1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Data Access Monitor
4 *
5 * Author: SeongJae Park <sjpark@amazon.de>
6 */
7
8 #define pr_fmt(fmt) "damon: " fmt
9
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/damon.h>
19
20 #ifdef CONFIG_DAMON_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24
25 static DEFINE_MUTEX(damon_lock);
26 static int nr_running_ctxs;
27 static bool running_exclusive_ctxs;
28
29 static DEFINE_MUTEX(damon_ops_lock);
30 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
31
32 static struct kmem_cache *damon_region_cache __ro_after_init;
33
34 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
__damon_is_registered_ops(enum damon_ops_id id)35 static bool __damon_is_registered_ops(enum damon_ops_id id)
36 {
37 struct damon_operations empty_ops = {};
38
39 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
40 return false;
41 return true;
42 }
43
44 /**
45 * damon_is_registered_ops() - Check if a given damon_operations is registered.
46 * @id: Id of the damon_operations to check if registered.
47 *
48 * Return: true if the ops is set, false otherwise.
49 */
damon_is_registered_ops(enum damon_ops_id id)50 bool damon_is_registered_ops(enum damon_ops_id id)
51 {
52 bool registered;
53
54 if (id >= NR_DAMON_OPS)
55 return false;
56 mutex_lock(&damon_ops_lock);
57 registered = __damon_is_registered_ops(id);
58 mutex_unlock(&damon_ops_lock);
59 return registered;
60 }
61
62 /**
63 * damon_register_ops() - Register a monitoring operations set to DAMON.
64 * @ops: monitoring operations set to register.
65 *
66 * This function registers a monitoring operations set of valid &struct
67 * damon_operations->id so that others can find and use them later.
68 *
69 * Return: 0 on success, negative error code otherwise.
70 */
damon_register_ops(struct damon_operations * ops)71 int damon_register_ops(struct damon_operations *ops)
72 {
73 int err = 0;
74
75 if (ops->id >= NR_DAMON_OPS)
76 return -EINVAL;
77 mutex_lock(&damon_ops_lock);
78 /* Fail for already registered ops */
79 if (__damon_is_registered_ops(ops->id)) {
80 err = -EINVAL;
81 goto out;
82 }
83 damon_registered_ops[ops->id] = *ops;
84 out:
85 mutex_unlock(&damon_ops_lock);
86 return err;
87 }
88
89 /**
90 * damon_select_ops() - Select a monitoring operations to use with the context.
91 * @ctx: monitoring context to use the operations.
92 * @id: id of the registered monitoring operations to select.
93 *
94 * This function finds registered monitoring operations set of @id and make
95 * @ctx to use it.
96 *
97 * Return: 0 on success, negative error code otherwise.
98 */
damon_select_ops(struct damon_ctx * ctx,enum damon_ops_id id)99 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
100 {
101 int err = 0;
102
103 if (id >= NR_DAMON_OPS)
104 return -EINVAL;
105
106 mutex_lock(&damon_ops_lock);
107 if (!__damon_is_registered_ops(id))
108 err = -EINVAL;
109 else
110 ctx->ops = damon_registered_ops[id];
111 mutex_unlock(&damon_ops_lock);
112 return err;
113 }
114
115 /*
116 * Construct a damon_region struct
117 *
118 * Returns the pointer to the new struct if success, or NULL otherwise
119 */
damon_new_region(unsigned long start,unsigned long end)120 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
121 {
122 struct damon_region *region;
123
124 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
125 if (!region)
126 return NULL;
127
128 region->ar.start = start;
129 region->ar.end = end;
130 region->nr_accesses = 0;
131 INIT_LIST_HEAD(®ion->list);
132
133 region->age = 0;
134 region->last_nr_accesses = 0;
135
136 return region;
137 }
138
damon_add_region(struct damon_region * r,struct damon_target * t)139 void damon_add_region(struct damon_region *r, struct damon_target *t)
140 {
141 list_add_tail(&r->list, &t->regions_list);
142 t->nr_regions++;
143 }
144
damon_del_region(struct damon_region * r,struct damon_target * t)145 static void damon_del_region(struct damon_region *r, struct damon_target *t)
146 {
147 list_del(&r->list);
148 t->nr_regions--;
149 }
150
damon_free_region(struct damon_region * r)151 static void damon_free_region(struct damon_region *r)
152 {
153 kmem_cache_free(damon_region_cache, r);
154 }
155
damon_destroy_region(struct damon_region * r,struct damon_target * t)156 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
157 {
158 damon_del_region(r, t);
159 damon_free_region(r);
160 }
161
162 /*
163 * Check whether a region is intersecting an address range
164 *
165 * Returns true if it is.
166 */
damon_intersect(struct damon_region * r,struct damon_addr_range * re)167 static bool damon_intersect(struct damon_region *r,
168 struct damon_addr_range *re)
169 {
170 return !(r->ar.end <= re->start || re->end <= r->ar.start);
171 }
172
173 /*
174 * Fill holes in regions with new regions.
175 */
damon_fill_regions_holes(struct damon_region * first,struct damon_region * last,struct damon_target * t)176 static int damon_fill_regions_holes(struct damon_region *first,
177 struct damon_region *last, struct damon_target *t)
178 {
179 struct damon_region *r = first;
180
181 damon_for_each_region_from(r, t) {
182 struct damon_region *next, *newr;
183
184 if (r == last)
185 break;
186 next = damon_next_region(r);
187 if (r->ar.end != next->ar.start) {
188 newr = damon_new_region(r->ar.end, next->ar.start);
189 if (!newr)
190 return -ENOMEM;
191 damon_insert_region(newr, r, next, t);
192 }
193 }
194 return 0;
195 }
196
197 /*
198 * damon_set_regions() - Set regions of a target for given address ranges.
199 * @t: the given target.
200 * @ranges: array of new monitoring target ranges.
201 * @nr_ranges: length of @ranges.
202 *
203 * This function adds new regions to, or modify existing regions of a
204 * monitoring target to fit in specific ranges.
205 *
206 * Return: 0 if success, or negative error code otherwise.
207 */
damon_set_regions(struct damon_target * t,struct damon_addr_range * ranges,unsigned int nr_ranges)208 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
209 unsigned int nr_ranges)
210 {
211 struct damon_region *r, *next;
212 unsigned int i;
213 int err;
214
215 /* Remove regions which are not in the new ranges */
216 damon_for_each_region_safe(r, next, t) {
217 for (i = 0; i < nr_ranges; i++) {
218 if (damon_intersect(r, &ranges[i]))
219 break;
220 }
221 if (i == nr_ranges)
222 damon_destroy_region(r, t);
223 }
224
225 r = damon_first_region(t);
226 /* Add new regions or resize existing regions to fit in the ranges */
227 for (i = 0; i < nr_ranges; i++) {
228 struct damon_region *first = NULL, *last, *newr;
229 struct damon_addr_range *range;
230
231 range = &ranges[i];
232 /* Get the first/last regions intersecting with the range */
233 damon_for_each_region_from(r, t) {
234 if (damon_intersect(r, range)) {
235 if (!first)
236 first = r;
237 last = r;
238 }
239 if (r->ar.start >= range->end)
240 break;
241 }
242 if (!first) {
243 /* no region intersects with this range */
244 newr = damon_new_region(
245 ALIGN_DOWN(range->start,
246 DAMON_MIN_REGION),
247 ALIGN(range->end, DAMON_MIN_REGION));
248 if (!newr)
249 return -ENOMEM;
250 damon_insert_region(newr, damon_prev_region(r), r, t);
251 } else {
252 /* resize intersecting regions to fit in this range */
253 first->ar.start = ALIGN_DOWN(range->start,
254 DAMON_MIN_REGION);
255 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
256
257 /* fill possible holes in the range */
258 err = damon_fill_regions_holes(first, last, t);
259 if (err)
260 return err;
261 }
262 }
263 return 0;
264 }
265
damos_new_filter(enum damos_filter_type type,bool matching)266 struct damos_filter *damos_new_filter(enum damos_filter_type type,
267 bool matching)
268 {
269 struct damos_filter *filter;
270
271 filter = kmalloc(sizeof(*filter), GFP_KERNEL);
272 if (!filter)
273 return NULL;
274 filter->type = type;
275 filter->matching = matching;
276 INIT_LIST_HEAD(&filter->list);
277 return filter;
278 }
279
damos_add_filter(struct damos * s,struct damos_filter * f)280 void damos_add_filter(struct damos *s, struct damos_filter *f)
281 {
282 list_add_tail(&f->list, &s->filters);
283 }
284
damos_del_filter(struct damos_filter * f)285 static void damos_del_filter(struct damos_filter *f)
286 {
287 list_del(&f->list);
288 }
289
damos_free_filter(struct damos_filter * f)290 static void damos_free_filter(struct damos_filter *f)
291 {
292 kfree(f);
293 }
294
damos_destroy_filter(struct damos_filter * f)295 void damos_destroy_filter(struct damos_filter *f)
296 {
297 damos_del_filter(f);
298 damos_free_filter(f);
299 }
300
301 /* initialize private fields of damos_quota and return the pointer */
damos_quota_init_priv(struct damos_quota * quota)302 static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
303 {
304 quota->total_charged_sz = 0;
305 quota->total_charged_ns = 0;
306 quota->esz = 0;
307 quota->charged_sz = 0;
308 quota->charged_from = 0;
309 quota->charge_target_from = NULL;
310 quota->charge_addr_from = 0;
311 return quota;
312 }
313
damon_new_scheme(struct damos_access_pattern * pattern,enum damos_action action,struct damos_quota * quota,struct damos_watermarks * wmarks)314 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
315 enum damos_action action, struct damos_quota *quota,
316 struct damos_watermarks *wmarks)
317 {
318 struct damos *scheme;
319
320 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
321 if (!scheme)
322 return NULL;
323 scheme->pattern = *pattern;
324 scheme->action = action;
325 INIT_LIST_HEAD(&scheme->filters);
326 scheme->stat = (struct damos_stat){};
327 INIT_LIST_HEAD(&scheme->list);
328
329 scheme->quota = *(damos_quota_init_priv(quota));
330
331 scheme->wmarks = *wmarks;
332 scheme->wmarks.activated = true;
333
334 return scheme;
335 }
336
damon_add_scheme(struct damon_ctx * ctx,struct damos * s)337 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
338 {
339 list_add_tail(&s->list, &ctx->schemes);
340 }
341
damon_del_scheme(struct damos * s)342 static void damon_del_scheme(struct damos *s)
343 {
344 list_del(&s->list);
345 }
346
damon_free_scheme(struct damos * s)347 static void damon_free_scheme(struct damos *s)
348 {
349 kfree(s);
350 }
351
damon_destroy_scheme(struct damos * s)352 void damon_destroy_scheme(struct damos *s)
353 {
354 struct damos_filter *f, *next;
355
356 damos_for_each_filter_safe(f, next, s)
357 damos_destroy_filter(f);
358 damon_del_scheme(s);
359 damon_free_scheme(s);
360 }
361
362 /*
363 * Construct a damon_target struct
364 *
365 * Returns the pointer to the new struct if success, or NULL otherwise
366 */
damon_new_target(void)367 struct damon_target *damon_new_target(void)
368 {
369 struct damon_target *t;
370
371 t = kmalloc(sizeof(*t), GFP_KERNEL);
372 if (!t)
373 return NULL;
374
375 t->pid = NULL;
376 t->nr_regions = 0;
377 INIT_LIST_HEAD(&t->regions_list);
378 INIT_LIST_HEAD(&t->list);
379
380 return t;
381 }
382
damon_add_target(struct damon_ctx * ctx,struct damon_target * t)383 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
384 {
385 list_add_tail(&t->list, &ctx->adaptive_targets);
386 }
387
damon_targets_empty(struct damon_ctx * ctx)388 bool damon_targets_empty(struct damon_ctx *ctx)
389 {
390 return list_empty(&ctx->adaptive_targets);
391 }
392
damon_del_target(struct damon_target * t)393 static void damon_del_target(struct damon_target *t)
394 {
395 list_del(&t->list);
396 }
397
damon_free_target(struct damon_target * t)398 void damon_free_target(struct damon_target *t)
399 {
400 struct damon_region *r, *next;
401
402 damon_for_each_region_safe(r, next, t)
403 damon_free_region(r);
404 kfree(t);
405 }
406
damon_destroy_target(struct damon_target * t)407 void damon_destroy_target(struct damon_target *t)
408 {
409 damon_del_target(t);
410 damon_free_target(t);
411 }
412
damon_nr_regions(struct damon_target * t)413 unsigned int damon_nr_regions(struct damon_target *t)
414 {
415 return t->nr_regions;
416 }
417
damon_new_ctx(void)418 struct damon_ctx *damon_new_ctx(void)
419 {
420 struct damon_ctx *ctx;
421
422 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
423 if (!ctx)
424 return NULL;
425
426 init_completion(&ctx->kdamond_started);
427
428 ctx->attrs.sample_interval = 5 * 1000;
429 ctx->attrs.aggr_interval = 100 * 1000;
430 ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
431
432 ctx->passed_sample_intervals = 0;
433 /* These will be set from kdamond_init_intervals_sis() */
434 ctx->next_aggregation_sis = 0;
435 ctx->next_ops_update_sis = 0;
436
437 mutex_init(&ctx->kdamond_lock);
438
439 ctx->attrs.min_nr_regions = 10;
440 ctx->attrs.max_nr_regions = 1000;
441
442 INIT_LIST_HEAD(&ctx->adaptive_targets);
443 INIT_LIST_HEAD(&ctx->schemes);
444
445 return ctx;
446 }
447
damon_destroy_targets(struct damon_ctx * ctx)448 static void damon_destroy_targets(struct damon_ctx *ctx)
449 {
450 struct damon_target *t, *next_t;
451
452 if (ctx->ops.cleanup) {
453 ctx->ops.cleanup(ctx);
454 return;
455 }
456
457 damon_for_each_target_safe(t, next_t, ctx)
458 damon_destroy_target(t);
459 }
460
damon_destroy_ctx(struct damon_ctx * ctx)461 void damon_destroy_ctx(struct damon_ctx *ctx)
462 {
463 struct damos *s, *next_s;
464
465 damon_destroy_targets(ctx);
466
467 damon_for_each_scheme_safe(s, next_s, ctx)
468 damon_destroy_scheme(s);
469
470 kfree(ctx);
471 }
472
damon_age_for_new_attrs(unsigned int age,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)473 static unsigned int damon_age_for_new_attrs(unsigned int age,
474 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
475 {
476 return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
477 }
478
479 /* convert access ratio in bp (per 10,000) to nr_accesses */
damon_accesses_bp_to_nr_accesses(unsigned int accesses_bp,struct damon_attrs * attrs)480 static unsigned int damon_accesses_bp_to_nr_accesses(
481 unsigned int accesses_bp, struct damon_attrs *attrs)
482 {
483 return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
484 }
485
486 /* convert nr_accesses to access ratio in bp (per 10,000) */
damon_nr_accesses_to_accesses_bp(unsigned int nr_accesses,struct damon_attrs * attrs)487 static unsigned int damon_nr_accesses_to_accesses_bp(
488 unsigned int nr_accesses, struct damon_attrs *attrs)
489 {
490 return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
491 }
492
damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)493 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
494 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
495 {
496 return damon_accesses_bp_to_nr_accesses(
497 damon_nr_accesses_to_accesses_bp(
498 nr_accesses, old_attrs),
499 new_attrs);
500 }
501
damon_update_monitoring_result(struct damon_region * r,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)502 static void damon_update_monitoring_result(struct damon_region *r,
503 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
504 {
505 r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
506 old_attrs, new_attrs);
507 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
508 }
509
510 /*
511 * region->nr_accesses is the number of sampling intervals in the last
512 * aggregation interval that access to the region has found, and region->age is
513 * the number of aggregation intervals that its access pattern has maintained.
514 * For the reason, the real meaning of the two fields depend on current
515 * sampling interval and aggregation interval. This function updates
516 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
517 */
damon_update_monitoring_results(struct damon_ctx * ctx,struct damon_attrs * new_attrs)518 static void damon_update_monitoring_results(struct damon_ctx *ctx,
519 struct damon_attrs *new_attrs)
520 {
521 struct damon_attrs *old_attrs = &ctx->attrs;
522 struct damon_target *t;
523 struct damon_region *r;
524
525 /* if any interval is zero, simply forgive conversion */
526 if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
527 !new_attrs->sample_interval ||
528 !new_attrs->aggr_interval)
529 return;
530
531 damon_for_each_target(t, ctx)
532 damon_for_each_region(r, t)
533 damon_update_monitoring_result(
534 r, old_attrs, new_attrs);
535 }
536
537 /**
538 * damon_set_attrs() - Set attributes for the monitoring.
539 * @ctx: monitoring context
540 * @attrs: monitoring attributes
541 *
542 * This function should not be called while the kdamond is running.
543 * Every time interval is in micro-seconds.
544 *
545 * Return: 0 on success, negative error code otherwise.
546 */
damon_set_attrs(struct damon_ctx * ctx,struct damon_attrs * attrs)547 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
548 {
549 unsigned long sample_interval = attrs->sample_interval ?
550 attrs->sample_interval : 1;
551
552 if (attrs->min_nr_regions < 3)
553 return -EINVAL;
554 if (attrs->min_nr_regions > attrs->max_nr_regions)
555 return -EINVAL;
556 if (attrs->sample_interval > attrs->aggr_interval)
557 return -EINVAL;
558
559 ctx->next_aggregation_sis = ctx->passed_sample_intervals +
560 attrs->aggr_interval / sample_interval;
561 ctx->next_ops_update_sis = ctx->passed_sample_intervals +
562 attrs->ops_update_interval / sample_interval;
563
564 damon_update_monitoring_results(ctx, attrs);
565 ctx->attrs = *attrs;
566 return 0;
567 }
568
569 /**
570 * damon_set_schemes() - Set data access monitoring based operation schemes.
571 * @ctx: monitoring context
572 * @schemes: array of the schemes
573 * @nr_schemes: number of entries in @schemes
574 *
575 * This function should not be called while the kdamond of the context is
576 * running.
577 */
damon_set_schemes(struct damon_ctx * ctx,struct damos ** schemes,ssize_t nr_schemes)578 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
579 ssize_t nr_schemes)
580 {
581 struct damos *s, *next;
582 ssize_t i;
583
584 damon_for_each_scheme_safe(s, next, ctx)
585 damon_destroy_scheme(s);
586 for (i = 0; i < nr_schemes; i++)
587 damon_add_scheme(ctx, schemes[i]);
588 }
589
590 /**
591 * damon_nr_running_ctxs() - Return number of currently running contexts.
592 */
damon_nr_running_ctxs(void)593 int damon_nr_running_ctxs(void)
594 {
595 int nr_ctxs;
596
597 mutex_lock(&damon_lock);
598 nr_ctxs = nr_running_ctxs;
599 mutex_unlock(&damon_lock);
600
601 return nr_ctxs;
602 }
603
604 /* Returns the size upper limit for each monitoring region */
damon_region_sz_limit(struct damon_ctx * ctx)605 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
606 {
607 struct damon_target *t;
608 struct damon_region *r;
609 unsigned long sz = 0;
610
611 damon_for_each_target(t, ctx) {
612 damon_for_each_region(r, t)
613 sz += damon_sz_region(r);
614 }
615
616 if (ctx->attrs.min_nr_regions)
617 sz /= ctx->attrs.min_nr_regions;
618 if (sz < DAMON_MIN_REGION)
619 sz = DAMON_MIN_REGION;
620
621 return sz;
622 }
623
624 static int kdamond_fn(void *data);
625
626 /*
627 * __damon_start() - Starts monitoring with given context.
628 * @ctx: monitoring context
629 *
630 * This function should be called while damon_lock is hold.
631 *
632 * Return: 0 on success, negative error code otherwise.
633 */
__damon_start(struct damon_ctx * ctx)634 static int __damon_start(struct damon_ctx *ctx)
635 {
636 int err = -EBUSY;
637
638 mutex_lock(&ctx->kdamond_lock);
639 if (!ctx->kdamond) {
640 err = 0;
641 reinit_completion(&ctx->kdamond_started);
642 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
643 nr_running_ctxs);
644 if (IS_ERR(ctx->kdamond)) {
645 err = PTR_ERR(ctx->kdamond);
646 ctx->kdamond = NULL;
647 } else {
648 wait_for_completion(&ctx->kdamond_started);
649 }
650 }
651 mutex_unlock(&ctx->kdamond_lock);
652
653 return err;
654 }
655
656 /**
657 * damon_start() - Starts the monitorings for a given group of contexts.
658 * @ctxs: an array of the pointers for contexts to start monitoring
659 * @nr_ctxs: size of @ctxs
660 * @exclusive: exclusiveness of this contexts group
661 *
662 * This function starts a group of monitoring threads for a group of monitoring
663 * contexts. One thread per each context is created and run in parallel. The
664 * caller should handle synchronization between the threads by itself. If
665 * @exclusive is true and a group of threads that created by other
666 * 'damon_start()' call is currently running, this function does nothing but
667 * returns -EBUSY.
668 *
669 * Return: 0 on success, negative error code otherwise.
670 */
damon_start(struct damon_ctx ** ctxs,int nr_ctxs,bool exclusive)671 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
672 {
673 int i;
674 int err = 0;
675
676 mutex_lock(&damon_lock);
677 if ((exclusive && nr_running_ctxs) ||
678 (!exclusive && running_exclusive_ctxs)) {
679 mutex_unlock(&damon_lock);
680 return -EBUSY;
681 }
682
683 for (i = 0; i < nr_ctxs; i++) {
684 err = __damon_start(ctxs[i]);
685 if (err)
686 break;
687 nr_running_ctxs++;
688 }
689 if (exclusive && nr_running_ctxs)
690 running_exclusive_ctxs = true;
691 mutex_unlock(&damon_lock);
692
693 return err;
694 }
695
696 /*
697 * __damon_stop() - Stops monitoring of a given context.
698 * @ctx: monitoring context
699 *
700 * Return: 0 on success, negative error code otherwise.
701 */
__damon_stop(struct damon_ctx * ctx)702 static int __damon_stop(struct damon_ctx *ctx)
703 {
704 struct task_struct *tsk;
705
706 mutex_lock(&ctx->kdamond_lock);
707 tsk = ctx->kdamond;
708 if (tsk) {
709 get_task_struct(tsk);
710 mutex_unlock(&ctx->kdamond_lock);
711 kthread_stop_put(tsk);
712 return 0;
713 }
714 mutex_unlock(&ctx->kdamond_lock);
715
716 return -EPERM;
717 }
718
719 /**
720 * damon_stop() - Stops the monitorings for a given group of contexts.
721 * @ctxs: an array of the pointers for contexts to stop monitoring
722 * @nr_ctxs: size of @ctxs
723 *
724 * Return: 0 on success, negative error code otherwise.
725 */
damon_stop(struct damon_ctx ** ctxs,int nr_ctxs)726 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
727 {
728 int i, err = 0;
729
730 for (i = 0; i < nr_ctxs; i++) {
731 /* nr_running_ctxs is decremented in kdamond_fn */
732 err = __damon_stop(ctxs[i]);
733 if (err)
734 break;
735 }
736 return err;
737 }
738
739 /*
740 * Reset the aggregated monitoring results ('nr_accesses' of each region).
741 */
kdamond_reset_aggregated(struct damon_ctx * c)742 static void kdamond_reset_aggregated(struct damon_ctx *c)
743 {
744 struct damon_target *t;
745 unsigned int ti = 0; /* target's index */
746
747 damon_for_each_target(t, c) {
748 struct damon_region *r;
749
750 damon_for_each_region(r, t) {
751 trace_damon_aggregated(t, ti, r, damon_nr_regions(t));
752 r->last_nr_accesses = r->nr_accesses;
753 r->nr_accesses = 0;
754 }
755 ti++;
756 }
757 }
758
759 static void damon_split_region_at(struct damon_target *t,
760 struct damon_region *r, unsigned long sz_r);
761
__damos_valid_target(struct damon_region * r,struct damos * s)762 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
763 {
764 unsigned long sz;
765
766 sz = damon_sz_region(r);
767 return s->pattern.min_sz_region <= sz &&
768 sz <= s->pattern.max_sz_region &&
769 s->pattern.min_nr_accesses <= r->nr_accesses &&
770 r->nr_accesses <= s->pattern.max_nr_accesses &&
771 s->pattern.min_age_region <= r->age &&
772 r->age <= s->pattern.max_age_region;
773 }
774
damos_valid_target(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)775 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
776 struct damon_region *r, struct damos *s)
777 {
778 bool ret = __damos_valid_target(r, s);
779
780 if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
781 return ret;
782
783 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
784 }
785
786 /*
787 * damos_skip_charged_region() - Check if the given region or starting part of
788 * it is already charged for the DAMOS quota.
789 * @t: The target of the region.
790 * @rp: The pointer to the region.
791 * @s: The scheme to be applied.
792 *
793 * If a quota of a scheme has exceeded in a quota charge window, the scheme's
794 * action would applied to only a part of the target access pattern fulfilling
795 * regions. To avoid applying the scheme action to only already applied
796 * regions, DAMON skips applying the scheme action to the regions that charged
797 * in the previous charge window.
798 *
799 * This function checks if a given region should be skipped or not for the
800 * reason. If only the starting part of the region has previously charged,
801 * this function splits the region into two so that the second one covers the
802 * area that not charged in the previous charge widnow and saves the second
803 * region in *rp and returns false, so that the caller can apply DAMON action
804 * to the second one.
805 *
806 * Return: true if the region should be entirely skipped, false otherwise.
807 */
damos_skip_charged_region(struct damon_target * t,struct damon_region ** rp,struct damos * s)808 static bool damos_skip_charged_region(struct damon_target *t,
809 struct damon_region **rp, struct damos *s)
810 {
811 struct damon_region *r = *rp;
812 struct damos_quota *quota = &s->quota;
813 unsigned long sz_to_skip;
814
815 /* Skip previously charged regions */
816 if (quota->charge_target_from) {
817 if (t != quota->charge_target_from)
818 return true;
819 if (r == damon_last_region(t)) {
820 quota->charge_target_from = NULL;
821 quota->charge_addr_from = 0;
822 return true;
823 }
824 if (quota->charge_addr_from &&
825 r->ar.end <= quota->charge_addr_from)
826 return true;
827
828 if (quota->charge_addr_from && r->ar.start <
829 quota->charge_addr_from) {
830 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
831 r->ar.start, DAMON_MIN_REGION);
832 if (!sz_to_skip) {
833 if (damon_sz_region(r) <= DAMON_MIN_REGION)
834 return true;
835 sz_to_skip = DAMON_MIN_REGION;
836 }
837 damon_split_region_at(t, r, sz_to_skip);
838 r = damon_next_region(r);
839 *rp = r;
840 }
841 quota->charge_target_from = NULL;
842 quota->charge_addr_from = 0;
843 }
844 return false;
845 }
846
damos_update_stat(struct damos * s,unsigned long sz_tried,unsigned long sz_applied)847 static void damos_update_stat(struct damos *s,
848 unsigned long sz_tried, unsigned long sz_applied)
849 {
850 s->stat.nr_tried++;
851 s->stat.sz_tried += sz_tried;
852 if (sz_applied)
853 s->stat.nr_applied++;
854 s->stat.sz_applied += sz_applied;
855 }
856
__damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos_filter * filter)857 static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
858 struct damon_region *r, struct damos_filter *filter)
859 {
860 bool matched = false;
861 struct damon_target *ti;
862 int target_idx = 0;
863 unsigned long start, end;
864
865 switch (filter->type) {
866 case DAMOS_FILTER_TYPE_TARGET:
867 damon_for_each_target(ti, ctx) {
868 if (ti == t)
869 break;
870 target_idx++;
871 }
872 matched = target_idx == filter->target_idx;
873 break;
874 case DAMOS_FILTER_TYPE_ADDR:
875 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
876 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
877
878 /* inside the range */
879 if (start <= r->ar.start && r->ar.end <= end) {
880 matched = true;
881 break;
882 }
883 /* outside of the range */
884 if (r->ar.end <= start || end <= r->ar.start) {
885 matched = false;
886 break;
887 }
888 /* start before the range and overlap */
889 if (r->ar.start < start) {
890 damon_split_region_at(t, r, start - r->ar.start);
891 matched = false;
892 break;
893 }
894 /* start inside the range */
895 damon_split_region_at(t, r, end - r->ar.start);
896 matched = true;
897 break;
898 default:
899 return false;
900 }
901
902 return matched == filter->matching;
903 }
904
damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s)905 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
906 struct damon_region *r, struct damos *s)
907 {
908 struct damos_filter *filter;
909
910 damos_for_each_filter(filter, s) {
911 if (__damos_filter_out(ctx, t, r, filter))
912 return true;
913 }
914 return false;
915 }
916
damos_apply_scheme(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)917 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
918 struct damon_region *r, struct damos *s)
919 {
920 struct damos_quota *quota = &s->quota;
921 unsigned long sz = damon_sz_region(r);
922 struct timespec64 begin, end;
923 unsigned long sz_applied = 0;
924 int err = 0;
925
926 if (c->ops.apply_scheme) {
927 if (quota->esz && quota->charged_sz + sz > quota->esz) {
928 sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
929 DAMON_MIN_REGION);
930 if (!sz)
931 goto update_stat;
932 damon_split_region_at(t, r, sz);
933 }
934 if (damos_filter_out(c, t, r, s))
935 return;
936 ktime_get_coarse_ts64(&begin);
937 if (c->callback.before_damos_apply)
938 err = c->callback.before_damos_apply(c, t, r, s);
939 if (!err)
940 sz_applied = c->ops.apply_scheme(c, t, r, s);
941 ktime_get_coarse_ts64(&end);
942 quota->total_charged_ns += timespec64_to_ns(&end) -
943 timespec64_to_ns(&begin);
944 quota->charged_sz += sz;
945 if (quota->esz && quota->charged_sz >= quota->esz) {
946 quota->charge_target_from = t;
947 quota->charge_addr_from = r->ar.end + 1;
948 }
949 }
950 if (s->action != DAMOS_STAT)
951 r->age = 0;
952
953 update_stat:
954 damos_update_stat(s, sz, sz_applied);
955 }
956
damon_do_apply_schemes(struct damon_ctx * c,struct damon_target * t,struct damon_region * r)957 static void damon_do_apply_schemes(struct damon_ctx *c,
958 struct damon_target *t,
959 struct damon_region *r)
960 {
961 struct damos *s;
962
963 damon_for_each_scheme(s, c) {
964 struct damos_quota *quota = &s->quota;
965
966 if (!s->wmarks.activated)
967 continue;
968
969 /* Check the quota */
970 if (quota->esz && quota->charged_sz >= quota->esz)
971 continue;
972
973 if (damos_skip_charged_region(t, &r, s))
974 continue;
975
976 if (!damos_valid_target(c, t, r, s))
977 continue;
978
979 damos_apply_scheme(c, t, r, s);
980 }
981 }
982
983 /* Shouldn't be called if quota->ms and quota->sz are zero */
damos_set_effective_quota(struct damos_quota * quota)984 static void damos_set_effective_quota(struct damos_quota *quota)
985 {
986 unsigned long throughput;
987 unsigned long esz;
988
989 if (!quota->ms) {
990 quota->esz = quota->sz;
991 return;
992 }
993
994 if (quota->total_charged_ns)
995 throughput = quota->total_charged_sz * 1000000 /
996 quota->total_charged_ns;
997 else
998 throughput = PAGE_SIZE * 1024;
999 esz = throughput * quota->ms;
1000
1001 if (quota->sz && quota->sz < esz)
1002 esz = quota->sz;
1003 quota->esz = esz;
1004 }
1005
damos_adjust_quota(struct damon_ctx * c,struct damos * s)1006 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1007 {
1008 struct damos_quota *quota = &s->quota;
1009 struct damon_target *t;
1010 struct damon_region *r;
1011 unsigned long cumulated_sz;
1012 unsigned int score, max_score = 0;
1013
1014 if (!quota->ms && !quota->sz)
1015 return;
1016
1017 /* New charge window starts */
1018 if (time_after_eq(jiffies, quota->charged_from +
1019 msecs_to_jiffies(quota->reset_interval))) {
1020 if (quota->esz && quota->charged_sz >= quota->esz)
1021 s->stat.qt_exceeds++;
1022 quota->total_charged_sz += quota->charged_sz;
1023 quota->charged_from = jiffies;
1024 quota->charged_sz = 0;
1025 damos_set_effective_quota(quota);
1026 }
1027
1028 if (!c->ops.get_scheme_score)
1029 return;
1030
1031 /* Fill up the score histogram */
1032 memset(quota->histogram, 0, sizeof(quota->histogram));
1033 damon_for_each_target(t, c) {
1034 damon_for_each_region(r, t) {
1035 if (!__damos_valid_target(r, s))
1036 continue;
1037 score = c->ops.get_scheme_score(c, t, r, s);
1038 quota->histogram[score] += damon_sz_region(r);
1039 if (score > max_score)
1040 max_score = score;
1041 }
1042 }
1043
1044 /* Set the min score limit */
1045 for (cumulated_sz = 0, score = max_score; ; score--) {
1046 cumulated_sz += quota->histogram[score];
1047 if (cumulated_sz >= quota->esz || !score)
1048 break;
1049 }
1050 quota->min_score = score;
1051 }
1052
kdamond_apply_schemes(struct damon_ctx * c)1053 static void kdamond_apply_schemes(struct damon_ctx *c)
1054 {
1055 struct damon_target *t;
1056 struct damon_region *r, *next_r;
1057 struct damos *s;
1058
1059 damon_for_each_scheme(s, c) {
1060 if (!s->wmarks.activated)
1061 continue;
1062
1063 damos_adjust_quota(c, s);
1064 }
1065
1066 damon_for_each_target(t, c) {
1067 damon_for_each_region_safe(r, next_r, t)
1068 damon_do_apply_schemes(c, t, r);
1069 }
1070 }
1071
1072 /*
1073 * Merge two adjacent regions into one region
1074 */
damon_merge_two_regions(struct damon_target * t,struct damon_region * l,struct damon_region * r)1075 static void damon_merge_two_regions(struct damon_target *t,
1076 struct damon_region *l, struct damon_region *r)
1077 {
1078 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1079
1080 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1081 (sz_l + sz_r);
1082 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1083 l->ar.end = r->ar.end;
1084 damon_destroy_region(r, t);
1085 }
1086
1087 /*
1088 * Merge adjacent regions having similar access frequencies
1089 *
1090 * t target affected by this merge operation
1091 * thres '->nr_accesses' diff threshold for the merge
1092 * sz_limit size upper limit of each region
1093 */
damon_merge_regions_of(struct damon_target * t,unsigned int thres,unsigned long sz_limit)1094 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1095 unsigned long sz_limit)
1096 {
1097 struct damon_region *r, *prev = NULL, *next;
1098
1099 damon_for_each_region_safe(r, next, t) {
1100 if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1101 r->age = 0;
1102 else
1103 r->age++;
1104
1105 if (prev && prev->ar.end == r->ar.start &&
1106 abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1107 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1108 damon_merge_two_regions(t, prev, r);
1109 else
1110 prev = r;
1111 }
1112 }
1113
1114 /*
1115 * Merge adjacent regions having similar access frequencies
1116 *
1117 * threshold '->nr_accesses' diff threshold for the merge
1118 * sz_limit size upper limit of each region
1119 *
1120 * This function merges monitoring target regions which are adjacent and their
1121 * access frequencies are similar. This is for minimizing the monitoring
1122 * overhead under the dynamically changeable access pattern. If a merge was
1123 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1124 *
1125 * The total number of regions could be higher than the user-defined limit,
1126 * max_nr_regions for some cases. For example, the user can update
1127 * max_nr_regions to a number that lower than the current number of regions
1128 * while DAMON is running. For such a case, repeat merging until the limit is
1129 * met while increasing @threshold up to possible maximum level.
1130 */
kdamond_merge_regions(struct damon_ctx * c,unsigned int threshold,unsigned long sz_limit)1131 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1132 unsigned long sz_limit)
1133 {
1134 struct damon_target *t;
1135 unsigned int nr_regions;
1136 unsigned int max_thres;
1137
1138 max_thres = c->attrs.aggr_interval /
1139 (c->attrs.sample_interval ? c->attrs.sample_interval : 1);
1140 do {
1141 nr_regions = 0;
1142 damon_for_each_target(t, c) {
1143 damon_merge_regions_of(t, threshold, sz_limit);
1144 nr_regions += damon_nr_regions(t);
1145 }
1146 threshold = max(1, threshold * 2);
1147 } while (nr_regions > c->attrs.max_nr_regions &&
1148 threshold / 2 < max_thres);
1149 }
1150
1151 /*
1152 * Split a region in two
1153 *
1154 * r the region to be split
1155 * sz_r size of the first sub-region that will be made
1156 */
damon_split_region_at(struct damon_target * t,struct damon_region * r,unsigned long sz_r)1157 static void damon_split_region_at(struct damon_target *t,
1158 struct damon_region *r, unsigned long sz_r)
1159 {
1160 struct damon_region *new;
1161
1162 new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1163 if (!new)
1164 return;
1165
1166 r->ar.end = new->ar.start;
1167
1168 new->age = r->age;
1169 new->last_nr_accesses = r->last_nr_accesses;
1170
1171 damon_insert_region(new, r, damon_next_region(r), t);
1172 }
1173
1174 /* Split every region in the given target into 'nr_subs' regions */
damon_split_regions_of(struct damon_target * t,int nr_subs)1175 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1176 {
1177 struct damon_region *r, *next;
1178 unsigned long sz_region, sz_sub = 0;
1179 int i;
1180
1181 damon_for_each_region_safe(r, next, t) {
1182 sz_region = damon_sz_region(r);
1183
1184 for (i = 0; i < nr_subs - 1 &&
1185 sz_region > 2 * DAMON_MIN_REGION; i++) {
1186 /*
1187 * Randomly select size of left sub-region to be at
1188 * least 10 percent and at most 90% of original region
1189 */
1190 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1191 sz_region / 10, DAMON_MIN_REGION);
1192 /* Do not allow blank region */
1193 if (sz_sub == 0 || sz_sub >= sz_region)
1194 continue;
1195
1196 damon_split_region_at(t, r, sz_sub);
1197 sz_region = sz_sub;
1198 }
1199 }
1200 }
1201
1202 /*
1203 * Split every target region into randomly-sized small regions
1204 *
1205 * This function splits every target region into random-sized small regions if
1206 * current total number of the regions is equal or smaller than half of the
1207 * user-specified maximum number of regions. This is for maximizing the
1208 * monitoring accuracy under the dynamically changeable access patterns. If a
1209 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1210 * it.
1211 */
kdamond_split_regions(struct damon_ctx * ctx)1212 static void kdamond_split_regions(struct damon_ctx *ctx)
1213 {
1214 struct damon_target *t;
1215 unsigned int nr_regions = 0;
1216 static unsigned int last_nr_regions;
1217 int nr_subregions = 2;
1218
1219 damon_for_each_target(t, ctx)
1220 nr_regions += damon_nr_regions(t);
1221
1222 if (nr_regions > ctx->attrs.max_nr_regions / 2)
1223 return;
1224
1225 /* Maybe the middle of the region has different access frequency */
1226 if (last_nr_regions == nr_regions &&
1227 nr_regions < ctx->attrs.max_nr_regions / 3)
1228 nr_subregions = 3;
1229
1230 damon_for_each_target(t, ctx)
1231 damon_split_regions_of(t, nr_subregions);
1232
1233 last_nr_regions = nr_regions;
1234 }
1235
1236 /*
1237 * Check whether current monitoring should be stopped
1238 *
1239 * The monitoring is stopped when either the user requested to stop, or all
1240 * monitoring targets are invalid.
1241 *
1242 * Returns true if need to stop current monitoring.
1243 */
kdamond_need_stop(struct damon_ctx * ctx)1244 static bool kdamond_need_stop(struct damon_ctx *ctx)
1245 {
1246 struct damon_target *t;
1247
1248 if (kthread_should_stop())
1249 return true;
1250
1251 if (!ctx->ops.target_valid)
1252 return false;
1253
1254 damon_for_each_target(t, ctx) {
1255 if (ctx->ops.target_valid(t))
1256 return false;
1257 }
1258
1259 return true;
1260 }
1261
damos_wmark_metric_value(enum damos_wmark_metric metric)1262 static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
1263 {
1264 struct sysinfo i;
1265
1266 switch (metric) {
1267 case DAMOS_WMARK_FREE_MEM_RATE:
1268 si_meminfo(&i);
1269 return i.freeram * 1000 / i.totalram;
1270 default:
1271 break;
1272 }
1273 return -EINVAL;
1274 }
1275
1276 /*
1277 * Returns zero if the scheme is active. Else, returns time to wait for next
1278 * watermark check in micro-seconds.
1279 */
damos_wmark_wait_us(struct damos * scheme)1280 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1281 {
1282 unsigned long metric;
1283
1284 if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
1285 return 0;
1286
1287 metric = damos_wmark_metric_value(scheme->wmarks.metric);
1288 /* higher than high watermark or lower than low watermark */
1289 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1290 if (scheme->wmarks.activated)
1291 pr_debug("deactivate a scheme (%d) for %s wmark\n",
1292 scheme->action,
1293 metric > scheme->wmarks.high ?
1294 "high" : "low");
1295 scheme->wmarks.activated = false;
1296 return scheme->wmarks.interval;
1297 }
1298
1299 /* inactive and higher than middle watermark */
1300 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1301 !scheme->wmarks.activated)
1302 return scheme->wmarks.interval;
1303
1304 if (!scheme->wmarks.activated)
1305 pr_debug("activate a scheme (%d)\n", scheme->action);
1306 scheme->wmarks.activated = true;
1307 return 0;
1308 }
1309
kdamond_usleep(unsigned long usecs)1310 static void kdamond_usleep(unsigned long usecs)
1311 {
1312 /* See Documentation/timers/timers-howto.rst for the thresholds */
1313 if (usecs > 20 * USEC_PER_MSEC)
1314 schedule_timeout_idle(usecs_to_jiffies(usecs));
1315 else
1316 usleep_idle_range(usecs, usecs + 1);
1317 }
1318
1319 /* Returns negative error code if it's not activated but should return */
kdamond_wait_activation(struct damon_ctx * ctx)1320 static int kdamond_wait_activation(struct damon_ctx *ctx)
1321 {
1322 struct damos *s;
1323 unsigned long wait_time;
1324 unsigned long min_wait_time = 0;
1325 bool init_wait_time = false;
1326
1327 while (!kdamond_need_stop(ctx)) {
1328 damon_for_each_scheme(s, ctx) {
1329 wait_time = damos_wmark_wait_us(s);
1330 if (!init_wait_time || wait_time < min_wait_time) {
1331 init_wait_time = true;
1332 min_wait_time = wait_time;
1333 }
1334 }
1335 if (!min_wait_time)
1336 return 0;
1337
1338 kdamond_usleep(min_wait_time);
1339
1340 if (ctx->callback.after_wmarks_check &&
1341 ctx->callback.after_wmarks_check(ctx))
1342 break;
1343 }
1344 return -EBUSY;
1345 }
1346
kdamond_init_intervals_sis(struct damon_ctx * ctx)1347 static void kdamond_init_intervals_sis(struct damon_ctx *ctx)
1348 {
1349 unsigned long sample_interval = ctx->attrs.sample_interval ?
1350 ctx->attrs.sample_interval : 1;
1351
1352 ctx->passed_sample_intervals = 0;
1353 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
1354 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
1355 sample_interval;
1356 }
1357
1358 /*
1359 * The monitoring daemon that runs as a kernel thread
1360 */
kdamond_fn(void * data)1361 static int kdamond_fn(void *data)
1362 {
1363 struct damon_ctx *ctx = data;
1364 struct damon_target *t;
1365 struct damon_region *r, *next;
1366 unsigned int max_nr_accesses = 0;
1367 unsigned long sz_limit = 0;
1368
1369 pr_debug("kdamond (%d) starts\n", current->pid);
1370
1371 complete(&ctx->kdamond_started);
1372 kdamond_init_intervals_sis(ctx);
1373
1374 if (ctx->ops.init)
1375 ctx->ops.init(ctx);
1376 if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1377 goto done;
1378
1379 sz_limit = damon_region_sz_limit(ctx);
1380
1381 while (!kdamond_need_stop(ctx)) {
1382 /*
1383 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
1384 * be changed from after_wmarks_check() or after_aggregation()
1385 * callbacks. Read the values here, and use those for this
1386 * iteration. That is, damon_set_attrs() updated new values
1387 * are respected from next iteration.
1388 */
1389 unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
1390 unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
1391 unsigned long sample_interval = ctx->attrs.sample_interval;
1392
1393 if (kdamond_wait_activation(ctx))
1394 break;
1395
1396 if (ctx->ops.prepare_access_checks)
1397 ctx->ops.prepare_access_checks(ctx);
1398 if (ctx->callback.after_sampling &&
1399 ctx->callback.after_sampling(ctx))
1400 break;
1401
1402 kdamond_usleep(sample_interval);
1403 ctx->passed_sample_intervals++;
1404
1405 if (ctx->ops.check_accesses)
1406 max_nr_accesses = ctx->ops.check_accesses(ctx);
1407
1408 sample_interval = ctx->attrs.sample_interval ?
1409 ctx->attrs.sample_interval : 1;
1410 if (ctx->passed_sample_intervals == next_aggregation_sis) {
1411 ctx->next_aggregation_sis = next_aggregation_sis +
1412 ctx->attrs.aggr_interval / sample_interval;
1413 kdamond_merge_regions(ctx,
1414 max_nr_accesses / 10,
1415 sz_limit);
1416 if (ctx->callback.after_aggregation &&
1417 ctx->callback.after_aggregation(ctx))
1418 break;
1419 if (!list_empty(&ctx->schemes))
1420 kdamond_apply_schemes(ctx);
1421 kdamond_reset_aggregated(ctx);
1422 kdamond_split_regions(ctx);
1423 if (ctx->ops.reset_aggregated)
1424 ctx->ops.reset_aggregated(ctx);
1425 }
1426
1427 if (ctx->passed_sample_intervals == next_ops_update_sis) {
1428 ctx->next_ops_update_sis = next_ops_update_sis +
1429 ctx->attrs.ops_update_interval /
1430 sample_interval;
1431 if (ctx->ops.update)
1432 ctx->ops.update(ctx);
1433 sz_limit = damon_region_sz_limit(ctx);
1434 }
1435 }
1436 done:
1437 damon_for_each_target(t, ctx) {
1438 damon_for_each_region_safe(r, next, t)
1439 damon_destroy_region(r, t);
1440 }
1441
1442 if (ctx->callback.before_terminate)
1443 ctx->callback.before_terminate(ctx);
1444 if (ctx->ops.cleanup)
1445 ctx->ops.cleanup(ctx);
1446
1447 pr_debug("kdamond (%d) finishes\n", current->pid);
1448 mutex_lock(&ctx->kdamond_lock);
1449 ctx->kdamond = NULL;
1450 mutex_unlock(&ctx->kdamond_lock);
1451
1452 mutex_lock(&damon_lock);
1453 nr_running_ctxs--;
1454 if (!nr_running_ctxs && running_exclusive_ctxs)
1455 running_exclusive_ctxs = false;
1456 mutex_unlock(&damon_lock);
1457
1458 return 0;
1459 }
1460
1461 /*
1462 * struct damon_system_ram_region - System RAM resource address region of
1463 * [@start, @end).
1464 * @start: Start address of the region (inclusive).
1465 * @end: End address of the region (exclusive).
1466 */
1467 struct damon_system_ram_region {
1468 unsigned long start;
1469 unsigned long end;
1470 };
1471
walk_system_ram(struct resource * res,void * arg)1472 static int walk_system_ram(struct resource *res, void *arg)
1473 {
1474 struct damon_system_ram_region *a = arg;
1475
1476 if (a->end - a->start < resource_size(res)) {
1477 a->start = res->start;
1478 a->end = res->end;
1479 }
1480 return 0;
1481 }
1482
1483 /*
1484 * Find biggest 'System RAM' resource and store its start and end address in
1485 * @start and @end, respectively. If no System RAM is found, returns false.
1486 */
damon_find_biggest_system_ram(unsigned long * start,unsigned long * end)1487 static bool damon_find_biggest_system_ram(unsigned long *start,
1488 unsigned long *end)
1489
1490 {
1491 struct damon_system_ram_region arg = {};
1492
1493 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
1494 if (arg.end <= arg.start)
1495 return false;
1496
1497 *start = arg.start;
1498 *end = arg.end;
1499 return true;
1500 }
1501
1502 /**
1503 * damon_set_region_biggest_system_ram_default() - Set the region of the given
1504 * monitoring target as requested, or biggest 'System RAM'.
1505 * @t: The monitoring target to set the region.
1506 * @start: The pointer to the start address of the region.
1507 * @end: The pointer to the end address of the region.
1508 *
1509 * This function sets the region of @t as requested by @start and @end. If the
1510 * values of @start and @end are zero, however, this function finds the biggest
1511 * 'System RAM' resource and sets the region to cover the resource. In the
1512 * latter case, this function saves the start and end addresses of the resource
1513 * in @start and @end, respectively.
1514 *
1515 * Return: 0 on success, negative error code otherwise.
1516 */
damon_set_region_biggest_system_ram_default(struct damon_target * t,unsigned long * start,unsigned long * end)1517 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
1518 unsigned long *start, unsigned long *end)
1519 {
1520 struct damon_addr_range addr_range;
1521
1522 if (*start > *end)
1523 return -EINVAL;
1524
1525 if (!*start && !*end &&
1526 !damon_find_biggest_system_ram(start, end))
1527 return -EINVAL;
1528
1529 addr_range.start = *start;
1530 addr_range.end = *end;
1531 return damon_set_regions(t, &addr_range, 1);
1532 }
1533
damon_init(void)1534 static int __init damon_init(void)
1535 {
1536 damon_region_cache = KMEM_CACHE(damon_region, 0);
1537 if (unlikely(!damon_region_cache)) {
1538 pr_err("creating damon_region_cache fails\n");
1539 return -ENOMEM;
1540 }
1541
1542 return 0;
1543 }
1544
1545 subsys_initcall(damon_init);
1546
1547 #include "core-test.h"
1548