1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
5 */
6
7 #include <linux/bitfield.h>
8 #include <linux/device.h>
9 #include <linux/errno.h>
10 #include <linux/mtd/spi-nor.h>
11
12 #include "core.h"
13
14 /* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */
15 #define USE_CLSR BIT(0)
16 #define USE_CLPEF BIT(1)
17
18 #define SPINOR_OP_CLSR 0x30 /* Clear status register 1 */
19 #define SPINOR_OP_CLPEF 0x82 /* Clear program/erase failure flags */
20 #define SPINOR_OP_RD_ANY_REG 0x65 /* Read any register */
21 #define SPINOR_OP_WR_ANY_REG 0x71 /* Write any register */
22 #define SPINOR_REG_CYPRESS_VREG 0x00800000
23 #define SPINOR_REG_CYPRESS_STR1 0x0
24 #define SPINOR_REG_CYPRESS_STR1V \
25 (SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_STR1)
26 #define SPINOR_REG_CYPRESS_CFR1 0x2
27 #define SPINOR_REG_CYPRESS_CFR1_QUAD_EN BIT(1) /* Quad Enable */
28 #define SPINOR_REG_CYPRESS_CFR2 0x3
29 #define SPINOR_REG_CYPRESS_CFR2V \
30 (SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR2)
31 #define SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK GENMASK(3, 0)
32 #define SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24 0xb
33 #define SPINOR_REG_CYPRESS_CFR2_ADRBYT BIT(7)
34 #define SPINOR_REG_CYPRESS_CFR3 0x4
35 #define SPINOR_REG_CYPRESS_CFR3_PGSZ BIT(4) /* Page size. */
36 #define SPINOR_REG_CYPRESS_CFR5 0x6
37 #define SPINOR_REG_CYPRESS_CFR5_BIT6 BIT(6)
38 #define SPINOR_REG_CYPRESS_CFR5_DDR BIT(1)
39 #define SPINOR_REG_CYPRESS_CFR5_OPI BIT(0)
40 #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN \
41 (SPINOR_REG_CYPRESS_CFR5_BIT6 | SPINOR_REG_CYPRESS_CFR5_DDR | \
42 SPINOR_REG_CYPRESS_CFR5_OPI)
43 #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS SPINOR_REG_CYPRESS_CFR5_BIT6
44 #define SPINOR_OP_CYPRESS_RD_FAST 0xee
45 #define SPINOR_REG_CYPRESS_ARCFN 0x00000006
46
47 /* Cypress SPI NOR flash operations. */
48 #define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \
49 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0), \
50 SPI_MEM_OP_ADDR(naddr, addr, 0), \
51 SPI_MEM_OP_NO_DUMMY, \
52 SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
53
54 #define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, ndummy, buf) \
55 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0), \
56 SPI_MEM_OP_ADDR(naddr, addr, 0), \
57 SPI_MEM_OP_DUMMY(ndummy, 0), \
58 SPI_MEM_OP_DATA_IN(1, buf, 0))
59
60 #define SPANSION_OP(opcode) \
61 SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0), \
62 SPI_MEM_OP_NO_ADDR, \
63 SPI_MEM_OP_NO_DUMMY, \
64 SPI_MEM_OP_NO_DATA)
65
66 /**
67 * struct spansion_nor_params - Spansion private parameters.
68 * @clsr: Clear Status Register or Clear Program and Erase Failure Flag
69 * opcode.
70 */
71 struct spansion_nor_params {
72 u8 clsr;
73 };
74
75 /**
76 * spansion_nor_clear_sr() - Clear the Status Register.
77 * @nor: pointer to 'struct spi_nor'.
78 */
spansion_nor_clear_sr(struct spi_nor * nor)79 static void spansion_nor_clear_sr(struct spi_nor *nor)
80 {
81 const struct spansion_nor_params *priv_params = nor->params->priv;
82 int ret;
83
84 if (nor->spimem) {
85 struct spi_mem_op op = SPANSION_OP(priv_params->clsr);
86
87 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
88
89 ret = spi_mem_exec_op(nor->spimem, &op);
90 } else {
91 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR,
92 NULL, 0);
93 }
94
95 if (ret)
96 dev_dbg(nor->dev, "error %d clearing SR\n", ret);
97 }
98
cypress_nor_sr_ready_and_clear_reg(struct spi_nor * nor,u64 addr)99 static int cypress_nor_sr_ready_and_clear_reg(struct spi_nor *nor, u64 addr)
100 {
101 struct spi_nor_flash_parameter *params = nor->params;
102 struct spi_mem_op op =
103 CYPRESS_NOR_RD_ANY_REG_OP(params->addr_mode_nbytes, addr,
104 0, nor->bouncebuf);
105 int ret;
106
107 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
108 op.dummy.nbytes = params->rdsr_dummy;
109 op.data.nbytes = 2;
110 }
111
112 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
113 if (ret)
114 return ret;
115
116 if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
117 if (nor->bouncebuf[0] & SR_E_ERR)
118 dev_err(nor->dev, "Erase Error occurred\n");
119 else
120 dev_err(nor->dev, "Programming Error occurred\n");
121
122 spansion_nor_clear_sr(nor);
123
124 ret = spi_nor_write_disable(nor);
125 if (ret)
126 return ret;
127
128 return -EIO;
129 }
130
131 return !(nor->bouncebuf[0] & SR_WIP);
132 }
133 /**
134 * cypress_nor_sr_ready_and_clear() - Query the Status Register of each die by
135 * using Read Any Register command to see if the whole flash is ready for new
136 * commands and clear it if there are any errors.
137 * @nor: pointer to 'struct spi_nor'.
138 *
139 * Return: 1 if ready, 0 if not ready, -errno on errors.
140 */
cypress_nor_sr_ready_and_clear(struct spi_nor * nor)141 static int cypress_nor_sr_ready_and_clear(struct spi_nor *nor)
142 {
143 struct spi_nor_flash_parameter *params = nor->params;
144 u64 addr;
145 int ret;
146 u8 i;
147
148 for (i = 0; i < params->n_dice; i++) {
149 addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_STR1;
150 ret = cypress_nor_sr_ready_and_clear_reg(nor, addr);
151 if (ret < 0)
152 return ret;
153 else if (ret == 0)
154 return 0;
155 }
156
157 return 1;
158 }
159
cypress_nor_set_memlat(struct spi_nor * nor,u64 addr)160 static int cypress_nor_set_memlat(struct spi_nor *nor, u64 addr)
161 {
162 struct spi_mem_op op;
163 u8 *buf = nor->bouncebuf;
164 int ret;
165 u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
166
167 op = (struct spi_mem_op)
168 CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, buf);
169
170 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
171 if (ret)
172 return ret;
173
174 /* Use 24 dummy cycles for memory array reads. */
175 *buf &= ~SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK;
176 *buf |= FIELD_PREP(SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK,
177 SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24);
178 op = (struct spi_mem_op)
179 CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1, buf);
180
181 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
182 if (ret)
183 return ret;
184
185 nor->read_dummy = 24;
186
187 return 0;
188 }
189
cypress_nor_set_octal_dtr_bits(struct spi_nor * nor,u64 addr)190 static int cypress_nor_set_octal_dtr_bits(struct spi_nor *nor, u64 addr)
191 {
192 struct spi_mem_op op;
193 u8 *buf = nor->bouncebuf;
194
195 /* Set the octal and DTR enable bits. */
196 buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN;
197 op = (struct spi_mem_op)
198 CYPRESS_NOR_WR_ANY_REG_OP(nor->params->addr_mode_nbytes,
199 addr, 1, buf);
200
201 return spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
202 }
203
cypress_nor_octal_dtr_en(struct spi_nor * nor)204 static int cypress_nor_octal_dtr_en(struct spi_nor *nor)
205 {
206 const struct spi_nor_flash_parameter *params = nor->params;
207 u8 *buf = nor->bouncebuf;
208 u64 addr;
209 int i, ret;
210
211 for (i = 0; i < params->n_dice; i++) {
212 addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR2;
213 ret = cypress_nor_set_memlat(nor, addr);
214 if (ret)
215 return ret;
216
217 addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5;
218 ret = cypress_nor_set_octal_dtr_bits(nor, addr);
219 if (ret)
220 return ret;
221 }
222
223 /* Read flash ID to make sure the switch was successful. */
224 ret = spi_nor_read_id(nor, nor->addr_nbytes, 3, buf,
225 SNOR_PROTO_8_8_8_DTR);
226 if (ret) {
227 dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
228 return ret;
229 }
230
231 if (memcmp(buf, nor->info->id, nor->info->id_len))
232 return -EINVAL;
233
234 return 0;
235 }
236
cypress_nor_set_single_spi_bits(struct spi_nor * nor,u64 addr)237 static int cypress_nor_set_single_spi_bits(struct spi_nor *nor, u64 addr)
238 {
239 struct spi_mem_op op;
240 u8 *buf = nor->bouncebuf;
241
242 /*
243 * The register is 1-byte wide, but 1-byte transactions are not allowed
244 * in 8D-8D-8D mode. Since there is no register at the next location,
245 * just initialize the value to 0 and let the transaction go on.
246 */
247 buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS;
248 buf[1] = 0;
249 op = (struct spi_mem_op)
250 CYPRESS_NOR_WR_ANY_REG_OP(nor->addr_nbytes, addr, 2, buf);
251 return spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
252 }
253
cypress_nor_octal_dtr_dis(struct spi_nor * nor)254 static int cypress_nor_octal_dtr_dis(struct spi_nor *nor)
255 {
256 const struct spi_nor_flash_parameter *params = nor->params;
257 u8 *buf = nor->bouncebuf;
258 u64 addr;
259 int i, ret;
260
261 for (i = 0; i < params->n_dice; i++) {
262 addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5;
263 ret = cypress_nor_set_single_spi_bits(nor, addr);
264 if (ret)
265 return ret;
266 }
267
268 /* Read flash ID to make sure the switch was successful. */
269 ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
270 if (ret) {
271 dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
272 return ret;
273 }
274
275 if (memcmp(buf, nor->info->id, nor->info->id_len))
276 return -EINVAL;
277
278 return 0;
279 }
280
cypress_nor_quad_enable_volatile_reg(struct spi_nor * nor,u64 addr)281 static int cypress_nor_quad_enable_volatile_reg(struct spi_nor *nor, u64 addr)
282 {
283 struct spi_mem_op op;
284 u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
285 u8 cfr1v_written;
286 int ret;
287
288 op = (struct spi_mem_op)
289 CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0,
290 nor->bouncebuf);
291
292 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
293 if (ret)
294 return ret;
295
296 if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1_QUAD_EN)
297 return 0;
298
299 /* Update the Quad Enable bit. */
300 nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1_QUAD_EN;
301 op = (struct spi_mem_op)
302 CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1,
303 nor->bouncebuf);
304 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
305 if (ret)
306 return ret;
307
308 cfr1v_written = nor->bouncebuf[0];
309
310 /* Read back and check it. */
311 op = (struct spi_mem_op)
312 CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0,
313 nor->bouncebuf);
314 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
315 if (ret)
316 return ret;
317
318 if (nor->bouncebuf[0] != cfr1v_written) {
319 dev_err(nor->dev, "CFR1: Read back test failed\n");
320 return -EIO;
321 }
322
323 return 0;
324 }
325
326 /**
327 * cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile
328 * register.
329 * @nor: pointer to a 'struct spi_nor'
330 *
331 * It is recommended to update volatile registers in the field application due
332 * to a risk of the non-volatile registers corruption by power interrupt. This
333 * function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable
334 * bit in the CFR1 non-volatile in advance (typically by a Flash programmer
335 * before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is
336 * also set during Flash power-up.
337 *
338 * Return: 0 on success, -errno otherwise.
339 */
cypress_nor_quad_enable_volatile(struct spi_nor * nor)340 static int cypress_nor_quad_enable_volatile(struct spi_nor *nor)
341 {
342 struct spi_nor_flash_parameter *params = nor->params;
343 u64 addr;
344 u8 i;
345 int ret;
346
347 for (i = 0; i < params->n_dice; i++) {
348 addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR1;
349 ret = cypress_nor_quad_enable_volatile_reg(nor, addr);
350 if (ret)
351 return ret;
352 }
353
354 return 0;
355 }
356
357 /**
358 * cypress_nor_determine_addr_mode_by_sr1() - Determine current address mode
359 * (3 or 4-byte) by querying status
360 * register 1 (SR1).
361 * @nor: pointer to a 'struct spi_nor'
362 * @addr_mode: ponter to a buffer where we return the determined
363 * address mode.
364 *
365 * This function tries to determine current address mode by comparing SR1 value
366 * from RDSR1(no address), RDAR(3-byte address), and RDAR(4-byte address).
367 *
368 * Return: 0 on success, -errno otherwise.
369 */
cypress_nor_determine_addr_mode_by_sr1(struct spi_nor * nor,u8 * addr_mode)370 static int cypress_nor_determine_addr_mode_by_sr1(struct spi_nor *nor,
371 u8 *addr_mode)
372 {
373 struct spi_mem_op op =
374 CYPRESS_NOR_RD_ANY_REG_OP(3, SPINOR_REG_CYPRESS_STR1V, 0,
375 nor->bouncebuf);
376 bool is3byte, is4byte;
377 int ret;
378
379 ret = spi_nor_read_sr(nor, &nor->bouncebuf[1]);
380 if (ret)
381 return ret;
382
383 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
384 if (ret)
385 return ret;
386
387 is3byte = (nor->bouncebuf[0] == nor->bouncebuf[1]);
388
389 op = (struct spi_mem_op)
390 CYPRESS_NOR_RD_ANY_REG_OP(4, SPINOR_REG_CYPRESS_STR1V, 0,
391 nor->bouncebuf);
392 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
393 if (ret)
394 return ret;
395
396 is4byte = (nor->bouncebuf[0] == nor->bouncebuf[1]);
397
398 if (is3byte == is4byte)
399 return -EIO;
400 if (is3byte)
401 *addr_mode = 3;
402 else
403 *addr_mode = 4;
404
405 return 0;
406 }
407
408 /**
409 * cypress_nor_set_addr_mode_nbytes() - Set the number of address bytes mode of
410 * current address mode.
411 * @nor: pointer to a 'struct spi_nor'
412 *
413 * Determine current address mode by reading SR1 with different methods, then
414 * query CFR2V[7] to confirm. If determination is failed, force enter to 4-byte
415 * address mode.
416 *
417 * Return: 0 on success, -errno otherwise.
418 */
cypress_nor_set_addr_mode_nbytes(struct spi_nor * nor)419 static int cypress_nor_set_addr_mode_nbytes(struct spi_nor *nor)
420 {
421 struct spi_mem_op op;
422 u8 addr_mode;
423 int ret;
424
425 /*
426 * Read SR1 by RDSR1 and RDAR(3- AND 4-byte addr). Use write enable
427 * that sets bit-1 in SR1.
428 */
429 ret = spi_nor_write_enable(nor);
430 if (ret)
431 return ret;
432 ret = cypress_nor_determine_addr_mode_by_sr1(nor, &addr_mode);
433 if (ret) {
434 ret = spi_nor_set_4byte_addr_mode(nor, true);
435 if (ret)
436 return ret;
437 return spi_nor_write_disable(nor);
438 }
439 ret = spi_nor_write_disable(nor);
440 if (ret)
441 return ret;
442
443 /*
444 * Query CFR2V and make sure no contradiction between determined address
445 * mode and CFR2V[7].
446 */
447 op = (struct spi_mem_op)
448 CYPRESS_NOR_RD_ANY_REG_OP(addr_mode, SPINOR_REG_CYPRESS_CFR2V,
449 0, nor->bouncebuf);
450 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
451 if (ret)
452 return ret;
453
454 if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR2_ADRBYT) {
455 if (addr_mode != 4)
456 return spi_nor_set_4byte_addr_mode(nor, true);
457 } else {
458 if (addr_mode != 3)
459 return spi_nor_set_4byte_addr_mode(nor, true);
460 }
461
462 nor->params->addr_nbytes = addr_mode;
463 nor->params->addr_mode_nbytes = addr_mode;
464
465 return 0;
466 }
467
468 /**
469 * cypress_nor_get_page_size() - Get flash page size configuration.
470 * @nor: pointer to a 'struct spi_nor'
471 *
472 * The BFPT table advertises a 512B or 256B page size depending on part but the
473 * page size is actually configurable (with the default being 256B). Read from
474 * CFR3V[4] and set the correct size.
475 *
476 * Return: 0 on success, -errno otherwise.
477 */
cypress_nor_get_page_size(struct spi_nor * nor)478 static int cypress_nor_get_page_size(struct spi_nor *nor)
479 {
480 struct spi_mem_op op =
481 CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
482 0, 0, nor->bouncebuf);
483 struct spi_nor_flash_parameter *params = nor->params;
484 int ret;
485 u8 i;
486
487 /*
488 * Use the minimum common page size configuration. Programming 256-byte
489 * under 512-byte page size configuration is safe.
490 */
491 params->page_size = 256;
492 for (i = 0; i < params->n_dice; i++) {
493 op.addr.val = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR3;
494
495 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
496 if (ret)
497 return ret;
498
499 if (!(nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ))
500 return 0;
501 }
502
503 params->page_size = 512;
504
505 return 0;
506 }
507
cypress_nor_ecc_init(struct spi_nor * nor)508 static void cypress_nor_ecc_init(struct spi_nor *nor)
509 {
510 /*
511 * Programming is supported only in 16-byte ECC data unit granularity.
512 * Byte-programming, bit-walking, or multiple program operations to the
513 * same ECC data unit without an erase are not allowed.
514 */
515 nor->params->writesize = 16;
516 nor->flags |= SNOR_F_ECC;
517 }
518
519 static int
s25fs256t_post_bfpt_fixup(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)520 s25fs256t_post_bfpt_fixup(struct spi_nor *nor,
521 const struct sfdp_parameter_header *bfpt_header,
522 const struct sfdp_bfpt *bfpt)
523 {
524 struct spi_mem_op op;
525 int ret;
526
527 ret = cypress_nor_set_addr_mode_nbytes(nor);
528 if (ret)
529 return ret;
530
531 /* Read Architecture Configuration Register (ARCFN) */
532 op = (struct spi_mem_op)
533 CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
534 SPINOR_REG_CYPRESS_ARCFN, 1,
535 nor->bouncebuf);
536 ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
537 if (ret)
538 return ret;
539
540 /* ARCFN value must be 0 if uniform sector is selected */
541 if (nor->bouncebuf[0])
542 return -ENODEV;
543
544 return 0;
545 }
546
s25fs256t_post_sfdp_fixup(struct spi_nor * nor)547 static int s25fs256t_post_sfdp_fixup(struct spi_nor *nor)
548 {
549 struct spi_nor_flash_parameter *params = nor->params;
550
551 /*
552 * S25FS256T does not define the SCCR map, but we would like to use the
553 * same code base for both single and multi chip package devices, thus
554 * set the vreg_offset and n_dice to be able to do so.
555 */
556 params->vreg_offset = devm_kmalloc(nor->dev, sizeof(u32), GFP_KERNEL);
557 if (!params->vreg_offset)
558 return -ENOMEM;
559
560 params->vreg_offset[0] = SPINOR_REG_CYPRESS_VREG;
561 params->n_dice = 1;
562
563 /* PP_1_1_4_4B is supported but missing in 4BAIT. */
564 params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
565 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4],
566 SPINOR_OP_PP_1_1_4_4B,
567 SNOR_PROTO_1_1_4);
568
569 return cypress_nor_get_page_size(nor);
570 }
571
s25fs256t_late_init(struct spi_nor * nor)572 static int s25fs256t_late_init(struct spi_nor *nor)
573 {
574 cypress_nor_ecc_init(nor);
575
576 return 0;
577 }
578
579 static struct spi_nor_fixups s25fs256t_fixups = {
580 .post_bfpt = s25fs256t_post_bfpt_fixup,
581 .post_sfdp = s25fs256t_post_sfdp_fixup,
582 .late_init = s25fs256t_late_init,
583 };
584
585 static int
s25hx_t_post_bfpt_fixup(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)586 s25hx_t_post_bfpt_fixup(struct spi_nor *nor,
587 const struct sfdp_parameter_header *bfpt_header,
588 const struct sfdp_bfpt *bfpt)
589 {
590 int ret;
591
592 ret = cypress_nor_set_addr_mode_nbytes(nor);
593 if (ret)
594 return ret;
595
596 /* Replace Quad Enable with volatile version */
597 nor->params->quad_enable = cypress_nor_quad_enable_volatile;
598
599 return 0;
600 }
601
s25hx_t_post_sfdp_fixup(struct spi_nor * nor)602 static int s25hx_t_post_sfdp_fixup(struct spi_nor *nor)
603 {
604 struct spi_nor_flash_parameter *params = nor->params;
605 struct spi_nor_erase_type *erase_type = params->erase_map.erase_type;
606 unsigned int i;
607
608 if (!params->n_dice || !params->vreg_offset) {
609 dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n",
610 __func__);
611 return -EOPNOTSUPP;
612 }
613
614 /* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */
615 if (params->size == SZ_256M)
616 params->n_dice = 2;
617
618 /*
619 * In some parts, 3byte erase opcodes are advertised by 4BAIT.
620 * Convert them to 4byte erase opcodes.
621 */
622 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
623 switch (erase_type[i].opcode) {
624 case SPINOR_OP_SE:
625 erase_type[i].opcode = SPINOR_OP_SE_4B;
626 break;
627 case SPINOR_OP_BE_4K:
628 erase_type[i].opcode = SPINOR_OP_BE_4K_4B;
629 break;
630 default:
631 break;
632 }
633 }
634
635 return cypress_nor_get_page_size(nor);
636 }
637
s25hx_t_late_init(struct spi_nor * nor)638 static int s25hx_t_late_init(struct spi_nor *nor)
639 {
640 struct spi_nor_flash_parameter *params = nor->params;
641
642 /* Fast Read 4B requires mode cycles */
643 params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8;
644 params->ready = cypress_nor_sr_ready_and_clear;
645 cypress_nor_ecc_init(nor);
646
647 return 0;
648 }
649
650 static struct spi_nor_fixups s25hx_t_fixups = {
651 .post_bfpt = s25hx_t_post_bfpt_fixup,
652 .post_sfdp = s25hx_t_post_sfdp_fixup,
653 .late_init = s25hx_t_late_init,
654 };
655
656 /**
657 * cypress_nor_set_octal_dtr() - Enable or disable octal DTR on Cypress flashes.
658 * @nor: pointer to a 'struct spi_nor'
659 * @enable: whether to enable or disable Octal DTR
660 *
661 * This also sets the memory access latency cycles to 24 to allow the flash to
662 * run at up to 200MHz.
663 *
664 * Return: 0 on success, -errno otherwise.
665 */
cypress_nor_set_octal_dtr(struct spi_nor * nor,bool enable)666 static int cypress_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
667 {
668 return enable ? cypress_nor_octal_dtr_en(nor) :
669 cypress_nor_octal_dtr_dis(nor);
670 }
671
s28hx_t_post_sfdp_fixup(struct spi_nor * nor)672 static int s28hx_t_post_sfdp_fixup(struct spi_nor *nor)
673 {
674 struct spi_nor_flash_parameter *params = nor->params;
675
676 if (!params->n_dice || !params->vreg_offset) {
677 dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n",
678 __func__);
679 return -EOPNOTSUPP;
680 }
681
682 /* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */
683 if (params->size == SZ_256M)
684 params->n_dice = 2;
685
686 /*
687 * On older versions of the flash the xSPI Profile 1.0 table has the
688 * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
689 */
690 if (params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
691 params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
692 SPINOR_OP_CYPRESS_RD_FAST;
693
694 /* This flash is also missing the 4-byte Page Program opcode bit. */
695 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
696 SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
697 /*
698 * Since xSPI Page Program opcode is backward compatible with
699 * Legacy SPI, use Legacy SPI opcode there as well.
700 */
701 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR],
702 SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
703
704 /*
705 * The xSPI Profile 1.0 table advertises the number of additional
706 * address bytes needed for Read Status Register command as 0 but the
707 * actual value for that is 4.
708 */
709 params->rdsr_addr_nbytes = 4;
710
711 return cypress_nor_get_page_size(nor);
712 }
713
s28hx_t_post_bfpt_fixup(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)714 static int s28hx_t_post_bfpt_fixup(struct spi_nor *nor,
715 const struct sfdp_parameter_header *bfpt_header,
716 const struct sfdp_bfpt *bfpt)
717 {
718 return cypress_nor_set_addr_mode_nbytes(nor);
719 }
720
s28hx_t_late_init(struct spi_nor * nor)721 static int s28hx_t_late_init(struct spi_nor *nor)
722 {
723 struct spi_nor_flash_parameter *params = nor->params;
724
725 params->set_octal_dtr = cypress_nor_set_octal_dtr;
726 params->ready = cypress_nor_sr_ready_and_clear;
727 cypress_nor_ecc_init(nor);
728
729 return 0;
730 }
731
732 static const struct spi_nor_fixups s28hx_t_fixups = {
733 .post_sfdp = s28hx_t_post_sfdp_fixup,
734 .post_bfpt = s28hx_t_post_bfpt_fixup,
735 .late_init = s28hx_t_late_init,
736 };
737
738 static int
s25fs_s_nor_post_bfpt_fixups(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)739 s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor,
740 const struct sfdp_parameter_header *bfpt_header,
741 const struct sfdp_bfpt *bfpt)
742 {
743 /*
744 * The S25FS-S chip family reports 512-byte pages in BFPT but
745 * in reality the write buffer still wraps at the safe default
746 * of 256 bytes. Overwrite the page size advertised by BFPT
747 * to get the writes working.
748 */
749 nor->params->page_size = 256;
750
751 return 0;
752 }
753
754 static const struct spi_nor_fixups s25fs_s_nor_fixups = {
755 .post_bfpt = s25fs_s_nor_post_bfpt_fixups,
756 };
757
758 static const struct flash_info spansion_nor_parts[] = {
759 /* Spansion/Cypress -- single (large) sector size only, at least
760 * for the chips listed here (without boot sectors).
761 */
762 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64)
763 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
764 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128)
765 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
766 { "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64)
767 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
768 MFR_FLAGS(USE_CLSR)
769 },
770 { "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256)
771 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
772 MFR_FLAGS(USE_CLSR)
773 },
774 { "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128)
775 NO_SFDP_FLAGS(SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ |
776 SPI_NOR_QUAD_READ)
777 MFR_FLAGS(USE_CLSR)
778 },
779 { "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512)
780 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
781 MFR_FLAGS(USE_CLSR)
782 },
783 { "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256)
784 FLAGS(SPI_NOR_HAS_LOCK)
785 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
786 MFR_FLAGS(USE_CLSR)
787 },
788 { "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256)
789 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
790 MFR_FLAGS(USE_CLSR)
791 .fixups = &s25fs_s_nor_fixups, },
792 { "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128)
793 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
794 MFR_FLAGS(USE_CLSR)
795 },
796 { "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512)
797 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
798 MFR_FLAGS(USE_CLSR)
799 },
800 { "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256)
801 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
802 MFR_FLAGS(USE_CLSR)
803 .fixups = &s25fs_s_nor_fixups, },
804 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64) },
805 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256) },
806 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64)
807 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
808 MFR_FLAGS(USE_CLSR)
809 },
810 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256)
811 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
812 MFR_FLAGS(USE_CLSR)
813 },
814 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8) },
815 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16) },
816 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32) },
817 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64) },
818 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128) },
819 { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8)
820 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
821 SPI_NOR_QUAD_READ) },
822 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16)
823 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
824 SPI_NOR_QUAD_READ) },
825 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32)
826 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
827 SPI_NOR_QUAD_READ) },
828 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128)
829 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
830 SPI_NOR_QUAD_READ) },
831 { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32)
832 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
833 SPI_NOR_QUAD_READ) },
834 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64)
835 NO_SFDP_FLAGS(SECT_4K) },
836 { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128)
837 NO_SFDP_FLAGS(SECT_4K) },
838 { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8)
839 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
840 { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16)
841 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
842 { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128)
843 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
844 FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
845 { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256)
846 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
847 FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
848 { "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512)
849 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
850 FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
851 { "s25fs256t", INFO6(0x342b19, 0x0f0890, 0, 0)
852 PARSE_SFDP
853 MFR_FLAGS(USE_CLPEF)
854 .fixups = &s25fs256t_fixups },
855 { "s25hl512t", INFO6(0x342a1a, 0x0f0390, 0, 0)
856 PARSE_SFDP
857 MFR_FLAGS(USE_CLPEF)
858 .fixups = &s25hx_t_fixups },
859 { "s25hl01gt", INFO6(0x342a1b, 0x0f0390, 0, 0)
860 PARSE_SFDP
861 MFR_FLAGS(USE_CLPEF)
862 .fixups = &s25hx_t_fixups },
863 { "s25hl02gt", INFO6(0x342a1c, 0x0f0090, 0, 0)
864 PARSE_SFDP
865 MFR_FLAGS(USE_CLPEF)
866 FLAGS(NO_CHIP_ERASE)
867 .fixups = &s25hx_t_fixups },
868 { "s25hs512t", INFO6(0x342b1a, 0x0f0390, 0, 0)
869 PARSE_SFDP
870 MFR_FLAGS(USE_CLPEF)
871 .fixups = &s25hx_t_fixups },
872 { "s25hs01gt", INFO6(0x342b1b, 0x0f0390, 0, 0)
873 PARSE_SFDP
874 MFR_FLAGS(USE_CLPEF)
875 .fixups = &s25hx_t_fixups },
876 { "s25hs02gt", INFO6(0x342b1c, 0x0f0090, 0, 0)
877 PARSE_SFDP
878 MFR_FLAGS(USE_CLPEF)
879 FLAGS(NO_CHIP_ERASE)
880 .fixups = &s25hx_t_fixups },
881 { "cy15x104q", INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1)
882 FLAGS(SPI_NOR_NO_ERASE) },
883 { "s28hl512t", INFO(0x345a1a, 0, 0, 0)
884 PARSE_SFDP
885 MFR_FLAGS(USE_CLPEF)
886 .fixups = &s28hx_t_fixups,
887 },
888 { "s28hl01gt", INFO(0x345a1b, 0, 0, 0)
889 PARSE_SFDP
890 MFR_FLAGS(USE_CLPEF)
891 .fixups = &s28hx_t_fixups,
892 },
893 { "s28hs512t", INFO(0x345b1a, 0, 0, 0)
894 PARSE_SFDP
895 MFR_FLAGS(USE_CLPEF)
896 .fixups = &s28hx_t_fixups,
897 },
898 { "s28hs01gt", INFO(0x345b1b, 0, 0, 0)
899 PARSE_SFDP
900 MFR_FLAGS(USE_CLPEF)
901 .fixups = &s28hx_t_fixups,
902 },
903 { "s28hs02gt", INFO(0x345b1c, 0, 0, 0)
904 PARSE_SFDP
905 MFR_FLAGS(USE_CLPEF)
906 .fixups = &s28hx_t_fixups,
907 },
908 };
909
910 /**
911 * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the
912 * flash is ready for new commands and clear it if there are any errors.
913 * @nor: pointer to 'struct spi_nor'.
914 *
915 * Return: 1 if ready, 0 if not ready, -errno on errors.
916 */
spansion_nor_sr_ready_and_clear(struct spi_nor * nor)917 static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor)
918 {
919 int ret;
920
921 ret = spi_nor_read_sr(nor, nor->bouncebuf);
922 if (ret)
923 return ret;
924
925 if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
926 if (nor->bouncebuf[0] & SR_E_ERR)
927 dev_err(nor->dev, "Erase Error occurred\n");
928 else
929 dev_err(nor->dev, "Programming Error occurred\n");
930
931 spansion_nor_clear_sr(nor);
932
933 /*
934 * WEL bit remains set to one when an erase or page program
935 * error occurs. Issue a Write Disable command to protect
936 * against inadvertent writes that can possibly corrupt the
937 * contents of the memory.
938 */
939 ret = spi_nor_write_disable(nor);
940 if (ret)
941 return ret;
942
943 return -EIO;
944 }
945
946 return !(nor->bouncebuf[0] & SR_WIP);
947 }
948
spansion_nor_late_init(struct spi_nor * nor)949 static int spansion_nor_late_init(struct spi_nor *nor)
950 {
951 struct spi_nor_flash_parameter *params = nor->params;
952 struct spansion_nor_params *priv_params;
953 u8 mfr_flags = nor->info->mfr_flags;
954
955 if (params->size > SZ_16M) {
956 nor->flags |= SNOR_F_4B_OPCODES;
957 /* No small sector erase for 4-byte command set */
958 nor->erase_opcode = SPINOR_OP_SE;
959 nor->mtd.erasesize = nor->info->sector_size;
960 }
961
962 if (mfr_flags & (USE_CLSR | USE_CLPEF)) {
963 priv_params = devm_kmalloc(nor->dev, sizeof(*priv_params),
964 GFP_KERNEL);
965 if (!priv_params)
966 return -ENOMEM;
967
968 if (mfr_flags & USE_CLSR)
969 priv_params->clsr = SPINOR_OP_CLSR;
970 else if (mfr_flags & USE_CLPEF)
971 priv_params->clsr = SPINOR_OP_CLPEF;
972
973 params->priv = priv_params;
974 params->ready = spansion_nor_sr_ready_and_clear;
975 }
976
977 return 0;
978 }
979
980 static const struct spi_nor_fixups spansion_nor_fixups = {
981 .late_init = spansion_nor_late_init,
982 };
983
984 const struct spi_nor_manufacturer spi_nor_spansion = {
985 .name = "spansion",
986 .parts = spansion_nor_parts,
987 .nparts = ARRAY_SIZE(spansion_nor_parts),
988 .fixups = &spansion_nor_fixups,
989 };
990