1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap_btree.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_space.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iomap.h"
25 #include "xfs_trace.h"
26 #include "xfs_quota.h"
27 #include "xfs_dquot_item.h"
28 #include "xfs_dquot.h"
29 #include "xfs_reflink.h"
30
31 #define XFS_ALLOC_ALIGN(mp, off) \
32 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
33
34 static int
xfs_alert_fsblock_zero(xfs_inode_t * ip,xfs_bmbt_irec_t * imap)35 xfs_alert_fsblock_zero(
36 xfs_inode_t *ip,
37 xfs_bmbt_irec_t *imap)
38 {
39 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
40 "Access to block zero in inode %llu "
41 "start_block: %llx start_off: %llx "
42 "blkcnt: %llx extent-state: %x",
43 (unsigned long long)ip->i_ino,
44 (unsigned long long)imap->br_startblock,
45 (unsigned long long)imap->br_startoff,
46 (unsigned long long)imap->br_blockcount,
47 imap->br_state);
48 return -EFSCORRUPTED;
49 }
50
51 u64
xfs_iomap_inode_sequence(struct xfs_inode * ip,u16 iomap_flags)52 xfs_iomap_inode_sequence(
53 struct xfs_inode *ip,
54 u16 iomap_flags)
55 {
56 u64 cookie = 0;
57
58 if (iomap_flags & IOMAP_F_XATTR)
59 return READ_ONCE(ip->i_af.if_seq);
60 if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp)
61 cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32;
62 return cookie | READ_ONCE(ip->i_df.if_seq);
63 }
64
65 /*
66 * Check that the iomap passed to us is still valid for the given offset and
67 * length.
68 */
69 static bool
xfs_iomap_valid(struct inode * inode,const struct iomap * iomap)70 xfs_iomap_valid(
71 struct inode *inode,
72 const struct iomap *iomap)
73 {
74 struct xfs_inode *ip = XFS_I(inode);
75
76 if (iomap->validity_cookie !=
77 xfs_iomap_inode_sequence(ip, iomap->flags)) {
78 trace_xfs_iomap_invalid(ip, iomap);
79 return false;
80 }
81
82 XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS);
83 return true;
84 }
85
86 static const struct iomap_folio_ops xfs_iomap_folio_ops = {
87 .iomap_valid = xfs_iomap_valid,
88 };
89
90 int
xfs_bmbt_to_iomap(struct xfs_inode * ip,struct iomap * iomap,struct xfs_bmbt_irec * imap,unsigned int mapping_flags,u16 iomap_flags,u64 sequence_cookie)91 xfs_bmbt_to_iomap(
92 struct xfs_inode *ip,
93 struct iomap *iomap,
94 struct xfs_bmbt_irec *imap,
95 unsigned int mapping_flags,
96 u16 iomap_flags,
97 u64 sequence_cookie)
98 {
99 struct xfs_mount *mp = ip->i_mount;
100 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
101
102 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock)))
103 return xfs_alert_fsblock_zero(ip, imap);
104
105 if (imap->br_startblock == HOLESTARTBLOCK) {
106 iomap->addr = IOMAP_NULL_ADDR;
107 iomap->type = IOMAP_HOLE;
108 } else if (imap->br_startblock == DELAYSTARTBLOCK ||
109 isnullstartblock(imap->br_startblock)) {
110 iomap->addr = IOMAP_NULL_ADDR;
111 iomap->type = IOMAP_DELALLOC;
112 } else {
113 iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock));
114 if (mapping_flags & IOMAP_DAX)
115 iomap->addr += target->bt_dax_part_off;
116
117 if (imap->br_state == XFS_EXT_UNWRITTEN)
118 iomap->type = IOMAP_UNWRITTEN;
119 else
120 iomap->type = IOMAP_MAPPED;
121
122 }
123 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
124 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
125 if (mapping_flags & IOMAP_DAX)
126 iomap->dax_dev = target->bt_daxdev;
127 else
128 iomap->bdev = target->bt_bdev;
129 iomap->flags = iomap_flags;
130
131 if (xfs_ipincount(ip) &&
132 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
133 iomap->flags |= IOMAP_F_DIRTY;
134
135 iomap->validity_cookie = sequence_cookie;
136 iomap->folio_ops = &xfs_iomap_folio_ops;
137 return 0;
138 }
139
140 static void
xfs_hole_to_iomap(struct xfs_inode * ip,struct iomap * iomap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)141 xfs_hole_to_iomap(
142 struct xfs_inode *ip,
143 struct iomap *iomap,
144 xfs_fileoff_t offset_fsb,
145 xfs_fileoff_t end_fsb)
146 {
147 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
148
149 iomap->addr = IOMAP_NULL_ADDR;
150 iomap->type = IOMAP_HOLE;
151 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
152 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
153 iomap->bdev = target->bt_bdev;
154 iomap->dax_dev = target->bt_daxdev;
155 }
156
157 static inline xfs_fileoff_t
xfs_iomap_end_fsb(struct xfs_mount * mp,loff_t offset,loff_t count)158 xfs_iomap_end_fsb(
159 struct xfs_mount *mp,
160 loff_t offset,
161 loff_t count)
162 {
163 ASSERT(offset <= mp->m_super->s_maxbytes);
164 return min(XFS_B_TO_FSB(mp, offset + count),
165 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
166 }
167
168 static xfs_extlen_t
xfs_eof_alignment(struct xfs_inode * ip)169 xfs_eof_alignment(
170 struct xfs_inode *ip)
171 {
172 struct xfs_mount *mp = ip->i_mount;
173 xfs_extlen_t align = 0;
174
175 if (!XFS_IS_REALTIME_INODE(ip)) {
176 /*
177 * Round up the allocation request to a stripe unit
178 * (m_dalign) boundary if the file size is >= stripe unit
179 * size, and we are allocating past the allocation eof.
180 *
181 * If mounted with the "-o swalloc" option the alignment is
182 * increased from the strip unit size to the stripe width.
183 */
184 if (mp->m_swidth && xfs_has_swalloc(mp))
185 align = mp->m_swidth;
186 else if (mp->m_dalign)
187 align = mp->m_dalign;
188
189 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
190 align = 0;
191 }
192
193 return align;
194 }
195
196 /*
197 * Check if last_fsb is outside the last extent, and if so grow it to the next
198 * stripe unit boundary.
199 */
200 xfs_fileoff_t
xfs_iomap_eof_align_last_fsb(struct xfs_inode * ip,xfs_fileoff_t end_fsb)201 xfs_iomap_eof_align_last_fsb(
202 struct xfs_inode *ip,
203 xfs_fileoff_t end_fsb)
204 {
205 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
206 xfs_extlen_t extsz = xfs_get_extsz_hint(ip);
207 xfs_extlen_t align = xfs_eof_alignment(ip);
208 struct xfs_bmbt_irec irec;
209 struct xfs_iext_cursor icur;
210
211 ASSERT(!xfs_need_iread_extents(ifp));
212
213 /*
214 * Always round up the allocation request to the extent hint boundary.
215 */
216 if (extsz) {
217 if (align)
218 align = roundup_64(align, extsz);
219 else
220 align = extsz;
221 }
222
223 if (align) {
224 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align);
225
226 xfs_iext_last(ifp, &icur);
227 if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
228 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
229 return aligned_end_fsb;
230 }
231
232 return end_fsb;
233 }
234
235 int
xfs_iomap_write_direct(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_fileoff_t count_fsb,unsigned int flags,struct xfs_bmbt_irec * imap,u64 * seq)236 xfs_iomap_write_direct(
237 struct xfs_inode *ip,
238 xfs_fileoff_t offset_fsb,
239 xfs_fileoff_t count_fsb,
240 unsigned int flags,
241 struct xfs_bmbt_irec *imap,
242 u64 *seq)
243 {
244 struct xfs_mount *mp = ip->i_mount;
245 struct xfs_trans *tp;
246 xfs_filblks_t resaligned;
247 int nimaps;
248 unsigned int dblocks, rblocks;
249 bool force = false;
250 int error;
251 int bmapi_flags = XFS_BMAPI_PREALLOC;
252 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
253
254 ASSERT(count_fsb > 0);
255
256 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
257 xfs_get_extsz_hint(ip));
258 if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
259 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
260 rblocks = resaligned;
261 } else {
262 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
263 rblocks = 0;
264 }
265
266 error = xfs_qm_dqattach(ip);
267 if (error)
268 return error;
269
270 /*
271 * For DAX, we do not allocate unwritten extents, but instead we zero
272 * the block before we commit the transaction. Ideally we'd like to do
273 * this outside the transaction context, but if we commit and then crash
274 * we may not have zeroed the blocks and this will be exposed on
275 * recovery of the allocation. Hence we must zero before commit.
276 *
277 * Further, if we are mapping unwritten extents here, we need to zero
278 * and convert them to written so that we don't need an unwritten extent
279 * callback for DAX. This also means that we need to be able to dip into
280 * the reserve block pool for bmbt block allocation if there is no space
281 * left but we need to do unwritten extent conversion.
282 */
283 if (flags & IOMAP_DAX) {
284 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
285 if (imap->br_state == XFS_EXT_UNWRITTEN) {
286 force = true;
287 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
288 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
289 }
290 }
291
292 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
293 rblocks, force, &tp);
294 if (error)
295 return error;
296
297 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, nr_exts);
298 if (error == -EFBIG)
299 error = xfs_iext_count_upgrade(tp, ip, nr_exts);
300 if (error)
301 goto out_trans_cancel;
302
303 /*
304 * From this point onwards we overwrite the imap pointer that the
305 * caller gave to us.
306 */
307 nimaps = 1;
308 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
309 imap, &nimaps);
310 if (error)
311 goto out_trans_cancel;
312
313 /*
314 * Complete the transaction
315 */
316 error = xfs_trans_commit(tp);
317 if (error)
318 goto out_unlock;
319
320 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock)))
321 error = xfs_alert_fsblock_zero(ip, imap);
322
323 out_unlock:
324 *seq = xfs_iomap_inode_sequence(ip, 0);
325 xfs_iunlock(ip, XFS_ILOCK_EXCL);
326 return error;
327
328 out_trans_cancel:
329 xfs_trans_cancel(tp);
330 goto out_unlock;
331 }
332
333 STATIC bool
xfs_quota_need_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t alloc_blocks)334 xfs_quota_need_throttle(
335 struct xfs_inode *ip,
336 xfs_dqtype_t type,
337 xfs_fsblock_t alloc_blocks)
338 {
339 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
340
341 if (!dq || !xfs_this_quota_on(ip->i_mount, type))
342 return false;
343
344 /* no hi watermark, no throttle */
345 if (!dq->q_prealloc_hi_wmark)
346 return false;
347
348 /* under the lo watermark, no throttle */
349 if (dq->q_blk.reserved + alloc_blocks < dq->q_prealloc_lo_wmark)
350 return false;
351
352 return true;
353 }
354
355 STATIC void
xfs_quota_calc_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t * qblocks,int * qshift,int64_t * qfreesp)356 xfs_quota_calc_throttle(
357 struct xfs_inode *ip,
358 xfs_dqtype_t type,
359 xfs_fsblock_t *qblocks,
360 int *qshift,
361 int64_t *qfreesp)
362 {
363 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
364 int64_t freesp;
365 int shift = 0;
366
367 /* no dq, or over hi wmark, squash the prealloc completely */
368 if (!dq || dq->q_blk.reserved >= dq->q_prealloc_hi_wmark) {
369 *qblocks = 0;
370 *qfreesp = 0;
371 return;
372 }
373
374 freesp = dq->q_prealloc_hi_wmark - dq->q_blk.reserved;
375 if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) {
376 shift = 2;
377 if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT])
378 shift += 2;
379 if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT])
380 shift += 2;
381 }
382
383 if (freesp < *qfreesp)
384 *qfreesp = freesp;
385
386 /* only overwrite the throttle values if we are more aggressive */
387 if ((freesp >> shift) < (*qblocks >> *qshift)) {
388 *qblocks = freesp;
389 *qshift = shift;
390 }
391 }
392
393 /*
394 * If we don't have a user specified preallocation size, dynamically increase
395 * the preallocation size as the size of the file grows. Cap the maximum size
396 * at a single extent or less if the filesystem is near full. The closer the
397 * filesystem is to being full, the smaller the maximum preallocation.
398 */
399 STATIC xfs_fsblock_t
xfs_iomap_prealloc_size(struct xfs_inode * ip,int whichfork,loff_t offset,loff_t count,struct xfs_iext_cursor * icur)400 xfs_iomap_prealloc_size(
401 struct xfs_inode *ip,
402 int whichfork,
403 loff_t offset,
404 loff_t count,
405 struct xfs_iext_cursor *icur)
406 {
407 struct xfs_iext_cursor ncur = *icur;
408 struct xfs_bmbt_irec prev, got;
409 struct xfs_mount *mp = ip->i_mount;
410 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
411 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
412 int64_t freesp;
413 xfs_fsblock_t qblocks;
414 xfs_fsblock_t alloc_blocks = 0;
415 xfs_extlen_t plen;
416 int shift = 0;
417 int qshift = 0;
418
419 /*
420 * As an exception we don't do any preallocation at all if the file is
421 * smaller than the minimum preallocation and we are using the default
422 * dynamic preallocation scheme, as it is likely this is the only write
423 * to the file that is going to be done.
424 */
425 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
426 return 0;
427
428 /*
429 * Use the minimum preallocation size for small files or if we are
430 * writing right after a hole.
431 */
432 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
433 !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
434 prev.br_startoff + prev.br_blockcount < offset_fsb)
435 return mp->m_allocsize_blocks;
436
437 /*
438 * Take the size of the preceding data extents as the basis for the
439 * preallocation size. Note that we don't care if the previous extents
440 * are written or not.
441 */
442 plen = prev.br_blockcount;
443 while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
444 if (plen > XFS_MAX_BMBT_EXTLEN / 2 ||
445 isnullstartblock(got.br_startblock) ||
446 got.br_startoff + got.br_blockcount != prev.br_startoff ||
447 got.br_startblock + got.br_blockcount != prev.br_startblock)
448 break;
449 plen += got.br_blockcount;
450 prev = got;
451 }
452
453 /*
454 * If the size of the extents is greater than half the maximum extent
455 * length, then use the current offset as the basis. This ensures that
456 * for large files the preallocation size always extends to
457 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe
458 * unit/width alignment of real extents.
459 */
460 alloc_blocks = plen * 2;
461 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
462 alloc_blocks = XFS_B_TO_FSB(mp, offset);
463 qblocks = alloc_blocks;
464
465 /*
466 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc
467 * down to the nearest power of two value after throttling. To prevent
468 * the round down from unconditionally reducing the maximum supported
469 * prealloc size, we round up first, apply appropriate throttling, round
470 * down and cap the value to XFS_BMBT_MAX_EXTLEN.
471 */
472 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN),
473 alloc_blocks);
474
475 freesp = percpu_counter_read_positive(&mp->m_fdblocks);
476 if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) {
477 shift = 2;
478 if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT])
479 shift++;
480 if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT])
481 shift++;
482 if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT])
483 shift++;
484 if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT])
485 shift++;
486 }
487
488 /*
489 * Check each quota to cap the prealloc size, provide a shift value to
490 * throttle with and adjust amount of available space.
491 */
492 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
493 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
494 &freesp);
495 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
496 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
497 &freesp);
498 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
499 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
500 &freesp);
501
502 /*
503 * The final prealloc size is set to the minimum of free space available
504 * in each of the quotas and the overall filesystem.
505 *
506 * The shift throttle value is set to the maximum value as determined by
507 * the global low free space values and per-quota low free space values.
508 */
509 alloc_blocks = min(alloc_blocks, qblocks);
510 shift = max(shift, qshift);
511
512 if (shift)
513 alloc_blocks >>= shift;
514 /*
515 * rounddown_pow_of_two() returns an undefined result if we pass in
516 * alloc_blocks = 0.
517 */
518 if (alloc_blocks)
519 alloc_blocks = rounddown_pow_of_two(alloc_blocks);
520 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
521 alloc_blocks = XFS_MAX_BMBT_EXTLEN;
522
523 /*
524 * If we are still trying to allocate more space than is
525 * available, squash the prealloc hard. This can happen if we
526 * have a large file on a small filesystem and the above
527 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN.
528 */
529 while (alloc_blocks && alloc_blocks >= freesp)
530 alloc_blocks >>= 4;
531 if (alloc_blocks < mp->m_allocsize_blocks)
532 alloc_blocks = mp->m_allocsize_blocks;
533 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
534 mp->m_allocsize_blocks);
535 return alloc_blocks;
536 }
537
538 int
xfs_iomap_write_unwritten(xfs_inode_t * ip,xfs_off_t offset,xfs_off_t count,bool update_isize)539 xfs_iomap_write_unwritten(
540 xfs_inode_t *ip,
541 xfs_off_t offset,
542 xfs_off_t count,
543 bool update_isize)
544 {
545 xfs_mount_t *mp = ip->i_mount;
546 xfs_fileoff_t offset_fsb;
547 xfs_filblks_t count_fsb;
548 xfs_filblks_t numblks_fsb;
549 int nimaps;
550 xfs_trans_t *tp;
551 xfs_bmbt_irec_t imap;
552 struct inode *inode = VFS_I(ip);
553 xfs_fsize_t i_size;
554 uint resblks;
555 int error;
556
557 trace_xfs_unwritten_convert(ip, offset, count);
558
559 offset_fsb = XFS_B_TO_FSBT(mp, offset);
560 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
561 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
562
563 /*
564 * Reserve enough blocks in this transaction for two complete extent
565 * btree splits. We may be converting the middle part of an unwritten
566 * extent and in this case we will insert two new extents in the btree
567 * each of which could cause a full split.
568 *
569 * This reservation amount will be used in the first call to
570 * xfs_bmbt_split() to select an AG with enough space to satisfy the
571 * rest of the operation.
572 */
573 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
574
575 /* Attach dquots so that bmbt splits are accounted correctly. */
576 error = xfs_qm_dqattach(ip);
577 if (error)
578 return error;
579
580 do {
581 /*
582 * Set up a transaction to convert the range of extents
583 * from unwritten to real. Do allocations in a loop until
584 * we have covered the range passed in.
585 *
586 * Note that we can't risk to recursing back into the filesystem
587 * here as we might be asked to write out the same inode that we
588 * complete here and might deadlock on the iolock.
589 */
590 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
591 0, true, &tp);
592 if (error)
593 return error;
594
595 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
596 XFS_IEXT_WRITE_UNWRITTEN_CNT);
597 if (error == -EFBIG)
598 error = xfs_iext_count_upgrade(tp, ip,
599 XFS_IEXT_WRITE_UNWRITTEN_CNT);
600 if (error)
601 goto error_on_bmapi_transaction;
602
603 /*
604 * Modify the unwritten extent state of the buffer.
605 */
606 nimaps = 1;
607 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
608 XFS_BMAPI_CONVERT, resblks, &imap,
609 &nimaps);
610 if (error)
611 goto error_on_bmapi_transaction;
612
613 /*
614 * Log the updated inode size as we go. We have to be careful
615 * to only log it up to the actual write offset if it is
616 * halfway into a block.
617 */
618 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
619 if (i_size > offset + count)
620 i_size = offset + count;
621 if (update_isize && i_size > i_size_read(inode))
622 i_size_write(inode, i_size);
623 i_size = xfs_new_eof(ip, i_size);
624 if (i_size) {
625 ip->i_disk_size = i_size;
626 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
627 }
628
629 error = xfs_trans_commit(tp);
630 xfs_iunlock(ip, XFS_ILOCK_EXCL);
631 if (error)
632 return error;
633
634 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock)))
635 return xfs_alert_fsblock_zero(ip, &imap);
636
637 if ((numblks_fsb = imap.br_blockcount) == 0) {
638 /*
639 * The numblks_fsb value should always get
640 * smaller, otherwise the loop is stuck.
641 */
642 ASSERT(imap.br_blockcount);
643 break;
644 }
645 offset_fsb += numblks_fsb;
646 count_fsb -= numblks_fsb;
647 } while (count_fsb > 0);
648
649 return 0;
650
651 error_on_bmapi_transaction:
652 xfs_trans_cancel(tp);
653 xfs_iunlock(ip, XFS_ILOCK_EXCL);
654 return error;
655 }
656
657 static inline bool
imap_needs_alloc(struct inode * inode,unsigned flags,struct xfs_bmbt_irec * imap,int nimaps)658 imap_needs_alloc(
659 struct inode *inode,
660 unsigned flags,
661 struct xfs_bmbt_irec *imap,
662 int nimaps)
663 {
664 /* don't allocate blocks when just zeroing */
665 if (flags & IOMAP_ZERO)
666 return false;
667 if (!nimaps ||
668 imap->br_startblock == HOLESTARTBLOCK ||
669 imap->br_startblock == DELAYSTARTBLOCK)
670 return true;
671 /* we convert unwritten extents before copying the data for DAX */
672 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN)
673 return true;
674 return false;
675 }
676
677 static inline bool
imap_needs_cow(struct xfs_inode * ip,unsigned int flags,struct xfs_bmbt_irec * imap,int nimaps)678 imap_needs_cow(
679 struct xfs_inode *ip,
680 unsigned int flags,
681 struct xfs_bmbt_irec *imap,
682 int nimaps)
683 {
684 if (!xfs_is_cow_inode(ip))
685 return false;
686
687 /* when zeroing we don't have to COW holes or unwritten extents */
688 if (flags & IOMAP_ZERO) {
689 if (!nimaps ||
690 imap->br_startblock == HOLESTARTBLOCK ||
691 imap->br_state == XFS_EXT_UNWRITTEN)
692 return false;
693 }
694
695 return true;
696 }
697
698 static int
xfs_ilock_for_iomap(struct xfs_inode * ip,unsigned flags,unsigned * lockmode)699 xfs_ilock_for_iomap(
700 struct xfs_inode *ip,
701 unsigned flags,
702 unsigned *lockmode)
703 {
704 unsigned int mode = *lockmode;
705 bool is_write = flags & (IOMAP_WRITE | IOMAP_ZERO);
706
707 /*
708 * COW writes may allocate delalloc space or convert unwritten COW
709 * extents, so we need to make sure to take the lock exclusively here.
710 */
711 if (xfs_is_cow_inode(ip) && is_write)
712 mode = XFS_ILOCK_EXCL;
713
714 /*
715 * Extents not yet cached requires exclusive access, don't block. This
716 * is an opencoded xfs_ilock_data_map_shared() call but with
717 * non-blocking behaviour.
718 */
719 if (xfs_need_iread_extents(&ip->i_df)) {
720 if (flags & IOMAP_NOWAIT)
721 return -EAGAIN;
722 mode = XFS_ILOCK_EXCL;
723 }
724
725 relock:
726 if (flags & IOMAP_NOWAIT) {
727 if (!xfs_ilock_nowait(ip, mode))
728 return -EAGAIN;
729 } else {
730 xfs_ilock(ip, mode);
731 }
732
733 /*
734 * The reflink iflag could have changed since the earlier unlocked
735 * check, so if we got ILOCK_SHARED for a write and but we're now a
736 * reflink inode we have to switch to ILOCK_EXCL and relock.
737 */
738 if (mode == XFS_ILOCK_SHARED && is_write && xfs_is_cow_inode(ip)) {
739 xfs_iunlock(ip, mode);
740 mode = XFS_ILOCK_EXCL;
741 goto relock;
742 }
743
744 *lockmode = mode;
745 return 0;
746 }
747
748 /*
749 * Check that the imap we are going to return to the caller spans the entire
750 * range that the caller requested for the IO.
751 */
752 static bool
imap_spans_range(struct xfs_bmbt_irec * imap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)753 imap_spans_range(
754 struct xfs_bmbt_irec *imap,
755 xfs_fileoff_t offset_fsb,
756 xfs_fileoff_t end_fsb)
757 {
758 if (imap->br_startoff > offset_fsb)
759 return false;
760 if (imap->br_startoff + imap->br_blockcount < end_fsb)
761 return false;
762 return true;
763 }
764
765 static int
xfs_direct_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)766 xfs_direct_write_iomap_begin(
767 struct inode *inode,
768 loff_t offset,
769 loff_t length,
770 unsigned flags,
771 struct iomap *iomap,
772 struct iomap *srcmap)
773 {
774 struct xfs_inode *ip = XFS_I(inode);
775 struct xfs_mount *mp = ip->i_mount;
776 struct xfs_bmbt_irec imap, cmap;
777 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
778 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
779 int nimaps = 1, error = 0;
780 bool shared = false;
781 u16 iomap_flags = 0;
782 unsigned int lockmode = XFS_ILOCK_SHARED;
783 u64 seq;
784
785 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
786
787 if (xfs_is_shutdown(mp))
788 return -EIO;
789
790 /*
791 * Writes that span EOF might trigger an IO size update on completion,
792 * so consider them to be dirty for the purposes of O_DSYNC even if
793 * there is no other metadata changes pending or have been made here.
794 */
795 if (offset + length > i_size_read(inode))
796 iomap_flags |= IOMAP_F_DIRTY;
797
798 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
799 if (error)
800 return error;
801
802 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
803 &nimaps, 0);
804 if (error)
805 goto out_unlock;
806
807 if (imap_needs_cow(ip, flags, &imap, nimaps)) {
808 error = -EAGAIN;
809 if (flags & IOMAP_NOWAIT)
810 goto out_unlock;
811
812 /* may drop and re-acquire the ilock */
813 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
814 &lockmode,
815 (flags & IOMAP_DIRECT) || IS_DAX(inode));
816 if (error)
817 goto out_unlock;
818 if (shared)
819 goto out_found_cow;
820 end_fsb = imap.br_startoff + imap.br_blockcount;
821 length = XFS_FSB_TO_B(mp, end_fsb) - offset;
822 }
823
824 if (imap_needs_alloc(inode, flags, &imap, nimaps))
825 goto allocate_blocks;
826
827 /*
828 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
829 * a single map so that we avoid partial IO failures due to the rest of
830 * the I/O range not covered by this map triggering an EAGAIN condition
831 * when it is subsequently mapped and aborting the I/O.
832 */
833 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
834 error = -EAGAIN;
835 if (!imap_spans_range(&imap, offset_fsb, end_fsb))
836 goto out_unlock;
837 }
838
839 /*
840 * For overwrite only I/O, we cannot convert unwritten extents without
841 * requiring sub-block zeroing. This can only be done under an
842 * exclusive IOLOCK, hence return -EAGAIN if this is not a written
843 * extent to tell the caller to try again.
844 */
845 if (flags & IOMAP_OVERWRITE_ONLY) {
846 error = -EAGAIN;
847 if (imap.br_state != XFS_EXT_NORM &&
848 ((offset | length) & mp->m_blockmask))
849 goto out_unlock;
850 }
851
852 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
853 xfs_iunlock(ip, lockmode);
854 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
855 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
856
857 allocate_blocks:
858 error = -EAGAIN;
859 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
860 goto out_unlock;
861
862 /*
863 * We cap the maximum length we map to a sane size to keep the chunks
864 * of work done where somewhat symmetric with the work writeback does.
865 * This is a completely arbitrary number pulled out of thin air as a
866 * best guess for initial testing.
867 *
868 * Note that the values needs to be less than 32-bits wide until the
869 * lower level functions are updated.
870 */
871 length = min_t(loff_t, length, 1024 * PAGE_SIZE);
872 end_fsb = xfs_iomap_end_fsb(mp, offset, length);
873
874 if (offset + length > XFS_ISIZE(ip))
875 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
876 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
877 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
878 xfs_iunlock(ip, lockmode);
879
880 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
881 flags, &imap, &seq);
882 if (error)
883 return error;
884
885 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
886 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
887 iomap_flags | IOMAP_F_NEW, seq);
888
889 out_found_cow:
890 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
891 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
892 if (imap.br_startblock != HOLESTARTBLOCK) {
893 seq = xfs_iomap_inode_sequence(ip, 0);
894 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
895 if (error)
896 goto out_unlock;
897 }
898 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
899 xfs_iunlock(ip, lockmode);
900 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq);
901
902 out_unlock:
903 if (lockmode)
904 xfs_iunlock(ip, lockmode);
905 return error;
906 }
907
908 const struct iomap_ops xfs_direct_write_iomap_ops = {
909 .iomap_begin = xfs_direct_write_iomap_begin,
910 };
911
912 static int
xfs_dax_write_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)913 xfs_dax_write_iomap_end(
914 struct inode *inode,
915 loff_t pos,
916 loff_t length,
917 ssize_t written,
918 unsigned flags,
919 struct iomap *iomap)
920 {
921 struct xfs_inode *ip = XFS_I(inode);
922
923 if (!xfs_is_cow_inode(ip))
924 return 0;
925
926 if (!written) {
927 xfs_reflink_cancel_cow_range(ip, pos, length, true);
928 return 0;
929 }
930
931 return xfs_reflink_end_cow(ip, pos, written);
932 }
933
934 const struct iomap_ops xfs_dax_write_iomap_ops = {
935 .iomap_begin = xfs_direct_write_iomap_begin,
936 .iomap_end = xfs_dax_write_iomap_end,
937 };
938
939 static int
xfs_buffered_write_iomap_begin(struct inode * inode,loff_t offset,loff_t count,unsigned flags,struct iomap * iomap,struct iomap * srcmap)940 xfs_buffered_write_iomap_begin(
941 struct inode *inode,
942 loff_t offset,
943 loff_t count,
944 unsigned flags,
945 struct iomap *iomap,
946 struct iomap *srcmap)
947 {
948 struct xfs_inode *ip = XFS_I(inode);
949 struct xfs_mount *mp = ip->i_mount;
950 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
951 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count);
952 struct xfs_bmbt_irec imap, cmap;
953 struct xfs_iext_cursor icur, ccur;
954 xfs_fsblock_t prealloc_blocks = 0;
955 bool eof = false, cow_eof = false, shared = false;
956 int allocfork = XFS_DATA_FORK;
957 int error = 0;
958 unsigned int lockmode = XFS_ILOCK_EXCL;
959 u64 seq;
960
961 if (xfs_is_shutdown(mp))
962 return -EIO;
963
964 /* we can't use delayed allocations when using extent size hints */
965 if (xfs_get_extsz_hint(ip))
966 return xfs_direct_write_iomap_begin(inode, offset, count,
967 flags, iomap, srcmap);
968
969 ASSERT(!XFS_IS_REALTIME_INODE(ip));
970
971 error = xfs_qm_dqattach(ip);
972 if (error)
973 return error;
974
975 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
976 if (error)
977 return error;
978
979 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
980 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
981 error = -EFSCORRUPTED;
982 goto out_unlock;
983 }
984
985 XFS_STATS_INC(mp, xs_blk_mapw);
986
987 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
988 if (error)
989 goto out_unlock;
990
991 /*
992 * Search the data fork first to look up our source mapping. We
993 * always need the data fork map, as we have to return it to the
994 * iomap code so that the higher level write code can read data in to
995 * perform read-modify-write cycles for unaligned writes.
996 */
997 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
998 if (eof)
999 imap.br_startoff = end_fsb; /* fake hole until the end */
1000
1001 /* We never need to allocate blocks for zeroing or unsharing a hole. */
1002 if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) &&
1003 imap.br_startoff > offset_fsb) {
1004 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
1005 goto out_unlock;
1006 }
1007
1008 /*
1009 * For zeroing, trim a delalloc extent that extends beyond the EOF
1010 * block. If it starts beyond the EOF block, convert it to an
1011 * unwritten extent.
1012 */
1013 if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb &&
1014 isnullstartblock(imap.br_startblock)) {
1015 xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
1016
1017 if (offset_fsb >= eof_fsb)
1018 goto convert_delay;
1019 if (end_fsb > eof_fsb) {
1020 end_fsb = eof_fsb;
1021 xfs_trim_extent(&imap, offset_fsb,
1022 end_fsb - offset_fsb);
1023 }
1024 }
1025
1026 /*
1027 * Search the COW fork extent list even if we did not find a data fork
1028 * extent. This serves two purposes: first this implements the
1029 * speculative preallocation using cowextsize, so that we also unshare
1030 * block adjacent to shared blocks instead of just the shared blocks
1031 * themselves. Second the lookup in the extent list is generally faster
1032 * than going out to the shared extent tree.
1033 */
1034 if (xfs_is_cow_inode(ip)) {
1035 if (!ip->i_cowfp) {
1036 ASSERT(!xfs_is_reflink_inode(ip));
1037 xfs_ifork_init_cow(ip);
1038 }
1039 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
1040 &ccur, &cmap);
1041 if (!cow_eof && cmap.br_startoff <= offset_fsb) {
1042 trace_xfs_reflink_cow_found(ip, &cmap);
1043 goto found_cow;
1044 }
1045 }
1046
1047 if (imap.br_startoff <= offset_fsb) {
1048 /*
1049 * For reflink files we may need a delalloc reservation when
1050 * overwriting shared extents. This includes zeroing of
1051 * existing extents that contain data.
1052 */
1053 if (!xfs_is_cow_inode(ip) ||
1054 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
1055 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1056 &imap);
1057 goto found_imap;
1058 }
1059
1060 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1061
1062 /* Trim the mapping to the nearest shared extent boundary. */
1063 error = xfs_bmap_trim_cow(ip, &imap, &shared);
1064 if (error)
1065 goto out_unlock;
1066
1067 /* Not shared? Just report the (potentially capped) extent. */
1068 if (!shared) {
1069 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1070 &imap);
1071 goto found_imap;
1072 }
1073
1074 /*
1075 * Fork all the shared blocks from our write offset until the
1076 * end of the extent.
1077 */
1078 allocfork = XFS_COW_FORK;
1079 end_fsb = imap.br_startoff + imap.br_blockcount;
1080 } else {
1081 /*
1082 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
1083 * pages to keep the chunks of work done where somewhat
1084 * symmetric with the work writeback does. This is a completely
1085 * arbitrary number pulled out of thin air.
1086 *
1087 * Note that the values needs to be less than 32-bits wide until
1088 * the lower level functions are updated.
1089 */
1090 count = min_t(loff_t, count, 1024 * PAGE_SIZE);
1091 end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1092
1093 if (xfs_is_always_cow_inode(ip))
1094 allocfork = XFS_COW_FORK;
1095 }
1096
1097 if (eof && offset + count > XFS_ISIZE(ip)) {
1098 /*
1099 * Determine the initial size of the preallocation.
1100 * We clean up any extra preallocation when the file is closed.
1101 */
1102 if (xfs_has_allocsize(mp))
1103 prealloc_blocks = mp->m_allocsize_blocks;
1104 else if (allocfork == XFS_DATA_FORK)
1105 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1106 offset, count, &icur);
1107 else
1108 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1109 offset, count, &ccur);
1110 if (prealloc_blocks) {
1111 xfs_extlen_t align;
1112 xfs_off_t end_offset;
1113 xfs_fileoff_t p_end_fsb;
1114
1115 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
1116 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
1117 prealloc_blocks;
1118
1119 align = xfs_eof_alignment(ip);
1120 if (align)
1121 p_end_fsb = roundup_64(p_end_fsb, align);
1122
1123 p_end_fsb = min(p_end_fsb,
1124 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1125 ASSERT(p_end_fsb > offset_fsb);
1126 prealloc_blocks = p_end_fsb - end_fsb;
1127 }
1128 }
1129
1130 if (allocfork == XFS_COW_FORK) {
1131 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1132 end_fsb - offset_fsb, prealloc_blocks, &cmap,
1133 &ccur, cow_eof);
1134 if (error)
1135 goto out_unlock;
1136
1137 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
1138 goto found_cow;
1139 }
1140
1141 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1142 end_fsb - offset_fsb, prealloc_blocks, &imap, &icur,
1143 eof);
1144 if (error)
1145 goto out_unlock;
1146
1147 /*
1148 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
1149 * them out if the write happens to fail.
1150 */
1151 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_NEW);
1152 xfs_iunlock(ip, lockmode);
1153 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
1154 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_NEW, seq);
1155
1156 found_imap:
1157 seq = xfs_iomap_inode_sequence(ip, 0);
1158 xfs_iunlock(ip, lockmode);
1159 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
1160
1161 convert_delay:
1162 xfs_iunlock(ip, lockmode);
1163 truncate_pagecache(inode, offset);
1164 error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset,
1165 iomap, NULL);
1166 if (error)
1167 return error;
1168
1169 trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap);
1170 return 0;
1171
1172 found_cow:
1173 seq = xfs_iomap_inode_sequence(ip, 0);
1174 if (imap.br_startoff <= offset_fsb) {
1175 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
1176 if (error)
1177 goto out_unlock;
1178 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1179 xfs_iunlock(ip, lockmode);
1180 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1181 IOMAP_F_SHARED, seq);
1182 }
1183
1184 xfs_trim_extent(&cmap, offset_fsb, imap.br_startoff - offset_fsb);
1185 xfs_iunlock(ip, lockmode);
1186 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 0, seq);
1187
1188 out_unlock:
1189 xfs_iunlock(ip, lockmode);
1190 return error;
1191 }
1192
1193 static int
xfs_buffered_write_delalloc_punch(struct inode * inode,loff_t offset,loff_t length)1194 xfs_buffered_write_delalloc_punch(
1195 struct inode *inode,
1196 loff_t offset,
1197 loff_t length)
1198 {
1199 return xfs_bmap_punch_delalloc_range(XFS_I(inode), offset,
1200 offset + length);
1201 }
1202
1203 static int
xfs_buffered_write_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1204 xfs_buffered_write_iomap_end(
1205 struct inode *inode,
1206 loff_t offset,
1207 loff_t length,
1208 ssize_t written,
1209 unsigned flags,
1210 struct iomap *iomap)
1211 {
1212
1213 struct xfs_mount *mp = XFS_M(inode->i_sb);
1214 int error;
1215
1216 error = iomap_file_buffered_write_punch_delalloc(inode, iomap, offset,
1217 length, written, &xfs_buffered_write_delalloc_punch);
1218 if (error && !xfs_is_shutdown(mp)) {
1219 xfs_alert(mp, "%s: unable to clean up ino 0x%llx",
1220 __func__, XFS_I(inode)->i_ino);
1221 return error;
1222 }
1223 return 0;
1224 }
1225
1226 const struct iomap_ops xfs_buffered_write_iomap_ops = {
1227 .iomap_begin = xfs_buffered_write_iomap_begin,
1228 .iomap_end = xfs_buffered_write_iomap_end,
1229 };
1230
1231 /*
1232 * iomap_page_mkwrite() will never fail in a way that requires delalloc extents
1233 * that it allocated to be revoked. Hence we do not need an .iomap_end method
1234 * for this operation.
1235 */
1236 const struct iomap_ops xfs_page_mkwrite_iomap_ops = {
1237 .iomap_begin = xfs_buffered_write_iomap_begin,
1238 };
1239
1240 static int
xfs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1241 xfs_read_iomap_begin(
1242 struct inode *inode,
1243 loff_t offset,
1244 loff_t length,
1245 unsigned flags,
1246 struct iomap *iomap,
1247 struct iomap *srcmap)
1248 {
1249 struct xfs_inode *ip = XFS_I(inode);
1250 struct xfs_mount *mp = ip->i_mount;
1251 struct xfs_bmbt_irec imap;
1252 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1253 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
1254 int nimaps = 1, error = 0;
1255 bool shared = false;
1256 unsigned int lockmode = XFS_ILOCK_SHARED;
1257 u64 seq;
1258
1259 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
1260
1261 if (xfs_is_shutdown(mp))
1262 return -EIO;
1263
1264 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1265 if (error)
1266 return error;
1267 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1268 &nimaps, 0);
1269 if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode)))
1270 error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
1271 seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0);
1272 xfs_iunlock(ip, lockmode);
1273
1274 if (error)
1275 return error;
1276 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
1277 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
1278 shared ? IOMAP_F_SHARED : 0, seq);
1279 }
1280
1281 const struct iomap_ops xfs_read_iomap_ops = {
1282 .iomap_begin = xfs_read_iomap_begin,
1283 };
1284
1285 static int
xfs_seek_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1286 xfs_seek_iomap_begin(
1287 struct inode *inode,
1288 loff_t offset,
1289 loff_t length,
1290 unsigned flags,
1291 struct iomap *iomap,
1292 struct iomap *srcmap)
1293 {
1294 struct xfs_inode *ip = XFS_I(inode);
1295 struct xfs_mount *mp = ip->i_mount;
1296 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1297 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1298 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
1299 struct xfs_iext_cursor icur;
1300 struct xfs_bmbt_irec imap, cmap;
1301 int error = 0;
1302 unsigned lockmode;
1303 u64 seq;
1304
1305 if (xfs_is_shutdown(mp))
1306 return -EIO;
1307
1308 lockmode = xfs_ilock_data_map_shared(ip);
1309 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1310 if (error)
1311 goto out_unlock;
1312
1313 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
1314 /*
1315 * If we found a data extent we are done.
1316 */
1317 if (imap.br_startoff <= offset_fsb)
1318 goto done;
1319 data_fsb = imap.br_startoff;
1320 } else {
1321 /*
1322 * Fake a hole until the end of the file.
1323 */
1324 data_fsb = xfs_iomap_end_fsb(mp, offset, length);
1325 }
1326
1327 /*
1328 * If a COW fork extent covers the hole, report it - capped to the next
1329 * data fork extent:
1330 */
1331 if (xfs_inode_has_cow_data(ip) &&
1332 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1333 cow_fsb = cmap.br_startoff;
1334 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
1335 if (data_fsb < cow_fsb + cmap.br_blockcount)
1336 end_fsb = min(end_fsb, data_fsb);
1337 xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb);
1338 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1339 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1340 IOMAP_F_SHARED, seq);
1341 /*
1342 * This is a COW extent, so we must probe the page cache
1343 * because there could be dirty page cache being backed
1344 * by this extent.
1345 */
1346 iomap->type = IOMAP_UNWRITTEN;
1347 goto out_unlock;
1348 }
1349
1350 /*
1351 * Else report a hole, capped to the next found data or COW extent.
1352 */
1353 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
1354 imap.br_blockcount = cow_fsb - offset_fsb;
1355 else
1356 imap.br_blockcount = data_fsb - offset_fsb;
1357 imap.br_startoff = offset_fsb;
1358 imap.br_startblock = HOLESTARTBLOCK;
1359 imap.br_state = XFS_EXT_NORM;
1360 done:
1361 seq = xfs_iomap_inode_sequence(ip, 0);
1362 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1363 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
1364 out_unlock:
1365 xfs_iunlock(ip, lockmode);
1366 return error;
1367 }
1368
1369 const struct iomap_ops xfs_seek_iomap_ops = {
1370 .iomap_begin = xfs_seek_iomap_begin,
1371 };
1372
1373 static int
xfs_xattr_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1374 xfs_xattr_iomap_begin(
1375 struct inode *inode,
1376 loff_t offset,
1377 loff_t length,
1378 unsigned flags,
1379 struct iomap *iomap,
1380 struct iomap *srcmap)
1381 {
1382 struct xfs_inode *ip = XFS_I(inode);
1383 struct xfs_mount *mp = ip->i_mount;
1384 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1385 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1386 struct xfs_bmbt_irec imap;
1387 int nimaps = 1, error = 0;
1388 unsigned lockmode;
1389 int seq;
1390
1391 if (xfs_is_shutdown(mp))
1392 return -EIO;
1393
1394 lockmode = xfs_ilock_attr_map_shared(ip);
1395
1396 /* if there are no attribute fork or extents, return ENOENT */
1397 if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) {
1398 error = -ENOENT;
1399 goto out_unlock;
1400 }
1401
1402 ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL);
1403 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1404 &nimaps, XFS_BMAPI_ATTRFORK);
1405 out_unlock:
1406
1407 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR);
1408 xfs_iunlock(ip, lockmode);
1409
1410 if (error)
1411 return error;
1412 ASSERT(nimaps);
1413 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq);
1414 }
1415
1416 const struct iomap_ops xfs_xattr_iomap_ops = {
1417 .iomap_begin = xfs_xattr_iomap_begin,
1418 };
1419
1420 int
xfs_zero_range(struct xfs_inode * ip,loff_t pos,loff_t len,bool * did_zero)1421 xfs_zero_range(
1422 struct xfs_inode *ip,
1423 loff_t pos,
1424 loff_t len,
1425 bool *did_zero)
1426 {
1427 struct inode *inode = VFS_I(ip);
1428
1429 if (IS_DAX(inode))
1430 return dax_zero_range(inode, pos, len, did_zero,
1431 &xfs_dax_write_iomap_ops);
1432 return iomap_zero_range(inode, pos, len, did_zero,
1433 &xfs_buffered_write_iomap_ops);
1434 }
1435
1436 int
xfs_truncate_page(struct xfs_inode * ip,loff_t pos,bool * did_zero)1437 xfs_truncate_page(
1438 struct xfs_inode *ip,
1439 loff_t pos,
1440 bool *did_zero)
1441 {
1442 struct inode *inode = VFS_I(ip);
1443
1444 if (IS_DAX(inode))
1445 return dax_truncate_page(inode, pos, did_zero,
1446 &xfs_dax_write_iomap_ops);
1447 return iomap_truncate_page(inode, pos, did_zero,
1448 &xfs_buffered_write_iomap_ops);
1449 }
1450