
1282 		/* retransmit skbs might have a non zero value in skb->dev
1283 		 * because skb->dev is aliased with skb->rbnode.rb_left
1284 		 */
1285 		skb->dev = NULL;
1286 	}
1287 
1288 	inet = inet_sk(sk);
1289 	tcb = TCP_SKB_CB(skb);
1290 	memset(&opts, 0, sizeof(opts));
1291 
1292 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1293 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1294 	} else {
1295 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1296 							   &md5);
1297 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1298 		 * at receiver : This slightly improve GRO performance.
1299 		 * Note that we do not force the PSH flag for non GSO packets,
1300 		 * because they might be sent under high congestion events,
1301 		 * and in this case it is better to delay the delivery of 1-MSS
1302 		 * packets and thus the corresponding ACK packet that would
1303 		 * release the following packet.
1304 		 */
1305 		if (tcp_skb_pcount(skb) > 1)
1306 			tcb->tcp_flags |= TCPHDR_PSH;
1307 	}
1308 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1309 
1310 	/* We set skb->ooo_okay to one if this packet can select
1311 	 * a different TX queue than prior packets of this flow,
1312 	 * to avoid self inflicted reorders.
1313 	 * The 'other' queue decision is based on current cpu number
1314 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1315 	 * We can switch to another (and better) queue if:
1316 	 * 1) No packet with payload is in qdisc/device queues.
1317 	 *    Delays in TX completion can defeat the test
1318 	 *    even if packets were already sent.
1319 	 * 2) Or rtx queue is empty.
1320 	 *    This mitigates above case if ACK packets for
1321 	 *    all prior packets were already processed.
1322 	 */
1323 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1324 			tcp_rtx_queue_empty(sk);
1325 
1326 	/* If we had to use memory reserve to allocate this skb,
1327 	 * this might cause drops if packet is looped back :
1328 	 * Other socket might not have SOCK_MEMALLOC.
1329 	 * Packets not looped back do not care about pfmemalloc.
1330 	 */
1331 	skb->pfmemalloc = 0;
1332 
1333 	skb_push(skb, tcp_header_size);
1334 	skb_reset_transport_header(skb);
1335 
1336 	skb_orphan(skb);
1337 	skb->sk = sk;
1338 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1339 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1340 
1341 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1342 
1343 	/* Build TCP header and checksum it. */
1344 	th = (struct tcphdr *)skb->data;
1345 	th->source		= inet->inet_sport;
1346 	th->dest		= inet->inet_dport;
1347 	th->seq			= htonl(tcb->seq);
1348 	th->ack_seq		= htonl(rcv_nxt);
1349 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1350 					tcb->tcp_flags);
1351 
1352 	th->check		= 0;
1353 	th->urg_ptr		= 0;
1354 
1355 	/* The urg_mode check is necessary during a below snd_una win probe */
1356 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1357 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1358 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1359 			th->urg = 1;
1360 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1361 			th->urg_ptr = htons(0xFFFF);
1362 			th->urg = 1;
1363 		}
1364 	}
1365 
1366 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1367 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1368 		th->window      = htons(tcp_select_window(sk));
1369 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1370 	} else {
1371 		/* RFC1323: The window in SYN & SYN/ACK segments
1372 		 * is never scaled.
1373 		 */
1374 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1375 	}
1376 
1377 	tcp_options_write(th, tp, &opts);
1378 
1379 #ifdef CONFIG_TCP_MD5SIG
1380 	/* Calculate the MD5 hash, as we have all we need now */
1381 	if (md5) {
1382 		sk_gso_disable(sk);
1383 		tp->af_specific->calc_md5_hash(opts.hash_location,
1384 					       md5, sk, skb);
1385 	}
1386 #endif
1387 
1388 	/* BPF prog is the last one writing header option */
1389 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1390 
1391 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1392 			   tcp_v6_send_check, tcp_v4_send_check,
1393 			   sk, skb);
1394 
1395 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1396 		tcp_event_ack_sent(sk, rcv_nxt);
1397 
1398 	if (skb->len != tcp_header_size) {
1399 		tcp_event_data_sent(tp, sk);
1400 		tp->data_segs_out += tcp_skb_pcount(skb);
1401 		tp->bytes_sent += skb->len - tcp_header_size;
1402 	}
1403 
1404 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1405 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1406 			      tcp_skb_pcount(skb));
1407 
1408 	tp->segs_out += tcp_skb_pcount(skb);
1409 	skb_set_hash_from_sk(skb, sk);
1410 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1411 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1412 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1413 
1414 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1415 
1416 	/* Cleanup our debris for IP stacks */
1417 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1418 			       sizeof(struct inet6_skb_parm)));
1419 
1420 	tcp_add_tx_delay(skb, tp);
1421 
1422 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1423 				 inet6_csk_xmit, ip_queue_xmit,
1424 				 sk, skb, &inet->cork.fl);
1425 
1426 	if (unlikely(err > 0)) {
1427 		tcp_enter_cwr(sk);
1428 		err = net_xmit_eval(err);
1429 	}
1430 	if (!err && oskb) {
1431 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1432 		tcp_rate_skb_sent(sk, oskb);
1433 	}
1434 	return err;
1435 }
1436 
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1437 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1438 			    gfp_t gfp_mask)
1439 {
1440 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1441 				  tcp_sk(sk)->rcv_nxt);
1442 }
1443 
1444 /* This routine just queues the buffer for sending.
1445  *
1446  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1447  * otherwise socket can stall.
1448  */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1449 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1450 {
1451 	struct tcp_sock *tp = tcp_sk(sk);
1452 
1453 	/* Advance write_seq and place onto the write_queue. */
1454 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1455 	__skb_header_release(skb);
1456 	tcp_add_write_queue_tail(sk, skb);
1457 	sk_wmem_queued_add(sk, skb->truesize);
1458 	sk_mem_charge(sk, skb->truesize);
1459 }
1460 
1461 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1462 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1463 {
1464 	if (skb->len <= mss_now) {
1465 		/* Avoid the costly divide in the normal
1466 		 * non-TSO case.
1467 		 */
1468 		tcp_skb_pcount_set(skb, 1);
1469 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1470 	} else {
1471 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1472 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1473 	}
1474 }
1475 
1476 /* Pcount in the middle of the write queue got changed, we need to do various
1477  * tweaks to fix counters
1478  */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1479 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1480 {
1481 	struct tcp_sock *tp = tcp_sk(sk);
1482 
1483 	tp->packets_out -= decr;
1484 
1485 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1486 		tp->sacked_out -= decr;
1487 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1488 		tp->retrans_out -= decr;
1489 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1490 		tp->lost_out -= decr;
1491 
1492 	/* Reno case is special. Sigh... */
1493 	if (tcp_is_reno(tp) && decr > 0)
1494 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1495 
1496 	if (tp->lost_skb_hint &&
1497 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1498 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1499 		tp->lost_cnt_hint -= decr;
1500 
1501 	tcp_verify_left_out(tp);
1502 }
1503 
tcp_has_tx_tstamp(const struct sk_buff * skb)1504 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1505 {
1506 	return TCP_SKB_CB(skb)->txstamp_ack ||
1507 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1508 }
1509 
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1510 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1511 {
1512 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1513 
1514 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1515 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1516 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1517 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1518 
1519 		shinfo->tx_flags &= ~tsflags;
1520 		shinfo2->tx_flags |= tsflags;
1521 		swap(shinfo->tskey, shinfo2->tskey);
1522 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1523 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1524 	}
1525 }
1526 
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1527 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1528 {
1529 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1530 	TCP_SKB_CB(skb)->eor = 0;
1531 }
1532 
1533 /* Insert buff after skb on the write or rtx queue of sk.  */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1534 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1535 					 struct sk_buff *buff,
1536 					 struct sock *sk,
1537 					 enum tcp_queue tcp_queue)
1538 {
1539 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1540 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1541 	else
1542 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1543 }
1544 
1545 /* Function to create two new TCP segments.  Shrinks the given segment
1546  * to the specified size and appends a new segment with the rest of the
1547  * packet to the list.  This won't be called frequently, I hope.
1548  * Remember, these are still headerless SKBs at this point.
1549  */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1550 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1551 		 struct sk_buff *skb, u32 len,
1552 		 unsigned int mss_now, gfp_t gfp)
1553 {
1554 	struct tcp_sock *tp = tcp_sk(sk);
1555 	struct sk_buff *buff;
1556 	int old_factor;
1557 	long limit;
1558 	int nlen;
1559 	u8 flags;
1560 
1561 	if (WARN_ON(len > skb->len))
1562 		return -EINVAL;
1563 
1564 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1565 
1566 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1567 	 * We need some allowance to not penalize applications setting small
1568 	 * SO_SNDBUF values.
1569 	 * Also allow first and last skb in retransmit queue to be split.
1570 	 */
1571 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1572 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1573 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1574 		     skb != tcp_rtx_queue_head(sk) &&
1575 		     skb != tcp_rtx_queue_tail(sk))) {
1576 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1577 		return -ENOMEM;
1578 	}
1579 
1580 	if (skb_unclone_keeptruesize(skb, gfp))
1581 		return -ENOMEM;
1582 
1583 	/* Get a new skb... force flag on. */
1584 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1585 	if (!buff)
1586 		return -ENOMEM; /* We'll just try again later. */
1587 	skb_copy_decrypted(buff, skb);
1588 	mptcp_skb_ext_copy(buff, skb);
1589 
1590 	sk_wmem_queued_add(sk, buff->truesize);
1591 	sk_mem_charge(sk, buff->truesize);
1592 	nlen = skb->len - len;
1593 	buff->truesize += nlen;
1594 	skb->truesize -= nlen;
1595 
1596 	/* Correct the sequence numbers. */
1597 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1598 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1599 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1600 
1601 	/* PSH and FIN should only be set in the second packet. */
1602 	flags = TCP_SKB_CB(skb)->tcp_flags;
1603 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1604 	TCP_SKB_CB(buff)->tcp_flags = flags;
1605 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1606 	tcp_skb_fragment_eor(skb, buff);
1607 
1608 	skb_split(skb, buff, len);
1609 
1610 	skb_set_delivery_time(buff, skb->tstamp, true);
1611 	tcp_fragment_tstamp(skb, buff);
1612 
1613 	old_factor = tcp_skb_pcount(skb);
1614 
1615 	/* Fix up tso_factor for both original and new SKB.  */
1616 	tcp_set_skb_tso_segs(skb, mss_now);
1617 	tcp_set_skb_tso_segs(buff, mss_now);
1618 
1619 	/* Update delivered info for the new segment */
1620 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1621 
1622 	/* If this packet has been sent out already, we must
1623 	 * adjust the various packet counters.
1624 	 */
1625 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1626 		int diff = old_factor - tcp_skb_pcount(skb) -
1627 			tcp_skb_pcount(buff);
1628 
1629 		if (diff)
1630 			tcp_adjust_pcount(sk, skb, diff);
1631 	}
1632 
1633 	/* Link BUFF into the send queue. */
1634 	__skb_header_release(buff);
1635 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1636 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1637 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1638 
1639 	return 0;
1640 }
1641 
1642 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1643  * data is not copied, but immediately discarded.
1644  */
__pskb_trim_head(struct sk_buff * skb,int len)1645 static int __pskb_trim_head(struct sk_buff *skb, int len)
1646 {
1647 	struct skb_shared_info *shinfo;
1648 	int i, k, eat;
1649 
1650 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1651 	eat = len;
1652 	k = 0;
1653 	shinfo = skb_shinfo(skb);
1654 	for (i = 0; i < shinfo->nr_frags; i++) {
1655 		int size = skb_frag_size(&shinfo->frags[i]);
1656 
1657 		if (size <= eat) {
1658 			skb_frag_unref(skb, i);
1659 			eat -= size;
1660 		} else {
1661 			shinfo->frags[k] = shinfo->frags[i];
1662 			if (eat) {
1663 				skb_frag_off_add(&shinfo->frags[k], eat);
1664 				skb_frag_size_sub(&shinfo->frags[k], eat);
1665 				eat = 0;
1666 			}
1667 			k++;
1668 		}
1669 	}
1670 	shinfo->nr_frags = k;
1671 
1672 	skb->data_len -= len;
1673 	skb->len = skb->data_len;
1674 	return len;
1675 }
1676 
1677 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1678 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1679 {
1680 	u32 delta_truesize;
1681 
1682 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1683 		return -ENOMEM;
1684 
1685 	delta_truesize = __pskb_trim_head(skb, len);
1686 
1687 	TCP_SKB_CB(skb)->seq += len;
1688 
1689 	skb->truesize	   -= delta_truesize;
1690 	sk_wmem_queued_add(sk, -delta_truesize);
1691 	if (!skb_zcopy_pure(skb))
1692 		sk_mem_uncharge(sk, delta_truesize);
1693 
1694 	/* Any change of skb->len requires recalculation of tso factor. */
1695 	if (tcp_skb_pcount(skb) > 1)
1696 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1697 
1698 	return 0;
1699 }
1700 
1701 /* Calculate MSS not accounting any TCP options.  */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1702 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1703 {
1704 	const struct tcp_sock *tp = tcp_sk(sk);
1705 	const struct inet_connection_sock *icsk = inet_csk(sk);
1706 	int mss_now;
1707 
1708 	/* Calculate base mss without TCP options:
1709 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1710 	 */
1711 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1712 
1713 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1714 	if (icsk->icsk_af_ops->net_frag_header_len) {
1715 		const struct dst_entry *dst = __sk_dst_get(sk);
1716 
1717 		if (dst && dst_allfrag(dst))
1718 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1719 	}
1720 
1721 	/* Clamp it (mss_clamp does not include tcp options) */
1722 	if (mss_now > tp->rx_opt.mss_clamp)
1723 		mss_now = tp->rx_opt.mss_clamp;
1724 
1725 	/* Now subtract optional transport overhead */
1726 	mss_now -= icsk->icsk_ext_hdr_len;
1727 
1728 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1729 	mss_now = max(mss_now,
1730 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1731 	return mss_now;
1732 }
1733 
1734 /* Calculate MSS. Not accounting for SACKs here.  */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1735 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1736 {
1737 	/* Subtract TCP options size, not including SACKs */
1738 	return __tcp_mtu_to_mss(sk, pmtu) -
1739 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1740 }
1741 EXPORT_SYMBOL(tcp_mtu_to_mss);
1742 
1743 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1744 int tcp_mss_to_mtu(struct sock *sk, int mss)
1745 {
1746 	const struct tcp_sock *tp = tcp_sk(sk);
1747 	const struct inet_connection_sock *icsk = inet_csk(sk);
1748 	int mtu;
1749 
1750 	mtu = mss +
1751 	      tp->tcp_header_len +
1752 	      icsk->icsk_ext_hdr_len +
1753 	      icsk->icsk_af_ops->net_header_len;
1754 
1755 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1756 	if (icsk->icsk_af_ops->net_frag_header_len) {
1757 		const struct dst_entry *dst = __sk_dst_get(sk);
1758 
1759 		if (dst && dst_allfrag(dst))
1760 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1761 	}
1762 	return mtu;
1763 }
1764 EXPORT_SYMBOL(tcp_mss_to_mtu);
1765 
1766 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1767 void tcp_mtup_init(struct sock *sk)
1768 {
1769 	struct tcp_sock *tp = tcp_sk(sk);
1770 	struct inet_connection_sock *icsk = inet_csk(sk);
1771 	struct net *net = sock_net(sk);
1772 
1773 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1774 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1775 			       icsk->icsk_af_ops->net_header_len;
1776 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1777 	icsk->icsk_mtup.probe_size = 0;
1778 	if (icsk->icsk_mtup.enabled)
1779 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1780 }
1781 EXPORT_SYMBOL(tcp_mtup_init);
1782 
1783 /* This function synchronize snd mss to current pmtu/exthdr set.
1784 
1785    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1786    for TCP options, but includes only bare TCP header.
1787 
1788    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1789    It is minimum of user_mss and mss received with SYN.
1790    It also does not include TCP options.
1791 
1792    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1793 
1794    tp->mss_cache is current effective sending mss, including
1795    all tcp options except for SACKs. It is evaluated,
1796    taking into account current pmtu, but never exceeds
1797    tp->rx_opt.mss_clamp.
1798 
1799    NOTE1. rfc1122 clearly states that advertised MSS
1800    DOES NOT include either tcp or ip options.
1801 
1802    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1803    are READ ONLY outside this function.		--ANK (980731)
1804  */
tcp_sync_mss(struct sock * sk,u32 pmtu)1805 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1806 {
1807 	struct tcp_sock *tp = tcp_sk(sk);
1808 	struct inet_connection_sock *icsk = inet_csk(sk);
1809 	int mss_now;
1810 
1811 	if (icsk->icsk_mtup.search_high > pmtu)
1812 		icsk->icsk_mtup.search_high = pmtu;
1813 
1814 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1815 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1816 
1817 	/* And store cached results */
1818 	icsk->icsk_pmtu_cookie = pmtu;
1819 	if (icsk->icsk_mtup.enabled)
1820 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1821 	tp->mss_cache = mss_now;
1822 
1823 	return mss_now;
1824 }
1825 EXPORT_SYMBOL(tcp_sync_mss);
1826 
1827 /* Compute the current effective MSS, taking SACKs and IP options,
1828  * and even PMTU discovery events into account.
1829  */
tcp_current_mss(struct sock * sk)1830 unsigned int tcp_current_mss(struct sock *sk)
1831 {
1832 	const struct tcp_sock *tp = tcp_sk(sk);
1833 	const struct dst_entry *dst = __sk_dst_get(sk);
1834 	u32 mss_now;
1835 	unsigned int header_len;
1836 	struct tcp_out_options opts;
1837 	struct tcp_md5sig_key *md5;
1838 
1839 	mss_now = tp->mss_cache;
1840 
1841 	if (dst) {
1842 		u32 mtu = dst_mtu(dst);
1843 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1844 			mss_now = tcp_sync_mss(sk, mtu);
1845 	}
1846 
1847 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1848 		     sizeof(struct tcphdr);
1849 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1850 	 * some common options. If this is an odd packet (because we have SACK
1851 	 * blocks etc) then our calculated header_len will be different, and
1852 	 * we have to adjust mss_now correspondingly */
1853 	if (header_len != tp->tcp_header_len) {
1854 		int delta = (int) header_len - tp->tcp_header_len;
1855 		mss_now -= delta;
1856 	}
1857 
1858 	return mss_now;
1859 }
1860 
1861 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1862  * As additional protections, we do not touch cwnd in retransmission phases,
1863  * and if application hit its sndbuf limit recently.
1864  */
tcp_cwnd_application_limited(struct sock * sk)1865 static void tcp_cwnd_application_limited(struct sock *sk)
1866 {
1867 	struct tcp_sock *tp = tcp_sk(sk);
1868 
1869 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1870 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1871 		/* Limited by application or receiver window. */
1872 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1873 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1874 		if (win_used < tcp_snd_cwnd(tp)) {
1875 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1876 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1877 		}
1878 		tp->snd_cwnd_used = 0;
1879 	}
1880 	tp->snd_cwnd_stamp = tcp_jiffies32;
1881 }
1882 
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1883 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1884 {
1885 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1886 	struct tcp_sock *tp = tcp_sk(sk);
1887 
1888 	/* Track the strongest available signal of the degree to which the cwnd
1889 	 * is fully utilized. If cwnd-limited then remember that fact for the
1890 	 * current window. If not cwnd-limited then track the maximum number of
1891 	 * outstanding packets in the current window. (If cwnd-limited then we
1892 	 * chose to not update tp->max_packets_out to avoid an extra else
1893 	 * clause with no functional impact.)
1894 	 */
1895 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1896 	    is_cwnd_limited ||
1897 	    (!tp->is_cwnd_limited &&
1898 	     tp->packets_out > tp->max_packets_out)) {
1899 		tp->is_cwnd_limited = is_cwnd_limited;
1900 		tp->max_packets_out = tp->packets_out;
1901 		tp->cwnd_usage_seq = tp->snd_nxt;
1902 	}
1903 
1904 	if (tcp_is_cwnd_limited(sk)) {
1905 		/* Network is feed fully. */
1906 		tp->snd_cwnd_used = 0;
1907 		tp->snd_cwnd_stamp = tcp_jiffies32;
1908 	} else {
1909 		/* Network starves. */
1910 		if (tp->packets_out > tp->snd_cwnd_used)
1911 			tp->snd_cwnd_used = tp->packets_out;
1912 
1913 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1914 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1915 		    !ca_ops->cong_control)
1916 			tcp_cwnd_application_limited(sk);
1917 
1918 		/* The following conditions together indicate the starvation
1919 		 * is caused by insufficient sender buffer:
1920 		 * 1) just sent some data (see tcp_write_xmit)
1921 		 * 2) not cwnd limited (this else condition)
1922 		 * 3) no more data to send (tcp_write_queue_empty())
1923 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1924 		 */
1925 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1926 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1927 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1928 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1929 	}
1930 }
1931 
1932 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1933 static bool tcp_minshall_check(const struct tcp_sock *tp)
1934 {
1935 	return after(tp->snd_sml, tp->snd_una) &&
1936 		!after(tp->snd_sml, tp->snd_nxt);
1937 }
1938 
1939 /* Update snd_sml if this skb is under mss
1940  * Note that a TSO packet might end with a sub-mss segment
1941  * The test is really :
1942  * if ((skb->len % mss) != 0)
1943  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1944  * But we can avoid doing the divide again given we already have
1945  *  skb_pcount = skb->len / mss_now
1946  */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1947 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1948 				const struct sk_buff *skb)
1949 {
1950 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1951 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1952 }
1953 
1954 /* Return false, if packet can be sent now without violation Nagle's rules:
1955  * 1. It is full sized. (provided by caller in %partial bool)
1956  * 2. Or it contains FIN. (already checked by caller)
1957  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1958  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1959  *    With Minshall's modification: all sent small packets are ACKed.
1960  */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1961 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1962 			    int nonagle)
1963 {
1964 	return partial &&
1965 		((nonagle & TCP_NAGLE_CORK) ||
1966 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1967 }
1968 
1969 /* Return how many segs we'd like on a TSO packet,
1970  * depending on current pacing rate, and how close the peer is.
1971  *
1972  * Rationale is:
1973  * - For close peers, we rather send bigger packets to reduce
1974  *   cpu costs, because occasional losses will be repaired fast.
1975  * - For long distance/rtt flows, we would like to get ACK clocking
1976  *   with 1 ACK per ms.
1977  *
1978  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1979  * in bigger TSO bursts. We we cut the RTT-based allowance in half
1980  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1981  * is below 1500 bytes after 6 * ~500 usec = 3ms.
1982  */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1983 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1984 			    int min_tso_segs)
1985 {
1986 	unsigned long bytes;
1987 	u32 r;
1988 
1989 	bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1990 
1991 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1992 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1993 		bytes += sk->sk_gso_max_size >> r;
1994 
1995 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1996 
1997 	return max_t(u32, bytes / mss_now, min_tso_segs);
1998 }
1999 
2000 /* Return the number of segments we want in the skb we are transmitting.
2001  * See if congestion control module wants to decide; otherwise, autosize.
2002  */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)2003 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2004 {
2005 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2006 	u32 min_tso, tso_segs;
2007 
2008 	min_tso = ca_ops->min_tso_segs ?
2009 			ca_ops->min_tso_segs(sk) :
2010 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2011 
2012 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2013 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2014 }
2015 
2016 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2017 static unsigned int tcp_mss_split_point(const struct sock *sk,
2018 					const struct sk_buff *skb,
2019 					unsigned int mss_now,
2020 					unsigned int max_segs,
2021 					int nonagle)
2022 {
2023 	const struct tcp_sock *tp = tcp_sk(sk);
2024 	u32 partial, needed, window, max_len;
2025 
2026 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2027 	max_len = mss_now * max_segs;
2028 
2029 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2030 		return max_len;
2031 
2032 	needed = min(skb->len, window);
2033 
2034 	if (max_len <= needed)
2035 		return max_len;
2036 
2037 	partial = needed % mss_now;
2038 	/* If last segment is not a full MSS, check if Nagle rules allow us
2039 	 * to include this last segment in this skb.
2040 	 * Otherwise, we'll split the skb at last MSS boundary
2041 	 */
2042 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2043 		return needed - partial;
2044 
2045 	return needed;
2046 }
2047 
2048 /* Can at least one segment of SKB be sent right now, according to the
2049  * congestion window rules?  If so, return how many segments are allowed.
2050  */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)2051 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2052 					 const struct sk_buff *skb)
2053 {
2054 	u32 in_flight, cwnd, halfcwnd;
2055 
2056 	/* Don't be strict about the congestion window for the final FIN.  */
2057 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2058 	    tcp_skb_pcount(skb) == 1)
2059 		return 1;
2060 
2061 	in_flight = tcp_packets_in_flight(tp);
2062 	cwnd = tcp_snd_cwnd(tp);
2063 	if (in_flight >= cwnd)
2064 		return 0;
2065 
2066 	/* For better scheduling, ensure we have at least
2067 	 * 2 GSO packets in flight.
2068 	 */
2069 	halfcwnd = max(cwnd >> 1, 1U);
2070 	return min(halfcwnd, cwnd - in_flight);
2071 }
2072 
2073 /* Initialize TSO state of a skb.
2074  * This must be invoked the first time we consider transmitting
2075  * SKB onto the wire.
2076  */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2077 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2078 {
2079 	int tso_segs = tcp_skb_pcount(skb);
2080 
2081 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2082 		tcp_set_skb_tso_segs(skb, mss_now);
2083 		tso_segs = tcp_skb_pcount(skb);
2084 	}
2085 	return tso_segs;
2086 }
2087 
2088 
2089 /* Return true if the Nagle test allows this packet to be
2090  * sent now.
2091  */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2092 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2093 				  unsigned int cur_mss, int nonagle)
2094 {
2095 	/* Nagle rule does not apply to frames, which sit in the middle of the
2096 	 * write_queue (they have no chances to get new data).
2097 	 *
2098 	 * This is implemented in the callers, where they modify the 'nonagle'
2099 	 * argument based upon the location of SKB in the send queue.
2100 	 */
2101 	if (nonagle & TCP_NAGLE_PUSH)
2102 		return true;
2103 
2104 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2105 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2106 		return true;
2107 
2108 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2109 		return true;
2110 
2111 	return false;
2112 }
2113 
2114 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2115 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2116 			     const struct sk_buff *skb,
2117 			     unsigned int cur_mss)
2118 {
2119 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2120 
2121 	if (skb->len > cur_mss)
2122 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2123 
2124 	return !after(end_seq, tcp_wnd_end(tp));
2125 }
2126 
2127 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2128  * which is put after SKB on the list.  It is very much like
2129  * tcp_fragment() except that it may make several kinds of assumptions
2130  * in order to speed up the splitting operation.  In particular, we
2131  * know that all the data is in scatter-gather pages, and that the
2132  * packet has never been sent out before (and thus is not cloned).
2133  */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2134 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2135 			unsigned int mss_now, gfp_t gfp)
2136 {
2137 	int nlen = skb->len - len;
2138 	struct sk_buff *buff;
2139 	u8 flags;
2140 
2141 	/* All of a TSO frame must be composed of paged data.  */
2142 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2143 
2144 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2145 	if (unlikely(!buff))
2146 		return -ENOMEM;
2147 	skb_copy_decrypted(buff, skb);
2148 	mptcp_skb_ext_copy(buff, skb);
2149 
2150 	sk_wmem_queued_add(sk, buff->truesize);
2151 	sk_mem_charge(sk, buff->truesize);
2152 	buff->truesize += nlen;
2153 	skb->truesize -= nlen;
2154 
2155 	/* Correct the sequence numbers. */
2156 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2157 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2158 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2159 
2160 	/* PSH and FIN should only be set in the second packet. */
2161 	flags = TCP_SKB_CB(skb)->tcp_flags;
2162 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2163 	TCP_SKB_CB(buff)->tcp_flags = flags;
2164 
2165 	tcp_skb_fragment_eor(skb, buff);
2166 
2167 	skb_split(skb, buff, len);
2168 	tcp_fragment_tstamp(skb, buff);
2169 
2170 	/* Fix up tso_factor for both original and new SKB.  */
2171 	tcp_set_skb_tso_segs(skb, mss_now);
2172 	tcp_set_skb_tso_segs(buff, mss_now);
2173 
2174 	/* Link BUFF into the send queue. */
2175 	__skb_header_release(buff);
2176 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2177 
2178 	return 0;
2179 }
2180 
2181 /* Try to defer sending, if possible, in order to minimize the amount
2182  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2183  *
2184  * This algorithm is from John Heffner.
2185  */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2186 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2187 				 bool *is_cwnd_limited,
2188 				 bool *is_rwnd_limited,
2189 				 u32 max_segs)
2190 {
2191 	const struct inet_connection_sock *icsk = inet_csk(sk);
2192 	u32 send_win, cong_win, limit, in_flight;
2193 	struct tcp_sock *tp = tcp_sk(sk);
2194 	struct sk_buff *head;
2195 	int win_divisor;
2196 	s64 delta;
2197 
2198 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2199 		goto send_now;
2200 
2201 	/* Avoid bursty behavior by allowing defer
2202 	 * only if the last write was recent (1 ms).
2203 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2204 	 * packets waiting in a qdisc or device for EDT delivery.
2205 	 */
2206 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2207 	if (delta > 0)
2208 		goto send_now;
2209 
2210 	in_flight = tcp_packets_in_flight(tp);
2211 
2212 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2213 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2214 
2215 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2216 
2217 	/* From in_flight test above, we know that cwnd > in_flight.  */
2218 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2219 
2220 	limit = min(send_win, cong_win);
2221 
2222 	/* If a full-sized TSO skb can be sent, do it. */
2223 	if (limit >= max_segs * tp->mss_cache)
2224 		goto send_now;
2225 
2226 	/* Middle in queue won't get any more data, full sendable already? */
2227 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2228 		goto send_now;
2229 
2230 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2231 	if (win_divisor) {
2232 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2233 
2234 		/* If at least some fraction of a window is available,
2235 		 * just use it.
2236 		 */
2237 		chunk /= win_divisor;
2238 		if (limit >= chunk)
2239 			goto send_now;
2240 	} else {
2241 		/* Different approach, try not to defer past a single
2242 		 * ACK.  Receiver should ACK every other full sized
2243 		 * frame, so if we have space for more than 3 frames
2244 		 * then send now.
2245 		 */
2246 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2247 			goto send_now;
2248 	}
2249 
2250 	/* TODO : use tsorted_sent_queue ? */
2251 	head = tcp_rtx_queue_head(sk);
2252 	if (!head)
2253 		goto send_now;
2254 	delta = tp->tcp_clock_cache - head->tstamp;
2255 	/* If next ACK is likely to come too late (half srtt), do not defer */
2256 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2257 		goto send_now;
2258 
2259 	/* Ok, it looks like it is advisable to defer.
2260 	 * Three cases are tracked :
2261 	 * 1) We are cwnd-limited
2262 	 * 2) We are rwnd-limited
2263 	 * 3) We are application limited.
2264 	 */
2265 	if (cong_win < send_win) {
2266 		if (cong_win <= skb->len) {
2267 			*is_cwnd_limited = true;
2268 			return true;
2269 		}
2270 	} else {
2271 		if (send_win <= skb->len) {
2272 			*is_rwnd_limited = true;
2273 			return true;
2274 		}
2275 	}
2276 
2277 	/* If this packet won't get more data, do not wait. */
2278 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2279 	    TCP_SKB_CB(skb)->eor)
2280 		goto send_now;
2281 
2282 	return true;
2283 
2284 send_now:
2285 	return false;
2286 }
2287 
tcp_mtu_check_reprobe(struct sock * sk)2288 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2289 {
2290 	struct inet_connection_sock *icsk = inet_csk(sk);
2291 	struct tcp_sock *tp = tcp_sk(sk);
2292 	struct net *net = sock_net(sk);
2293 	u32 interval;
2294 	s32 delta;
2295 
2296 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2297 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2298 	if (unlikely(delta >= interval * HZ)) {
2299 		int mss = tcp_current_mss(sk);
2300 
2301 		/* Update current search range */
2302 		icsk->icsk_mtup.probe_size = 0;
2303 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2304 			sizeof(struct tcphdr) +
2305 			icsk->icsk_af_ops->net_header_len;
2306 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2307 
2308 		/* Update probe time stamp */
2309 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2310 	}
2311 }
2312 
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2313 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2314 {
2315 	struct sk_buff *skb, *next;
2316 
2317 	skb = tcp_send_head(sk);
2318 	tcp_for_write_queue_from_safe(skb, next, sk) {
2319 		if (len <= skb->len)
2320 			break;
2321 
2322 		if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next))
2323 			return false;
2324 
2325 		len -= skb->len;
2326 	}
2327 
2328 	return true;
2329 }
2330 
tcp_clone_payload(struct sock * sk,struct sk_buff * to,int probe_size)2331 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2332 			     int probe_size)
2333 {
2334 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2335 	int i, todo, len = 0, nr_frags = 0;
2336 	const struct sk_buff *skb;
2337 
2338 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2339 		return -ENOMEM;
2340 
2341 	skb_queue_walk(&sk->sk_write_queue, skb) {
2342 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2343 
2344 		if (skb_headlen(skb))
2345 			return -EINVAL;
2346 
2347 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2348 			if (len >= probe_size)
2349 				goto commit;
2350 			todo = min_t(int, skb_frag_size(fragfrom),
2351 				     probe_size - len);
2352 			len += todo;
2353 			if (lastfrag &&
2354 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2355 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2356 						      skb_frag_size(lastfrag)) {
2357 				skb_frag_size_add(lastfrag, todo);
2358 				continue;
2359 			}
2360 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2361 				return -E2BIG;
2362 			skb_frag_page_copy(fragto, fragfrom);
2363 			skb_frag_off_copy(fragto, fragfrom);
2364 			skb_frag_size_set(fragto, todo);
2365 			nr_frags++;
2366 			lastfrag = fragto++;
2367 		}
2368 	}
2369 commit:
2370 	WARN_ON_ONCE(len != probe_size);
2371 	for (i = 0; i < nr_frags; i++)
2372 		skb_frag_ref(to, i);
2373 
2374 	skb_shinfo(to)->nr_frags = nr_frags;
2375 	to->truesize += probe_size;
2376 	to->len += probe_size;
2377 	to->data_len += probe_size;
2378 	__skb_header_release(to);
2379 	return 0;
2380 }
2381 
2382 /* Create a new MTU probe if we are ready.
2383  * MTU probe is regularly attempting to increase the path MTU by
2384  * deliberately sending larger packets.  This discovers routing
2385  * changes resulting in larger path MTUs.
2386  *
2387  * Returns 0 if we should wait to probe (no cwnd available),
2388  *         1 if a probe was sent,
2389  *         -1 otherwise
2390  */
tcp_mtu_probe(struct sock * sk)2391 static int tcp_mtu_probe(struct sock *sk)
2392 {
2393 	struct inet_connection_sock *icsk = inet_csk(sk);
2394 	struct tcp_sock *tp = tcp_sk(sk);
2395 	struct sk_buff *skb, *nskb, *next;
2396 	struct net *net = sock_net(sk);
2397 	int probe_size;
2398 	int size_needed;
2399 	int copy, len;
2400 	int mss_now;
2401 	int interval;
2402 
2403 	/* Not currently probing/verifying,
2404 	 * not in recovery,
2405 	 * have enough cwnd, and
2406 	 * not SACKing (the variable headers throw things off)
2407 	 */
2408 	if (likely(!icsk->icsk_mtup.enabled ||
2409 		   icsk->icsk_mtup.probe_size ||
2410 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2411 		   tcp_snd_cwnd(tp) < 11 ||
2412 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2413 		return -1;
2414 
2415 	/* Use binary search for probe_size between tcp_mss_base,
2416 	 * and current mss_clamp. if (search_high - search_low)
2417 	 * smaller than a threshold, backoff from probing.
2418 	 */
2419 	mss_now = tcp_current_mss(sk);
2420 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2421 				    icsk->icsk_mtup.search_low) >> 1);
2422 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2423 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2424 	/* When misfortune happens, we are reprobing actively,
2425 	 * and then reprobe timer has expired. We stick with current
2426 	 * probing process by not resetting search range to its orignal.
2427 	 */
2428 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2429 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2430 		/* Check whether enough time has elaplased for
2431 		 * another round of probing.
2432 		 */
2433 		tcp_mtu_check_reprobe(sk);
2434 		return -1;
2435 	}
2436 
2437 	/* Have enough data in the send queue to probe? */
2438 	if (tp->write_seq - tp->snd_nxt < size_needed)
2439 		return -1;
2440 
2441 	if (tp->snd_wnd < size_needed)
2442 		return -1;
2443 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2444 		return 0;
2445 
2446 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2447 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2448 		if (!tcp_packets_in_flight(tp))
2449 			return -1;
2450 		else
2451 			return 0;
2452 	}
2453 
2454 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2455 		return -1;
2456 
2457 	/* We're allowed to probe.  Build it now. */
2458 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2459 	if (!nskb)
2460 		return -1;
2461 
2462 	/* build the payload, and be prepared to abort if this fails. */
2463 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2464 		tcp_skb_tsorted_anchor_cleanup(nskb);
2465 		consume_skb(nskb);
2466 		return -1;
2467 	}
2468 	sk_wmem_queued_add(sk, nskb->truesize);
2469 	sk_mem_charge(sk, nskb->truesize);
2470 
2471 	skb = tcp_send_head(sk);
2472 	skb_copy_decrypted(nskb, skb);
2473 	mptcp_skb_ext_copy(nskb, skb);
2474 
2475 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2476 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2477 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2478 
2479 	tcp_insert_write_queue_before(nskb, skb, sk);
2480 	tcp_highest_sack_replace(sk, skb, nskb);
2481 
2482 	len = 0;
2483 	tcp_for_write_queue_from_safe(skb, next, sk) {
2484 		copy = min_t(int, skb->len, probe_size - len);
2485 
2486 		if (skb->len <= copy) {
2487 			/* We've eaten all the data from this skb.
2488 			 * Throw it away. */
2489 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2490 			/* If this is the last SKB we copy and eor is set
2491 			 * we need to propagate it to the new skb.
2492 			 */
2493 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2494 			tcp_skb_collapse_tstamp(nskb, skb);
2495 			tcp_unlink_write_queue(skb, sk);
2496 			tcp_wmem_free_skb(sk, skb);
2497 		} else {
2498 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2499 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2500 			__pskb_trim_head(skb, copy);
2501 			tcp_set_skb_tso_segs(skb, mss_now);
2502 			TCP_SKB_CB(skb)->seq += copy;
2503 		}
2504 
2505 		len += copy;
2506 
2507 		if (len >= probe_size)
2508 			break;
2509 	}
2510 	tcp_init_tso_segs(nskb, nskb->len);
2511 
2512 	/* We're ready to send.  If this fails, the probe will
2513 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2514 	 */
2515 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2516 		/* Decrement cwnd here because we are sending
2517 		 * effectively two packets. */
2518 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2519 		tcp_event_new_data_sent(sk, nskb);
2520 
2521 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2522 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2523 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2524 
2525 		return 1;
2526 	}
2527 
2528 	return -1;
2529 }
2530 
tcp_pacing_check(struct sock * sk)2531 static bool tcp_pacing_check(struct sock *sk)
2532 {
2533 	struct tcp_sock *tp = tcp_sk(sk);
2534 
2535 	if (!tcp_needs_internal_pacing(sk))
2536 		return false;
2537 
2538 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2539 		return false;
2540 
2541 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2542 		hrtimer_start(&tp->pacing_timer,
2543 			      ns_to_ktime(tp->tcp_wstamp_ns),
2544 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2545 		sock_hold(sk);
2546 	}
2547 	return true;
2548 }
2549 
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2550 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2551 {
2552 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2553 
2554 	/* No skb in the rtx queue. */
2555 	if (!node)
2556 		return true;
2557 
2558 	/* Only one skb in rtx queue. */
2559 	return !node->rb_left && !node->rb_right;
2560 }
2561 
2562 /* TCP Small Queues :
2563  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2564  * (These limits are doubled for retransmits)
2565  * This allows for :
2566  *  - better RTT estimation and ACK scheduling
2567  *  - faster recovery
2568  *  - high rates
2569  * Alas, some drivers / subsystems require a fair amount
2570  * of queued bytes to ensure line rate.
2571  * One example is wifi aggregation (802.11 AMPDU)
2572  */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2573 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2574 				  unsigned int factor)
2575 {
2576 	unsigned long limit;
2577 
2578 	limit = max_t(unsigned long,
2579 		      2 * skb->truesize,
2580 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2581 	if (sk->sk_pacing_status == SK_PACING_NONE)
2582 		limit = min_t(unsigned long, limit,
2583 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2584 	limit <<= factor;
2585 
2586 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2587 	    tcp_sk(sk)->tcp_tx_delay) {
2588 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2589 
2590 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2591 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2592 		 * USEC_PER_SEC is approximated by 2^20.
2593 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2594 		 */
2595 		extra_bytes >>= (20 - 1);
2596 		limit += extra_bytes;
2597 	}
2598 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2599 		/* Always send skb if rtx queue is empty or has one skb.
2600 		 * No need to wait for TX completion to call us back,
2601 		 * after softirq/tasklet schedule.
2602 		 * This helps when TX completions are delayed too much.
2603 		 */
2604 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2605 			return false;
2606 
2607 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2608 		/* It is possible TX completion already happened
2609 		 * before we set TSQ_THROTTLED, so we must
2610 		 * test again the condition.
2611 		 */
2612 		smp_mb__after_atomic();
2613 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2614 			return true;
2615 	}
2616 	return false;
2617 }
2618 
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2619 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2620 {
2621 	const u32 now = tcp_jiffies32;
2622 	enum tcp_chrono old = tp->chrono_type;
2623 
2624 	if (old > TCP_CHRONO_UNSPEC)
2625 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2626 	tp->chrono_start = now;
2627 	tp->chrono_type = new;
2628 }
2629 
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2630 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2631 {
2632 	struct tcp_sock *tp = tcp_sk(sk);
2633 
2634 	/* If there are multiple conditions worthy of tracking in a
2635 	 * chronograph then the highest priority enum takes precedence
2636 	 * over the other conditions. So that if something "more interesting"
2637 	 * starts happening, stop the previous chrono and start a new one.
2638 	 */
2639 	if (type > tp->chrono_type)
2640 		tcp_chrono_set(tp, type);
2641 }
2642 
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2643 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2644 {
2645 	struct tcp_sock *tp = tcp_sk(sk);
2646 
2647 
2648 	/* There are multiple conditions worthy of tracking in a
2649 	 * chronograph, so that the highest priority enum takes
2650 	 * precedence over the other conditions (see tcp_chrono_start).
2651 	 * If a condition stops, we only stop chrono tracking if
2652 	 * it's the "most interesting" or current chrono we are
2653 	 * tracking and starts busy chrono if we have pending data.
2654 	 */
2655 	if (tcp_rtx_and_write_queues_empty(sk))
2656 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2657 	else if (type == tp->chrono_type)
2658 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2659 }
2660 
2661 /* This routine writes packets to the network.  It advances the
2662  * send_head.  This happens as incoming acks open up the remote
2663  * window for us.
2664  *
2665  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2666  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2667  * account rare use of URG, this is not a big flaw.
2668  *
2669  * Send at most one packet when push_one > 0. Temporarily ignore
2670  * cwnd limit to force at most one packet out when push_one == 2.
2671 
2672  * Returns true, if no segments are in flight and we have queued segments,
2673  * but cannot send anything now because of SWS or another problem.
2674  */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2675 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2676 			   int push_one, gfp_t gfp)
2677 {
2678 	struct tcp_sock *tp = tcp_sk(sk);
2679 	struct sk_buff *skb;
2680 	unsigned int tso_segs, sent_pkts;
2681 	int cwnd_quota;
2682 	int result;
2683 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2684 	u32 max_segs;
2685 
2686 	sent_pkts = 0;
2687 
2688 	tcp_mstamp_refresh(tp);
2689 	if (!push_one) {
2690 		/* Do MTU probing. */
2691 		result = tcp_mtu_probe(sk);
2692 		if (!result) {
2693 			return false;
2694 		} else if (result > 0) {
2695 			sent_pkts = 1;
2696 		}
2697 	}
2698 
2699 	max_segs = tcp_tso_segs(sk, mss_now);
2700 	while ((skb = tcp_send_head(sk))) {
2701 		unsigned int limit;
2702 
2703 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2704 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2705 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2706 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2707 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2708 			tcp_init_tso_segs(skb, mss_now);
2709 			goto repair; /* Skip network transmission */
2710 		}
2711 
2712 		if (tcp_pacing_check(sk))
2713 			break;
2714 
2715 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2716 		BUG_ON(!tso_segs);
2717 
2718 		cwnd_quota = tcp_cwnd_test(tp, skb);
2719 		if (!cwnd_quota) {
2720 			if (push_one == 2)
2721 				/* Force out a loss probe pkt. */
2722 				cwnd_quota = 1;
2723 			else
2724 				break;
2725 		}
2726 
2727 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2728 			is_rwnd_limited = true;
2729 			break;
2730 		}
2731 
2732 		if (tso_segs == 1) {
2733 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2734 						     (tcp_skb_is_last(sk, skb) ?
2735 						      nonagle : TCP_NAGLE_PUSH))))
2736 				break;
2737 		} else {
2738 			if (!push_one &&
2739 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2740 						 &is_rwnd_limited, max_segs))
2741 				break;
2742 		}
2743 
2744 		limit = mss_now;
2745 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2746 			limit = tcp_mss_split_point(sk, skb, mss_now,
2747 						    min_t(unsigned int,
2748 							  cwnd_quota,
2749 							  max_segs),
2750 						    nonagle);
2751 
2752 		if (skb->len > limit &&
2753 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2754 			break;
2755 
2756 		if (tcp_small_queue_check(sk, skb, 0))
2757 			break;
2758 
2759 		/* Argh, we hit an empty skb(), presumably a thread
2760 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2761 		 * We do not want to send a pure-ack packet and have
2762 		 * a strange looking rtx queue with empty packet(s).
2763 		 */
2764 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2765 			break;
2766 
2767 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2768 			break;
2769 
2770 repair:
2771 		/* Advance the send_head.  This one is sent out.
2772 		 * This call will increment packets_out.
2773 		 */
2774 		tcp_event_new_data_sent(sk, skb);
2775 
2776 		tcp_minshall_update(tp, mss_now, skb);
2777 		sent_pkts += tcp_skb_pcount(skb);
2778 
2779 		if (push_one)
2780 			break;
2781 	}
2782 
2783 	if (is_rwnd_limited)
2784 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2785 	else
2786 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2787 
2788 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2789 	if (likely(sent_pkts || is_cwnd_limited))
2790 		tcp_cwnd_validate(sk, is_cwnd_limited);
2791 
2792 	if (likely(sent_pkts)) {
2793 		if (tcp_in_cwnd_reduction(sk))
2794 			tp->prr_out += sent_pkts;
2795 
2796 		/* Send one loss probe per tail loss episode. */
2797 		if (push_one != 2)
2798 			tcp_schedule_loss_probe(sk, false);
2799 		return false;
2800 	}
2801 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2802 }
2803 
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2804 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2805 {
2806 	struct inet_connection_sock *icsk = inet_csk(sk);
2807 	struct tcp_sock *tp = tcp_sk(sk);
2808 	u32 timeout, timeout_us, rto_delta_us;
2809 	int early_retrans;
2810 
2811 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2812 	 * finishes.
2813 	 */
2814 	if (rcu_access_pointer(tp->fastopen_rsk))
2815 		return false;
2816 
2817 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2818 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2819 	 * not in loss recovery, that are either limited by cwnd or application.
2820 	 */
2821 	if ((early_retrans != 3 && early_retrans != 4) ||
2822 	    !tp->packets_out || !tcp_is_sack(tp) ||
2823 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2824 	     icsk->icsk_ca_state != TCP_CA_CWR))
2825 		return false;
2826 
2827 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2828 	 * for delayed ack when there's one outstanding packet. If no RTT
2829 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2830 	 */
2831 	if (tp->srtt_us) {
2832 		timeout_us = tp->srtt_us >> 2;
2833 		if (tp->packets_out == 1)
2834 			timeout_us += tcp_rto_min_us(sk);
2835 		else
2836 			timeout_us += TCP_TIMEOUT_MIN_US;
2837 		timeout = usecs_to_jiffies(timeout_us);
2838 	} else {
2839 		timeout = TCP_TIMEOUT_INIT;
2840 	}
2841 
2842 	/* If the RTO formula yields an earlier time, then use that time. */
2843 	rto_delta_us = advancing_rto ?
2844 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2845 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2846 	if (rto_delta_us > 0)
2847 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2848 
2849 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2850 	return true;
2851 }
2852 
2853 /* Thanks to skb fast clones, we can detect if a prior transmit of
2854  * a packet is still in a qdisc or driver queue.
2855  * In this case, there is very little point doing a retransmit !
2856  */
skb_still_in_host_queue(struct sock * sk,const struct sk_buff * skb)2857 static bool skb_still_in_host_queue(struct sock *sk,
2858 				    const struct sk_buff *skb)
2859 {
2860 	if (unlikely(skb_fclone_busy(sk, skb))) {
2861 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2862 		smp_mb__after_atomic();
2863 		if (skb_fclone_busy(sk, skb)) {
2864 			NET_INC_STATS(sock_net(sk),
2865 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2866 			return true;
2867 		}
2868 	}
2869 	return false;
2870 }
2871 
2872 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2873  * retransmit the last segment.
2874  */
tcp_send_loss_probe(struct sock * sk)2875 void tcp_send_loss_probe(struct sock *sk)
2876 {
2877 	struct tcp_sock *tp = tcp_sk(sk);
2878 	struct sk_buff *skb;
2879 	int pcount;
2880 	int mss = tcp_current_mss(sk);
2881 
2882 	/* At most one outstanding TLP */
2883 	if (tp->tlp_high_seq)
2884 		goto rearm_timer;
2885 
2886 	tp->tlp_retrans = 0;
2887 	skb = tcp_send_head(sk);
2888 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2889 		pcount = tp->packets_out;
2890 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2891 		if (tp->packets_out > pcount)
2892 			goto probe_sent;
2893 		goto rearm_timer;
2894 	}
2895 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2896 	if (unlikely(!skb)) {
2897 		WARN_ONCE(tp->packets_out,
2898 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2899 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2900 		inet_csk(sk)->icsk_pending = 0;
2901 		return;
2902 	}
2903 
2904 	if (skb_still_in_host_queue(sk, skb))
2905 		goto rearm_timer;
2906 
2907 	pcount = tcp_skb_pcount(skb);
2908 	if (WARN_ON(!pcount))
2909 		goto rearm_timer;
2910 
2911 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2912 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2913 					  (pcount - 1) * mss, mss,
2914 					  GFP_ATOMIC)))
2915 			goto rearm_timer;
2916 		skb = skb_rb_next(skb);
2917 	}
2918 
2919 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2920 		goto rearm_timer;
2921 
2922 	if (__tcp_retransmit_skb(sk, skb, 1))
2923 		goto rearm_timer;
2924 
2925 	tp->tlp_retrans = 1;
2926 
2927 probe_sent:
2928 	/* Record snd_nxt for loss detection. */
2929 	tp->tlp_high_seq = tp->snd_nxt;
2930 
2931 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2932 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2933 	inet_csk(sk)->icsk_pending = 0;
2934 rearm_timer:
2935 	tcp_rearm_rto(sk);
2936 }
2937 
2938 /* Push out any pending frames which were held back due to
2939  * TCP_CORK or attempt at coalescing tiny packets.
2940  * The socket must be locked by the caller.
2941  */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2942 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2943 			       int nonagle)
2944 {
2945 	/* If we are closed, the bytes will have to remain here.
2946 	 * In time closedown will finish, we empty the write queue and
2947 	 * all will be happy.
2948 	 */
2949 	if (unlikely(sk->sk_state == TCP_CLOSE))
2950 		return;
2951 
2952 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2953 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2954 		tcp_check_probe_timer(sk);
2955 }
2956 
2957 /* Send _single_ skb sitting at the send head. This function requires
2958  * true push pending frames to setup probe timer etc.
2959  */
tcp_push_one(struct sock * sk,unsigned int mss_now)2960 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2961 {
2962 	struct sk_buff *skb = tcp_send_head(sk);
2963 
2964 	BUG_ON(!skb || skb->len < mss_now);
2965 
2966 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2967 }
2968 
2969 /* This function returns the amount that we can raise the
2970  * usable window based on the following constraints
2971  *
2972  * 1. The window can never be shrunk once it is offered (RFC 793)
2973  * 2. We limit memory per socket
2974  *
2975  * RFC 1122:
2976  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2977  *  RECV.NEXT + RCV.WIN fixed until:
2978  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2979  *
2980  * i.e. don't raise the right edge of the window until you can raise
2981  * it at least MSS bytes.
2982  *
2983  * Unfortunately, the recommended algorithm breaks header prediction,
2984  * since header prediction assumes th->window stays fixed.
2985  *
2986  * Strictly speaking, keeping th->window fixed violates the receiver
2987  * side SWS prevention criteria. The problem is that under this rule
2988  * a stream of single byte packets will cause the right side of the
2989  * window to always advance by a single byte.
2990  *
2991  * Of course, if the sender implements sender side SWS prevention
2992  * then this will not be a problem.
2993  *
2994  * BSD seems to make the following compromise:
2995  *
2996  *	If the free space is less than the 1/4 of the maximum
2997  *	space available and the free space is less than 1/2 mss,
2998  *	then set the window to 0.
2999  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3000  *	Otherwise, just prevent the window from shrinking
3001  *	and from being larger than the largest representable value.
3002  *
3003  * This prevents incremental opening of the window in the regime
3004  * where TCP is limited by the speed of the reader side taking
3005  * data out of the TCP receive queue. It does nothing about
3006  * those cases where the window is constrained on the sender side
3007  * because the pipeline is full.
3008  *
3009  * BSD also seems to "accidentally" limit itself to windows that are a
3010  * multiple of MSS, at least until the free space gets quite small.
3011  * This would appear to be a side effect of the mbuf implementation.
3012  * Combining these two algorithms results in the observed behavior
3013  * of having a fixed window size at almost all times.
3014  *
3015  * Below we obtain similar behavior by forcing the offered window to
3016  * a multiple of the mss when it is feasible to do so.
3017  *
3018  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3019  * Regular options like TIMESTAMP are taken into account.
3020  */
__tcp_select_window(struct sock * sk)3021 u32 __tcp_select_window(struct sock *sk)
3022 {
3023 	struct inet_connection_sock *icsk = inet_csk(sk);
3024 	struct tcp_sock *tp = tcp_sk(sk);
3025 	struct net *net = sock_net(sk);
3026 	/* MSS for the peer's data.  Previous versions used mss_clamp
3027 	 * here.  I don't know if the value based on our guesses
3028 	 * of peer's MSS is better for the performance.  It's more correct
3029 	 * but may be worse for the performance because of rcv_mss
3030 	 * fluctuations.  --SAW  1998/11/1
3031 	 */
3032 	int mss = icsk->icsk_ack.rcv_mss;
3033 	int free_space = tcp_space(sk);
3034 	int allowed_space = tcp_full_space(sk);
3035 	int full_space, window;
3036 
3037 	if (sk_is_mptcp(sk))
3038 		mptcp_space(sk, &free_space, &allowed_space);
3039 
3040 	full_space = min_t(int, tp->window_clamp, allowed_space);
3041 
3042 	if (unlikely(mss > full_space)) {
3043 		mss = full_space;
3044 		if (mss <= 0)
3045 			return 0;
3046 	}
3047 
3048 	/* Only allow window shrink if the sysctl is enabled and we have
3049 	 * a non-zero scaling factor in effect.
3050 	 */
3051 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3052 		goto shrink_window_allowed;
3053 
3054 	/* do not allow window to shrink */
3055 
3056 	if (free_space < (full_space >> 1)) {
3057 		icsk->icsk_ack.quick = 0;
3058 
3059 		if (tcp_under_memory_pressure(sk))
3060 			tcp_adjust_rcv_ssthresh(sk);
3061 
3062 		/* free_space might become our new window, make sure we don't
3063 		 * increase it due to wscale.
3064 		 */
3065 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3066 
3067 		/* if free space is less than mss estimate, or is below 1/16th
3068 		 * of the maximum allowed, try to move to zero-window, else
3069 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3070 		 * new incoming data is dropped due to memory limits.
3071 		 * With large window, mss test triggers way too late in order
3072 		 * to announce zero window in time before rmem limit kicks in.
3073 		 */
3074 		if (free_space < (allowed_space >> 4) || free_space < mss)
3075 			return 0;
3076 	}
3077 
3078 	if (free_space > tp->rcv_ssthresh)
3079 		free_space = tp->rcv_ssthresh;
3080 
3081 	/* Don't do rounding if we are using window scaling, since the
3082 	 * scaled window will not line up with the MSS boundary anyway.
3083 	 */
3084 	if (tp->rx_opt.rcv_wscale) {
3085 		window = free_space;
3086 
3087 		/* Advertise enough space so that it won't get scaled away.
3088 		 * Import case: prevent zero window announcement if
3089 		 * 1<<rcv_wscale > mss.
3090 		 */
3091 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3092 	} else {
3093 		window = tp->rcv_wnd;
3094 		/* Get the largest window that is a nice multiple of mss.
3095 		 * Window clamp already applied above.
3096 		 * If our current window offering is within 1 mss of the
3097 		 * free space we just keep it. This prevents the divide
3098 		 * and multiply from happening most of the time.
3099 		 * We also don't do any window rounding when the free space
3100 		 * is too small.
3101 		 */
3102 		if (window <= free_space - mss || window > free_space)
3103 			window = rounddown(free_space, mss);
3104 		else if (mss == full_space &&
3105 			 free_space > window + (full_space >> 1))
3106 			window = free_space;
3107 	}
3108 
3109 	return window;
3110 
3111 shrink_window_allowed:
3112 	/* new window should always be an exact multiple of scaling factor */
3113 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3114 
3115 	if (free_space < (full_space >> 1)) {
3116 		icsk->icsk_ack.quick = 0;
3117 
3118 		if (tcp_under_memory_pressure(sk))
3119 			tcp_adjust_rcv_ssthresh(sk);
3120 
3121 		/* if free space is too low, return a zero window */
3122 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3123 			free_space < (1 << tp->rx_opt.rcv_wscale))
3124 			return 0;
3125 	}
3126 
3127 	if (free_space > tp->rcv_ssthresh) {
3128 		free_space = tp->rcv_ssthresh;
3129 		/* new window should always be an exact multiple of scaling factor
3130 		 *
3131 		 * For this case, we ALIGN "up" (increase free_space) because
3132 		 * we know free_space is not zero here, it has been reduced from
3133 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3134 		 * (unlike sk_rcvbuf).
3135 		 */
3136 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3137 	}
3138 
3139 	return free_space;
3140 }
3141 
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3142 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3143 			     const struct sk_buff *next_skb)
3144 {
3145 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3146 		const struct skb_shared_info *next_shinfo =
3147 			skb_shinfo(next_skb);
3148 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3149 
3150 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3151 		shinfo->tskey = next_shinfo->tskey;
3152 		TCP_SKB_CB(skb)->txstamp_ack |=
3153 			TCP_SKB_CB(next_skb)->txstamp_ack;
3154 	}
3155 }
3156 
3157 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3158 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3159 {
3160 	struct tcp_sock *tp = tcp_sk(sk);
3161 	struct sk_buff *next_skb = skb_rb_next(skb);
3162 	int next_skb_size;
3163 
3164 	next_skb_size = next_skb->len;
3165 
3166 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3167 
3168 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3169 		return false;
3170 
3171 	tcp_highest_sack_replace(sk, next_skb, skb);
3172 
3173 	/* Update sequence range on original skb. */
3174 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3175 
3176 	/* Merge over control information. This moves PSH/FIN etc. over */
3177 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3178 
3179 	/* All done, get rid of second SKB and account for it so
3180 	 * packet counting does not break.
3181 	 */
3182 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3183 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3184 
3185 	/* changed transmit queue under us so clear hints */
3186 	tcp_clear_retrans_hints_partial(tp);
3187 	if (next_skb == tp->retransmit_skb_hint)
3188 		tp->retransmit_skb_hint = skb;
3189 
3190 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3191 
3192 	tcp_skb_collapse_tstamp(skb, next_skb);
3193 
3194 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3195 	return true;
3196 }
3197 
3198 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3199 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3200 {
3201 	if (tcp_skb_pcount(skb) > 1)
3202 		return false;
3203 	if (skb_cloned(skb))
3204 		return false;
3205 	/* Some heuristics for collapsing over SACK'd could be invented */
3206 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3207 		return false;
3208 
3209 	return true;
3210 }
3211 
3212 /* Collapse packets in the retransmit queue to make to create
3213  * less packets on the wire. This is only done on retransmission.
3214  */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3215 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3216 				     int space)
3217 {
3218 	struct tcp_sock *tp = tcp_sk(sk);
3219 	struct sk_buff *skb = to, *tmp;
3220 	bool first = true;
3221 
3222 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3223 		return;
3224 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3225 		return;
3226 
3227 	skb_rbtree_walk_from_safe(skb, tmp) {
3228 		if (!tcp_can_collapse(sk, skb))
3229 			break;
3230 
3231 		if (!tcp_skb_can_collapse(to, skb))
3232 			break;
3233 
3234 		space -= skb->len;
3235 
3236 		if (first) {
3237 			first = false;
3238 			continue;
3239 		}
3240 
3241 		if (space < 0)
3242 			break;
3243 
3244 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3245 			break;
3246 
3247 		if (!tcp_collapse_retrans(sk, to))
3248 			break;
3249 	}
3250 }
3251 
3252 /* This retransmits one SKB.  Policy decisions and retransmit queue
3253  * state updates are done by the caller.  Returns non-zero if an
3254  * error occurred which prevented the send.
3255  */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3256 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3257 {
3258 	struct inet_connection_sock *icsk = inet_csk(sk);
3259 	struct tcp_sock *tp = tcp_sk(sk);
3260 	unsigned int cur_mss;
3261 	int diff, len, err;
3262 	int avail_wnd;
3263 
3264 	/* Inconclusive MTU probe */
3265 	if (icsk->icsk_mtup.probe_size)
3266 		icsk->icsk_mtup.probe_size = 0;
3267 
3268 	if (skb_still_in_host_queue(sk, skb))
3269 		return -EBUSY;
3270 
3271 start:
3272 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3273 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3274 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3275 			TCP_SKB_CB(skb)->seq++;
3276 			goto start;
3277 		}
3278 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3279 			WARN_ON_ONCE(1);
3280 			return -EINVAL;
3281 		}
3282 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3283 			return -ENOMEM;
3284 	}
3285 
3286 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3287 		return -EHOSTUNREACH; /* Routing failure or similar. */
3288 
3289 	cur_mss = tcp_current_mss(sk);
3290 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3291 
3292 	/* If receiver has shrunk his window, and skb is out of
3293 	 * new window, do not retransmit it. The exception is the
3294 	 * case, when window is shrunk to zero. In this case
3295 	 * our retransmit of one segment serves as a zero window probe.
3296 	 */
3297 	if (avail_wnd <= 0) {
3298 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3299 			return -EAGAIN;
3300 		avail_wnd = cur_mss;
3301 	}
3302 
3303 	len = cur_mss * segs;
3304 	if (len > avail_wnd) {
3305 		len = rounddown(avail_wnd, cur_mss);
3306 		if (!len)
3307 			len = avail_wnd;
3308 	}
3309 	if (skb->len > len) {
3310 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3311 				 cur_mss, GFP_ATOMIC))
3312 			return -ENOMEM; /* We'll try again later. */
3313 	} else {
3314 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3315 			return -ENOMEM;
3316 
3317 		diff = tcp_skb_pcount(skb);
3318 		tcp_set_skb_tso_segs(skb, cur_mss);
3319 		diff -= tcp_skb_pcount(skb);
3320 		if (diff)
3321 			tcp_adjust_pcount(sk, skb, diff);
3322 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3323 		if (skb->len < avail_wnd)
3324 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3325 	}
3326 
3327 	/* RFC3168, section 6.1.1.1. ECN fallback */
3328 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3329 		tcp_ecn_clear_syn(sk, skb);
3330 
3331 	/* Update global and local TCP statistics. */
3332 	segs = tcp_skb_pcount(skb);
3333 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3334 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3335 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3336 	tp->total_retrans += segs;
3337 	tp->bytes_retrans += skb->len;
3338 
3339 	/* make sure skb->data is aligned on arches that require it
3340 	 * and check if ack-trimming & collapsing extended the headroom
3341 	 * beyond what csum_start can cover.
3342 	 */
3343 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3344 		     skb_headroom(skb) >= 0xFFFF)) {
3345 		struct sk_buff *nskb;
3346 
3347 		tcp_skb_tsorted_save(skb) {
3348 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3349 			if (nskb) {
3350 				nskb->dev = NULL;
3351 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3352 			} else {
3353 				err = -ENOBUFS;
3354 			}
3355 		} tcp_skb_tsorted_restore(skb);
3356 
3357 		if (!err) {
3358 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3359 			tcp_rate_skb_sent(sk, skb);
3360 		}
3361 	} else {
3362 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3363 	}
3364 
3365 	/* To avoid taking spuriously low RTT samples based on a timestamp
3366 	 * for a transmit that never happened, always mark EVER_RETRANS
3367 	 */
3368 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3369 
3370 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3371 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3372 				  TCP_SKB_CB(skb)->seq, segs, err);
3373 
3374 	if (likely(!err)) {
3375 		trace_tcp_retransmit_skb(sk, skb);
3376 	} else if (err != -EBUSY) {
3377 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3378 	}
3379 	return err;
3380 }
3381 
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3382 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3383 {
3384 	struct tcp_sock *tp = tcp_sk(sk);
3385 	int err = __tcp_retransmit_skb(sk, skb, segs);
3386 
3387 	if (err == 0) {
3388 #if FASTRETRANS_DEBUG > 0
3389 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3390 			net_dbg_ratelimited("retrans_out leaked\n");
3391 		}
3392 #endif
3393 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3394 		tp->retrans_out += tcp_skb_pcount(skb);
3395 	}
3396 
3397 	/* Save stamp of the first (attempted) retransmit. */
3398 	if (!tp->retrans_stamp)
3399 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3400 
3401 	if (tp->undo_retrans < 0)
3402 		tp->undo_retrans = 0;
3403 	tp->undo_retrans += tcp_skb_pcount(skb);
3404 	return err;
3405 }
3406 
3407 /* This gets called after a retransmit timeout, and the initially
3408  * retransmitted data is acknowledged.  It tries to continue
3409  * resending the rest of the retransmit queue, until either
3410  * we've sent it all or the congestion window limit is reached.
3411  */
tcp_xmit_retransmit_queue(struct sock * sk)3412 void tcp_xmit_retransmit_queue(struct sock *sk)
3413 {
3414 	const struct inet_connection_sock *icsk = inet_csk(sk);
3415 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3416 	struct tcp_sock *tp = tcp_sk(sk);
3417 	bool rearm_timer = false;
3418 	u32 max_segs;
3419 	int mib_idx;
3420 
3421 	if (!tp->packets_out)
3422 		return;
3423 
3424 	rtx_head = tcp_rtx_queue_head(sk);
3425 	skb = tp->retransmit_skb_hint ?: rtx_head;
3426 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3427 	skb_rbtree_walk_from(skb) {
3428 		__u8 sacked;
3429 		int segs;
3430 
3431 		if (tcp_pacing_check(sk))
3432 			break;
3433 
3434 		/* we could do better than to assign each time */
3435 		if (!hole)
3436 			tp->retransmit_skb_hint = skb;
3437 
3438 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3439 		if (segs <= 0)
3440 			break;
3441 		sacked = TCP_SKB_CB(skb)->sacked;
3442 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3443 		 * we need to make sure not sending too bigs TSO packets
3444 		 */
3445 		segs = min_t(int, segs, max_segs);
3446 
3447 		if (tp->retrans_out >= tp->lost_out) {
3448 			break;
3449 		} else if (!(sacked & TCPCB_LOST)) {
3450 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3451 				hole = skb;
3452 			continue;
3453 
3454 		} else {
3455 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3456 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3457 			else
3458 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3459 		}
3460 
3461 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3462 			continue;
3463 
3464 		if (tcp_small_queue_check(sk, skb, 1))
3465 			break;
3466 
3467 		if (tcp_retransmit_skb(sk, skb, segs))
3468 			break;
3469 
3470 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3471 
3472 		if (tcp_in_cwnd_reduction(sk))
3473 			tp->prr_out += tcp_skb_pcount(skb);
3474 
3475 		if (skb == rtx_head &&
3476 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3477 			rearm_timer = true;
3478 
3479 	}
3480 	if (rearm_timer)
3481 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3482 				     inet_csk(sk)->icsk_rto,
3483 				     TCP_RTO_MAX);
3484 }
3485 
3486 /* We allow to exceed memory limits for FIN packets to expedite
3487  * connection tear down and (memory) recovery.
3488  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3489  * or even be forced to close flow without any FIN.
3490  * In general, we want to allow one skb per socket to avoid hangs
3491  * with edge trigger epoll()
3492  */
sk_forced_mem_schedule(struct sock * sk,int size)3493 void sk_forced_mem_schedule(struct sock *sk, int size)
3494 {
3495 	int delta, amt;
3496 
3497 	delta = size - sk->sk_forward_alloc;
3498 	if (delta <= 0)
3499 		return;
3500 	amt = sk_mem_pages(delta);
3501 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3502 	sk_memory_allocated_add(sk, amt);
3503 
3504 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3505 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3506 					gfp_memcg_charge() | __GFP_NOFAIL);
3507 }
3508 
3509 /* Send a FIN. The caller locks the socket for us.
3510  * We should try to send a FIN packet really hard, but eventually give up.
3511  */
tcp_send_fin(struct sock * sk)3512 void tcp_send_fin(struct sock *sk)
3513 {
3514 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3515 	struct tcp_sock *tp = tcp_sk(sk);
3516 
3517 	/* Optimization, tack on the FIN if we have one skb in write queue and
3518 	 * this skb was not yet sent, or we are under memory pressure.
3519 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3520 	 * as TCP stack thinks it has already been transmitted.
3521 	 */
3522 	tskb = tail;
3523 	if (!tskb && tcp_under_memory_pressure(sk))
3524 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3525 
3526 	if (tskb) {
3527 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3528 		TCP_SKB_CB(tskb)->end_seq++;
3529 		tp->write_seq++;
3530 		if (!tail) {
3531 			/* This means tskb was already sent.
3532 			 * Pretend we included the FIN on previous transmit.
3533 			 * We need to set tp->snd_nxt to the value it would have
3534 			 * if FIN had been sent. This is because retransmit path
3535 			 * does not change tp->snd_nxt.
3536 			 */
3537 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3538 			return;
3539 		}
3540 	} else {
3541 		skb = alloc_skb_fclone(MAX_TCP_HEADER,
3542 				       sk_gfp_mask(sk, GFP_ATOMIC |
3543 						       __GFP_NOWARN));
3544 		if (unlikely(!skb))
3545 			return;
3546 
3547 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3548 		skb_reserve(skb, MAX_TCP_HEADER);
3549 		sk_forced_mem_schedule(sk, skb->truesize);
3550 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3551 		tcp_init_nondata_skb(skb, tp->write_seq,
3552 				     TCPHDR_ACK | TCPHDR_FIN);
3553 		tcp_queue_skb(sk, skb);
3554 	}
3555 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3556 }
3557 
3558 /* We get here when a process closes a file descriptor (either due to
3559  * an explicit close() or as a byproduct of exit()'ing) and there
3560  * was unread data in the receive queue.  This behavior is recommended
3561  * by RFC 2525, section 2.17.  -DaveM
3562  */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3563 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3564 {
3565 	struct sk_buff *skb;
3566 
3567 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3568 
3569 	/* NOTE: No TCP options attached and we never retransmit this. */
3570 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3571 	if (!skb) {
3572 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3573 		return;
3574 	}
3575 
3576 	/* Reserve space for headers and prepare control bits. */
3577 	skb_reserve(skb, MAX_TCP_HEADER);
3578 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3579 			     TCPHDR_ACK | TCPHDR_RST);
3580 	tcp_mstamp_refresh(tcp_sk(sk));
3581 	/* Send it off. */
3582 	if (tcp_transmit_skb(sk, skb, 0, priority))
3583 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3584 
3585 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3586 	 * skb here is different to the troublesome skb, so use NULL
3587 	 */
3588 	trace_tcp_send_reset(sk, NULL);
3589 }
3590 
3591 /* Send a crossed SYN-ACK during socket establishment.
3592  * WARNING: This routine must only be called when we have already sent
3593  * a SYN packet that crossed the incoming SYN that caused this routine
3594  * to get called. If this assumption fails then the initial rcv_wnd
3595  * and rcv_wscale values will not be correct.
3596  */
tcp_send_synack(struct sock * sk)3597 int tcp_send_synack(struct sock *sk)
3598 {
3599 	struct sk_buff *skb;
3600 
3601 	skb = tcp_rtx_queue_head(sk);
3602 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3603 		pr_err("%s: wrong queue state\n", __func__);
3604 		return -EFAULT;
3605 	}
3606 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3607 		if (skb_cloned(skb)) {
3608 			struct sk_buff *nskb;
3609 
3610 			tcp_skb_tsorted_save(skb) {
3611 				nskb = skb_copy(skb, GFP_ATOMIC);
3612 			} tcp_skb_tsorted_restore(skb);
3613 			if (!nskb)
3614 				return -ENOMEM;
3615 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3616 			tcp_highest_sack_replace(sk, skb, nskb);
3617 			tcp_rtx_queue_unlink_and_free(skb, sk);
3618 			__skb_header_release(nskb);
3619 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3620 			sk_wmem_queued_add(sk, nskb->truesize);
3621 			sk_mem_charge(sk, nskb->truesize);
3622 			skb = nskb;
3623 		}
3624 
3625 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3626 		tcp_ecn_send_synack(sk, skb);
3627 	}
3628 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3629 }
3630 
3631 /**
3632  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3633  * @sk: listener socket
3634  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3635  *       should not use it again.
3636  * @req: request_sock pointer
3637  * @foc: cookie for tcp fast open
3638  * @synack_type: Type of synack to prepare
3639  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3640  */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3641 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3642 				struct request_sock *req,
3643 				struct tcp_fastopen_cookie *foc,
3644 				enum tcp_synack_type synack_type,
3645 				struct sk_buff *syn_skb)
3646 {
3647 	struct inet_request_sock *ireq = inet_rsk(req);
3648 	const struct tcp_sock *tp = tcp_sk(sk);
3649 	struct tcp_md5sig_key *md5 = NULL;
3650 	struct tcp_out_options opts;
3651 	struct sk_buff *skb;
3652 	int tcp_header_size;
3653 	struct tcphdr *th;
3654 	int mss;
3655 	u64 now;
3656 
3657 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3658 	if (unlikely(!skb)) {
3659 		dst_release(dst);
3660 		return NULL;
3661 	}
3662 	/* Reserve space for headers. */
3663 	skb_reserve(skb, MAX_TCP_HEADER);
3664 
3665 	switch (synack_type) {
3666 	case TCP_SYNACK_NORMAL:
3667 		skb_set_owner_w(skb, req_to_sk(req));
3668 		break;
3669 	case TCP_SYNACK_COOKIE:
3670 		/* Under synflood, we do not attach skb to a socket,
3671 		 * to avoid false sharing.
3672 		 */
3673 		break;
3674 	case TCP_SYNACK_FASTOPEN:
3675 		/* sk is a const pointer, because we want to express multiple
3676 		 * cpu might call us concurrently.
3677 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3678 		 */
3679 		skb_set_owner_w(skb, (struct sock *)sk);
3680 		break;
3681 	}
3682 	skb_dst_set(skb, dst);
3683 
3684 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3685 
3686 	memset(&opts, 0, sizeof(opts));
3687 	now = tcp_clock_ns();
3688 #ifdef CONFIG_SYN_COOKIES
3689 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3690 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3691 				      true);
3692 	else
3693 #endif
3694 	{
3695 		skb_set_delivery_time(skb, now, true);
3696 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3697 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3698 	}
3699 
3700 #ifdef CONFIG_TCP_MD5SIG
3701 	rcu_read_lock();
3702 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3703 #endif
3704 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3705 	/* bpf program will be interested in the tcp_flags */
3706 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3707 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3708 					     foc, synack_type,
3709 					     syn_skb) + sizeof(*th);
3710 
3711 	skb_push(skb, tcp_header_size);
3712 	skb_reset_transport_header(skb);
3713 
3714 	th = (struct tcphdr *)skb->data;
3715 	memset(th, 0, sizeof(struct tcphdr));
3716 	th->syn = 1;
3717 	th->ack = 1;
3718 	tcp_ecn_make_synack(req, th);
3719 	th->source = htons(ireq->ir_num);
3720 	th->dest = ireq->ir_rmt_port;
3721 	skb->mark = ireq->ir_mark;
3722 	skb->ip_summed = CHECKSUM_PARTIAL;
3723 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3724 	/* XXX data is queued and acked as is. No buffer/window check */
3725 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3726 
3727 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3728 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3729 	tcp_options_write(th, NULL, &opts);
3730 	th->doff = (tcp_header_size >> 2);
3731 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3732 
3733 #ifdef CONFIG_TCP_MD5SIG
3734 	/* Okay, we have all we need - do the md5 hash if needed */
3735 	if (md5)
3736 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3737 					       md5, req_to_sk(req), skb);
3738 	rcu_read_unlock();
3739 #endif
3740 
3741 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3742 				synack_type, &opts);
3743 
3744 	skb_set_delivery_time(skb, now, true);
3745 	tcp_add_tx_delay(skb, tp);
3746 
3747 	return skb;
3748 }
3749 EXPORT_SYMBOL(tcp_make_synack);
3750 
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3751 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3752 {
3753 	struct inet_connection_sock *icsk = inet_csk(sk);
3754 	const struct tcp_congestion_ops *ca;
3755 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3756 
3757 	if (ca_key == TCP_CA_UNSPEC)
3758 		return;
3759 
3760 	rcu_read_lock();
3761 	ca = tcp_ca_find_key(ca_key);
3762 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3763 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3764 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3765 		icsk->icsk_ca_ops = ca;
3766 	}
3767 	rcu_read_unlock();
3768 }
3769 
3770 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3771 static void tcp_connect_init(struct sock *sk)
3772 {
3773 	const struct dst_entry *dst = __sk_dst_get(sk);
3774 	struct tcp_sock *tp = tcp_sk(sk);
3775 	__u8 rcv_wscale;
3776 	u32 rcv_wnd;
3777 
3778 	/* We'll fix this up when we get a response from the other end.
3779 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3780 	 */
3781 	tp->tcp_header_len = sizeof(struct tcphdr);
3782 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3783 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3784 
3785 	/* If user gave his TCP_MAXSEG, record it to clamp */
3786 	if (tp->rx_opt.user_mss)
3787 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3788 	tp->max_window = 0;
3789 	tcp_mtup_init(sk);
3790 	tcp_sync_mss(sk, dst_mtu(dst));
3791 
3792 	tcp_ca_dst_init(sk, dst);
3793 
3794 	if (!tp->window_clamp)
3795 		WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3796 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3797 
3798 	tcp_initialize_rcv_mss(sk);
3799 
3800 	/* limit the window selection if the user enforce a smaller rx buffer */
3801 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3802 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3803 		WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3804 
3805 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3806 	if (rcv_wnd == 0)
3807 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3808 
3809 	tcp_select_initial_window(sk, tcp_full_space(sk),
3810 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3811 				  &tp->rcv_wnd,
3812 				  &tp->window_clamp,
3813 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3814 				  &rcv_wscale,
3815 				  rcv_wnd);
3816 
3817 	tp->rx_opt.rcv_wscale = rcv_wscale;
3818 	tp->rcv_ssthresh = tp->rcv_wnd;
3819 
3820 	WRITE_ONCE(sk->sk_err, 0);
3821 	sock_reset_flag(sk, SOCK_DONE);
3822 	tp->snd_wnd = 0;
3823 	tcp_init_wl(tp, 0);
3824 	tcp_write_queue_purge(sk);
3825 	tp->snd_una = tp->write_seq;
3826 	tp->snd_sml = tp->write_seq;
3827 	tp->snd_up = tp->write_seq;
3828 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3829 
3830 	if (likely(!tp->repair))
3831 		tp->rcv_nxt = 0;
3832 	else
3833 		tp->rcv_tstamp = tcp_jiffies32;
3834 	tp->rcv_wup = tp->rcv_nxt;
3835 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3836 
3837 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3838 	inet_csk(sk)->icsk_retransmits = 0;
3839 	tcp_clear_retrans(tp);
3840 }
3841 
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3842 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3843 {
3844 	struct tcp_sock *tp = tcp_sk(sk);
3845 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3846 
3847 	tcb->end_seq += skb->len;
3848 	__skb_header_release(skb);
3849 	sk_wmem_queued_add(sk, skb->truesize);
3850 	sk_mem_charge(sk, skb->truesize);
3851 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3852 	tp->packets_out += tcp_skb_pcount(skb);
3853 }
3854 
3855 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3856  * queue a data-only packet after the regular SYN, such that regular SYNs
3857  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3858  * only the SYN sequence, the data are retransmitted in the first ACK.
3859  * If cookie is not cached or other error occurs, falls back to send a
3860  * regular SYN with Fast Open cookie request option.
3861  */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3862 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3863 {
3864 	struct inet_connection_sock *icsk = inet_csk(sk);
3865 	struct tcp_sock *tp = tcp_sk(sk);
3866 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3867 	struct page_frag *pfrag = sk_page_frag(sk);
3868 	struct sk_buff *syn_data;
3869 	int space, err = 0;
3870 
3871 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3872 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3873 		goto fallback;
3874 
3875 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3876 	 * user-MSS. Reserve maximum option space for middleboxes that add
3877 	 * private TCP options. The cost is reduced data space in SYN :(
3878 	 */
3879 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3880 	/* Sync mss_cache after updating the mss_clamp */
3881 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3882 
3883 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3884 		MAX_TCP_OPTION_SPACE;
3885 
3886 	space = min_t(size_t, space, fo->size);
3887 
3888 	if (space &&
3889 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3890 				  pfrag, sk->sk_allocation))
3891 		goto fallback;
3892 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3893 	if (!syn_data)
3894 		goto fallback;
3895 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3896 	if (space) {
3897 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3898 		space = tcp_wmem_schedule(sk, space);
3899 	}
3900 	if (space) {
3901 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3902 					    space, &fo->data->msg_iter);
3903 		if (unlikely(!space)) {
3904 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3905 			kfree_skb(syn_data);
3906 			goto fallback;
3907 		}
3908 		skb_fill_page_desc(syn_data, 0, pfrag->page,
3909 				   pfrag->offset, space);
3910 		page_ref_inc(pfrag->page);
3911 		pfrag->offset += space;
3912 		skb_len_add(syn_data, space);
3913 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3914 	}
3915 	/* No more data pending in inet_wait_for_connect() */
3916 	if (space == fo->size)
3917 		fo->data = NULL;
3918 	fo->copied = space;
3919 
3920 	tcp_connect_queue_skb(sk, syn_data);
3921 	if (syn_data->len)
3922 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3923 
3924 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3925 
3926 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3927 
3928 	/* Now full SYN+DATA was cloned and sent (or not),
3929 	 * remove the SYN from the original skb (syn_data)
3930 	 * we keep in write queue in case of a retransmit, as we
3931 	 * also have the SYN packet (with no data) in the same queue.
3932 	 */
3933 	TCP_SKB_CB(syn_data)->seq++;
3934 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3935 	if (!err) {
3936 		tp->syn_data = (fo->copied > 0);
3937 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3938 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3939 		goto done;
3940 	}
3941 
3942 	/* data was not sent, put it in write_queue */
3943 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3944 	tp->packets_out -= tcp_skb_pcount(syn_data);
3945 
3946 fallback:
3947 	/* Send a regular SYN with Fast Open cookie request option */
3948 	if (fo->cookie.len > 0)
3949 		fo->cookie.len = 0;
3950 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3951 	if (err)
3952 		tp->syn_fastopen = 0;
3953 done:
3954 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3955 	return err;
3956 }
3957 
3958 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3959 int tcp_connect(struct sock *sk)
3960 {
3961 	struct tcp_sock *tp = tcp_sk(sk);
3962 	struct sk_buff *buff;
3963 	int err;
3964 
3965 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3966 
3967 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3968 		return -EHOSTUNREACH; /* Routing failure or similar. */
3969 
3970 	tcp_connect_init(sk);
3971 
3972 	if (unlikely(tp->repair)) {
3973 		tcp_finish_connect(sk, NULL);
3974 		return 0;
3975 	}
3976 
3977 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
3978 	if (unlikely(!buff))
3979 		return -ENOBUFS;
3980 
3981 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3982 	tcp_mstamp_refresh(tp);
3983 	tp->retrans_stamp = tcp_time_stamp(tp);
3984 	tcp_connect_queue_skb(sk, buff);
3985 	tcp_ecn_send_syn(sk, buff);
3986 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3987 
3988 	/* Send off SYN; include data in Fast Open. */
3989 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3990 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3991 	if (err == -ECONNREFUSED)
3992 		return err;
3993 
3994 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3995 	 * in order to make this packet get counted in tcpOutSegs.
3996 	 */
3997 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3998 	tp->pushed_seq = tp->write_seq;
3999 	buff = tcp_send_head(sk);
4000 	if (unlikely(buff)) {
4001 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4002 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4003 	}
4004 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4005 
4006 	/* Timer for repeating the SYN until an answer. */
4007 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4008 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4009 	return 0;
4010 }
4011 EXPORT_SYMBOL(tcp_connect);
4012 
tcp_delack_max(const struct sock * sk)4013 u32 tcp_delack_max(const struct sock *sk)
4014 {
4015 	const struct dst_entry *dst = __sk_dst_get(sk);
4016 	u32 delack_max = inet_csk(sk)->icsk_delack_max;
4017 
4018 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
4019 		u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
4020 		u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
4021 
4022 		delack_max = min_t(u32, delack_max, delack_from_rto_min);
4023 	}
4024 	return delack_max;
4025 }
4026 
4027 /* Send out a delayed ack, the caller does the policy checking
4028  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4029  * for details.
4030  */
tcp_send_delayed_ack(struct sock * sk)4031 void tcp_send_delayed_ack(struct sock *sk)
4032 {
4033 	struct inet_connection_sock *icsk = inet_csk(sk);
4034 	int ato = icsk->icsk_ack.ato;
4035 	unsigned long timeout;
4036 
4037 	if (ato > TCP_DELACK_MIN) {
4038 		const struct tcp_sock *tp = tcp_sk(sk);
4039 		int max_ato = HZ / 2;
4040 
4041 		if (inet_csk_in_pingpong_mode(sk) ||
4042 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4043 			max_ato = TCP_DELACK_MAX;
4044 
4045 		/* Slow path, intersegment interval is "high". */
4046 
4047 		/* If some rtt estimate is known, use it to bound delayed ack.
4048 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4049 		 * directly.
4050 		 */
4051 		if (tp->srtt_us) {
4052 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4053 					TCP_DELACK_MIN);
4054 
4055 			if (rtt < max_ato)
4056 				max_ato = rtt;
4057 		}
4058 
4059 		ato = min(ato, max_ato);
4060 	}
4061 
4062 	ato = min_t(u32, ato, tcp_delack_max(sk));
4063 
4064 	/* Stay within the limit we were given */
4065 	timeout = jiffies + ato;
4066 
4067 	/* Use new timeout only if there wasn't a older one earlier. */
4068 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4069 		/* If delack timer is about to expire, send ACK now. */
4070 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4071 			tcp_send_ack(sk);
4072 			return;
4073 		}
4074 
4075 		if (!time_before(timeout, icsk->icsk_ack.timeout))
4076 			timeout = icsk->icsk_ack.timeout;
4077 	}
4078 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4079 	icsk->icsk_ack.timeout = timeout;
4080 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4081 }
4082 
4083 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)4084 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4085 {
4086 	struct sk_buff *buff;
4087 
4088 	/* If we have been reset, we may not send again. */
4089 	if (sk->sk_state == TCP_CLOSE)
4090 		return;
4091 
4092 	/* We are not putting this on the write queue, so
4093 	 * tcp_transmit_skb() will set the ownership to this
4094 	 * sock.
4095 	 */
4096 	buff = alloc_skb(MAX_TCP_HEADER,
4097 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4098 	if (unlikely(!buff)) {
4099 		struct inet_connection_sock *icsk = inet_csk(sk);
4100 		unsigned long delay;
4101 
4102 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4103 		if (delay < TCP_RTO_MAX)
4104 			icsk->icsk_ack.retry++;
4105 		inet_csk_schedule_ack(sk);
4106 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4107 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4108 		return;
4109 	}
4110 
4111 	/* Reserve space for headers and prepare control bits. */
4112 	skb_reserve(buff, MAX_TCP_HEADER);
4113 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4114 
4115 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4116 	 * too much.
4117 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4118 	 */
4119 	skb_set_tcp_pure_ack(buff);
4120 
4121 	/* Send it off, this clears delayed acks for us. */
4122 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4123 }
4124 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4125 
tcp_send_ack(struct sock * sk)4126 void tcp_send_ack(struct sock *sk)
4127 {
4128 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4129 }
4130 
4131 /* This routine sends a packet with an out of date sequence
4132  * number. It assumes the other end will try to ack it.
4133  *
4134  * Question: what should we make while urgent mode?
4135  * 4.4BSD forces sending single byte of data. We cannot send
4136  * out of window data, because we have SND.NXT==SND.MAX...
4137  *
4138  * Current solution: to send TWO zero-length segments in urgent mode:
4139  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4140  * out-of-date with SND.UNA-1 to probe window.
4141  */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4142 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4143 {
4144 	struct tcp_sock *tp = tcp_sk(sk);
4145 	struct sk_buff *skb;
4146 
4147 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4148 	skb = alloc_skb(MAX_TCP_HEADER,
4149 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4150 	if (!skb)
4151 		return -1;
4152 
4153 	/* Reserve space for headers and set control bits. */
4154 	skb_reserve(skb, MAX_TCP_HEADER);
4155 	/* Use a previous sequence.  This should cause the other
4156 	 * end to send an ack.  Don't queue or clone SKB, just
4157 	 * send it.
4158 	 */
4159 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4160 	NET_INC_STATS(sock_net(sk), mib);
4161 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4162 }
4163 
4164 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4165 void tcp_send_window_probe(struct sock *sk)
4166 {
4167 	if (sk->sk_state == TCP_ESTABLISHED) {
4168 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4169 		tcp_mstamp_refresh(tcp_sk(sk));
4170 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4171 	}
4172 }
4173 
4174 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4175 int tcp_write_wakeup(struct sock *sk, int mib)
4176 {
4177 	struct tcp_sock *tp = tcp_sk(sk);
4178 	struct sk_buff *skb;
4179 
4180 	if (sk->sk_state == TCP_CLOSE)
4181 		return -1;
4182 
4183 	skb = tcp_send_head(sk);
4184 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4185 		int err;
4186 		unsigned int mss = tcp_current_mss(sk);
4187 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4188 
4189 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4190 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4191 
4192 		/* We are probing the opening of a window
4193 		 * but the window size is != 0
4194 		 * must have been a result SWS avoidance ( sender )
4195 		 */
4196 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4197 		    skb->len > mss) {
4198 			seg_size = min(seg_size, mss);
4199 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4200 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4201 					 skb, seg_size, mss, GFP_ATOMIC))
4202 				return -1;
4203 		} else if (!tcp_skb_pcount(skb))
4204 			tcp_set_skb_tso_segs(skb, mss);
4205 
4206 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4207 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4208 		if (!err)
4209 			tcp_event_new_data_sent(sk, skb);
4210 		return err;
4211 	} else {
4212 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4213 			tcp_xmit_probe_skb(sk, 1, mib);
4214 		return tcp_xmit_probe_skb(sk, 0, mib);
4215 	}
4216 }
4217 
4218 /* A window probe timeout has occurred.  If window is not closed send
4219  * a partial packet else a zero probe.
4220  */
tcp_send_probe0(struct sock * sk)4221 void tcp_send_probe0(struct sock *sk)
4222 {
4223 	struct inet_connection_sock *icsk = inet_csk(sk);
4224 	struct tcp_sock *tp = tcp_sk(sk);
4225 	struct net *net = sock_net(sk);
4226 	unsigned long timeout;
4227 	int err;
4228 
4229 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4230 
4231 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4232 		/* Cancel probe timer, if it is not required. */
4233 		icsk->icsk_probes_out = 0;
4234 		icsk->icsk_backoff = 0;
4235 		icsk->icsk_probes_tstamp = 0;
4236 		return;
4237 	}
4238 
4239 	icsk->icsk_probes_out++;
4240 	if (err <= 0) {
4241 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4242 			icsk->icsk_backoff++;
4243 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4244 	} else {
4245 		/* If packet was not sent due to local congestion,
4246 		 * Let senders fight for local resources conservatively.
4247 		 */
4248 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4249 	}
4250 
4251 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4252 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4253 }
4254 
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4255 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4256 {
4257 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4258 	struct flowi fl;
4259 	int res;
4260 
4261 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4262 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4263 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4264 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4265 				  NULL);
4266 	if (!res) {
4267 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4268 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4269 		if (unlikely(tcp_passive_fastopen(sk))) {
4270 			/* sk has const attribute because listeners are lockless.
4271 			 * However in this case, we are dealing with a passive fastopen
4272 			 * socket thus we can change total_retrans value.
4273 			 */
4274 			tcp_sk_rw(sk)->total_retrans++;
4275 		}
4276 		trace_tcp_retransmit_synack(sk, req);
4277 	}
4278 	return res;
4279 }
4280 EXPORT_SYMBOL(tcp_rtx_synack);
4281