1 /*
2 * QEMU AHCI Emulation
3 *
4 * Copyright (c) 2010 qiaochong@loongson.cn
5 * Copyright (c) 2010 Roland Elek <elek.roland@gmail.com>
6 * Copyright (c) 2010 Sebastian Herbszt <herbszt@gmx.de>
7 * Copyright (c) 2010 Alexander Graf <agraf@suse.de>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 *
22 */
23
24 #include "qemu/osdep.h"
25 #include "hw/irq.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/pci.h"
28 #include "hw/qdev-properties.h"
29 #include "migration/vmstate.h"
30
31 #include "qemu/error-report.h"
32 #include "qemu/log.h"
33 #include "qemu/main-loop.h"
34 #include "qemu/module.h"
35 #include "sysemu/block-backend.h"
36 #include "sysemu/dma.h"
37 #include "hw/ide/pci.h"
38 #include "hw/ide/ahci-pci.h"
39 #include "hw/ide/ahci-sysbus.h"
40 #include "ahci-internal.h"
41 #include "ide-internal.h"
42
43 #include "trace.h"
44
45 static void check_cmd(AHCIState *s, int port);
46 static void handle_cmd(AHCIState *s, int port, uint8_t slot);
47 static void ahci_reset_port(AHCIState *s, int port);
48 static bool ahci_write_fis_d2h(AHCIDevice *ad, bool d2h_fis_i);
49 static void ahci_clear_cmd_issue(AHCIDevice *ad, uint8_t slot);
50 static void ahci_init_d2h(AHCIDevice *ad);
51 static int ahci_dma_prepare_buf(const IDEDMA *dma, int32_t limit);
52 static bool ahci_map_clb_address(AHCIDevice *ad);
53 static bool ahci_map_fis_address(AHCIDevice *ad);
54 static void ahci_unmap_clb_address(AHCIDevice *ad);
55 static void ahci_unmap_fis_address(AHCIDevice *ad);
56
57 static const char *AHCIHostReg_lookup[AHCI_HOST_REG__COUNT] = {
58 [AHCI_HOST_REG_CAP] = "CAP",
59 [AHCI_HOST_REG_CTL] = "GHC",
60 [AHCI_HOST_REG_IRQ_STAT] = "IS",
61 [AHCI_HOST_REG_PORTS_IMPL] = "PI",
62 [AHCI_HOST_REG_VERSION] = "VS",
63 [AHCI_HOST_REG_CCC_CTL] = "CCC_CTL",
64 [AHCI_HOST_REG_CCC_PORTS] = "CCC_PORTS",
65 [AHCI_HOST_REG_EM_LOC] = "EM_LOC",
66 [AHCI_HOST_REG_EM_CTL] = "EM_CTL",
67 [AHCI_HOST_REG_CAP2] = "CAP2",
68 [AHCI_HOST_REG_BOHC] = "BOHC",
69 };
70
71 static const char *AHCIPortReg_lookup[AHCI_PORT_REG__COUNT] = {
72 [AHCI_PORT_REG_LST_ADDR] = "PxCLB",
73 [AHCI_PORT_REG_LST_ADDR_HI] = "PxCLBU",
74 [AHCI_PORT_REG_FIS_ADDR] = "PxFB",
75 [AHCI_PORT_REG_FIS_ADDR_HI] = "PxFBU",
76 [AHCI_PORT_REG_IRQ_STAT] = "PxIS",
77 [AHCI_PORT_REG_IRQ_MASK] = "PXIE",
78 [AHCI_PORT_REG_CMD] = "PxCMD",
79 [7] = "Reserved",
80 [AHCI_PORT_REG_TFDATA] = "PxTFD",
81 [AHCI_PORT_REG_SIG] = "PxSIG",
82 [AHCI_PORT_REG_SCR_STAT] = "PxSSTS",
83 [AHCI_PORT_REG_SCR_CTL] = "PxSCTL",
84 [AHCI_PORT_REG_SCR_ERR] = "PxSERR",
85 [AHCI_PORT_REG_SCR_ACT] = "PxSACT",
86 [AHCI_PORT_REG_CMD_ISSUE] = "PxCI",
87 [AHCI_PORT_REG_SCR_NOTIF] = "PxSNTF",
88 [AHCI_PORT_REG_FIS_CTL] = "PxFBS",
89 [AHCI_PORT_REG_DEV_SLEEP] = "PxDEVSLP",
90 [18 ... 27] = "Reserved",
91 [AHCI_PORT_REG_VENDOR_1 ...
92 AHCI_PORT_REG_VENDOR_4] = "PxVS",
93 };
94
95 static const char *AHCIPortIRQ_lookup[AHCI_PORT_IRQ__COUNT] = {
96 [AHCI_PORT_IRQ_BIT_DHRS] = "DHRS",
97 [AHCI_PORT_IRQ_BIT_PSS] = "PSS",
98 [AHCI_PORT_IRQ_BIT_DSS] = "DSS",
99 [AHCI_PORT_IRQ_BIT_SDBS] = "SDBS",
100 [AHCI_PORT_IRQ_BIT_UFS] = "UFS",
101 [AHCI_PORT_IRQ_BIT_DPS] = "DPS",
102 [AHCI_PORT_IRQ_BIT_PCS] = "PCS",
103 [AHCI_PORT_IRQ_BIT_DMPS] = "DMPS",
104 [8 ... 21] = "RESERVED",
105 [AHCI_PORT_IRQ_BIT_PRCS] = "PRCS",
106 [AHCI_PORT_IRQ_BIT_IPMS] = "IPMS",
107 [AHCI_PORT_IRQ_BIT_OFS] = "OFS",
108 [25] = "RESERVED",
109 [AHCI_PORT_IRQ_BIT_INFS] = "INFS",
110 [AHCI_PORT_IRQ_BIT_IFS] = "IFS",
111 [AHCI_PORT_IRQ_BIT_HBDS] = "HBDS",
112 [AHCI_PORT_IRQ_BIT_HBFS] = "HBFS",
113 [AHCI_PORT_IRQ_BIT_TFES] = "TFES",
114 [AHCI_PORT_IRQ_BIT_CPDS] = "CPDS"
115 };
116
ahci_port_read(AHCIState * s,int port,int offset)117 static uint32_t ahci_port_read(AHCIState *s, int port, int offset)
118 {
119 uint32_t val;
120 AHCIPortRegs *pr = &s->dev[port].port_regs;
121 enum AHCIPortReg regnum = offset / sizeof(uint32_t);
122 assert(regnum < (AHCI_PORT_ADDR_OFFSET_LEN / sizeof(uint32_t)));
123
124 switch (regnum) {
125 case AHCI_PORT_REG_LST_ADDR:
126 val = pr->lst_addr;
127 break;
128 case AHCI_PORT_REG_LST_ADDR_HI:
129 val = pr->lst_addr_hi;
130 break;
131 case AHCI_PORT_REG_FIS_ADDR:
132 val = pr->fis_addr;
133 break;
134 case AHCI_PORT_REG_FIS_ADDR_HI:
135 val = pr->fis_addr_hi;
136 break;
137 case AHCI_PORT_REG_IRQ_STAT:
138 val = pr->irq_stat;
139 break;
140 case AHCI_PORT_REG_IRQ_MASK:
141 val = pr->irq_mask;
142 break;
143 case AHCI_PORT_REG_CMD:
144 val = pr->cmd;
145 break;
146 case AHCI_PORT_REG_TFDATA:
147 val = pr->tfdata;
148 break;
149 case AHCI_PORT_REG_SIG:
150 val = pr->sig;
151 break;
152 case AHCI_PORT_REG_SCR_STAT:
153 if (s->dev[port].port.ifs[0].blk) {
154 val = SATA_SCR_SSTATUS_DET_DEV_PRESENT_PHY_UP |
155 SATA_SCR_SSTATUS_SPD_GEN1 | SATA_SCR_SSTATUS_IPM_ACTIVE;
156 } else {
157 val = SATA_SCR_SSTATUS_DET_NODEV;
158 }
159 break;
160 case AHCI_PORT_REG_SCR_CTL:
161 val = pr->scr_ctl;
162 break;
163 case AHCI_PORT_REG_SCR_ERR:
164 val = pr->scr_err;
165 break;
166 case AHCI_PORT_REG_SCR_ACT:
167 val = pr->scr_act;
168 break;
169 case AHCI_PORT_REG_CMD_ISSUE:
170 val = pr->cmd_issue;
171 break;
172 default:
173 trace_ahci_port_read_default(s, port, AHCIPortReg_lookup[regnum],
174 offset);
175 val = 0;
176 }
177
178 trace_ahci_port_read(s, port, AHCIPortReg_lookup[regnum], offset, val);
179 return val;
180 }
181
ahci_irq_raise(AHCIState * s)182 static void ahci_irq_raise(AHCIState *s)
183 {
184 DeviceState *dev_state = s->container;
185 PCIDevice *pci_dev = (PCIDevice *) object_dynamic_cast(OBJECT(dev_state),
186 TYPE_PCI_DEVICE);
187
188 trace_ahci_irq_raise(s);
189
190 if (pci_dev && msi_enabled(pci_dev)) {
191 msi_notify(pci_dev, 0);
192 } else {
193 qemu_irq_raise(s->irq);
194 }
195 }
196
ahci_irq_lower(AHCIState * s)197 static void ahci_irq_lower(AHCIState *s)
198 {
199 DeviceState *dev_state = s->container;
200 PCIDevice *pci_dev = (PCIDevice *) object_dynamic_cast(OBJECT(dev_state),
201 TYPE_PCI_DEVICE);
202
203 trace_ahci_irq_lower(s);
204
205 if (!pci_dev || !msi_enabled(pci_dev)) {
206 qemu_irq_lower(s->irq);
207 }
208 }
209
ahci_check_irq(AHCIState * s)210 static void ahci_check_irq(AHCIState *s)
211 {
212 int i;
213 uint32_t old_irq = s->control_regs.irqstatus;
214
215 s->control_regs.irqstatus = 0;
216 for (i = 0; i < s->ports; i++) {
217 AHCIPortRegs *pr = &s->dev[i].port_regs;
218 if (pr->irq_stat & pr->irq_mask) {
219 s->control_regs.irqstatus |= (1 << i);
220 }
221 }
222 trace_ahci_check_irq(s, old_irq, s->control_regs.irqstatus);
223 if (s->control_regs.irqstatus &&
224 (s->control_regs.ghc & HOST_CTL_IRQ_EN)) {
225 ahci_irq_raise(s);
226 } else {
227 ahci_irq_lower(s);
228 }
229 }
230
ahci_trigger_irq(AHCIState * s,AHCIDevice * d,enum AHCIPortIRQ irqbit)231 static void ahci_trigger_irq(AHCIState *s, AHCIDevice *d,
232 enum AHCIPortIRQ irqbit)
233 {
234 g_assert((unsigned)irqbit < 32);
235 uint32_t irq = 1U << irqbit;
236 uint32_t irqstat = d->port_regs.irq_stat | irq;
237
238 trace_ahci_trigger_irq(s, d->port_no,
239 AHCIPortIRQ_lookup[irqbit], irq,
240 d->port_regs.irq_stat, irqstat,
241 irqstat & d->port_regs.irq_mask);
242
243 d->port_regs.irq_stat = irqstat;
244 ahci_check_irq(s);
245 }
246
map_page(AddressSpace * as,uint8_t ** ptr,uint64_t addr,uint32_t wanted)247 static void map_page(AddressSpace *as, uint8_t **ptr, uint64_t addr,
248 uint32_t wanted)
249 {
250 hwaddr len = wanted;
251
252 if (*ptr) {
253 dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len);
254 }
255
256 *ptr = dma_memory_map(as, addr, &len, DMA_DIRECTION_FROM_DEVICE,
257 MEMTXATTRS_UNSPECIFIED);
258 if (len < wanted && *ptr) {
259 dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len);
260 *ptr = NULL;
261 }
262 }
263
264 /**
265 * Check the cmd register to see if we should start or stop
266 * the DMA or FIS RX engines.
267 *
268 * @ad: Device to dis/engage.
269 *
270 * @return 0 on success, -1 on error.
271 */
ahci_cond_start_engines(AHCIDevice * ad)272 static int ahci_cond_start_engines(AHCIDevice *ad)
273 {
274 AHCIPortRegs *pr = &ad->port_regs;
275 bool cmd_start = pr->cmd & PORT_CMD_START;
276 bool cmd_on = pr->cmd & PORT_CMD_LIST_ON;
277 bool fis_start = pr->cmd & PORT_CMD_FIS_RX;
278 bool fis_on = pr->cmd & PORT_CMD_FIS_ON;
279
280 if (cmd_start && !cmd_on) {
281 if (!ahci_map_clb_address(ad)) {
282 pr->cmd &= ~PORT_CMD_START;
283 error_report("AHCI: Failed to start DMA engine: "
284 "bad command list buffer address");
285 return -1;
286 }
287 } else if (!cmd_start && cmd_on) {
288 ahci_unmap_clb_address(ad);
289 }
290
291 if (fis_start && !fis_on) {
292 if (!ahci_map_fis_address(ad)) {
293 pr->cmd &= ~PORT_CMD_FIS_RX;
294 error_report("AHCI: Failed to start FIS receive engine: "
295 "bad FIS receive buffer address");
296 return -1;
297 }
298 } else if (!fis_start && fis_on) {
299 ahci_unmap_fis_address(ad);
300 }
301
302 return 0;
303 }
304
ahci_port_write(AHCIState * s,int port,int offset,uint32_t val)305 static void ahci_port_write(AHCIState *s, int port, int offset, uint32_t val)
306 {
307 AHCIPortRegs *pr = &s->dev[port].port_regs;
308 enum AHCIPortReg regnum = offset / sizeof(uint32_t);
309 assert(regnum < (AHCI_PORT_ADDR_OFFSET_LEN / sizeof(uint32_t)));
310 trace_ahci_port_write(s, port, AHCIPortReg_lookup[regnum], offset, val);
311
312 switch (regnum) {
313 case AHCI_PORT_REG_LST_ADDR:
314 pr->lst_addr = val;
315 break;
316 case AHCI_PORT_REG_LST_ADDR_HI:
317 pr->lst_addr_hi = val;
318 break;
319 case AHCI_PORT_REG_FIS_ADDR:
320 pr->fis_addr = val;
321 break;
322 case AHCI_PORT_REG_FIS_ADDR_HI:
323 pr->fis_addr_hi = val;
324 break;
325 case AHCI_PORT_REG_IRQ_STAT:
326 pr->irq_stat &= ~val;
327 ahci_check_irq(s);
328 break;
329 case AHCI_PORT_REG_IRQ_MASK:
330 pr->irq_mask = val & 0xfdc000ff;
331 ahci_check_irq(s);
332 break;
333 case AHCI_PORT_REG_CMD:
334 if ((pr->cmd & PORT_CMD_START) && !(val & PORT_CMD_START)) {
335 pr->scr_act = 0;
336 pr->cmd_issue = 0;
337 }
338
339 /* Block any Read-only fields from being set;
340 * including LIST_ON and FIS_ON.
341 * The spec requires to set ICC bits to zero after the ICC change
342 * is done. We don't support ICC state changes, therefore always
343 * force the ICC bits to zero.
344 */
345 pr->cmd = (pr->cmd & PORT_CMD_RO_MASK) |
346 (val & ~(PORT_CMD_RO_MASK | PORT_CMD_ICC_MASK));
347
348 /* Check FIS RX and CLB engines */
349 ahci_cond_start_engines(&s->dev[port]);
350
351 /* XXX usually the FIS would be pending on the bus here and
352 issuing deferred until the OS enables FIS receival.
353 Instead, we only submit it once - which works in most
354 cases, but is a hack. */
355 if ((pr->cmd & PORT_CMD_FIS_ON) &&
356 !s->dev[port].init_d2h_sent) {
357 ahci_init_d2h(&s->dev[port]);
358 }
359
360 check_cmd(s, port);
361 break;
362 case AHCI_PORT_REG_TFDATA:
363 case AHCI_PORT_REG_SIG:
364 case AHCI_PORT_REG_SCR_STAT:
365 /* Read Only */
366 break;
367 case AHCI_PORT_REG_SCR_CTL:
368 if (((pr->scr_ctl & AHCI_SCR_SCTL_DET) == 1) &&
369 ((val & AHCI_SCR_SCTL_DET) == 0)) {
370 ahci_reset_port(s, port);
371 }
372 pr->scr_ctl = val;
373 break;
374 case AHCI_PORT_REG_SCR_ERR:
375 pr->scr_err &= ~val;
376 break;
377 case AHCI_PORT_REG_SCR_ACT:
378 /* RW1 */
379 pr->scr_act |= val;
380 break;
381 case AHCI_PORT_REG_CMD_ISSUE:
382 pr->cmd_issue |= val;
383 check_cmd(s, port);
384 break;
385 default:
386 trace_ahci_port_write_unimpl(s, port, AHCIPortReg_lookup[regnum],
387 offset, val);
388 qemu_log_mask(LOG_UNIMP, "Attempted write to unimplemented register: "
389 "AHCI port %d register %s, offset 0x%x: 0x%"PRIx32,
390 port, AHCIPortReg_lookup[regnum], offset, val);
391 break;
392 }
393 }
394
ahci_mem_read_32(void * opaque,hwaddr addr)395 static uint64_t ahci_mem_read_32(void *opaque, hwaddr addr)
396 {
397 AHCIState *s = opaque;
398 uint32_t val = 0;
399
400 if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) {
401 enum AHCIHostReg regnum = addr / 4;
402 assert(regnum < AHCI_HOST_REG__COUNT);
403
404 switch (regnum) {
405 case AHCI_HOST_REG_CAP:
406 val = s->control_regs.cap;
407 break;
408 case AHCI_HOST_REG_CTL:
409 val = s->control_regs.ghc;
410 break;
411 case AHCI_HOST_REG_IRQ_STAT:
412 val = s->control_regs.irqstatus;
413 break;
414 case AHCI_HOST_REG_PORTS_IMPL:
415 val = s->control_regs.impl;
416 break;
417 case AHCI_HOST_REG_VERSION:
418 val = s->control_regs.version;
419 break;
420 default:
421 trace_ahci_mem_read_32_host_default(s, AHCIHostReg_lookup[regnum],
422 addr);
423 }
424 trace_ahci_mem_read_32_host(s, AHCIHostReg_lookup[regnum], addr, val);
425 } else if ((addr >= AHCI_PORT_REGS_START_ADDR) &&
426 (addr < (AHCI_PORT_REGS_START_ADDR +
427 (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) {
428 val = ahci_port_read(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7,
429 addr & AHCI_PORT_ADDR_OFFSET_MASK);
430 } else {
431 trace_ahci_mem_read_32_default(s, addr, val);
432 }
433
434 trace_ahci_mem_read_32(s, addr, val);
435 return val;
436 }
437
438
439 /**
440 * AHCI 1.3 section 3 ("HBA Memory Registers")
441 * Support unaligned 8/16/32 bit reads, and 64 bit aligned reads.
442 * Caller is responsible for masking unwanted higher order bytes.
443 */
ahci_mem_read(void * opaque,hwaddr addr,unsigned size)444 static uint64_t ahci_mem_read(void *opaque, hwaddr addr, unsigned size)
445 {
446 hwaddr aligned = addr & ~0x3;
447 int ofst = addr - aligned;
448 uint64_t lo = ahci_mem_read_32(opaque, aligned);
449 uint64_t hi;
450 uint64_t val;
451
452 /* if < 8 byte read does not cross 4 byte boundary */
453 if (ofst + size <= 4) {
454 val = lo >> (ofst * 8);
455 } else {
456 g_assert(size > 1);
457
458 /* If the 64bit read is unaligned, we will produce undefined
459 * results. AHCI does not support unaligned 64bit reads. */
460 hi = ahci_mem_read_32(opaque, aligned + 4);
461 val = (hi << 32 | lo) >> (ofst * 8);
462 }
463
464 trace_ahci_mem_read(opaque, size, addr, val);
465 return val;
466 }
467
468
ahci_mem_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)469 static void ahci_mem_write(void *opaque, hwaddr addr,
470 uint64_t val, unsigned size)
471 {
472 AHCIState *s = opaque;
473
474 trace_ahci_mem_write(s, size, addr, val);
475
476 /* Only aligned reads are allowed on AHCI */
477 if (addr & 3) {
478 qemu_log_mask(LOG_GUEST_ERROR,
479 "ahci: Mis-aligned write to addr 0x%03" HWADDR_PRIX "\n",
480 addr);
481 return;
482 }
483
484 if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) {
485 enum AHCIHostReg regnum = addr / 4;
486 assert(regnum < AHCI_HOST_REG__COUNT);
487
488 switch (regnum) {
489 case AHCI_HOST_REG_CAP: /* R/WO, RO */
490 /* FIXME handle R/WO */
491 break;
492 case AHCI_HOST_REG_CTL: /* R/W */
493 if (val & HOST_CTL_RESET) {
494 ahci_reset(s);
495 } else {
496 s->control_regs.ghc = (val & 0x3) | HOST_CTL_AHCI_EN;
497 ahci_check_irq(s);
498 }
499 break;
500 case AHCI_HOST_REG_IRQ_STAT: /* R/WC, RO */
501 s->control_regs.irqstatus &= ~val;
502 ahci_check_irq(s);
503 break;
504 case AHCI_HOST_REG_PORTS_IMPL: /* R/WO, RO */
505 /* FIXME handle R/WO */
506 break;
507 case AHCI_HOST_REG_VERSION: /* RO */
508 /* FIXME report write? */
509 break;
510 default:
511 qemu_log_mask(LOG_UNIMP,
512 "Attempted write to unimplemented register: "
513 "AHCI host register %s, "
514 "offset 0x%"PRIx64": 0x%"PRIx64,
515 AHCIHostReg_lookup[regnum], addr, val);
516 trace_ahci_mem_write_host_unimpl(s, size,
517 AHCIHostReg_lookup[regnum], addr);
518 }
519 trace_ahci_mem_write_host(s, size, AHCIHostReg_lookup[regnum],
520 addr, val);
521 } else if ((addr >= AHCI_PORT_REGS_START_ADDR) &&
522 (addr < (AHCI_PORT_REGS_START_ADDR +
523 (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) {
524 ahci_port_write(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7,
525 addr & AHCI_PORT_ADDR_OFFSET_MASK, val);
526 } else {
527 qemu_log_mask(LOG_UNIMP, "Attempted write to unimplemented register: "
528 "AHCI global register at offset 0x%"PRIx64": 0x%"PRIx64,
529 addr, val);
530 trace_ahci_mem_write_unimpl(s, size, addr, val);
531 }
532 }
533
534 static const MemoryRegionOps ahci_mem_ops = {
535 .read = ahci_mem_read,
536 .write = ahci_mem_write,
537 .endianness = DEVICE_LITTLE_ENDIAN,
538 };
539
ahci_idp_read(void * opaque,hwaddr addr,unsigned size)540 static uint64_t ahci_idp_read(void *opaque, hwaddr addr,
541 unsigned size)
542 {
543 AHCIState *s = opaque;
544
545 if (addr == s->idp_offset) {
546 /* index register */
547 return s->idp_index;
548 } else if (addr == s->idp_offset + 4) {
549 /* data register - do memory read at location selected by index */
550 return ahci_mem_read(opaque, s->idp_index, size);
551 } else {
552 return 0;
553 }
554 }
555
ahci_idp_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)556 static void ahci_idp_write(void *opaque, hwaddr addr,
557 uint64_t val, unsigned size)
558 {
559 AHCIState *s = opaque;
560
561 if (addr == s->idp_offset) {
562 /* index register - mask off reserved bits */
563 s->idp_index = (uint32_t)val & ((AHCI_MEM_BAR_SIZE - 1) & ~3);
564 } else if (addr == s->idp_offset + 4) {
565 /* data register - do memory write at location selected by index */
566 ahci_mem_write(opaque, s->idp_index, val, size);
567 }
568 }
569
570 static const MemoryRegionOps ahci_idp_ops = {
571 .read = ahci_idp_read,
572 .write = ahci_idp_write,
573 .endianness = DEVICE_LITTLE_ENDIAN,
574 };
575
576
ahci_reg_init(AHCIState * s)577 static void ahci_reg_init(AHCIState *s)
578 {
579 int i;
580
581 s->control_regs.cap = (s->ports - 1) |
582 (AHCI_NUM_COMMAND_SLOTS << 8) |
583 (AHCI_SUPPORTED_SPEED_GEN1 << AHCI_SUPPORTED_SPEED) |
584 HOST_CAP_NCQ | HOST_CAP_AHCI | HOST_CAP_64;
585
586 s->control_regs.impl = (1 << s->ports) - 1;
587
588 s->control_regs.version = AHCI_VERSION_1_0;
589
590 for (i = 0; i < s->ports; i++) {
591 s->dev[i].port_state = STATE_RUN;
592 }
593 }
594
check_cmd(AHCIState * s,int port)595 static void check_cmd(AHCIState *s, int port)
596 {
597 AHCIPortRegs *pr = &s->dev[port].port_regs;
598 uint8_t slot;
599
600 if ((pr->cmd & PORT_CMD_START) && pr->cmd_issue) {
601 for (slot = 0; (slot < 32) && pr->cmd_issue; slot++) {
602 if (pr->cmd_issue & (1U << slot)) {
603 handle_cmd(s, port, slot);
604 }
605 }
606 }
607 }
608
ahci_check_cmd_bh(void * opaque)609 static void ahci_check_cmd_bh(void *opaque)
610 {
611 AHCIDevice *ad = opaque;
612
613 qemu_bh_delete(ad->check_bh);
614 ad->check_bh = NULL;
615
616 check_cmd(ad->hba, ad->port_no);
617 }
618
ahci_init_d2h(AHCIDevice * ad)619 static void ahci_init_d2h(AHCIDevice *ad)
620 {
621 IDEState *ide_state = &ad->port.ifs[0];
622 AHCIPortRegs *pr = &ad->port_regs;
623
624 if (ad->init_d2h_sent) {
625 return;
626 }
627
628 /*
629 * For simplicity, do not call ahci_clear_cmd_issue() for this
630 * ahci_write_fis_d2h(). (The reset value for PxCI is 0.)
631 */
632 if (ahci_write_fis_d2h(ad, true)) {
633 ad->init_d2h_sent = true;
634 /* We're emulating receiving the first Reg D2H FIS from the device;
635 * Update the SIG register, but otherwise proceed as normal. */
636 pr->sig = ((uint32_t)ide_state->hcyl << 24) |
637 (ide_state->lcyl << 16) |
638 (ide_state->sector << 8) |
639 (ide_state->nsector & 0xFF);
640 }
641 }
642
ahci_set_signature(AHCIDevice * ad,uint32_t sig)643 static void ahci_set_signature(AHCIDevice *ad, uint32_t sig)
644 {
645 IDEState *s = &ad->port.ifs[0];
646 s->hcyl = sig >> 24 & 0xFF;
647 s->lcyl = sig >> 16 & 0xFF;
648 s->sector = sig >> 8 & 0xFF;
649 s->nsector = sig & 0xFF;
650
651 trace_ahci_set_signature(ad->hba, ad->port_no, s->nsector, s->sector,
652 s->lcyl, s->hcyl, sig);
653 }
654
ahci_reset_port(AHCIState * s,int port)655 static void ahci_reset_port(AHCIState *s, int port)
656 {
657 AHCIDevice *d = &s->dev[port];
658 AHCIPortRegs *pr = &d->port_regs;
659 IDEState *ide_state = &d->port.ifs[0];
660 int i;
661
662 trace_ahci_reset_port(s, port);
663
664 ide_bus_reset(&d->port);
665 ide_state->ncq_queues = AHCI_MAX_CMDS;
666
667 pr->scr_stat = 0;
668 pr->scr_err = 0;
669 pr->scr_act = 0;
670 pr->tfdata = 0x7F;
671 pr->sig = 0xFFFFFFFF;
672 pr->cmd_issue = 0;
673 d->busy_slot = -1;
674 d->init_d2h_sent = false;
675
676 ide_state = &s->dev[port].port.ifs[0];
677 if (!ide_state->blk) {
678 return;
679 }
680
681 /* reset ncq queue */
682 for (i = 0; i < AHCI_MAX_CMDS; i++) {
683 NCQTransferState *ncq_tfs = &s->dev[port].ncq_tfs[i];
684 ncq_tfs->halt = false;
685 if (!ncq_tfs->used) {
686 continue;
687 }
688
689 if (ncq_tfs->aiocb) {
690 blk_aio_cancel(ncq_tfs->aiocb);
691 ncq_tfs->aiocb = NULL;
692 }
693
694 /* Maybe we just finished the request thanks to blk_aio_cancel() */
695 if (!ncq_tfs->used) {
696 continue;
697 }
698
699 qemu_sglist_destroy(&ncq_tfs->sglist);
700 ncq_tfs->used = 0;
701 }
702
703 s->dev[port].port_state = STATE_RUN;
704 if (ide_state->drive_kind == IDE_CD) {
705 ahci_set_signature(d, SATA_SIGNATURE_CDROM);
706 ide_state->status = SEEK_STAT | WRERR_STAT | READY_STAT;
707 } else {
708 ahci_set_signature(d, SATA_SIGNATURE_DISK);
709 ide_state->status = SEEK_STAT | WRERR_STAT;
710 }
711
712 ide_state->error = 1;
713 ahci_init_d2h(d);
714 }
715
716 /* Buffer pretty output based on a raw FIS structure. */
ahci_pretty_buffer_fis(const uint8_t * fis,int cmd_len)717 static char *ahci_pretty_buffer_fis(const uint8_t *fis, int cmd_len)
718 {
719 int i;
720 GString *s = g_string_new("FIS:");
721
722 for (i = 0; i < cmd_len; i++) {
723 if ((i & 0xf) == 0) {
724 g_string_append_printf(s, "\n0x%02x: ", i);
725 }
726 g_string_append_printf(s, "%02x ", fis[i]);
727 }
728 g_string_append_c(s, '\n');
729
730 return g_string_free(s, FALSE);
731 }
732
ahci_map_fis_address(AHCIDevice * ad)733 static bool ahci_map_fis_address(AHCIDevice *ad)
734 {
735 AHCIPortRegs *pr = &ad->port_regs;
736 map_page(ad->hba->as, &ad->res_fis,
737 ((uint64_t)pr->fis_addr_hi << 32) | pr->fis_addr, 256);
738 if (ad->res_fis != NULL) {
739 pr->cmd |= PORT_CMD_FIS_ON;
740 return true;
741 }
742
743 pr->cmd &= ~PORT_CMD_FIS_ON;
744 return false;
745 }
746
ahci_unmap_fis_address(AHCIDevice * ad)747 static void ahci_unmap_fis_address(AHCIDevice *ad)
748 {
749 if (ad->res_fis == NULL) {
750 trace_ahci_unmap_fis_address_null(ad->hba, ad->port_no);
751 return;
752 }
753 ad->port_regs.cmd &= ~PORT_CMD_FIS_ON;
754 dma_memory_unmap(ad->hba->as, ad->res_fis, 256,
755 DMA_DIRECTION_FROM_DEVICE, 256);
756 ad->res_fis = NULL;
757 }
758
ahci_map_clb_address(AHCIDevice * ad)759 static bool ahci_map_clb_address(AHCIDevice *ad)
760 {
761 AHCIPortRegs *pr = &ad->port_regs;
762 ad->cur_cmd = NULL;
763 map_page(ad->hba->as, &ad->lst,
764 ((uint64_t)pr->lst_addr_hi << 32) | pr->lst_addr, 1024);
765 if (ad->lst != NULL) {
766 pr->cmd |= PORT_CMD_LIST_ON;
767 return true;
768 }
769
770 pr->cmd &= ~PORT_CMD_LIST_ON;
771 return false;
772 }
773
ahci_unmap_clb_address(AHCIDevice * ad)774 static void ahci_unmap_clb_address(AHCIDevice *ad)
775 {
776 if (ad->lst == NULL) {
777 trace_ahci_unmap_clb_address_null(ad->hba, ad->port_no);
778 return;
779 }
780 ad->port_regs.cmd &= ~PORT_CMD_LIST_ON;
781 dma_memory_unmap(ad->hba->as, ad->lst, 1024,
782 DMA_DIRECTION_FROM_DEVICE, 1024);
783 ad->lst = NULL;
784 }
785
ahci_write_fis_sdb(AHCIState * s,NCQTransferState * ncq_tfs)786 static void ahci_write_fis_sdb(AHCIState *s, NCQTransferState *ncq_tfs)
787 {
788 AHCIDevice *ad = ncq_tfs->drive;
789 AHCIPortRegs *pr = &ad->port_regs;
790 IDEState *ide_state;
791 SDBFIS *sdb_fis;
792
793 if (!ad->res_fis ||
794 !(pr->cmd & PORT_CMD_FIS_RX)) {
795 return;
796 }
797
798 sdb_fis = (SDBFIS *)&ad->res_fis[RES_FIS_SDBFIS];
799 ide_state = &ad->port.ifs[0];
800
801 sdb_fis->type = SATA_FIS_TYPE_SDB;
802 /* Interrupt pending & Notification bit */
803 sdb_fis->flags = 0x40; /* Interrupt bit, always 1 for NCQ */
804 sdb_fis->status = ide_state->status & 0x77;
805 sdb_fis->error = ide_state->error;
806 /* update SAct field in SDB_FIS */
807 sdb_fis->payload = cpu_to_le32(ad->finished);
808
809 /* Update shadow registers (except BSY 0x80 and DRQ 0x08) */
810 pr->tfdata = (ad->port.ifs[0].error << 8) |
811 (ad->port.ifs[0].status & 0x77) |
812 (pr->tfdata & 0x88);
813 pr->scr_act &= ~ad->finished;
814 ad->finished = 0;
815
816 /*
817 * TFES IRQ is always raised if ERR_STAT is set, regardless of I bit.
818 * If ERR_STAT is not set, trigger SDBS IRQ if interrupt bit is set
819 * (which currently, it always is).
820 */
821 if (sdb_fis->status & ERR_STAT) {
822 ahci_trigger_irq(s, ad, AHCI_PORT_IRQ_BIT_TFES);
823 } else if (sdb_fis->flags & 0x40) {
824 ahci_trigger_irq(s, ad, AHCI_PORT_IRQ_BIT_SDBS);
825 }
826 }
827
ahci_write_fis_pio(AHCIDevice * ad,uint16_t len,bool pio_fis_i)828 static void ahci_write_fis_pio(AHCIDevice *ad, uint16_t len, bool pio_fis_i)
829 {
830 AHCIPortRegs *pr = &ad->port_regs;
831 uint8_t *pio_fis;
832 IDEState *s = &ad->port.ifs[0];
833
834 if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) {
835 return;
836 }
837
838 pio_fis = &ad->res_fis[RES_FIS_PSFIS];
839
840 pio_fis[0] = SATA_FIS_TYPE_PIO_SETUP;
841 pio_fis[1] = (pio_fis_i ? (1 << 6) : 0);
842 pio_fis[2] = s->status;
843 pio_fis[3] = s->error;
844
845 pio_fis[4] = s->sector;
846 pio_fis[5] = s->lcyl;
847 pio_fis[6] = s->hcyl;
848 pio_fis[7] = s->select;
849 pio_fis[8] = s->hob_sector;
850 pio_fis[9] = s->hob_lcyl;
851 pio_fis[10] = s->hob_hcyl;
852 pio_fis[11] = 0;
853 pio_fis[12] = s->nsector & 0xFF;
854 pio_fis[13] = (s->nsector >> 8) & 0xFF;
855 pio_fis[14] = 0;
856 pio_fis[15] = s->status;
857 pio_fis[16] = len & 255;
858 pio_fis[17] = len >> 8;
859 pio_fis[18] = 0;
860 pio_fis[19] = 0;
861
862 /* Update shadow registers: */
863 pr->tfdata = (ad->port.ifs[0].error << 8) |
864 ad->port.ifs[0].status;
865
866 if (pio_fis[2] & ERR_STAT) {
867 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_TFES);
868 }
869 }
870
ahci_write_fis_d2h(AHCIDevice * ad,bool d2h_fis_i)871 static bool ahci_write_fis_d2h(AHCIDevice *ad, bool d2h_fis_i)
872 {
873 AHCIPortRegs *pr = &ad->port_regs;
874 uint8_t *d2h_fis;
875 int i;
876 IDEState *s = &ad->port.ifs[0];
877
878 if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) {
879 return false;
880 }
881
882 d2h_fis = &ad->res_fis[RES_FIS_RFIS];
883
884 d2h_fis[0] = SATA_FIS_TYPE_REGISTER_D2H;
885 d2h_fis[1] = d2h_fis_i ? (1 << 6) : 0; /* interrupt bit */
886 d2h_fis[2] = s->status;
887 d2h_fis[3] = s->error;
888
889 d2h_fis[4] = s->sector;
890 d2h_fis[5] = s->lcyl;
891 d2h_fis[6] = s->hcyl;
892 d2h_fis[7] = s->select;
893 d2h_fis[8] = s->hob_sector;
894 d2h_fis[9] = s->hob_lcyl;
895 d2h_fis[10] = s->hob_hcyl;
896 d2h_fis[11] = 0;
897 d2h_fis[12] = s->nsector & 0xFF;
898 d2h_fis[13] = (s->nsector >> 8) & 0xFF;
899 for (i = 14; i < 20; i++) {
900 d2h_fis[i] = 0;
901 }
902
903 /* Update shadow registers: */
904 pr->tfdata = (ad->port.ifs[0].error << 8) |
905 ad->port.ifs[0].status;
906
907 /* TFES IRQ is always raised if ERR_STAT is set, regardless of I bit. */
908 if (d2h_fis[2] & ERR_STAT) {
909 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_TFES);
910 } else if (d2h_fis_i) {
911 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_DHRS);
912 }
913
914 return true;
915 }
916
prdt_tbl_entry_size(const AHCI_SG * tbl)917 static int prdt_tbl_entry_size(const AHCI_SG *tbl)
918 {
919 /* flags_size is zero-based */
920 return (le32_to_cpu(tbl->flags_size) & AHCI_PRDT_SIZE_MASK) + 1;
921 }
922
923 /**
924 * Fetch entries in a guest-provided PRDT and convert it into a QEMU SGlist.
925 * @ad: The AHCIDevice for whom we are building the SGList.
926 * @sglist: The SGList target to add PRD entries to.
927 * @cmd: The AHCI Command Header that describes where the PRDT is.
928 * @limit: The remaining size of the S/ATA transaction, in bytes.
929 * @offset: The number of bytes already transferred, in bytes.
930 *
931 * The AHCI PRDT can describe up to 256GiB. S/ATA only support transactions of
932 * up to 32MiB as of ATA8-ACS3 rev 1b, assuming a 512 byte sector size. We stop
933 * building the sglist from the PRDT as soon as we hit @limit bytes,
934 * which is <= INT32_MAX/2GiB.
935 */
ahci_populate_sglist(AHCIDevice * ad,QEMUSGList * sglist,AHCICmdHdr * cmd,int64_t limit,uint64_t offset)936 static int ahci_populate_sglist(AHCIDevice *ad, QEMUSGList *sglist,
937 AHCICmdHdr *cmd, int64_t limit, uint64_t offset)
938 {
939 uint16_t opts = le16_to_cpu(cmd->opts);
940 uint16_t prdtl = le16_to_cpu(cmd->prdtl);
941 uint64_t cfis_addr = le64_to_cpu(cmd->tbl_addr);
942 uint64_t prdt_addr = cfis_addr + 0x80;
943 dma_addr_t prdt_len = (prdtl * sizeof(AHCI_SG));
944 dma_addr_t real_prdt_len = prdt_len;
945 uint8_t *prdt;
946 int i;
947 int r = 0;
948 uint64_t sum = 0;
949 int off_idx = -1;
950 int64_t off_pos = -1;
951 int tbl_entry_size;
952 IDEBus *bus = &ad->port;
953 BusState *qbus = BUS(bus);
954
955 trace_ahci_populate_sglist(ad->hba, ad->port_no);
956
957 if (!prdtl) {
958 trace_ahci_populate_sglist_no_prdtl(ad->hba, ad->port_no, opts);
959 return -1;
960 }
961
962 /* map PRDT */
963 if (!(prdt = dma_memory_map(ad->hba->as, prdt_addr, &prdt_len,
964 DMA_DIRECTION_TO_DEVICE,
965 MEMTXATTRS_UNSPECIFIED))){
966 trace_ahci_populate_sglist_no_map(ad->hba, ad->port_no);
967 return -1;
968 }
969
970 if (prdt_len < real_prdt_len) {
971 trace_ahci_populate_sglist_short_map(ad->hba, ad->port_no);
972 r = -1;
973 goto out;
974 }
975
976 /* Get entries in the PRDT, init a qemu sglist accordingly */
977 if (prdtl > 0) {
978 AHCI_SG *tbl = (AHCI_SG *)prdt;
979 sum = 0;
980 for (i = 0; i < prdtl; i++) {
981 tbl_entry_size = prdt_tbl_entry_size(&tbl[i]);
982 if (offset < (sum + tbl_entry_size)) {
983 off_idx = i;
984 off_pos = offset - sum;
985 break;
986 }
987 sum += tbl_entry_size;
988 }
989 if ((off_idx == -1) || (off_pos < 0) || (off_pos > tbl_entry_size)) {
990 trace_ahci_populate_sglist_bad_offset(ad->hba, ad->port_no,
991 off_idx, off_pos);
992 r = -1;
993 goto out;
994 }
995
996 qemu_sglist_init(sglist, qbus->parent, (prdtl - off_idx),
997 ad->hba->as);
998 qemu_sglist_add(sglist, le64_to_cpu(tbl[off_idx].addr) + off_pos,
999 MIN(prdt_tbl_entry_size(&tbl[off_idx]) - off_pos,
1000 limit));
1001
1002 for (i = off_idx + 1; i < prdtl && sglist->size < limit; i++) {
1003 qemu_sglist_add(sglist, le64_to_cpu(tbl[i].addr),
1004 MIN(prdt_tbl_entry_size(&tbl[i]),
1005 limit - sglist->size));
1006 }
1007 }
1008
1009 out:
1010 dma_memory_unmap(ad->hba->as, prdt, prdt_len,
1011 DMA_DIRECTION_TO_DEVICE, prdt_len);
1012 return r;
1013 }
1014
ncq_err(NCQTransferState * ncq_tfs)1015 static void ncq_err(NCQTransferState *ncq_tfs)
1016 {
1017 IDEState *ide_state = &ncq_tfs->drive->port.ifs[0];
1018
1019 ide_state->error = ABRT_ERR;
1020 ide_state->status = READY_STAT | ERR_STAT;
1021 qemu_sglist_destroy(&ncq_tfs->sglist);
1022 ncq_tfs->used = 0;
1023 }
1024
ncq_finish(NCQTransferState * ncq_tfs)1025 static void ncq_finish(NCQTransferState *ncq_tfs)
1026 {
1027 /* If we didn't error out, set our finished bit. Errored commands
1028 * do not get a bit set for the SDB FIS ACT register, nor do they
1029 * clear the outstanding bit in scr_act (PxSACT). */
1030 if (ncq_tfs->used) {
1031 ncq_tfs->drive->finished |= (1 << ncq_tfs->tag);
1032 }
1033
1034 ahci_write_fis_sdb(ncq_tfs->drive->hba, ncq_tfs);
1035
1036 trace_ncq_finish(ncq_tfs->drive->hba, ncq_tfs->drive->port_no,
1037 ncq_tfs->tag);
1038
1039 block_acct_done(blk_get_stats(ncq_tfs->drive->port.ifs[0].blk),
1040 &ncq_tfs->acct);
1041 qemu_sglist_destroy(&ncq_tfs->sglist);
1042 ncq_tfs->used = 0;
1043 }
1044
ncq_cb(void * opaque,int ret)1045 static void ncq_cb(void *opaque, int ret)
1046 {
1047 NCQTransferState *ncq_tfs = (NCQTransferState *)opaque;
1048 IDEState *ide_state = &ncq_tfs->drive->port.ifs[0];
1049
1050 ncq_tfs->aiocb = NULL;
1051
1052 if (ret < 0) {
1053 bool is_read = ncq_tfs->cmd == READ_FPDMA_QUEUED;
1054 BlockErrorAction action = blk_get_error_action(ide_state->blk,
1055 is_read, -ret);
1056 if (action == BLOCK_ERROR_ACTION_STOP) {
1057 ncq_tfs->halt = true;
1058 ide_state->bus->error_status = IDE_RETRY_HBA;
1059 } else if (action == BLOCK_ERROR_ACTION_REPORT) {
1060 ncq_err(ncq_tfs);
1061 }
1062 blk_error_action(ide_state->blk, action, is_read, -ret);
1063 } else {
1064 ide_state->status = READY_STAT | SEEK_STAT;
1065 }
1066
1067 if (!ncq_tfs->halt) {
1068 ncq_finish(ncq_tfs);
1069 }
1070 }
1071
is_ncq(uint8_t ata_cmd)1072 static int is_ncq(uint8_t ata_cmd)
1073 {
1074 /* Based on SATA 3.2 section 13.6.3.2 */
1075 switch (ata_cmd) {
1076 case READ_FPDMA_QUEUED:
1077 case WRITE_FPDMA_QUEUED:
1078 case NCQ_NON_DATA:
1079 case RECEIVE_FPDMA_QUEUED:
1080 case SEND_FPDMA_QUEUED:
1081 return 1;
1082 default:
1083 return 0;
1084 }
1085 }
1086
execute_ncq_command(NCQTransferState * ncq_tfs)1087 static void execute_ncq_command(NCQTransferState *ncq_tfs)
1088 {
1089 AHCIDevice *ad = ncq_tfs->drive;
1090 IDEState *ide_state = &ad->port.ifs[0];
1091 int port = ad->port_no;
1092
1093 g_assert(is_ncq(ncq_tfs->cmd));
1094 ncq_tfs->halt = false;
1095
1096 switch (ncq_tfs->cmd) {
1097 case READ_FPDMA_QUEUED:
1098 trace_execute_ncq_command_read(ad->hba, port, ncq_tfs->tag,
1099 ncq_tfs->sector_count, ncq_tfs->lba);
1100 dma_acct_start(ide_state->blk, &ncq_tfs->acct,
1101 &ncq_tfs->sglist, BLOCK_ACCT_READ);
1102 ncq_tfs->aiocb = dma_blk_read(ide_state->blk, &ncq_tfs->sglist,
1103 ncq_tfs->lba << BDRV_SECTOR_BITS,
1104 BDRV_SECTOR_SIZE,
1105 ncq_cb, ncq_tfs);
1106 break;
1107 case WRITE_FPDMA_QUEUED:
1108 trace_execute_ncq_command_write(ad->hba, port, ncq_tfs->tag,
1109 ncq_tfs->sector_count, ncq_tfs->lba);
1110 dma_acct_start(ide_state->blk, &ncq_tfs->acct,
1111 &ncq_tfs->sglist, BLOCK_ACCT_WRITE);
1112 ncq_tfs->aiocb = dma_blk_write(ide_state->blk, &ncq_tfs->sglist,
1113 ncq_tfs->lba << BDRV_SECTOR_BITS,
1114 BDRV_SECTOR_SIZE,
1115 ncq_cb, ncq_tfs);
1116 break;
1117 default:
1118 trace_execute_ncq_command_unsup(ad->hba, port,
1119 ncq_tfs->tag, ncq_tfs->cmd);
1120 ncq_err(ncq_tfs);
1121 }
1122 }
1123
1124
process_ncq_command(AHCIState * s,int port,const uint8_t * cmd_fis,uint8_t slot)1125 static void process_ncq_command(AHCIState *s, int port, const uint8_t *cmd_fis,
1126 uint8_t slot)
1127 {
1128 AHCIDevice *ad = &s->dev[port];
1129 const NCQFrame *ncq_fis = (NCQFrame *)cmd_fis;
1130 uint8_t tag = ncq_fis->tag >> 3;
1131 NCQTransferState *ncq_tfs = &ad->ncq_tfs[tag];
1132 size_t size;
1133
1134 g_assert(is_ncq(ncq_fis->command));
1135 if (ncq_tfs->used) {
1136 /* error - already in use */
1137 qemu_log_mask(LOG_GUEST_ERROR, "%s: tag %d already used\n",
1138 __func__, tag);
1139 return;
1140 }
1141
1142 /*
1143 * A NCQ command clears the bit in PxCI after the command has been QUEUED
1144 * successfully (ERROR not set, BUSY and DRQ cleared).
1145 *
1146 * For NCQ commands, PxCI will always be cleared here.
1147 *
1148 * (Once the NCQ command is COMPLETED, the device will send a SDB FIS with
1149 * the interrupt bit set, which will clear PxSACT and raise an interrupt.)
1150 */
1151 ahci_clear_cmd_issue(ad, slot);
1152
1153 /*
1154 * In reality, for NCQ commands, PxCI is cleared after receiving a D2H FIS
1155 * without the interrupt bit set, but since ahci_write_fis_d2h() can raise
1156 * an IRQ on error, we need to call them in reverse order.
1157 */
1158 ahci_write_fis_d2h(ad, false);
1159
1160 ncq_tfs->used = 1;
1161 ncq_tfs->drive = ad;
1162 ncq_tfs->slot = slot;
1163 ncq_tfs->cmdh = &((AHCICmdHdr *)ad->lst)[slot];
1164 ncq_tfs->cmd = ncq_fis->command;
1165 ncq_tfs->lba = ((uint64_t)ncq_fis->lba5 << 40) |
1166 ((uint64_t)ncq_fis->lba4 << 32) |
1167 ((uint64_t)ncq_fis->lba3 << 24) |
1168 ((uint64_t)ncq_fis->lba2 << 16) |
1169 ((uint64_t)ncq_fis->lba1 << 8) |
1170 (uint64_t)ncq_fis->lba0;
1171 ncq_tfs->tag = tag;
1172
1173 /* Sanity-check the NCQ packet */
1174 if (tag != slot) {
1175 trace_process_ncq_command_mismatch(s, port, tag, slot);
1176 }
1177
1178 if (ncq_fis->aux0 || ncq_fis->aux1 || ncq_fis->aux2 || ncq_fis->aux3) {
1179 trace_process_ncq_command_aux(s, port, tag);
1180 }
1181 if (ncq_fis->prio || ncq_fis->icc) {
1182 trace_process_ncq_command_prioicc(s, port, tag);
1183 }
1184 if (ncq_fis->fua & NCQ_FIS_FUA_MASK) {
1185 trace_process_ncq_command_fua(s, port, tag);
1186 }
1187 if (ncq_fis->tag & NCQ_FIS_RARC_MASK) {
1188 trace_process_ncq_command_rarc(s, port, tag);
1189 }
1190
1191 ncq_tfs->sector_count = ((ncq_fis->sector_count_high << 8) |
1192 ncq_fis->sector_count_low);
1193 if (!ncq_tfs->sector_count) {
1194 ncq_tfs->sector_count = 0x10000;
1195 }
1196 size = ncq_tfs->sector_count * BDRV_SECTOR_SIZE;
1197 ahci_populate_sglist(ad, &ncq_tfs->sglist, ncq_tfs->cmdh, size, 0);
1198
1199 if (ncq_tfs->sglist.size < size) {
1200 error_report("ahci: PRDT length for NCQ command (0x" DMA_ADDR_FMT ") "
1201 "is smaller than the requested size (0x%zx)",
1202 ncq_tfs->sglist.size, size);
1203 ncq_err(ncq_tfs);
1204 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_OFS);
1205 return;
1206 } else if (ncq_tfs->sglist.size != size) {
1207 trace_process_ncq_command_large(s, port, tag,
1208 ncq_tfs->sglist.size, size);
1209 }
1210
1211 trace_process_ncq_command(s, port, tag,
1212 ncq_fis->command,
1213 ncq_tfs->lba,
1214 ncq_tfs->lba + ncq_tfs->sector_count - 1);
1215 execute_ncq_command(ncq_tfs);
1216 }
1217
get_cmd_header(AHCIState * s,uint8_t port,uint8_t slot)1218 static AHCICmdHdr *get_cmd_header(AHCIState *s, uint8_t port, uint8_t slot)
1219 {
1220 if (port >= s->ports || slot >= AHCI_MAX_CMDS) {
1221 return NULL;
1222 }
1223
1224 return s->dev[port].lst ? &((AHCICmdHdr *)s->dev[port].lst)[slot] : NULL;
1225 }
1226
handle_reg_h2d_fis(AHCIState * s,int port,uint8_t slot,const uint8_t * cmd_fis)1227 static void handle_reg_h2d_fis(AHCIState *s, int port,
1228 uint8_t slot, const uint8_t *cmd_fis)
1229 {
1230 IDEState *ide_state = &s->dev[port].port.ifs[0];
1231 AHCICmdHdr *cmd = get_cmd_header(s, port, slot);
1232 AHCIDevice *ad = &s->dev[port];
1233 uint16_t opts = le16_to_cpu(cmd->opts);
1234
1235 if (cmd_fis[1] & 0x0F) {
1236 trace_handle_reg_h2d_fis_pmp(s, port, cmd_fis[1],
1237 cmd_fis[2], cmd_fis[3]);
1238 return;
1239 }
1240
1241 if (cmd_fis[1] & 0x70) {
1242 trace_handle_reg_h2d_fis_res(s, port, cmd_fis[1],
1243 cmd_fis[2], cmd_fis[3]);
1244 return;
1245 }
1246
1247 if (!(cmd_fis[1] & SATA_FIS_REG_H2D_UPDATE_COMMAND_REGISTER)) {
1248 switch (s->dev[port].port_state) {
1249 case STATE_RUN:
1250 if (cmd_fis[15] & ATA_SRST) {
1251 s->dev[port].port_state = STATE_RESET;
1252 /*
1253 * When setting SRST in the first H2D FIS in the reset sequence,
1254 * the device does not send a D2H FIS. Host software thus has to
1255 * set the "Clear Busy upon R_OK" bit such that PxCI (and BUSY)
1256 * gets cleared. See AHCI 1.3.1, section 10.4.1 Software Reset.
1257 */
1258 if (opts & AHCI_CMD_CLR_BUSY) {
1259 ahci_clear_cmd_issue(ad, slot);
1260 }
1261 }
1262 break;
1263 case STATE_RESET:
1264 if (!(cmd_fis[15] & ATA_SRST)) {
1265 /*
1266 * When clearing SRST in the second H2D FIS in the reset
1267 * sequence, the device will execute diagnostics. When this is
1268 * done, the device will send a D2H FIS with the good status.
1269 * See SATA 3.5a Gold, section 11.4 Software reset protocol.
1270 *
1271 * This D2H FIS is the first D2H FIS received from the device,
1272 * and is received regardless if the reset was performed by a
1273 * COMRESET or by setting and clearing the SRST bit. Therefore,
1274 * the logic for this is found in ahci_init_d2h() and not here.
1275 */
1276 ahci_reset_port(s, port);
1277 }
1278 break;
1279 }
1280 return;
1281 }
1282
1283 /* Check for NCQ command */
1284 if (is_ncq(cmd_fis[2])) {
1285 process_ncq_command(s, port, cmd_fis, slot);
1286 return;
1287 }
1288
1289 /* Decompose the FIS:
1290 * AHCI does not interpret FIS packets, it only forwards them.
1291 * SATA 1.0 describes how to decode LBA28 and CHS FIS packets.
1292 * Later specifications, e.g, SATA 3.2, describe LBA48 FIS packets.
1293 *
1294 * ATA4 describes sector number for LBA28/CHS commands.
1295 * ATA6 describes sector number for LBA48 commands.
1296 * ATA8 deprecates CHS fully, describing only LBA28/48.
1297 *
1298 * We dutifully convert the FIS into IDE registers, and allow the
1299 * core layer to interpret them as needed. */
1300 ide_state->feature = cmd_fis[3];
1301 ide_state->sector = cmd_fis[4]; /* LBA 7:0 */
1302 ide_state->lcyl = cmd_fis[5]; /* LBA 15:8 */
1303 ide_state->hcyl = cmd_fis[6]; /* LBA 23:16 */
1304 ide_state->select = cmd_fis[7]; /* LBA 27:24 (LBA28) */
1305 ide_state->hob_sector = cmd_fis[8]; /* LBA 31:24 */
1306 ide_state->hob_lcyl = cmd_fis[9]; /* LBA 39:32 */
1307 ide_state->hob_hcyl = cmd_fis[10]; /* LBA 47:40 */
1308 ide_state->hob_feature = cmd_fis[11];
1309 ide_state->nsector = (int64_t)((cmd_fis[13] << 8) | cmd_fis[12]);
1310 /* 14, 16, 17, 18, 19: Reserved (SATA 1.0) */
1311 /* 15: Only valid when UPDATE_COMMAND not set. */
1312
1313 /* Copy the ACMD field (ATAPI packet, if any) from the AHCI command
1314 * table to ide_state->io_buffer */
1315 if (opts & AHCI_CMD_ATAPI) {
1316 memcpy(ide_state->io_buffer, &cmd_fis[AHCI_COMMAND_TABLE_ACMD], 0x10);
1317 if (trace_event_get_state_backends(TRACE_HANDLE_REG_H2D_FIS_DUMP)) {
1318 char *pretty_fis = ahci_pretty_buffer_fis(ide_state->io_buffer, 0x10);
1319 trace_handle_reg_h2d_fis_dump(s, port, pretty_fis);
1320 g_free(pretty_fis);
1321 }
1322 }
1323
1324 ide_state->error = 0;
1325 s->dev[port].done_first_drq = false;
1326 /* Reset transferred byte counter */
1327 cmd->status = 0;
1328
1329 /*
1330 * A non-NCQ command clears the bit in PxCI after the command has COMPLETED
1331 * successfully (ERROR not set, BUSY and DRQ cleared).
1332 *
1333 * For non-NCQ commands, PxCI will always be cleared by ahci_cmd_done().
1334 */
1335 ad->busy_slot = slot;
1336
1337 /* We're ready to process the command in FIS byte 2. */
1338 ide_bus_exec_cmd(&s->dev[port].port, cmd_fis[2]);
1339 }
1340
handle_cmd(AHCIState * s,int port,uint8_t slot)1341 static void handle_cmd(AHCIState *s, int port, uint8_t slot)
1342 {
1343 IDEState *ide_state;
1344 uint64_t tbl_addr;
1345 AHCICmdHdr *cmd;
1346 uint8_t *cmd_fis;
1347 dma_addr_t cmd_len;
1348
1349 if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) {
1350 /* Engine currently busy, try again later */
1351 trace_handle_cmd_busy(s, port);
1352 return;
1353 }
1354
1355 if (!s->dev[port].lst) {
1356 trace_handle_cmd_nolist(s, port);
1357 return;
1358 }
1359 cmd = get_cmd_header(s, port, slot);
1360 /* remember current slot handle for later */
1361 s->dev[port].cur_cmd = cmd;
1362
1363 /* The device we are working for */
1364 ide_state = &s->dev[port].port.ifs[0];
1365 if (!ide_state->blk) {
1366 trace_handle_cmd_badport(s, port);
1367 return;
1368 }
1369
1370 tbl_addr = le64_to_cpu(cmd->tbl_addr);
1371 cmd_len = 0x80;
1372 cmd_fis = dma_memory_map(s->as, tbl_addr, &cmd_len,
1373 DMA_DIRECTION_TO_DEVICE, MEMTXATTRS_UNSPECIFIED);
1374 if (!cmd_fis) {
1375 trace_handle_cmd_badfis(s, port);
1376 return;
1377 } else if (cmd_len != 0x80) {
1378 ahci_trigger_irq(s, &s->dev[port], AHCI_PORT_IRQ_BIT_HBFS);
1379 trace_handle_cmd_badmap(s, port, cmd_len);
1380 goto out;
1381 }
1382 if (trace_event_get_state_backends(TRACE_HANDLE_CMD_FIS_DUMP)) {
1383 char *pretty_fis = ahci_pretty_buffer_fis(cmd_fis, 0x80);
1384 trace_handle_cmd_fis_dump(s, port, pretty_fis);
1385 g_free(pretty_fis);
1386 }
1387 switch (cmd_fis[0]) {
1388 case SATA_FIS_TYPE_REGISTER_H2D:
1389 handle_reg_h2d_fis(s, port, slot, cmd_fis);
1390 break;
1391 default:
1392 trace_handle_cmd_unhandled_fis(s, port,
1393 cmd_fis[0], cmd_fis[1], cmd_fis[2]);
1394 break;
1395 }
1396
1397 out:
1398 dma_memory_unmap(s->as, cmd_fis, cmd_len, DMA_DIRECTION_TO_DEVICE,
1399 cmd_len);
1400 }
1401
1402 /* Transfer PIO data between RAM and device */
ahci_pio_transfer(const IDEDMA * dma)1403 static void ahci_pio_transfer(const IDEDMA *dma)
1404 {
1405 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
1406 IDEState *s = &ad->port.ifs[0];
1407 uint32_t size = (uint32_t)(s->data_end - s->data_ptr);
1408 /* write == ram -> device */
1409 uint16_t opts = le16_to_cpu(ad->cur_cmd->opts);
1410 int is_write = opts & AHCI_CMD_WRITE;
1411 int is_atapi = opts & AHCI_CMD_ATAPI;
1412 int has_sglist = 0;
1413 bool pio_fis_i;
1414
1415 /* The PIO Setup FIS is received prior to transfer, but the interrupt
1416 * is only triggered after data is received.
1417 *
1418 * The device only sets the 'I' bit in the PIO Setup FIS for device->host
1419 * requests (see "DPIOI1" in the SATA spec), or for host->device DRQs after
1420 * the first (see "DPIOO1"). The latter is consistent with the spec's
1421 * description of the PACKET protocol, where the command part of ATAPI requests
1422 * ("DPKT0") has the 'I' bit clear, while the data part of PIO ATAPI requests
1423 * ("DPKT4a" and "DPKT7") has the 'I' bit set for both directions for all DRQs.
1424 */
1425 pio_fis_i = ad->done_first_drq || (!is_atapi && !is_write);
1426 ahci_write_fis_pio(ad, size, pio_fis_i);
1427
1428 if (is_atapi && !ad->done_first_drq) {
1429 /* already prepopulated iobuffer */
1430 goto out;
1431 }
1432
1433 if (ahci_dma_prepare_buf(dma, size)) {
1434 has_sglist = 1;
1435 }
1436
1437 trace_ahci_pio_transfer(ad->hba, ad->port_no, is_write ? "writ" : "read",
1438 size, is_atapi ? "atapi" : "ata",
1439 has_sglist ? "" : "o");
1440
1441 if (has_sglist && size) {
1442 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1443
1444 if (is_write) {
1445 dma_buf_write(s->data_ptr, size, NULL, &s->sg, attrs);
1446 } else {
1447 dma_buf_read(s->data_ptr, size, NULL, &s->sg, attrs);
1448 }
1449 }
1450
1451 /* Update number of transferred bytes, destroy sglist */
1452 dma_buf_commit(s, size);
1453
1454 out:
1455 /* declare that we processed everything */
1456 s->data_ptr = s->data_end;
1457
1458 ad->done_first_drq = true;
1459 if (pio_fis_i) {
1460 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_PSS);
1461 }
1462 }
1463
ahci_start_dma(const IDEDMA * dma,IDEState * s,BlockCompletionFunc * dma_cb)1464 static void ahci_start_dma(const IDEDMA *dma, IDEState *s,
1465 BlockCompletionFunc *dma_cb)
1466 {
1467 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
1468 trace_ahci_start_dma(ad->hba, ad->port_no);
1469 s->io_buffer_offset = 0;
1470 dma_cb(s, 0);
1471 }
1472
ahci_restart_dma(const IDEDMA * dma)1473 static void ahci_restart_dma(const IDEDMA *dma)
1474 {
1475 /* Nothing to do, ahci_start_dma already resets s->io_buffer_offset. */
1476 }
1477
1478 /**
1479 * IDE/PIO restarts are handled by the core layer, but NCQ commands
1480 * need an extra kick from the AHCI HBA.
1481 */
ahci_restart(const IDEDMA * dma)1482 static void ahci_restart(const IDEDMA *dma)
1483 {
1484 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
1485 int i;
1486
1487 for (i = 0; i < AHCI_MAX_CMDS; i++) {
1488 NCQTransferState *ncq_tfs = &ad->ncq_tfs[i];
1489 if (ncq_tfs->halt) {
1490 execute_ncq_command(ncq_tfs);
1491 }
1492 }
1493 }
1494
1495 /**
1496 * Called in DMA and PIO R/W chains to read the PRDT.
1497 * Not shared with NCQ pathways.
1498 */
ahci_dma_prepare_buf(const IDEDMA * dma,int32_t limit)1499 static int32_t ahci_dma_prepare_buf(const IDEDMA *dma, int32_t limit)
1500 {
1501 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
1502 IDEState *s = &ad->port.ifs[0];
1503
1504 if (ahci_populate_sglist(ad, &s->sg, ad->cur_cmd,
1505 limit, s->io_buffer_offset) == -1) {
1506 trace_ahci_dma_prepare_buf_fail(ad->hba, ad->port_no);
1507 return -1;
1508 }
1509 s->io_buffer_size = s->sg.size;
1510
1511 trace_ahci_dma_prepare_buf(ad->hba, ad->port_no, limit, s->io_buffer_size);
1512 return s->io_buffer_size;
1513 }
1514
1515 /**
1516 * Updates the command header with a bytes-read value.
1517 * Called via dma_buf_commit, for both DMA and PIO paths.
1518 * sglist destruction is handled within dma_buf_commit.
1519 */
ahci_commit_buf(const IDEDMA * dma,uint32_t tx_bytes)1520 static void ahci_commit_buf(const IDEDMA *dma, uint32_t tx_bytes)
1521 {
1522 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
1523
1524 tx_bytes += le32_to_cpu(ad->cur_cmd->status);
1525 ad->cur_cmd->status = cpu_to_le32(tx_bytes);
1526 }
1527
ahci_dma_rw_buf(const IDEDMA * dma,bool is_write)1528 static int ahci_dma_rw_buf(const IDEDMA *dma, bool is_write)
1529 {
1530 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
1531 IDEState *s = &ad->port.ifs[0];
1532 uint8_t *p = s->io_buffer + s->io_buffer_index;
1533 int l = s->io_buffer_size - s->io_buffer_index;
1534
1535 if (ahci_populate_sglist(ad, &s->sg, ad->cur_cmd, l, s->io_buffer_offset)) {
1536 return 0;
1537 }
1538
1539 if (is_write) {
1540 dma_buf_read(p, l, NULL, &s->sg, MEMTXATTRS_UNSPECIFIED);
1541 } else {
1542 dma_buf_write(p, l, NULL, &s->sg, MEMTXATTRS_UNSPECIFIED);
1543 }
1544
1545 /* free sglist, update byte count */
1546 dma_buf_commit(s, l);
1547 s->io_buffer_index += l;
1548
1549 trace_ahci_dma_rw_buf(ad->hba, ad->port_no, l);
1550 return 1;
1551 }
1552
ahci_clear_cmd_issue(AHCIDevice * ad,uint8_t slot)1553 static void ahci_clear_cmd_issue(AHCIDevice *ad, uint8_t slot)
1554 {
1555 IDEState *ide_state = &ad->port.ifs[0];
1556
1557 if (!(ide_state->status & ERR_STAT) &&
1558 !(ide_state->status & (BUSY_STAT | DRQ_STAT))) {
1559 ad->port_regs.cmd_issue &= ~(1 << slot);
1560 }
1561 }
1562
1563 /* Non-NCQ command is done - This function is never called for NCQ commands. */
ahci_cmd_done(const IDEDMA * dma)1564 static void ahci_cmd_done(const IDEDMA *dma)
1565 {
1566 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
1567 IDEState *ide_state = &ad->port.ifs[0];
1568
1569 trace_ahci_cmd_done(ad->hba, ad->port_no);
1570
1571 /* no longer busy */
1572 if (ad->busy_slot != -1) {
1573 ahci_clear_cmd_issue(ad, ad->busy_slot);
1574 ad->busy_slot = -1;
1575 }
1576
1577 /*
1578 * In reality, for non-NCQ commands, PxCI is cleared after receiving a D2H
1579 * FIS with the interrupt bit set, but since ahci_write_fis_d2h() will raise
1580 * an IRQ, we need to call them in reverse order.
1581 */
1582 ahci_write_fis_d2h(ad, true);
1583
1584 if (!(ide_state->status & ERR_STAT) &&
1585 ad->port_regs.cmd_issue && !ad->check_bh) {
1586 ad->check_bh = qemu_bh_new_guarded(ahci_check_cmd_bh, ad,
1587 &ad->mem_reentrancy_guard);
1588 qemu_bh_schedule(ad->check_bh);
1589 }
1590 }
1591
ahci_irq_set(void * opaque,int n,int level)1592 static void ahci_irq_set(void *opaque, int n, int level)
1593 {
1594 qemu_log_mask(LOG_UNIMP, "ahci: IRQ#%d level:%d\n", n, level);
1595 }
1596
1597 static const IDEDMAOps ahci_dma_ops = {
1598 .start_dma = ahci_start_dma,
1599 .restart = ahci_restart,
1600 .restart_dma = ahci_restart_dma,
1601 .pio_transfer = ahci_pio_transfer,
1602 .prepare_buf = ahci_dma_prepare_buf,
1603 .commit_buf = ahci_commit_buf,
1604 .rw_buf = ahci_dma_rw_buf,
1605 .cmd_done = ahci_cmd_done,
1606 };
1607
ahci_init(AHCIState * s,DeviceState * qdev)1608 void ahci_init(AHCIState *s, DeviceState *qdev)
1609 {
1610 s->container = qdev;
1611 /* XXX BAR size should be 1k, but that breaks, so bump it to 4k for now */
1612 memory_region_init_io(&s->mem, OBJECT(qdev), &ahci_mem_ops, s,
1613 "ahci", AHCI_MEM_BAR_SIZE);
1614 memory_region_init_io(&s->idp, OBJECT(qdev), &ahci_idp_ops, s,
1615 "ahci-idp", 32);
1616 }
1617
ahci_realize(AHCIState * s,DeviceState * qdev,AddressSpace * as)1618 void ahci_realize(AHCIState *s, DeviceState *qdev, AddressSpace *as)
1619 {
1620 qemu_irq *irqs;
1621 int i;
1622
1623 s->as = as;
1624 assert(s->ports > 0);
1625 s->dev = g_new0(AHCIDevice, s->ports);
1626 ahci_reg_init(s);
1627 irqs = qemu_allocate_irqs(ahci_irq_set, s, s->ports);
1628 for (i = 0; i < s->ports; i++) {
1629 AHCIDevice *ad = &s->dev[i];
1630
1631 ide_bus_init(&ad->port, sizeof(ad->port), qdev, i, 1);
1632 ide_bus_init_output_irq(&ad->port, irqs[i]);
1633
1634 ad->hba = s;
1635 ad->port_no = i;
1636 ad->port.dma = &ad->dma;
1637 ad->port.dma->ops = &ahci_dma_ops;
1638 ide_bus_register_restart_cb(&ad->port);
1639 }
1640 g_free(irqs);
1641 }
1642
ahci_uninit(AHCIState * s)1643 void ahci_uninit(AHCIState *s)
1644 {
1645 int i, j;
1646
1647 for (i = 0; i < s->ports; i++) {
1648 AHCIDevice *ad = &s->dev[i];
1649
1650 for (j = 0; j < 2; j++) {
1651 ide_exit(&ad->port.ifs[j]);
1652 }
1653 object_unparent(OBJECT(&ad->port));
1654 }
1655
1656 g_free(s->dev);
1657 }
1658
ahci_reset(AHCIState * s)1659 void ahci_reset(AHCIState *s)
1660 {
1661 AHCIPortRegs *pr;
1662 int i;
1663
1664 trace_ahci_reset(s);
1665
1666 s->control_regs.irqstatus = 0;
1667 /* AHCI Enable (AE)
1668 * The implementation of this bit is dependent upon the value of the
1669 * CAP.SAM bit. If CAP.SAM is '0', then GHC.AE shall be read-write and
1670 * shall have a reset value of '0'. If CAP.SAM is '1', then AE shall be
1671 * read-only and shall have a reset value of '1'.
1672 *
1673 * We set HOST_CAP_AHCI so we must enable AHCI at reset.
1674 */
1675 s->control_regs.ghc = HOST_CTL_AHCI_EN;
1676
1677 for (i = 0; i < s->ports; i++) {
1678 pr = &s->dev[i].port_regs;
1679 pr->irq_stat = 0;
1680 pr->irq_mask = 0;
1681 pr->scr_ctl = 0;
1682 pr->cmd = PORT_CMD_SPIN_UP | PORT_CMD_POWER_ON;
1683 ahci_reset_port(s, i);
1684 }
1685 }
1686
1687 static const VMStateDescription vmstate_ncq_tfs = {
1688 .name = "ncq state",
1689 .version_id = 1,
1690 .fields = (const VMStateField[]) {
1691 VMSTATE_UINT32(sector_count, NCQTransferState),
1692 VMSTATE_UINT64(lba, NCQTransferState),
1693 VMSTATE_UINT8(tag, NCQTransferState),
1694 VMSTATE_UINT8(cmd, NCQTransferState),
1695 VMSTATE_UINT8(slot, NCQTransferState),
1696 VMSTATE_BOOL(used, NCQTransferState),
1697 VMSTATE_BOOL(halt, NCQTransferState),
1698 VMSTATE_END_OF_LIST()
1699 },
1700 };
1701
1702 static const VMStateDescription vmstate_ahci_device = {
1703 .name = "ahci port",
1704 .version_id = 1,
1705 .fields = (const VMStateField[]) {
1706 VMSTATE_IDE_BUS(port, AHCIDevice),
1707 VMSTATE_IDE_DRIVE(port.ifs[0], AHCIDevice),
1708 VMSTATE_UINT32(port_state, AHCIDevice),
1709 VMSTATE_UINT32(finished, AHCIDevice),
1710 VMSTATE_UINT32(port_regs.lst_addr, AHCIDevice),
1711 VMSTATE_UINT32(port_regs.lst_addr_hi, AHCIDevice),
1712 VMSTATE_UINT32(port_regs.fis_addr, AHCIDevice),
1713 VMSTATE_UINT32(port_regs.fis_addr_hi, AHCIDevice),
1714 VMSTATE_UINT32(port_regs.irq_stat, AHCIDevice),
1715 VMSTATE_UINT32(port_regs.irq_mask, AHCIDevice),
1716 VMSTATE_UINT32(port_regs.cmd, AHCIDevice),
1717 VMSTATE_UINT32(port_regs.tfdata, AHCIDevice),
1718 VMSTATE_UINT32(port_regs.sig, AHCIDevice),
1719 VMSTATE_UINT32(port_regs.scr_stat, AHCIDevice),
1720 VMSTATE_UINT32(port_regs.scr_ctl, AHCIDevice),
1721 VMSTATE_UINT32(port_regs.scr_err, AHCIDevice),
1722 VMSTATE_UINT32(port_regs.scr_act, AHCIDevice),
1723 VMSTATE_UINT32(port_regs.cmd_issue, AHCIDevice),
1724 VMSTATE_BOOL(done_first_drq, AHCIDevice),
1725 VMSTATE_INT32(busy_slot, AHCIDevice),
1726 VMSTATE_BOOL(init_d2h_sent, AHCIDevice),
1727 VMSTATE_STRUCT_ARRAY(ncq_tfs, AHCIDevice, AHCI_MAX_CMDS,
1728 1, vmstate_ncq_tfs, NCQTransferState),
1729 VMSTATE_END_OF_LIST()
1730 },
1731 };
1732
ahci_state_post_load(void * opaque,int version_id)1733 static int ahci_state_post_load(void *opaque, int version_id)
1734 {
1735 int i, j;
1736 struct AHCIDevice *ad;
1737 NCQTransferState *ncq_tfs;
1738 AHCIPortRegs *pr;
1739 AHCIState *s = opaque;
1740
1741 for (i = 0; i < s->ports; i++) {
1742 ad = &s->dev[i];
1743 pr = &ad->port_regs;
1744
1745 if (!(pr->cmd & PORT_CMD_START) && (pr->cmd & PORT_CMD_LIST_ON)) {
1746 error_report("AHCI: DMA engine should be off, but status bit "
1747 "indicates it is still running.");
1748 return -1;
1749 }
1750 if (!(pr->cmd & PORT_CMD_FIS_RX) && (pr->cmd & PORT_CMD_FIS_ON)) {
1751 error_report("AHCI: FIS RX engine should be off, but status bit "
1752 "indicates it is still running.");
1753 return -1;
1754 }
1755
1756 /* After a migrate, the DMA/FIS engines are "off" and
1757 * need to be conditionally restarted */
1758 pr->cmd &= ~(PORT_CMD_LIST_ON | PORT_CMD_FIS_ON);
1759 if (ahci_cond_start_engines(ad) != 0) {
1760 return -1;
1761 }
1762
1763 for (j = 0; j < AHCI_MAX_CMDS; j++) {
1764 ncq_tfs = &ad->ncq_tfs[j];
1765 ncq_tfs->drive = ad;
1766
1767 if (ncq_tfs->used != ncq_tfs->halt) {
1768 return -1;
1769 }
1770 if (!ncq_tfs->halt) {
1771 continue;
1772 }
1773 if (!is_ncq(ncq_tfs->cmd)) {
1774 return -1;
1775 }
1776 if (ncq_tfs->slot != ncq_tfs->tag) {
1777 return -1;
1778 }
1779 /* If ncq_tfs->halt is justly set, the engine should be engaged,
1780 * and the command list buffer should be mapped. */
1781 ncq_tfs->cmdh = get_cmd_header(s, i, ncq_tfs->slot);
1782 if (!ncq_tfs->cmdh) {
1783 return -1;
1784 }
1785 ahci_populate_sglist(ncq_tfs->drive, &ncq_tfs->sglist,
1786 ncq_tfs->cmdh,
1787 ncq_tfs->sector_count * BDRV_SECTOR_SIZE,
1788 0);
1789 if (ncq_tfs->sector_count != ncq_tfs->sglist.size >> 9) {
1790 return -1;
1791 }
1792 }
1793
1794
1795 /*
1796 * If an error is present, ad->busy_slot will be valid and not -1.
1797 * In this case, an operation is waiting to resume and will re-check
1798 * for additional AHCI commands to execute upon completion.
1799 *
1800 * In the case where no error was present, busy_slot will be -1,
1801 * and we should check to see if there are additional commands waiting.
1802 */
1803 if (ad->busy_slot == -1) {
1804 check_cmd(s, i);
1805 } else {
1806 /* We are in the middle of a command, and may need to access
1807 * the command header in guest memory again. */
1808 if (ad->busy_slot < 0 || ad->busy_slot >= AHCI_MAX_CMDS) {
1809 return -1;
1810 }
1811 ad->cur_cmd = get_cmd_header(s, i, ad->busy_slot);
1812 }
1813 }
1814
1815 return 0;
1816 }
1817
1818 const VMStateDescription vmstate_ahci = {
1819 .name = "ahci",
1820 .version_id = 1,
1821 .post_load = ahci_state_post_load,
1822 .fields = (const VMStateField[]) {
1823 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(dev, AHCIState, ports,
1824 vmstate_ahci_device, AHCIDevice),
1825 VMSTATE_UINT32(control_regs.cap, AHCIState),
1826 VMSTATE_UINT32(control_regs.ghc, AHCIState),
1827 VMSTATE_UINT32(control_regs.irqstatus, AHCIState),
1828 VMSTATE_UINT32(control_regs.impl, AHCIState),
1829 VMSTATE_UINT32(control_regs.version, AHCIState),
1830 VMSTATE_UINT32(idp_index, AHCIState),
1831 VMSTATE_UINT32_EQUAL(ports, AHCIState, NULL),
1832 VMSTATE_END_OF_LIST()
1833 },
1834 };
1835
1836 static const VMStateDescription vmstate_sysbus_ahci = {
1837 .name = "sysbus-ahci",
1838 .fields = (const VMStateField[]) {
1839 VMSTATE_AHCI(ahci, SysbusAHCIState),
1840 VMSTATE_END_OF_LIST()
1841 },
1842 };
1843
sysbus_ahci_reset(DeviceState * dev)1844 static void sysbus_ahci_reset(DeviceState *dev)
1845 {
1846 SysbusAHCIState *s = SYSBUS_AHCI(dev);
1847
1848 ahci_reset(&s->ahci);
1849 }
1850
sysbus_ahci_init(Object * obj)1851 static void sysbus_ahci_init(Object *obj)
1852 {
1853 SysbusAHCIState *s = SYSBUS_AHCI(obj);
1854 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1855
1856 ahci_init(&s->ahci, DEVICE(obj));
1857
1858 sysbus_init_mmio(sbd, &s->ahci.mem);
1859 sysbus_init_irq(sbd, &s->ahci.irq);
1860 }
1861
sysbus_ahci_realize(DeviceState * dev,Error ** errp)1862 static void sysbus_ahci_realize(DeviceState *dev, Error **errp)
1863 {
1864 SysbusAHCIState *s = SYSBUS_AHCI(dev);
1865
1866 ahci_realize(&s->ahci, dev, &address_space_memory);
1867 }
1868
1869 static Property sysbus_ahci_properties[] = {
1870 DEFINE_PROP_UINT32("num-ports", SysbusAHCIState, ahci.ports, 1),
1871 DEFINE_PROP_END_OF_LIST(),
1872 };
1873
sysbus_ahci_class_init(ObjectClass * klass,void * data)1874 static void sysbus_ahci_class_init(ObjectClass *klass, void *data)
1875 {
1876 DeviceClass *dc = DEVICE_CLASS(klass);
1877
1878 dc->realize = sysbus_ahci_realize;
1879 dc->vmsd = &vmstate_sysbus_ahci;
1880 device_class_set_props(dc, sysbus_ahci_properties);
1881 dc->reset = sysbus_ahci_reset;
1882 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1883 }
1884
1885 static const TypeInfo sysbus_ahci_info = {
1886 .name = TYPE_SYSBUS_AHCI,
1887 .parent = TYPE_SYS_BUS_DEVICE,
1888 .instance_size = sizeof(SysbusAHCIState),
1889 .instance_init = sysbus_ahci_init,
1890 .class_init = sysbus_ahci_class_init,
1891 };
1892
sysbus_ahci_register_types(void)1893 static void sysbus_ahci_register_types(void)
1894 {
1895 type_register_static(&sysbus_ahci_info);
1896 }
1897
type_init(sysbus_ahci_register_types)1898 type_init(sysbus_ahci_register_types)
1899
1900 void ahci_ide_create_devs(AHCIState *ahci, DriveInfo **hd)
1901 {
1902 int i;
1903
1904 for (i = 0; i < ahci->ports; i++) {
1905 if (hd[i] == NULL) {
1906 continue;
1907 }
1908 ide_bus_create_drive(&ahci->dev[i].port, 0, hd[i]);
1909 }
1910 }
1911