xref: /openbmc/linux/tools/testing/selftests/kvm/aarch64/page_fault_test.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * page_fault_test.c - Test stage 2 faults.
4   *
5   * This test tries different combinations of guest accesses (e.g., write,
6   * S1PTW), backing source type (e.g., anon) and types of faults (e.g., read on
7   * hugetlbfs with a hole). It checks that the expected handling method is
8   * called (e.g., uffd faults with the right address and write/read flag).
9   */
10  #define _GNU_SOURCE
11  #include <linux/bitmap.h>
12  #include <fcntl.h>
13  #include <test_util.h>
14  #include <kvm_util.h>
15  #include <processor.h>
16  #include <asm/sysreg.h>
17  #include <linux/bitfield.h>
18  #include "guest_modes.h"
19  #include "userfaultfd_util.h"
20  
21  /* Guest virtual addresses that point to the test page and its PTE. */
22  #define TEST_GVA				0xc0000000
23  #define TEST_EXEC_GVA				(TEST_GVA + 0x8)
24  #define TEST_PTE_GVA				0xb0000000
25  #define TEST_DATA				0x0123456789ABCDEF
26  
27  static uint64_t *guest_test_memory = (uint64_t *)TEST_GVA;
28  
29  #define CMD_NONE				(0)
30  #define CMD_SKIP_TEST				(1ULL << 1)
31  #define CMD_HOLE_PT				(1ULL << 2)
32  #define CMD_HOLE_DATA				(1ULL << 3)
33  #define CMD_CHECK_WRITE_IN_DIRTY_LOG		(1ULL << 4)
34  #define CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG		(1ULL << 5)
35  #define CMD_CHECK_NO_WRITE_IN_DIRTY_LOG		(1ULL << 6)
36  #define CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG	(1ULL << 7)
37  #define CMD_SET_PTE_AF				(1ULL << 8)
38  
39  #define PREPARE_FN_NR				10
40  #define CHECK_FN_NR				10
41  
42  static struct event_cnt {
43  	int mmio_exits;
44  	int fail_vcpu_runs;
45  	int uffd_faults;
46  	/* uffd_faults is incremented from multiple threads. */
47  	pthread_mutex_t uffd_faults_mutex;
48  } events;
49  
50  struct test_desc {
51  	const char *name;
52  	uint64_t mem_mark_cmd;
53  	/* Skip the test if any prepare function returns false */
54  	bool (*guest_prepare[PREPARE_FN_NR])(void);
55  	void (*guest_test)(void);
56  	void (*guest_test_check[CHECK_FN_NR])(void);
57  	uffd_handler_t uffd_pt_handler;
58  	uffd_handler_t uffd_data_handler;
59  	void (*dabt_handler)(struct ex_regs *regs);
60  	void (*iabt_handler)(struct ex_regs *regs);
61  	void (*mmio_handler)(struct kvm_vm *vm, struct kvm_run *run);
62  	void (*fail_vcpu_run_handler)(int ret);
63  	uint32_t pt_memslot_flags;
64  	uint32_t data_memslot_flags;
65  	bool skip;
66  	struct event_cnt expected_events;
67  };
68  
69  struct test_params {
70  	enum vm_mem_backing_src_type src_type;
71  	struct test_desc *test_desc;
72  };
73  
flush_tlb_page(uint64_t vaddr)74  static inline void flush_tlb_page(uint64_t vaddr)
75  {
76  	uint64_t page = vaddr >> 12;
77  
78  	dsb(ishst);
79  	asm volatile("tlbi vaae1is, %0" :: "r" (page));
80  	dsb(ish);
81  	isb();
82  }
83  
guest_write64(void)84  static void guest_write64(void)
85  {
86  	uint64_t val;
87  
88  	WRITE_ONCE(*guest_test_memory, TEST_DATA);
89  	val = READ_ONCE(*guest_test_memory);
90  	GUEST_ASSERT_EQ(val, TEST_DATA);
91  }
92  
93  /* Check the system for atomic instructions. */
guest_check_lse(void)94  static bool guest_check_lse(void)
95  {
96  	uint64_t isar0 = read_sysreg(id_aa64isar0_el1);
97  	uint64_t atomic;
98  
99  	atomic = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR0_ATOMICS), isar0);
100  	return atomic >= 2;
101  }
102  
guest_check_dc_zva(void)103  static bool guest_check_dc_zva(void)
104  {
105  	uint64_t dczid = read_sysreg(dczid_el0);
106  	uint64_t dzp = FIELD_GET(ARM64_FEATURE_MASK(DCZID_DZP), dczid);
107  
108  	return dzp == 0;
109  }
110  
111  /* Compare and swap instruction. */
guest_cas(void)112  static void guest_cas(void)
113  {
114  	uint64_t val;
115  
116  	GUEST_ASSERT(guest_check_lse());
117  	asm volatile(".arch_extension lse\n"
118  		     "casal %0, %1, [%2]\n"
119  		     :: "r" (0ul), "r" (TEST_DATA), "r" (guest_test_memory));
120  	val = READ_ONCE(*guest_test_memory);
121  	GUEST_ASSERT_EQ(val, TEST_DATA);
122  }
123  
guest_read64(void)124  static void guest_read64(void)
125  {
126  	uint64_t val;
127  
128  	val = READ_ONCE(*guest_test_memory);
129  	GUEST_ASSERT_EQ(val, 0);
130  }
131  
132  /* Address translation instruction */
guest_at(void)133  static void guest_at(void)
134  {
135  	uint64_t par;
136  
137  	asm volatile("at s1e1r, %0" :: "r" (guest_test_memory));
138  	par = read_sysreg(par_el1);
139  	isb();
140  
141  	/* Bit 1 indicates whether the AT was successful */
142  	GUEST_ASSERT_EQ(par & 1, 0);
143  }
144  
145  /*
146   * The size of the block written by "dc zva" is guaranteed to be between (2 <<
147   * 0) and (2 << 9), which is safe in our case as we need the write to happen
148   * for at least a word, and not more than a page.
149   */
guest_dc_zva(void)150  static void guest_dc_zva(void)
151  {
152  	uint16_t val;
153  
154  	asm volatile("dc zva, %0" :: "r" (guest_test_memory));
155  	dsb(ish);
156  	val = READ_ONCE(*guest_test_memory);
157  	GUEST_ASSERT_EQ(val, 0);
158  }
159  
160  /*
161   * Pre-indexing loads and stores don't have a valid syndrome (ESR_EL2.ISV==0).
162   * And that's special because KVM must take special care with those: they
163   * should still count as accesses for dirty logging or user-faulting, but
164   * should be handled differently on mmio.
165   */
guest_ld_preidx(void)166  static void guest_ld_preidx(void)
167  {
168  	uint64_t val;
169  	uint64_t addr = TEST_GVA - 8;
170  
171  	/*
172  	 * This ends up accessing "TEST_GVA + 8 - 8", where "TEST_GVA - 8" is
173  	 * in a gap between memslots not backing by anything.
174  	 */
175  	asm volatile("ldr %0, [%1, #8]!"
176  		     : "=r" (val), "+r" (addr));
177  	GUEST_ASSERT_EQ(val, 0);
178  	GUEST_ASSERT_EQ(addr, TEST_GVA);
179  }
180  
guest_st_preidx(void)181  static void guest_st_preidx(void)
182  {
183  	uint64_t val = TEST_DATA;
184  	uint64_t addr = TEST_GVA - 8;
185  
186  	asm volatile("str %0, [%1, #8]!"
187  		     : "+r" (val), "+r" (addr));
188  
189  	GUEST_ASSERT_EQ(addr, TEST_GVA);
190  	val = READ_ONCE(*guest_test_memory);
191  }
192  
guest_set_ha(void)193  static bool guest_set_ha(void)
194  {
195  	uint64_t mmfr1 = read_sysreg(id_aa64mmfr1_el1);
196  	uint64_t hadbs, tcr;
197  
198  	/* Skip if HA is not supported. */
199  	hadbs = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_HADBS), mmfr1);
200  	if (hadbs == 0)
201  		return false;
202  
203  	tcr = read_sysreg(tcr_el1) | TCR_EL1_HA;
204  	write_sysreg(tcr, tcr_el1);
205  	isb();
206  
207  	return true;
208  }
209  
guest_clear_pte_af(void)210  static bool guest_clear_pte_af(void)
211  {
212  	*((uint64_t *)TEST_PTE_GVA) &= ~PTE_AF;
213  	flush_tlb_page(TEST_GVA);
214  
215  	return true;
216  }
217  
guest_check_pte_af(void)218  static void guest_check_pte_af(void)
219  {
220  	dsb(ish);
221  	GUEST_ASSERT_EQ(*((uint64_t *)TEST_PTE_GVA) & PTE_AF, PTE_AF);
222  }
223  
guest_check_write_in_dirty_log(void)224  static void guest_check_write_in_dirty_log(void)
225  {
226  	GUEST_SYNC(CMD_CHECK_WRITE_IN_DIRTY_LOG);
227  }
228  
guest_check_no_write_in_dirty_log(void)229  static void guest_check_no_write_in_dirty_log(void)
230  {
231  	GUEST_SYNC(CMD_CHECK_NO_WRITE_IN_DIRTY_LOG);
232  }
233  
guest_check_s1ptw_wr_in_dirty_log(void)234  static void guest_check_s1ptw_wr_in_dirty_log(void)
235  {
236  	GUEST_SYNC(CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG);
237  }
238  
guest_check_no_s1ptw_wr_in_dirty_log(void)239  static void guest_check_no_s1ptw_wr_in_dirty_log(void)
240  {
241  	GUEST_SYNC(CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG);
242  }
243  
guest_exec(void)244  static void guest_exec(void)
245  {
246  	int (*code)(void) = (int (*)(void))TEST_EXEC_GVA;
247  	int ret;
248  
249  	ret = code();
250  	GUEST_ASSERT_EQ(ret, 0x77);
251  }
252  
guest_prepare(struct test_desc * test)253  static bool guest_prepare(struct test_desc *test)
254  {
255  	bool (*prepare_fn)(void);
256  	int i;
257  
258  	for (i = 0; i < PREPARE_FN_NR; i++) {
259  		prepare_fn = test->guest_prepare[i];
260  		if (prepare_fn && !prepare_fn())
261  			return false;
262  	}
263  
264  	return true;
265  }
266  
guest_test_check(struct test_desc * test)267  static void guest_test_check(struct test_desc *test)
268  {
269  	void (*check_fn)(void);
270  	int i;
271  
272  	for (i = 0; i < CHECK_FN_NR; i++) {
273  		check_fn = test->guest_test_check[i];
274  		if (check_fn)
275  			check_fn();
276  	}
277  }
278  
guest_code(struct test_desc * test)279  static void guest_code(struct test_desc *test)
280  {
281  	if (!guest_prepare(test))
282  		GUEST_SYNC(CMD_SKIP_TEST);
283  
284  	GUEST_SYNC(test->mem_mark_cmd);
285  
286  	if (test->guest_test)
287  		test->guest_test();
288  
289  	guest_test_check(test);
290  	GUEST_DONE();
291  }
292  
no_dabt_handler(struct ex_regs * regs)293  static void no_dabt_handler(struct ex_regs *regs)
294  {
295  	GUEST_FAIL("Unexpected dabt, far_el1 = 0x%llx", read_sysreg(far_el1));
296  }
297  
no_iabt_handler(struct ex_regs * regs)298  static void no_iabt_handler(struct ex_regs *regs)
299  {
300  	GUEST_FAIL("Unexpected iabt, pc = 0x%lx", regs->pc);
301  }
302  
303  static struct uffd_args {
304  	char *copy;
305  	void *hva;
306  	uint64_t paging_size;
307  } pt_args, data_args;
308  
309  /* Returns true to continue the test, and false if it should be skipped. */
uffd_generic_handler(int uffd_mode,int uffd,struct uffd_msg * msg,struct uffd_args * args)310  static int uffd_generic_handler(int uffd_mode, int uffd, struct uffd_msg *msg,
311  				struct uffd_args *args)
312  {
313  	uint64_t addr = msg->arg.pagefault.address;
314  	uint64_t flags = msg->arg.pagefault.flags;
315  	struct uffdio_copy copy;
316  	int ret;
317  
318  	TEST_ASSERT(uffd_mode == UFFDIO_REGISTER_MODE_MISSING,
319  		    "The only expected UFFD mode is MISSING");
320  	TEST_ASSERT_EQ(addr, (uint64_t)args->hva);
321  
322  	pr_debug("uffd fault: addr=%p write=%d\n",
323  		 (void *)addr, !!(flags & UFFD_PAGEFAULT_FLAG_WRITE));
324  
325  	copy.src = (uint64_t)args->copy;
326  	copy.dst = addr;
327  	copy.len = args->paging_size;
328  	copy.mode = 0;
329  
330  	ret = ioctl(uffd, UFFDIO_COPY, &copy);
331  	if (ret == -1) {
332  		pr_info("Failed UFFDIO_COPY in 0x%lx with errno: %d\n",
333  			addr, errno);
334  		return ret;
335  	}
336  
337  	pthread_mutex_lock(&events.uffd_faults_mutex);
338  	events.uffd_faults += 1;
339  	pthread_mutex_unlock(&events.uffd_faults_mutex);
340  	return 0;
341  }
342  
uffd_pt_handler(int mode,int uffd,struct uffd_msg * msg)343  static int uffd_pt_handler(int mode, int uffd, struct uffd_msg *msg)
344  {
345  	return uffd_generic_handler(mode, uffd, msg, &pt_args);
346  }
347  
uffd_data_handler(int mode,int uffd,struct uffd_msg * msg)348  static int uffd_data_handler(int mode, int uffd, struct uffd_msg *msg)
349  {
350  	return uffd_generic_handler(mode, uffd, msg, &data_args);
351  }
352  
setup_uffd_args(struct userspace_mem_region * region,struct uffd_args * args)353  static void setup_uffd_args(struct userspace_mem_region *region,
354  			    struct uffd_args *args)
355  {
356  	args->hva = (void *)region->region.userspace_addr;
357  	args->paging_size = region->region.memory_size;
358  
359  	args->copy = malloc(args->paging_size);
360  	TEST_ASSERT(args->copy, "Failed to allocate data copy.");
361  	memcpy(args->copy, args->hva, args->paging_size);
362  }
363  
setup_uffd(struct kvm_vm * vm,struct test_params * p,struct uffd_desc ** pt_uffd,struct uffd_desc ** data_uffd)364  static void setup_uffd(struct kvm_vm *vm, struct test_params *p,
365  		       struct uffd_desc **pt_uffd, struct uffd_desc **data_uffd)
366  {
367  	struct test_desc *test = p->test_desc;
368  	int uffd_mode = UFFDIO_REGISTER_MODE_MISSING;
369  
370  	setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_PT), &pt_args);
371  	setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_TEST_DATA), &data_args);
372  
373  	*pt_uffd = NULL;
374  	if (test->uffd_pt_handler)
375  		*pt_uffd = uffd_setup_demand_paging(uffd_mode, 0,
376  						    pt_args.hva,
377  						    pt_args.paging_size,
378  						    test->uffd_pt_handler);
379  
380  	*data_uffd = NULL;
381  	if (test->uffd_data_handler)
382  		*data_uffd = uffd_setup_demand_paging(uffd_mode, 0,
383  						      data_args.hva,
384  						      data_args.paging_size,
385  						      test->uffd_data_handler);
386  }
387  
free_uffd(struct test_desc * test,struct uffd_desc * pt_uffd,struct uffd_desc * data_uffd)388  static void free_uffd(struct test_desc *test, struct uffd_desc *pt_uffd,
389  		      struct uffd_desc *data_uffd)
390  {
391  	if (test->uffd_pt_handler)
392  		uffd_stop_demand_paging(pt_uffd);
393  	if (test->uffd_data_handler)
394  		uffd_stop_demand_paging(data_uffd);
395  
396  	free(pt_args.copy);
397  	free(data_args.copy);
398  }
399  
uffd_no_handler(int mode,int uffd,struct uffd_msg * msg)400  static int uffd_no_handler(int mode, int uffd, struct uffd_msg *msg)
401  {
402  	TEST_FAIL("There was no UFFD fault expected.");
403  	return -1;
404  }
405  
406  /* Returns false if the test should be skipped. */
punch_hole_in_backing_store(struct kvm_vm * vm,struct userspace_mem_region * region)407  static bool punch_hole_in_backing_store(struct kvm_vm *vm,
408  					struct userspace_mem_region *region)
409  {
410  	void *hva = (void *)region->region.userspace_addr;
411  	uint64_t paging_size = region->region.memory_size;
412  	int ret, fd = region->fd;
413  
414  	if (fd != -1) {
415  		ret = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
416  				0, paging_size);
417  		TEST_ASSERT(ret == 0, "fallocate failed\n");
418  	} else {
419  		ret = madvise(hva, paging_size, MADV_DONTNEED);
420  		TEST_ASSERT(ret == 0, "madvise failed\n");
421  	}
422  
423  	return true;
424  }
425  
mmio_on_test_gpa_handler(struct kvm_vm * vm,struct kvm_run * run)426  static void mmio_on_test_gpa_handler(struct kvm_vm *vm, struct kvm_run *run)
427  {
428  	struct userspace_mem_region *region;
429  	void *hva;
430  
431  	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
432  	hva = (void *)region->region.userspace_addr;
433  
434  	TEST_ASSERT_EQ(run->mmio.phys_addr, region->region.guest_phys_addr);
435  
436  	memcpy(hva, run->mmio.data, run->mmio.len);
437  	events.mmio_exits += 1;
438  }
439  
mmio_no_handler(struct kvm_vm * vm,struct kvm_run * run)440  static void mmio_no_handler(struct kvm_vm *vm, struct kvm_run *run)
441  {
442  	uint64_t data;
443  
444  	memcpy(&data, run->mmio.data, sizeof(data));
445  	pr_debug("addr=%lld len=%d w=%d data=%lx\n",
446  		 run->mmio.phys_addr, run->mmio.len,
447  		 run->mmio.is_write, data);
448  	TEST_FAIL("There was no MMIO exit expected.");
449  }
450  
check_write_in_dirty_log(struct kvm_vm * vm,struct userspace_mem_region * region,uint64_t host_pg_nr)451  static bool check_write_in_dirty_log(struct kvm_vm *vm,
452  				     struct userspace_mem_region *region,
453  				     uint64_t host_pg_nr)
454  {
455  	unsigned long *bmap;
456  	bool first_page_dirty;
457  	uint64_t size = region->region.memory_size;
458  
459  	/* getpage_size() is not always equal to vm->page_size */
460  	bmap = bitmap_zalloc(size / getpagesize());
461  	kvm_vm_get_dirty_log(vm, region->region.slot, bmap);
462  	first_page_dirty = test_bit(host_pg_nr, bmap);
463  	free(bmap);
464  	return first_page_dirty;
465  }
466  
467  /* Returns true to continue the test, and false if it should be skipped. */
handle_cmd(struct kvm_vm * vm,int cmd)468  static bool handle_cmd(struct kvm_vm *vm, int cmd)
469  {
470  	struct userspace_mem_region *data_region, *pt_region;
471  	bool continue_test = true;
472  	uint64_t pte_gpa, pte_pg;
473  
474  	data_region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
475  	pt_region = vm_get_mem_region(vm, MEM_REGION_PT);
476  	pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
477  	pte_pg = (pte_gpa - pt_region->region.guest_phys_addr) / getpagesize();
478  
479  	if (cmd == CMD_SKIP_TEST)
480  		continue_test = false;
481  
482  	if (cmd & CMD_HOLE_PT)
483  		continue_test = punch_hole_in_backing_store(vm, pt_region);
484  	if (cmd & CMD_HOLE_DATA)
485  		continue_test = punch_hole_in_backing_store(vm, data_region);
486  	if (cmd & CMD_CHECK_WRITE_IN_DIRTY_LOG)
487  		TEST_ASSERT(check_write_in_dirty_log(vm, data_region, 0),
488  			    "Missing write in dirty log");
489  	if (cmd & CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG)
490  		TEST_ASSERT(check_write_in_dirty_log(vm, pt_region, pte_pg),
491  			    "Missing s1ptw write in dirty log");
492  	if (cmd & CMD_CHECK_NO_WRITE_IN_DIRTY_LOG)
493  		TEST_ASSERT(!check_write_in_dirty_log(vm, data_region, 0),
494  			    "Unexpected write in dirty log");
495  	if (cmd & CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG)
496  		TEST_ASSERT(!check_write_in_dirty_log(vm, pt_region, pte_pg),
497  			    "Unexpected s1ptw write in dirty log");
498  
499  	return continue_test;
500  }
501  
fail_vcpu_run_no_handler(int ret)502  void fail_vcpu_run_no_handler(int ret)
503  {
504  	TEST_FAIL("Unexpected vcpu run failure\n");
505  }
506  
fail_vcpu_run_mmio_no_syndrome_handler(int ret)507  void fail_vcpu_run_mmio_no_syndrome_handler(int ret)
508  {
509  	TEST_ASSERT(errno == ENOSYS,
510  		    "The mmio handler should have returned not implemented.");
511  	events.fail_vcpu_runs += 1;
512  }
513  
514  typedef uint32_t aarch64_insn_t;
515  extern aarch64_insn_t __exec_test[2];
516  
__return_0x77(void)517  noinline void __return_0x77(void)
518  {
519  	asm volatile("__exec_test: mov x0, #0x77\n"
520  		     "ret\n");
521  }
522  
523  /*
524   * Note that this function runs on the host before the test VM starts: there's
525   * no need to sync the D$ and I$ caches.
526   */
load_exec_code_for_test(struct kvm_vm * vm)527  static void load_exec_code_for_test(struct kvm_vm *vm)
528  {
529  	uint64_t *code;
530  	struct userspace_mem_region *region;
531  	void *hva;
532  
533  	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
534  	hva = (void *)region->region.userspace_addr;
535  
536  	assert(TEST_EXEC_GVA > TEST_GVA);
537  	code = hva + TEST_EXEC_GVA - TEST_GVA;
538  	memcpy(code, __exec_test, sizeof(__exec_test));
539  }
540  
setup_abort_handlers(struct kvm_vm * vm,struct kvm_vcpu * vcpu,struct test_desc * test)541  static void setup_abort_handlers(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
542  				 struct test_desc *test)
543  {
544  	vm_init_descriptor_tables(vm);
545  	vcpu_init_descriptor_tables(vcpu);
546  
547  	vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
548  				ESR_EC_DABT, no_dabt_handler);
549  	vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
550  				ESR_EC_IABT, no_iabt_handler);
551  }
552  
setup_gva_maps(struct kvm_vm * vm)553  static void setup_gva_maps(struct kvm_vm *vm)
554  {
555  	struct userspace_mem_region *region;
556  	uint64_t pte_gpa;
557  
558  	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
559  	/* Map TEST_GVA first. This will install a new PTE. */
560  	virt_pg_map(vm, TEST_GVA, region->region.guest_phys_addr);
561  	/* Then map TEST_PTE_GVA to the above PTE. */
562  	pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
563  	virt_pg_map(vm, TEST_PTE_GVA, pte_gpa);
564  }
565  
566  enum pf_test_memslots {
567  	CODE_AND_DATA_MEMSLOT,
568  	PAGE_TABLE_MEMSLOT,
569  	TEST_DATA_MEMSLOT,
570  };
571  
572  /*
573   * Create a memslot for code and data at pfn=0, and test-data and PT ones
574   * at max_gfn.
575   */
setup_memslots(struct kvm_vm * vm,struct test_params * p)576  static void setup_memslots(struct kvm_vm *vm, struct test_params *p)
577  {
578  	uint64_t backing_src_pagesz = get_backing_src_pagesz(p->src_type);
579  	uint64_t guest_page_size = vm->page_size;
580  	uint64_t max_gfn = vm_compute_max_gfn(vm);
581  	/* Enough for 2M of code when using 4K guest pages. */
582  	uint64_t code_npages = 512;
583  	uint64_t pt_size, data_size, data_gpa;
584  
585  	/*
586  	 * This test requires 1 pgd, 2 pud, 4 pmd, and 6 pte pages when using
587  	 * VM_MODE_P48V48_4K. Note that the .text takes ~1.6MBs.  That's 13
588  	 * pages. VM_MODE_P48V48_4K is the mode with most PT pages; let's use
589  	 * twice that just in case.
590  	 */
591  	pt_size = 26 * guest_page_size;
592  
593  	/* memslot sizes and gpa's must be aligned to the backing page size */
594  	pt_size = align_up(pt_size, backing_src_pagesz);
595  	data_size = align_up(guest_page_size, backing_src_pagesz);
596  	data_gpa = (max_gfn * guest_page_size) - data_size;
597  	data_gpa = align_down(data_gpa, backing_src_pagesz);
598  
599  	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0,
600  				    CODE_AND_DATA_MEMSLOT, code_npages, 0);
601  	vm->memslots[MEM_REGION_CODE] = CODE_AND_DATA_MEMSLOT;
602  	vm->memslots[MEM_REGION_DATA] = CODE_AND_DATA_MEMSLOT;
603  
604  	vm_userspace_mem_region_add(vm, p->src_type, data_gpa - pt_size,
605  				    PAGE_TABLE_MEMSLOT, pt_size / guest_page_size,
606  				    p->test_desc->pt_memslot_flags);
607  	vm->memslots[MEM_REGION_PT] = PAGE_TABLE_MEMSLOT;
608  
609  	vm_userspace_mem_region_add(vm, p->src_type, data_gpa, TEST_DATA_MEMSLOT,
610  				    data_size / guest_page_size,
611  				    p->test_desc->data_memslot_flags);
612  	vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT;
613  }
614  
setup_ucall(struct kvm_vm * vm)615  static void setup_ucall(struct kvm_vm *vm)
616  {
617  	struct userspace_mem_region *region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
618  
619  	ucall_init(vm, region->region.guest_phys_addr + region->region.memory_size);
620  }
621  
setup_default_handlers(struct test_desc * test)622  static void setup_default_handlers(struct test_desc *test)
623  {
624  	if (!test->mmio_handler)
625  		test->mmio_handler = mmio_no_handler;
626  
627  	if (!test->fail_vcpu_run_handler)
628  		test->fail_vcpu_run_handler = fail_vcpu_run_no_handler;
629  }
630  
check_event_counts(struct test_desc * test)631  static void check_event_counts(struct test_desc *test)
632  {
633  	TEST_ASSERT_EQ(test->expected_events.uffd_faults, events.uffd_faults);
634  	TEST_ASSERT_EQ(test->expected_events.mmio_exits, events.mmio_exits);
635  	TEST_ASSERT_EQ(test->expected_events.fail_vcpu_runs, events.fail_vcpu_runs);
636  }
637  
print_test_banner(enum vm_guest_mode mode,struct test_params * p)638  static void print_test_banner(enum vm_guest_mode mode, struct test_params *p)
639  {
640  	struct test_desc *test = p->test_desc;
641  
642  	pr_debug("Test: %s\n", test->name);
643  	pr_debug("Testing guest mode: %s\n", vm_guest_mode_string(mode));
644  	pr_debug("Testing memory backing src type: %s\n",
645  		 vm_mem_backing_src_alias(p->src_type)->name);
646  }
647  
reset_event_counts(void)648  static void reset_event_counts(void)
649  {
650  	memset(&events, 0, sizeof(events));
651  }
652  
653  /*
654   * This function either succeeds, skips the test (after setting test->skip), or
655   * fails with a TEST_FAIL that aborts all tests.
656   */
vcpu_run_loop(struct kvm_vm * vm,struct kvm_vcpu * vcpu,struct test_desc * test)657  static void vcpu_run_loop(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
658  			  struct test_desc *test)
659  {
660  	struct kvm_run *run;
661  	struct ucall uc;
662  	int ret;
663  
664  	run = vcpu->run;
665  
666  	for (;;) {
667  		ret = _vcpu_run(vcpu);
668  		if (ret) {
669  			test->fail_vcpu_run_handler(ret);
670  			goto done;
671  		}
672  
673  		switch (get_ucall(vcpu, &uc)) {
674  		case UCALL_SYNC:
675  			if (!handle_cmd(vm, uc.args[1])) {
676  				test->skip = true;
677  				goto done;
678  			}
679  			break;
680  		case UCALL_ABORT:
681  			REPORT_GUEST_ASSERT(uc);
682  			break;
683  		case UCALL_DONE:
684  			goto done;
685  		case UCALL_NONE:
686  			if (run->exit_reason == KVM_EXIT_MMIO)
687  				test->mmio_handler(vm, run);
688  			break;
689  		default:
690  			TEST_FAIL("Unknown ucall %lu", uc.cmd);
691  		}
692  	}
693  
694  done:
695  	pr_debug(test->skip ? "Skipped.\n" : "Done.\n");
696  }
697  
run_test(enum vm_guest_mode mode,void * arg)698  static void run_test(enum vm_guest_mode mode, void *arg)
699  {
700  	struct test_params *p = (struct test_params *)arg;
701  	struct test_desc *test = p->test_desc;
702  	struct kvm_vm *vm;
703  	struct kvm_vcpu *vcpu;
704  	struct uffd_desc *pt_uffd, *data_uffd;
705  
706  	print_test_banner(mode, p);
707  
708  	vm = ____vm_create(mode);
709  	setup_memslots(vm, p);
710  	kvm_vm_elf_load(vm, program_invocation_name);
711  	setup_ucall(vm);
712  	vcpu = vm_vcpu_add(vm, 0, guest_code);
713  
714  	setup_gva_maps(vm);
715  
716  	reset_event_counts();
717  
718  	/*
719  	 * Set some code in the data memslot for the guest to execute (only
720  	 * applicable to the EXEC tests). This has to be done before
721  	 * setup_uffd() as that function copies the memslot data for the uffd
722  	 * handler.
723  	 */
724  	load_exec_code_for_test(vm);
725  	setup_uffd(vm, p, &pt_uffd, &data_uffd);
726  	setup_abort_handlers(vm, vcpu, test);
727  	setup_default_handlers(test);
728  	vcpu_args_set(vcpu, 1, test);
729  
730  	vcpu_run_loop(vm, vcpu, test);
731  
732  	kvm_vm_free(vm);
733  	free_uffd(test, pt_uffd, data_uffd);
734  
735  	/*
736  	 * Make sure we check the events after the uffd threads have exited,
737  	 * which means they updated their respective event counters.
738  	 */
739  	if (!test->skip)
740  		check_event_counts(test);
741  }
742  
help(char * name)743  static void help(char *name)
744  {
745  	puts("");
746  	printf("usage: %s [-h] [-s mem-type]\n", name);
747  	puts("");
748  	guest_modes_help();
749  	backing_src_help("-s");
750  	puts("");
751  }
752  
753  #define SNAME(s)			#s
754  #define SCAT2(a, b)			SNAME(a ## _ ## b)
755  #define SCAT3(a, b, c)			SCAT2(a, SCAT2(b, c))
756  #define SCAT4(a, b, c, d)		SCAT2(a, SCAT3(b, c, d))
757  
758  #define _CHECK(_test)			_CHECK_##_test
759  #define _PREPARE(_test)			_PREPARE_##_test
760  #define _PREPARE_guest_read64		NULL
761  #define _PREPARE_guest_ld_preidx	NULL
762  #define _PREPARE_guest_write64		NULL
763  #define _PREPARE_guest_st_preidx	NULL
764  #define _PREPARE_guest_exec		NULL
765  #define _PREPARE_guest_at		NULL
766  #define _PREPARE_guest_dc_zva		guest_check_dc_zva
767  #define _PREPARE_guest_cas		guest_check_lse
768  
769  /* With or without access flag checks */
770  #define _PREPARE_with_af		guest_set_ha, guest_clear_pte_af
771  #define _PREPARE_no_af			NULL
772  #define _CHECK_with_af			guest_check_pte_af
773  #define _CHECK_no_af			NULL
774  
775  /* Performs an access and checks that no faults were triggered. */
776  #define TEST_ACCESS(_access, _with_af, _mark_cmd)				\
777  {										\
778  	.name			= SCAT3(_access, _with_af, #_mark_cmd),		\
779  	.guest_prepare		= { _PREPARE(_with_af),				\
780  				    _PREPARE(_access) },			\
781  	.mem_mark_cmd		= _mark_cmd,					\
782  	.guest_test		= _access,					\
783  	.guest_test_check	= { _CHECK(_with_af) },				\
784  	.expected_events	= { 0 },					\
785  }
786  
787  #define TEST_UFFD(_access, _with_af, _mark_cmd,					\
788  		  _uffd_data_handler, _uffd_pt_handler, _uffd_faults)		\
789  {										\
790  	.name			= SCAT4(uffd, _access, _with_af, #_mark_cmd),	\
791  	.guest_prepare		= { _PREPARE(_with_af),				\
792  				    _PREPARE(_access) },			\
793  	.guest_test		= _access,					\
794  	.mem_mark_cmd		= _mark_cmd,					\
795  	.guest_test_check	= { _CHECK(_with_af) },				\
796  	.uffd_data_handler	= _uffd_data_handler,				\
797  	.uffd_pt_handler	= _uffd_pt_handler,				\
798  	.expected_events	= { .uffd_faults = _uffd_faults, },		\
799  }
800  
801  #define TEST_DIRTY_LOG(_access, _with_af, _test_check, _pt_check)		\
802  {										\
803  	.name			= SCAT3(dirty_log, _access, _with_af),		\
804  	.data_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
805  	.pt_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
806  	.guest_prepare		= { _PREPARE(_with_af),				\
807  				    _PREPARE(_access) },			\
808  	.guest_test		= _access,					\
809  	.guest_test_check	= { _CHECK(_with_af), _test_check, _pt_check },	\
810  	.expected_events	= { 0 },					\
811  }
812  
813  #define TEST_UFFD_AND_DIRTY_LOG(_access, _with_af, _uffd_data_handler,		\
814  				_uffd_faults, _test_check, _pt_check)		\
815  {										\
816  	.name			= SCAT3(uffd_and_dirty_log, _access, _with_af),	\
817  	.data_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
818  	.pt_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
819  	.guest_prepare		= { _PREPARE(_with_af),				\
820  				    _PREPARE(_access) },			\
821  	.guest_test		= _access,					\
822  	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
823  	.guest_test_check	= { _CHECK(_with_af), _test_check, _pt_check },	\
824  	.uffd_data_handler	= _uffd_data_handler,				\
825  	.uffd_pt_handler	= uffd_pt_handler,				\
826  	.expected_events	= { .uffd_faults = _uffd_faults, },		\
827  }
828  
829  #define TEST_RO_MEMSLOT(_access, _mmio_handler, _mmio_exits)			\
830  {										\
831  	.name			= SCAT2(ro_memslot, _access),			\
832  	.data_memslot_flags	= KVM_MEM_READONLY,				\
833  	.pt_memslot_flags	= KVM_MEM_READONLY,				\
834  	.guest_prepare		= { _PREPARE(_access) },			\
835  	.guest_test		= _access,					\
836  	.mmio_handler		= _mmio_handler,				\
837  	.expected_events	= { .mmio_exits = _mmio_exits },		\
838  }
839  
840  #define TEST_RO_MEMSLOT_NO_SYNDROME(_access)					\
841  {										\
842  	.name			= SCAT2(ro_memslot_no_syndrome, _access),	\
843  	.data_memslot_flags	= KVM_MEM_READONLY,				\
844  	.pt_memslot_flags	= KVM_MEM_READONLY,				\
845  	.guest_test		= _access,					\
846  	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
847  	.expected_events	= { .fail_vcpu_runs = 1 },			\
848  }
849  
850  #define TEST_RO_MEMSLOT_AND_DIRTY_LOG(_access, _mmio_handler, _mmio_exits,	\
851  				      _test_check)				\
852  {										\
853  	.name			= SCAT2(ro_memslot, _access),			\
854  	.data_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
855  	.pt_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
856  	.guest_prepare		= { _PREPARE(_access) },			\
857  	.guest_test		= _access,					\
858  	.guest_test_check	= { _test_check },				\
859  	.mmio_handler		= _mmio_handler,				\
860  	.expected_events	= { .mmio_exits = _mmio_exits},			\
861  }
862  
863  #define TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(_access, _test_check)		\
864  {										\
865  	.name			= SCAT2(ro_memslot_no_syn_and_dlog, _access),	\
866  	.data_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
867  	.pt_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
868  	.guest_test		= _access,					\
869  	.guest_test_check	= { _test_check },				\
870  	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
871  	.expected_events	= { .fail_vcpu_runs = 1 },			\
872  }
873  
874  #define TEST_RO_MEMSLOT_AND_UFFD(_access, _mmio_handler, _mmio_exits,		\
875  				 _uffd_data_handler, _uffd_faults)		\
876  {										\
877  	.name			= SCAT2(ro_memslot_uffd, _access),		\
878  	.data_memslot_flags	= KVM_MEM_READONLY,				\
879  	.pt_memslot_flags	= KVM_MEM_READONLY,				\
880  	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
881  	.guest_prepare		= { _PREPARE(_access) },			\
882  	.guest_test		= _access,					\
883  	.uffd_data_handler	= _uffd_data_handler,				\
884  	.uffd_pt_handler	= uffd_pt_handler,				\
885  	.mmio_handler		= _mmio_handler,				\
886  	.expected_events	= { .mmio_exits = _mmio_exits,			\
887  				    .uffd_faults = _uffd_faults },		\
888  }
889  
890  #define TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(_access, _uffd_data_handler,	\
891  					     _uffd_faults)			\
892  {										\
893  	.name			= SCAT2(ro_memslot_no_syndrome, _access),	\
894  	.data_memslot_flags	= KVM_MEM_READONLY,				\
895  	.pt_memslot_flags	= KVM_MEM_READONLY,				\
896  	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
897  	.guest_test		= _access,					\
898  	.uffd_data_handler	= _uffd_data_handler,				\
899  	.uffd_pt_handler	= uffd_pt_handler,			\
900  	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
901  	.expected_events	= { .fail_vcpu_runs = 1,			\
902  				    .uffd_faults = _uffd_faults },		\
903  }
904  
905  static struct test_desc tests[] = {
906  
907  	/* Check that HW is setting the Access Flag (AF) (sanity checks). */
908  	TEST_ACCESS(guest_read64, with_af, CMD_NONE),
909  	TEST_ACCESS(guest_ld_preidx, with_af, CMD_NONE),
910  	TEST_ACCESS(guest_cas, with_af, CMD_NONE),
911  	TEST_ACCESS(guest_write64, with_af, CMD_NONE),
912  	TEST_ACCESS(guest_st_preidx, with_af, CMD_NONE),
913  	TEST_ACCESS(guest_dc_zva, with_af, CMD_NONE),
914  	TEST_ACCESS(guest_exec, with_af, CMD_NONE),
915  
916  	/*
917  	 * Punch a hole in the data backing store, and then try multiple
918  	 * accesses: reads should rturn zeroes, and writes should
919  	 * re-populate the page. Moreover, the test also check that no
920  	 * exception was generated in the guest.  Note that this
921  	 * reading/writing behavior is the same as reading/writing a
922  	 * punched page (with fallocate(FALLOC_FL_PUNCH_HOLE)) from
923  	 * userspace.
924  	 */
925  	TEST_ACCESS(guest_read64, no_af, CMD_HOLE_DATA),
926  	TEST_ACCESS(guest_cas, no_af, CMD_HOLE_DATA),
927  	TEST_ACCESS(guest_ld_preidx, no_af, CMD_HOLE_DATA),
928  	TEST_ACCESS(guest_write64, no_af, CMD_HOLE_DATA),
929  	TEST_ACCESS(guest_st_preidx, no_af, CMD_HOLE_DATA),
930  	TEST_ACCESS(guest_at, no_af, CMD_HOLE_DATA),
931  	TEST_ACCESS(guest_dc_zva, no_af, CMD_HOLE_DATA),
932  
933  	/*
934  	 * Punch holes in the data and PT backing stores and mark them for
935  	 * userfaultfd handling. This should result in 2 faults: the access
936  	 * on the data backing store, and its respective S1 page table walk
937  	 * (S1PTW).
938  	 */
939  	TEST_UFFD(guest_read64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
940  		  uffd_data_handler, uffd_pt_handler, 2),
941  	TEST_UFFD(guest_read64, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
942  		  uffd_data_handler, uffd_pt_handler, 2),
943  	TEST_UFFD(guest_cas, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
944  		  uffd_data_handler, uffd_pt_handler, 2),
945  	/*
946  	 * Can't test guest_at with_af as it's IMPDEF whether the AF is set.
947  	 * The S1PTW fault should still be marked as a write.
948  	 */
949  	TEST_UFFD(guest_at, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
950  		  uffd_no_handler, uffd_pt_handler, 1),
951  	TEST_UFFD(guest_ld_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
952  		  uffd_data_handler, uffd_pt_handler, 2),
953  	TEST_UFFD(guest_write64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
954  		  uffd_data_handler, uffd_pt_handler, 2),
955  	TEST_UFFD(guest_dc_zva, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
956  		  uffd_data_handler, uffd_pt_handler, 2),
957  	TEST_UFFD(guest_st_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
958  		  uffd_data_handler, uffd_pt_handler, 2),
959  	TEST_UFFD(guest_exec, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
960  		  uffd_data_handler, uffd_pt_handler, 2),
961  
962  	/*
963  	 * Try accesses when the data and PT memory regions are both
964  	 * tracked for dirty logging.
965  	 */
966  	TEST_DIRTY_LOG(guest_read64, with_af, guest_check_no_write_in_dirty_log,
967  		       guest_check_s1ptw_wr_in_dirty_log),
968  	TEST_DIRTY_LOG(guest_read64, no_af, guest_check_no_write_in_dirty_log,
969  		       guest_check_no_s1ptw_wr_in_dirty_log),
970  	TEST_DIRTY_LOG(guest_ld_preidx, with_af,
971  		       guest_check_no_write_in_dirty_log,
972  		       guest_check_s1ptw_wr_in_dirty_log),
973  	TEST_DIRTY_LOG(guest_at, no_af, guest_check_no_write_in_dirty_log,
974  		       guest_check_no_s1ptw_wr_in_dirty_log),
975  	TEST_DIRTY_LOG(guest_exec, with_af, guest_check_no_write_in_dirty_log,
976  		       guest_check_s1ptw_wr_in_dirty_log),
977  	TEST_DIRTY_LOG(guest_write64, with_af, guest_check_write_in_dirty_log,
978  		       guest_check_s1ptw_wr_in_dirty_log),
979  	TEST_DIRTY_LOG(guest_cas, with_af, guest_check_write_in_dirty_log,
980  		       guest_check_s1ptw_wr_in_dirty_log),
981  	TEST_DIRTY_LOG(guest_dc_zva, with_af, guest_check_write_in_dirty_log,
982  		       guest_check_s1ptw_wr_in_dirty_log),
983  	TEST_DIRTY_LOG(guest_st_preidx, with_af, guest_check_write_in_dirty_log,
984  		       guest_check_s1ptw_wr_in_dirty_log),
985  
986  	/*
987  	 * Access when the data and PT memory regions are both marked for
988  	 * dirty logging and UFFD at the same time. The expected result is
989  	 * that writes should mark the dirty log and trigger a userfaultfd
990  	 * write fault.  Reads/execs should result in a read userfaultfd
991  	 * fault, and nothing in the dirty log.  Any S1PTW should result in
992  	 * a write in the dirty log and a userfaultfd write.
993  	 */
994  	TEST_UFFD_AND_DIRTY_LOG(guest_read64, with_af,
995  				uffd_data_handler, 2,
996  				guest_check_no_write_in_dirty_log,
997  				guest_check_s1ptw_wr_in_dirty_log),
998  	TEST_UFFD_AND_DIRTY_LOG(guest_read64, no_af,
999  				uffd_data_handler, 2,
1000  				guest_check_no_write_in_dirty_log,
1001  				guest_check_no_s1ptw_wr_in_dirty_log),
1002  	TEST_UFFD_AND_DIRTY_LOG(guest_ld_preidx, with_af,
1003  				uffd_data_handler,
1004  				2, guest_check_no_write_in_dirty_log,
1005  				guest_check_s1ptw_wr_in_dirty_log),
1006  	TEST_UFFD_AND_DIRTY_LOG(guest_at, with_af, uffd_no_handler, 1,
1007  				guest_check_no_write_in_dirty_log,
1008  				guest_check_s1ptw_wr_in_dirty_log),
1009  	TEST_UFFD_AND_DIRTY_LOG(guest_exec, with_af,
1010  				uffd_data_handler, 2,
1011  				guest_check_no_write_in_dirty_log,
1012  				guest_check_s1ptw_wr_in_dirty_log),
1013  	TEST_UFFD_AND_DIRTY_LOG(guest_write64, with_af,
1014  				uffd_data_handler,
1015  				2, guest_check_write_in_dirty_log,
1016  				guest_check_s1ptw_wr_in_dirty_log),
1017  	TEST_UFFD_AND_DIRTY_LOG(guest_cas, with_af,
1018  				uffd_data_handler, 2,
1019  				guest_check_write_in_dirty_log,
1020  				guest_check_s1ptw_wr_in_dirty_log),
1021  	TEST_UFFD_AND_DIRTY_LOG(guest_dc_zva, with_af,
1022  				uffd_data_handler,
1023  				2, guest_check_write_in_dirty_log,
1024  				guest_check_s1ptw_wr_in_dirty_log),
1025  	TEST_UFFD_AND_DIRTY_LOG(guest_st_preidx, with_af,
1026  				uffd_data_handler, 2,
1027  				guest_check_write_in_dirty_log,
1028  				guest_check_s1ptw_wr_in_dirty_log),
1029  	/*
1030  	 * Access when both the PT and data regions are marked read-only
1031  	 * (with KVM_MEM_READONLY). Writes with a syndrome result in an
1032  	 * MMIO exit, writes with no syndrome (e.g., CAS) result in a
1033  	 * failed vcpu run, and reads/execs with and without syndroms do
1034  	 * not fault.
1035  	 */
1036  	TEST_RO_MEMSLOT(guest_read64, 0, 0),
1037  	TEST_RO_MEMSLOT(guest_ld_preidx, 0, 0),
1038  	TEST_RO_MEMSLOT(guest_at, 0, 0),
1039  	TEST_RO_MEMSLOT(guest_exec, 0, 0),
1040  	TEST_RO_MEMSLOT(guest_write64, mmio_on_test_gpa_handler, 1),
1041  	TEST_RO_MEMSLOT_NO_SYNDROME(guest_dc_zva),
1042  	TEST_RO_MEMSLOT_NO_SYNDROME(guest_cas),
1043  	TEST_RO_MEMSLOT_NO_SYNDROME(guest_st_preidx),
1044  
1045  	/*
1046  	 * The PT and data regions are both read-only and marked
1047  	 * for dirty logging at the same time. The expected result is that
1048  	 * for writes there should be no write in the dirty log. The
1049  	 * readonly handling is the same as if the memslot was not marked
1050  	 * for dirty logging: writes with a syndrome result in an MMIO
1051  	 * exit, and writes with no syndrome result in a failed vcpu run.
1052  	 */
1053  	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_read64, 0, 0,
1054  				      guest_check_no_write_in_dirty_log),
1055  	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_ld_preidx, 0, 0,
1056  				      guest_check_no_write_in_dirty_log),
1057  	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_at, 0, 0,
1058  				      guest_check_no_write_in_dirty_log),
1059  	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_exec, 0, 0,
1060  				      guest_check_no_write_in_dirty_log),
1061  	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_write64, mmio_on_test_gpa_handler,
1062  				      1, guest_check_no_write_in_dirty_log),
1063  	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_dc_zva,
1064  						  guest_check_no_write_in_dirty_log),
1065  	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_cas,
1066  						  guest_check_no_write_in_dirty_log),
1067  	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_st_preidx,
1068  						  guest_check_no_write_in_dirty_log),
1069  
1070  	/*
1071  	 * The PT and data regions are both read-only and punched with
1072  	 * holes tracked with userfaultfd.  The expected result is the
1073  	 * union of both userfaultfd and read-only behaviors. For example,
1074  	 * write accesses result in a userfaultfd write fault and an MMIO
1075  	 * exit.  Writes with no syndrome result in a failed vcpu run and
1076  	 * no userfaultfd write fault. Reads result in userfaultfd getting
1077  	 * triggered.
1078  	 */
1079  	TEST_RO_MEMSLOT_AND_UFFD(guest_read64, 0, 0, uffd_data_handler, 2),
1080  	TEST_RO_MEMSLOT_AND_UFFD(guest_ld_preidx, 0, 0, uffd_data_handler, 2),
1081  	TEST_RO_MEMSLOT_AND_UFFD(guest_at, 0, 0, uffd_no_handler, 1),
1082  	TEST_RO_MEMSLOT_AND_UFFD(guest_exec, 0, 0, uffd_data_handler, 2),
1083  	TEST_RO_MEMSLOT_AND_UFFD(guest_write64, mmio_on_test_gpa_handler, 1,
1084  				 uffd_data_handler, 2),
1085  	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_cas, uffd_data_handler, 2),
1086  	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_dc_zva, uffd_no_handler, 1),
1087  	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_st_preidx, uffd_no_handler, 1),
1088  
1089  	{ 0 }
1090  };
1091  
for_each_test_and_guest_mode(enum vm_mem_backing_src_type src_type)1092  static void for_each_test_and_guest_mode(enum vm_mem_backing_src_type src_type)
1093  {
1094  	struct test_desc *t;
1095  
1096  	for (t = &tests[0]; t->name; t++) {
1097  		if (t->skip)
1098  			continue;
1099  
1100  		struct test_params p = {
1101  			.src_type = src_type,
1102  			.test_desc = t,
1103  		};
1104  
1105  		for_each_guest_mode(run_test, &p);
1106  	}
1107  }
1108  
main(int argc,char * argv[])1109  int main(int argc, char *argv[])
1110  {
1111  	enum vm_mem_backing_src_type src_type;
1112  	int opt;
1113  
1114  	src_type = DEFAULT_VM_MEM_SRC;
1115  
1116  	while ((opt = getopt(argc, argv, "hm:s:")) != -1) {
1117  		switch (opt) {
1118  		case 'm':
1119  			guest_modes_cmdline(optarg);
1120  			break;
1121  		case 's':
1122  			src_type = parse_backing_src_type(optarg);
1123  			break;
1124  		case 'h':
1125  		default:
1126  			help(argv[0]);
1127  			exit(0);
1128  		}
1129  	}
1130  
1131  	for_each_test_and_guest_mode(src_type);
1132  	return 0;
1133  }
1134