1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/delay.h>
27 #include "dm_services.h"
28 #include "basics/dc_common.h"
29 #include "core_types.h"
30 #include "resource.h"
31 #include "custom_float.h"
32 #include "dcn10_hw_sequencer.h"
33 #include "dcn10_hw_sequencer_debug.h"
34 #include "dce/dce_hwseq.h"
35 #include "abm.h"
36 #include "dmcu.h"
37 #include "dcn10_optc.h"
38 #include "dcn10_dpp.h"
39 #include "dcn10_mpc.h"
40 #include "timing_generator.h"
41 #include "opp.h"
42 #include "ipp.h"
43 #include "mpc.h"
44 #include "reg_helper.h"
45 #include "dcn10_hubp.h"
46 #include "dcn10_hubbub.h"
47 #include "dcn10_cm_common.h"
48 #include "dccg.h"
49 #include "clk_mgr.h"
50 #include "link_hwss.h"
51 #include "dpcd_defs.h"
52 #include "dsc.h"
53 #include "dce/dmub_psr.h"
54 #include "dc_dmub_srv.h"
55 #include "dce/dmub_hw_lock_mgr.h"
56 #include "dc_trace.h"
57 #include "dce/dmub_outbox.h"
58 #include "link.h"
59 
60 #define DC_LOGGER_INIT(logger)
61 
62 #define CTX \
63 	hws->ctx
64 #define REG(reg)\
65 	hws->regs->reg
66 
67 #undef FN
68 #define FN(reg_name, field_name) \
69 	hws->shifts->field_name, hws->masks->field_name
70 
71 /*print is 17 wide, first two characters are spaces*/
72 #define DTN_INFO_MICRO_SEC(ref_cycle) \
73 	print_microsec(dc_ctx, log_ctx, ref_cycle)
74 
75 #define GAMMA_HW_POINTS_NUM 256
76 
77 #define PGFSM_POWER_ON 0
78 #define PGFSM_POWER_OFF 2
79 
print_microsec(struct dc_context * dc_ctx,struct dc_log_buffer_ctx * log_ctx,uint32_t ref_cycle)80 static void print_microsec(struct dc_context *dc_ctx,
81 			   struct dc_log_buffer_ctx *log_ctx,
82 			   uint32_t ref_cycle)
83 {
84 	const uint32_t ref_clk_mhz = dc_ctx->dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000;
85 	static const unsigned int frac = 1000;
86 	uint32_t us_x10 = (ref_cycle * frac) / ref_clk_mhz;
87 
88 	DTN_INFO("  %11d.%03d",
89 			us_x10 / frac,
90 			us_x10 % frac);
91 }
92 
dcn10_lock_all_pipes(struct dc * dc,struct dc_state * context,bool lock)93 void dcn10_lock_all_pipes(struct dc *dc,
94 	struct dc_state *context,
95 	bool lock)
96 {
97 	struct pipe_ctx *pipe_ctx;
98 	struct pipe_ctx *old_pipe_ctx;
99 	struct timing_generator *tg;
100 	int i;
101 
102 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
103 		old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
104 		pipe_ctx = &context->res_ctx.pipe_ctx[i];
105 		tg = pipe_ctx->stream_res.tg;
106 
107 		/*
108 		 * Only lock the top pipe's tg to prevent redundant
109 		 * (un)locking. Also skip if pipe is disabled.
110 		 */
111 		if (pipe_ctx->top_pipe ||
112 		    !pipe_ctx->stream ||
113 		    (!pipe_ctx->plane_state && !old_pipe_ctx->plane_state) ||
114 		    !tg->funcs->is_tg_enabled(tg) ||
115 			pipe_ctx->stream->mall_stream_config.type == SUBVP_PHANTOM)
116 			continue;
117 
118 		if (lock)
119 			dc->hwss.pipe_control_lock(dc, pipe_ctx, true);
120 		else
121 			dc->hwss.pipe_control_lock(dc, pipe_ctx, false);
122 	}
123 }
124 
log_mpc_crc(struct dc * dc,struct dc_log_buffer_ctx * log_ctx)125 static void log_mpc_crc(struct dc *dc,
126 	struct dc_log_buffer_ctx *log_ctx)
127 {
128 	struct dc_context *dc_ctx = dc->ctx;
129 	struct dce_hwseq *hws = dc->hwseq;
130 
131 	if (REG(MPC_CRC_RESULT_GB))
132 		DTN_INFO("MPC_CRC_RESULT_GB:%d MPC_CRC_RESULT_C:%d MPC_CRC_RESULT_AR:%d\n",
133 		REG_READ(MPC_CRC_RESULT_GB), REG_READ(MPC_CRC_RESULT_C), REG_READ(MPC_CRC_RESULT_AR));
134 	if (REG(DPP_TOP0_DPP_CRC_VAL_B_A))
135 		DTN_INFO("DPP_TOP0_DPP_CRC_VAL_B_A:%d DPP_TOP0_DPP_CRC_VAL_R_G:%d\n",
136 		REG_READ(DPP_TOP0_DPP_CRC_VAL_B_A), REG_READ(DPP_TOP0_DPP_CRC_VAL_R_G));
137 }
138 
dcn10_log_hubbub_state(struct dc * dc,struct dc_log_buffer_ctx * log_ctx)139 static void dcn10_log_hubbub_state(struct dc *dc,
140 				   struct dc_log_buffer_ctx *log_ctx)
141 {
142 	struct dc_context *dc_ctx = dc->ctx;
143 	struct dcn_hubbub_wm wm;
144 	int i;
145 
146 	memset(&wm, 0, sizeof(struct dcn_hubbub_wm));
147 	dc->res_pool->hubbub->funcs->wm_read_state(dc->res_pool->hubbub, &wm);
148 
149 	DTN_INFO("HUBBUB WM:      data_urgent  pte_meta_urgent"
150 			"         sr_enter          sr_exit  dram_clk_change\n");
151 
152 	for (i = 0; i < 4; i++) {
153 		struct dcn_hubbub_wm_set *s;
154 
155 		s = &wm.sets[i];
156 		DTN_INFO("WM_Set[%d]:", s->wm_set);
157 		DTN_INFO_MICRO_SEC(s->data_urgent);
158 		DTN_INFO_MICRO_SEC(s->pte_meta_urgent);
159 		DTN_INFO_MICRO_SEC(s->sr_enter);
160 		DTN_INFO_MICRO_SEC(s->sr_exit);
161 		DTN_INFO_MICRO_SEC(s->dram_clk_change);
162 		DTN_INFO("\n");
163 	}
164 
165 	DTN_INFO("\n");
166 }
167 
dcn10_log_hubp_states(struct dc * dc,void * log_ctx)168 static void dcn10_log_hubp_states(struct dc *dc, void *log_ctx)
169 {
170 	struct dc_context *dc_ctx = dc->ctx;
171 	struct resource_pool *pool = dc->res_pool;
172 	int i;
173 
174 	DTN_INFO(
175 		"HUBP:  format  addr_hi  width  height  rot  mir  sw_mode  dcc_en  blank_en  clock_en  ttu_dis  underflow   min_ttu_vblank       qos_low_wm      qos_high_wm\n");
176 	for (i = 0; i < pool->pipe_count; i++) {
177 		struct hubp *hubp = pool->hubps[i];
178 		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(hubp)->state);
179 
180 		hubp->funcs->hubp_read_state(hubp);
181 
182 		if (!s->blank_en) {
183 			DTN_INFO("[%2d]:  %5xh  %6xh  %5d  %6d  %2xh  %2xh  %6xh  %6d  %8d  %8d  %7d  %8xh",
184 					hubp->inst,
185 					s->pixel_format,
186 					s->inuse_addr_hi,
187 					s->viewport_width,
188 					s->viewport_height,
189 					s->rotation_angle,
190 					s->h_mirror_en,
191 					s->sw_mode,
192 					s->dcc_en,
193 					s->blank_en,
194 					s->clock_en,
195 					s->ttu_disable,
196 					s->underflow_status);
197 			DTN_INFO_MICRO_SEC(s->min_ttu_vblank);
198 			DTN_INFO_MICRO_SEC(s->qos_level_low_wm);
199 			DTN_INFO_MICRO_SEC(s->qos_level_high_wm);
200 			DTN_INFO("\n");
201 		}
202 	}
203 
204 	DTN_INFO("\n=========RQ========\n");
205 	DTN_INFO("HUBP:  drq_exp_m  prq_exp_m  mrq_exp_m  crq_exp_m  plane1_ba  L:chunk_s  min_chu_s  meta_ch_s"
206 		"  min_m_c_s  dpte_gr_s  mpte_gr_s  swath_hei  pte_row_h  C:chunk_s  min_chu_s  meta_ch_s"
207 		"  min_m_c_s  dpte_gr_s  mpte_gr_s  swath_hei  pte_row_h\n");
208 	for (i = 0; i < pool->pipe_count; i++) {
209 		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state);
210 		struct _vcs_dpi_display_rq_regs_st *rq_regs = &s->rq_regs;
211 
212 		if (!s->blank_en)
213 			DTN_INFO("[%2d]:  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh\n",
214 				pool->hubps[i]->inst, rq_regs->drq_expansion_mode, rq_regs->prq_expansion_mode, rq_regs->mrq_expansion_mode,
215 				rq_regs->crq_expansion_mode, rq_regs->plane1_base_address, rq_regs->rq_regs_l.chunk_size,
216 				rq_regs->rq_regs_l.min_chunk_size, rq_regs->rq_regs_l.meta_chunk_size,
217 				rq_regs->rq_regs_l.min_meta_chunk_size, rq_regs->rq_regs_l.dpte_group_size,
218 				rq_regs->rq_regs_l.mpte_group_size, rq_regs->rq_regs_l.swath_height,
219 				rq_regs->rq_regs_l.pte_row_height_linear, rq_regs->rq_regs_c.chunk_size, rq_regs->rq_regs_c.min_chunk_size,
220 				rq_regs->rq_regs_c.meta_chunk_size, rq_regs->rq_regs_c.min_meta_chunk_size,
221 				rq_regs->rq_regs_c.dpte_group_size, rq_regs->rq_regs_c.mpte_group_size,
222 				rq_regs->rq_regs_c.swath_height, rq_regs->rq_regs_c.pte_row_height_linear);
223 	}
224 
225 	DTN_INFO("========DLG========\n");
226 	DTN_INFO("HUBP:  rc_hbe     dlg_vbe    min_d_y_n  rc_per_ht  rc_x_a_s "
227 			"  dst_y_a_s  dst_y_pf   dst_y_vvb  dst_y_rvb  dst_y_vfl  dst_y_rfl  rf_pix_fq"
228 			"  vratio_pf  vrat_pf_c  rc_pg_vbl  rc_pg_vbc  rc_mc_vbl  rc_mc_vbc  rc_pg_fll"
229 			"  rc_pg_flc  rc_mc_fll  rc_mc_flc  pr_nom_l   pr_nom_c   rc_pg_nl   rc_pg_nc "
230 			"  mr_nom_l   mr_nom_c   rc_mc_nl   rc_mc_nc   rc_ld_pl   rc_ld_pc   rc_ld_l  "
231 			"  rc_ld_c    cha_cur0   ofst_cur1  cha_cur1   vr_af_vc0  ddrq_limt  x_rt_dlay"
232 			"  x_rp_dlay  x_rr_sfl\n");
233 	for (i = 0; i < pool->pipe_count; i++) {
234 		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state);
235 		struct _vcs_dpi_display_dlg_regs_st *dlg_regs = &s->dlg_attr;
236 
237 		if (!s->blank_en)
238 			DTN_INFO("[%2d]:  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh"
239 				"  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh"
240 				"  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh\n",
241 				pool->hubps[i]->inst, dlg_regs->refcyc_h_blank_end, dlg_regs->dlg_vblank_end, dlg_regs->min_dst_y_next_start,
242 				dlg_regs->refcyc_per_htotal, dlg_regs->refcyc_x_after_scaler, dlg_regs->dst_y_after_scaler,
243 				dlg_regs->dst_y_prefetch, dlg_regs->dst_y_per_vm_vblank, dlg_regs->dst_y_per_row_vblank,
244 				dlg_regs->dst_y_per_vm_flip, dlg_regs->dst_y_per_row_flip, dlg_regs->ref_freq_to_pix_freq,
245 				dlg_regs->vratio_prefetch, dlg_regs->vratio_prefetch_c, dlg_regs->refcyc_per_pte_group_vblank_l,
246 				dlg_regs->refcyc_per_pte_group_vblank_c, dlg_regs->refcyc_per_meta_chunk_vblank_l,
247 				dlg_regs->refcyc_per_meta_chunk_vblank_c, dlg_regs->refcyc_per_pte_group_flip_l,
248 				dlg_regs->refcyc_per_pte_group_flip_c, dlg_regs->refcyc_per_meta_chunk_flip_l,
249 				dlg_regs->refcyc_per_meta_chunk_flip_c, dlg_regs->dst_y_per_pte_row_nom_l,
250 				dlg_regs->dst_y_per_pte_row_nom_c, dlg_regs->refcyc_per_pte_group_nom_l,
251 				dlg_regs->refcyc_per_pte_group_nom_c, dlg_regs->dst_y_per_meta_row_nom_l,
252 				dlg_regs->dst_y_per_meta_row_nom_c, dlg_regs->refcyc_per_meta_chunk_nom_l,
253 				dlg_regs->refcyc_per_meta_chunk_nom_c, dlg_regs->refcyc_per_line_delivery_pre_l,
254 				dlg_regs->refcyc_per_line_delivery_pre_c, dlg_regs->refcyc_per_line_delivery_l,
255 				dlg_regs->refcyc_per_line_delivery_c, dlg_regs->chunk_hdl_adjust_cur0, dlg_regs->dst_y_offset_cur1,
256 				dlg_regs->chunk_hdl_adjust_cur1, dlg_regs->vready_after_vcount0, dlg_regs->dst_y_delta_drq_limit,
257 				dlg_regs->xfc_reg_transfer_delay, dlg_regs->xfc_reg_precharge_delay,
258 				dlg_regs->xfc_reg_remote_surface_flip_latency);
259 	}
260 
261 	DTN_INFO("========TTU========\n");
262 	DTN_INFO("HUBP:  qos_ll_wm  qos_lh_wm  mn_ttu_vb  qos_l_flp  rc_rd_p_l  rc_rd_l    rc_rd_p_c"
263 			"  rc_rd_c    rc_rd_c0   rc_rd_pc0  rc_rd_c1   rc_rd_pc1  qos_lf_l   qos_rds_l"
264 			"  qos_lf_c   qos_rds_c  qos_lf_c0  qos_rds_c0 qos_lf_c1  qos_rds_c1\n");
265 	for (i = 0; i < pool->pipe_count; i++) {
266 		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state);
267 		struct _vcs_dpi_display_ttu_regs_st *ttu_regs = &s->ttu_attr;
268 
269 		if (!s->blank_en)
270 			DTN_INFO("[%2d]:  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh\n",
271 				pool->hubps[i]->inst, ttu_regs->qos_level_low_wm, ttu_regs->qos_level_high_wm, ttu_regs->min_ttu_vblank,
272 				ttu_regs->qos_level_flip, ttu_regs->refcyc_per_req_delivery_pre_l, ttu_regs->refcyc_per_req_delivery_l,
273 				ttu_regs->refcyc_per_req_delivery_pre_c, ttu_regs->refcyc_per_req_delivery_c, ttu_regs->refcyc_per_req_delivery_cur0,
274 				ttu_regs->refcyc_per_req_delivery_pre_cur0, ttu_regs->refcyc_per_req_delivery_cur1,
275 				ttu_regs->refcyc_per_req_delivery_pre_cur1, ttu_regs->qos_level_fixed_l, ttu_regs->qos_ramp_disable_l,
276 				ttu_regs->qos_level_fixed_c, ttu_regs->qos_ramp_disable_c, ttu_regs->qos_level_fixed_cur0,
277 				ttu_regs->qos_ramp_disable_cur0, ttu_regs->qos_level_fixed_cur1, ttu_regs->qos_ramp_disable_cur1);
278 	}
279 	DTN_INFO("\n");
280 }
281 
dcn10_log_hw_state(struct dc * dc,struct dc_log_buffer_ctx * log_ctx)282 void dcn10_log_hw_state(struct dc *dc,
283 	struct dc_log_buffer_ctx *log_ctx)
284 {
285 	struct dc_context *dc_ctx = dc->ctx;
286 	struct resource_pool *pool = dc->res_pool;
287 	int i;
288 
289 	DTN_INFO_BEGIN();
290 
291 	dcn10_log_hubbub_state(dc, log_ctx);
292 
293 	dcn10_log_hubp_states(dc, log_ctx);
294 
295 	DTN_INFO("DPP:    IGAM format  IGAM mode    DGAM mode    RGAM mode"
296 			"  GAMUT mode  C11 C12   C13 C14   C21 C22   C23 C24   "
297 			"C31 C32   C33 C34\n");
298 	for (i = 0; i < pool->pipe_count; i++) {
299 		struct dpp *dpp = pool->dpps[i];
300 		struct dcn_dpp_state s = {0};
301 
302 		dpp->funcs->dpp_read_state(dpp, &s);
303 
304 		if (!s.is_enabled)
305 			continue;
306 
307 		DTN_INFO("[%2d]:  %11xh  %-11s  %-11s  %-11s"
308 				"%8x    %08xh %08xh %08xh %08xh %08xh %08xh",
309 				dpp->inst,
310 				s.igam_input_format,
311 				(s.igam_lut_mode == 0) ? "BypassFixed" :
312 					((s.igam_lut_mode == 1) ? "BypassFloat" :
313 					((s.igam_lut_mode == 2) ? "RAM" :
314 					((s.igam_lut_mode == 3) ? "RAM" :
315 								 "Unknown"))),
316 				(s.dgam_lut_mode == 0) ? "Bypass" :
317 					((s.dgam_lut_mode == 1) ? "sRGB" :
318 					((s.dgam_lut_mode == 2) ? "Ycc" :
319 					((s.dgam_lut_mode == 3) ? "RAM" :
320 					((s.dgam_lut_mode == 4) ? "RAM" :
321 								 "Unknown")))),
322 				(s.rgam_lut_mode == 0) ? "Bypass" :
323 					((s.rgam_lut_mode == 1) ? "sRGB" :
324 					((s.rgam_lut_mode == 2) ? "Ycc" :
325 					((s.rgam_lut_mode == 3) ? "RAM" :
326 					((s.rgam_lut_mode == 4) ? "RAM" :
327 								 "Unknown")))),
328 				s.gamut_remap_mode,
329 				s.gamut_remap_c11_c12,
330 				s.gamut_remap_c13_c14,
331 				s.gamut_remap_c21_c22,
332 				s.gamut_remap_c23_c24,
333 				s.gamut_remap_c31_c32,
334 				s.gamut_remap_c33_c34);
335 		DTN_INFO("\n");
336 	}
337 	DTN_INFO("\n");
338 
339 	DTN_INFO("MPCC:  OPP  DPP  MPCCBOT  MODE  ALPHA_MODE  PREMULT  OVERLAP_ONLY  IDLE\n");
340 	for (i = 0; i < pool->pipe_count; i++) {
341 		struct mpcc_state s = {0};
342 
343 		pool->mpc->funcs->read_mpcc_state(pool->mpc, i, &s);
344 		if (s.opp_id != 0xf)
345 			DTN_INFO("[%2d]:  %2xh  %2xh  %6xh  %4d  %10d  %7d  %12d  %4d\n",
346 				i, s.opp_id, s.dpp_id, s.bot_mpcc_id,
347 				s.mode, s.alpha_mode, s.pre_multiplied_alpha, s.overlap_only,
348 				s.idle);
349 	}
350 	DTN_INFO("\n");
351 
352 	DTN_INFO("OTG:  v_bs  v_be  v_ss  v_se  vpol  vmax  vmin  vmax_sel  vmin_sel  h_bs  h_be  h_ss  h_se  hpol  htot  vtot  underflow blank_en\n");
353 
354 	for (i = 0; i < pool->timing_generator_count; i++) {
355 		struct timing_generator *tg = pool->timing_generators[i];
356 		struct dcn_otg_state s = {0};
357 		/* Read shared OTG state registers for all DCNx */
358 		optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
359 
360 		/*
361 		 * For DCN2 and greater, a register on the OPP is used to
362 		 * determine if the CRTC is blanked instead of the OTG. So use
363 		 * dpg_is_blanked() if exists, otherwise fallback on otg.
364 		 *
365 		 * TODO: Implement DCN-specific read_otg_state hooks.
366 		 */
367 		if (pool->opps[i]->funcs->dpg_is_blanked)
368 			s.blank_enabled = pool->opps[i]->funcs->dpg_is_blanked(pool->opps[i]);
369 		else
370 			s.blank_enabled = tg->funcs->is_blanked(tg);
371 
372 		//only print if OTG master is enabled
373 		if ((s.otg_enabled & 1) == 0)
374 			continue;
375 
376 		DTN_INFO("[%d]: %5d %5d %5d %5d %5d %5d %5d %9d %9d %5d %5d %5d %5d %5d %5d %5d  %9d %8d\n",
377 				tg->inst,
378 				s.v_blank_start,
379 				s.v_blank_end,
380 				s.v_sync_a_start,
381 				s.v_sync_a_end,
382 				s.v_sync_a_pol,
383 				s.v_total_max,
384 				s.v_total_min,
385 				s.v_total_max_sel,
386 				s.v_total_min_sel,
387 				s.h_blank_start,
388 				s.h_blank_end,
389 				s.h_sync_a_start,
390 				s.h_sync_a_end,
391 				s.h_sync_a_pol,
392 				s.h_total,
393 				s.v_total,
394 				s.underflow_occurred_status,
395 				s.blank_enabled);
396 
397 		// Clear underflow for debug purposes
398 		// We want to keep underflow sticky bit on for the longevity tests outside of test environment.
399 		// This function is called only from Windows or Diags test environment, hence it's safe to clear
400 		// it from here without affecting the original intent.
401 		tg->funcs->clear_optc_underflow(tg);
402 	}
403 	DTN_INFO("\n");
404 
405 	// dcn_dsc_state struct field bytes_per_pixel was renamed to bits_per_pixel
406 	// TODO: Update golden log header to reflect this name change
407 	DTN_INFO("DSC: CLOCK_EN  SLICE_WIDTH  Bytes_pp\n");
408 	for (i = 0; i < pool->res_cap->num_dsc; i++) {
409 		struct display_stream_compressor *dsc = pool->dscs[i];
410 		struct dcn_dsc_state s = {0};
411 
412 		dsc->funcs->dsc_read_state(dsc, &s);
413 		DTN_INFO("[%d]: %-9d %-12d %-10d\n",
414 		dsc->inst,
415 			s.dsc_clock_en,
416 			s.dsc_slice_width,
417 			s.dsc_bits_per_pixel);
418 		DTN_INFO("\n");
419 	}
420 	DTN_INFO("\n");
421 
422 	DTN_INFO("S_ENC: DSC_MODE  SEC_GSP7_LINE_NUM"
423 			"  VBID6_LINE_REFERENCE  VBID6_LINE_NUM  SEC_GSP7_ENABLE  SEC_STREAM_ENABLE\n");
424 	for (i = 0; i < pool->stream_enc_count; i++) {
425 		struct stream_encoder *enc = pool->stream_enc[i];
426 		struct enc_state s = {0};
427 
428 		if (enc->funcs->enc_read_state) {
429 			enc->funcs->enc_read_state(enc, &s);
430 			DTN_INFO("[%-3d]: %-9d %-18d %-21d %-15d %-16d %-17d\n",
431 				enc->id,
432 				s.dsc_mode,
433 				s.sec_gsp_pps_line_num,
434 				s.vbid6_line_reference,
435 				s.vbid6_line_num,
436 				s.sec_gsp_pps_enable,
437 				s.sec_stream_enable);
438 			DTN_INFO("\n");
439 		}
440 	}
441 	DTN_INFO("\n");
442 
443 	DTN_INFO("L_ENC: DPHY_FEC_EN  DPHY_FEC_READY_SHADOW  DPHY_FEC_ACTIVE_STATUS  DP_LINK_TRAINING_COMPLETE\n");
444 	for (i = 0; i < dc->link_count; i++) {
445 		struct link_encoder *lenc = dc->links[i]->link_enc;
446 
447 		struct link_enc_state s = {0};
448 
449 		if (lenc && lenc->funcs->read_state) {
450 			lenc->funcs->read_state(lenc, &s);
451 			DTN_INFO("[%-3d]: %-12d %-22d %-22d %-25d\n",
452 				i,
453 				s.dphy_fec_en,
454 				s.dphy_fec_ready_shadow,
455 				s.dphy_fec_active_status,
456 				s.dp_link_training_complete);
457 			DTN_INFO("\n");
458 		}
459 	}
460 	DTN_INFO("\n");
461 
462 	DTN_INFO("\nCALCULATED Clocks: dcfclk_khz:%d  dcfclk_deep_sleep_khz:%d  dispclk_khz:%d\n"
463 		"dppclk_khz:%d  max_supported_dppclk_khz:%d  fclk_khz:%d  socclk_khz:%d\n\n",
464 			dc->current_state->bw_ctx.bw.dcn.clk.dcfclk_khz,
465 			dc->current_state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz,
466 			dc->current_state->bw_ctx.bw.dcn.clk.dispclk_khz,
467 			dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz,
468 			dc->current_state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz,
469 			dc->current_state->bw_ctx.bw.dcn.clk.fclk_khz,
470 			dc->current_state->bw_ctx.bw.dcn.clk.socclk_khz);
471 
472 	log_mpc_crc(dc, log_ctx);
473 
474 	{
475 		if (pool->hpo_dp_stream_enc_count > 0) {
476 			DTN_INFO("DP HPO S_ENC:  Enabled  OTG   Format   Depth   Vid   SDP   Compressed  Link\n");
477 			for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
478 				struct hpo_dp_stream_encoder_state hpo_dp_se_state = {0};
479 				struct hpo_dp_stream_encoder *hpo_dp_stream_enc = pool->hpo_dp_stream_enc[i];
480 
481 				if (hpo_dp_stream_enc && hpo_dp_stream_enc->funcs->read_state) {
482 					hpo_dp_stream_enc->funcs->read_state(hpo_dp_stream_enc, &hpo_dp_se_state);
483 
484 					DTN_INFO("[%d]:                 %d    %d   %6s       %d     %d     %d            %d     %d\n",
485 							hpo_dp_stream_enc->id - ENGINE_ID_HPO_DP_0,
486 							hpo_dp_se_state.stream_enc_enabled,
487 							hpo_dp_se_state.otg_inst,
488 							(hpo_dp_se_state.pixel_encoding == 0) ? "4:4:4" :
489 									((hpo_dp_se_state.pixel_encoding == 1) ? "4:2:2" :
490 									(hpo_dp_se_state.pixel_encoding == 2) ? "4:2:0" : "Y-Only"),
491 							(hpo_dp_se_state.component_depth == 0) ? 6 :
492 									((hpo_dp_se_state.component_depth == 1) ? 8 :
493 									(hpo_dp_se_state.component_depth == 2) ? 10 : 12),
494 							hpo_dp_se_state.vid_stream_enabled,
495 							hpo_dp_se_state.sdp_enabled,
496 							hpo_dp_se_state.compressed_format,
497 							hpo_dp_se_state.mapped_to_link_enc);
498 				}
499 			}
500 
501 			DTN_INFO("\n");
502 		}
503 
504 		/* log DP HPO L_ENC section if any hpo_dp_link_enc exists */
505 		if (pool->hpo_dp_link_enc_count) {
506 			DTN_INFO("DP HPO L_ENC:  Enabled  Mode   Lanes   Stream  Slots   VC Rate X    VC Rate Y\n");
507 
508 			for (i = 0; i < pool->hpo_dp_link_enc_count; i++) {
509 				struct hpo_dp_link_encoder *hpo_dp_link_enc = pool->hpo_dp_link_enc[i];
510 				struct hpo_dp_link_enc_state hpo_dp_le_state = {0};
511 
512 				if (hpo_dp_link_enc->funcs->read_state) {
513 					hpo_dp_link_enc->funcs->read_state(hpo_dp_link_enc, &hpo_dp_le_state);
514 					DTN_INFO("[%d]:                 %d  %6s     %d        %d      %d     %d     %d\n",
515 							hpo_dp_link_enc->inst,
516 							hpo_dp_le_state.link_enc_enabled,
517 							(hpo_dp_le_state.link_mode == 0) ? "TPS1" :
518 									(hpo_dp_le_state.link_mode == 1) ? "TPS2" :
519 									(hpo_dp_le_state.link_mode == 2) ? "ACTIVE" : "TEST",
520 							hpo_dp_le_state.lane_count,
521 							hpo_dp_le_state.stream_src[0],
522 							hpo_dp_le_state.slot_count[0],
523 							hpo_dp_le_state.vc_rate_x[0],
524 							hpo_dp_le_state.vc_rate_y[0]);
525 					DTN_INFO("\n");
526 				}
527 			}
528 
529 			DTN_INFO("\n");
530 		}
531 	}
532 
533 	DTN_INFO_END();
534 }
535 
dcn10_did_underflow_occur(struct dc * dc,struct pipe_ctx * pipe_ctx)536 bool dcn10_did_underflow_occur(struct dc *dc, struct pipe_ctx *pipe_ctx)
537 {
538 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
539 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
540 
541 	if (tg->funcs->is_optc_underflow_occurred(tg)) {
542 		tg->funcs->clear_optc_underflow(tg);
543 		return true;
544 	}
545 
546 	if (hubp->funcs->hubp_get_underflow_status(hubp)) {
547 		hubp->funcs->hubp_clear_underflow(hubp);
548 		return true;
549 	}
550 	return false;
551 }
552 
dcn10_enable_power_gating_plane(struct dce_hwseq * hws,bool enable)553 void dcn10_enable_power_gating_plane(
554 	struct dce_hwseq *hws,
555 	bool enable)
556 {
557 	bool force_on = true; /* disable power gating */
558 
559 	if (enable)
560 		force_on = false;
561 
562 	/* DCHUBP0/1/2/3 */
563 	REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on);
564 	REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on);
565 	REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on);
566 	REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on);
567 
568 	/* DPP0/1/2/3 */
569 	REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on);
570 	REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on);
571 	REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on);
572 	REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on);
573 }
574 
dcn10_disable_vga(struct dce_hwseq * hws)575 void dcn10_disable_vga(
576 	struct dce_hwseq *hws)
577 {
578 	unsigned int in_vga1_mode = 0;
579 	unsigned int in_vga2_mode = 0;
580 	unsigned int in_vga3_mode = 0;
581 	unsigned int in_vga4_mode = 0;
582 
583 	REG_GET(D1VGA_CONTROL, D1VGA_MODE_ENABLE, &in_vga1_mode);
584 	REG_GET(D2VGA_CONTROL, D2VGA_MODE_ENABLE, &in_vga2_mode);
585 	REG_GET(D3VGA_CONTROL, D3VGA_MODE_ENABLE, &in_vga3_mode);
586 	REG_GET(D4VGA_CONTROL, D4VGA_MODE_ENABLE, &in_vga4_mode);
587 
588 	if (in_vga1_mode == 0 && in_vga2_mode == 0 &&
589 			in_vga3_mode == 0 && in_vga4_mode == 0)
590 		return;
591 
592 	REG_WRITE(D1VGA_CONTROL, 0);
593 	REG_WRITE(D2VGA_CONTROL, 0);
594 	REG_WRITE(D3VGA_CONTROL, 0);
595 	REG_WRITE(D4VGA_CONTROL, 0);
596 
597 	/* HW Engineer's Notes:
598 	 *  During switch from vga->extended, if we set the VGA_TEST_ENABLE and
599 	 *  then hit the VGA_TEST_RENDER_START, then the DCHUBP timing gets updated correctly.
600 	 *
601 	 *  Then vBIOS will have it poll for the VGA_TEST_RENDER_DONE and unset
602 	 *  VGA_TEST_ENABLE, to leave it in the same state as before.
603 	 */
604 	REG_UPDATE(VGA_TEST_CONTROL, VGA_TEST_ENABLE, 1);
605 	REG_UPDATE(VGA_TEST_CONTROL, VGA_TEST_RENDER_START, 1);
606 }
607 
608 /**
609  * dcn10_dpp_pg_control - DPP power gate control.
610  *
611  * @hws: dce_hwseq reference.
612  * @dpp_inst: DPP instance reference.
613  * @power_on: true if we want to enable power gate, false otherwise.
614  *
615  * Enable or disable power gate in the specific DPP instance.
616  */
dcn10_dpp_pg_control(struct dce_hwseq * hws,unsigned int dpp_inst,bool power_on)617 void dcn10_dpp_pg_control(
618 		struct dce_hwseq *hws,
619 		unsigned int dpp_inst,
620 		bool power_on)
621 {
622 	uint32_t power_gate = power_on ? 0 : 1;
623 	uint32_t pwr_status = power_on ? PGFSM_POWER_ON : PGFSM_POWER_OFF;
624 
625 	if (hws->ctx->dc->debug.disable_dpp_power_gate)
626 		return;
627 	if (REG(DOMAIN1_PG_CONFIG) == 0)
628 		return;
629 
630 	switch (dpp_inst) {
631 	case 0: /* DPP0 */
632 		REG_UPDATE(DOMAIN1_PG_CONFIG,
633 				DOMAIN1_POWER_GATE, power_gate);
634 
635 		REG_WAIT(DOMAIN1_PG_STATUS,
636 				DOMAIN1_PGFSM_PWR_STATUS, pwr_status,
637 				1, 1000);
638 		break;
639 	case 1: /* DPP1 */
640 		REG_UPDATE(DOMAIN3_PG_CONFIG,
641 				DOMAIN3_POWER_GATE, power_gate);
642 
643 		REG_WAIT(DOMAIN3_PG_STATUS,
644 				DOMAIN3_PGFSM_PWR_STATUS, pwr_status,
645 				1, 1000);
646 		break;
647 	case 2: /* DPP2 */
648 		REG_UPDATE(DOMAIN5_PG_CONFIG,
649 				DOMAIN5_POWER_GATE, power_gate);
650 
651 		REG_WAIT(DOMAIN5_PG_STATUS,
652 				DOMAIN5_PGFSM_PWR_STATUS, pwr_status,
653 				1, 1000);
654 		break;
655 	case 3: /* DPP3 */
656 		REG_UPDATE(DOMAIN7_PG_CONFIG,
657 				DOMAIN7_POWER_GATE, power_gate);
658 
659 		REG_WAIT(DOMAIN7_PG_STATUS,
660 				DOMAIN7_PGFSM_PWR_STATUS, pwr_status,
661 				1, 1000);
662 		break;
663 	default:
664 		BREAK_TO_DEBUGGER();
665 		break;
666 	}
667 }
668 
669 /**
670  * dcn10_hubp_pg_control - HUBP power gate control.
671  *
672  * @hws: dce_hwseq reference.
673  * @hubp_inst: DPP instance reference.
674  * @power_on: true if we want to enable power gate, false otherwise.
675  *
676  * Enable or disable power gate in the specific HUBP instance.
677  */
dcn10_hubp_pg_control(struct dce_hwseq * hws,unsigned int hubp_inst,bool power_on)678 void dcn10_hubp_pg_control(
679 		struct dce_hwseq *hws,
680 		unsigned int hubp_inst,
681 		bool power_on)
682 {
683 	uint32_t power_gate = power_on ? 0 : 1;
684 	uint32_t pwr_status = power_on ? PGFSM_POWER_ON : PGFSM_POWER_OFF;
685 
686 	if (hws->ctx->dc->debug.disable_hubp_power_gate)
687 		return;
688 	if (REG(DOMAIN0_PG_CONFIG) == 0)
689 		return;
690 
691 	switch (hubp_inst) {
692 	case 0: /* DCHUBP0 */
693 		REG_UPDATE(DOMAIN0_PG_CONFIG,
694 				DOMAIN0_POWER_GATE, power_gate);
695 
696 		REG_WAIT(DOMAIN0_PG_STATUS,
697 				DOMAIN0_PGFSM_PWR_STATUS, pwr_status,
698 				1, 1000);
699 		break;
700 	case 1: /* DCHUBP1 */
701 		REG_UPDATE(DOMAIN2_PG_CONFIG,
702 				DOMAIN2_POWER_GATE, power_gate);
703 
704 		REG_WAIT(DOMAIN2_PG_STATUS,
705 				DOMAIN2_PGFSM_PWR_STATUS, pwr_status,
706 				1, 1000);
707 		break;
708 	case 2: /* DCHUBP2 */
709 		REG_UPDATE(DOMAIN4_PG_CONFIG,
710 				DOMAIN4_POWER_GATE, power_gate);
711 
712 		REG_WAIT(DOMAIN4_PG_STATUS,
713 				DOMAIN4_PGFSM_PWR_STATUS, pwr_status,
714 				1, 1000);
715 		break;
716 	case 3: /* DCHUBP3 */
717 		REG_UPDATE(DOMAIN6_PG_CONFIG,
718 				DOMAIN6_POWER_GATE, power_gate);
719 
720 		REG_WAIT(DOMAIN6_PG_STATUS,
721 				DOMAIN6_PGFSM_PWR_STATUS, pwr_status,
722 				1, 1000);
723 		break;
724 	default:
725 		BREAK_TO_DEBUGGER();
726 		break;
727 	}
728 }
729 
power_on_plane_resources(struct dce_hwseq * hws,int plane_id)730 static void power_on_plane_resources(
731 	struct dce_hwseq *hws,
732 	int plane_id)
733 {
734 	DC_LOGGER_INIT(hws->ctx->logger);
735 
736 	if (hws->funcs.dpp_root_clock_control)
737 		hws->funcs.dpp_root_clock_control(hws, plane_id, true);
738 
739 	if (REG(DC_IP_REQUEST_CNTL)) {
740 		REG_SET(DC_IP_REQUEST_CNTL, 0,
741 				IP_REQUEST_EN, 1);
742 
743 		if (hws->funcs.dpp_pg_control)
744 			hws->funcs.dpp_pg_control(hws, plane_id, true);
745 
746 		if (hws->funcs.hubp_pg_control)
747 			hws->funcs.hubp_pg_control(hws, plane_id, true);
748 
749 		REG_SET(DC_IP_REQUEST_CNTL, 0,
750 				IP_REQUEST_EN, 0);
751 		DC_LOG_DEBUG(
752 				"Un-gated front end for pipe %d\n", plane_id);
753 	}
754 }
755 
undo_DEGVIDCN10_253_wa(struct dc * dc)756 static void undo_DEGVIDCN10_253_wa(struct dc *dc)
757 {
758 	struct dce_hwseq *hws = dc->hwseq;
759 	struct hubp *hubp = dc->res_pool->hubps[0];
760 
761 	if (!hws->wa_state.DEGVIDCN10_253_applied)
762 		return;
763 
764 	hubp->funcs->set_blank(hubp, true);
765 
766 	REG_SET(DC_IP_REQUEST_CNTL, 0,
767 			IP_REQUEST_EN, 1);
768 
769 	hws->funcs.hubp_pg_control(hws, 0, false);
770 	REG_SET(DC_IP_REQUEST_CNTL, 0,
771 			IP_REQUEST_EN, 0);
772 
773 	hws->wa_state.DEGVIDCN10_253_applied = false;
774 }
775 
apply_DEGVIDCN10_253_wa(struct dc * dc)776 static void apply_DEGVIDCN10_253_wa(struct dc *dc)
777 {
778 	struct dce_hwseq *hws = dc->hwseq;
779 	struct hubp *hubp = dc->res_pool->hubps[0];
780 	int i;
781 
782 	if (dc->debug.disable_stutter)
783 		return;
784 
785 	if (!hws->wa.DEGVIDCN10_253)
786 		return;
787 
788 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
789 		if (!dc->res_pool->hubps[i]->power_gated)
790 			return;
791 	}
792 
793 	/* all pipe power gated, apply work around to enable stutter. */
794 
795 	REG_SET(DC_IP_REQUEST_CNTL, 0,
796 			IP_REQUEST_EN, 1);
797 
798 	hws->funcs.hubp_pg_control(hws, 0, true);
799 	REG_SET(DC_IP_REQUEST_CNTL, 0,
800 			IP_REQUEST_EN, 0);
801 
802 	hubp->funcs->set_hubp_blank_en(hubp, false);
803 	hws->wa_state.DEGVIDCN10_253_applied = true;
804 }
805 
dcn10_bios_golden_init(struct dc * dc)806 void dcn10_bios_golden_init(struct dc *dc)
807 {
808 	struct dce_hwseq *hws = dc->hwseq;
809 	struct dc_bios *bp = dc->ctx->dc_bios;
810 	int i;
811 	bool allow_self_fresh_force_enable = true;
812 
813 	if (hws->funcs.s0i3_golden_init_wa && hws->funcs.s0i3_golden_init_wa(dc))
814 		return;
815 
816 	if (dc->res_pool->hubbub->funcs->is_allow_self_refresh_enabled)
817 		allow_self_fresh_force_enable =
818 				dc->res_pool->hubbub->funcs->is_allow_self_refresh_enabled(dc->res_pool->hubbub);
819 
820 
821 	/* WA for making DF sleep when idle after resume from S0i3.
822 	 * DCHUBBUB_ARB_ALLOW_SELF_REFRESH_FORCE_ENABLE is set to 1 by
823 	 * command table, if DCHUBBUB_ARB_ALLOW_SELF_REFRESH_FORCE_ENABLE = 0
824 	 * before calling command table and it changed to 1 after,
825 	 * it should be set back to 0.
826 	 */
827 
828 	/* initialize dcn global */
829 	bp->funcs->enable_disp_power_gating(bp,
830 			CONTROLLER_ID_D0, ASIC_PIPE_INIT);
831 
832 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
833 		/* initialize dcn per pipe */
834 		bp->funcs->enable_disp_power_gating(bp,
835 				CONTROLLER_ID_D0 + i, ASIC_PIPE_DISABLE);
836 	}
837 
838 	if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
839 		if (allow_self_fresh_force_enable == false &&
840 				dc->res_pool->hubbub->funcs->is_allow_self_refresh_enabled(dc->res_pool->hubbub))
841 			dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
842 										!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
843 
844 }
845 
false_optc_underflow_wa(struct dc * dc,const struct dc_stream_state * stream,struct timing_generator * tg)846 static void false_optc_underflow_wa(
847 		struct dc *dc,
848 		const struct dc_stream_state *stream,
849 		struct timing_generator *tg)
850 {
851 	int i;
852 	bool underflow;
853 
854 	if (!dc->hwseq->wa.false_optc_underflow)
855 		return;
856 
857 	underflow = tg->funcs->is_optc_underflow_occurred(tg);
858 
859 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
860 		struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
861 
862 		if (old_pipe_ctx->stream != stream)
863 			continue;
864 
865 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, old_pipe_ctx);
866 	}
867 
868 	if (tg->funcs->set_blank_data_double_buffer)
869 		tg->funcs->set_blank_data_double_buffer(tg, true);
870 
871 	if (tg->funcs->is_optc_underflow_occurred(tg) && !underflow)
872 		tg->funcs->clear_optc_underflow(tg);
873 }
874 
calculate_vready_offset_for_group(struct pipe_ctx * pipe)875 static int calculate_vready_offset_for_group(struct pipe_ctx *pipe)
876 {
877 	struct pipe_ctx *other_pipe;
878 	int vready_offset = pipe->pipe_dlg_param.vready_offset;
879 
880 	/* Always use the largest vready_offset of all connected pipes */
881 	for (other_pipe = pipe->bottom_pipe; other_pipe != NULL; other_pipe = other_pipe->bottom_pipe) {
882 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
883 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
884 	}
885 	for (other_pipe = pipe->top_pipe; other_pipe != NULL; other_pipe = other_pipe->top_pipe) {
886 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
887 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
888 	}
889 	for (other_pipe = pipe->next_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->next_odm_pipe) {
890 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
891 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
892 	}
893 	for (other_pipe = pipe->prev_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->prev_odm_pipe) {
894 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
895 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
896 	}
897 
898 	return vready_offset;
899 }
900 
dcn10_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)901 enum dc_status dcn10_enable_stream_timing(
902 		struct pipe_ctx *pipe_ctx,
903 		struct dc_state *context,
904 		struct dc *dc)
905 {
906 	struct dc_stream_state *stream = pipe_ctx->stream;
907 	enum dc_color_space color_space;
908 	struct tg_color black_color = {0};
909 
910 	/* by upper caller loop, pipe0 is parent pipe and be called first.
911 	 * back end is set up by for pipe0. Other children pipe share back end
912 	 * with pipe 0. No program is needed.
913 	 */
914 	if (pipe_ctx->top_pipe != NULL)
915 		return DC_OK;
916 
917 	/* TODO check if timing_changed, disable stream if timing changed */
918 
919 	/* HW program guide assume display already disable
920 	 * by unplug sequence. OTG assume stop.
921 	 */
922 	pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true);
923 
924 	if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
925 			pipe_ctx->clock_source,
926 			&pipe_ctx->stream_res.pix_clk_params,
927 			dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
928 			&pipe_ctx->pll_settings)) {
929 		BREAK_TO_DEBUGGER();
930 		return DC_ERROR_UNEXPECTED;
931 	}
932 
933 	if (dc_is_hdmi_tmds_signal(stream->signal)) {
934 		stream->link->phy_state.symclk_ref_cnts.otg = 1;
935 		if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
936 			stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
937 		else
938 			stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
939 	}
940 
941 	pipe_ctx->stream_res.tg->funcs->program_timing(
942 			pipe_ctx->stream_res.tg,
943 			&stream->timing,
944 			calculate_vready_offset_for_group(pipe_ctx),
945 			pipe_ctx->pipe_dlg_param.vstartup_start,
946 			pipe_ctx->pipe_dlg_param.vupdate_offset,
947 			pipe_ctx->pipe_dlg_param.vupdate_width,
948 			pipe_ctx->stream->signal,
949 			true);
950 
951 #if 0 /* move to after enable_crtc */
952 	/* TODO: OPP FMT, ABM. etc. should be done here. */
953 	/* or FPGA now. instance 0 only. TODO: move to opp.c */
954 
955 	inst_offset = reg_offsets[pipe_ctx->stream_res.tg->inst].fmt;
956 
957 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
958 				pipe_ctx->stream_res.opp,
959 				&stream->bit_depth_params,
960 				&stream->clamping);
961 #endif
962 	/* program otg blank color */
963 	color_space = stream->output_color_space;
964 	color_space_to_black_color(dc, color_space, &black_color);
965 
966 	/*
967 	 * The way 420 is packed, 2 channels carry Y component, 1 channel
968 	 * alternate between Cb and Cr, so both channels need the pixel
969 	 * value for Y
970 	 */
971 	if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
972 		black_color.color_r_cr = black_color.color_g_y;
973 
974 	if (pipe_ctx->stream_res.tg->funcs->set_blank_color)
975 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
976 				pipe_ctx->stream_res.tg,
977 				&black_color);
978 
979 	if (pipe_ctx->stream_res.tg->funcs->is_blanked &&
980 			!pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg)) {
981 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
982 		hwss_wait_for_blank_complete(pipe_ctx->stream_res.tg);
983 		false_optc_underflow_wa(dc, pipe_ctx->stream, pipe_ctx->stream_res.tg);
984 	}
985 
986 	/* VTG is  within DCHUB command block. DCFCLK is always on */
987 	if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) {
988 		BREAK_TO_DEBUGGER();
989 		return DC_ERROR_UNEXPECTED;
990 	}
991 
992 	/* TODO program crtc source select for non-virtual signal*/
993 	/* TODO program FMT */
994 	/* TODO setup link_enc */
995 	/* TODO set stream attributes */
996 	/* TODO program audio */
997 	/* TODO enable stream if timing changed */
998 	/* TODO unblank stream if DP */
999 
1000 	return DC_OK;
1001 }
1002 
dcn10_reset_back_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx,struct dc_state * context)1003 static void dcn10_reset_back_end_for_pipe(
1004 		struct dc *dc,
1005 		struct pipe_ctx *pipe_ctx,
1006 		struct dc_state *context)
1007 {
1008 	int i;
1009 	struct dc_link *link;
1010 	DC_LOGGER_INIT(dc->ctx->logger);
1011 	if (pipe_ctx->stream_res.stream_enc == NULL) {
1012 		pipe_ctx->stream = NULL;
1013 		return;
1014 	}
1015 
1016 	link = pipe_ctx->stream->link;
1017 	/* DPMS may already disable or */
1018 	/* dpms_off status is incorrect due to fastboot
1019 	 * feature. When system resume from S4 with second
1020 	 * screen only, the dpms_off would be true but
1021 	 * VBIOS lit up eDP, so check link status too.
1022 	 */
1023 	if (!pipe_ctx->stream->dpms_off || link->link_status.link_active)
1024 		dc->link_srv->set_dpms_off(pipe_ctx);
1025 	else if (pipe_ctx->stream_res.audio)
1026 		dc->hwss.disable_audio_stream(pipe_ctx);
1027 
1028 	if (pipe_ctx->stream_res.audio) {
1029 		/*disable az_endpoint*/
1030 		pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
1031 
1032 		/*free audio*/
1033 		if (dc->caps.dynamic_audio == true) {
1034 			/*we have to dynamic arbitrate the audio endpoints*/
1035 			/*we free the resource, need reset is_audio_acquired*/
1036 			update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
1037 					pipe_ctx->stream_res.audio, false);
1038 			pipe_ctx->stream_res.audio = NULL;
1039 		}
1040 	}
1041 
1042 	/* by upper caller loop, parent pipe: pipe0, will be reset last.
1043 	 * back end share by all pipes and will be disable only when disable
1044 	 * parent pipe.
1045 	 */
1046 	if (pipe_ctx->top_pipe == NULL) {
1047 
1048 		if (pipe_ctx->stream_res.abm)
1049 			dc->hwss.set_abm_immediate_disable(pipe_ctx);
1050 
1051 		pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg);
1052 
1053 		pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false);
1054 		if (pipe_ctx->stream_res.tg->funcs->set_drr)
1055 			pipe_ctx->stream_res.tg->funcs->set_drr(
1056 					pipe_ctx->stream_res.tg, NULL);
1057 		if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal))
1058 			pipe_ctx->stream->link->phy_state.symclk_ref_cnts.otg = 0;
1059 	}
1060 
1061 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1062 		if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx)
1063 			break;
1064 
1065 	if (i == dc->res_pool->pipe_count)
1066 		return;
1067 
1068 	pipe_ctx->stream = NULL;
1069 	DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n",
1070 					pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst);
1071 }
1072 
dcn10_hw_wa_force_recovery(struct dc * dc)1073 static bool dcn10_hw_wa_force_recovery(struct dc *dc)
1074 {
1075 	struct hubp *hubp ;
1076 	unsigned int i;
1077 	bool need_recover = true;
1078 
1079 	if (!dc->debug.recovery_enabled)
1080 		return false;
1081 
1082 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1083 		struct pipe_ctx *pipe_ctx =
1084 			&dc->current_state->res_ctx.pipe_ctx[i];
1085 		if (pipe_ctx != NULL) {
1086 			hubp = pipe_ctx->plane_res.hubp;
1087 			if (hubp != NULL && hubp->funcs->hubp_get_underflow_status) {
1088 				if (hubp->funcs->hubp_get_underflow_status(hubp) != 0) {
1089 					/* one pipe underflow, we will reset all the pipes*/
1090 					need_recover = true;
1091 				}
1092 			}
1093 		}
1094 	}
1095 	if (!need_recover)
1096 		return false;
1097 	/*
1098 	DCHUBP_CNTL:HUBP_BLANK_EN=1
1099 	DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=1
1100 	DCHUBP_CNTL:HUBP_DISABLE=1
1101 	DCHUBP_CNTL:HUBP_DISABLE=0
1102 	DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=0
1103 	DCSURF_PRIMARY_SURFACE_ADDRESS
1104 	DCHUBP_CNTL:HUBP_BLANK_EN=0
1105 	*/
1106 
1107 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1108 		struct pipe_ctx *pipe_ctx =
1109 			&dc->current_state->res_ctx.pipe_ctx[i];
1110 		if (pipe_ctx != NULL) {
1111 			hubp = pipe_ctx->plane_res.hubp;
1112 			/*DCHUBP_CNTL:HUBP_BLANK_EN=1*/
1113 			if (hubp != NULL && hubp->funcs->set_hubp_blank_en)
1114 				hubp->funcs->set_hubp_blank_en(hubp, true);
1115 		}
1116 	}
1117 	/*DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=1*/
1118 	hubbub1_soft_reset(dc->res_pool->hubbub, true);
1119 
1120 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1121 		struct pipe_ctx *pipe_ctx =
1122 			&dc->current_state->res_ctx.pipe_ctx[i];
1123 		if (pipe_ctx != NULL) {
1124 			hubp = pipe_ctx->plane_res.hubp;
1125 			/*DCHUBP_CNTL:HUBP_DISABLE=1*/
1126 			if (hubp != NULL && hubp->funcs->hubp_disable_control)
1127 				hubp->funcs->hubp_disable_control(hubp, true);
1128 		}
1129 	}
1130 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1131 		struct pipe_ctx *pipe_ctx =
1132 			&dc->current_state->res_ctx.pipe_ctx[i];
1133 		if (pipe_ctx != NULL) {
1134 			hubp = pipe_ctx->plane_res.hubp;
1135 			/*DCHUBP_CNTL:HUBP_DISABLE=0*/
1136 			if (hubp != NULL && hubp->funcs->hubp_disable_control)
1137 				hubp->funcs->hubp_disable_control(hubp, true);
1138 		}
1139 	}
1140 	/*DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=0*/
1141 	hubbub1_soft_reset(dc->res_pool->hubbub, false);
1142 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1143 		struct pipe_ctx *pipe_ctx =
1144 			&dc->current_state->res_ctx.pipe_ctx[i];
1145 		if (pipe_ctx != NULL) {
1146 			hubp = pipe_ctx->plane_res.hubp;
1147 			/*DCHUBP_CNTL:HUBP_BLANK_EN=0*/
1148 			if (hubp != NULL && hubp->funcs->set_hubp_blank_en)
1149 				hubp->funcs->set_hubp_blank_en(hubp, true);
1150 		}
1151 	}
1152 	return true;
1153 
1154 }
1155 
dcn10_verify_allow_pstate_change_high(struct dc * dc)1156 void dcn10_verify_allow_pstate_change_high(struct dc *dc)
1157 {
1158 	struct hubbub *hubbub = dc->res_pool->hubbub;
1159 	static bool should_log_hw_state; /* prevent hw state log by default */
1160 
1161 	if (!hubbub->funcs->verify_allow_pstate_change_high)
1162 		return;
1163 
1164 	if (!hubbub->funcs->verify_allow_pstate_change_high(hubbub)) {
1165 		int i = 0;
1166 
1167 		if (should_log_hw_state)
1168 			dcn10_log_hw_state(dc, NULL);
1169 
1170 		TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
1171 		BREAK_TO_DEBUGGER();
1172 		if (dcn10_hw_wa_force_recovery(dc)) {
1173 			/*check again*/
1174 			if (!hubbub->funcs->verify_allow_pstate_change_high(hubbub))
1175 				BREAK_TO_DEBUGGER();
1176 		}
1177 	}
1178 }
1179 
1180 /* trigger HW to start disconnect plane from stream on the next vsync */
dcn10_plane_atomic_disconnect(struct dc * dc,struct pipe_ctx * pipe_ctx)1181 void dcn10_plane_atomic_disconnect(struct dc *dc, struct pipe_ctx *pipe_ctx)
1182 {
1183 	struct dce_hwseq *hws = dc->hwseq;
1184 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
1185 	int dpp_id = pipe_ctx->plane_res.dpp->inst;
1186 	struct mpc *mpc = dc->res_pool->mpc;
1187 	struct mpc_tree *mpc_tree_params;
1188 	struct mpcc *mpcc_to_remove = NULL;
1189 	struct output_pixel_processor *opp = pipe_ctx->stream_res.opp;
1190 
1191 	mpc_tree_params = &(opp->mpc_tree_params);
1192 	mpcc_to_remove = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, dpp_id);
1193 
1194 	/*Already reset*/
1195 	if (mpcc_to_remove == NULL)
1196 		return;
1197 
1198 	mpc->funcs->remove_mpcc(mpc, mpc_tree_params, mpcc_to_remove);
1199 	// Phantom pipes have OTG disabled by default, so MPCC_STATUS will never assert idle,
1200 	// so don't wait for MPCC_IDLE in the programming sequence
1201 	if (opp != NULL && !pipe_ctx->plane_state->is_phantom)
1202 		opp->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
1203 
1204 	dc->optimized_required = true;
1205 
1206 	if (hubp->funcs->hubp_disconnect)
1207 		hubp->funcs->hubp_disconnect(hubp);
1208 
1209 	if (dc->debug.sanity_checks)
1210 		hws->funcs.verify_allow_pstate_change_high(dc);
1211 }
1212 
1213 /**
1214  * dcn10_plane_atomic_power_down - Power down plane components.
1215  *
1216  * @dc: dc struct reference. used for grab hwseq.
1217  * @dpp: dpp struct reference.
1218  * @hubp: hubp struct reference.
1219  *
1220  * Keep in mind that this operation requires a power gate configuration;
1221  * however, requests for switch power gate are precisely controlled to avoid
1222  * problems. For this reason, power gate request is usually disabled. This
1223  * function first needs to enable the power gate request before disabling DPP
1224  * and HUBP. Finally, it disables the power gate request again.
1225  */
dcn10_plane_atomic_power_down(struct dc * dc,struct dpp * dpp,struct hubp * hubp)1226 void dcn10_plane_atomic_power_down(struct dc *dc,
1227 		struct dpp *dpp,
1228 		struct hubp *hubp)
1229 {
1230 	struct dce_hwseq *hws = dc->hwseq;
1231 	DC_LOGGER_INIT(dc->ctx->logger);
1232 
1233 	if (REG(DC_IP_REQUEST_CNTL)) {
1234 		REG_SET(DC_IP_REQUEST_CNTL, 0,
1235 				IP_REQUEST_EN, 1);
1236 
1237 		if (hws->funcs.dpp_pg_control)
1238 			hws->funcs.dpp_pg_control(hws, dpp->inst, false);
1239 
1240 		if (hws->funcs.hubp_pg_control)
1241 			hws->funcs.hubp_pg_control(hws, hubp->inst, false);
1242 
1243 		dpp->funcs->dpp_reset(dpp);
1244 
1245 		REG_SET(DC_IP_REQUEST_CNTL, 0,
1246 				IP_REQUEST_EN, 0);
1247 		DC_LOG_DEBUG(
1248 				"Power gated front end %d\n", hubp->inst);
1249 	}
1250 
1251 	if (hws->funcs.dpp_root_clock_control)
1252 		hws->funcs.dpp_root_clock_control(hws, dpp->inst, false);
1253 }
1254 
1255 /* disable HW used by plane.
1256  * note:  cannot disable until disconnect is complete
1257  */
dcn10_plane_atomic_disable(struct dc * dc,struct pipe_ctx * pipe_ctx)1258 void dcn10_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx)
1259 {
1260 	struct dce_hwseq *hws = dc->hwseq;
1261 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
1262 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
1263 	int opp_id = hubp->opp_id;
1264 
1265 	dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx);
1266 
1267 	hubp->funcs->hubp_clk_cntl(hubp, false);
1268 
1269 	dpp->funcs->dpp_dppclk_control(dpp, false, false);
1270 
1271 	if (opp_id != 0xf && pipe_ctx->stream_res.opp->mpc_tree_params.opp_list == NULL)
1272 		pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
1273 				pipe_ctx->stream_res.opp,
1274 				false);
1275 
1276 	hubp->power_gated = true;
1277 	dc->optimized_required = false; /* We're powering off, no need to optimize */
1278 
1279 	hws->funcs.plane_atomic_power_down(dc,
1280 			pipe_ctx->plane_res.dpp,
1281 			pipe_ctx->plane_res.hubp);
1282 
1283 	pipe_ctx->stream = NULL;
1284 	memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res));
1285 	memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res));
1286 	pipe_ctx->top_pipe = NULL;
1287 	pipe_ctx->bottom_pipe = NULL;
1288 	pipe_ctx->plane_state = NULL;
1289 }
1290 
dcn10_disable_plane(struct dc * dc,struct pipe_ctx * pipe_ctx)1291 void dcn10_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx)
1292 {
1293 	struct dce_hwseq *hws = dc->hwseq;
1294 	DC_LOGGER_INIT(dc->ctx->logger);
1295 
1296 	if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated)
1297 		return;
1298 
1299 	hws->funcs.plane_atomic_disable(dc, pipe_ctx);
1300 
1301 	apply_DEGVIDCN10_253_wa(dc);
1302 
1303 	DC_LOG_DC("Power down front end %d\n",
1304 					pipe_ctx->pipe_idx);
1305 }
1306 
dcn10_init_pipes(struct dc * dc,struct dc_state * context)1307 void dcn10_init_pipes(struct dc *dc, struct dc_state *context)
1308 {
1309 	int i;
1310 	struct dce_hwseq *hws = dc->hwseq;
1311 	struct hubbub *hubbub = dc->res_pool->hubbub;
1312 	bool can_apply_seamless_boot = false;
1313 
1314 	for (i = 0; i < context->stream_count; i++) {
1315 		if (context->streams[i]->apply_seamless_boot_optimization) {
1316 			can_apply_seamless_boot = true;
1317 			break;
1318 		}
1319 	}
1320 
1321 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1322 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
1323 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1324 
1325 		/* There is assumption that pipe_ctx is not mapping irregularly
1326 		 * to non-preferred front end. If pipe_ctx->stream is not NULL,
1327 		 * we will use the pipe, so don't disable
1328 		 */
1329 		if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
1330 			continue;
1331 
1332 		/* Blank controller using driver code instead of
1333 		 * command table.
1334 		 */
1335 		if (tg->funcs->is_tg_enabled(tg)) {
1336 			if (hws->funcs.init_blank != NULL) {
1337 				hws->funcs.init_blank(dc, tg);
1338 				tg->funcs->lock(tg);
1339 			} else {
1340 				tg->funcs->lock(tg);
1341 				tg->funcs->set_blank(tg, true);
1342 				hwss_wait_for_blank_complete(tg);
1343 			}
1344 		}
1345 	}
1346 
1347 	/* Reset det size */
1348 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1349 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1350 		struct hubp *hubp = dc->res_pool->hubps[i];
1351 
1352 		/* Do not need to reset for seamless boot */
1353 		if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
1354 			continue;
1355 
1356 		if (hubbub && hubp) {
1357 			if (hubbub->funcs->program_det_size)
1358 				hubbub->funcs->program_det_size(hubbub, hubp->inst, 0);
1359 		}
1360 	}
1361 
1362 	/* num_opp will be equal to number of mpcc */
1363 	for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
1364 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1365 
1366 		/* Cannot reset the MPC mux if seamless boot */
1367 		if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
1368 			continue;
1369 
1370 		dc->res_pool->mpc->funcs->mpc_init_single_inst(
1371 				dc->res_pool->mpc, i);
1372 	}
1373 
1374 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1375 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
1376 		struct hubp *hubp = dc->res_pool->hubps[i];
1377 		struct dpp *dpp = dc->res_pool->dpps[i];
1378 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1379 
1380 		/* There is assumption that pipe_ctx is not mapping irregularly
1381 		 * to non-preferred front end. If pipe_ctx->stream is not NULL,
1382 		 * we will use the pipe, so don't disable
1383 		 */
1384 		if (can_apply_seamless_boot &&
1385 			pipe_ctx->stream != NULL &&
1386 			pipe_ctx->stream_res.tg->funcs->is_tg_enabled(
1387 				pipe_ctx->stream_res.tg)) {
1388 			// Enable double buffering for OTG_BLANK no matter if
1389 			// seamless boot is enabled or not to suppress global sync
1390 			// signals when OTG blanked. This is to prevent pipe from
1391 			// requesting data while in PSR.
1392 			tg->funcs->tg_init(tg);
1393 			hubp->power_gated = true;
1394 			continue;
1395 		}
1396 
1397 		/* Disable on the current state so the new one isn't cleared. */
1398 		pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1399 
1400 		dpp->funcs->dpp_reset(dpp);
1401 
1402 		pipe_ctx->stream_res.tg = tg;
1403 		pipe_ctx->pipe_idx = i;
1404 
1405 		pipe_ctx->plane_res.hubp = hubp;
1406 		pipe_ctx->plane_res.dpp = dpp;
1407 		pipe_ctx->plane_res.mpcc_inst = dpp->inst;
1408 		hubp->mpcc_id = dpp->inst;
1409 		hubp->opp_id = OPP_ID_INVALID;
1410 		hubp->power_gated = false;
1411 
1412 		dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst;
1413 		dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
1414 		dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
1415 		pipe_ctx->stream_res.opp = dc->res_pool->opps[i];
1416 
1417 		hws->funcs.plane_atomic_disconnect(dc, pipe_ctx);
1418 
1419 		if (tg->funcs->is_tg_enabled(tg))
1420 			tg->funcs->unlock(tg);
1421 
1422 		dc->hwss.disable_plane(dc, pipe_ctx);
1423 
1424 		pipe_ctx->stream_res.tg = NULL;
1425 		pipe_ctx->plane_res.hubp = NULL;
1426 
1427 		if (tg->funcs->is_tg_enabled(tg)) {
1428 			if (tg->funcs->init_odm)
1429 				tg->funcs->init_odm(tg);
1430 		}
1431 
1432 		tg->funcs->tg_init(tg);
1433 	}
1434 
1435 	/* Power gate DSCs */
1436 	if (hws->funcs.dsc_pg_control != NULL) {
1437 		uint32_t num_opps = 0;
1438 		uint32_t opp_id_src0 = OPP_ID_INVALID;
1439 		uint32_t opp_id_src1 = OPP_ID_INVALID;
1440 
1441 		// Step 1: To find out which OPTC is running & OPTC DSC is ON
1442 		// We can't use res_pool->res_cap->num_timing_generator to check
1443 		// Because it records display pipes default setting built in driver,
1444 		// not display pipes of the current chip.
1445 		// Some ASICs would be fused display pipes less than the default setting.
1446 		// In dcnxx_resource_construct function, driver would obatin real information.
1447 		for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1448 			uint32_t optc_dsc_state = 0;
1449 			struct timing_generator *tg = dc->res_pool->timing_generators[i];
1450 
1451 			if (tg->funcs->is_tg_enabled(tg)) {
1452 				if (tg->funcs->get_dsc_status)
1453 					tg->funcs->get_dsc_status(tg, &optc_dsc_state);
1454 				// Only one OPTC with DSC is ON, so if we got one result, we would exit this block.
1455 				// non-zero value is DSC enabled
1456 				if (optc_dsc_state != 0) {
1457 					tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
1458 					break;
1459 				}
1460 			}
1461 		}
1462 
1463 		// Step 2: To power down DSC but skip DSC  of running OPTC
1464 		for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
1465 			struct dcn_dsc_state s  = {0};
1466 
1467 			dc->res_pool->dscs[i]->funcs->dsc_read_state(dc->res_pool->dscs[i], &s);
1468 
1469 			if ((s.dsc_opp_source == opp_id_src0 || s.dsc_opp_source == opp_id_src1) &&
1470 				s.dsc_clock_en && s.dsc_fw_en)
1471 				continue;
1472 
1473 			hws->funcs.dsc_pg_control(hws, dc->res_pool->dscs[i]->inst, false);
1474 		}
1475 	}
1476 }
1477 
dcn10_init_hw(struct dc * dc)1478 void dcn10_init_hw(struct dc *dc)
1479 {
1480 	int i;
1481 	struct abm *abm = dc->res_pool->abm;
1482 	struct dmcu *dmcu = dc->res_pool->dmcu;
1483 	struct dce_hwseq *hws = dc->hwseq;
1484 	struct dc_bios *dcb = dc->ctx->dc_bios;
1485 	struct resource_pool *res_pool = dc->res_pool;
1486 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
1487 	bool   is_optimized_init_done = false;
1488 
1489 	if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
1490 		dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
1491 
1492 	/* Align bw context with hw config when system resume. */
1493 	if (dc->clk_mgr->clks.dispclk_khz != 0 && dc->clk_mgr->clks.dppclk_khz != 0) {
1494 		dc->current_state->bw_ctx.bw.dcn.clk.dispclk_khz = dc->clk_mgr->clks.dispclk_khz;
1495 		dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz = dc->clk_mgr->clks.dppclk_khz;
1496 	}
1497 
1498 	// Initialize the dccg
1499 	if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->dccg_init)
1500 		dc->res_pool->dccg->funcs->dccg_init(res_pool->dccg);
1501 
1502 	if (!dcb->funcs->is_accelerated_mode(dcb))
1503 		hws->funcs.disable_vga(dc->hwseq);
1504 
1505 	if (!dc_dmub_srv_optimized_init_done(dc->ctx->dmub_srv))
1506 		hws->funcs.bios_golden_init(dc);
1507 
1508 
1509 	if (dc->ctx->dc_bios->fw_info_valid) {
1510 		res_pool->ref_clocks.xtalin_clock_inKhz =
1511 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
1512 
1513 		if (res_pool->dccg && res_pool->hubbub) {
1514 
1515 			(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
1516 					dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
1517 					&res_pool->ref_clocks.dccg_ref_clock_inKhz);
1518 
1519 			(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
1520 					res_pool->ref_clocks.dccg_ref_clock_inKhz,
1521 					&res_pool->ref_clocks.dchub_ref_clock_inKhz);
1522 		} else {
1523 			// Not all ASICs have DCCG sw component
1524 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
1525 					res_pool->ref_clocks.xtalin_clock_inKhz;
1526 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
1527 					res_pool->ref_clocks.xtalin_clock_inKhz;
1528 		}
1529 	} else
1530 		ASSERT_CRITICAL(false);
1531 
1532 	for (i = 0; i < dc->link_count; i++) {
1533 		/* Power up AND update implementation according to the
1534 		 * required signal (which may be different from the
1535 		 * default signal on connector).
1536 		 */
1537 		struct dc_link *link = dc->links[i];
1538 
1539 		if (!is_optimized_init_done)
1540 			link->link_enc->funcs->hw_init(link->link_enc);
1541 
1542 		/* Check for enabled DIG to identify enabled display */
1543 		if (link->link_enc->funcs->is_dig_enabled &&
1544 			link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1545 			link->link_status.link_active = true;
1546 			if (link->link_enc->funcs->fec_is_active &&
1547 					link->link_enc->funcs->fec_is_active(link->link_enc))
1548 				link->fec_state = dc_link_fec_enabled;
1549 		}
1550 	}
1551 
1552 	/* we want to turn off all dp displays before doing detection */
1553 	dc->link_srv->blank_all_dp_displays(dc);
1554 
1555 	if (hws->funcs.enable_power_gating_plane)
1556 		hws->funcs.enable_power_gating_plane(dc->hwseq, true);
1557 
1558 	/* If taking control over from VBIOS, we may want to optimize our first
1559 	 * mode set, so we need to skip powering down pipes until we know which
1560 	 * pipes we want to use.
1561 	 * Otherwise, if taking control is not possible, we need to power
1562 	 * everything down.
1563 	 */
1564 	if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) {
1565 		if (!is_optimized_init_done) {
1566 			hws->funcs.init_pipes(dc, dc->current_state);
1567 			if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
1568 				dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
1569 						!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
1570 		}
1571 	}
1572 
1573 	if (!is_optimized_init_done) {
1574 
1575 		for (i = 0; i < res_pool->audio_count; i++) {
1576 			struct audio *audio = res_pool->audios[i];
1577 
1578 			audio->funcs->hw_init(audio);
1579 		}
1580 
1581 		for (i = 0; i < dc->link_count; i++) {
1582 			struct dc_link *link = dc->links[i];
1583 
1584 			if (link->panel_cntl)
1585 				backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
1586 		}
1587 
1588 		if (abm != NULL)
1589 			abm->funcs->abm_init(abm, backlight);
1590 
1591 		if (dmcu != NULL && !dmcu->auto_load_dmcu)
1592 			dmcu->funcs->dmcu_init(dmcu);
1593 	}
1594 
1595 	if (abm != NULL && dmcu != NULL)
1596 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
1597 
1598 	/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
1599 	if (!is_optimized_init_done)
1600 		REG_WRITE(DIO_MEM_PWR_CTRL, 0);
1601 
1602 	if (!dc->debug.disable_clock_gate) {
1603 		/* enable all DCN clock gating */
1604 		REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
1605 
1606 		REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
1607 
1608 		REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
1609 	}
1610 
1611 	if (dc->clk_mgr->funcs->notify_wm_ranges)
1612 		dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr);
1613 }
1614 
1615 /* In headless boot cases, DIG may be turned
1616  * on which causes HW/SW discrepancies.
1617  * To avoid this, power down hardware on boot
1618  * if DIG is turned on
1619  */
dcn10_power_down_on_boot(struct dc * dc)1620 void dcn10_power_down_on_boot(struct dc *dc)
1621 {
1622 	struct dc_link *edp_links[MAX_NUM_EDP];
1623 	struct dc_link *edp_link = NULL;
1624 	int edp_num;
1625 	int i = 0;
1626 
1627 	dc_get_edp_links(dc, edp_links, &edp_num);
1628 	if (edp_num)
1629 		edp_link = edp_links[0];
1630 
1631 	if (edp_link && edp_link->link_enc->funcs->is_dig_enabled &&
1632 			edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1633 			dc->hwseq->funcs.edp_backlight_control &&
1634 			dc->hwss.power_down &&
1635 			dc->hwss.edp_power_control) {
1636 		dc->hwseq->funcs.edp_backlight_control(edp_link, false);
1637 		dc->hwss.power_down(dc);
1638 		dc->hwss.edp_power_control(edp_link, false);
1639 	} else {
1640 		for (i = 0; i < dc->link_count; i++) {
1641 			struct dc_link *link = dc->links[i];
1642 
1643 			if (link->link_enc && link->link_enc->funcs->is_dig_enabled &&
1644 					link->link_enc->funcs->is_dig_enabled(link->link_enc) &&
1645 					dc->hwss.power_down) {
1646 				dc->hwss.power_down(dc);
1647 				break;
1648 			}
1649 
1650 		}
1651 	}
1652 
1653 	/*
1654 	 * Call update_clocks with empty context
1655 	 * to send DISPLAY_OFF
1656 	 * Otherwise DISPLAY_OFF may not be asserted
1657 	 */
1658 	if (dc->clk_mgr->funcs->set_low_power_state)
1659 		dc->clk_mgr->funcs->set_low_power_state(dc->clk_mgr);
1660 }
1661 
dcn10_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)1662 void dcn10_reset_hw_ctx_wrap(
1663 		struct dc *dc,
1664 		struct dc_state *context)
1665 {
1666 	int i;
1667 	struct dce_hwseq *hws = dc->hwseq;
1668 
1669 	/* Reset Back End*/
1670 	for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
1671 		struct pipe_ctx *pipe_ctx_old =
1672 			&dc->current_state->res_ctx.pipe_ctx[i];
1673 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1674 
1675 		if (!pipe_ctx_old->stream)
1676 			continue;
1677 
1678 		if (pipe_ctx_old->top_pipe)
1679 			continue;
1680 
1681 		if (!pipe_ctx->stream ||
1682 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
1683 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
1684 
1685 			dcn10_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state);
1686 			if (hws->funcs.enable_stream_gating)
1687 				hws->funcs.enable_stream_gating(dc, pipe_ctx_old);
1688 			if (old_clk)
1689 				old_clk->funcs->cs_power_down(old_clk);
1690 		}
1691 	}
1692 }
1693 
patch_address_for_sbs_tb_stereo(struct pipe_ctx * pipe_ctx,PHYSICAL_ADDRESS_LOC * addr)1694 static bool patch_address_for_sbs_tb_stereo(
1695 		struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
1696 {
1697 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1698 	bool sec_split = pipe_ctx->top_pipe &&
1699 			pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
1700 	if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
1701 		(pipe_ctx->stream->timing.timing_3d_format ==
1702 		 TIMING_3D_FORMAT_SIDE_BY_SIDE ||
1703 		 pipe_ctx->stream->timing.timing_3d_format ==
1704 		 TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
1705 		*addr = plane_state->address.grph_stereo.left_addr;
1706 		plane_state->address.grph_stereo.left_addr =
1707 		plane_state->address.grph_stereo.right_addr;
1708 		return true;
1709 	} else {
1710 		if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
1711 			plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
1712 			plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
1713 			plane_state->address.grph_stereo.right_addr =
1714 			plane_state->address.grph_stereo.left_addr;
1715 			plane_state->address.grph_stereo.right_meta_addr =
1716 			plane_state->address.grph_stereo.left_meta_addr;
1717 		}
1718 	}
1719 	return false;
1720 }
1721 
dcn10_update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)1722 void dcn10_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
1723 {
1724 	bool addr_patched = false;
1725 	PHYSICAL_ADDRESS_LOC addr;
1726 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1727 
1728 	if (plane_state == NULL)
1729 		return;
1730 
1731 	addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);
1732 
1733 	pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
1734 			pipe_ctx->plane_res.hubp,
1735 			&plane_state->address,
1736 			plane_state->flip_immediate);
1737 
1738 	plane_state->status.requested_address = plane_state->address;
1739 
1740 	if (plane_state->flip_immediate)
1741 		plane_state->status.current_address = plane_state->address;
1742 
1743 	if (addr_patched)
1744 		pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
1745 }
1746 
dcn10_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)1747 bool dcn10_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
1748 			const struct dc_plane_state *plane_state)
1749 {
1750 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
1751 	const struct dc_transfer_func *tf = NULL;
1752 	bool result = true;
1753 
1754 	if (dpp_base == NULL)
1755 		return false;
1756 
1757 	if (plane_state->in_transfer_func)
1758 		tf = plane_state->in_transfer_func;
1759 
1760 	if (plane_state->gamma_correction &&
1761 		!dpp_base->ctx->dc->debug.always_use_regamma
1762 		&& !plane_state->gamma_correction->is_identity
1763 			&& dce_use_lut(plane_state->format))
1764 		dpp_base->funcs->dpp_program_input_lut(dpp_base, plane_state->gamma_correction);
1765 
1766 	if (tf == NULL)
1767 		dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS);
1768 	else if (tf->type == TF_TYPE_PREDEFINED) {
1769 		switch (tf->tf) {
1770 		case TRANSFER_FUNCTION_SRGB:
1771 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_HW_sRGB);
1772 			break;
1773 		case TRANSFER_FUNCTION_BT709:
1774 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_HW_xvYCC);
1775 			break;
1776 		case TRANSFER_FUNCTION_LINEAR:
1777 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS);
1778 			break;
1779 		case TRANSFER_FUNCTION_PQ:
1780 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_USER_PWL);
1781 			cm_helper_translate_curve_to_degamma_hw_format(tf, &dpp_base->degamma_params);
1782 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &dpp_base->degamma_params);
1783 			result = true;
1784 			break;
1785 		default:
1786 			result = false;
1787 			break;
1788 		}
1789 	} else if (tf->type == TF_TYPE_BYPASS) {
1790 		dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS);
1791 	} else {
1792 		cm_helper_translate_curve_to_degamma_hw_format(tf,
1793 					&dpp_base->degamma_params);
1794 		dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
1795 				&dpp_base->degamma_params);
1796 		result = true;
1797 	}
1798 
1799 	return result;
1800 }
1801 
1802 #define MAX_NUM_HW_POINTS 0x200
1803 
log_tf(struct dc_context * ctx,struct dc_transfer_func * tf,uint32_t hw_points_num)1804 static void log_tf(struct dc_context *ctx,
1805 				struct dc_transfer_func *tf, uint32_t hw_points_num)
1806 {
1807 	// DC_LOG_GAMMA is default logging of all hw points
1808 	// DC_LOG_ALL_GAMMA logs all points, not only hw points
1809 	// DC_LOG_ALL_TF_POINTS logs all channels of the tf
1810 	int i = 0;
1811 
1812 	DC_LOGGER_INIT(ctx->logger);
1813 	DC_LOG_GAMMA("Gamma Correction TF");
1814 	DC_LOG_ALL_GAMMA("Logging all tf points...");
1815 	DC_LOG_ALL_TF_CHANNELS("Logging all channels...");
1816 
1817 	for (i = 0; i < hw_points_num; i++) {
1818 		DC_LOG_GAMMA("R\t%d\t%llu", i, tf->tf_pts.red[i].value);
1819 		DC_LOG_ALL_TF_CHANNELS("G\t%d\t%llu", i, tf->tf_pts.green[i].value);
1820 		DC_LOG_ALL_TF_CHANNELS("B\t%d\t%llu", i, tf->tf_pts.blue[i].value);
1821 	}
1822 
1823 	for (i = hw_points_num; i < MAX_NUM_HW_POINTS; i++) {
1824 		DC_LOG_ALL_GAMMA("R\t%d\t%llu", i, tf->tf_pts.red[i].value);
1825 		DC_LOG_ALL_TF_CHANNELS("G\t%d\t%llu", i, tf->tf_pts.green[i].value);
1826 		DC_LOG_ALL_TF_CHANNELS("B\t%d\t%llu", i, tf->tf_pts.blue[i].value);
1827 	}
1828 }
1829 
dcn10_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)1830 bool dcn10_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
1831 				const struct dc_stream_state *stream)
1832 {
1833 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
1834 
1835 	if (!stream)
1836 		return false;
1837 
1838 	if (dpp == NULL)
1839 		return false;
1840 
1841 	dpp->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
1842 
1843 	if (stream->out_transfer_func &&
1844 	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
1845 	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB)
1846 		dpp->funcs->dpp_program_regamma_pwl(dpp, NULL, OPP_REGAMMA_SRGB);
1847 
1848 	/* dcn10_translate_regamma_to_hw_format takes 750us, only do it when full
1849 	 * update.
1850 	 */
1851 	else if (cm_helper_translate_curve_to_hw_format(dc->ctx,
1852 			stream->out_transfer_func,
1853 			&dpp->regamma_params, false)) {
1854 		dpp->funcs->dpp_program_regamma_pwl(
1855 				dpp,
1856 				&dpp->regamma_params, OPP_REGAMMA_USER);
1857 	} else
1858 		dpp->funcs->dpp_program_regamma_pwl(dpp, NULL, OPP_REGAMMA_BYPASS);
1859 
1860 	if (stream->ctx &&
1861 	    stream->out_transfer_func) {
1862 		log_tf(stream->ctx,
1863 				stream->out_transfer_func,
1864 				dpp->regamma_params.hw_points_num);
1865 	}
1866 
1867 	return true;
1868 }
1869 
dcn10_pipe_control_lock(struct dc * dc,struct pipe_ctx * pipe,bool lock)1870 void dcn10_pipe_control_lock(
1871 	struct dc *dc,
1872 	struct pipe_ctx *pipe,
1873 	bool lock)
1874 {
1875 	struct dce_hwseq *hws = dc->hwseq;
1876 
1877 	/* use TG master update lock to lock everything on the TG
1878 	 * therefore only top pipe need to lock
1879 	 */
1880 	if (!pipe || pipe->top_pipe)
1881 		return;
1882 
1883 	if (dc->debug.sanity_checks)
1884 		hws->funcs.verify_allow_pstate_change_high(dc);
1885 
1886 	if (lock)
1887 		pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
1888 	else
1889 		pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
1890 
1891 	if (dc->debug.sanity_checks)
1892 		hws->funcs.verify_allow_pstate_change_high(dc);
1893 }
1894 
1895 /**
1896  * delay_cursor_until_vupdate() - Delay cursor update if too close to VUPDATE.
1897  *
1898  * Software keepout workaround to prevent cursor update locking from stalling
1899  * out cursor updates indefinitely or from old values from being retained in
1900  * the case where the viewport changes in the same frame as the cursor.
1901  *
1902  * The idea is to calculate the remaining time from VPOS to VUPDATE. If it's
1903  * too close to VUPDATE, then stall out until VUPDATE finishes.
1904  *
1905  * TODO: Optimize cursor programming to be once per frame before VUPDATE
1906  *       to avoid the need for this workaround.
1907  *
1908  * @dc: Current DC state
1909  * @pipe_ctx: Pipe_ctx pointer for delayed cursor update
1910  *
1911  * Return: void
1912  */
delay_cursor_until_vupdate(struct dc * dc,struct pipe_ctx * pipe_ctx)1913 static void delay_cursor_until_vupdate(struct dc *dc, struct pipe_ctx *pipe_ctx)
1914 {
1915 	struct dc_stream_state *stream = pipe_ctx->stream;
1916 	struct crtc_position position;
1917 	uint32_t vupdate_start, vupdate_end;
1918 	unsigned int lines_to_vupdate, us_to_vupdate, vpos;
1919 	unsigned int us_per_line, us_vupdate;
1920 
1921 	if (!dc->hwss.calc_vupdate_position || !dc->hwss.get_position)
1922 		return;
1923 
1924 	if (!pipe_ctx->stream_res.stream_enc || !pipe_ctx->stream_res.tg)
1925 		return;
1926 
1927 	dc->hwss.calc_vupdate_position(dc, pipe_ctx, &vupdate_start,
1928 				       &vupdate_end);
1929 
1930 	dc->hwss.get_position(&pipe_ctx, 1, &position);
1931 	vpos = position.vertical_count;
1932 
1933 	/* Avoid wraparound calculation issues */
1934 	vupdate_start += stream->timing.v_total;
1935 	vupdate_end += stream->timing.v_total;
1936 	vpos += stream->timing.v_total;
1937 
1938 	if (vpos <= vupdate_start) {
1939 		/* VPOS is in VACTIVE or back porch. */
1940 		lines_to_vupdate = vupdate_start - vpos;
1941 	} else if (vpos > vupdate_end) {
1942 		/* VPOS is in the front porch. */
1943 		return;
1944 	} else {
1945 		/* VPOS is in VUPDATE. */
1946 		lines_to_vupdate = 0;
1947 	}
1948 
1949 	/* Calculate time until VUPDATE in microseconds. */
1950 	us_per_line =
1951 		stream->timing.h_total * 10000u / stream->timing.pix_clk_100hz;
1952 	us_to_vupdate = lines_to_vupdate * us_per_line;
1953 
1954 	/* 70 us is a conservative estimate of cursor update time*/
1955 	if (us_to_vupdate > 70)
1956 		return;
1957 
1958 	/* Stall out until the cursor update completes. */
1959 	if (vupdate_end < vupdate_start)
1960 		vupdate_end += stream->timing.v_total;
1961 	us_vupdate = (vupdate_end - vupdate_start + 1) * us_per_line;
1962 	udelay(us_to_vupdate + us_vupdate);
1963 }
1964 
dcn10_cursor_lock(struct dc * dc,struct pipe_ctx * pipe,bool lock)1965 void dcn10_cursor_lock(struct dc *dc, struct pipe_ctx *pipe, bool lock)
1966 {
1967 	/* cursor lock is per MPCC tree, so only need to lock one pipe per stream */
1968 	if (!pipe || pipe->top_pipe)
1969 		return;
1970 
1971 	/* Prevent cursor lock from stalling out cursor updates. */
1972 	if (lock)
1973 		delay_cursor_until_vupdate(dc, pipe);
1974 
1975 	if (pipe->stream && should_use_dmub_lock(pipe->stream->link)) {
1976 		union dmub_hw_lock_flags hw_locks = { 0 };
1977 		struct dmub_hw_lock_inst_flags inst_flags = { 0 };
1978 
1979 		hw_locks.bits.lock_cursor = 1;
1980 		inst_flags.opp_inst = pipe->stream_res.opp->inst;
1981 
1982 		dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
1983 					lock,
1984 					&hw_locks,
1985 					&inst_flags);
1986 	} else
1987 		dc->res_pool->mpc->funcs->cursor_lock(dc->res_pool->mpc,
1988 				pipe->stream_res.opp->inst, lock);
1989 }
1990 
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)1991 static bool wait_for_reset_trigger_to_occur(
1992 	struct dc_context *dc_ctx,
1993 	struct timing_generator *tg)
1994 {
1995 	bool rc = false;
1996 
1997 	/* To avoid endless loop we wait at most
1998 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
1999 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2000 	int i;
2001 
2002 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2003 
2004 		if (!tg->funcs->is_counter_moving(tg)) {
2005 			DC_ERROR("TG counter is not moving!\n");
2006 			break;
2007 		}
2008 
2009 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2010 			rc = true;
2011 			/* usually occurs at i=1 */
2012 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2013 					i);
2014 			break;
2015 		}
2016 
2017 		/* Wait for one frame. */
2018 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2019 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2020 	}
2021 
2022 	if (false == rc)
2023 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2024 
2025 	return rc;
2026 }
2027 
reduceSizeAndFraction(uint64_t * numerator,uint64_t * denominator,bool checkUint32Bounary)2028 static uint64_t reduceSizeAndFraction(uint64_t *numerator,
2029 				      uint64_t *denominator,
2030 				      bool checkUint32Bounary)
2031 {
2032 	int i;
2033 	bool ret = checkUint32Bounary == false;
2034 	uint64_t max_int32 = 0xffffffff;
2035 	uint64_t num, denom;
2036 	static const uint16_t prime_numbers[] = {
2037 		2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
2038 		47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103,
2039 		107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
2040 		167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
2041 		229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
2042 		283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353,
2043 		359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421,
2044 		431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487,
2045 		491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569,
2046 		571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631,
2047 		641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701,
2048 		709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773,
2049 		787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857,
2050 		859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937,
2051 		941, 947, 953, 967, 971, 977, 983, 991, 997};
2052 	int count = ARRAY_SIZE(prime_numbers);
2053 
2054 	num = *numerator;
2055 	denom = *denominator;
2056 	for (i = 0; i < count; i++) {
2057 		uint32_t num_remainder, denom_remainder;
2058 		uint64_t num_result, denom_result;
2059 		if (checkUint32Bounary &&
2060 			num <= max_int32 && denom <= max_int32) {
2061 			ret = true;
2062 			break;
2063 		}
2064 		do {
2065 			num_result = div_u64_rem(num, prime_numbers[i], &num_remainder);
2066 			denom_result = div_u64_rem(denom, prime_numbers[i], &denom_remainder);
2067 			if (num_remainder == 0 && denom_remainder == 0) {
2068 				num = num_result;
2069 				denom = denom_result;
2070 			}
2071 		} while (num_remainder == 0 && denom_remainder == 0);
2072 	}
2073 	*numerator = num;
2074 	*denominator = denom;
2075 	return ret;
2076 }
2077 
is_low_refresh_rate(struct pipe_ctx * pipe)2078 static bool is_low_refresh_rate(struct pipe_ctx *pipe)
2079 {
2080 	uint32_t master_pipe_refresh_rate =
2081 		pipe->stream->timing.pix_clk_100hz * 100 /
2082 		pipe->stream->timing.h_total /
2083 		pipe->stream->timing.v_total;
2084 	return master_pipe_refresh_rate <= 30;
2085 }
2086 
get_clock_divider(struct pipe_ctx * pipe,bool account_low_refresh_rate)2087 static uint8_t get_clock_divider(struct pipe_ctx *pipe,
2088 				 bool account_low_refresh_rate)
2089 {
2090 	uint32_t clock_divider = 1;
2091 	uint32_t numpipes = 1;
2092 
2093 	if (account_low_refresh_rate && is_low_refresh_rate(pipe))
2094 		clock_divider *= 2;
2095 
2096 	if (pipe->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420)
2097 		clock_divider *= 2;
2098 
2099 	while (pipe->next_odm_pipe) {
2100 		pipe = pipe->next_odm_pipe;
2101 		numpipes++;
2102 	}
2103 	clock_divider *= numpipes;
2104 
2105 	return clock_divider;
2106 }
2107 
dcn10_align_pixel_clocks(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2108 static int dcn10_align_pixel_clocks(struct dc *dc, int group_size,
2109 				    struct pipe_ctx *grouped_pipes[])
2110 {
2111 	struct dc_context *dc_ctx = dc->ctx;
2112 	int i, master = -1, embedded = -1;
2113 	struct dc_crtc_timing *hw_crtc_timing;
2114 	uint64_t phase[MAX_PIPES];
2115 	uint64_t modulo[MAX_PIPES];
2116 	unsigned int pclk;
2117 
2118 	uint32_t embedded_pix_clk_100hz;
2119 	uint16_t embedded_h_total;
2120 	uint16_t embedded_v_total;
2121 	uint32_t dp_ref_clk_100hz =
2122 		dc->res_pool->dp_clock_source->ctx->dc->clk_mgr->dprefclk_khz*10;
2123 
2124 	hw_crtc_timing = kcalloc(MAX_PIPES, sizeof(*hw_crtc_timing), GFP_KERNEL);
2125 	if (!hw_crtc_timing)
2126 		return master;
2127 
2128 	if (dc->config.vblank_alignment_dto_params &&
2129 		dc->res_pool->dp_clock_source->funcs->override_dp_pix_clk) {
2130 		embedded_h_total =
2131 			(dc->config.vblank_alignment_dto_params >> 32) & 0x7FFF;
2132 		embedded_v_total =
2133 			(dc->config.vblank_alignment_dto_params >> 48) & 0x7FFF;
2134 		embedded_pix_clk_100hz =
2135 			dc->config.vblank_alignment_dto_params & 0xFFFFFFFF;
2136 
2137 		for (i = 0; i < group_size; i++) {
2138 			grouped_pipes[i]->stream_res.tg->funcs->get_hw_timing(
2139 					grouped_pipes[i]->stream_res.tg,
2140 					&hw_crtc_timing[i]);
2141 			dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
2142 				dc->res_pool->dp_clock_source,
2143 				grouped_pipes[i]->stream_res.tg->inst,
2144 				&pclk);
2145 			hw_crtc_timing[i].pix_clk_100hz = pclk;
2146 			if (dc_is_embedded_signal(
2147 					grouped_pipes[i]->stream->signal)) {
2148 				embedded = i;
2149 				master = i;
2150 				phase[i] = embedded_pix_clk_100hz*100;
2151 				modulo[i] = dp_ref_clk_100hz*100;
2152 			} else {
2153 
2154 				phase[i] = (uint64_t)embedded_pix_clk_100hz*
2155 					hw_crtc_timing[i].h_total*
2156 					hw_crtc_timing[i].v_total;
2157 				phase[i] = div_u64(phase[i], get_clock_divider(grouped_pipes[i], true));
2158 				modulo[i] = (uint64_t)dp_ref_clk_100hz*
2159 					embedded_h_total*
2160 					embedded_v_total;
2161 
2162 				if (reduceSizeAndFraction(&phase[i],
2163 						&modulo[i], true) == false) {
2164 					/*
2165 					 * this will help to stop reporting
2166 					 * this timing synchronizable
2167 					 */
2168 					DC_SYNC_INFO("Failed to reduce DTO parameters\n");
2169 					grouped_pipes[i]->stream->has_non_synchronizable_pclk = true;
2170 				}
2171 			}
2172 		}
2173 
2174 		for (i = 0; i < group_size; i++) {
2175 			if (i != embedded && !grouped_pipes[i]->stream->has_non_synchronizable_pclk) {
2176 				dc->res_pool->dp_clock_source->funcs->override_dp_pix_clk(
2177 					dc->res_pool->dp_clock_source,
2178 					grouped_pipes[i]->stream_res.tg->inst,
2179 					phase[i], modulo[i]);
2180 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
2181 					dc->res_pool->dp_clock_source,
2182 					grouped_pipes[i]->stream_res.tg->inst, &pclk);
2183 				grouped_pipes[i]->stream->timing.pix_clk_100hz =
2184 					pclk*get_clock_divider(grouped_pipes[i], false);
2185 				if (master == -1)
2186 					master = i;
2187 			}
2188 		}
2189 
2190 	}
2191 
2192 	kfree(hw_crtc_timing);
2193 	return master;
2194 }
2195 
dcn10_enable_vblanks_synchronization(struct dc * dc,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2196 void dcn10_enable_vblanks_synchronization(
2197 	struct dc *dc,
2198 	int group_index,
2199 	int group_size,
2200 	struct pipe_ctx *grouped_pipes[])
2201 {
2202 	struct dc_context *dc_ctx = dc->ctx;
2203 	struct output_pixel_processor *opp;
2204 	struct timing_generator *tg;
2205 	int i, width, height, master;
2206 
2207 	for (i = 1; i < group_size; i++) {
2208 		opp = grouped_pipes[i]->stream_res.opp;
2209 		tg = grouped_pipes[i]->stream_res.tg;
2210 		tg->funcs->get_otg_active_size(tg, &width, &height);
2211 
2212 		if (!tg->funcs->is_tg_enabled(tg)) {
2213 			DC_SYNC_INFO("Skipping timing sync on disabled OTG\n");
2214 			return;
2215 		}
2216 
2217 		if (opp->funcs->opp_program_dpg_dimensions)
2218 			opp->funcs->opp_program_dpg_dimensions(opp, width, 2*(height) + 1);
2219 	}
2220 
2221 	for (i = 0; i < group_size; i++) {
2222 		if (grouped_pipes[i]->stream == NULL)
2223 			continue;
2224 		grouped_pipes[i]->stream->vblank_synchronized = false;
2225 		grouped_pipes[i]->stream->has_non_synchronizable_pclk = false;
2226 	}
2227 
2228 	DC_SYNC_INFO("Aligning DP DTOs\n");
2229 
2230 	master = dcn10_align_pixel_clocks(dc, group_size, grouped_pipes);
2231 
2232 	DC_SYNC_INFO("Synchronizing VBlanks\n");
2233 
2234 	if (master >= 0) {
2235 		for (i = 0; i < group_size; i++) {
2236 			if (i != master && !grouped_pipes[i]->stream->has_non_synchronizable_pclk)
2237 				grouped_pipes[i]->stream_res.tg->funcs->align_vblanks(
2238 					grouped_pipes[master]->stream_res.tg,
2239 					grouped_pipes[i]->stream_res.tg,
2240 					grouped_pipes[master]->stream->timing.pix_clk_100hz,
2241 					grouped_pipes[i]->stream->timing.pix_clk_100hz,
2242 					get_clock_divider(grouped_pipes[master], false),
2243 					get_clock_divider(grouped_pipes[i], false));
2244 			grouped_pipes[i]->stream->vblank_synchronized = true;
2245 		}
2246 		grouped_pipes[master]->stream->vblank_synchronized = true;
2247 		DC_SYNC_INFO("Sync complete\n");
2248 	}
2249 
2250 	for (i = 1; i < group_size; i++) {
2251 		opp = grouped_pipes[i]->stream_res.opp;
2252 		tg = grouped_pipes[i]->stream_res.tg;
2253 		tg->funcs->get_otg_active_size(tg, &width, &height);
2254 		if (opp->funcs->opp_program_dpg_dimensions)
2255 			opp->funcs->opp_program_dpg_dimensions(opp, width, height);
2256 	}
2257 }
2258 
dcn10_enable_timing_synchronization(struct dc * dc,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2259 void dcn10_enable_timing_synchronization(
2260 	struct dc *dc,
2261 	int group_index,
2262 	int group_size,
2263 	struct pipe_ctx *grouped_pipes[])
2264 {
2265 	struct dc_context *dc_ctx = dc->ctx;
2266 	struct output_pixel_processor *opp;
2267 	struct timing_generator *tg;
2268 	int i, width, height;
2269 
2270 	DC_SYNC_INFO("Setting up OTG reset trigger\n");
2271 
2272 	for (i = 1; i < group_size; i++) {
2273 		if (grouped_pipes[i]->stream && grouped_pipes[i]->stream->mall_stream_config.type == SUBVP_PHANTOM)
2274 			continue;
2275 
2276 		opp = grouped_pipes[i]->stream_res.opp;
2277 		tg = grouped_pipes[i]->stream_res.tg;
2278 		tg->funcs->get_otg_active_size(tg, &width, &height);
2279 
2280 		if (!tg->funcs->is_tg_enabled(tg)) {
2281 			DC_SYNC_INFO("Skipping timing sync on disabled OTG\n");
2282 			return;
2283 		}
2284 
2285 		if (opp->funcs->opp_program_dpg_dimensions)
2286 			opp->funcs->opp_program_dpg_dimensions(opp, width, 2*(height) + 1);
2287 	}
2288 
2289 	for (i = 0; i < group_size; i++) {
2290 		if (grouped_pipes[i]->stream == NULL)
2291 			continue;
2292 
2293 		if (grouped_pipes[i]->stream && grouped_pipes[i]->stream->mall_stream_config.type == SUBVP_PHANTOM)
2294 			continue;
2295 
2296 		grouped_pipes[i]->stream->vblank_synchronized = false;
2297 	}
2298 
2299 	for (i = 1; i < group_size; i++) {
2300 		if (grouped_pipes[i]->stream && grouped_pipes[i]->stream->mall_stream_config.type == SUBVP_PHANTOM)
2301 			continue;
2302 
2303 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2304 				grouped_pipes[i]->stream_res.tg,
2305 				grouped_pipes[0]->stream_res.tg->inst);
2306 	}
2307 
2308 	DC_SYNC_INFO("Waiting for trigger\n");
2309 
2310 	/* Need to get only check 1 pipe for having reset as all the others are
2311 	 * synchronized. Look at last pipe programmed to reset.
2312 	 */
2313 
2314 	if (grouped_pipes[1]->stream && grouped_pipes[1]->stream->mall_stream_config.type != SUBVP_PHANTOM)
2315 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[1]->stream_res.tg);
2316 
2317 	for (i = 1; i < group_size; i++) {
2318 		if (grouped_pipes[i]->stream && grouped_pipes[i]->stream->mall_stream_config.type == SUBVP_PHANTOM)
2319 			continue;
2320 
2321 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2322 				grouped_pipes[i]->stream_res.tg);
2323 	}
2324 
2325 	for (i = 1; i < group_size; i++) {
2326 		if (grouped_pipes[i]->stream && grouped_pipes[i]->stream->mall_stream_config.type == SUBVP_PHANTOM)
2327 			continue;
2328 
2329 		opp = grouped_pipes[i]->stream_res.opp;
2330 		tg = grouped_pipes[i]->stream_res.tg;
2331 		tg->funcs->get_otg_active_size(tg, &width, &height);
2332 		if (opp->funcs->opp_program_dpg_dimensions)
2333 			opp->funcs->opp_program_dpg_dimensions(opp, width, height);
2334 	}
2335 
2336 	DC_SYNC_INFO("Sync complete\n");
2337 }
2338 
dcn10_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2339 void dcn10_enable_per_frame_crtc_position_reset(
2340 	struct dc *dc,
2341 	int group_size,
2342 	struct pipe_ctx *grouped_pipes[])
2343 {
2344 	struct dc_context *dc_ctx = dc->ctx;
2345 	int i;
2346 
2347 	DC_SYNC_INFO("Setting up\n");
2348 	for (i = 0; i < group_size; i++)
2349 		if (grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset)
2350 			grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2351 					grouped_pipes[i]->stream_res.tg,
2352 					0,
2353 					&grouped_pipes[i]->stream->triggered_crtc_reset);
2354 
2355 	DC_SYNC_INFO("Waiting for trigger\n");
2356 
2357 	for (i = 0; i < group_size; i++)
2358 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2359 
2360 	DC_SYNC_INFO("Multi-display sync is complete\n");
2361 }
2362 
mmhub_read_vm_system_aperture_settings(struct dcn10_hubp * hubp1,struct vm_system_aperture_param * apt,struct dce_hwseq * hws)2363 static void mmhub_read_vm_system_aperture_settings(struct dcn10_hubp *hubp1,
2364 		struct vm_system_aperture_param *apt,
2365 		struct dce_hwseq *hws)
2366 {
2367 	PHYSICAL_ADDRESS_LOC physical_page_number;
2368 	uint32_t logical_addr_low;
2369 	uint32_t logical_addr_high;
2370 
2371 	REG_GET(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB,
2372 			PHYSICAL_PAGE_NUMBER_MSB, &physical_page_number.high_part);
2373 	REG_GET(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB,
2374 			PHYSICAL_PAGE_NUMBER_LSB, &physical_page_number.low_part);
2375 
2376 	REG_GET(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
2377 			LOGICAL_ADDR, &logical_addr_low);
2378 
2379 	REG_GET(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
2380 			LOGICAL_ADDR, &logical_addr_high);
2381 
2382 	apt->sys_default.quad_part =  physical_page_number.quad_part << 12;
2383 	apt->sys_low.quad_part =  (int64_t)logical_addr_low << 18;
2384 	apt->sys_high.quad_part =  (int64_t)logical_addr_high << 18;
2385 }
2386 
2387 /* Temporary read settings, future will get values from kmd directly */
mmhub_read_vm_context0_settings(struct dcn10_hubp * hubp1,struct vm_context0_param * vm0,struct dce_hwseq * hws)2388 static void mmhub_read_vm_context0_settings(struct dcn10_hubp *hubp1,
2389 		struct vm_context0_param *vm0,
2390 		struct dce_hwseq *hws)
2391 {
2392 	PHYSICAL_ADDRESS_LOC fb_base;
2393 	PHYSICAL_ADDRESS_LOC fb_offset;
2394 	uint32_t fb_base_value;
2395 	uint32_t fb_offset_value;
2396 
2397 	REG_GET(DCHUBBUB_SDPIF_FB_BASE, SDPIF_FB_BASE, &fb_base_value);
2398 	REG_GET(DCHUBBUB_SDPIF_FB_OFFSET, SDPIF_FB_OFFSET, &fb_offset_value);
2399 
2400 	REG_GET(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32,
2401 			PAGE_DIRECTORY_ENTRY_HI32, &vm0->pte_base.high_part);
2402 	REG_GET(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32,
2403 			PAGE_DIRECTORY_ENTRY_LO32, &vm0->pte_base.low_part);
2404 
2405 	REG_GET(VM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32,
2406 			LOGICAL_PAGE_NUMBER_HI4, &vm0->pte_start.high_part);
2407 	REG_GET(VM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32,
2408 			LOGICAL_PAGE_NUMBER_LO32, &vm0->pte_start.low_part);
2409 
2410 	REG_GET(VM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32,
2411 			LOGICAL_PAGE_NUMBER_HI4, &vm0->pte_end.high_part);
2412 	REG_GET(VM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32,
2413 			LOGICAL_PAGE_NUMBER_LO32, &vm0->pte_end.low_part);
2414 
2415 	REG_GET(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_HI32,
2416 			PHYSICAL_PAGE_ADDR_HI4, &vm0->fault_default.high_part);
2417 	REG_GET(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_LO32,
2418 			PHYSICAL_PAGE_ADDR_LO32, &vm0->fault_default.low_part);
2419 
2420 	/*
2421 	 * The values in VM_CONTEXT0_PAGE_TABLE_BASE_ADDR is in UMA space.
2422 	 * Therefore we need to do
2423 	 * DCN_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR = VM_CONTEXT0_PAGE_TABLE_BASE_ADDR
2424 	 * - DCHUBBUB_SDPIF_FB_OFFSET + DCHUBBUB_SDPIF_FB_BASE
2425 	 */
2426 	fb_base.quad_part = (uint64_t)fb_base_value << 24;
2427 	fb_offset.quad_part = (uint64_t)fb_offset_value << 24;
2428 	vm0->pte_base.quad_part += fb_base.quad_part;
2429 	vm0->pte_base.quad_part -= fb_offset.quad_part;
2430 }
2431 
2432 
dcn10_program_pte_vm(struct dce_hwseq * hws,struct hubp * hubp)2433 static void dcn10_program_pte_vm(struct dce_hwseq *hws, struct hubp *hubp)
2434 {
2435 	struct dcn10_hubp *hubp1 = TO_DCN10_HUBP(hubp);
2436 	struct vm_system_aperture_param apt = {0};
2437 	struct vm_context0_param vm0 = {0};
2438 
2439 	mmhub_read_vm_system_aperture_settings(hubp1, &apt, hws);
2440 	mmhub_read_vm_context0_settings(hubp1, &vm0, hws);
2441 
2442 	hubp->funcs->hubp_set_vm_system_aperture_settings(hubp, &apt);
2443 	hubp->funcs->hubp_set_vm_context0_settings(hubp, &vm0);
2444 }
2445 
dcn10_enable_plane(struct dc * dc,struct pipe_ctx * pipe_ctx,struct dc_state * context)2446 static void dcn10_enable_plane(
2447 	struct dc *dc,
2448 	struct pipe_ctx *pipe_ctx,
2449 	struct dc_state *context)
2450 {
2451 	struct dce_hwseq *hws = dc->hwseq;
2452 
2453 	if (dc->debug.sanity_checks) {
2454 		hws->funcs.verify_allow_pstate_change_high(dc);
2455 	}
2456 
2457 	undo_DEGVIDCN10_253_wa(dc);
2458 
2459 	power_on_plane_resources(dc->hwseq,
2460 		pipe_ctx->plane_res.hubp->inst);
2461 
2462 	/* enable DCFCLK current DCHUB */
2463 	pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true);
2464 
2465 	/* make sure OPP_PIPE_CLOCK_EN = 1 */
2466 	pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
2467 			pipe_ctx->stream_res.opp,
2468 			true);
2469 
2470 	if (dc->config.gpu_vm_support)
2471 		dcn10_program_pte_vm(hws, pipe_ctx->plane_res.hubp);
2472 
2473 	if (dc->debug.sanity_checks) {
2474 		hws->funcs.verify_allow_pstate_change_high(dc);
2475 	}
2476 
2477 	if (!pipe_ctx->top_pipe
2478 		&& pipe_ctx->plane_state
2479 		&& pipe_ctx->plane_state->flip_int_enabled
2480 		&& pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int)
2481 			pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int(pipe_ctx->plane_res.hubp);
2482 
2483 }
2484 
dcn10_program_gamut_remap(struct pipe_ctx * pipe_ctx)2485 void dcn10_program_gamut_remap(struct pipe_ctx *pipe_ctx)
2486 {
2487 	int i = 0;
2488 	struct dpp_grph_csc_adjustment adjust;
2489 	memset(&adjust, 0, sizeof(adjust));
2490 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2491 
2492 
2493 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2494 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2495 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2496 			adjust.temperature_matrix[i] =
2497 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2498 	} else if (pipe_ctx->plane_state &&
2499 		   pipe_ctx->plane_state->gamut_remap_matrix.enable_remap == true) {
2500 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2501 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2502 			adjust.temperature_matrix[i] =
2503 				pipe_ctx->plane_state->gamut_remap_matrix.matrix[i];
2504 	}
2505 
2506 	pipe_ctx->plane_res.dpp->funcs->dpp_set_gamut_remap(pipe_ctx->plane_res.dpp, &adjust);
2507 }
2508 
2509 
dcn10_is_rear_mpo_fix_required(struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace)2510 static bool dcn10_is_rear_mpo_fix_required(struct pipe_ctx *pipe_ctx, enum dc_color_space colorspace)
2511 {
2512 	if (pipe_ctx->plane_state && pipe_ctx->plane_state->layer_index > 0 && is_rgb_cspace(colorspace)) {
2513 		if (pipe_ctx->top_pipe) {
2514 			struct pipe_ctx *top = pipe_ctx->top_pipe;
2515 
2516 			while (top->top_pipe)
2517 				top = top->top_pipe; // Traverse to top pipe_ctx
2518 			if (top->plane_state && top->plane_state->layer_index == 0)
2519 				return true; // Front MPO plane not hidden
2520 		}
2521 	}
2522 	return false;
2523 }
2524 
dcn10_set_csc_adjustment_rgb_mpo_fix(struct pipe_ctx * pipe_ctx,uint16_t * matrix)2525 static void dcn10_set_csc_adjustment_rgb_mpo_fix(struct pipe_ctx *pipe_ctx, uint16_t *matrix)
2526 {
2527 	// Override rear plane RGB bias to fix MPO brightness
2528 	uint16_t rgb_bias = matrix[3];
2529 
2530 	matrix[3] = 0;
2531 	matrix[7] = 0;
2532 	matrix[11] = 0;
2533 	pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment(pipe_ctx->plane_res.dpp, matrix);
2534 	matrix[3] = rgb_bias;
2535 	matrix[7] = rgb_bias;
2536 	matrix[11] = rgb_bias;
2537 }
2538 
dcn10_program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)2539 void dcn10_program_output_csc(struct dc *dc,
2540 		struct pipe_ctx *pipe_ctx,
2541 		enum dc_color_space colorspace,
2542 		uint16_t *matrix,
2543 		int opp_id)
2544 {
2545 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2546 		if (pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment != NULL) {
2547 
2548 			/* MPO is broken with RGB colorspaces when OCSC matrix
2549 			 * brightness offset >= 0 on DCN1 due to OCSC before MPC
2550 			 * Blending adds offsets from front + rear to rear plane
2551 			 *
2552 			 * Fix is to set RGB bias to 0 on rear plane, top plane
2553 			 * black value pixels add offset instead of rear + front
2554 			 */
2555 
2556 			int16_t rgb_bias = matrix[3];
2557 			// matrix[3/7/11] are all the same offset value
2558 
2559 			if (rgb_bias > 0 && dcn10_is_rear_mpo_fix_required(pipe_ctx, colorspace)) {
2560 				dcn10_set_csc_adjustment_rgb_mpo_fix(pipe_ctx, matrix);
2561 			} else {
2562 				pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment(pipe_ctx->plane_res.dpp, matrix);
2563 			}
2564 		}
2565 	} else {
2566 		if (pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_default != NULL)
2567 			pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_default(pipe_ctx->plane_res.dpp, colorspace);
2568 	}
2569 }
2570 
dcn10_update_dpp(struct dpp * dpp,struct dc_plane_state * plane_state)2571 static void dcn10_update_dpp(struct dpp *dpp, struct dc_plane_state *plane_state)
2572 {
2573 	struct dc_bias_and_scale bns_params = {0};
2574 
2575 	// program the input csc
2576 	dpp->funcs->dpp_setup(dpp,
2577 			plane_state->format,
2578 			EXPANSION_MODE_ZERO,
2579 			plane_state->input_csc_color_matrix,
2580 			plane_state->color_space,
2581 			NULL);
2582 
2583 	//set scale and bias registers
2584 	build_prescale_params(&bns_params, plane_state);
2585 	if (dpp->funcs->dpp_program_bias_and_scale)
2586 		dpp->funcs->dpp_program_bias_and_scale(dpp, &bns_params);
2587 }
2588 
dcn10_update_visual_confirm_color(struct dc * dc,struct pipe_ctx * pipe_ctx,int mpcc_id)2589 void dcn10_update_visual_confirm_color(struct dc *dc,
2590 		struct pipe_ctx *pipe_ctx,
2591 		int mpcc_id)
2592 {
2593 	struct mpc *mpc = dc->res_pool->mpc;
2594 
2595 	if (mpc->funcs->set_bg_color) {
2596 		memcpy(&pipe_ctx->plane_state->visual_confirm_color, &(pipe_ctx->visual_confirm_color), sizeof(struct tg_color));
2597 		mpc->funcs->set_bg_color(mpc, &(pipe_ctx->visual_confirm_color), mpcc_id);
2598 	}
2599 }
2600 
dcn10_update_mpcc(struct dc * dc,struct pipe_ctx * pipe_ctx)2601 void dcn10_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx)
2602 {
2603 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2604 	struct mpcc_blnd_cfg blnd_cfg = {0};
2605 	bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe;
2606 	int mpcc_id;
2607 	struct mpcc *new_mpcc;
2608 	struct mpc *mpc = dc->res_pool->mpc;
2609 	struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params);
2610 
2611 	blnd_cfg.overlap_only = false;
2612 	blnd_cfg.global_gain = 0xff;
2613 
2614 	if (per_pixel_alpha) {
2615 		/* DCN1.0 has output CM before MPC which seems to screw with
2616 		 * pre-multiplied alpha.
2617 		 */
2618 		blnd_cfg.pre_multiplied_alpha = (is_rgb_cspace(
2619 				pipe_ctx->stream->output_color_space)
2620 						&& pipe_ctx->plane_state->pre_multiplied_alpha);
2621 		if (pipe_ctx->plane_state->global_alpha) {
2622 			blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA_COMBINED_GLOBAL_GAIN;
2623 			blnd_cfg.global_gain = pipe_ctx->plane_state->global_alpha_value;
2624 		} else {
2625 			blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA;
2626 		}
2627 	} else {
2628 		blnd_cfg.pre_multiplied_alpha = false;
2629 		blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA;
2630 	}
2631 
2632 	if (pipe_ctx->plane_state->global_alpha)
2633 		blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value;
2634 	else
2635 		blnd_cfg.global_alpha = 0xff;
2636 
2637 	/*
2638 	 * TODO: remove hack
2639 	 * Note: currently there is a bug in init_hw such that
2640 	 * on resume from hibernate, BIOS sets up MPCC0, and
2641 	 * we do mpcc_remove but the mpcc cannot go to idle
2642 	 * after remove. This cause us to pick mpcc1 here,
2643 	 * which causes a pstate hang for yet unknown reason.
2644 	 */
2645 	mpcc_id = hubp->inst;
2646 
2647 	/* If there is no full update, don't need to touch MPC tree*/
2648 	if (!pipe_ctx->plane_state->update_flags.bits.full_update) {
2649 		mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id);
2650 		dc->hwss.update_visual_confirm_color(dc, pipe_ctx, mpcc_id);
2651 		return;
2652 	}
2653 
2654 	/* check if this MPCC is already being used */
2655 	new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id);
2656 	/* remove MPCC if being used */
2657 	if (new_mpcc != NULL)
2658 		mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc);
2659 	else
2660 		if (dc->debug.sanity_checks)
2661 			mpc->funcs->assert_mpcc_idle_before_connect(
2662 					dc->res_pool->mpc, mpcc_id);
2663 
2664 	/* Call MPC to insert new plane */
2665 	new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc,
2666 			mpc_tree_params,
2667 			&blnd_cfg,
2668 			NULL,
2669 			NULL,
2670 			hubp->inst,
2671 			mpcc_id);
2672 	dc->hwss.update_visual_confirm_color(dc, pipe_ctx, mpcc_id);
2673 
2674 	ASSERT(new_mpcc != NULL);
2675 	hubp->opp_id = pipe_ctx->stream_res.opp->inst;
2676 	hubp->mpcc_id = mpcc_id;
2677 }
2678 
update_scaler(struct pipe_ctx * pipe_ctx)2679 static void update_scaler(struct pipe_ctx *pipe_ctx)
2680 {
2681 	bool per_pixel_alpha =
2682 			pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe;
2683 
2684 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = per_pixel_alpha;
2685 	pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
2686 	/* scaler configuration */
2687 	pipe_ctx->plane_res.dpp->funcs->dpp_set_scaler(
2688 			pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data);
2689 }
2690 
dcn10_update_dchubp_dpp(struct dc * dc,struct pipe_ctx * pipe_ctx,struct dc_state * context)2691 static void dcn10_update_dchubp_dpp(
2692 	struct dc *dc,
2693 	struct pipe_ctx *pipe_ctx,
2694 	struct dc_state *context)
2695 {
2696 	struct dce_hwseq *hws = dc->hwseq;
2697 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2698 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
2699 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2700 	struct plane_size size = plane_state->plane_size;
2701 	unsigned int compat_level = 0;
2702 	bool should_divided_by_2 = false;
2703 
2704 	/* depends on DML calculation, DPP clock value may change dynamically */
2705 	/* If request max dpp clk is lower than current dispclk, no need to
2706 	 * divided by 2
2707 	 */
2708 	if (plane_state->update_flags.bits.full_update) {
2709 
2710 		/* new calculated dispclk, dppclk are stored in
2711 		 * context->bw_ctx.bw.dcn.clk.dispclk_khz / dppclk_khz. current
2712 		 * dispclk, dppclk are from dc->clk_mgr->clks.dispclk_khz.
2713 		 * dcn10_validate_bandwidth compute new dispclk, dppclk.
2714 		 * dispclk will put in use after optimize_bandwidth when
2715 		 * ramp_up_dispclk_with_dpp is called.
2716 		 * there are two places for dppclk be put in use. One location
2717 		 * is the same as the location as dispclk. Another is within
2718 		 * update_dchubp_dpp which happens between pre_bandwidth and
2719 		 * optimize_bandwidth.
2720 		 * dppclk updated within update_dchubp_dpp will cause new
2721 		 * clock values of dispclk and dppclk not be in use at the same
2722 		 * time. when clocks are decreased, this may cause dppclk is
2723 		 * lower than previous configuration and let pipe stuck.
2724 		 * for example, eDP + external dp,  change resolution of DP from
2725 		 * 1920x1080x144hz to 1280x960x60hz.
2726 		 * before change: dispclk = 337889 dppclk = 337889
2727 		 * change mode, dcn10_validate_bandwidth calculate
2728 		 *                dispclk = 143122 dppclk = 143122
2729 		 * update_dchubp_dpp be executed before dispclk be updated,
2730 		 * dispclk = 337889, but dppclk use new value dispclk /2 =
2731 		 * 168944. this will cause pipe pstate warning issue.
2732 		 * solution: between pre_bandwidth and optimize_bandwidth, while
2733 		 * dispclk is going to be decreased, keep dppclk = dispclk
2734 		 **/
2735 		if (context->bw_ctx.bw.dcn.clk.dispclk_khz <
2736 				dc->clk_mgr->clks.dispclk_khz)
2737 			should_divided_by_2 = false;
2738 		else
2739 			should_divided_by_2 =
2740 					context->bw_ctx.bw.dcn.clk.dppclk_khz <=
2741 					dc->clk_mgr->clks.dispclk_khz / 2;
2742 
2743 		dpp->funcs->dpp_dppclk_control(
2744 				dpp,
2745 				should_divided_by_2,
2746 				true);
2747 
2748 		if (dc->res_pool->dccg)
2749 			dc->res_pool->dccg->funcs->update_dpp_dto(
2750 					dc->res_pool->dccg,
2751 					dpp->inst,
2752 					pipe_ctx->plane_res.bw.dppclk_khz);
2753 		else
2754 			dc->clk_mgr->clks.dppclk_khz = should_divided_by_2 ?
2755 						dc->clk_mgr->clks.dispclk_khz / 2 :
2756 							dc->clk_mgr->clks.dispclk_khz;
2757 	}
2758 
2759 	/* TODO: Need input parameter to tell current DCHUB pipe tie to which OTG
2760 	 * VTG is within DCHUBBUB which is commond block share by each pipe HUBP.
2761 	 * VTG is 1:1 mapping with OTG. Each pipe HUBP will select which VTG
2762 	 */
2763 	if (plane_state->update_flags.bits.full_update) {
2764 		hubp->funcs->hubp_vtg_sel(hubp, pipe_ctx->stream_res.tg->inst);
2765 
2766 		hubp->funcs->hubp_setup(
2767 			hubp,
2768 			&pipe_ctx->dlg_regs,
2769 			&pipe_ctx->ttu_regs,
2770 			&pipe_ctx->rq_regs,
2771 			&pipe_ctx->pipe_dlg_param);
2772 		hubp->funcs->hubp_setup_interdependent(
2773 			hubp,
2774 			&pipe_ctx->dlg_regs,
2775 			&pipe_ctx->ttu_regs);
2776 	}
2777 
2778 	size.surface_size = pipe_ctx->plane_res.scl_data.viewport;
2779 
2780 	if (plane_state->update_flags.bits.full_update ||
2781 		plane_state->update_flags.bits.bpp_change)
2782 		dcn10_update_dpp(dpp, plane_state);
2783 
2784 	if (plane_state->update_flags.bits.full_update ||
2785 		plane_state->update_flags.bits.per_pixel_alpha_change ||
2786 		plane_state->update_flags.bits.global_alpha_change)
2787 		hws->funcs.update_mpcc(dc, pipe_ctx);
2788 
2789 	if (plane_state->update_flags.bits.full_update ||
2790 		plane_state->update_flags.bits.per_pixel_alpha_change ||
2791 		plane_state->update_flags.bits.global_alpha_change ||
2792 		plane_state->update_flags.bits.scaling_change ||
2793 		plane_state->update_flags.bits.position_change) {
2794 		update_scaler(pipe_ctx);
2795 	}
2796 
2797 	if (plane_state->update_flags.bits.full_update ||
2798 		plane_state->update_flags.bits.scaling_change ||
2799 		plane_state->update_flags.bits.position_change) {
2800 		hubp->funcs->mem_program_viewport(
2801 			hubp,
2802 			&pipe_ctx->plane_res.scl_data.viewport,
2803 			&pipe_ctx->plane_res.scl_data.viewport_c);
2804 	}
2805 
2806 	if (pipe_ctx->stream->cursor_attributes.address.quad_part != 0) {
2807 		dc->hwss.set_cursor_position(pipe_ctx);
2808 		dc->hwss.set_cursor_attribute(pipe_ctx);
2809 
2810 		if (dc->hwss.set_cursor_sdr_white_level)
2811 			dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
2812 	}
2813 
2814 	if (plane_state->update_flags.bits.full_update) {
2815 		/*gamut remap*/
2816 		dc->hwss.program_gamut_remap(pipe_ctx);
2817 
2818 		dc->hwss.program_output_csc(dc,
2819 				pipe_ctx,
2820 				pipe_ctx->stream->output_color_space,
2821 				pipe_ctx->stream->csc_color_matrix.matrix,
2822 				pipe_ctx->stream_res.opp->inst);
2823 	}
2824 
2825 	if (plane_state->update_flags.bits.full_update ||
2826 		plane_state->update_flags.bits.pixel_format_change ||
2827 		plane_state->update_flags.bits.horizontal_mirror_change ||
2828 		plane_state->update_flags.bits.rotation_change ||
2829 		plane_state->update_flags.bits.swizzle_change ||
2830 		plane_state->update_flags.bits.dcc_change ||
2831 		plane_state->update_flags.bits.bpp_change ||
2832 		plane_state->update_flags.bits.scaling_change ||
2833 		plane_state->update_flags.bits.plane_size_change) {
2834 		hubp->funcs->hubp_program_surface_config(
2835 			hubp,
2836 			plane_state->format,
2837 			&plane_state->tiling_info,
2838 			&size,
2839 			plane_state->rotation,
2840 			&plane_state->dcc,
2841 			plane_state->horizontal_mirror,
2842 			compat_level);
2843 	}
2844 
2845 	hubp->power_gated = false;
2846 
2847 	hws->funcs.update_plane_addr(dc, pipe_ctx);
2848 
2849 	if (is_pipe_tree_visible(pipe_ctx))
2850 		hubp->funcs->set_blank(hubp, false);
2851 }
2852 
dcn10_blank_pixel_data(struct dc * dc,struct pipe_ctx * pipe_ctx,bool blank)2853 void dcn10_blank_pixel_data(
2854 		struct dc *dc,
2855 		struct pipe_ctx *pipe_ctx,
2856 		bool blank)
2857 {
2858 	enum dc_color_space color_space;
2859 	struct tg_color black_color = {0};
2860 	struct stream_resource *stream_res = &pipe_ctx->stream_res;
2861 	struct dc_stream_state *stream = pipe_ctx->stream;
2862 
2863 	/* program otg blank color */
2864 	color_space = stream->output_color_space;
2865 	color_space_to_black_color(dc, color_space, &black_color);
2866 
2867 	/*
2868 	 * The way 420 is packed, 2 channels carry Y component, 1 channel
2869 	 * alternate between Cb and Cr, so both channels need the pixel
2870 	 * value for Y
2871 	 */
2872 	if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
2873 		black_color.color_r_cr = black_color.color_g_y;
2874 
2875 
2876 	if (stream_res->tg->funcs->set_blank_color)
2877 		stream_res->tg->funcs->set_blank_color(
2878 				stream_res->tg,
2879 				&black_color);
2880 
2881 	if (!blank) {
2882 		if (stream_res->tg->funcs->set_blank)
2883 			stream_res->tg->funcs->set_blank(stream_res->tg, blank);
2884 		if (stream_res->abm) {
2885 			dc->hwss.set_pipe(pipe_ctx);
2886 			stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level);
2887 		}
2888 	} else {
2889 		dc->hwss.set_abm_immediate_disable(pipe_ctx);
2890 		if (stream_res->tg->funcs->set_blank) {
2891 			stream_res->tg->funcs->wait_for_state(stream_res->tg, CRTC_STATE_VBLANK);
2892 			stream_res->tg->funcs->set_blank(stream_res->tg, blank);
2893 		}
2894 	}
2895 }
2896 
dcn10_set_hdr_multiplier(struct pipe_ctx * pipe_ctx)2897 void dcn10_set_hdr_multiplier(struct pipe_ctx *pipe_ctx)
2898 {
2899 	struct fixed31_32 multiplier = pipe_ctx->plane_state->hdr_mult;
2900 	uint32_t hw_mult = 0x1f000; // 1.0 default multiplier
2901 	struct custom_float_format fmt;
2902 
2903 	fmt.exponenta_bits = 6;
2904 	fmt.mantissa_bits = 12;
2905 	fmt.sign = true;
2906 
2907 
2908 	if (!dc_fixpt_eq(multiplier, dc_fixpt_from_int(0))) // check != 0
2909 		convert_to_custom_float_format(multiplier, &fmt, &hw_mult);
2910 
2911 	pipe_ctx->plane_res.dpp->funcs->dpp_set_hdr_multiplier(
2912 			pipe_ctx->plane_res.dpp, hw_mult);
2913 }
2914 
dcn10_program_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx,struct dc_state * context)2915 void dcn10_program_pipe(
2916 		struct dc *dc,
2917 		struct pipe_ctx *pipe_ctx,
2918 		struct dc_state *context)
2919 {
2920 	struct dce_hwseq *hws = dc->hwseq;
2921 
2922 	if (pipe_ctx->top_pipe == NULL) {
2923 		bool blank = !is_pipe_tree_visible(pipe_ctx);
2924 
2925 		pipe_ctx->stream_res.tg->funcs->program_global_sync(
2926 				pipe_ctx->stream_res.tg,
2927 				calculate_vready_offset_for_group(pipe_ctx),
2928 				pipe_ctx->pipe_dlg_param.vstartup_start,
2929 				pipe_ctx->pipe_dlg_param.vupdate_offset,
2930 				pipe_ctx->pipe_dlg_param.vupdate_width);
2931 
2932 		pipe_ctx->stream_res.tg->funcs->set_vtg_params(
2933 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, true);
2934 
2935 		if (hws->funcs.setup_vupdate_interrupt)
2936 			hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
2937 
2938 		hws->funcs.blank_pixel_data(dc, pipe_ctx, blank);
2939 	}
2940 
2941 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2942 		dcn10_enable_plane(dc, pipe_ctx, context);
2943 
2944 	dcn10_update_dchubp_dpp(dc, pipe_ctx, context);
2945 
2946 	hws->funcs.set_hdr_multiplier(pipe_ctx);
2947 
2948 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2949 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2950 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2951 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2952 
2953 	/* dcn10_translate_regamma_to_hw_format takes 750us to finish
2954 	 * only do gamma programming for full update.
2955 	 * TODO: This can be further optimized/cleaned up
2956 	 * Always call this for now since it does memcmp inside before
2957 	 * doing heavy calculation and programming
2958 	 */
2959 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2960 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2961 }
2962 
dcn10_wait_for_pending_cleared(struct dc * dc,struct dc_state * context)2963 void dcn10_wait_for_pending_cleared(struct dc *dc,
2964 		struct dc_state *context)
2965 {
2966 		struct pipe_ctx *pipe_ctx;
2967 		struct timing_generator *tg;
2968 		int i;
2969 
2970 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2971 			pipe_ctx = &context->res_ctx.pipe_ctx[i];
2972 			tg = pipe_ctx->stream_res.tg;
2973 
2974 			/*
2975 			 * Only wait for top pipe's tg penindg bit
2976 			 * Also skip if pipe is disabled.
2977 			 */
2978 			if (pipe_ctx->top_pipe ||
2979 			    !pipe_ctx->stream || !pipe_ctx->plane_state ||
2980 			    !tg->funcs->is_tg_enabled(tg))
2981 				continue;
2982 
2983 			/*
2984 			 * Wait for VBLANK then VACTIVE to ensure we get VUPDATE.
2985 			 * For some reason waiting for OTG_UPDATE_PENDING cleared
2986 			 * seems to not trigger the update right away, and if we
2987 			 * lock again before VUPDATE then we don't get a separated
2988 			 * operation.
2989 			 */
2990 			pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VBLANK);
2991 			pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VACTIVE);
2992 		}
2993 }
2994 
dcn10_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)2995 void dcn10_post_unlock_program_front_end(
2996 		struct dc *dc,
2997 		struct dc_state *context)
2998 {
2999 	int i;
3000 
3001 	DC_LOGGER_INIT(dc->ctx->logger);
3002 
3003 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3004 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3005 
3006 		if (!pipe_ctx->top_pipe &&
3007 			!pipe_ctx->prev_odm_pipe &&
3008 			pipe_ctx->stream) {
3009 			struct timing_generator *tg = pipe_ctx->stream_res.tg;
3010 
3011 			if (context->stream_status[i].plane_count == 0)
3012 				false_optc_underflow_wa(dc, pipe_ctx->stream, tg);
3013 		}
3014 	}
3015 
3016 	for (i = 0; i < dc->res_pool->pipe_count; i++)
3017 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable)
3018 			dc->hwss.disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
3019 
3020 	for (i = 0; i < dc->res_pool->pipe_count; i++)
3021 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable) {
3022 			dc->hwss.optimize_bandwidth(dc, context);
3023 			break;
3024 		}
3025 
3026 	if (dc->hwseq->wa.DEGVIDCN10_254)
3027 		hubbub1_wm_change_req_wa(dc->res_pool->hubbub);
3028 }
3029 
dcn10_stereo_hw_frame_pack_wa(struct dc * dc,struct dc_state * context)3030 static void dcn10_stereo_hw_frame_pack_wa(struct dc *dc, struct dc_state *context)
3031 {
3032 	uint8_t i;
3033 
3034 	for (i = 0; i < context->stream_count; i++) {
3035 		if (context->streams[i]->timing.timing_3d_format
3036 				== TIMING_3D_FORMAT_HW_FRAME_PACKING) {
3037 			/*
3038 			 * Disable stutter
3039 			 */
3040 			hubbub1_allow_self_refresh_control(dc->res_pool->hubbub, false);
3041 			break;
3042 		}
3043 	}
3044 }
3045 
dcn10_prepare_bandwidth(struct dc * dc,struct dc_state * context)3046 void dcn10_prepare_bandwidth(
3047 		struct dc *dc,
3048 		struct dc_state *context)
3049 {
3050 	struct dce_hwseq *hws = dc->hwseq;
3051 	struct hubbub *hubbub = dc->res_pool->hubbub;
3052 	int min_fclk_khz, min_dcfclk_khz, socclk_khz;
3053 
3054 	if (dc->debug.sanity_checks)
3055 		hws->funcs.verify_allow_pstate_change_high(dc);
3056 
3057 	if (context->stream_count == 0)
3058 		context->bw_ctx.bw.dcn.clk.phyclk_khz = 0;
3059 
3060 	dc->clk_mgr->funcs->update_clocks(
3061 			dc->clk_mgr,
3062 			context,
3063 			false);
3064 
3065 	dc->wm_optimized_required = hubbub->funcs->program_watermarks(hubbub,
3066 			&context->bw_ctx.bw.dcn.watermarks,
3067 			dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
3068 			true);
3069 	dcn10_stereo_hw_frame_pack_wa(dc, context);
3070 
3071 	if (dc->debug.pplib_wm_report_mode == WM_REPORT_OVERRIDE) {
3072 		DC_FP_START();
3073 		dcn_get_soc_clks(
3074 			dc, &min_fclk_khz, &min_dcfclk_khz, &socclk_khz);
3075 		DC_FP_END();
3076 		dcn_bw_notify_pplib_of_wm_ranges(
3077 			dc, min_fclk_khz, min_dcfclk_khz, socclk_khz);
3078 	}
3079 
3080 	if (dc->debug.sanity_checks)
3081 		hws->funcs.verify_allow_pstate_change_high(dc);
3082 }
3083 
dcn10_optimize_bandwidth(struct dc * dc,struct dc_state * context)3084 void dcn10_optimize_bandwidth(
3085 		struct dc *dc,
3086 		struct dc_state *context)
3087 {
3088 	struct dce_hwseq *hws = dc->hwseq;
3089 	struct hubbub *hubbub = dc->res_pool->hubbub;
3090 	int min_fclk_khz, min_dcfclk_khz, socclk_khz;
3091 
3092 	if (dc->debug.sanity_checks)
3093 		hws->funcs.verify_allow_pstate_change_high(dc);
3094 
3095 	if (context->stream_count == 0)
3096 		context->bw_ctx.bw.dcn.clk.phyclk_khz = 0;
3097 
3098 	dc->clk_mgr->funcs->update_clocks(
3099 			dc->clk_mgr,
3100 			context,
3101 			true);
3102 
3103 	hubbub->funcs->program_watermarks(hubbub,
3104 			&context->bw_ctx.bw.dcn.watermarks,
3105 			dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
3106 			true);
3107 
3108 	dcn10_stereo_hw_frame_pack_wa(dc, context);
3109 
3110 	if (dc->debug.pplib_wm_report_mode == WM_REPORT_OVERRIDE) {
3111 		DC_FP_START();
3112 		dcn_get_soc_clks(
3113 			dc, &min_fclk_khz, &min_dcfclk_khz, &socclk_khz);
3114 		DC_FP_END();
3115 		dcn_bw_notify_pplib_of_wm_ranges(
3116 			dc, min_fclk_khz, min_dcfclk_khz, socclk_khz);
3117 	}
3118 
3119 	if (dc->debug.sanity_checks)
3120 		hws->funcs.verify_allow_pstate_change_high(dc);
3121 }
3122 
dcn10_set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)3123 void dcn10_set_drr(struct pipe_ctx **pipe_ctx,
3124 		int num_pipes, struct dc_crtc_timing_adjust adjust)
3125 {
3126 	int i = 0;
3127 	struct drr_params params = {0};
3128 	// DRR set trigger event mapped to OTG_TRIG_A (bit 11) for manual control flow
3129 	unsigned int event_triggers = 0x800;
3130 	// Note DRR trigger events are generated regardless of whether num frames met.
3131 	unsigned int num_frames = 2;
3132 
3133 	params.vertical_total_max = adjust.v_total_max;
3134 	params.vertical_total_min = adjust.v_total_min;
3135 	params.vertical_total_mid = adjust.v_total_mid;
3136 	params.vertical_total_mid_frame_num = adjust.v_total_mid_frame_num;
3137 	/* TODO: If multiple pipes are to be supported, you need
3138 	 * some GSL stuff. Static screen triggers may be programmed differently
3139 	 * as well.
3140 	 */
3141 	for (i = 0; i < num_pipes; i++) {
3142 		if ((pipe_ctx[i]->stream_res.tg != NULL) && pipe_ctx[i]->stream_res.tg->funcs) {
3143 			if (pipe_ctx[i]->stream_res.tg->funcs->set_drr)
3144 				pipe_ctx[i]->stream_res.tg->funcs->set_drr(
3145 					pipe_ctx[i]->stream_res.tg, &params);
3146 			if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
3147 				if (pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control)
3148 					pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
3149 						pipe_ctx[i]->stream_res.tg,
3150 						event_triggers, num_frames);
3151 		}
3152 	}
3153 }
3154 
dcn10_get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)3155 void dcn10_get_position(struct pipe_ctx **pipe_ctx,
3156 		int num_pipes,
3157 		struct crtc_position *position)
3158 {
3159 	int i = 0;
3160 
3161 	/* TODO: handle pipes > 1
3162 	 */
3163 	for (i = 0; i < num_pipes; i++)
3164 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
3165 }
3166 
dcn10_set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)3167 void dcn10_set_static_screen_control(struct pipe_ctx **pipe_ctx,
3168 		int num_pipes, const struct dc_static_screen_params *params)
3169 {
3170 	unsigned int i;
3171 	unsigned int triggers = 0;
3172 
3173 	if (params->triggers.surface_update)
3174 		triggers |= 0x80;
3175 	if (params->triggers.cursor_update)
3176 		triggers |= 0x2;
3177 	if (params->triggers.force_trigger)
3178 		triggers |= 0x1;
3179 
3180 	for (i = 0; i < num_pipes; i++)
3181 		pipe_ctx[i]->stream_res.tg->funcs->
3182 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
3183 					triggers, params->num_frames);
3184 }
3185 
dcn10_config_stereo_parameters(struct dc_stream_state * stream,struct crtc_stereo_flags * flags)3186 static void dcn10_config_stereo_parameters(
3187 		struct dc_stream_state *stream, struct crtc_stereo_flags *flags)
3188 {
3189 	enum view_3d_format view_format = stream->view_format;
3190 	enum dc_timing_3d_format timing_3d_format =\
3191 			stream->timing.timing_3d_format;
3192 	bool non_stereo_timing = false;
3193 
3194 	if (timing_3d_format == TIMING_3D_FORMAT_NONE ||
3195 		timing_3d_format == TIMING_3D_FORMAT_SIDE_BY_SIDE ||
3196 		timing_3d_format == TIMING_3D_FORMAT_TOP_AND_BOTTOM)
3197 		non_stereo_timing = true;
3198 
3199 	if (non_stereo_timing == false &&
3200 		view_format == VIEW_3D_FORMAT_FRAME_SEQUENTIAL) {
3201 
3202 		flags->PROGRAM_STEREO         = 1;
3203 		flags->PROGRAM_POLARITY       = 1;
3204 		if (timing_3d_format == TIMING_3D_FORMAT_FRAME_ALTERNATE ||
3205 			timing_3d_format == TIMING_3D_FORMAT_INBAND_FA ||
3206 			timing_3d_format == TIMING_3D_FORMAT_DP_HDMI_INBAND_FA ||
3207 			timing_3d_format == TIMING_3D_FORMAT_SIDEBAND_FA) {
3208 
3209 			if (stream->link && stream->link->ddc) {
3210 				enum display_dongle_type dongle = \
3211 						stream->link->ddc->dongle_type;
3212 
3213 				if (dongle == DISPLAY_DONGLE_DP_VGA_CONVERTER ||
3214 					dongle == DISPLAY_DONGLE_DP_DVI_CONVERTER ||
3215 					dongle == DISPLAY_DONGLE_DP_HDMI_CONVERTER)
3216 					flags->DISABLE_STEREO_DP_SYNC = 1;
3217 			}
3218 		}
3219 		flags->RIGHT_EYE_POLARITY =\
3220 				stream->timing.flags.RIGHT_EYE_3D_POLARITY;
3221 		if (timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
3222 			flags->FRAME_PACKED = 1;
3223 	}
3224 
3225 	return;
3226 }
3227 
dcn10_setup_stereo(struct pipe_ctx * pipe_ctx,struct dc * dc)3228 void dcn10_setup_stereo(struct pipe_ctx *pipe_ctx, struct dc *dc)
3229 {
3230 	struct crtc_stereo_flags flags = { 0 };
3231 	struct dc_stream_state *stream = pipe_ctx->stream;
3232 
3233 	dcn10_config_stereo_parameters(stream, &flags);
3234 
3235 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_SIDEBAND_FA) {
3236 		if (!dc_set_generic_gpio_for_stereo(true, dc->ctx->gpio_service))
3237 			dc_set_generic_gpio_for_stereo(false, dc->ctx->gpio_service);
3238 	} else {
3239 		dc_set_generic_gpio_for_stereo(false, dc->ctx->gpio_service);
3240 	}
3241 
3242 	pipe_ctx->stream_res.opp->funcs->opp_program_stereo(
3243 		pipe_ctx->stream_res.opp,
3244 		flags.PROGRAM_STEREO == 1,
3245 		&stream->timing);
3246 
3247 	pipe_ctx->stream_res.tg->funcs->program_stereo(
3248 		pipe_ctx->stream_res.tg,
3249 		&stream->timing,
3250 		&flags);
3251 
3252 	return;
3253 }
3254 
get_hubp_by_inst(struct resource_pool * res_pool,int mpcc_inst)3255 static struct hubp *get_hubp_by_inst(struct resource_pool *res_pool, int mpcc_inst)
3256 {
3257 	int i;
3258 
3259 	for (i = 0; i < res_pool->pipe_count; i++) {
3260 		if (res_pool->hubps[i]->inst == mpcc_inst)
3261 			return res_pool->hubps[i];
3262 	}
3263 	ASSERT(false);
3264 	return NULL;
3265 }
3266 
dcn10_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)3267 void dcn10_wait_for_mpcc_disconnect(
3268 		struct dc *dc,
3269 		struct resource_pool *res_pool,
3270 		struct pipe_ctx *pipe_ctx)
3271 {
3272 	struct dce_hwseq *hws = dc->hwseq;
3273 	int mpcc_inst;
3274 
3275 	if (dc->debug.sanity_checks) {
3276 		hws->funcs.verify_allow_pstate_change_high(dc);
3277 	}
3278 
3279 	if (!pipe_ctx->stream_res.opp)
3280 		return;
3281 
3282 	for (mpcc_inst = 0; mpcc_inst < MAX_PIPES; mpcc_inst++) {
3283 		if (pipe_ctx->stream_res.opp->mpcc_disconnect_pending[mpcc_inst]) {
3284 			struct hubp *hubp = get_hubp_by_inst(res_pool, mpcc_inst);
3285 
3286 			if (pipe_ctx->stream_res.tg &&
3287 				pipe_ctx->stream_res.tg->funcs->is_tg_enabled(pipe_ctx->stream_res.tg))
3288 				res_pool->mpc->funcs->wait_for_idle(res_pool->mpc, mpcc_inst);
3289 			pipe_ctx->stream_res.opp->mpcc_disconnect_pending[mpcc_inst] = false;
3290 			hubp->funcs->set_blank(hubp, true);
3291 		}
3292 	}
3293 
3294 	if (dc->debug.sanity_checks) {
3295 		hws->funcs.verify_allow_pstate_change_high(dc);
3296 	}
3297 
3298 }
3299 
dcn10_dummy_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)3300 bool dcn10_dummy_display_power_gating(
3301 	struct dc *dc,
3302 	uint8_t controller_id,
3303 	struct dc_bios *dcb,
3304 	enum pipe_gating_control power_gating)
3305 {
3306 	return true;
3307 }
3308 
dcn10_update_pending_status(struct pipe_ctx * pipe_ctx)3309 void dcn10_update_pending_status(struct pipe_ctx *pipe_ctx)
3310 {
3311 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
3312 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
3313 	bool flip_pending;
3314 	struct dc *dc = pipe_ctx->stream->ctx->dc;
3315 
3316 	if (plane_state == NULL)
3317 		return;
3318 
3319 	flip_pending = pipe_ctx->plane_res.hubp->funcs->hubp_is_flip_pending(
3320 					pipe_ctx->plane_res.hubp);
3321 
3322 	plane_state->status.is_flip_pending = plane_state->status.is_flip_pending || flip_pending;
3323 
3324 	if (!flip_pending)
3325 		plane_state->status.current_address = plane_state->status.requested_address;
3326 
3327 	if (plane_state->status.current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
3328 			tg->funcs->is_stereo_left_eye) {
3329 		plane_state->status.is_right_eye =
3330 				!tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
3331 	}
3332 
3333 	if (dc->hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied) {
3334 		struct dce_hwseq *hwseq = dc->hwseq;
3335 		struct timing_generator *tg = dc->res_pool->timing_generators[0];
3336 		unsigned int cur_frame = tg->funcs->get_frame_count(tg);
3337 
3338 		if (cur_frame != hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied_on_frame) {
3339 			struct hubbub *hubbub = dc->res_pool->hubbub;
3340 
3341 			hubbub->funcs->allow_self_refresh_control(hubbub, !dc->debug.disable_stutter);
3342 			hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied = false;
3343 		}
3344 	}
3345 }
3346 
dcn10_update_dchub(struct dce_hwseq * hws,struct dchub_init_data * dh_data)3347 void dcn10_update_dchub(struct dce_hwseq *hws, struct dchub_init_data *dh_data)
3348 {
3349 	struct hubbub *hubbub = hws->ctx->dc->res_pool->hubbub;
3350 
3351 	/* In DCN, this programming sequence is owned by the hubbub */
3352 	hubbub->funcs->update_dchub(hubbub, dh_data);
3353 }
3354 
dcn10_can_pipe_disable_cursor(struct pipe_ctx * pipe_ctx)3355 static bool dcn10_can_pipe_disable_cursor(struct pipe_ctx *pipe_ctx)
3356 {
3357 	struct pipe_ctx *test_pipe, *split_pipe;
3358 	const struct scaler_data *scl_data = &pipe_ctx->plane_res.scl_data;
3359 	struct rect r1 = scl_data->recout, r2, r2_half;
3360 	int r1_r = r1.x + r1.width, r1_b = r1.y + r1.height, r2_r, r2_b;
3361 	int cur_layer = pipe_ctx->plane_state->layer_index;
3362 
3363 	/**
3364 	 * Disable the cursor if there's another pipe above this with a
3365 	 * plane that contains this pipe's viewport to prevent double cursor
3366 	 * and incorrect scaling artifacts.
3367 	 */
3368 	for (test_pipe = pipe_ctx->top_pipe; test_pipe;
3369 	     test_pipe = test_pipe->top_pipe) {
3370 		// Skip invisible layer and pipe-split plane on same layer
3371 		if (!test_pipe->plane_state ||
3372 		    !test_pipe->plane_state->visible ||
3373 		    test_pipe->plane_state->layer_index == cur_layer)
3374 			continue;
3375 
3376 		r2 = test_pipe->plane_res.scl_data.recout;
3377 		r2_r = r2.x + r2.width;
3378 		r2_b = r2.y + r2.height;
3379 		split_pipe = test_pipe;
3380 
3381 		/**
3382 		 * There is another half plane on same layer because of
3383 		 * pipe-split, merge together per same height.
3384 		 */
3385 		for (split_pipe = pipe_ctx->top_pipe; split_pipe;
3386 		     split_pipe = split_pipe->top_pipe)
3387 			if (split_pipe->plane_state->layer_index == test_pipe->plane_state->layer_index) {
3388 				r2_half = split_pipe->plane_res.scl_data.recout;
3389 				r2.x = (r2_half.x < r2.x) ? r2_half.x : r2.x;
3390 				r2.width = r2.width + r2_half.width;
3391 				r2_r = r2.x + r2.width;
3392 				break;
3393 			}
3394 
3395 		if (r1.x >= r2.x && r1.y >= r2.y && r1_r <= r2_r && r1_b <= r2_b)
3396 			return true;
3397 	}
3398 
3399 	return false;
3400 }
3401 
dcn10_set_cursor_position(struct pipe_ctx * pipe_ctx)3402 void dcn10_set_cursor_position(struct pipe_ctx *pipe_ctx)
3403 {
3404 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
3405 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
3406 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
3407 	struct dc_cursor_mi_param param = {
3408 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
3409 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.dchub_ref_clock_inKhz,
3410 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
3411 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
3412 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
3413 		.rotation = pipe_ctx->plane_state->rotation,
3414 		.mirror = pipe_ctx->plane_state->horizontal_mirror,
3415 		.stream = pipe_ctx->stream,
3416 	};
3417 	bool pipe_split_on = false;
3418 	bool odm_combine_on = (pipe_ctx->next_odm_pipe != NULL) ||
3419 		(pipe_ctx->prev_odm_pipe != NULL);
3420 
3421 	int x_plane = pipe_ctx->plane_state->dst_rect.x;
3422 	int y_plane = pipe_ctx->plane_state->dst_rect.y;
3423 	int x_pos = pos_cpy.x;
3424 	int y_pos = pos_cpy.y;
3425 
3426 	if ((pipe_ctx->top_pipe != NULL) || (pipe_ctx->bottom_pipe != NULL)) {
3427 		if ((pipe_ctx->plane_state->src_rect.width != pipe_ctx->plane_res.scl_data.viewport.width) ||
3428 			(pipe_ctx->plane_state->src_rect.height != pipe_ctx->plane_res.scl_data.viewport.height)) {
3429 			pipe_split_on = true;
3430 		}
3431 	}
3432 
3433 	/**
3434 	 * DC cursor is stream space, HW cursor is plane space and drawn
3435 	 * as part of the framebuffer.
3436 	 *
3437 	 * Cursor position can't be negative, but hotspot can be used to
3438 	 * shift cursor out of the plane bounds. Hotspot must be smaller
3439 	 * than the cursor size.
3440 	 */
3441 
3442 	/**
3443 	 * Translate cursor from stream space to plane space.
3444 	 *
3445 	 * If the cursor is scaled then we need to scale the position
3446 	 * to be in the approximately correct place. We can't do anything
3447 	 * about the actual size being incorrect, that's a limitation of
3448 	 * the hardware.
3449 	 */
3450 	if (param.rotation == ROTATION_ANGLE_90 || param.rotation == ROTATION_ANGLE_270) {
3451 		x_pos = (x_pos - x_plane) * pipe_ctx->plane_state->src_rect.height /
3452 				pipe_ctx->plane_state->dst_rect.width;
3453 		y_pos = (y_pos - y_plane) * pipe_ctx->plane_state->src_rect.width /
3454 				pipe_ctx->plane_state->dst_rect.height;
3455 	} else {
3456 		x_pos = (x_pos - x_plane) * pipe_ctx->plane_state->src_rect.width /
3457 				pipe_ctx->plane_state->dst_rect.width;
3458 		y_pos = (y_pos - y_plane) * pipe_ctx->plane_state->src_rect.height /
3459 				pipe_ctx->plane_state->dst_rect.height;
3460 	}
3461 
3462 	/**
3463 	 * If the cursor's source viewport is clipped then we need to
3464 	 * translate the cursor to appear in the correct position on
3465 	 * the screen.
3466 	 *
3467 	 * This translation isn't affected by scaling so it needs to be
3468 	 * done *after* we adjust the position for the scale factor.
3469 	 *
3470 	 * This is only done by opt-in for now since there are still
3471 	 * some usecases like tiled display that might enable the
3472 	 * cursor on both streams while expecting dc to clip it.
3473 	 */
3474 	if (pos_cpy.translate_by_source) {
3475 		x_pos += pipe_ctx->plane_state->src_rect.x;
3476 		y_pos += pipe_ctx->plane_state->src_rect.y;
3477 	}
3478 
3479 	/**
3480 	 * If the position is negative then we need to add to the hotspot
3481 	 * to shift the cursor outside the plane.
3482 	 */
3483 
3484 	if (x_pos < 0) {
3485 		pos_cpy.x_hotspot -= x_pos;
3486 		x_pos = 0;
3487 	}
3488 
3489 	if (y_pos < 0) {
3490 		pos_cpy.y_hotspot -= y_pos;
3491 		y_pos = 0;
3492 	}
3493 
3494 	pos_cpy.x = (uint32_t)x_pos;
3495 	pos_cpy.y = (uint32_t)y_pos;
3496 
3497 	if (pipe_ctx->plane_state->address.type
3498 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
3499 		pos_cpy.enable = false;
3500 
3501 	if (pos_cpy.enable && dcn10_can_pipe_disable_cursor(pipe_ctx))
3502 		pos_cpy.enable = false;
3503 
3504 
3505 	if (param.rotation == ROTATION_ANGLE_0) {
3506 		int viewport_width =
3507 			pipe_ctx->plane_res.scl_data.viewport.width;
3508 		int viewport_x =
3509 			pipe_ctx->plane_res.scl_data.viewport.x;
3510 
3511 		if (param.mirror) {
3512 			if (pipe_split_on || odm_combine_on) {
3513 				if (pos_cpy.x >= viewport_width + viewport_x) {
3514 					pos_cpy.x = 2 * viewport_width
3515 							- pos_cpy.x + 2 * viewport_x;
3516 				} else {
3517 					uint32_t temp_x = pos_cpy.x;
3518 
3519 					pos_cpy.x = 2 * viewport_x - pos_cpy.x;
3520 					if (temp_x >= viewport_x +
3521 						(int)hubp->curs_attr.width || pos_cpy.x
3522 						<= (int)hubp->curs_attr.width +
3523 						pipe_ctx->plane_state->src_rect.x) {
3524 						pos_cpy.x = temp_x + viewport_width;
3525 					}
3526 				}
3527 			} else {
3528 				pos_cpy.x = viewport_width - pos_cpy.x + 2 * viewport_x;
3529 			}
3530 		}
3531 	}
3532 	// Swap axis and mirror horizontally
3533 	else if (param.rotation == ROTATION_ANGLE_90) {
3534 		uint32_t temp_x = pos_cpy.x;
3535 
3536 		pos_cpy.x = pipe_ctx->plane_res.scl_data.viewport.width -
3537 				(pos_cpy.y - pipe_ctx->plane_res.scl_data.viewport.x) + pipe_ctx->plane_res.scl_data.viewport.x;
3538 		pos_cpy.y = temp_x;
3539 	}
3540 	// Swap axis and mirror vertically
3541 	else if (param.rotation == ROTATION_ANGLE_270) {
3542 		uint32_t temp_y = pos_cpy.y;
3543 		int viewport_height =
3544 			pipe_ctx->plane_res.scl_data.viewport.height;
3545 		int viewport_y =
3546 			pipe_ctx->plane_res.scl_data.viewport.y;
3547 
3548 		/**
3549 		 * Display groups that are 1xnY, have pos_cpy.x > 2 * viewport.height
3550 		 * For pipe split cases:
3551 		 * - apply offset of viewport.y to normalize pos_cpy.x
3552 		 * - calculate the pos_cpy.y as before
3553 		 * - shift pos_cpy.y back by same offset to get final value
3554 		 * - since we iterate through both pipes, use the lower
3555 		 *   viewport.y for offset
3556 		 * For non pipe split cases, use the same calculation for
3557 		 *  pos_cpy.y as the 180 degree rotation case below,
3558 		 *  but use pos_cpy.x as our input because we are rotating
3559 		 *  270 degrees
3560 		 */
3561 		if (pipe_split_on || odm_combine_on) {
3562 			int pos_cpy_x_offset;
3563 			int other_pipe_viewport_y;
3564 
3565 			if (pipe_split_on) {
3566 				if (pipe_ctx->bottom_pipe) {
3567 					other_pipe_viewport_y =
3568 						pipe_ctx->bottom_pipe->plane_res.scl_data.viewport.y;
3569 				} else {
3570 					other_pipe_viewport_y =
3571 						pipe_ctx->top_pipe->plane_res.scl_data.viewport.y;
3572 				}
3573 			} else {
3574 				if (pipe_ctx->next_odm_pipe) {
3575 					other_pipe_viewport_y =
3576 						pipe_ctx->next_odm_pipe->plane_res.scl_data.viewport.y;
3577 				} else {
3578 					other_pipe_viewport_y =
3579 						pipe_ctx->prev_odm_pipe->plane_res.scl_data.viewport.y;
3580 				}
3581 			}
3582 			pos_cpy_x_offset = (viewport_y > other_pipe_viewport_y) ?
3583 				other_pipe_viewport_y : viewport_y;
3584 			pos_cpy.x -= pos_cpy_x_offset;
3585 			if (pos_cpy.x > viewport_height) {
3586 				pos_cpy.x = pos_cpy.x - viewport_height;
3587 				pos_cpy.y = viewport_height - pos_cpy.x;
3588 			} else {
3589 				pos_cpy.y = 2 * viewport_height - pos_cpy.x;
3590 			}
3591 			pos_cpy.y += pos_cpy_x_offset;
3592 		} else {
3593 			pos_cpy.y = (2 * viewport_y) + viewport_height - pos_cpy.x;
3594 		}
3595 		pos_cpy.x = temp_y;
3596 	}
3597 	// Mirror horizontally and vertically
3598 	else if (param.rotation == ROTATION_ANGLE_180) {
3599 		int viewport_width =
3600 			pipe_ctx->plane_res.scl_data.viewport.width;
3601 		int viewport_x =
3602 			pipe_ctx->plane_res.scl_data.viewport.x;
3603 
3604 		if (!param.mirror) {
3605 			if (pipe_split_on || odm_combine_on) {
3606 				if (pos_cpy.x >= viewport_width + viewport_x) {
3607 					pos_cpy.x = 2 * viewport_width
3608 							- pos_cpy.x + 2 * viewport_x;
3609 				} else {
3610 					uint32_t temp_x = pos_cpy.x;
3611 
3612 					pos_cpy.x = 2 * viewport_x - pos_cpy.x;
3613 					if (temp_x >= viewport_x +
3614 						(int)hubp->curs_attr.width || pos_cpy.x
3615 						<= (int)hubp->curs_attr.width +
3616 						pipe_ctx->plane_state->src_rect.x) {
3617 						pos_cpy.x = 2 * viewport_width - temp_x;
3618 					}
3619 				}
3620 			} else {
3621 				pos_cpy.x = viewport_width - pos_cpy.x + 2 * viewport_x;
3622 			}
3623 		}
3624 
3625 		/**
3626 		 * Display groups that are 1xnY, have pos_cpy.y > viewport.height
3627 		 * Calculation:
3628 		 *   delta_from_bottom = viewport.y + viewport.height - pos_cpy.y
3629 		 *   pos_cpy.y_new = viewport.y + delta_from_bottom
3630 		 * Simplify it as:
3631 		 *   pos_cpy.y = viewport.y * 2 + viewport.height - pos_cpy.y
3632 		 */
3633 		pos_cpy.y = (2 * pipe_ctx->plane_res.scl_data.viewport.y) +
3634 			pipe_ctx->plane_res.scl_data.viewport.height - pos_cpy.y;
3635 	}
3636 
3637 	hubp->funcs->set_cursor_position(hubp, &pos_cpy, &param);
3638 	dpp->funcs->set_cursor_position(dpp, &pos_cpy, &param, hubp->curs_attr.width, hubp->curs_attr.height);
3639 }
3640 
dcn10_set_cursor_attribute(struct pipe_ctx * pipe_ctx)3641 void dcn10_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
3642 {
3643 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
3644 
3645 	pipe_ctx->plane_res.hubp->funcs->set_cursor_attributes(
3646 			pipe_ctx->plane_res.hubp, attributes);
3647 	pipe_ctx->plane_res.dpp->funcs->set_cursor_attributes(
3648 		pipe_ctx->plane_res.dpp, attributes);
3649 }
3650 
dcn10_set_cursor_sdr_white_level(struct pipe_ctx * pipe_ctx)3651 void dcn10_set_cursor_sdr_white_level(struct pipe_ctx *pipe_ctx)
3652 {
3653 	uint32_t sdr_white_level = pipe_ctx->stream->cursor_attributes.sdr_white_level;
3654 	struct fixed31_32 multiplier;
3655 	struct dpp_cursor_attributes opt_attr = { 0 };
3656 	uint32_t hw_scale = 0x3c00; // 1.0 default multiplier
3657 	struct custom_float_format fmt;
3658 
3659 	if (!pipe_ctx->plane_res.dpp->funcs->set_optional_cursor_attributes)
3660 		return;
3661 
3662 	fmt.exponenta_bits = 5;
3663 	fmt.mantissa_bits = 10;
3664 	fmt.sign = true;
3665 
3666 	if (sdr_white_level > 80) {
3667 		multiplier = dc_fixpt_from_fraction(sdr_white_level, 80);
3668 		convert_to_custom_float_format(multiplier, &fmt, &hw_scale);
3669 	}
3670 
3671 	opt_attr.scale = hw_scale;
3672 	opt_attr.bias = 0;
3673 
3674 	pipe_ctx->plane_res.dpp->funcs->set_optional_cursor_attributes(
3675 			pipe_ctx->plane_res.dpp, &opt_attr);
3676 }
3677 
3678 /*
3679  * apply_front_porch_workaround  TODO FPGA still need?
3680  *
3681  * This is a workaround for a bug that has existed since R5xx and has not been
3682  * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
3683  */
apply_front_porch_workaround(struct dc_crtc_timing * timing)3684 static void apply_front_porch_workaround(
3685 	struct dc_crtc_timing *timing)
3686 {
3687 	if (timing->flags.INTERLACE == 1) {
3688 		if (timing->v_front_porch < 2)
3689 			timing->v_front_porch = 2;
3690 	} else {
3691 		if (timing->v_front_porch < 1)
3692 			timing->v_front_porch = 1;
3693 	}
3694 }
3695 
dcn10_get_vupdate_offset_from_vsync(struct pipe_ctx * pipe_ctx)3696 int dcn10_get_vupdate_offset_from_vsync(struct pipe_ctx *pipe_ctx)
3697 {
3698 	const struct dc_crtc_timing *dc_crtc_timing = &pipe_ctx->stream->timing;
3699 	struct dc_crtc_timing patched_crtc_timing;
3700 	int vesa_sync_start;
3701 	int asic_blank_end;
3702 	int interlace_factor;
3703 
3704 	patched_crtc_timing = *dc_crtc_timing;
3705 	apply_front_porch_workaround(&patched_crtc_timing);
3706 
3707 	interlace_factor = patched_crtc_timing.flags.INTERLACE ? 2 : 1;
3708 
3709 	vesa_sync_start = patched_crtc_timing.v_addressable +
3710 			patched_crtc_timing.v_border_bottom +
3711 			patched_crtc_timing.v_front_porch;
3712 
3713 	asic_blank_end = (patched_crtc_timing.v_total -
3714 			vesa_sync_start -
3715 			patched_crtc_timing.v_border_top)
3716 			* interlace_factor;
3717 
3718 	return asic_blank_end -
3719 			pipe_ctx->pipe_dlg_param.vstartup_start + 1;
3720 }
3721 
dcn10_calc_vupdate_position(struct dc * dc,struct pipe_ctx * pipe_ctx,uint32_t * start_line,uint32_t * end_line)3722 void dcn10_calc_vupdate_position(
3723 		struct dc *dc,
3724 		struct pipe_ctx *pipe_ctx,
3725 		uint32_t *start_line,
3726 		uint32_t *end_line)
3727 {
3728 	const struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
3729 	int vupdate_pos = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
3730 
3731 	if (vupdate_pos >= 0)
3732 		*start_line = vupdate_pos - ((vupdate_pos / timing->v_total) * timing->v_total);
3733 	else
3734 		*start_line = vupdate_pos + ((-vupdate_pos / timing->v_total) + 1) * timing->v_total - 1;
3735 	*end_line = (*start_line + 2) % timing->v_total;
3736 }
3737 
dcn10_cal_vline_position(struct dc * dc,struct pipe_ctx * pipe_ctx,uint32_t * start_line,uint32_t * end_line)3738 static void dcn10_cal_vline_position(
3739 		struct dc *dc,
3740 		struct pipe_ctx *pipe_ctx,
3741 		uint32_t *start_line,
3742 		uint32_t *end_line)
3743 {
3744 	const struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
3745 	int vline_pos = pipe_ctx->stream->periodic_interrupt.lines_offset;
3746 
3747 	if (pipe_ctx->stream->periodic_interrupt.ref_point == START_V_UPDATE) {
3748 		if (vline_pos > 0)
3749 			vline_pos--;
3750 		else if (vline_pos < 0)
3751 			vline_pos++;
3752 
3753 		vline_pos += dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
3754 		if (vline_pos >= 0)
3755 			*start_line = vline_pos - ((vline_pos / timing->v_total) * timing->v_total);
3756 		else
3757 			*start_line = vline_pos + ((-vline_pos / timing->v_total) + 1) * timing->v_total - 1;
3758 		*end_line = (*start_line + 2) % timing->v_total;
3759 	} else if (pipe_ctx->stream->periodic_interrupt.ref_point == START_V_SYNC) {
3760 		// vsync is line 0 so start_line is just the requested line offset
3761 		*start_line = vline_pos;
3762 		*end_line = (*start_line + 2) % timing->v_total;
3763 	} else
3764 		ASSERT(0);
3765 }
3766 
dcn10_setup_periodic_interrupt(struct dc * dc,struct pipe_ctx * pipe_ctx)3767 void dcn10_setup_periodic_interrupt(
3768 		struct dc *dc,
3769 		struct pipe_ctx *pipe_ctx)
3770 {
3771 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
3772 	uint32_t start_line = 0;
3773 	uint32_t end_line = 0;
3774 
3775 	dcn10_cal_vline_position(dc, pipe_ctx, &start_line, &end_line);
3776 
3777 	tg->funcs->setup_vertical_interrupt0(tg, start_line, end_line);
3778 }
3779 
dcn10_setup_vupdate_interrupt(struct dc * dc,struct pipe_ctx * pipe_ctx)3780 void dcn10_setup_vupdate_interrupt(struct dc *dc, struct pipe_ctx *pipe_ctx)
3781 {
3782 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
3783 	int start_line = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
3784 
3785 	if (start_line < 0) {
3786 		ASSERT(0);
3787 		start_line = 0;
3788 	}
3789 
3790 	if (tg->funcs->setup_vertical_interrupt2)
3791 		tg->funcs->setup_vertical_interrupt2(tg, start_line);
3792 }
3793 
dcn10_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)3794 void dcn10_unblank_stream(struct pipe_ctx *pipe_ctx,
3795 		struct dc_link_settings *link_settings)
3796 {
3797 	struct encoder_unblank_param params = {0};
3798 	struct dc_stream_state *stream = pipe_ctx->stream;
3799 	struct dc_link *link = stream->link;
3800 	struct dce_hwseq *hws = link->dc->hwseq;
3801 
3802 	/* only 3 items below are used by unblank */
3803 	params.timing = pipe_ctx->stream->timing;
3804 
3805 	params.link_settings.link_rate = link_settings->link_rate;
3806 
3807 	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
3808 		if (params.timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
3809 			params.timing.pix_clk_100hz /= 2;
3810 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
3811 	}
3812 
3813 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
3814 		hws->funcs.edp_backlight_control(link, true);
3815 	}
3816 }
3817 
dcn10_send_immediate_sdp_message(struct pipe_ctx * pipe_ctx,const uint8_t * custom_sdp_message,unsigned int sdp_message_size)3818 void dcn10_send_immediate_sdp_message(struct pipe_ctx *pipe_ctx,
3819 				const uint8_t *custom_sdp_message,
3820 				unsigned int sdp_message_size)
3821 {
3822 	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
3823 		pipe_ctx->stream_res.stream_enc->funcs->send_immediate_sdp_message(
3824 				pipe_ctx->stream_res.stream_enc,
3825 				custom_sdp_message,
3826 				sdp_message_size);
3827 	}
3828 }
dcn10_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)3829 enum dc_status dcn10_set_clock(struct dc *dc,
3830 			enum dc_clock_type clock_type,
3831 			uint32_t clk_khz,
3832 			uint32_t stepping)
3833 {
3834 	struct dc_state *context = dc->current_state;
3835 	struct dc_clock_config clock_cfg = {0};
3836 	struct dc_clocks *current_clocks = &context->bw_ctx.bw.dcn.clk;
3837 
3838 	if (!dc->clk_mgr || !dc->clk_mgr->funcs->get_clock)
3839 		return DC_FAIL_UNSUPPORTED_1;
3840 
3841 	dc->clk_mgr->funcs->get_clock(dc->clk_mgr,
3842 		context, clock_type, &clock_cfg);
3843 
3844 	if (clk_khz > clock_cfg.max_clock_khz)
3845 		return DC_FAIL_CLK_EXCEED_MAX;
3846 
3847 	if (clk_khz < clock_cfg.min_clock_khz)
3848 		return DC_FAIL_CLK_BELOW_MIN;
3849 
3850 	if (clk_khz < clock_cfg.bw_requirequired_clock_khz)
3851 		return DC_FAIL_CLK_BELOW_CFG_REQUIRED;
3852 
3853 	/*update internal request clock for update clock use*/
3854 	if (clock_type == DC_CLOCK_TYPE_DISPCLK)
3855 		current_clocks->dispclk_khz = clk_khz;
3856 	else if (clock_type == DC_CLOCK_TYPE_DPPCLK)
3857 		current_clocks->dppclk_khz = clk_khz;
3858 	else
3859 		return DC_ERROR_UNEXPECTED;
3860 
3861 	if (dc->clk_mgr->funcs->update_clocks)
3862 				dc->clk_mgr->funcs->update_clocks(dc->clk_mgr,
3863 				context, true);
3864 	return DC_OK;
3865 
3866 }
3867 
dcn10_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)3868 void dcn10_get_clock(struct dc *dc,
3869 			enum dc_clock_type clock_type,
3870 			struct dc_clock_config *clock_cfg)
3871 {
3872 	struct dc_state *context = dc->current_state;
3873 
3874 	if (dc->clk_mgr && dc->clk_mgr->funcs->get_clock)
3875 				dc->clk_mgr->funcs->get_clock(dc->clk_mgr, context, clock_type, clock_cfg);
3876 
3877 }
3878 
dcn10_get_dcc_en_bits(struct dc * dc,int * dcc_en_bits)3879 void dcn10_get_dcc_en_bits(struct dc *dc, int *dcc_en_bits)
3880 {
3881 	struct resource_pool *pool = dc->res_pool;
3882 	int i;
3883 
3884 	for (i = 0; i < pool->pipe_count; i++) {
3885 		struct hubp *hubp = pool->hubps[i];
3886 		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(hubp)->state);
3887 
3888 		hubp->funcs->hubp_read_state(hubp);
3889 
3890 		if (!s->blank_en)
3891 			dcc_en_bits[i] = s->dcc_en ? 1 : 0;
3892 	}
3893 }
3894