1 /*
2 * Copyright 2020 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26
27 #include "dm_services.h"
28 #include "dc.h"
29
30 #include "dcn30_init.h"
31
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn20/dcn20_resource.h"
35
36 #include "dcn30_resource.h"
37
38 #include "dcn10/dcn10_ipp.h"
39 #include "dcn30/dcn30_hubbub.h"
40 #include "dcn30/dcn30_mpc.h"
41 #include "dcn30/dcn30_hubp.h"
42 #include "irq/dcn30/irq_service_dcn30.h"
43 #include "dcn30/dcn30_dpp.h"
44 #include "dcn30/dcn30_optc.h"
45 #include "dcn20/dcn20_hwseq.h"
46 #include "dcn30/dcn30_hwseq.h"
47 #include "dce110/dce110_hw_sequencer.h"
48 #include "dcn30/dcn30_opp.h"
49 #include "dcn20/dcn20_dsc.h"
50 #include "dcn30/dcn30_vpg.h"
51 #include "dcn30/dcn30_afmt.h"
52 #include "dcn30/dcn30_dio_stream_encoder.h"
53 #include "dcn30/dcn30_dio_link_encoder.h"
54 #include "dce/dce_clock_source.h"
55 #include "dce/dce_audio.h"
56 #include "dce/dce_hwseq.h"
57 #include "clk_mgr.h"
58 #include "virtual/virtual_stream_encoder.h"
59 #include "dce110/dce110_resource.h"
60 #include "dml/display_mode_vba.h"
61 #include "dcn30/dcn30_dccg.h"
62 #include "dcn10/dcn10_resource.h"
63 #include "link.h"
64 #include "dce/dce_panel_cntl.h"
65
66 #include "dcn30/dcn30_dwb.h"
67 #include "dcn30/dcn30_mmhubbub.h"
68
69 #include "sienna_cichlid_ip_offset.h"
70 #include "dcn/dcn_3_0_0_offset.h"
71 #include "dcn/dcn_3_0_0_sh_mask.h"
72
73 #include "nbio/nbio_7_4_offset.h"
74
75 #include "dpcs/dpcs_3_0_0_offset.h"
76 #include "dpcs/dpcs_3_0_0_sh_mask.h"
77
78 #include "mmhub/mmhub_2_0_0_offset.h"
79 #include "mmhub/mmhub_2_0_0_sh_mask.h"
80
81 #include "reg_helper.h"
82 #include "dce/dmub_abm.h"
83 #include "dce/dmub_psr.h"
84 #include "dce/dce_aux.h"
85 #include "dce/dce_i2c.h"
86
87 #include "dml/dcn30/dcn30_fpu.h"
88 #include "dml/dcn30/display_mode_vba_30.h"
89 #include "vm_helper.h"
90 #include "dcn20/dcn20_vmid.h"
91 #include "amdgpu_socbb.h"
92 #include "dc_dmub_srv.h"
93
94 #define DC_LOGGER_INIT(logger)
95
96 enum dcn30_clk_src_array_id {
97 DCN30_CLK_SRC_PLL0,
98 DCN30_CLK_SRC_PLL1,
99 DCN30_CLK_SRC_PLL2,
100 DCN30_CLK_SRC_PLL3,
101 DCN30_CLK_SRC_PLL4,
102 DCN30_CLK_SRC_PLL5,
103 DCN30_CLK_SRC_TOTAL
104 };
105
106 /* begin *********************
107 * macros to expend register list macro defined in HW object header file
108 */
109
110 /* DCN */
111 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
112
113 #define BASE(seg) BASE_INNER(seg)
114
115 #define SR(reg_name)\
116 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
117 mm ## reg_name
118
119 #define SRI(reg_name, block, id)\
120 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
121 mm ## block ## id ## _ ## reg_name
122
123 #define SRI2(reg_name, block, id)\
124 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
125 mm ## reg_name
126
127 #define SRIR(var_name, reg_name, block, id)\
128 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
129 mm ## block ## id ## _ ## reg_name
130
131 #define SRII(reg_name, block, id)\
132 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
133 mm ## block ## id ## _ ## reg_name
134
135 #define SRII_MPC_RMU(reg_name, block, id)\
136 .RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
137 mm ## block ## id ## _ ## reg_name
138
139 #define SRII_DWB(reg_name, temp_name, block, id)\
140 .reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
141 mm ## block ## id ## _ ## temp_name
142
143 #define SF_DWB2(reg_name, block, id, field_name, post_fix) \
144 .field_name = reg_name ## __ ## field_name ## post_fix
145
146 #define DCCG_SRII(reg_name, block, id)\
147 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
148 mm ## block ## id ## _ ## reg_name
149
150 #define VUPDATE_SRII(reg_name, block, id)\
151 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
152 mm ## reg_name ## _ ## block ## id
153
154 /* NBIO */
155 #define NBIO_BASE_INNER(seg) \
156 NBIO_BASE__INST0_SEG ## seg
157
158 #define NBIO_BASE(seg) \
159 NBIO_BASE_INNER(seg)
160
161 #define NBIO_SR(reg_name)\
162 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
163 mm ## reg_name
164
165 /* MMHUB */
166 #define MMHUB_BASE_INNER(seg) \
167 MMHUB_BASE__INST0_SEG ## seg
168
169 #define MMHUB_BASE(seg) \
170 MMHUB_BASE_INNER(seg)
171
172 #define MMHUB_SR(reg_name)\
173 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
174 mmMM ## reg_name
175
176 /* CLOCK */
177 #define CLK_BASE_INNER(seg) \
178 CLK_BASE__INST0_SEG ## seg
179
180 #define CLK_BASE(seg) \
181 CLK_BASE_INNER(seg)
182
183 #define CLK_SRI(reg_name, block, inst)\
184 .reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \
185 mm ## block ## _ ## inst ## _ ## reg_name
186
187
188 static const struct bios_registers bios_regs = {
189 NBIO_SR(BIOS_SCRATCH_3),
190 NBIO_SR(BIOS_SCRATCH_6)
191 };
192
193 #define clk_src_regs(index, pllid)\
194 [index] = {\
195 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
196 }
197
198 static const struct dce110_clk_src_regs clk_src_regs[] = {
199 clk_src_regs(0, A),
200 clk_src_regs(1, B),
201 clk_src_regs(2, C),
202 clk_src_regs(3, D),
203 clk_src_regs(4, E),
204 clk_src_regs(5, F)
205 };
206
207 static const struct dce110_clk_src_shift cs_shift = {
208 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
209 };
210
211 static const struct dce110_clk_src_mask cs_mask = {
212 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
213 };
214
215 #define abm_regs(id)\
216 [id] = {\
217 ABM_DCN30_REG_LIST(id)\
218 }
219
220 static const struct dce_abm_registers abm_regs[] = {
221 abm_regs(0),
222 abm_regs(1),
223 abm_regs(2),
224 abm_regs(3),
225 abm_regs(4),
226 abm_regs(5),
227 };
228
229 static const struct dce_abm_shift abm_shift = {
230 ABM_MASK_SH_LIST_DCN30(__SHIFT)
231 };
232
233 static const struct dce_abm_mask abm_mask = {
234 ABM_MASK_SH_LIST_DCN30(_MASK)
235 };
236
237
238
239 #define audio_regs(id)\
240 [id] = {\
241 AUD_COMMON_REG_LIST(id)\
242 }
243
244 static const struct dce_audio_registers audio_regs[] = {
245 audio_regs(0),
246 audio_regs(1),
247 audio_regs(2),
248 audio_regs(3),
249 audio_regs(4),
250 audio_regs(5),
251 audio_regs(6)
252 };
253
254 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
255 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
256 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
257 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
258
259 static const struct dce_audio_shift audio_shift = {
260 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
261 };
262
263 static const struct dce_audio_mask audio_mask = {
264 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
265 };
266
267 #define vpg_regs(id)\
268 [id] = {\
269 VPG_DCN3_REG_LIST(id)\
270 }
271
272 static const struct dcn30_vpg_registers vpg_regs[] = {
273 vpg_regs(0),
274 vpg_regs(1),
275 vpg_regs(2),
276 vpg_regs(3),
277 vpg_regs(4),
278 vpg_regs(5),
279 vpg_regs(6),
280 };
281
282 static const struct dcn30_vpg_shift vpg_shift = {
283 DCN3_VPG_MASK_SH_LIST(__SHIFT)
284 };
285
286 static const struct dcn30_vpg_mask vpg_mask = {
287 DCN3_VPG_MASK_SH_LIST(_MASK)
288 };
289
290 #define afmt_regs(id)\
291 [id] = {\
292 AFMT_DCN3_REG_LIST(id)\
293 }
294
295 static const struct dcn30_afmt_registers afmt_regs[] = {
296 afmt_regs(0),
297 afmt_regs(1),
298 afmt_regs(2),
299 afmt_regs(3),
300 afmt_regs(4),
301 afmt_regs(5),
302 afmt_regs(6),
303 };
304
305 static const struct dcn30_afmt_shift afmt_shift = {
306 DCN3_AFMT_MASK_SH_LIST(__SHIFT)
307 };
308
309 static const struct dcn30_afmt_mask afmt_mask = {
310 DCN3_AFMT_MASK_SH_LIST(_MASK)
311 };
312
313 #define stream_enc_regs(id)\
314 [id] = {\
315 SE_DCN3_REG_LIST(id)\
316 }
317
318 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
319 stream_enc_regs(0),
320 stream_enc_regs(1),
321 stream_enc_regs(2),
322 stream_enc_regs(3),
323 stream_enc_regs(4),
324 stream_enc_regs(5)
325 };
326
327 static const struct dcn10_stream_encoder_shift se_shift = {
328 SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
329 };
330
331 static const struct dcn10_stream_encoder_mask se_mask = {
332 SE_COMMON_MASK_SH_LIST_DCN30(_MASK)
333 };
334
335
336 #define aux_regs(id)\
337 [id] = {\
338 DCN2_AUX_REG_LIST(id)\
339 }
340
341 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
342 aux_regs(0),
343 aux_regs(1),
344 aux_regs(2),
345 aux_regs(3),
346 aux_regs(4),
347 aux_regs(5)
348 };
349
350 #define hpd_regs(id)\
351 [id] = {\
352 HPD_REG_LIST(id)\
353 }
354
355 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
356 hpd_regs(0),
357 hpd_regs(1),
358 hpd_regs(2),
359 hpd_regs(3),
360 hpd_regs(4),
361 hpd_regs(5)
362 };
363
364 #define link_regs(id, phyid)\
365 [id] = {\
366 LE_DCN3_REG_LIST(id), \
367 UNIPHY_DCN2_REG_LIST(phyid), \
368 DPCS_DCN2_REG_LIST(id), \
369 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
370 }
371
372 static const struct dce110_aux_registers_shift aux_shift = {
373 DCN_AUX_MASK_SH_LIST(__SHIFT)
374 };
375
376 static const struct dce110_aux_registers_mask aux_mask = {
377 DCN_AUX_MASK_SH_LIST(_MASK)
378 };
379
380 static const struct dcn10_link_enc_registers link_enc_regs[] = {
381 link_regs(0, A),
382 link_regs(1, B),
383 link_regs(2, C),
384 link_regs(3, D),
385 link_regs(4, E),
386 link_regs(5, F)
387 };
388
389 static const struct dcn10_link_enc_shift le_shift = {
390 LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\
391 DPCS_DCN2_MASK_SH_LIST(__SHIFT)
392 };
393
394 static const struct dcn10_link_enc_mask le_mask = {
395 LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\
396 DPCS_DCN2_MASK_SH_LIST(_MASK)
397 };
398
399
400 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
401 { DCN_PANEL_CNTL_REG_LIST() }
402 };
403
404 static const struct dce_panel_cntl_shift panel_cntl_shift = {
405 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
406 };
407
408 static const struct dce_panel_cntl_mask panel_cntl_mask = {
409 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
410 };
411
412 #define dpp_regs(id)\
413 [id] = {\
414 DPP_REG_LIST_DCN30(id),\
415 }
416
417 static const struct dcn3_dpp_registers dpp_regs[] = {
418 dpp_regs(0),
419 dpp_regs(1),
420 dpp_regs(2),
421 dpp_regs(3),
422 dpp_regs(4),
423 dpp_regs(5),
424 };
425
426 static const struct dcn3_dpp_shift tf_shift = {
427 DPP_REG_LIST_SH_MASK_DCN30(__SHIFT)
428 };
429
430 static const struct dcn3_dpp_mask tf_mask = {
431 DPP_REG_LIST_SH_MASK_DCN30(_MASK)
432 };
433
434 #define opp_regs(id)\
435 [id] = {\
436 OPP_REG_LIST_DCN30(id),\
437 }
438
439 static const struct dcn20_opp_registers opp_regs[] = {
440 opp_regs(0),
441 opp_regs(1),
442 opp_regs(2),
443 opp_regs(3),
444 opp_regs(4),
445 opp_regs(5)
446 };
447
448 static const struct dcn20_opp_shift opp_shift = {
449 OPP_MASK_SH_LIST_DCN20(__SHIFT)
450 };
451
452 static const struct dcn20_opp_mask opp_mask = {
453 OPP_MASK_SH_LIST_DCN20(_MASK)
454 };
455
456 #define aux_engine_regs(id)\
457 [id] = {\
458 AUX_COMMON_REG_LIST0(id), \
459 .AUXN_IMPCAL = 0, \
460 .AUXP_IMPCAL = 0, \
461 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
462 }
463
464 static const struct dce110_aux_registers aux_engine_regs[] = {
465 aux_engine_regs(0),
466 aux_engine_regs(1),
467 aux_engine_regs(2),
468 aux_engine_regs(3),
469 aux_engine_regs(4),
470 aux_engine_regs(5)
471 };
472
473 #define dwbc_regs_dcn3(id)\
474 [id] = {\
475 DWBC_COMMON_REG_LIST_DCN30(id),\
476 }
477
478 static const struct dcn30_dwbc_registers dwbc30_regs[] = {
479 dwbc_regs_dcn3(0),
480 };
481
482 static const struct dcn30_dwbc_shift dwbc30_shift = {
483 DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
484 };
485
486 static const struct dcn30_dwbc_mask dwbc30_mask = {
487 DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
488 };
489
490 #define mcif_wb_regs_dcn3(id)\
491 [id] = {\
492 MCIF_WB_COMMON_REG_LIST_DCN30(id),\
493 }
494
495 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = {
496 mcif_wb_regs_dcn3(0)
497 };
498
499 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
500 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
501 };
502
503 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
504 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK)
505 };
506
507 #define dsc_regsDCN20(id)\
508 [id] = {\
509 DSC_REG_LIST_DCN20(id)\
510 }
511
512 static const struct dcn20_dsc_registers dsc_regs[] = {
513 dsc_regsDCN20(0),
514 dsc_regsDCN20(1),
515 dsc_regsDCN20(2),
516 dsc_regsDCN20(3),
517 dsc_regsDCN20(4),
518 dsc_regsDCN20(5)
519 };
520
521 static const struct dcn20_dsc_shift dsc_shift = {
522 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
523 };
524
525 static const struct dcn20_dsc_mask dsc_mask = {
526 DSC_REG_LIST_SH_MASK_DCN20(_MASK)
527 };
528
529 static const struct dcn30_mpc_registers mpc_regs = {
530 MPC_REG_LIST_DCN3_0(0),
531 MPC_REG_LIST_DCN3_0(1),
532 MPC_REG_LIST_DCN3_0(2),
533 MPC_REG_LIST_DCN3_0(3),
534 MPC_REG_LIST_DCN3_0(4),
535 MPC_REG_LIST_DCN3_0(5),
536 MPC_OUT_MUX_REG_LIST_DCN3_0(0),
537 MPC_OUT_MUX_REG_LIST_DCN3_0(1),
538 MPC_OUT_MUX_REG_LIST_DCN3_0(2),
539 MPC_OUT_MUX_REG_LIST_DCN3_0(3),
540 MPC_OUT_MUX_REG_LIST_DCN3_0(4),
541 MPC_OUT_MUX_REG_LIST_DCN3_0(5),
542 MPC_RMU_GLOBAL_REG_LIST_DCN3AG,
543 MPC_RMU_REG_LIST_DCN3AG(0),
544 MPC_RMU_REG_LIST_DCN3AG(1),
545 MPC_RMU_REG_LIST_DCN3AG(2),
546 MPC_DWB_MUX_REG_LIST_DCN3_0(0),
547 };
548
549 static const struct dcn30_mpc_shift mpc_shift = {
550 MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
551 };
552
553 static const struct dcn30_mpc_mask mpc_mask = {
554 MPC_COMMON_MASK_SH_LIST_DCN30(_MASK)
555 };
556
557 #define optc_regs(id)\
558 [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)}
559
560
561 static const struct dcn_optc_registers optc_regs[] = {
562 optc_regs(0),
563 optc_regs(1),
564 optc_regs(2),
565 optc_regs(3),
566 optc_regs(4),
567 optc_regs(5)
568 };
569
570 static const struct dcn_optc_shift optc_shift = {
571 OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
572 };
573
574 static const struct dcn_optc_mask optc_mask = {
575 OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK)
576 };
577
578 #define hubp_regs(id)\
579 [id] = {\
580 HUBP_REG_LIST_DCN30(id)\
581 }
582
583 static const struct dcn_hubp2_registers hubp_regs[] = {
584 hubp_regs(0),
585 hubp_regs(1),
586 hubp_regs(2),
587 hubp_regs(3),
588 hubp_regs(4),
589 hubp_regs(5)
590 };
591
592 static const struct dcn_hubp2_shift hubp_shift = {
593 HUBP_MASK_SH_LIST_DCN30(__SHIFT)
594 };
595
596 static const struct dcn_hubp2_mask hubp_mask = {
597 HUBP_MASK_SH_LIST_DCN30(_MASK)
598 };
599
600 static const struct dcn_hubbub_registers hubbub_reg = {
601 HUBBUB_REG_LIST_DCN30(0)
602 };
603
604 static const struct dcn_hubbub_shift hubbub_shift = {
605 HUBBUB_MASK_SH_LIST_DCN30(__SHIFT)
606 };
607
608 static const struct dcn_hubbub_mask hubbub_mask = {
609 HUBBUB_MASK_SH_LIST_DCN30(_MASK)
610 };
611
612 static const struct dccg_registers dccg_regs = {
613 DCCG_REG_LIST_DCN30()
614 };
615
616 static const struct dccg_shift dccg_shift = {
617 DCCG_MASK_SH_LIST_DCN3(__SHIFT)
618 };
619
620 static const struct dccg_mask dccg_mask = {
621 DCCG_MASK_SH_LIST_DCN3(_MASK)
622 };
623
624 static const struct dce_hwseq_registers hwseq_reg = {
625 HWSEQ_DCN30_REG_LIST()
626 };
627
628 static const struct dce_hwseq_shift hwseq_shift = {
629 HWSEQ_DCN30_MASK_SH_LIST(__SHIFT)
630 };
631
632 static const struct dce_hwseq_mask hwseq_mask = {
633 HWSEQ_DCN30_MASK_SH_LIST(_MASK)
634 };
635 #define vmid_regs(id)\
636 [id] = {\
637 DCN20_VMID_REG_LIST(id)\
638 }
639
640 static const struct dcn_vmid_registers vmid_regs[] = {
641 vmid_regs(0),
642 vmid_regs(1),
643 vmid_regs(2),
644 vmid_regs(3),
645 vmid_regs(4),
646 vmid_regs(5),
647 vmid_regs(6),
648 vmid_regs(7),
649 vmid_regs(8),
650 vmid_regs(9),
651 vmid_regs(10),
652 vmid_regs(11),
653 vmid_regs(12),
654 vmid_regs(13),
655 vmid_regs(14),
656 vmid_regs(15)
657 };
658
659 static const struct dcn20_vmid_shift vmid_shifts = {
660 DCN20_VMID_MASK_SH_LIST(__SHIFT)
661 };
662
663 static const struct dcn20_vmid_mask vmid_masks = {
664 DCN20_VMID_MASK_SH_LIST(_MASK)
665 };
666
667 static const struct resource_caps res_cap_dcn3 = {
668 .num_timing_generator = 6,
669 .num_opp = 6,
670 .num_video_plane = 6,
671 .num_audio = 6,
672 .num_stream_encoder = 6,
673 .num_pll = 6,
674 .num_dwb = 1,
675 .num_ddc = 6,
676 .num_vmid = 16,
677 .num_mpc_3dlut = 3,
678 .num_dsc = 6,
679 };
680
681 static const struct dc_plane_cap plane_cap = {
682 .type = DC_PLANE_TYPE_DCN_UNIVERSAL,
683 .per_pixel_alpha = true,
684
685 .pixel_format_support = {
686 .argb8888 = true,
687 .nv12 = true,
688 .fp16 = true,
689 .p010 = true,
690 .ayuv = false,
691 },
692
693 .max_upscale_factor = {
694 .argb8888 = 16000,
695 .nv12 = 16000,
696 .fp16 = 16000
697 },
698
699 /* 6:1 downscaling ratio: 1000/6 = 166.666 */
700 .max_downscale_factor = {
701 .argb8888 = 167,
702 .nv12 = 167,
703 .fp16 = 167
704 },
705 16,
706 16
707 };
708
709 static const struct dc_debug_options debug_defaults_drv = {
710 .disable_dmcu = true, //No DMCU on DCN30
711 .force_abm_enable = false,
712 .timing_trace = false,
713 .clock_trace = true,
714 .disable_pplib_clock_request = true,
715 .pipe_split_policy = MPC_SPLIT_DYNAMIC,
716 .force_single_disp_pipe_split = false,
717 .disable_dcc = DCC_ENABLE,
718 .vsr_support = true,
719 .performance_trace = false,
720 .max_downscale_src_width = 7680,/*upto 8K*/
721 .disable_pplib_wm_range = false,
722 .scl_reset_length10 = true,
723 .sanity_checks = false,
724 .underflow_assert_delay_us = 0xFFFFFFFF,
725 .dwb_fi_phase = -1, // -1 = disable,
726 .dmub_command_table = true,
727 .use_max_lb = true,
728 .exit_idle_opt_for_cursor_updates = true,
729 .enable_legacy_fast_update = false,
730 };
731
732 static const struct dc_panel_config panel_config_defaults = {
733 .psr = {
734 .disable_psr = false,
735 .disallow_psrsu = false,
736 .disallow_replay = false,
737 },
738 };
739
dcn30_dpp_destroy(struct dpp ** dpp)740 static void dcn30_dpp_destroy(struct dpp **dpp)
741 {
742 kfree(TO_DCN20_DPP(*dpp));
743 *dpp = NULL;
744 }
745
dcn30_dpp_create(struct dc_context * ctx,uint32_t inst)746 static struct dpp *dcn30_dpp_create(
747 struct dc_context *ctx,
748 uint32_t inst)
749 {
750 struct dcn3_dpp *dpp =
751 kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
752
753 if (!dpp)
754 return NULL;
755
756 if (dpp3_construct(dpp, ctx, inst,
757 &dpp_regs[inst], &tf_shift, &tf_mask))
758 return &dpp->base;
759
760 BREAK_TO_DEBUGGER();
761 kfree(dpp);
762 return NULL;
763 }
764
dcn30_opp_create(struct dc_context * ctx,uint32_t inst)765 static struct output_pixel_processor *dcn30_opp_create(
766 struct dc_context *ctx, uint32_t inst)
767 {
768 struct dcn20_opp *opp =
769 kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
770
771 if (!opp) {
772 BREAK_TO_DEBUGGER();
773 return NULL;
774 }
775
776 dcn20_opp_construct(opp, ctx, inst,
777 &opp_regs[inst], &opp_shift, &opp_mask);
778 return &opp->base;
779 }
780
dcn30_aux_engine_create(struct dc_context * ctx,uint32_t inst)781 static struct dce_aux *dcn30_aux_engine_create(
782 struct dc_context *ctx,
783 uint32_t inst)
784 {
785 struct aux_engine_dce110 *aux_engine =
786 kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
787
788 if (!aux_engine)
789 return NULL;
790
791 dce110_aux_engine_construct(aux_engine, ctx, inst,
792 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
793 &aux_engine_regs[inst],
794 &aux_mask,
795 &aux_shift,
796 ctx->dc->caps.extended_aux_timeout_support);
797
798 return &aux_engine->base;
799 }
800
801 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) }
802
803 static const struct dce_i2c_registers i2c_hw_regs[] = {
804 i2c_inst_regs(1),
805 i2c_inst_regs(2),
806 i2c_inst_regs(3),
807 i2c_inst_regs(4),
808 i2c_inst_regs(5),
809 i2c_inst_regs(6),
810 };
811
812 static const struct dce_i2c_shift i2c_shifts = {
813 I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
814 };
815
816 static const struct dce_i2c_mask i2c_masks = {
817 I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
818 };
819
dcn30_i2c_hw_create(struct dc_context * ctx,uint32_t inst)820 static struct dce_i2c_hw *dcn30_i2c_hw_create(
821 struct dc_context *ctx,
822 uint32_t inst)
823 {
824 struct dce_i2c_hw *dce_i2c_hw =
825 kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
826
827 if (!dce_i2c_hw)
828 return NULL;
829
830 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
831 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
832
833 return dce_i2c_hw;
834 }
835
dcn30_mpc_create(struct dc_context * ctx,int num_mpcc,int num_rmu)836 static struct mpc *dcn30_mpc_create(
837 struct dc_context *ctx,
838 int num_mpcc,
839 int num_rmu)
840 {
841 struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
842 GFP_KERNEL);
843
844 if (!mpc30)
845 return NULL;
846
847 dcn30_mpc_construct(mpc30, ctx,
848 &mpc_regs,
849 &mpc_shift,
850 &mpc_mask,
851 num_mpcc,
852 num_rmu);
853
854 return &mpc30->base;
855 }
856
dcn30_hubbub_create(struct dc_context * ctx)857 static struct hubbub *dcn30_hubbub_create(struct dc_context *ctx)
858 {
859 int i;
860
861 struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub),
862 GFP_KERNEL);
863
864 if (!hubbub3)
865 return NULL;
866
867 hubbub3_construct(hubbub3, ctx,
868 &hubbub_reg,
869 &hubbub_shift,
870 &hubbub_mask);
871
872
873 for (i = 0; i < res_cap_dcn3.num_vmid; i++) {
874 struct dcn20_vmid *vmid = &hubbub3->vmid[i];
875
876 vmid->ctx = ctx;
877
878 vmid->regs = &vmid_regs[i];
879 vmid->shifts = &vmid_shifts;
880 vmid->masks = &vmid_masks;
881 }
882
883 return &hubbub3->base;
884 }
885
dcn30_timing_generator_create(struct dc_context * ctx,uint32_t instance)886 static struct timing_generator *dcn30_timing_generator_create(
887 struct dc_context *ctx,
888 uint32_t instance)
889 {
890 struct optc *tgn10 =
891 kzalloc(sizeof(struct optc), GFP_KERNEL);
892
893 if (!tgn10)
894 return NULL;
895
896 tgn10->base.inst = instance;
897 tgn10->base.ctx = ctx;
898
899 tgn10->tg_regs = &optc_regs[instance];
900 tgn10->tg_shift = &optc_shift;
901 tgn10->tg_mask = &optc_mask;
902
903 dcn30_timing_generator_init(tgn10);
904
905 return &tgn10->base;
906 }
907
908 static const struct encoder_feature_support link_enc_feature = {
909 .max_hdmi_deep_color = COLOR_DEPTH_121212,
910 .max_hdmi_pixel_clock = 600000,
911 .hdmi_ycbcr420_supported = true,
912 .dp_ycbcr420_supported = true,
913 .fec_supported = true,
914 .flags.bits.IS_HBR2_CAPABLE = true,
915 .flags.bits.IS_HBR3_CAPABLE = true,
916 .flags.bits.IS_TPS3_CAPABLE = true,
917 .flags.bits.IS_TPS4_CAPABLE = true
918 };
919
dcn30_link_encoder_create(struct dc_context * ctx,const struct encoder_init_data * enc_init_data)920 static struct link_encoder *dcn30_link_encoder_create(
921 struct dc_context *ctx,
922 const struct encoder_init_data *enc_init_data)
923 {
924 struct dcn20_link_encoder *enc20 =
925 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
926
927 if (!enc20)
928 return NULL;
929
930 dcn30_link_encoder_construct(enc20,
931 enc_init_data,
932 &link_enc_feature,
933 &link_enc_regs[enc_init_data->transmitter],
934 &link_enc_aux_regs[enc_init_data->channel - 1],
935 &link_enc_hpd_regs[enc_init_data->hpd_source],
936 &le_shift,
937 &le_mask);
938
939 return &enc20->enc10.base;
940 }
941
dcn30_panel_cntl_create(const struct panel_cntl_init_data * init_data)942 static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data)
943 {
944 struct dce_panel_cntl *panel_cntl =
945 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
946
947 if (!panel_cntl)
948 return NULL;
949
950 dce_panel_cntl_construct(panel_cntl,
951 init_data,
952 &panel_cntl_regs[init_data->inst],
953 &panel_cntl_shift,
954 &panel_cntl_mask);
955
956 return &panel_cntl->base;
957 }
958
read_dce_straps(struct dc_context * ctx,struct resource_straps * straps)959 static void read_dce_straps(
960 struct dc_context *ctx,
961 struct resource_straps *straps)
962 {
963 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
964 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
965
966 }
967
dcn30_create_audio(struct dc_context * ctx,unsigned int inst)968 static struct audio *dcn30_create_audio(
969 struct dc_context *ctx, unsigned int inst)
970 {
971 return dce_audio_create(ctx, inst,
972 &audio_regs[inst], &audio_shift, &audio_mask);
973 }
974
dcn30_vpg_create(struct dc_context * ctx,uint32_t inst)975 static struct vpg *dcn30_vpg_create(
976 struct dc_context *ctx,
977 uint32_t inst)
978 {
979 struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
980
981 if (!vpg3)
982 return NULL;
983
984 vpg3_construct(vpg3, ctx, inst,
985 &vpg_regs[inst],
986 &vpg_shift,
987 &vpg_mask);
988
989 return &vpg3->base;
990 }
991
dcn30_afmt_create(struct dc_context * ctx,uint32_t inst)992 static struct afmt *dcn30_afmt_create(
993 struct dc_context *ctx,
994 uint32_t inst)
995 {
996 struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
997
998 if (!afmt3)
999 return NULL;
1000
1001 afmt3_construct(afmt3, ctx, inst,
1002 &afmt_regs[inst],
1003 &afmt_shift,
1004 &afmt_mask);
1005
1006 return &afmt3->base;
1007 }
1008
dcn30_stream_encoder_create(enum engine_id eng_id,struct dc_context * ctx)1009 static struct stream_encoder *dcn30_stream_encoder_create(enum engine_id eng_id,
1010 struct dc_context *ctx)
1011 {
1012 struct dcn10_stream_encoder *enc1;
1013 struct vpg *vpg;
1014 struct afmt *afmt;
1015 int vpg_inst;
1016 int afmt_inst;
1017
1018 /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1019 if (eng_id <= ENGINE_ID_DIGF) {
1020 vpg_inst = eng_id;
1021 afmt_inst = eng_id;
1022 } else
1023 return NULL;
1024
1025 enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1026 vpg = dcn30_vpg_create(ctx, vpg_inst);
1027 afmt = dcn30_afmt_create(ctx, afmt_inst);
1028
1029 if (!enc1 || !vpg || !afmt) {
1030 kfree(enc1);
1031 kfree(vpg);
1032 kfree(afmt);
1033 return NULL;
1034 }
1035
1036 dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1037 eng_id, vpg, afmt,
1038 &stream_enc_regs[eng_id],
1039 &se_shift, &se_mask);
1040
1041 return &enc1->base;
1042 }
1043
dcn30_hwseq_create(struct dc_context * ctx)1044 static struct dce_hwseq *dcn30_hwseq_create(struct dc_context *ctx)
1045 {
1046 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1047
1048 if (hws) {
1049 hws->ctx = ctx;
1050 hws->regs = &hwseq_reg;
1051 hws->shifts = &hwseq_shift;
1052 hws->masks = &hwseq_mask;
1053 }
1054 return hws;
1055 }
1056 static const struct resource_create_funcs res_create_funcs = {
1057 .read_dce_straps = read_dce_straps,
1058 .create_audio = dcn30_create_audio,
1059 .create_stream_encoder = dcn30_stream_encoder_create,
1060 .create_hwseq = dcn30_hwseq_create,
1061 };
1062
dcn30_resource_destruct(struct dcn30_resource_pool * pool)1063 static void dcn30_resource_destruct(struct dcn30_resource_pool *pool)
1064 {
1065 unsigned int i;
1066
1067 for (i = 0; i < pool->base.stream_enc_count; i++) {
1068 if (pool->base.stream_enc[i] != NULL) {
1069 if (pool->base.stream_enc[i]->vpg != NULL) {
1070 kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1071 pool->base.stream_enc[i]->vpg = NULL;
1072 }
1073 if (pool->base.stream_enc[i]->afmt != NULL) {
1074 kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1075 pool->base.stream_enc[i]->afmt = NULL;
1076 }
1077 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1078 pool->base.stream_enc[i] = NULL;
1079 }
1080 }
1081
1082 for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1083 if (pool->base.dscs[i] != NULL)
1084 dcn20_dsc_destroy(&pool->base.dscs[i]);
1085 }
1086
1087 if (pool->base.mpc != NULL) {
1088 kfree(TO_DCN20_MPC(pool->base.mpc));
1089 pool->base.mpc = NULL;
1090 }
1091 if (pool->base.hubbub != NULL) {
1092 kfree(pool->base.hubbub);
1093 pool->base.hubbub = NULL;
1094 }
1095 for (i = 0; i < pool->base.pipe_count; i++) {
1096 if (pool->base.dpps[i] != NULL)
1097 dcn30_dpp_destroy(&pool->base.dpps[i]);
1098
1099 if (pool->base.ipps[i] != NULL)
1100 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1101
1102 if (pool->base.hubps[i] != NULL) {
1103 kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1104 pool->base.hubps[i] = NULL;
1105 }
1106
1107 if (pool->base.irqs != NULL) {
1108 dal_irq_service_destroy(&pool->base.irqs);
1109 }
1110 }
1111
1112 for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1113 if (pool->base.engines[i] != NULL)
1114 dce110_engine_destroy(&pool->base.engines[i]);
1115 if (pool->base.hw_i2cs[i] != NULL) {
1116 kfree(pool->base.hw_i2cs[i]);
1117 pool->base.hw_i2cs[i] = NULL;
1118 }
1119 if (pool->base.sw_i2cs[i] != NULL) {
1120 kfree(pool->base.sw_i2cs[i]);
1121 pool->base.sw_i2cs[i] = NULL;
1122 }
1123 }
1124
1125 for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1126 if (pool->base.opps[i] != NULL)
1127 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1128 }
1129
1130 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1131 if (pool->base.timing_generators[i] != NULL) {
1132 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1133 pool->base.timing_generators[i] = NULL;
1134 }
1135 }
1136
1137 for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1138 if (pool->base.dwbc[i] != NULL) {
1139 kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1140 pool->base.dwbc[i] = NULL;
1141 }
1142 if (pool->base.mcif_wb[i] != NULL) {
1143 kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1144 pool->base.mcif_wb[i] = NULL;
1145 }
1146 }
1147
1148 for (i = 0; i < pool->base.audio_count; i++) {
1149 if (pool->base.audios[i])
1150 dce_aud_destroy(&pool->base.audios[i]);
1151 }
1152
1153 for (i = 0; i < pool->base.clk_src_count; i++) {
1154 if (pool->base.clock_sources[i] != NULL) {
1155 dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1156 pool->base.clock_sources[i] = NULL;
1157 }
1158 }
1159
1160 for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1161 if (pool->base.mpc_lut[i] != NULL) {
1162 dc_3dlut_func_release(pool->base.mpc_lut[i]);
1163 pool->base.mpc_lut[i] = NULL;
1164 }
1165 if (pool->base.mpc_shaper[i] != NULL) {
1166 dc_transfer_func_release(pool->base.mpc_shaper[i]);
1167 pool->base.mpc_shaper[i] = NULL;
1168 }
1169 }
1170
1171 if (pool->base.dp_clock_source != NULL) {
1172 dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1173 pool->base.dp_clock_source = NULL;
1174 }
1175
1176 for (i = 0; i < pool->base.pipe_count; i++) {
1177 if (pool->base.multiple_abms[i] != NULL)
1178 dce_abm_destroy(&pool->base.multiple_abms[i]);
1179 }
1180
1181 if (pool->base.psr != NULL)
1182 dmub_psr_destroy(&pool->base.psr);
1183
1184 if (pool->base.dccg != NULL)
1185 dcn_dccg_destroy(&pool->base.dccg);
1186
1187 if (pool->base.oem_device != NULL) {
1188 struct dc *dc = pool->base.oem_device->ctx->dc;
1189
1190 dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
1191 }
1192 }
1193
dcn30_hubp_create(struct dc_context * ctx,uint32_t inst)1194 static struct hubp *dcn30_hubp_create(
1195 struct dc_context *ctx,
1196 uint32_t inst)
1197 {
1198 struct dcn20_hubp *hubp2 =
1199 kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
1200
1201 if (!hubp2)
1202 return NULL;
1203
1204 if (hubp3_construct(hubp2, ctx, inst,
1205 &hubp_regs[inst], &hubp_shift, &hubp_mask))
1206 return &hubp2->base;
1207
1208 BREAK_TO_DEBUGGER();
1209 kfree(hubp2);
1210 return NULL;
1211 }
1212
dcn30_dwbc_create(struct dc_context * ctx,struct resource_pool * pool)1213 static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1214 {
1215 int i;
1216 uint32_t pipe_count = pool->res_cap->num_dwb;
1217
1218 for (i = 0; i < pipe_count; i++) {
1219 struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1220 GFP_KERNEL);
1221
1222 if (!dwbc30) {
1223 dm_error("DC: failed to create dwbc30!\n");
1224 return false;
1225 }
1226
1227 dcn30_dwbc_construct(dwbc30, ctx,
1228 &dwbc30_regs[i],
1229 &dwbc30_shift,
1230 &dwbc30_mask,
1231 i);
1232
1233 pool->dwbc[i] = &dwbc30->base;
1234 }
1235 return true;
1236 }
1237
dcn30_mmhubbub_create(struct dc_context * ctx,struct resource_pool * pool)1238 static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1239 {
1240 int i;
1241 uint32_t pipe_count = pool->res_cap->num_dwb;
1242
1243 for (i = 0; i < pipe_count; i++) {
1244 struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1245 GFP_KERNEL);
1246
1247 if (!mcif_wb30) {
1248 dm_error("DC: failed to create mcif_wb30!\n");
1249 return false;
1250 }
1251
1252 dcn30_mmhubbub_construct(mcif_wb30, ctx,
1253 &mcif_wb30_regs[i],
1254 &mcif_wb30_shift,
1255 &mcif_wb30_mask,
1256 i);
1257
1258 pool->mcif_wb[i] = &mcif_wb30->base;
1259 }
1260 return true;
1261 }
1262
dcn30_dsc_create(struct dc_context * ctx,uint32_t inst)1263 static struct display_stream_compressor *dcn30_dsc_create(
1264 struct dc_context *ctx, uint32_t inst)
1265 {
1266 struct dcn20_dsc *dsc =
1267 kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1268
1269 if (!dsc) {
1270 BREAK_TO_DEBUGGER();
1271 return NULL;
1272 }
1273
1274 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1275 return &dsc->base;
1276 }
1277
dcn30_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1278 enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1279 {
1280
1281 return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream);
1282 }
1283
dcn30_destroy_resource_pool(struct resource_pool ** pool)1284 static void dcn30_destroy_resource_pool(struct resource_pool **pool)
1285 {
1286 struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool);
1287
1288 dcn30_resource_destruct(dcn30_pool);
1289 kfree(dcn30_pool);
1290 *pool = NULL;
1291 }
1292
dcn30_clock_source_create(struct dc_context * ctx,struct dc_bios * bios,enum clock_source_id id,const struct dce110_clk_src_regs * regs,bool dp_clk_src)1293 static struct clock_source *dcn30_clock_source_create(
1294 struct dc_context *ctx,
1295 struct dc_bios *bios,
1296 enum clock_source_id id,
1297 const struct dce110_clk_src_regs *regs,
1298 bool dp_clk_src)
1299 {
1300 struct dce110_clk_src *clk_src =
1301 kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
1302
1303 if (!clk_src)
1304 return NULL;
1305
1306 if (dcn3_clk_src_construct(clk_src, ctx, bios, id,
1307 regs, &cs_shift, &cs_mask)) {
1308 clk_src->base.dp_clk_src = dp_clk_src;
1309 return &clk_src->base;
1310 }
1311
1312 kfree(clk_src);
1313 BREAK_TO_DEBUGGER();
1314 return NULL;
1315 }
1316
dcn30_populate_dml_pipes_from_context(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,bool fast_validate)1317 int dcn30_populate_dml_pipes_from_context(
1318 struct dc *dc, struct dc_state *context,
1319 display_e2e_pipe_params_st *pipes,
1320 bool fast_validate)
1321 {
1322 int i, pipe_cnt;
1323 struct resource_context *res_ctx = &context->res_ctx;
1324
1325 DC_FP_START();
1326 dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1327 DC_FP_END();
1328
1329 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1330 if (!res_ctx->pipe_ctx[i].stream)
1331 continue;
1332
1333 pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth =
1334 dm_lb_16;
1335 }
1336
1337 return pipe_cnt;
1338 }
1339
dcn30_populate_dml_writeback_from_context(struct dc * dc,struct resource_context * res_ctx,display_e2e_pipe_params_st * pipes)1340 void dcn30_populate_dml_writeback_from_context(
1341 struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes)
1342 {
1343 DC_FP_START();
1344 dcn30_fpu_populate_dml_writeback_from_context(dc, res_ctx, pipes);
1345 DC_FP_END();
1346 }
1347
dcn30_calc_max_scaled_time(unsigned int time_per_pixel,enum mmhubbub_wbif_mode mode,unsigned int urgent_watermark)1348 unsigned int dcn30_calc_max_scaled_time(
1349 unsigned int time_per_pixel,
1350 enum mmhubbub_wbif_mode mode,
1351 unsigned int urgent_watermark)
1352 {
1353 unsigned int time_per_byte = 0;
1354 unsigned int total_free_entry = 0xb40;
1355 unsigned int buf_lh_capability;
1356 unsigned int max_scaled_time;
1357
1358 if (mode == PACKED_444) /* packed mode 32 bpp */
1359 time_per_byte = time_per_pixel/4;
1360 else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */
1361 time_per_byte = time_per_pixel/8;
1362
1363 if (time_per_byte == 0)
1364 time_per_byte = 1;
1365
1366 buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/
1367 max_scaled_time = buf_lh_capability - urgent_watermark;
1368 return max_scaled_time;
1369 }
1370
dcn30_set_mcif_arb_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt)1371 void dcn30_set_mcif_arb_params(
1372 struct dc *dc,
1373 struct dc_state *context,
1374 display_e2e_pipe_params_st *pipes,
1375 int pipe_cnt)
1376 {
1377 enum mmhubbub_wbif_mode wbif_mode;
1378 struct display_mode_lib *dml = &context->bw_ctx.dml;
1379 struct mcif_arb_params *wb_arb_params;
1380 int i, j, dwb_pipe;
1381
1382 /* Writeback MCIF_WB arbitration parameters */
1383 dwb_pipe = 0;
1384 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1385
1386 if (!context->res_ctx.pipe_ctx[i].stream)
1387 continue;
1388
1389 for (j = 0; j < MAX_DWB_PIPES; j++) {
1390 struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j];
1391
1392 if (writeback_info->wb_enabled == false)
1393 continue;
1394
1395 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1396 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1397
1398 if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB ||
1399 writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA)
1400 wbif_mode = PACKED_444_FP16;
1401 else
1402 wbif_mode = PACKED_444;
1403
1404 DC_FP_START();
1405 dcn30_fpu_set_mcif_arb_params(wb_arb_params, dml, pipes, pipe_cnt, j);
1406 DC_FP_END();
1407 wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */
1408 wb_arb_params->slice_lines = 32;
1409 wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */
1410 wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1411 wbif_mode,
1412 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1413
1414 dwb_pipe++;
1415
1416 if (dwb_pipe >= MAX_DWB_PIPES)
1417 return;
1418 }
1419 if (dwb_pipe >= MAX_DWB_PIPES)
1420 return;
1421 }
1422
1423 }
1424
1425 static struct dc_cap_funcs cap_funcs = {
1426 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap
1427 };
1428
dcn30_acquire_post_bldn_3dlut(struct resource_context * res_ctx,const struct resource_pool * pool,int mpcc_id,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1429 bool dcn30_acquire_post_bldn_3dlut(
1430 struct resource_context *res_ctx,
1431 const struct resource_pool *pool,
1432 int mpcc_id,
1433 struct dc_3dlut **lut,
1434 struct dc_transfer_func **shaper)
1435 {
1436 int i;
1437 bool ret = false;
1438 union dc_3dlut_state *state;
1439
1440 ASSERT(*lut == NULL && *shaper == NULL);
1441 *lut = NULL;
1442 *shaper = NULL;
1443
1444 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1445 if (!res_ctx->is_mpc_3dlut_acquired[i]) {
1446 *lut = pool->mpc_lut[i];
1447 *shaper = pool->mpc_shaper[i];
1448 state = &pool->mpc_lut[i]->state;
1449 res_ctx->is_mpc_3dlut_acquired[i] = true;
1450 state->bits.rmu_idx_valid = 1;
1451 state->bits.rmu_mux_num = i;
1452 if (state->bits.rmu_mux_num == 0)
1453 state->bits.mpc_rmu0_mux = mpcc_id;
1454 else if (state->bits.rmu_mux_num == 1)
1455 state->bits.mpc_rmu1_mux = mpcc_id;
1456 else if (state->bits.rmu_mux_num == 2)
1457 state->bits.mpc_rmu2_mux = mpcc_id;
1458 ret = true;
1459 break;
1460 }
1461 }
1462 return ret;
1463 }
1464
dcn30_release_post_bldn_3dlut(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1465 bool dcn30_release_post_bldn_3dlut(
1466 struct resource_context *res_ctx,
1467 const struct resource_pool *pool,
1468 struct dc_3dlut **lut,
1469 struct dc_transfer_func **shaper)
1470 {
1471 int i;
1472 bool ret = false;
1473
1474 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1475 if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1476 res_ctx->is_mpc_3dlut_acquired[i] = false;
1477 pool->mpc_lut[i]->state.raw = 0;
1478 *lut = NULL;
1479 *shaper = NULL;
1480 ret = true;
1481 break;
1482 }
1483 }
1484 return ret;
1485 }
1486
is_soc_bounding_box_valid(struct dc * dc)1487 static bool is_soc_bounding_box_valid(struct dc *dc)
1488 {
1489 uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev;
1490
1491 if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev))
1492 return true;
1493
1494 return false;
1495 }
1496
init_soc_bounding_box(struct dc * dc,struct dcn30_resource_pool * pool)1497 static bool init_soc_bounding_box(struct dc *dc,
1498 struct dcn30_resource_pool *pool)
1499 {
1500 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc;
1501 struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip;
1502
1503 DC_LOGGER_INIT(dc->ctx->logger);
1504
1505 if (!is_soc_bounding_box_valid(dc)) {
1506 DC_LOG_ERROR("%s: not valid soc bounding box\n", __func__);
1507 return false;
1508 }
1509
1510 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
1511 loaded_ip->max_num_dpp = pool->base.pipe_count;
1512 loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
1513 dcn20_patch_bounding_box(dc, loaded_bb);
1514 DC_FP_START();
1515 patch_dcn30_soc_bounding_box(dc, &dcn3_0_soc);
1516 DC_FP_END();
1517
1518 return true;
1519 }
1520
dcn30_split_stream_for_mpc_or_odm(const struct dc * dc,struct resource_context * res_ctx,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)1521 static bool dcn30_split_stream_for_mpc_or_odm(
1522 const struct dc *dc,
1523 struct resource_context *res_ctx,
1524 struct pipe_ctx *pri_pipe,
1525 struct pipe_ctx *sec_pipe,
1526 bool odm)
1527 {
1528 int pipe_idx = sec_pipe->pipe_idx;
1529 const struct resource_pool *pool = dc->res_pool;
1530
1531 *sec_pipe = *pri_pipe;
1532
1533 sec_pipe->pipe_idx = pipe_idx;
1534 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1535 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1536 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1537 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1538 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1539 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1540 sec_pipe->stream_res.dsc = NULL;
1541 if (odm) {
1542 if (pri_pipe->next_odm_pipe) {
1543 ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1544 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1545 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1546 }
1547 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1548 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1549 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1550 }
1551 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1552 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1553 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1554 }
1555 pri_pipe->next_odm_pipe = sec_pipe;
1556 sec_pipe->prev_odm_pipe = pri_pipe;
1557
1558 if (!sec_pipe->top_pipe)
1559 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1560 else
1561 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1562 if (sec_pipe->stream->timing.flags.DSC == 1) {
1563 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1564 ASSERT(sec_pipe->stream_res.dsc);
1565 if (sec_pipe->stream_res.dsc == NULL)
1566 return false;
1567 }
1568 } else {
1569 if (pri_pipe->bottom_pipe) {
1570 ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1571 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1572 sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1573 }
1574 pri_pipe->bottom_pipe = sec_pipe;
1575 sec_pipe->top_pipe = pri_pipe;
1576
1577 ASSERT(pri_pipe->plane_state);
1578 }
1579
1580 return true;
1581 }
1582
dcn30_find_split_pipe(struct dc * dc,struct dc_state * context,int old_index)1583 static struct pipe_ctx *dcn30_find_split_pipe(
1584 struct dc *dc,
1585 struct dc_state *context,
1586 int old_index)
1587 {
1588 struct pipe_ctx *pipe = NULL;
1589 int i;
1590
1591 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1592 pipe = &context->res_ctx.pipe_ctx[old_index];
1593 pipe->pipe_idx = old_index;
1594 }
1595
1596 if (!pipe)
1597 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1598 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1599 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1600 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1601 pipe = &context->res_ctx.pipe_ctx[i];
1602 pipe->pipe_idx = i;
1603 break;
1604 }
1605 }
1606 }
1607
1608 /*
1609 * May need to fix pipes getting tossed from 1 opp to another on flip
1610 * Add for debugging transient underflow during topology updates:
1611 * ASSERT(pipe);
1612 */
1613 if (!pipe)
1614 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1615 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1616 pipe = &context->res_ctx.pipe_ctx[i];
1617 pipe->pipe_idx = i;
1618 break;
1619 }
1620 }
1621
1622 return pipe;
1623 }
1624
dcn30_internal_validate_bw(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * pipe_cnt_out,int * vlevel_out,bool fast_validate,bool allow_self_refresh_only)1625 noinline bool dcn30_internal_validate_bw(
1626 struct dc *dc,
1627 struct dc_state *context,
1628 display_e2e_pipe_params_st *pipes,
1629 int *pipe_cnt_out,
1630 int *vlevel_out,
1631 bool fast_validate,
1632 bool allow_self_refresh_only)
1633 {
1634 bool out = false;
1635 bool repopulate_pipes = false;
1636 int split[MAX_PIPES] = { 0 };
1637 bool merge[MAX_PIPES] = { false };
1638 bool newly_split[MAX_PIPES] = { false };
1639 int pipe_cnt, i, pipe_idx, vlevel;
1640 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1641
1642 ASSERT(pipes);
1643 if (!pipes)
1644 return false;
1645
1646 context->bw_ctx.dml.vba.maxMpcComb = 0;
1647 context->bw_ctx.dml.vba.VoltageLevel = 0;
1648 context->bw_ctx.dml.vba.DRAMClockChangeSupport[0][0] = dm_dram_clock_change_vactive;
1649 dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1650 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1651
1652 if (!pipe_cnt) {
1653 out = true;
1654 goto validate_out;
1655 }
1656
1657 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1658
1659 if (!fast_validate || !allow_self_refresh_only) {
1660 /*
1661 * DML favors voltage over p-state, but we're more interested in
1662 * supporting p-state over voltage. We can't support p-state in
1663 * prefetch mode > 0 so try capping the prefetch mode to start.
1664 */
1665 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
1666 dm_allow_self_refresh_and_mclk_switch;
1667 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1668 /* This may adjust vlevel and maxMpcComb */
1669 if (vlevel < context->bw_ctx.dml.soc.num_states)
1670 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1671 }
1672 if (allow_self_refresh_only &&
1673 (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states ||
1674 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported)) {
1675 /*
1676 * If mode is unsupported or there's still no p-state support
1677 * then fall back to favoring voltage.
1678 *
1679 * We don't actually support prefetch mode 2, so require that we
1680 * at least support prefetch mode 1.
1681 */
1682 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
1683 dm_allow_self_refresh;
1684
1685 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1686 if (vlevel < context->bw_ctx.dml.soc.num_states) {
1687 memset(split, 0, sizeof(split));
1688 memset(merge, 0, sizeof(merge));
1689 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1690 }
1691 }
1692
1693 dml_log_mode_support_params(&context->bw_ctx.dml);
1694
1695 if (vlevel == context->bw_ctx.dml.soc.num_states)
1696 goto validate_fail;
1697
1698 if (!dc->config.enable_windowed_mpo_odm) {
1699 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1700 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1701 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1702
1703 if (!pipe->stream)
1704 continue;
1705
1706 /* We only support full screen mpo with ODM */
1707 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1708 && pipe->plane_state && mpo_pipe
1709 && memcmp(&mpo_pipe->plane_state->clip_rect,
1710 &pipe->stream->src,
1711 sizeof(struct rect)) != 0) {
1712 ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1713 goto validate_fail;
1714 }
1715 pipe_idx++;
1716 }
1717 }
1718
1719 /* merge pipes if necessary */
1720 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1721 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1722
1723 /*skip pipes that don't need merging*/
1724 if (!merge[i])
1725 continue;
1726
1727 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1728 if (pipe->prev_odm_pipe) {
1729 /*split off odm pipe*/
1730 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1731 if (pipe->next_odm_pipe)
1732 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1733
1734 pipe->bottom_pipe = NULL;
1735 pipe->next_odm_pipe = NULL;
1736 pipe->plane_state = NULL;
1737 pipe->stream = NULL;
1738 pipe->top_pipe = NULL;
1739 pipe->prev_odm_pipe = NULL;
1740 if (pipe->stream_res.dsc)
1741 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1742 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1743 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1744 repopulate_pipes = true;
1745 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1746 struct pipe_ctx *top_pipe = pipe->top_pipe;
1747 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1748
1749 top_pipe->bottom_pipe = bottom_pipe;
1750 if (bottom_pipe)
1751 bottom_pipe->top_pipe = top_pipe;
1752
1753 pipe->top_pipe = NULL;
1754 pipe->bottom_pipe = NULL;
1755 pipe->plane_state = NULL;
1756 pipe->stream = NULL;
1757 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1758 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1759 repopulate_pipes = true;
1760 } else
1761 ASSERT(0); /* Should never try to merge master pipe */
1762
1763 }
1764
1765 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1766 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1767 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1768 struct pipe_ctx *hsplit_pipe = NULL;
1769 bool odm;
1770 int old_index = -1;
1771
1772 if (!pipe->stream || newly_split[i])
1773 continue;
1774
1775 pipe_idx++;
1776 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1777
1778 if (!pipe->plane_state && !odm)
1779 continue;
1780
1781 if (split[i]) {
1782 if (odm) {
1783 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1784 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1785 else if (old_pipe->next_odm_pipe)
1786 old_index = old_pipe->next_odm_pipe->pipe_idx;
1787 } else {
1788 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1789 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1790 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1791 else if (old_pipe->bottom_pipe &&
1792 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1793 old_index = old_pipe->bottom_pipe->pipe_idx;
1794 }
1795 hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index);
1796 ASSERT(hsplit_pipe);
1797 if (!hsplit_pipe)
1798 goto validate_fail;
1799
1800 if (!dcn30_split_stream_for_mpc_or_odm(
1801 dc, &context->res_ctx,
1802 pipe, hsplit_pipe, odm))
1803 goto validate_fail;
1804
1805 newly_split[hsplit_pipe->pipe_idx] = true;
1806 repopulate_pipes = true;
1807 }
1808 if (split[i] == 4) {
1809 struct pipe_ctx *pipe_4to1;
1810
1811 if (odm && old_pipe->next_odm_pipe)
1812 old_index = old_pipe->next_odm_pipe->pipe_idx;
1813 else if (!odm && old_pipe->bottom_pipe &&
1814 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1815 old_index = old_pipe->bottom_pipe->pipe_idx;
1816 else
1817 old_index = -1;
1818 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
1819 ASSERT(pipe_4to1);
1820 if (!pipe_4to1)
1821 goto validate_fail;
1822 if (!dcn30_split_stream_for_mpc_or_odm(
1823 dc, &context->res_ctx,
1824 pipe, pipe_4to1, odm))
1825 goto validate_fail;
1826 newly_split[pipe_4to1->pipe_idx] = true;
1827
1828 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1829 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1830 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1831 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1832 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1833 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1834 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1835 else
1836 old_index = -1;
1837 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
1838 ASSERT(pipe_4to1);
1839 if (!pipe_4to1)
1840 goto validate_fail;
1841 if (!dcn30_split_stream_for_mpc_or_odm(
1842 dc, &context->res_ctx,
1843 hsplit_pipe, pipe_4to1, odm))
1844 goto validate_fail;
1845 newly_split[pipe_4to1->pipe_idx] = true;
1846 }
1847 if (odm)
1848 dcn20_build_mapped_resource(dc, context, pipe->stream);
1849 }
1850
1851 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1852 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1853
1854 if (pipe->plane_state) {
1855 if (!resource_build_scaling_params(pipe))
1856 goto validate_fail;
1857 }
1858 }
1859
1860 /* Actual dsc count per stream dsc validation*/
1861 if (!dcn20_validate_dsc(dc, context)) {
1862 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1863 goto validate_fail;
1864 }
1865
1866 if (repopulate_pipes)
1867 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1868 context->bw_ctx.dml.vba.VoltageLevel = vlevel;
1869 *vlevel_out = vlevel;
1870 *pipe_cnt_out = pipe_cnt;
1871
1872 out = true;
1873 goto validate_out;
1874
1875 validate_fail:
1876 out = false;
1877
1878 validate_out:
1879 return out;
1880 }
1881
get_refresh_rate(struct dc_state * context)1882 static int get_refresh_rate(struct dc_state *context)
1883 {
1884 int refresh_rate = 0;
1885 int h_v_total = 0;
1886 struct dc_crtc_timing *timing = NULL;
1887
1888 if (context == NULL || context->streams[0] == NULL)
1889 return 0;
1890
1891 /* check if refresh rate at least 120hz */
1892 timing = &context->streams[0]->timing;
1893 if (timing == NULL)
1894 return 0;
1895
1896 h_v_total = timing->h_total * timing->v_total;
1897 if (h_v_total == 0)
1898 return 0;
1899
1900 refresh_rate = ((timing->pix_clk_100hz * 100) / (h_v_total)) + 1;
1901 return refresh_rate;
1902 }
1903
1904 #define MAX_STRETCHED_V_BLANK 500 // in micro-seconds
1905 /*
1906 * Scaling factor for v_blank stretch calculations considering timing in
1907 * micro-seconds and pixel clock in 100hz.
1908 * Note: the parenthesis are necessary to ensure the correct order of
1909 * operation where V_SCALE is used.
1910 */
1911 #define V_SCALE (10000 / MAX_STRETCHED_V_BLANK)
1912
get_frame_rate_at_max_stretch_100hz(struct dc_state * context)1913 static int get_frame_rate_at_max_stretch_100hz(struct dc_state *context)
1914 {
1915 struct dc_crtc_timing *timing = NULL;
1916 uint32_t sec_per_100_lines;
1917 uint32_t max_v_blank;
1918 uint32_t curr_v_blank;
1919 uint32_t v_stretch_max;
1920 uint32_t stretched_frame_pix_cnt;
1921 uint32_t scaled_stretched_frame_pix_cnt;
1922 uint32_t scaled_refresh_rate;
1923
1924 if (context == NULL || context->streams[0] == NULL)
1925 return 0;
1926
1927 /* check if refresh rate at least 120hz */
1928 timing = &context->streams[0]->timing;
1929 if (timing == NULL)
1930 return 0;
1931
1932 sec_per_100_lines = timing->pix_clk_100hz / timing->h_total + 1;
1933 max_v_blank = sec_per_100_lines / V_SCALE + 1;
1934 curr_v_blank = timing->v_total - timing->v_addressable;
1935 v_stretch_max = (max_v_blank > curr_v_blank) ? (max_v_blank - curr_v_blank) : (0);
1936 stretched_frame_pix_cnt = (v_stretch_max + timing->v_total) * timing->h_total;
1937 scaled_stretched_frame_pix_cnt = stretched_frame_pix_cnt / 10000;
1938 scaled_refresh_rate = (timing->pix_clk_100hz) / scaled_stretched_frame_pix_cnt + 1;
1939
1940 return scaled_refresh_rate;
1941 }
1942
is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(struct dc_state * context)1943 static bool is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(struct dc_state *context)
1944 {
1945 int refresh_rate_max_stretch_100hz;
1946 int min_refresh_100hz;
1947
1948 if (context == NULL || context->streams[0] == NULL)
1949 return false;
1950
1951 refresh_rate_max_stretch_100hz = get_frame_rate_at_max_stretch_100hz(context);
1952 min_refresh_100hz = context->streams[0]->timing.min_refresh_in_uhz / 10000;
1953
1954 if (refresh_rate_max_stretch_100hz < min_refresh_100hz)
1955 return false;
1956
1957 return true;
1958 }
1959
dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(struct dc * dc,struct dc_state * context)1960 bool dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context)
1961 {
1962 int refresh_rate = 0;
1963 const int minimum_refreshrate_supported = 120;
1964
1965 if (context == NULL || context->streams[0] == NULL)
1966 return false;
1967
1968 if (context->streams[0]->sink->edid_caps.panel_patch.disable_fams)
1969 return false;
1970
1971 if (dc->debug.disable_fams)
1972 return false;
1973
1974 if (!dc->caps.dmub_caps.mclk_sw)
1975 return false;
1976
1977 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down)
1978 return false;
1979
1980 /* more then 1 monitor connected */
1981 if (context->stream_count != 1)
1982 return false;
1983
1984 refresh_rate = get_refresh_rate(context);
1985 if (refresh_rate < minimum_refreshrate_supported)
1986 return false;
1987
1988 if (!is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(context))
1989 return false;
1990
1991 if (!context->streams[0]->allow_freesync)
1992 return false;
1993
1994 if (context->streams[0]->vrr_active_variable && dc->debug.disable_fams_gaming)
1995 return false;
1996
1997 context->streams[0]->fpo_in_use = true;
1998
1999 return true;
2000 }
2001
2002 /*
2003 * set up FPO watermarks, pstate, dram latency
2004 */
dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(struct dc * dc,struct dc_state * context)2005 void dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context)
2006 {
2007 ASSERT(dc != NULL && context != NULL);
2008 if (dc == NULL || context == NULL)
2009 return;
2010
2011 /* Set wm_a.pstate so high natural MCLK switches are impossible: 4 seconds */
2012 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U;
2013 }
2014
dcn30_update_soc_for_wm_a(struct dc * dc,struct dc_state * context)2015 void dcn30_update_soc_for_wm_a(struct dc *dc, struct dc_state *context)
2016 {
2017 DC_FP_START();
2018 dcn30_fpu_update_soc_for_wm_a(dc, context);
2019 DC_FP_END();
2020 }
2021
dcn30_calculate_wm_and_dlg(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)2022 void dcn30_calculate_wm_and_dlg(
2023 struct dc *dc, struct dc_state *context,
2024 display_e2e_pipe_params_st *pipes,
2025 int pipe_cnt,
2026 int vlevel)
2027 {
2028 DC_FP_START();
2029 dcn30_fpu_calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
2030 DC_FP_END();
2031 }
2032
dcn30_validate_bandwidth(struct dc * dc,struct dc_state * context,bool fast_validate)2033 bool dcn30_validate_bandwidth(struct dc *dc,
2034 struct dc_state *context,
2035 bool fast_validate)
2036 {
2037 bool out = false;
2038
2039 BW_VAL_TRACE_SETUP();
2040
2041 int vlevel = 0;
2042 int pipe_cnt = 0;
2043 display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
2044 DC_LOGGER_INIT(dc->ctx->logger);
2045
2046 BW_VAL_TRACE_COUNT();
2047
2048 DC_FP_START();
2049 out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate, true);
2050 DC_FP_END();
2051
2052 if (pipe_cnt == 0)
2053 goto validate_out;
2054
2055 if (!out)
2056 goto validate_fail;
2057
2058 BW_VAL_TRACE_END_VOLTAGE_LEVEL();
2059
2060 if (fast_validate) {
2061 BW_VAL_TRACE_SKIP(fast);
2062 goto validate_out;
2063 }
2064
2065 DC_FP_START();
2066 if (dc->res_pool->funcs->calculate_wm_and_dlg)
2067 dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
2068 DC_FP_END();
2069
2070 BW_VAL_TRACE_END_WATERMARKS();
2071
2072 goto validate_out;
2073
2074 validate_fail:
2075 DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
2076 dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
2077
2078 BW_VAL_TRACE_SKIP(fail);
2079 out = false;
2080
2081 validate_out:
2082 kfree(pipes);
2083
2084 BW_VAL_TRACE_FINISH();
2085
2086 return out;
2087 }
2088
dcn30_update_bw_bounding_box(struct dc * dc,struct clk_bw_params * bw_params)2089 void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2090 {
2091 unsigned int i, j;
2092 unsigned int num_states = 0;
2093
2094 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2095 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2096 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2097 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2098
2099 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200};
2100 unsigned int num_dcfclk_sta_targets = 4;
2101 unsigned int num_uclk_states;
2102
2103 struct dc_bounding_box_max_clk dcn30_bb_max_clk;
2104
2105 memset(&dcn30_bb_max_clk, 0, sizeof(dcn30_bb_max_clk));
2106
2107 if (dc->ctx->dc_bios->vram_info.num_chans)
2108 dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2109
2110 DC_FP_START();
2111 dcn30_fpu_update_dram_channel_width_bytes(dc);
2112 DC_FP_END();
2113
2114 if (bw_params->clk_table.entries[0].memclk_mhz) {
2115
2116 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2117 if (bw_params->clk_table.entries[i].dcfclk_mhz > dcn30_bb_max_clk.max_dcfclk_mhz)
2118 dcn30_bb_max_clk.max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2119 if (bw_params->clk_table.entries[i].dispclk_mhz > dcn30_bb_max_clk.max_dispclk_mhz)
2120 dcn30_bb_max_clk.max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2121 if (bw_params->clk_table.entries[i].dppclk_mhz > dcn30_bb_max_clk.max_dppclk_mhz)
2122 dcn30_bb_max_clk.max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2123 if (bw_params->clk_table.entries[i].phyclk_mhz > dcn30_bb_max_clk.max_phyclk_mhz)
2124 dcn30_bb_max_clk.max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2125 }
2126
2127 DC_FP_START();
2128 dcn30_fpu_update_max_clk(&dcn30_bb_max_clk);
2129 DC_FP_END();
2130
2131 if (dcn30_bb_max_clk.max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2132 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2133 dcfclk_sta_targets[num_dcfclk_sta_targets] = dcn30_bb_max_clk.max_dcfclk_mhz;
2134 num_dcfclk_sta_targets++;
2135 } else if (dcn30_bb_max_clk.max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2136 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2137 for (i = 0; i < num_dcfclk_sta_targets; i++) {
2138 if (dcfclk_sta_targets[i] > dcn30_bb_max_clk.max_dcfclk_mhz) {
2139 dcfclk_sta_targets[i] = dcn30_bb_max_clk.max_dcfclk_mhz;
2140 break;
2141 }
2142 }
2143 // Update size of array since we "removed" duplicates
2144 num_dcfclk_sta_targets = i + 1;
2145 }
2146
2147 num_uclk_states = bw_params->clk_table.num_entries;
2148
2149 // Calculate optimal dcfclk for each uclk
2150 for (i = 0; i < num_uclk_states; i++) {
2151 DC_FP_START();
2152 dcn30_fpu_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2153 &optimal_dcfclk_for_uclk[i], NULL);
2154 DC_FP_END();
2155 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2156 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2157 }
2158 }
2159
2160 // Calculate optimal uclk for each dcfclk sta target
2161 for (i = 0; i < num_dcfclk_sta_targets; i++) {
2162 for (j = 0; j < num_uclk_states; j++) {
2163 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2164 optimal_uclk_for_dcfclk_sta_targets[i] =
2165 bw_params->clk_table.entries[j].memclk_mhz * 16;
2166 break;
2167 }
2168 }
2169 }
2170
2171 i = 0;
2172 j = 0;
2173 // create the final dcfclk and uclk table
2174 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2175 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2176 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2177 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2178 } else {
2179 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) {
2180 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2181 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2182 } else {
2183 j = num_uclk_states;
2184 }
2185 }
2186 }
2187
2188 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2189 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2190 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2191 }
2192
2193 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2194 optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) {
2195 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2196 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2197 }
2198
2199 dcn3_0_soc.num_states = num_states;
2200 DC_FP_START();
2201 dcn30_fpu_update_bw_bounding_box(dc, bw_params, &dcn30_bb_max_clk, dcfclk_mhz, dram_speed_mts);
2202 DC_FP_END();
2203 }
2204 }
2205
dcn30_get_panel_config_defaults(struct dc_panel_config * panel_config)2206 static void dcn30_get_panel_config_defaults(struct dc_panel_config *panel_config)
2207 {
2208 *panel_config = panel_config_defaults;
2209 }
2210
2211 static const struct resource_funcs dcn30_res_pool_funcs = {
2212 .destroy = dcn30_destroy_resource_pool,
2213 .link_enc_create = dcn30_link_encoder_create,
2214 .panel_cntl_create = dcn30_panel_cntl_create,
2215 .validate_bandwidth = dcn30_validate_bandwidth,
2216 .calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg,
2217 .update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
2218 .populate_dml_pipes = dcn30_populate_dml_pipes_from_context,
2219 .acquire_free_pipe_as_secondary_dpp_pipe = dcn20_acquire_free_pipe_for_layer,
2220 .add_stream_to_ctx = dcn30_add_stream_to_ctx,
2221 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2222 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2223 .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
2224 .set_mcif_arb_params = dcn30_set_mcif_arb_params,
2225 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2226 .acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut,
2227 .release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut,
2228 .update_bw_bounding_box = dcn30_update_bw_bounding_box,
2229 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2230 .get_panel_config_defaults = dcn30_get_panel_config_defaults,
2231 };
2232
2233 #define CTX ctx
2234
2235 #define REG(reg_name) \
2236 (DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
2237
read_pipe_fuses(struct dc_context * ctx)2238 static uint32_t read_pipe_fuses(struct dc_context *ctx)
2239 {
2240 uint32_t value = REG_READ(CC_DC_PIPE_DIS);
2241 /* Support for max 6 pipes */
2242 value = value & 0x3f;
2243 return value;
2244 }
2245
dcn30_resource_construct(uint8_t num_virtual_links,struct dc * dc,struct dcn30_resource_pool * pool)2246 static bool dcn30_resource_construct(
2247 uint8_t num_virtual_links,
2248 struct dc *dc,
2249 struct dcn30_resource_pool *pool)
2250 {
2251 int i;
2252 struct dc_context *ctx = dc->ctx;
2253 struct irq_service_init_data init_data;
2254 struct ddc_service_init_data ddc_init_data = {0};
2255 uint32_t pipe_fuses = read_pipe_fuses(ctx);
2256 uint32_t num_pipes = 0;
2257
2258 if (!(pipe_fuses == 0 || pipe_fuses == 0x3e)) {
2259 BREAK_TO_DEBUGGER();
2260 dm_error("DC: Unexpected fuse recipe for navi2x !\n");
2261 /* fault to single pipe */
2262 pipe_fuses = 0x3e;
2263 }
2264
2265 DC_FP_START();
2266
2267 ctx->dc_bios->regs = &bios_regs;
2268
2269 pool->base.res_cap = &res_cap_dcn3;
2270
2271 pool->base.funcs = &dcn30_res_pool_funcs;
2272
2273 /*************************************************
2274 * Resource + asic cap harcoding *
2275 *************************************************/
2276 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2277 pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
2278 pool->base.mpcc_count = pool->base.res_cap->num_timing_generator;
2279 dc->caps.max_downscale_ratio = 600;
2280 dc->caps.i2c_speed_in_khz = 100;
2281 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2282 dc->caps.max_cursor_size = 256;
2283 dc->caps.min_horizontal_blanking_period = 80;
2284 dc->caps.dmdata_alloc_size = 2048;
2285 dc->caps.mall_size_per_mem_channel = 8;
2286 /* total size = mall per channel * num channels * 1024 * 1024 */
2287 dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576;
2288 dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2289
2290 dc->caps.max_slave_planes = 2;
2291 dc->caps.max_slave_yuv_planes = 2;
2292 dc->caps.max_slave_rgb_planes = 2;
2293 dc->caps.post_blend_color_processing = true;
2294 dc->caps.force_dp_tps4_for_cp2520 = true;
2295 dc->caps.extended_aux_timeout_support = true;
2296 dc->caps.dmcub_support = true;
2297
2298 /* Color pipeline capabilities */
2299 dc->caps.color.dpp.dcn_arch = 1;
2300 dc->caps.color.dpp.input_lut_shared = 0;
2301 dc->caps.color.dpp.icsc = 1;
2302 dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2303 dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2304 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2305 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2306 dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2307 dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2308 dc->caps.color.dpp.post_csc = 1;
2309 dc->caps.color.dpp.gamma_corr = 1;
2310 dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2311
2312 dc->caps.color.dpp.hw_3d_lut = 1;
2313 dc->caps.color.dpp.ogam_ram = 1;
2314 // no OGAM ROM on DCN3
2315 dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2316 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2317 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2318 dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2319 dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2320 dc->caps.color.dpp.ocsc = 0;
2321
2322 dc->caps.color.mpc.gamut_remap = 1;
2323 dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3
2324 dc->caps.color.mpc.ogam_ram = 1;
2325 dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2326 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2327 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2328 dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2329 dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2330 dc->caps.color.mpc.ocsc = 1;
2331
2332 dc->caps.dp_hdmi21_pcon_support = true;
2333 dc->caps.max_v_total = (1 << 15) - 1;
2334
2335 /* read VBIOS LTTPR caps */
2336 {
2337 if (ctx->dc_bios->funcs->get_lttpr_caps) {
2338 enum bp_result bp_query_result;
2339 uint8_t is_vbios_lttpr_enable = 0;
2340
2341 bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
2342 dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
2343 }
2344
2345 if (ctx->dc_bios->funcs->get_lttpr_interop) {
2346 enum bp_result bp_query_result;
2347 uint8_t is_vbios_interop_enabled = 0;
2348
2349 bp_query_result = ctx->dc_bios->funcs->get_lttpr_interop(ctx->dc_bios,
2350 &is_vbios_interop_enabled);
2351 dc->caps.vbios_lttpr_aware = (bp_query_result == BP_RESULT_OK) && !!is_vbios_interop_enabled;
2352 }
2353 }
2354
2355 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2356 dc->debug = debug_defaults_drv;
2357
2358 // Init the vm_helper
2359 if (dc->vm_helper)
2360 vm_helper_init(dc->vm_helper, 16);
2361
2362 /*************************************************
2363 * Create resources *
2364 *************************************************/
2365
2366 /* Clock Sources for Pixel Clock*/
2367 pool->base.clock_sources[DCN30_CLK_SRC_PLL0] =
2368 dcn30_clock_source_create(ctx, ctx->dc_bios,
2369 CLOCK_SOURCE_COMBO_PHY_PLL0,
2370 &clk_src_regs[0], false);
2371 pool->base.clock_sources[DCN30_CLK_SRC_PLL1] =
2372 dcn30_clock_source_create(ctx, ctx->dc_bios,
2373 CLOCK_SOURCE_COMBO_PHY_PLL1,
2374 &clk_src_regs[1], false);
2375 pool->base.clock_sources[DCN30_CLK_SRC_PLL2] =
2376 dcn30_clock_source_create(ctx, ctx->dc_bios,
2377 CLOCK_SOURCE_COMBO_PHY_PLL2,
2378 &clk_src_regs[2], false);
2379 pool->base.clock_sources[DCN30_CLK_SRC_PLL3] =
2380 dcn30_clock_source_create(ctx, ctx->dc_bios,
2381 CLOCK_SOURCE_COMBO_PHY_PLL3,
2382 &clk_src_regs[3], false);
2383 pool->base.clock_sources[DCN30_CLK_SRC_PLL4] =
2384 dcn30_clock_source_create(ctx, ctx->dc_bios,
2385 CLOCK_SOURCE_COMBO_PHY_PLL4,
2386 &clk_src_regs[4], false);
2387 pool->base.clock_sources[DCN30_CLK_SRC_PLL5] =
2388 dcn30_clock_source_create(ctx, ctx->dc_bios,
2389 CLOCK_SOURCE_COMBO_PHY_PLL5,
2390 &clk_src_regs[5], false);
2391
2392 pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL;
2393
2394 /* todo: not reuse phy_pll registers */
2395 pool->base.dp_clock_source =
2396 dcn30_clock_source_create(ctx, ctx->dc_bios,
2397 CLOCK_SOURCE_ID_DP_DTO,
2398 &clk_src_regs[0], true);
2399
2400 for (i = 0; i < pool->base.clk_src_count; i++) {
2401 if (pool->base.clock_sources[i] == NULL) {
2402 dm_error("DC: failed to create clock sources!\n");
2403 BREAK_TO_DEBUGGER();
2404 goto create_fail;
2405 }
2406 }
2407
2408 /* DCCG */
2409 pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2410 if (pool->base.dccg == NULL) {
2411 dm_error("DC: failed to create dccg!\n");
2412 BREAK_TO_DEBUGGER();
2413 goto create_fail;
2414 }
2415
2416 /* PP Lib and SMU interfaces */
2417 init_soc_bounding_box(dc, pool);
2418
2419 num_pipes = dcn3_0_ip.max_num_dpp;
2420
2421 for (i = 0; i < dcn3_0_ip.max_num_dpp; i++)
2422 if (pipe_fuses & 1 << i)
2423 num_pipes--;
2424
2425 dcn3_0_ip.max_num_dpp = num_pipes;
2426 dcn3_0_ip.max_num_otg = num_pipes;
2427
2428 dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2429
2430 /* IRQ */
2431 init_data.ctx = dc->ctx;
2432 pool->base.irqs = dal_irq_service_dcn30_create(&init_data);
2433 if (!pool->base.irqs)
2434 goto create_fail;
2435
2436 /* HUBBUB */
2437 pool->base.hubbub = dcn30_hubbub_create(ctx);
2438 if (pool->base.hubbub == NULL) {
2439 BREAK_TO_DEBUGGER();
2440 dm_error("DC: failed to create hubbub!\n");
2441 goto create_fail;
2442 }
2443
2444 /* HUBPs, DPPs, OPPs and TGs */
2445 for (i = 0; i < pool->base.pipe_count; i++) {
2446 pool->base.hubps[i] = dcn30_hubp_create(ctx, i);
2447 if (pool->base.hubps[i] == NULL) {
2448 BREAK_TO_DEBUGGER();
2449 dm_error(
2450 "DC: failed to create hubps!\n");
2451 goto create_fail;
2452 }
2453
2454 pool->base.dpps[i] = dcn30_dpp_create(ctx, i);
2455 if (pool->base.dpps[i] == NULL) {
2456 BREAK_TO_DEBUGGER();
2457 dm_error(
2458 "DC: failed to create dpps!\n");
2459 goto create_fail;
2460 }
2461 }
2462
2463 for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2464 pool->base.opps[i] = dcn30_opp_create(ctx, i);
2465 if (pool->base.opps[i] == NULL) {
2466 BREAK_TO_DEBUGGER();
2467 dm_error(
2468 "DC: failed to create output pixel processor!\n");
2469 goto create_fail;
2470 }
2471 }
2472
2473 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2474 pool->base.timing_generators[i] = dcn30_timing_generator_create(
2475 ctx, i);
2476 if (pool->base.timing_generators[i] == NULL) {
2477 BREAK_TO_DEBUGGER();
2478 dm_error("DC: failed to create tg!\n");
2479 goto create_fail;
2480 }
2481 }
2482 pool->base.timing_generator_count = i;
2483 /* PSR */
2484 pool->base.psr = dmub_psr_create(ctx);
2485
2486 if (pool->base.psr == NULL) {
2487 dm_error("DC: failed to create PSR obj!\n");
2488 BREAK_TO_DEBUGGER();
2489 goto create_fail;
2490 }
2491
2492 /* ABM */
2493 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2494 pool->base.multiple_abms[i] = dmub_abm_create(ctx,
2495 &abm_regs[i],
2496 &abm_shift,
2497 &abm_mask);
2498 if (pool->base.multiple_abms[i] == NULL) {
2499 dm_error("DC: failed to create abm for pipe %d!\n", i);
2500 BREAK_TO_DEBUGGER();
2501 goto create_fail;
2502 }
2503 }
2504 /* MPC and DSC */
2505 pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut);
2506 if (pool->base.mpc == NULL) {
2507 BREAK_TO_DEBUGGER();
2508 dm_error("DC: failed to create mpc!\n");
2509 goto create_fail;
2510 }
2511
2512 for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2513 pool->base.dscs[i] = dcn30_dsc_create(ctx, i);
2514 if (pool->base.dscs[i] == NULL) {
2515 BREAK_TO_DEBUGGER();
2516 dm_error("DC: failed to create display stream compressor %d!\n", i);
2517 goto create_fail;
2518 }
2519 }
2520
2521 /* DWB and MMHUBBUB */
2522 if (!dcn30_dwbc_create(ctx, &pool->base)) {
2523 BREAK_TO_DEBUGGER();
2524 dm_error("DC: failed to create dwbc!\n");
2525 goto create_fail;
2526 }
2527
2528 if (!dcn30_mmhubbub_create(ctx, &pool->base)) {
2529 BREAK_TO_DEBUGGER();
2530 dm_error("DC: failed to create mcif_wb!\n");
2531 goto create_fail;
2532 }
2533
2534 /* AUX and I2C */
2535 for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2536 pool->base.engines[i] = dcn30_aux_engine_create(ctx, i);
2537 if (pool->base.engines[i] == NULL) {
2538 BREAK_TO_DEBUGGER();
2539 dm_error(
2540 "DC:failed to create aux engine!!\n");
2541 goto create_fail;
2542 }
2543 pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i);
2544 if (pool->base.hw_i2cs[i] == NULL) {
2545 BREAK_TO_DEBUGGER();
2546 dm_error(
2547 "DC:failed to create hw i2c!!\n");
2548 goto create_fail;
2549 }
2550 pool->base.sw_i2cs[i] = NULL;
2551 }
2552
2553 /* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */
2554 if (!resource_construct(num_virtual_links, dc, &pool->base,
2555 &res_create_funcs))
2556 goto create_fail;
2557
2558 /* HW Sequencer and Plane caps */
2559 dcn30_hw_sequencer_construct(dc);
2560
2561 dc->caps.max_planes = pool->base.pipe_count;
2562
2563 for (i = 0; i < dc->caps.max_planes; ++i)
2564 dc->caps.planes[i] = plane_cap;
2565
2566 dc->cap_funcs = cap_funcs;
2567
2568 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2569 ddc_init_data.ctx = dc->ctx;
2570 ddc_init_data.link = NULL;
2571 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2572 ddc_init_data.id.enum_id = 0;
2573 ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2574 pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
2575 } else {
2576 pool->base.oem_device = NULL;
2577 }
2578
2579 DC_FP_END();
2580
2581 return true;
2582
2583 create_fail:
2584
2585 DC_FP_END();
2586 dcn30_resource_destruct(pool);
2587
2588 return false;
2589 }
2590
dcn30_create_resource_pool(const struct dc_init_data * init_data,struct dc * dc)2591 struct resource_pool *dcn30_create_resource_pool(
2592 const struct dc_init_data *init_data,
2593 struct dc *dc)
2594 {
2595 struct dcn30_resource_pool *pool =
2596 kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL);
2597
2598 if (!pool)
2599 return NULL;
2600
2601 if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool))
2602 return &pool->base;
2603
2604 BREAK_TO_DEBUGGER();
2605 kfree(pool);
2606 return NULL;
2607 }
2608