1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
44
45 #include <net/strparser.h>
46 #include <net/tls.h>
47 #include <trace/events/sock.h>
48
49 #include "tls.h"
50
51 struct tls_decrypt_arg {
52 struct_group(inargs,
53 bool zc;
54 bool async;
55 bool async_done;
56 u8 tail;
57 );
58
59 struct sk_buff *skb;
60 };
61
62 struct tls_decrypt_ctx {
63 struct sock *sk;
64 u8 iv[MAX_IV_SIZE];
65 u8 aad[TLS_MAX_AAD_SIZE];
66 u8 tail;
67 bool free_sgout;
68 struct scatterlist sg[];
69 };
70
tls_err_abort(struct sock * sk,int err)71 noinline void tls_err_abort(struct sock *sk, int err)
72 {
73 WARN_ON_ONCE(err >= 0);
74 /* sk->sk_err should contain a positive error code. */
75 WRITE_ONCE(sk->sk_err, -err);
76 /* Paired with smp_rmb() in tcp_poll() */
77 smp_wmb();
78 sk_error_report(sk);
79 }
80
__skb_nsg(struct sk_buff * skb,int offset,int len,unsigned int recursion_level)81 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
82 unsigned int recursion_level)
83 {
84 int start = skb_headlen(skb);
85 int i, chunk = start - offset;
86 struct sk_buff *frag_iter;
87 int elt = 0;
88
89 if (unlikely(recursion_level >= 24))
90 return -EMSGSIZE;
91
92 if (chunk > 0) {
93 if (chunk > len)
94 chunk = len;
95 elt++;
96 len -= chunk;
97 if (len == 0)
98 return elt;
99 offset += chunk;
100 }
101
102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
103 int end;
104
105 WARN_ON(start > offset + len);
106
107 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
108 chunk = end - offset;
109 if (chunk > 0) {
110 if (chunk > len)
111 chunk = len;
112 elt++;
113 len -= chunk;
114 if (len == 0)
115 return elt;
116 offset += chunk;
117 }
118 start = end;
119 }
120
121 if (unlikely(skb_has_frag_list(skb))) {
122 skb_walk_frags(skb, frag_iter) {
123 int end, ret;
124
125 WARN_ON(start > offset + len);
126
127 end = start + frag_iter->len;
128 chunk = end - offset;
129 if (chunk > 0) {
130 if (chunk > len)
131 chunk = len;
132 ret = __skb_nsg(frag_iter, offset - start, chunk,
133 recursion_level + 1);
134 if (unlikely(ret < 0))
135 return ret;
136 elt += ret;
137 len -= chunk;
138 if (len == 0)
139 return elt;
140 offset += chunk;
141 }
142 start = end;
143 }
144 }
145 BUG_ON(len);
146 return elt;
147 }
148
149 /* Return the number of scatterlist elements required to completely map the
150 * skb, or -EMSGSIZE if the recursion depth is exceeded.
151 */
skb_nsg(struct sk_buff * skb,int offset,int len)152 static int skb_nsg(struct sk_buff *skb, int offset, int len)
153 {
154 return __skb_nsg(skb, offset, len, 0);
155 }
156
tls_padding_length(struct tls_prot_info * prot,struct sk_buff * skb,struct tls_decrypt_arg * darg)157 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
158 struct tls_decrypt_arg *darg)
159 {
160 struct strp_msg *rxm = strp_msg(skb);
161 struct tls_msg *tlm = tls_msg(skb);
162 int sub = 0;
163
164 /* Determine zero-padding length */
165 if (prot->version == TLS_1_3_VERSION) {
166 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
167 char content_type = darg->zc ? darg->tail : 0;
168 int err;
169
170 while (content_type == 0) {
171 if (offset < prot->prepend_size)
172 return -EBADMSG;
173 err = skb_copy_bits(skb, rxm->offset + offset,
174 &content_type, 1);
175 if (err)
176 return err;
177 if (content_type)
178 break;
179 sub++;
180 offset--;
181 }
182 tlm->control = content_type;
183 }
184 return sub;
185 }
186
tls_decrypt_done(void * data,int err)187 static void tls_decrypt_done(void *data, int err)
188 {
189 struct aead_request *aead_req = data;
190 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
191 struct scatterlist *sgout = aead_req->dst;
192 struct tls_sw_context_rx *ctx;
193 struct tls_decrypt_ctx *dctx;
194 struct tls_context *tls_ctx;
195 struct scatterlist *sg;
196 unsigned int pages;
197 struct sock *sk;
198 int aead_size;
199
200 /* If requests get too backlogged crypto API returns -EBUSY and calls
201 * ->complete(-EINPROGRESS) immediately followed by ->complete(0)
202 * to make waiting for backlog to flush with crypto_wait_req() easier.
203 * First wait converts -EBUSY -> -EINPROGRESS, and the second one
204 * -EINPROGRESS -> 0.
205 * We have a single struct crypto_async_request per direction, this
206 * scheme doesn't help us, so just ignore the first ->complete().
207 */
208 if (err == -EINPROGRESS)
209 return;
210
211 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
212 aead_size = ALIGN(aead_size, __alignof__(*dctx));
213 dctx = (void *)((u8 *)aead_req + aead_size);
214
215 sk = dctx->sk;
216 tls_ctx = tls_get_ctx(sk);
217 ctx = tls_sw_ctx_rx(tls_ctx);
218
219 /* Propagate if there was an err */
220 if (err) {
221 if (err == -EBADMSG)
222 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
223 ctx->async_wait.err = err;
224 tls_err_abort(sk, err);
225 }
226
227 /* Free the destination pages if skb was not decrypted inplace */
228 if (dctx->free_sgout) {
229 /* Skip the first S/G entry as it points to AAD */
230 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
231 if (!sg)
232 break;
233 put_page(sg_page(sg));
234 }
235 }
236
237 kfree(aead_req);
238
239 if (atomic_dec_and_test(&ctx->decrypt_pending))
240 complete(&ctx->async_wait.completion);
241 }
242
tls_decrypt_async_wait(struct tls_sw_context_rx * ctx)243 static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx)
244 {
245 if (!atomic_dec_and_test(&ctx->decrypt_pending))
246 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
247 atomic_inc(&ctx->decrypt_pending);
248
249 return ctx->async_wait.err;
250 }
251
tls_do_decryption(struct sock * sk,struct scatterlist * sgin,struct scatterlist * sgout,char * iv_recv,size_t data_len,struct aead_request * aead_req,struct tls_decrypt_arg * darg)252 static int tls_do_decryption(struct sock *sk,
253 struct scatterlist *sgin,
254 struct scatterlist *sgout,
255 char *iv_recv,
256 size_t data_len,
257 struct aead_request *aead_req,
258 struct tls_decrypt_arg *darg)
259 {
260 struct tls_context *tls_ctx = tls_get_ctx(sk);
261 struct tls_prot_info *prot = &tls_ctx->prot_info;
262 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
263 int ret;
264
265 aead_request_set_tfm(aead_req, ctx->aead_recv);
266 aead_request_set_ad(aead_req, prot->aad_size);
267 aead_request_set_crypt(aead_req, sgin, sgout,
268 data_len + prot->tag_size,
269 (u8 *)iv_recv);
270
271 if (darg->async) {
272 aead_request_set_callback(aead_req,
273 CRYPTO_TFM_REQ_MAY_BACKLOG,
274 tls_decrypt_done, aead_req);
275 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1);
276 atomic_inc(&ctx->decrypt_pending);
277 } else {
278 DECLARE_CRYPTO_WAIT(wait);
279
280 aead_request_set_callback(aead_req,
281 CRYPTO_TFM_REQ_MAY_BACKLOG,
282 crypto_req_done, &wait);
283 ret = crypto_aead_decrypt(aead_req);
284 if (ret == -EINPROGRESS || ret == -EBUSY)
285 ret = crypto_wait_req(ret, &wait);
286 return ret;
287 }
288
289 ret = crypto_aead_decrypt(aead_req);
290 if (ret == -EINPROGRESS)
291 return 0;
292
293 if (ret == -EBUSY) {
294 ret = tls_decrypt_async_wait(ctx);
295 darg->async_done = true;
296 /* all completions have run, we're not doing async anymore */
297 darg->async = false;
298 return ret;
299 }
300
301 atomic_dec(&ctx->decrypt_pending);
302 darg->async = false;
303
304 return ret;
305 }
306
tls_trim_both_msgs(struct sock * sk,int target_size)307 static void tls_trim_both_msgs(struct sock *sk, int target_size)
308 {
309 struct tls_context *tls_ctx = tls_get_ctx(sk);
310 struct tls_prot_info *prot = &tls_ctx->prot_info;
311 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
312 struct tls_rec *rec = ctx->open_rec;
313
314 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
315 if (target_size > 0)
316 target_size += prot->overhead_size;
317 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
318 }
319
tls_alloc_encrypted_msg(struct sock * sk,int len)320 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
321 {
322 struct tls_context *tls_ctx = tls_get_ctx(sk);
323 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
324 struct tls_rec *rec = ctx->open_rec;
325 struct sk_msg *msg_en = &rec->msg_encrypted;
326
327 return sk_msg_alloc(sk, msg_en, len, 0);
328 }
329
tls_clone_plaintext_msg(struct sock * sk,int required)330 static int tls_clone_plaintext_msg(struct sock *sk, int required)
331 {
332 struct tls_context *tls_ctx = tls_get_ctx(sk);
333 struct tls_prot_info *prot = &tls_ctx->prot_info;
334 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
335 struct tls_rec *rec = ctx->open_rec;
336 struct sk_msg *msg_pl = &rec->msg_plaintext;
337 struct sk_msg *msg_en = &rec->msg_encrypted;
338 int skip, len;
339
340 /* We add page references worth len bytes from encrypted sg
341 * at the end of plaintext sg. It is guaranteed that msg_en
342 * has enough required room (ensured by caller).
343 */
344 len = required - msg_pl->sg.size;
345
346 /* Skip initial bytes in msg_en's data to be able to use
347 * same offset of both plain and encrypted data.
348 */
349 skip = prot->prepend_size + msg_pl->sg.size;
350
351 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
352 }
353
tls_get_rec(struct sock * sk)354 static struct tls_rec *tls_get_rec(struct sock *sk)
355 {
356 struct tls_context *tls_ctx = tls_get_ctx(sk);
357 struct tls_prot_info *prot = &tls_ctx->prot_info;
358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
359 struct sk_msg *msg_pl, *msg_en;
360 struct tls_rec *rec;
361 int mem_size;
362
363 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
364
365 rec = kzalloc(mem_size, sk->sk_allocation);
366 if (!rec)
367 return NULL;
368
369 msg_pl = &rec->msg_plaintext;
370 msg_en = &rec->msg_encrypted;
371
372 sk_msg_init(msg_pl);
373 sk_msg_init(msg_en);
374
375 sg_init_table(rec->sg_aead_in, 2);
376 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
377 sg_unmark_end(&rec->sg_aead_in[1]);
378
379 sg_init_table(rec->sg_aead_out, 2);
380 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
381 sg_unmark_end(&rec->sg_aead_out[1]);
382
383 rec->sk = sk;
384
385 return rec;
386 }
387
tls_free_rec(struct sock * sk,struct tls_rec * rec)388 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
389 {
390 sk_msg_free(sk, &rec->msg_encrypted);
391 sk_msg_free(sk, &rec->msg_plaintext);
392 kfree(rec);
393 }
394
tls_free_open_rec(struct sock * sk)395 static void tls_free_open_rec(struct sock *sk)
396 {
397 struct tls_context *tls_ctx = tls_get_ctx(sk);
398 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
399 struct tls_rec *rec = ctx->open_rec;
400
401 if (rec) {
402 tls_free_rec(sk, rec);
403 ctx->open_rec = NULL;
404 }
405 }
406
tls_tx_records(struct sock * sk,int flags)407 int tls_tx_records(struct sock *sk, int flags)
408 {
409 struct tls_context *tls_ctx = tls_get_ctx(sk);
410 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
411 struct tls_rec *rec, *tmp;
412 struct sk_msg *msg_en;
413 int tx_flags, rc = 0;
414
415 if (tls_is_partially_sent_record(tls_ctx)) {
416 rec = list_first_entry(&ctx->tx_list,
417 struct tls_rec, list);
418
419 if (flags == -1)
420 tx_flags = rec->tx_flags;
421 else
422 tx_flags = flags;
423
424 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
425 if (rc)
426 goto tx_err;
427
428 /* Full record has been transmitted.
429 * Remove the head of tx_list
430 */
431 list_del(&rec->list);
432 sk_msg_free(sk, &rec->msg_plaintext);
433 kfree(rec);
434 }
435
436 /* Tx all ready records */
437 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
438 if (READ_ONCE(rec->tx_ready)) {
439 if (flags == -1)
440 tx_flags = rec->tx_flags;
441 else
442 tx_flags = flags;
443
444 msg_en = &rec->msg_encrypted;
445 rc = tls_push_sg(sk, tls_ctx,
446 &msg_en->sg.data[msg_en->sg.curr],
447 0, tx_flags);
448 if (rc)
449 goto tx_err;
450
451 list_del(&rec->list);
452 sk_msg_free(sk, &rec->msg_plaintext);
453 kfree(rec);
454 } else {
455 break;
456 }
457 }
458
459 tx_err:
460 if (rc < 0 && rc != -EAGAIN)
461 tls_err_abort(sk, rc);
462
463 return rc;
464 }
465
tls_encrypt_done(void * data,int err)466 static void tls_encrypt_done(void *data, int err)
467 {
468 struct tls_sw_context_tx *ctx;
469 struct tls_context *tls_ctx;
470 struct tls_prot_info *prot;
471 struct tls_rec *rec = data;
472 struct scatterlist *sge;
473 struct sk_msg *msg_en;
474 struct sock *sk;
475
476 if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */
477 return;
478
479 msg_en = &rec->msg_encrypted;
480
481 sk = rec->sk;
482 tls_ctx = tls_get_ctx(sk);
483 prot = &tls_ctx->prot_info;
484 ctx = tls_sw_ctx_tx(tls_ctx);
485
486 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
487 sge->offset -= prot->prepend_size;
488 sge->length += prot->prepend_size;
489
490 /* Check if error is previously set on socket */
491 if (err || sk->sk_err) {
492 rec = NULL;
493
494 /* If err is already set on socket, return the same code */
495 if (sk->sk_err) {
496 ctx->async_wait.err = -sk->sk_err;
497 } else {
498 ctx->async_wait.err = err;
499 tls_err_abort(sk, err);
500 }
501 }
502
503 if (rec) {
504 struct tls_rec *first_rec;
505
506 /* Mark the record as ready for transmission */
507 smp_store_mb(rec->tx_ready, true);
508
509 /* If received record is at head of tx_list, schedule tx */
510 first_rec = list_first_entry(&ctx->tx_list,
511 struct tls_rec, list);
512 if (rec == first_rec) {
513 /* Schedule the transmission */
514 if (!test_and_set_bit(BIT_TX_SCHEDULED,
515 &ctx->tx_bitmask))
516 schedule_delayed_work(&ctx->tx_work.work, 1);
517 }
518 }
519
520 if (atomic_dec_and_test(&ctx->encrypt_pending))
521 complete(&ctx->async_wait.completion);
522 }
523
tls_encrypt_async_wait(struct tls_sw_context_tx * ctx)524 static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx)
525 {
526 if (!atomic_dec_and_test(&ctx->encrypt_pending))
527 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
528 atomic_inc(&ctx->encrypt_pending);
529
530 return ctx->async_wait.err;
531 }
532
tls_do_encryption(struct sock * sk,struct tls_context * tls_ctx,struct tls_sw_context_tx * ctx,struct aead_request * aead_req,size_t data_len,u32 start)533 static int tls_do_encryption(struct sock *sk,
534 struct tls_context *tls_ctx,
535 struct tls_sw_context_tx *ctx,
536 struct aead_request *aead_req,
537 size_t data_len, u32 start)
538 {
539 struct tls_prot_info *prot = &tls_ctx->prot_info;
540 struct tls_rec *rec = ctx->open_rec;
541 struct sk_msg *msg_en = &rec->msg_encrypted;
542 struct scatterlist *sge = sk_msg_elem(msg_en, start);
543 int rc, iv_offset = 0;
544
545 /* For CCM based ciphers, first byte of IV is a constant */
546 switch (prot->cipher_type) {
547 case TLS_CIPHER_AES_CCM_128:
548 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
549 iv_offset = 1;
550 break;
551 case TLS_CIPHER_SM4_CCM:
552 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
553 iv_offset = 1;
554 break;
555 }
556
557 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
558 prot->iv_size + prot->salt_size);
559
560 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
561 tls_ctx->tx.rec_seq);
562
563 sge->offset += prot->prepend_size;
564 sge->length -= prot->prepend_size;
565
566 msg_en->sg.curr = start;
567
568 aead_request_set_tfm(aead_req, ctx->aead_send);
569 aead_request_set_ad(aead_req, prot->aad_size);
570 aead_request_set_crypt(aead_req, rec->sg_aead_in,
571 rec->sg_aead_out,
572 data_len, rec->iv_data);
573
574 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
575 tls_encrypt_done, rec);
576
577 /* Add the record in tx_list */
578 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
579 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1);
580 atomic_inc(&ctx->encrypt_pending);
581
582 rc = crypto_aead_encrypt(aead_req);
583 if (rc == -EBUSY) {
584 rc = tls_encrypt_async_wait(ctx);
585 rc = rc ?: -EINPROGRESS;
586 }
587 if (!rc || rc != -EINPROGRESS) {
588 atomic_dec(&ctx->encrypt_pending);
589 sge->offset -= prot->prepend_size;
590 sge->length += prot->prepend_size;
591 }
592
593 if (!rc) {
594 WRITE_ONCE(rec->tx_ready, true);
595 } else if (rc != -EINPROGRESS) {
596 list_del(&rec->list);
597 return rc;
598 }
599
600 /* Unhook the record from context if encryption is not failure */
601 ctx->open_rec = NULL;
602 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
603 return rc;
604 }
605
tls_split_open_record(struct sock * sk,struct tls_rec * from,struct tls_rec ** to,struct sk_msg * msg_opl,struct sk_msg * msg_oen,u32 split_point,u32 tx_overhead_size,u32 * orig_end)606 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
607 struct tls_rec **to, struct sk_msg *msg_opl,
608 struct sk_msg *msg_oen, u32 split_point,
609 u32 tx_overhead_size, u32 *orig_end)
610 {
611 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
612 struct scatterlist *sge, *osge, *nsge;
613 u32 orig_size = msg_opl->sg.size;
614 struct scatterlist tmp = { };
615 struct sk_msg *msg_npl;
616 struct tls_rec *new;
617 int ret;
618
619 new = tls_get_rec(sk);
620 if (!new)
621 return -ENOMEM;
622 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
623 tx_overhead_size, 0);
624 if (ret < 0) {
625 tls_free_rec(sk, new);
626 return ret;
627 }
628
629 *orig_end = msg_opl->sg.end;
630 i = msg_opl->sg.start;
631 sge = sk_msg_elem(msg_opl, i);
632 while (apply && sge->length) {
633 if (sge->length > apply) {
634 u32 len = sge->length - apply;
635
636 get_page(sg_page(sge));
637 sg_set_page(&tmp, sg_page(sge), len,
638 sge->offset + apply);
639 sge->length = apply;
640 bytes += apply;
641 apply = 0;
642 } else {
643 apply -= sge->length;
644 bytes += sge->length;
645 }
646
647 sk_msg_iter_var_next(i);
648 if (i == msg_opl->sg.end)
649 break;
650 sge = sk_msg_elem(msg_opl, i);
651 }
652
653 msg_opl->sg.end = i;
654 msg_opl->sg.curr = i;
655 msg_opl->sg.copybreak = 0;
656 msg_opl->apply_bytes = 0;
657 msg_opl->sg.size = bytes;
658
659 msg_npl = &new->msg_plaintext;
660 msg_npl->apply_bytes = apply;
661 msg_npl->sg.size = orig_size - bytes;
662
663 j = msg_npl->sg.start;
664 nsge = sk_msg_elem(msg_npl, j);
665 if (tmp.length) {
666 memcpy(nsge, &tmp, sizeof(*nsge));
667 sk_msg_iter_var_next(j);
668 nsge = sk_msg_elem(msg_npl, j);
669 }
670
671 osge = sk_msg_elem(msg_opl, i);
672 while (osge->length) {
673 memcpy(nsge, osge, sizeof(*nsge));
674 sg_unmark_end(nsge);
675 sk_msg_iter_var_next(i);
676 sk_msg_iter_var_next(j);
677 if (i == *orig_end)
678 break;
679 osge = sk_msg_elem(msg_opl, i);
680 nsge = sk_msg_elem(msg_npl, j);
681 }
682
683 msg_npl->sg.end = j;
684 msg_npl->sg.curr = j;
685 msg_npl->sg.copybreak = 0;
686
687 *to = new;
688 return 0;
689 }
690
tls_merge_open_record(struct sock * sk,struct tls_rec * to,struct tls_rec * from,u32 orig_end)691 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
692 struct tls_rec *from, u32 orig_end)
693 {
694 struct sk_msg *msg_npl = &from->msg_plaintext;
695 struct sk_msg *msg_opl = &to->msg_plaintext;
696 struct scatterlist *osge, *nsge;
697 u32 i, j;
698
699 i = msg_opl->sg.end;
700 sk_msg_iter_var_prev(i);
701 j = msg_npl->sg.start;
702
703 osge = sk_msg_elem(msg_opl, i);
704 nsge = sk_msg_elem(msg_npl, j);
705
706 if (sg_page(osge) == sg_page(nsge) &&
707 osge->offset + osge->length == nsge->offset) {
708 osge->length += nsge->length;
709 put_page(sg_page(nsge));
710 }
711
712 msg_opl->sg.end = orig_end;
713 msg_opl->sg.curr = orig_end;
714 msg_opl->sg.copybreak = 0;
715 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
716 msg_opl->sg.size += msg_npl->sg.size;
717
718 sk_msg_free(sk, &to->msg_encrypted);
719 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
720
721 kfree(from);
722 }
723
tls_push_record(struct sock * sk,int flags,unsigned char record_type)724 static int tls_push_record(struct sock *sk, int flags,
725 unsigned char record_type)
726 {
727 struct tls_context *tls_ctx = tls_get_ctx(sk);
728 struct tls_prot_info *prot = &tls_ctx->prot_info;
729 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
730 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
731 u32 i, split_point, orig_end;
732 struct sk_msg *msg_pl, *msg_en;
733 struct aead_request *req;
734 bool split;
735 int rc;
736
737 if (!rec)
738 return 0;
739
740 msg_pl = &rec->msg_plaintext;
741 msg_en = &rec->msg_encrypted;
742
743 split_point = msg_pl->apply_bytes;
744 split = split_point && split_point < msg_pl->sg.size;
745 if (unlikely((!split &&
746 msg_pl->sg.size +
747 prot->overhead_size > msg_en->sg.size) ||
748 (split &&
749 split_point +
750 prot->overhead_size > msg_en->sg.size))) {
751 split = true;
752 split_point = msg_en->sg.size;
753 }
754 if (split) {
755 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
756 split_point, prot->overhead_size,
757 &orig_end);
758 if (rc < 0)
759 return rc;
760 /* This can happen if above tls_split_open_record allocates
761 * a single large encryption buffer instead of two smaller
762 * ones. In this case adjust pointers and continue without
763 * split.
764 */
765 if (!msg_pl->sg.size) {
766 tls_merge_open_record(sk, rec, tmp, orig_end);
767 msg_pl = &rec->msg_plaintext;
768 msg_en = &rec->msg_encrypted;
769 split = false;
770 }
771 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
772 prot->overhead_size);
773 }
774
775 rec->tx_flags = flags;
776 req = &rec->aead_req;
777
778 i = msg_pl->sg.end;
779 sk_msg_iter_var_prev(i);
780
781 rec->content_type = record_type;
782 if (prot->version == TLS_1_3_VERSION) {
783 /* Add content type to end of message. No padding added */
784 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
785 sg_mark_end(&rec->sg_content_type);
786 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
787 &rec->sg_content_type);
788 } else {
789 sg_mark_end(sk_msg_elem(msg_pl, i));
790 }
791
792 if (msg_pl->sg.end < msg_pl->sg.start) {
793 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
794 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
795 msg_pl->sg.data);
796 }
797
798 i = msg_pl->sg.start;
799 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
800
801 i = msg_en->sg.end;
802 sk_msg_iter_var_prev(i);
803 sg_mark_end(sk_msg_elem(msg_en, i));
804
805 i = msg_en->sg.start;
806 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
807
808 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
809 tls_ctx->tx.rec_seq, record_type, prot);
810
811 tls_fill_prepend(tls_ctx,
812 page_address(sg_page(&msg_en->sg.data[i])) +
813 msg_en->sg.data[i].offset,
814 msg_pl->sg.size + prot->tail_size,
815 record_type);
816
817 tls_ctx->pending_open_record_frags = false;
818
819 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
820 msg_pl->sg.size + prot->tail_size, i);
821 if (rc < 0) {
822 if (rc != -EINPROGRESS) {
823 tls_err_abort(sk, -EBADMSG);
824 if (split) {
825 tls_ctx->pending_open_record_frags = true;
826 tls_merge_open_record(sk, rec, tmp, orig_end);
827 }
828 }
829 ctx->async_capable = 1;
830 return rc;
831 } else if (split) {
832 msg_pl = &tmp->msg_plaintext;
833 msg_en = &tmp->msg_encrypted;
834 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
835 tls_ctx->pending_open_record_frags = true;
836 ctx->open_rec = tmp;
837 }
838
839 return tls_tx_records(sk, flags);
840 }
841
bpf_exec_tx_verdict(struct sk_msg * msg,struct sock * sk,bool full_record,u8 record_type,ssize_t * copied,int flags)842 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
843 bool full_record, u8 record_type,
844 ssize_t *copied, int flags)
845 {
846 struct tls_context *tls_ctx = tls_get_ctx(sk);
847 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
848 struct sk_msg msg_redir = { };
849 struct sk_psock *psock;
850 struct sock *sk_redir;
851 struct tls_rec *rec;
852 bool enospc, policy, redir_ingress;
853 int err = 0, send;
854 u32 delta = 0;
855
856 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
857 psock = sk_psock_get(sk);
858 if (!psock || !policy) {
859 err = tls_push_record(sk, flags, record_type);
860 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
861 *copied -= sk_msg_free(sk, msg);
862 tls_free_open_rec(sk);
863 err = -sk->sk_err;
864 }
865 if (psock)
866 sk_psock_put(sk, psock);
867 return err;
868 }
869 more_data:
870 enospc = sk_msg_full(msg);
871 if (psock->eval == __SK_NONE) {
872 delta = msg->sg.size;
873 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
874 delta -= msg->sg.size;
875 }
876 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
877 !enospc && !full_record) {
878 err = -ENOSPC;
879 goto out_err;
880 }
881 msg->cork_bytes = 0;
882 send = msg->sg.size;
883 if (msg->apply_bytes && msg->apply_bytes < send)
884 send = msg->apply_bytes;
885
886 switch (psock->eval) {
887 case __SK_PASS:
888 err = tls_push_record(sk, flags, record_type);
889 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
890 *copied -= sk_msg_free(sk, msg);
891 tls_free_open_rec(sk);
892 err = -sk->sk_err;
893 goto out_err;
894 }
895 break;
896 case __SK_REDIRECT:
897 redir_ingress = psock->redir_ingress;
898 sk_redir = psock->sk_redir;
899 memcpy(&msg_redir, msg, sizeof(*msg));
900 if (msg->apply_bytes < send)
901 msg->apply_bytes = 0;
902 else
903 msg->apply_bytes -= send;
904 sk_msg_return_zero(sk, msg, send);
905 msg->sg.size -= send;
906 release_sock(sk);
907 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
908 &msg_redir, send, flags);
909 lock_sock(sk);
910 if (err < 0) {
911 /* Regardless of whether the data represented by
912 * msg_redir is sent successfully, we have already
913 * uncharged it via sk_msg_return_zero(). The
914 * msg->sg.size represents the remaining unprocessed
915 * data, which needs to be uncharged here.
916 */
917 sk_mem_uncharge(sk, msg->sg.size);
918 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
919 msg->sg.size = 0;
920 }
921 if (msg->sg.size == 0)
922 tls_free_open_rec(sk);
923 break;
924 case __SK_DROP:
925 default:
926 sk_msg_free_partial(sk, msg, send);
927 if (msg->apply_bytes < send)
928 msg->apply_bytes = 0;
929 else
930 msg->apply_bytes -= send;
931 if (msg->sg.size == 0)
932 tls_free_open_rec(sk);
933 *copied -= (send + delta);
934 err = -EACCES;
935 }
936
937 if (likely(!err)) {
938 bool reset_eval = !ctx->open_rec;
939
940 rec = ctx->open_rec;
941 if (rec) {
942 msg = &rec->msg_plaintext;
943 if (!msg->apply_bytes)
944 reset_eval = true;
945 }
946 if (reset_eval) {
947 psock->eval = __SK_NONE;
948 if (psock->sk_redir) {
949 sock_put(psock->sk_redir);
950 psock->sk_redir = NULL;
951 }
952 }
953 if (rec)
954 goto more_data;
955 }
956 out_err:
957 sk_psock_put(sk, psock);
958 return err;
959 }
960
tls_sw_push_pending_record(struct sock * sk,int flags)961 static int tls_sw_push_pending_record(struct sock *sk, int flags)
962 {
963 struct tls_context *tls_ctx = tls_get_ctx(sk);
964 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
965 struct tls_rec *rec = ctx->open_rec;
966 struct sk_msg *msg_pl;
967 size_t copied;
968
969 if (!rec)
970 return 0;
971
972 msg_pl = &rec->msg_plaintext;
973 copied = msg_pl->sg.size;
974 if (!copied)
975 return 0;
976
977 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
978 &copied, flags);
979 }
980
tls_sw_sendmsg_splice(struct sock * sk,struct msghdr * msg,struct sk_msg * msg_pl,size_t try_to_copy,ssize_t * copied)981 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
982 struct sk_msg *msg_pl, size_t try_to_copy,
983 ssize_t *copied)
984 {
985 struct page *page = NULL, **pages = &page;
986
987 do {
988 ssize_t part;
989 size_t off;
990
991 part = iov_iter_extract_pages(&msg->msg_iter, &pages,
992 try_to_copy, 1, 0, &off);
993 if (part <= 0)
994 return part ?: -EIO;
995
996 if (WARN_ON_ONCE(!sendpage_ok(page))) {
997 iov_iter_revert(&msg->msg_iter, part);
998 return -EIO;
999 }
1000
1001 sk_msg_page_add(msg_pl, page, part, off);
1002 msg_pl->sg.copybreak = 0;
1003 msg_pl->sg.curr = msg_pl->sg.end;
1004 sk_mem_charge(sk, part);
1005 *copied += part;
1006 try_to_copy -= part;
1007 } while (try_to_copy && !sk_msg_full(msg_pl));
1008
1009 return 0;
1010 }
1011
tls_sw_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1012 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
1013 size_t size)
1014 {
1015 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1016 struct tls_context *tls_ctx = tls_get_ctx(sk);
1017 struct tls_prot_info *prot = &tls_ctx->prot_info;
1018 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1019 bool async_capable = ctx->async_capable;
1020 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1021 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1022 bool eor = !(msg->msg_flags & MSG_MORE);
1023 size_t try_to_copy;
1024 ssize_t copied = 0;
1025 struct sk_msg *msg_pl, *msg_en;
1026 struct tls_rec *rec;
1027 int required_size;
1028 int num_async = 0;
1029 bool full_record;
1030 int record_room;
1031 int num_zc = 0;
1032 int orig_size;
1033 int ret = 0;
1034
1035 if (!eor && (msg->msg_flags & MSG_EOR))
1036 return -EINVAL;
1037
1038 if (unlikely(msg->msg_controllen)) {
1039 ret = tls_process_cmsg(sk, msg, &record_type);
1040 if (ret) {
1041 if (ret == -EINPROGRESS)
1042 num_async++;
1043 else if (ret != -EAGAIN)
1044 goto send_end;
1045 }
1046 }
1047
1048 while (msg_data_left(msg)) {
1049 if (sk->sk_err) {
1050 ret = -sk->sk_err;
1051 goto send_end;
1052 }
1053
1054 if (ctx->open_rec)
1055 rec = ctx->open_rec;
1056 else
1057 rec = ctx->open_rec = tls_get_rec(sk);
1058 if (!rec) {
1059 ret = -ENOMEM;
1060 goto send_end;
1061 }
1062
1063 msg_pl = &rec->msg_plaintext;
1064 msg_en = &rec->msg_encrypted;
1065
1066 orig_size = msg_pl->sg.size;
1067 full_record = false;
1068 try_to_copy = msg_data_left(msg);
1069 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1070 if (try_to_copy >= record_room) {
1071 try_to_copy = record_room;
1072 full_record = true;
1073 }
1074
1075 required_size = msg_pl->sg.size + try_to_copy +
1076 prot->overhead_size;
1077
1078 if (!sk_stream_memory_free(sk))
1079 goto wait_for_sndbuf;
1080
1081 alloc_encrypted:
1082 ret = tls_alloc_encrypted_msg(sk, required_size);
1083 if (ret) {
1084 if (ret != -ENOSPC)
1085 goto wait_for_memory;
1086
1087 /* Adjust try_to_copy according to the amount that was
1088 * actually allocated. The difference is due
1089 * to max sg elements limit
1090 */
1091 try_to_copy -= required_size - msg_en->sg.size;
1092 full_record = true;
1093 }
1094
1095 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1096 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1097 try_to_copy, &copied);
1098 if (ret < 0)
1099 goto send_end;
1100 tls_ctx->pending_open_record_frags = true;
1101
1102 if (sk_msg_full(msg_pl))
1103 full_record = true;
1104
1105 if (full_record || eor)
1106 goto copied;
1107 continue;
1108 }
1109
1110 if (!is_kvec && (full_record || eor) && !async_capable) {
1111 u32 first = msg_pl->sg.end;
1112
1113 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1114 msg_pl, try_to_copy);
1115 if (ret)
1116 goto fallback_to_reg_send;
1117
1118 num_zc++;
1119 copied += try_to_copy;
1120
1121 sk_msg_sg_copy_set(msg_pl, first);
1122 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1123 record_type, &copied,
1124 msg->msg_flags);
1125 if (ret) {
1126 if (ret == -EINPROGRESS)
1127 num_async++;
1128 else if (ret == -ENOMEM)
1129 goto wait_for_memory;
1130 else if (ctx->open_rec && ret == -ENOSPC) {
1131 if (msg_pl->cork_bytes) {
1132 ret = 0;
1133 goto send_end;
1134 }
1135 goto rollback_iter;
1136 } else if (ret != -EAGAIN)
1137 goto send_end;
1138 }
1139 continue;
1140 rollback_iter:
1141 copied -= try_to_copy;
1142 sk_msg_sg_copy_clear(msg_pl, first);
1143 iov_iter_revert(&msg->msg_iter,
1144 msg_pl->sg.size - orig_size);
1145 fallback_to_reg_send:
1146 sk_msg_trim(sk, msg_pl, orig_size);
1147 }
1148
1149 required_size = msg_pl->sg.size + try_to_copy;
1150
1151 ret = tls_clone_plaintext_msg(sk, required_size);
1152 if (ret) {
1153 if (ret != -ENOSPC)
1154 goto send_end;
1155
1156 /* Adjust try_to_copy according to the amount that was
1157 * actually allocated. The difference is due
1158 * to max sg elements limit
1159 */
1160 try_to_copy -= required_size - msg_pl->sg.size;
1161 full_record = true;
1162 sk_msg_trim(sk, msg_en,
1163 msg_pl->sg.size + prot->overhead_size);
1164 }
1165
1166 if (try_to_copy) {
1167 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1168 msg_pl, try_to_copy);
1169 if (ret < 0)
1170 goto trim_sgl;
1171 }
1172
1173 /* Open records defined only if successfully copied, otherwise
1174 * we would trim the sg but not reset the open record frags.
1175 */
1176 tls_ctx->pending_open_record_frags = true;
1177 copied += try_to_copy;
1178 copied:
1179 if (full_record || eor) {
1180 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1181 record_type, &copied,
1182 msg->msg_flags);
1183 if (ret) {
1184 if (ret == -EINPROGRESS)
1185 num_async++;
1186 else if (ret == -ENOMEM)
1187 goto wait_for_memory;
1188 else if (ret != -EAGAIN) {
1189 if (ret == -ENOSPC)
1190 ret = 0;
1191 goto send_end;
1192 }
1193 }
1194 }
1195
1196 continue;
1197
1198 wait_for_sndbuf:
1199 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1200 wait_for_memory:
1201 ret = sk_stream_wait_memory(sk, &timeo);
1202 if (ret) {
1203 trim_sgl:
1204 if (ctx->open_rec)
1205 tls_trim_both_msgs(sk, orig_size);
1206 goto send_end;
1207 }
1208
1209 if (ctx->open_rec && msg_en->sg.size < required_size)
1210 goto alloc_encrypted;
1211 }
1212
1213 if (!num_async) {
1214 goto send_end;
1215 } else if (num_zc) {
1216 int err;
1217
1218 /* Wait for pending encryptions to get completed */
1219 err = tls_encrypt_async_wait(ctx);
1220 if (err) {
1221 ret = err;
1222 copied = 0;
1223 }
1224 }
1225
1226 /* Transmit if any encryptions have completed */
1227 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1228 cancel_delayed_work(&ctx->tx_work.work);
1229 tls_tx_records(sk, msg->msg_flags);
1230 }
1231
1232 send_end:
1233 ret = sk_stream_error(sk, msg->msg_flags, ret);
1234 return copied > 0 ? copied : ret;
1235 }
1236
tls_sw_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1237 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1238 {
1239 struct tls_context *tls_ctx = tls_get_ctx(sk);
1240 int ret;
1241
1242 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1243 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
1244 MSG_SENDPAGE_NOPOLICY))
1245 return -EOPNOTSUPP;
1246
1247 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1248 if (ret)
1249 return ret;
1250 lock_sock(sk);
1251 ret = tls_sw_sendmsg_locked(sk, msg, size);
1252 release_sock(sk);
1253 mutex_unlock(&tls_ctx->tx_lock);
1254 return ret;
1255 }
1256
1257 /*
1258 * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1259 */
tls_sw_splice_eof(struct socket * sock)1260 void tls_sw_splice_eof(struct socket *sock)
1261 {
1262 struct sock *sk = sock->sk;
1263 struct tls_context *tls_ctx = tls_get_ctx(sk);
1264 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1265 struct tls_rec *rec;
1266 struct sk_msg *msg_pl;
1267 ssize_t copied = 0;
1268 bool retrying = false;
1269 int ret = 0;
1270
1271 if (!ctx->open_rec)
1272 return;
1273
1274 mutex_lock(&tls_ctx->tx_lock);
1275 lock_sock(sk);
1276
1277 retry:
1278 /* same checks as in tls_sw_push_pending_record() */
1279 rec = ctx->open_rec;
1280 if (!rec)
1281 goto unlock;
1282
1283 msg_pl = &rec->msg_plaintext;
1284 if (msg_pl->sg.size == 0)
1285 goto unlock;
1286
1287 /* Check the BPF advisor and perform transmission. */
1288 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1289 &copied, 0);
1290 switch (ret) {
1291 case 0:
1292 case -EAGAIN:
1293 if (retrying)
1294 goto unlock;
1295 retrying = true;
1296 goto retry;
1297 case -EINPROGRESS:
1298 break;
1299 default:
1300 goto unlock;
1301 }
1302
1303 /* Wait for pending encryptions to get completed */
1304 if (tls_encrypt_async_wait(ctx))
1305 goto unlock;
1306
1307 /* Transmit if any encryptions have completed */
1308 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1309 cancel_delayed_work(&ctx->tx_work.work);
1310 tls_tx_records(sk, 0);
1311 }
1312
1313 unlock:
1314 release_sock(sk);
1315 mutex_unlock(&tls_ctx->tx_lock);
1316 }
1317
1318 static int
tls_rx_rec_wait(struct sock * sk,struct sk_psock * psock,bool nonblock,bool released)1319 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1320 bool released)
1321 {
1322 struct tls_context *tls_ctx = tls_get_ctx(sk);
1323 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1324 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1325 int ret = 0;
1326 long timeo;
1327
1328 timeo = sock_rcvtimeo(sk, nonblock);
1329
1330 while (!tls_strp_msg_ready(ctx)) {
1331 if (!sk_psock_queue_empty(psock))
1332 return 0;
1333
1334 if (sk->sk_err)
1335 return sock_error(sk);
1336
1337 if (ret < 0)
1338 return ret;
1339
1340 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1341 tls_strp_check_rcv(&ctx->strp);
1342 if (tls_strp_msg_ready(ctx))
1343 break;
1344 }
1345
1346 if (sk->sk_shutdown & RCV_SHUTDOWN)
1347 return 0;
1348
1349 if (sock_flag(sk, SOCK_DONE))
1350 return 0;
1351
1352 if (!timeo)
1353 return -EAGAIN;
1354
1355 released = true;
1356 add_wait_queue(sk_sleep(sk), &wait);
1357 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1358 ret = sk_wait_event(sk, &timeo,
1359 tls_strp_msg_ready(ctx) ||
1360 !sk_psock_queue_empty(psock),
1361 &wait);
1362 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1363 remove_wait_queue(sk_sleep(sk), &wait);
1364
1365 /* Handle signals */
1366 if (signal_pending(current))
1367 return sock_intr_errno(timeo);
1368 }
1369
1370 tls_strp_msg_load(&ctx->strp, released);
1371
1372 return 1;
1373 }
1374
tls_setup_from_iter(struct iov_iter * from,int length,int * pages_used,struct scatterlist * to,int to_max_pages)1375 static int tls_setup_from_iter(struct iov_iter *from,
1376 int length, int *pages_used,
1377 struct scatterlist *to,
1378 int to_max_pages)
1379 {
1380 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1381 struct page *pages[MAX_SKB_FRAGS];
1382 unsigned int size = 0;
1383 ssize_t copied, use;
1384 size_t offset;
1385
1386 while (length > 0) {
1387 i = 0;
1388 maxpages = to_max_pages - num_elem;
1389 if (maxpages == 0) {
1390 rc = -EFAULT;
1391 goto out;
1392 }
1393 copied = iov_iter_get_pages2(from, pages,
1394 length,
1395 maxpages, &offset);
1396 if (copied <= 0) {
1397 rc = -EFAULT;
1398 goto out;
1399 }
1400
1401 length -= copied;
1402 size += copied;
1403 while (copied) {
1404 use = min_t(int, copied, PAGE_SIZE - offset);
1405
1406 sg_set_page(&to[num_elem],
1407 pages[i], use, offset);
1408 sg_unmark_end(&to[num_elem]);
1409 /* We do not uncharge memory from this API */
1410
1411 offset = 0;
1412 copied -= use;
1413
1414 i++;
1415 num_elem++;
1416 }
1417 }
1418 /* Mark the end in the last sg entry if newly added */
1419 if (num_elem > *pages_used)
1420 sg_mark_end(&to[num_elem - 1]);
1421 out:
1422 if (rc)
1423 iov_iter_revert(from, size);
1424 *pages_used = num_elem;
1425
1426 return rc;
1427 }
1428
1429 static struct sk_buff *
tls_alloc_clrtxt_skb(struct sock * sk,struct sk_buff * skb,unsigned int full_len)1430 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1431 unsigned int full_len)
1432 {
1433 struct strp_msg *clr_rxm;
1434 struct sk_buff *clr_skb;
1435 int err;
1436
1437 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1438 &err, sk->sk_allocation);
1439 if (!clr_skb)
1440 return NULL;
1441
1442 skb_copy_header(clr_skb, skb);
1443 clr_skb->len = full_len;
1444 clr_skb->data_len = full_len;
1445
1446 clr_rxm = strp_msg(clr_skb);
1447 clr_rxm->offset = 0;
1448
1449 return clr_skb;
1450 }
1451
1452 /* Decrypt handlers
1453 *
1454 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1455 * They must transform the darg in/out argument are as follows:
1456 * | Input | Output
1457 * -------------------------------------------------------------------
1458 * zc | Zero-copy decrypt allowed | Zero-copy performed
1459 * async | Async decrypt allowed | Async crypto used / in progress
1460 * skb | * | Output skb
1461 *
1462 * If ZC decryption was performed darg.skb will point to the input skb.
1463 */
1464
1465 /* This function decrypts the input skb into either out_iov or in out_sg
1466 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1467 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1468 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1469 * NULL, then the decryption happens inside skb buffers itself, i.e.
1470 * zero-copy gets disabled and 'darg->zc' is updated.
1471 */
tls_decrypt_sg(struct sock * sk,struct iov_iter * out_iov,struct scatterlist * out_sg,struct tls_decrypt_arg * darg)1472 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1473 struct scatterlist *out_sg,
1474 struct tls_decrypt_arg *darg)
1475 {
1476 struct tls_context *tls_ctx = tls_get_ctx(sk);
1477 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1478 struct tls_prot_info *prot = &tls_ctx->prot_info;
1479 int n_sgin, n_sgout, aead_size, err, pages = 0;
1480 struct sk_buff *skb = tls_strp_msg(ctx);
1481 const struct strp_msg *rxm = strp_msg(skb);
1482 const struct tls_msg *tlm = tls_msg(skb);
1483 struct aead_request *aead_req;
1484 struct scatterlist *sgin = NULL;
1485 struct scatterlist *sgout = NULL;
1486 const int data_len = rxm->full_len - prot->overhead_size;
1487 int tail_pages = !!prot->tail_size;
1488 struct tls_decrypt_ctx *dctx;
1489 struct sk_buff *clear_skb;
1490 int iv_offset = 0;
1491 u8 *mem;
1492
1493 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1494 rxm->full_len - prot->prepend_size);
1495 if (n_sgin < 1)
1496 return n_sgin ?: -EBADMSG;
1497
1498 if (darg->zc && (out_iov || out_sg)) {
1499 clear_skb = NULL;
1500
1501 if (out_iov)
1502 n_sgout = 1 + tail_pages +
1503 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1504 else
1505 n_sgout = sg_nents(out_sg);
1506 } else {
1507 darg->zc = false;
1508
1509 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1510 if (!clear_skb)
1511 return -ENOMEM;
1512
1513 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1514 }
1515
1516 /* Increment to accommodate AAD */
1517 n_sgin = n_sgin + 1;
1518
1519 /* Allocate a single block of memory which contains
1520 * aead_req || tls_decrypt_ctx.
1521 * Both structs are variable length.
1522 */
1523 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1524 aead_size = ALIGN(aead_size, __alignof__(*dctx));
1525 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
1526 sk->sk_allocation);
1527 if (!mem) {
1528 err = -ENOMEM;
1529 goto exit_free_skb;
1530 }
1531
1532 /* Segment the allocated memory */
1533 aead_req = (struct aead_request *)mem;
1534 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1535 dctx->sk = sk;
1536 sgin = &dctx->sg[0];
1537 sgout = &dctx->sg[n_sgin];
1538
1539 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1540 switch (prot->cipher_type) {
1541 case TLS_CIPHER_AES_CCM_128:
1542 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1543 iv_offset = 1;
1544 break;
1545 case TLS_CIPHER_SM4_CCM:
1546 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1547 iv_offset = 1;
1548 break;
1549 }
1550
1551 /* Prepare IV */
1552 if (prot->version == TLS_1_3_VERSION ||
1553 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1554 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1555 prot->iv_size + prot->salt_size);
1556 } else {
1557 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1558 &dctx->iv[iv_offset] + prot->salt_size,
1559 prot->iv_size);
1560 if (err < 0)
1561 goto exit_free;
1562 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1563 }
1564 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1565
1566 /* Prepare AAD */
1567 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1568 prot->tail_size,
1569 tls_ctx->rx.rec_seq, tlm->control, prot);
1570
1571 /* Prepare sgin */
1572 sg_init_table(sgin, n_sgin);
1573 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1574 err = skb_to_sgvec(skb, &sgin[1],
1575 rxm->offset + prot->prepend_size,
1576 rxm->full_len - prot->prepend_size);
1577 if (err < 0)
1578 goto exit_free;
1579
1580 if (clear_skb) {
1581 sg_init_table(sgout, n_sgout);
1582 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1583
1584 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1585 data_len + prot->tail_size);
1586 if (err < 0)
1587 goto exit_free;
1588 } else if (out_iov) {
1589 sg_init_table(sgout, n_sgout);
1590 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1591
1592 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1593 (n_sgout - 1 - tail_pages));
1594 if (err < 0)
1595 goto exit_free_pages;
1596
1597 if (prot->tail_size) {
1598 sg_unmark_end(&sgout[pages]);
1599 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1600 prot->tail_size);
1601 sg_mark_end(&sgout[pages + 1]);
1602 }
1603 } else if (out_sg) {
1604 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1605 }
1606 dctx->free_sgout = !!pages;
1607
1608 /* Prepare and submit AEAD request */
1609 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1610 data_len + prot->tail_size, aead_req, darg);
1611 if (err) {
1612 if (darg->async_done)
1613 goto exit_free_skb;
1614 goto exit_free_pages;
1615 }
1616
1617 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1618 clear_skb = NULL;
1619
1620 if (unlikely(darg->async)) {
1621 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1622 if (err)
1623 __skb_queue_tail(&ctx->async_hold, darg->skb);
1624 return err;
1625 }
1626
1627 if (unlikely(darg->async_done))
1628 return 0;
1629
1630 if (prot->tail_size)
1631 darg->tail = dctx->tail;
1632
1633 exit_free_pages:
1634 /* Release the pages in case iov was mapped to pages */
1635 for (; pages > 0; pages--)
1636 put_page(sg_page(&sgout[pages]));
1637 exit_free:
1638 kfree(mem);
1639 exit_free_skb:
1640 consume_skb(clear_skb);
1641 return err;
1642 }
1643
1644 static int
tls_decrypt_sw(struct sock * sk,struct tls_context * tls_ctx,struct msghdr * msg,struct tls_decrypt_arg * darg)1645 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1646 struct msghdr *msg, struct tls_decrypt_arg *darg)
1647 {
1648 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1649 struct tls_prot_info *prot = &tls_ctx->prot_info;
1650 struct strp_msg *rxm;
1651 int pad, err;
1652
1653 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1654 if (err < 0) {
1655 if (err == -EBADMSG)
1656 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1657 return err;
1658 }
1659 /* keep going even for ->async, the code below is TLS 1.3 */
1660
1661 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1662 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1663 darg->tail != TLS_RECORD_TYPE_DATA)) {
1664 darg->zc = false;
1665 if (!darg->tail)
1666 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1667 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1668 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1669 }
1670
1671 pad = tls_padding_length(prot, darg->skb, darg);
1672 if (pad < 0) {
1673 if (darg->skb != tls_strp_msg(ctx))
1674 consume_skb(darg->skb);
1675 return pad;
1676 }
1677
1678 rxm = strp_msg(darg->skb);
1679 rxm->full_len -= pad;
1680
1681 return 0;
1682 }
1683
1684 static int
tls_decrypt_device(struct sock * sk,struct msghdr * msg,struct tls_context * tls_ctx,struct tls_decrypt_arg * darg)1685 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1686 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1687 {
1688 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1689 struct tls_prot_info *prot = &tls_ctx->prot_info;
1690 struct strp_msg *rxm;
1691 int pad, err;
1692
1693 if (tls_ctx->rx_conf != TLS_HW)
1694 return 0;
1695
1696 err = tls_device_decrypted(sk, tls_ctx);
1697 if (err <= 0)
1698 return err;
1699
1700 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1701 if (pad < 0)
1702 return pad;
1703
1704 darg->async = false;
1705 darg->skb = tls_strp_msg(ctx);
1706 /* ->zc downgrade check, in case TLS 1.3 gets here */
1707 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1708 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1709
1710 rxm = strp_msg(darg->skb);
1711 rxm->full_len -= pad;
1712
1713 if (!darg->zc) {
1714 /* Non-ZC case needs a real skb */
1715 darg->skb = tls_strp_msg_detach(ctx);
1716 if (!darg->skb)
1717 return -ENOMEM;
1718 } else {
1719 unsigned int off, len;
1720
1721 /* In ZC case nobody cares about the output skb.
1722 * Just copy the data here. Note the skb is not fully trimmed.
1723 */
1724 off = rxm->offset + prot->prepend_size;
1725 len = rxm->full_len - prot->overhead_size;
1726
1727 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1728 if (err)
1729 return err;
1730 }
1731 return 1;
1732 }
1733
tls_rx_one_record(struct sock * sk,struct msghdr * msg,struct tls_decrypt_arg * darg)1734 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1735 struct tls_decrypt_arg *darg)
1736 {
1737 struct tls_context *tls_ctx = tls_get_ctx(sk);
1738 struct tls_prot_info *prot = &tls_ctx->prot_info;
1739 struct strp_msg *rxm;
1740 int err;
1741
1742 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1743 if (!err)
1744 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1745 if (err < 0)
1746 return err;
1747
1748 rxm = strp_msg(darg->skb);
1749 rxm->offset += prot->prepend_size;
1750 rxm->full_len -= prot->overhead_size;
1751 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1752
1753 return 0;
1754 }
1755
decrypt_skb(struct sock * sk,struct scatterlist * sgout)1756 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1757 {
1758 struct tls_decrypt_arg darg = { .zc = true, };
1759
1760 return tls_decrypt_sg(sk, NULL, sgout, &darg);
1761 }
1762
tls_record_content_type(struct msghdr * msg,struct tls_msg * tlm,u8 * control)1763 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1764 u8 *control)
1765 {
1766 int err;
1767
1768 if (!*control) {
1769 *control = tlm->control;
1770 if (!*control)
1771 return -EBADMSG;
1772
1773 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1774 sizeof(*control), control);
1775 if (*control != TLS_RECORD_TYPE_DATA) {
1776 if (err || msg->msg_flags & MSG_CTRUNC)
1777 return -EIO;
1778 }
1779 } else if (*control != tlm->control) {
1780 return 0;
1781 }
1782
1783 return 1;
1784 }
1785
tls_rx_rec_done(struct tls_sw_context_rx * ctx)1786 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1787 {
1788 tls_strp_msg_done(&ctx->strp);
1789 }
1790
1791 /* This function traverses the rx_list in tls receive context to copies the
1792 * decrypted records into the buffer provided by caller zero copy is not
1793 * true. Further, the records are removed from the rx_list if it is not a peek
1794 * case and the record has been consumed completely.
1795 */
process_rx_list(struct tls_sw_context_rx * ctx,struct msghdr * msg,u8 * control,size_t skip,size_t len,bool is_peek,bool * more)1796 static int process_rx_list(struct tls_sw_context_rx *ctx,
1797 struct msghdr *msg,
1798 u8 *control,
1799 size_t skip,
1800 size_t len,
1801 bool is_peek,
1802 bool *more)
1803 {
1804 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1805 struct tls_msg *tlm;
1806 ssize_t copied = 0;
1807 int err;
1808
1809 while (skip && skb) {
1810 struct strp_msg *rxm = strp_msg(skb);
1811 tlm = tls_msg(skb);
1812
1813 err = tls_record_content_type(msg, tlm, control);
1814 if (err <= 0)
1815 goto more;
1816
1817 if (skip < rxm->full_len)
1818 break;
1819
1820 skip = skip - rxm->full_len;
1821 skb = skb_peek_next(skb, &ctx->rx_list);
1822 }
1823
1824 while (len && skb) {
1825 struct sk_buff *next_skb;
1826 struct strp_msg *rxm = strp_msg(skb);
1827 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1828
1829 tlm = tls_msg(skb);
1830
1831 err = tls_record_content_type(msg, tlm, control);
1832 if (err <= 0)
1833 goto more;
1834
1835 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1836 msg, chunk);
1837 if (err < 0)
1838 goto more;
1839
1840 len = len - chunk;
1841 copied = copied + chunk;
1842
1843 /* Consume the data from record if it is non-peek case*/
1844 if (!is_peek) {
1845 rxm->offset = rxm->offset + chunk;
1846 rxm->full_len = rxm->full_len - chunk;
1847
1848 /* Return if there is unconsumed data in the record */
1849 if (rxm->full_len - skip)
1850 break;
1851 }
1852
1853 /* The remaining skip-bytes must lie in 1st record in rx_list.
1854 * So from the 2nd record, 'skip' should be 0.
1855 */
1856 skip = 0;
1857
1858 if (msg)
1859 msg->msg_flags |= MSG_EOR;
1860
1861 next_skb = skb_peek_next(skb, &ctx->rx_list);
1862
1863 if (!is_peek) {
1864 __skb_unlink(skb, &ctx->rx_list);
1865 consume_skb(skb);
1866 }
1867
1868 skb = next_skb;
1869 }
1870 err = 0;
1871
1872 out:
1873 return copied ? : err;
1874 more:
1875 if (more)
1876 *more = true;
1877 goto out;
1878 }
1879
1880 static bool
tls_read_flush_backlog(struct sock * sk,struct tls_prot_info * prot,size_t len_left,size_t decrypted,ssize_t done,size_t * flushed_at)1881 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1882 size_t len_left, size_t decrypted, ssize_t done,
1883 size_t *flushed_at)
1884 {
1885 size_t max_rec;
1886
1887 if (len_left <= decrypted)
1888 return false;
1889
1890 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1891 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1892 return false;
1893
1894 *flushed_at = done;
1895 return sk_flush_backlog(sk);
1896 }
1897
tls_rx_reader_acquire(struct sock * sk,struct tls_sw_context_rx * ctx,bool nonblock)1898 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1899 bool nonblock)
1900 {
1901 long timeo;
1902 int ret;
1903
1904 timeo = sock_rcvtimeo(sk, nonblock);
1905
1906 while (unlikely(ctx->reader_present)) {
1907 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1908
1909 ctx->reader_contended = 1;
1910
1911 add_wait_queue(&ctx->wq, &wait);
1912 ret = sk_wait_event(sk, &timeo,
1913 !READ_ONCE(ctx->reader_present), &wait);
1914 remove_wait_queue(&ctx->wq, &wait);
1915
1916 if (timeo <= 0)
1917 return -EAGAIN;
1918 if (signal_pending(current))
1919 return sock_intr_errno(timeo);
1920 if (ret < 0)
1921 return ret;
1922 }
1923
1924 WRITE_ONCE(ctx->reader_present, 1);
1925
1926 return 0;
1927 }
1928
tls_rx_reader_lock(struct sock * sk,struct tls_sw_context_rx * ctx,bool nonblock)1929 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1930 bool nonblock)
1931 {
1932 int err;
1933
1934 lock_sock(sk);
1935 err = tls_rx_reader_acquire(sk, ctx, nonblock);
1936 if (err)
1937 release_sock(sk);
1938 return err;
1939 }
1940
tls_rx_reader_release(struct sock * sk,struct tls_sw_context_rx * ctx)1941 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
1942 {
1943 if (unlikely(ctx->reader_contended)) {
1944 if (wq_has_sleeper(&ctx->wq))
1945 wake_up(&ctx->wq);
1946 else
1947 ctx->reader_contended = 0;
1948
1949 WARN_ON_ONCE(!ctx->reader_present);
1950 }
1951
1952 WRITE_ONCE(ctx->reader_present, 0);
1953 }
1954
tls_rx_reader_unlock(struct sock * sk,struct tls_sw_context_rx * ctx)1955 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1956 {
1957 tls_rx_reader_release(sk, ctx);
1958 release_sock(sk);
1959 }
1960
tls_sw_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)1961 int tls_sw_recvmsg(struct sock *sk,
1962 struct msghdr *msg,
1963 size_t len,
1964 int flags,
1965 int *addr_len)
1966 {
1967 struct tls_context *tls_ctx = tls_get_ctx(sk);
1968 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1969 struct tls_prot_info *prot = &tls_ctx->prot_info;
1970 ssize_t decrypted = 0, async_copy_bytes = 0;
1971 struct sk_psock *psock;
1972 unsigned char control = 0;
1973 size_t flushed_at = 0;
1974 struct strp_msg *rxm;
1975 struct tls_msg *tlm;
1976 ssize_t copied = 0;
1977 ssize_t peeked = 0;
1978 bool async = false;
1979 int target, err;
1980 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1981 bool is_peek = flags & MSG_PEEK;
1982 bool rx_more = false;
1983 bool released = true;
1984 bool bpf_strp_enabled;
1985 bool zc_capable;
1986
1987 if (unlikely(flags & MSG_ERRQUEUE))
1988 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1989
1990 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1991 if (err < 0)
1992 return err;
1993 psock = sk_psock_get(sk);
1994 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1995
1996 /* If crypto failed the connection is broken */
1997 err = ctx->async_wait.err;
1998 if (err)
1999 goto end;
2000
2001 /* Process pending decrypted records. It must be non-zero-copy */
2002 err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more);
2003 if (err < 0)
2004 goto end;
2005
2006 copied = err;
2007 if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA) || rx_more)
2008 goto end;
2009
2010 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2011 len = len - copied;
2012
2013 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
2014 ctx->zc_capable;
2015 decrypted = 0;
2016 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
2017 struct tls_decrypt_arg darg;
2018 int to_decrypt, chunk;
2019
2020 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
2021 released);
2022 if (err <= 0) {
2023 if (psock) {
2024 chunk = sk_msg_recvmsg(sk, psock, msg, len,
2025 flags);
2026 if (chunk > 0) {
2027 decrypted += chunk;
2028 len -= chunk;
2029 continue;
2030 }
2031 }
2032 goto recv_end;
2033 }
2034
2035 memset(&darg.inargs, 0, sizeof(darg.inargs));
2036
2037 rxm = strp_msg(tls_strp_msg(ctx));
2038 tlm = tls_msg(tls_strp_msg(ctx));
2039
2040 to_decrypt = rxm->full_len - prot->overhead_size;
2041
2042 if (zc_capable && to_decrypt <= len &&
2043 tlm->control == TLS_RECORD_TYPE_DATA)
2044 darg.zc = true;
2045
2046 /* Do not use async mode if record is non-data */
2047 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2048 darg.async = ctx->async_capable;
2049 else
2050 darg.async = false;
2051
2052 err = tls_rx_one_record(sk, msg, &darg);
2053 if (err < 0) {
2054 tls_err_abort(sk, -EBADMSG);
2055 goto recv_end;
2056 }
2057
2058 async |= darg.async;
2059
2060 /* If the type of records being processed is not known yet,
2061 * set it to record type just dequeued. If it is already known,
2062 * but does not match the record type just dequeued, go to end.
2063 * We always get record type here since for tls1.2, record type
2064 * is known just after record is dequeued from stream parser.
2065 * For tls1.3, we disable async.
2066 */
2067 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2068 if (err <= 0) {
2069 DEBUG_NET_WARN_ON_ONCE(darg.zc);
2070 tls_rx_rec_done(ctx);
2071 put_on_rx_list_err:
2072 __skb_queue_tail(&ctx->rx_list, darg.skb);
2073 goto recv_end;
2074 }
2075
2076 /* periodically flush backlog, and feed strparser */
2077 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2078 decrypted + copied,
2079 &flushed_at);
2080
2081 /* TLS 1.3 may have updated the length by more than overhead */
2082 rxm = strp_msg(darg.skb);
2083 chunk = rxm->full_len;
2084 tls_rx_rec_done(ctx);
2085
2086 if (!darg.zc) {
2087 bool partially_consumed = chunk > len;
2088 struct sk_buff *skb = darg.skb;
2089
2090 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2091
2092 if (async) {
2093 /* TLS 1.2-only, to_decrypt must be text len */
2094 chunk = min_t(int, to_decrypt, len);
2095 async_copy_bytes += chunk;
2096 put_on_rx_list:
2097 decrypted += chunk;
2098 len -= chunk;
2099 __skb_queue_tail(&ctx->rx_list, skb);
2100 if (unlikely(control != TLS_RECORD_TYPE_DATA))
2101 break;
2102 continue;
2103 }
2104
2105 if (bpf_strp_enabled) {
2106 released = true;
2107 err = sk_psock_tls_strp_read(psock, skb);
2108 if (err != __SK_PASS) {
2109 rxm->offset = rxm->offset + rxm->full_len;
2110 rxm->full_len = 0;
2111 if (err == __SK_DROP)
2112 consume_skb(skb);
2113 continue;
2114 }
2115 }
2116
2117 if (partially_consumed)
2118 chunk = len;
2119
2120 err = skb_copy_datagram_msg(skb, rxm->offset,
2121 msg, chunk);
2122 if (err < 0)
2123 goto put_on_rx_list_err;
2124
2125 if (is_peek) {
2126 peeked += chunk;
2127 goto put_on_rx_list;
2128 }
2129
2130 if (partially_consumed) {
2131 rxm->offset += chunk;
2132 rxm->full_len -= chunk;
2133 goto put_on_rx_list;
2134 }
2135
2136 consume_skb(skb);
2137 }
2138
2139 decrypted += chunk;
2140 len -= chunk;
2141
2142 /* Return full control message to userspace before trying
2143 * to parse another message type
2144 */
2145 msg->msg_flags |= MSG_EOR;
2146 if (control != TLS_RECORD_TYPE_DATA)
2147 break;
2148 }
2149
2150 recv_end:
2151 if (async) {
2152 int ret;
2153
2154 /* Wait for all previously submitted records to be decrypted */
2155 ret = tls_decrypt_async_wait(ctx);
2156 __skb_queue_purge(&ctx->async_hold);
2157
2158 if (ret) {
2159 if (err >= 0 || err == -EINPROGRESS)
2160 err = ret;
2161 decrypted = 0;
2162 goto end;
2163 }
2164
2165 /* Drain records from the rx_list & copy if required */
2166 if (is_peek)
2167 err = process_rx_list(ctx, msg, &control, copied + peeked,
2168 decrypted - peeked, is_peek, NULL);
2169 else
2170 err = process_rx_list(ctx, msg, &control, 0,
2171 async_copy_bytes, is_peek, NULL);
2172
2173 /* we could have copied less than we wanted, and possibly nothing */
2174 decrypted += max(err, 0) - async_copy_bytes;
2175 }
2176
2177 copied += decrypted;
2178
2179 end:
2180 tls_rx_reader_unlock(sk, ctx);
2181 if (psock)
2182 sk_psock_put(sk, psock);
2183 return copied ? : err;
2184 }
2185
tls_sw_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2186 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2187 struct pipe_inode_info *pipe,
2188 size_t len, unsigned int flags)
2189 {
2190 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2191 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2192 struct strp_msg *rxm = NULL;
2193 struct sock *sk = sock->sk;
2194 struct tls_msg *tlm;
2195 struct sk_buff *skb;
2196 ssize_t copied = 0;
2197 int chunk;
2198 int err;
2199
2200 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2201 if (err < 0)
2202 return err;
2203
2204 if (!skb_queue_empty(&ctx->rx_list)) {
2205 skb = __skb_dequeue(&ctx->rx_list);
2206 } else {
2207 struct tls_decrypt_arg darg;
2208
2209 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2210 true);
2211 if (err <= 0)
2212 goto splice_read_end;
2213
2214 memset(&darg.inargs, 0, sizeof(darg.inargs));
2215
2216 err = tls_rx_one_record(sk, NULL, &darg);
2217 if (err < 0) {
2218 tls_err_abort(sk, -EBADMSG);
2219 goto splice_read_end;
2220 }
2221
2222 tls_rx_rec_done(ctx);
2223 skb = darg.skb;
2224 }
2225
2226 rxm = strp_msg(skb);
2227 tlm = tls_msg(skb);
2228
2229 /* splice does not support reading control messages */
2230 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2231 err = -EINVAL;
2232 goto splice_requeue;
2233 }
2234
2235 chunk = min_t(unsigned int, rxm->full_len, len);
2236 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2237 if (copied < 0)
2238 goto splice_requeue;
2239
2240 if (chunk < rxm->full_len) {
2241 rxm->offset += len;
2242 rxm->full_len -= len;
2243 goto splice_requeue;
2244 }
2245
2246 consume_skb(skb);
2247
2248 splice_read_end:
2249 tls_rx_reader_unlock(sk, ctx);
2250 return copied ? : err;
2251
2252 splice_requeue:
2253 __skb_queue_head(&ctx->rx_list, skb);
2254 goto splice_read_end;
2255 }
2256
tls_sw_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t read_actor)2257 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
2258 sk_read_actor_t read_actor)
2259 {
2260 struct tls_context *tls_ctx = tls_get_ctx(sk);
2261 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2262 struct tls_prot_info *prot = &tls_ctx->prot_info;
2263 struct strp_msg *rxm = NULL;
2264 struct sk_buff *skb = NULL;
2265 struct sk_psock *psock;
2266 size_t flushed_at = 0;
2267 bool released = true;
2268 struct tls_msg *tlm;
2269 ssize_t copied = 0;
2270 ssize_t decrypted;
2271 int err, used;
2272
2273 psock = sk_psock_get(sk);
2274 if (psock) {
2275 sk_psock_put(sk, psock);
2276 return -EINVAL;
2277 }
2278 err = tls_rx_reader_acquire(sk, ctx, true);
2279 if (err < 0)
2280 return err;
2281
2282 /* If crypto failed the connection is broken */
2283 err = ctx->async_wait.err;
2284 if (err)
2285 goto read_sock_end;
2286
2287 decrypted = 0;
2288 do {
2289 if (!skb_queue_empty(&ctx->rx_list)) {
2290 skb = __skb_dequeue(&ctx->rx_list);
2291 rxm = strp_msg(skb);
2292 tlm = tls_msg(skb);
2293 } else {
2294 struct tls_decrypt_arg darg;
2295
2296 err = tls_rx_rec_wait(sk, NULL, true, released);
2297 if (err <= 0)
2298 goto read_sock_end;
2299
2300 memset(&darg.inargs, 0, sizeof(darg.inargs));
2301
2302 err = tls_rx_one_record(sk, NULL, &darg);
2303 if (err < 0) {
2304 tls_err_abort(sk, -EBADMSG);
2305 goto read_sock_end;
2306 }
2307
2308 released = tls_read_flush_backlog(sk, prot, INT_MAX,
2309 0, decrypted,
2310 &flushed_at);
2311 skb = darg.skb;
2312 rxm = strp_msg(skb);
2313 tlm = tls_msg(skb);
2314 decrypted += rxm->full_len;
2315
2316 tls_rx_rec_done(ctx);
2317 }
2318
2319 /* read_sock does not support reading control messages */
2320 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2321 err = -EINVAL;
2322 goto read_sock_requeue;
2323 }
2324
2325 used = read_actor(desc, skb, rxm->offset, rxm->full_len);
2326 if (used <= 0) {
2327 if (!copied)
2328 err = used;
2329 goto read_sock_requeue;
2330 }
2331 copied += used;
2332 if (used < rxm->full_len) {
2333 rxm->offset += used;
2334 rxm->full_len -= used;
2335 if (!desc->count)
2336 goto read_sock_requeue;
2337 } else {
2338 consume_skb(skb);
2339 if (!desc->count)
2340 skb = NULL;
2341 }
2342 } while (skb);
2343
2344 read_sock_end:
2345 tls_rx_reader_release(sk, ctx);
2346 return copied ? : err;
2347
2348 read_sock_requeue:
2349 __skb_queue_head(&ctx->rx_list, skb);
2350 goto read_sock_end;
2351 }
2352
tls_sw_sock_is_readable(struct sock * sk)2353 bool tls_sw_sock_is_readable(struct sock *sk)
2354 {
2355 struct tls_context *tls_ctx = tls_get_ctx(sk);
2356 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2357 bool ingress_empty = true;
2358 struct sk_psock *psock;
2359
2360 rcu_read_lock();
2361 psock = sk_psock(sk);
2362 if (psock)
2363 ingress_empty = list_empty(&psock->ingress_msg);
2364 rcu_read_unlock();
2365
2366 return !ingress_empty || tls_strp_msg_ready(ctx) ||
2367 !skb_queue_empty(&ctx->rx_list);
2368 }
2369
tls_rx_msg_size(struct tls_strparser * strp,struct sk_buff * skb)2370 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2371 {
2372 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2373 struct tls_prot_info *prot = &tls_ctx->prot_info;
2374 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2375 size_t cipher_overhead;
2376 size_t data_len = 0;
2377 int ret;
2378
2379 /* Verify that we have a full TLS header, or wait for more data */
2380 if (strp->stm.offset + prot->prepend_size > skb->len)
2381 return 0;
2382
2383 /* Sanity-check size of on-stack buffer. */
2384 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2385 ret = -EINVAL;
2386 goto read_failure;
2387 }
2388
2389 /* Linearize header to local buffer */
2390 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2391 if (ret < 0)
2392 goto read_failure;
2393
2394 strp->mark = header[0];
2395
2396 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2397
2398 cipher_overhead = prot->tag_size;
2399 if (prot->version != TLS_1_3_VERSION &&
2400 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2401 cipher_overhead += prot->iv_size;
2402
2403 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2404 prot->tail_size) {
2405 ret = -EMSGSIZE;
2406 goto read_failure;
2407 }
2408 if (data_len < cipher_overhead) {
2409 ret = -EBADMSG;
2410 goto read_failure;
2411 }
2412
2413 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2414 if (header[1] != TLS_1_2_VERSION_MINOR ||
2415 header[2] != TLS_1_2_VERSION_MAJOR) {
2416 ret = -EINVAL;
2417 goto read_failure;
2418 }
2419
2420 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2421 TCP_SKB_CB(skb)->seq + strp->stm.offset);
2422 return data_len + TLS_HEADER_SIZE;
2423
2424 read_failure:
2425 tls_err_abort(strp->sk, ret);
2426
2427 return ret;
2428 }
2429
tls_rx_msg_ready(struct tls_strparser * strp)2430 void tls_rx_msg_ready(struct tls_strparser *strp)
2431 {
2432 struct tls_sw_context_rx *ctx;
2433
2434 ctx = container_of(strp, struct tls_sw_context_rx, strp);
2435 ctx->saved_data_ready(strp->sk);
2436 }
2437
tls_data_ready(struct sock * sk)2438 static void tls_data_ready(struct sock *sk)
2439 {
2440 struct tls_context *tls_ctx = tls_get_ctx(sk);
2441 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2442 struct sk_psock *psock;
2443 gfp_t alloc_save;
2444
2445 trace_sk_data_ready(sk);
2446
2447 alloc_save = sk->sk_allocation;
2448 sk->sk_allocation = GFP_ATOMIC;
2449 tls_strp_data_ready(&ctx->strp);
2450 sk->sk_allocation = alloc_save;
2451
2452 psock = sk_psock_get(sk);
2453 if (psock) {
2454 if (!list_empty(&psock->ingress_msg))
2455 ctx->saved_data_ready(sk);
2456 sk_psock_put(sk, psock);
2457 }
2458 }
2459
tls_sw_cancel_work_tx(struct tls_context * tls_ctx)2460 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2461 {
2462 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2463
2464 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2465 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2466 cancel_delayed_work_sync(&ctx->tx_work.work);
2467 }
2468
tls_sw_release_resources_tx(struct sock * sk)2469 void tls_sw_release_resources_tx(struct sock *sk)
2470 {
2471 struct tls_context *tls_ctx = tls_get_ctx(sk);
2472 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2473 struct tls_rec *rec, *tmp;
2474
2475 /* Wait for any pending async encryptions to complete */
2476 tls_encrypt_async_wait(ctx);
2477
2478 tls_tx_records(sk, -1);
2479
2480 /* Free up un-sent records in tx_list. First, free
2481 * the partially sent record if any at head of tx_list.
2482 */
2483 if (tls_ctx->partially_sent_record) {
2484 tls_free_partial_record(sk, tls_ctx);
2485 rec = list_first_entry(&ctx->tx_list,
2486 struct tls_rec, list);
2487 list_del(&rec->list);
2488 sk_msg_free(sk, &rec->msg_plaintext);
2489 kfree(rec);
2490 }
2491
2492 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2493 list_del(&rec->list);
2494 sk_msg_free(sk, &rec->msg_encrypted);
2495 sk_msg_free(sk, &rec->msg_plaintext);
2496 kfree(rec);
2497 }
2498
2499 crypto_free_aead(ctx->aead_send);
2500 tls_free_open_rec(sk);
2501 }
2502
tls_sw_free_ctx_tx(struct tls_context * tls_ctx)2503 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2504 {
2505 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2506
2507 kfree(ctx);
2508 }
2509
tls_sw_release_resources_rx(struct sock * sk)2510 void tls_sw_release_resources_rx(struct sock *sk)
2511 {
2512 struct tls_context *tls_ctx = tls_get_ctx(sk);
2513 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2514
2515 kfree(tls_ctx->rx.rec_seq);
2516 kfree(tls_ctx->rx.iv);
2517
2518 if (ctx->aead_recv) {
2519 __skb_queue_purge(&ctx->rx_list);
2520 crypto_free_aead(ctx->aead_recv);
2521 tls_strp_stop(&ctx->strp);
2522 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2523 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2524 * never swapped.
2525 */
2526 if (ctx->saved_data_ready) {
2527 write_lock_bh(&sk->sk_callback_lock);
2528 sk->sk_data_ready = ctx->saved_data_ready;
2529 write_unlock_bh(&sk->sk_callback_lock);
2530 }
2531 }
2532 }
2533
tls_sw_strparser_done(struct tls_context * tls_ctx)2534 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2535 {
2536 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2537
2538 tls_strp_done(&ctx->strp);
2539 }
2540
tls_sw_free_ctx_rx(struct tls_context * tls_ctx)2541 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2542 {
2543 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2544
2545 kfree(ctx);
2546 }
2547
tls_sw_free_resources_rx(struct sock * sk)2548 void tls_sw_free_resources_rx(struct sock *sk)
2549 {
2550 struct tls_context *tls_ctx = tls_get_ctx(sk);
2551
2552 tls_sw_release_resources_rx(sk);
2553 tls_sw_free_ctx_rx(tls_ctx);
2554 }
2555
2556 /* The work handler to transmitt the encrypted records in tx_list */
tx_work_handler(struct work_struct * work)2557 static void tx_work_handler(struct work_struct *work)
2558 {
2559 struct delayed_work *delayed_work = to_delayed_work(work);
2560 struct tx_work *tx_work = container_of(delayed_work,
2561 struct tx_work, work);
2562 struct sock *sk = tx_work->sk;
2563 struct tls_context *tls_ctx = tls_get_ctx(sk);
2564 struct tls_sw_context_tx *ctx;
2565
2566 if (unlikely(!tls_ctx))
2567 return;
2568
2569 ctx = tls_sw_ctx_tx(tls_ctx);
2570 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2571 return;
2572
2573 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2574 return;
2575
2576 if (mutex_trylock(&tls_ctx->tx_lock)) {
2577 lock_sock(sk);
2578 tls_tx_records(sk, -1);
2579 release_sock(sk);
2580 mutex_unlock(&tls_ctx->tx_lock);
2581 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2582 /* Someone is holding the tx_lock, they will likely run Tx
2583 * and cancel the work on their way out of the lock section.
2584 * Schedule a long delay just in case.
2585 */
2586 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2587 }
2588 }
2589
tls_is_tx_ready(struct tls_sw_context_tx * ctx)2590 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2591 {
2592 struct tls_rec *rec;
2593
2594 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2595 if (!rec)
2596 return false;
2597
2598 return READ_ONCE(rec->tx_ready);
2599 }
2600
tls_sw_write_space(struct sock * sk,struct tls_context * ctx)2601 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2602 {
2603 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2604
2605 /* Schedule the transmission if tx list is ready */
2606 if (tls_is_tx_ready(tx_ctx) &&
2607 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2608 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2609 }
2610
tls_sw_strparser_arm(struct sock * sk,struct tls_context * tls_ctx)2611 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2612 {
2613 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2614
2615 write_lock_bh(&sk->sk_callback_lock);
2616 rx_ctx->saved_data_ready = sk->sk_data_ready;
2617 sk->sk_data_ready = tls_data_ready;
2618 write_unlock_bh(&sk->sk_callback_lock);
2619 }
2620
tls_update_rx_zc_capable(struct tls_context * tls_ctx)2621 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2622 {
2623 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2624
2625 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2626 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2627 }
2628
init_ctx_tx(struct tls_context * ctx,struct sock * sk)2629 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk)
2630 {
2631 struct tls_sw_context_tx *sw_ctx_tx;
2632
2633 if (!ctx->priv_ctx_tx) {
2634 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2635 if (!sw_ctx_tx)
2636 return NULL;
2637 } else {
2638 sw_ctx_tx = ctx->priv_ctx_tx;
2639 }
2640
2641 crypto_init_wait(&sw_ctx_tx->async_wait);
2642 atomic_set(&sw_ctx_tx->encrypt_pending, 1);
2643 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2644 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2645 sw_ctx_tx->tx_work.sk = sk;
2646
2647 return sw_ctx_tx;
2648 }
2649
init_ctx_rx(struct tls_context * ctx)2650 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx)
2651 {
2652 struct tls_sw_context_rx *sw_ctx_rx;
2653
2654 if (!ctx->priv_ctx_rx) {
2655 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2656 if (!sw_ctx_rx)
2657 return NULL;
2658 } else {
2659 sw_ctx_rx = ctx->priv_ctx_rx;
2660 }
2661
2662 crypto_init_wait(&sw_ctx_rx->async_wait);
2663 atomic_set(&sw_ctx_rx->decrypt_pending, 1);
2664 init_waitqueue_head(&sw_ctx_rx->wq);
2665 skb_queue_head_init(&sw_ctx_rx->rx_list);
2666 skb_queue_head_init(&sw_ctx_rx->async_hold);
2667
2668 return sw_ctx_rx;
2669 }
2670
tls_set_sw_offload(struct sock * sk,struct tls_context * ctx,int tx)2671 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2672 {
2673 struct tls_context *tls_ctx = tls_get_ctx(sk);
2674 struct tls_prot_info *prot = &tls_ctx->prot_info;
2675 struct tls_crypto_info *crypto_info;
2676 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2677 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2678 struct cipher_context *cctx;
2679 struct crypto_aead **aead;
2680 struct crypto_tfm *tfm;
2681 char *iv, *rec_seq, *key, *salt;
2682 const struct tls_cipher_desc *cipher_desc;
2683 u16 nonce_size;
2684 int rc = 0;
2685
2686 if (!ctx) {
2687 rc = -EINVAL;
2688 goto out;
2689 }
2690
2691 if (tx) {
2692 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk);
2693 if (!ctx->priv_ctx_tx)
2694 return -ENOMEM;
2695
2696 sw_ctx_tx = ctx->priv_ctx_tx;
2697 crypto_info = &ctx->crypto_send.info;
2698 cctx = &ctx->tx;
2699 aead = &sw_ctx_tx->aead_send;
2700 } else {
2701 ctx->priv_ctx_rx = init_ctx_rx(ctx);
2702 if (!ctx->priv_ctx_rx)
2703 return -ENOMEM;
2704
2705 sw_ctx_rx = ctx->priv_ctx_rx;
2706 crypto_info = &ctx->crypto_recv.info;
2707 cctx = &ctx->rx;
2708 aead = &sw_ctx_rx->aead_recv;
2709 }
2710
2711 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
2712 if (!cipher_desc) {
2713 rc = -EINVAL;
2714 goto free_priv;
2715 }
2716
2717 nonce_size = cipher_desc->nonce;
2718
2719 iv = crypto_info_iv(crypto_info, cipher_desc);
2720 key = crypto_info_key(crypto_info, cipher_desc);
2721 salt = crypto_info_salt(crypto_info, cipher_desc);
2722 rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
2723
2724 if (crypto_info->version == TLS_1_3_VERSION) {
2725 nonce_size = 0;
2726 prot->aad_size = TLS_HEADER_SIZE;
2727 prot->tail_size = 1;
2728 } else {
2729 prot->aad_size = TLS_AAD_SPACE_SIZE;
2730 prot->tail_size = 0;
2731 }
2732
2733 /* Sanity-check the sizes for stack allocations. */
2734 if (nonce_size > MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE) {
2735 rc = -EINVAL;
2736 goto free_priv;
2737 }
2738
2739 prot->version = crypto_info->version;
2740 prot->cipher_type = crypto_info->cipher_type;
2741 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2742 prot->tag_size = cipher_desc->tag;
2743 prot->overhead_size = prot->prepend_size +
2744 prot->tag_size + prot->tail_size;
2745 prot->iv_size = cipher_desc->iv;
2746 prot->salt_size = cipher_desc->salt;
2747 cctx->iv = kmalloc(cipher_desc->iv + cipher_desc->salt, GFP_KERNEL);
2748 if (!cctx->iv) {
2749 rc = -ENOMEM;
2750 goto free_priv;
2751 }
2752 /* Note: 128 & 256 bit salt are the same size */
2753 prot->rec_seq_size = cipher_desc->rec_seq;
2754 memcpy(cctx->iv, salt, cipher_desc->salt);
2755 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv);
2756
2757 cctx->rec_seq = kmemdup(rec_seq, cipher_desc->rec_seq, GFP_KERNEL);
2758 if (!cctx->rec_seq) {
2759 rc = -ENOMEM;
2760 goto free_iv;
2761 }
2762
2763 if (!*aead) {
2764 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0);
2765 if (IS_ERR(*aead)) {
2766 rc = PTR_ERR(*aead);
2767 *aead = NULL;
2768 goto free_rec_seq;
2769 }
2770 }
2771
2772 ctx->push_pending_record = tls_sw_push_pending_record;
2773
2774 rc = crypto_aead_setkey(*aead, key, cipher_desc->key);
2775 if (rc)
2776 goto free_aead;
2777
2778 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2779 if (rc)
2780 goto free_aead;
2781
2782 if (sw_ctx_rx) {
2783 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2784
2785 tls_update_rx_zc_capable(ctx);
2786 sw_ctx_rx->async_capable =
2787 crypto_info->version != TLS_1_3_VERSION &&
2788 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2789
2790 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2791 if (rc)
2792 goto free_aead;
2793 }
2794
2795 goto out;
2796
2797 free_aead:
2798 crypto_free_aead(*aead);
2799 *aead = NULL;
2800 free_rec_seq:
2801 kfree(cctx->rec_seq);
2802 cctx->rec_seq = NULL;
2803 free_iv:
2804 kfree(cctx->iv);
2805 cctx->iv = NULL;
2806 free_priv:
2807 if (tx) {
2808 kfree(ctx->priv_ctx_tx);
2809 ctx->priv_ctx_tx = NULL;
2810 } else {
2811 kfree(ctx->priv_ctx_rx);
2812 ctx->priv_ctx_rx = NULL;
2813 }
2814 out:
2815 return rc;
2816 }
2817