1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Synopsys DesignWare Multimedia Card Interface driver
4 * (Based on NXP driver for lpc 31xx)
5 *
6 * Copyright (C) 2009 NXP Semiconductors
7 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8 */
9
10 #include <linux/blkdev.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/iopoll.h>
19 #include <linux/ioport.h>
20 #include <linux/ktime.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/prandom.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/bitops.h>
36 #include <linux/regulator/consumer.h>
37 #include <linux/of.h>
38 #include <linux/of_gpio.h>
39 #include <linux/mmc/slot-gpio.h>
40
41 #include "dw_mmc.h"
42
43 /* Common flag combinations */
44 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
45 SDMMC_INT_HTO | SDMMC_INT_SBE | \
46 SDMMC_INT_EBE | SDMMC_INT_HLE)
47 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
48 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
49 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
50 DW_MCI_CMD_ERROR_FLAGS)
51 #define DW_MCI_SEND_STATUS 1
52 #define DW_MCI_RECV_STATUS 2
53 #define DW_MCI_DMA_THRESHOLD 16
54
55 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
56 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
57
58 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
59 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
60 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
61 SDMMC_IDMAC_INT_TI)
62
63 #define DESC_RING_BUF_SZ PAGE_SIZE
64
65 struct idmac_desc_64addr {
66 u32 des0; /* Control Descriptor */
67 #define IDMAC_OWN_CLR64(x) \
68 !((x) & cpu_to_le32(IDMAC_DES0_OWN))
69
70 u32 des1; /* Reserved */
71
72 u32 des2; /*Buffer sizes */
73 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
74 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
75 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
76
77 u32 des3; /* Reserved */
78
79 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
80 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
81
82 u32 des6; /* Lower 32-bits of Next Descriptor Address */
83 u32 des7; /* Upper 32-bits of Next Descriptor Address */
84 };
85
86 struct idmac_desc {
87 __le32 des0; /* Control Descriptor */
88 #define IDMAC_DES0_DIC BIT(1)
89 #define IDMAC_DES0_LD BIT(2)
90 #define IDMAC_DES0_FD BIT(3)
91 #define IDMAC_DES0_CH BIT(4)
92 #define IDMAC_DES0_ER BIT(5)
93 #define IDMAC_DES0_CES BIT(30)
94 #define IDMAC_DES0_OWN BIT(31)
95
96 __le32 des1; /* Buffer sizes */
97 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
98 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
99
100 __le32 des2; /* buffer 1 physical address */
101
102 __le32 des3; /* buffer 2 physical address */
103 };
104
105 /* Each descriptor can transfer up to 4KB of data in chained mode */
106 #define DW_MCI_DESC_DATA_LENGTH 0x1000
107
108 #if defined(CONFIG_DEBUG_FS)
dw_mci_req_show(struct seq_file * s,void * v)109 static int dw_mci_req_show(struct seq_file *s, void *v)
110 {
111 struct dw_mci_slot *slot = s->private;
112 struct mmc_request *mrq;
113 struct mmc_command *cmd;
114 struct mmc_command *stop;
115 struct mmc_data *data;
116
117 /* Make sure we get a consistent snapshot */
118 spin_lock_bh(&slot->host->lock);
119 mrq = slot->mrq;
120
121 if (mrq) {
122 cmd = mrq->cmd;
123 data = mrq->data;
124 stop = mrq->stop;
125
126 if (cmd)
127 seq_printf(s,
128 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
129 cmd->opcode, cmd->arg, cmd->flags,
130 cmd->resp[0], cmd->resp[1], cmd->resp[2],
131 cmd->resp[2], cmd->error);
132 if (data)
133 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
134 data->bytes_xfered, data->blocks,
135 data->blksz, data->flags, data->error);
136 if (stop)
137 seq_printf(s,
138 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
139 stop->opcode, stop->arg, stop->flags,
140 stop->resp[0], stop->resp[1], stop->resp[2],
141 stop->resp[2], stop->error);
142 }
143
144 spin_unlock_bh(&slot->host->lock);
145
146 return 0;
147 }
148 DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
149
dw_mci_regs_show(struct seq_file * s,void * v)150 static int dw_mci_regs_show(struct seq_file *s, void *v)
151 {
152 struct dw_mci *host = s->private;
153
154 pm_runtime_get_sync(host->dev);
155
156 seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
157 seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
158 seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
159 seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
160 seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
161 seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
162
163 pm_runtime_put_autosuspend(host->dev);
164
165 return 0;
166 }
167 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
168
dw_mci_init_debugfs(struct dw_mci_slot * slot)169 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
170 {
171 struct mmc_host *mmc = slot->mmc;
172 struct dw_mci *host = slot->host;
173 struct dentry *root;
174
175 root = mmc->debugfs_root;
176 if (!root)
177 return;
178
179 debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
180 debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
181 debugfs_create_u32("state", S_IRUSR, root, &host->state);
182 debugfs_create_xul("pending_events", S_IRUSR, root,
183 &host->pending_events);
184 debugfs_create_xul("completed_events", S_IRUSR, root,
185 &host->completed_events);
186 #ifdef CONFIG_FAULT_INJECTION
187 fault_create_debugfs_attr("fail_data_crc", root, &host->fail_data_crc);
188 #endif
189 }
190 #endif /* defined(CONFIG_DEBUG_FS) */
191
dw_mci_ctrl_reset(struct dw_mci * host,u32 reset)192 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
193 {
194 u32 ctrl;
195
196 ctrl = mci_readl(host, CTRL);
197 ctrl |= reset;
198 mci_writel(host, CTRL, ctrl);
199
200 /* wait till resets clear */
201 if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
202 !(ctrl & reset),
203 1, 500 * USEC_PER_MSEC)) {
204 dev_err(host->dev,
205 "Timeout resetting block (ctrl reset %#x)\n",
206 ctrl & reset);
207 return false;
208 }
209
210 return true;
211 }
212
dw_mci_wait_while_busy(struct dw_mci * host,u32 cmd_flags)213 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
214 {
215 u32 status;
216
217 /*
218 * Databook says that before issuing a new data transfer command
219 * we need to check to see if the card is busy. Data transfer commands
220 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
221 *
222 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
223 * expected.
224 */
225 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
226 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
227 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
228 status,
229 !(status & SDMMC_STATUS_BUSY),
230 10, 500 * USEC_PER_MSEC))
231 dev_err(host->dev, "Busy; trying anyway\n");
232 }
233 }
234
mci_send_cmd(struct dw_mci_slot * slot,u32 cmd,u32 arg)235 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
236 {
237 struct dw_mci *host = slot->host;
238 unsigned int cmd_status = 0;
239
240 mci_writel(host, CMDARG, arg);
241 wmb(); /* drain writebuffer */
242 dw_mci_wait_while_busy(host, cmd);
243 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
244
245 if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
246 !(cmd_status & SDMMC_CMD_START),
247 1, 500 * USEC_PER_MSEC))
248 dev_err(&slot->mmc->class_dev,
249 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
250 cmd, arg, cmd_status);
251 }
252
dw_mci_prepare_command(struct mmc_host * mmc,struct mmc_command * cmd)253 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
254 {
255 struct dw_mci_slot *slot = mmc_priv(mmc);
256 struct dw_mci *host = slot->host;
257 u32 cmdr;
258
259 cmd->error = -EINPROGRESS;
260 cmdr = cmd->opcode;
261
262 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
263 cmd->opcode == MMC_GO_IDLE_STATE ||
264 cmd->opcode == MMC_GO_INACTIVE_STATE ||
265 (cmd->opcode == SD_IO_RW_DIRECT &&
266 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
267 cmdr |= SDMMC_CMD_STOP;
268 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
269 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
270
271 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
272 u32 clk_en_a;
273
274 /* Special bit makes CMD11 not die */
275 cmdr |= SDMMC_CMD_VOLT_SWITCH;
276
277 /* Change state to continue to handle CMD11 weirdness */
278 WARN_ON(slot->host->state != STATE_SENDING_CMD);
279 slot->host->state = STATE_SENDING_CMD11;
280
281 /*
282 * We need to disable low power mode (automatic clock stop)
283 * while doing voltage switch so we don't confuse the card,
284 * since stopping the clock is a specific part of the UHS
285 * voltage change dance.
286 *
287 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
288 * unconditionally turned back on in dw_mci_setup_bus() if it's
289 * ever called with a non-zero clock. That shouldn't happen
290 * until the voltage change is all done.
291 */
292 clk_en_a = mci_readl(host, CLKENA);
293 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
294 mci_writel(host, CLKENA, clk_en_a);
295 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
296 SDMMC_CMD_PRV_DAT_WAIT, 0);
297 }
298
299 if (cmd->flags & MMC_RSP_PRESENT) {
300 /* We expect a response, so set this bit */
301 cmdr |= SDMMC_CMD_RESP_EXP;
302 if (cmd->flags & MMC_RSP_136)
303 cmdr |= SDMMC_CMD_RESP_LONG;
304 }
305
306 if (cmd->flags & MMC_RSP_CRC)
307 cmdr |= SDMMC_CMD_RESP_CRC;
308
309 if (cmd->data) {
310 cmdr |= SDMMC_CMD_DAT_EXP;
311 if (cmd->data->flags & MMC_DATA_WRITE)
312 cmdr |= SDMMC_CMD_DAT_WR;
313 }
314
315 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
316 cmdr |= SDMMC_CMD_USE_HOLD_REG;
317
318 return cmdr;
319 }
320
dw_mci_prep_stop_abort(struct dw_mci * host,struct mmc_command * cmd)321 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
322 {
323 struct mmc_command *stop;
324 u32 cmdr;
325
326 if (!cmd->data)
327 return 0;
328
329 stop = &host->stop_abort;
330 cmdr = cmd->opcode;
331 memset(stop, 0, sizeof(struct mmc_command));
332
333 if (cmdr == MMC_READ_SINGLE_BLOCK ||
334 cmdr == MMC_READ_MULTIPLE_BLOCK ||
335 cmdr == MMC_WRITE_BLOCK ||
336 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
337 mmc_op_tuning(cmdr) ||
338 cmdr == MMC_GEN_CMD) {
339 stop->opcode = MMC_STOP_TRANSMISSION;
340 stop->arg = 0;
341 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
342 } else if (cmdr == SD_IO_RW_EXTENDED) {
343 stop->opcode = SD_IO_RW_DIRECT;
344 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
345 ((cmd->arg >> 28) & 0x7);
346 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
347 } else {
348 return 0;
349 }
350
351 cmdr = stop->opcode | SDMMC_CMD_STOP |
352 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
353
354 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
355 cmdr |= SDMMC_CMD_USE_HOLD_REG;
356
357 return cmdr;
358 }
359
dw_mci_set_cto(struct dw_mci * host)360 static inline void dw_mci_set_cto(struct dw_mci *host)
361 {
362 unsigned int cto_clks;
363 unsigned int cto_div;
364 unsigned int cto_ms;
365 unsigned long irqflags;
366
367 cto_clks = mci_readl(host, TMOUT) & 0xff;
368 cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
369 if (cto_div == 0)
370 cto_div = 1;
371
372 cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
373 host->bus_hz);
374
375 /* add a bit spare time */
376 cto_ms += 10;
377
378 /*
379 * The durations we're working with are fairly short so we have to be
380 * extra careful about synchronization here. Specifically in hardware a
381 * command timeout is _at most_ 5.1 ms, so that means we expect an
382 * interrupt (either command done or timeout) to come rather quickly
383 * after the mci_writel. ...but just in case we have a long interrupt
384 * latency let's add a bit of paranoia.
385 *
386 * In general we'll assume that at least an interrupt will be asserted
387 * in hardware by the time the cto_timer runs. ...and if it hasn't
388 * been asserted in hardware by that time then we'll assume it'll never
389 * come.
390 */
391 spin_lock_irqsave(&host->irq_lock, irqflags);
392 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
393 mod_timer(&host->cto_timer,
394 jiffies + msecs_to_jiffies(cto_ms) + 1);
395 spin_unlock_irqrestore(&host->irq_lock, irqflags);
396 }
397
dw_mci_start_command(struct dw_mci * host,struct mmc_command * cmd,u32 cmd_flags)398 static void dw_mci_start_command(struct dw_mci *host,
399 struct mmc_command *cmd, u32 cmd_flags)
400 {
401 host->cmd = cmd;
402 dev_vdbg(host->dev,
403 "start command: ARGR=0x%08x CMDR=0x%08x\n",
404 cmd->arg, cmd_flags);
405
406 mci_writel(host, CMDARG, cmd->arg);
407 wmb(); /* drain writebuffer */
408 dw_mci_wait_while_busy(host, cmd_flags);
409
410 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
411
412 /* response expected command only */
413 if (cmd_flags & SDMMC_CMD_RESP_EXP)
414 dw_mci_set_cto(host);
415 }
416
send_stop_abort(struct dw_mci * host,struct mmc_data * data)417 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
418 {
419 struct mmc_command *stop = &host->stop_abort;
420
421 dw_mci_start_command(host, stop, host->stop_cmdr);
422 }
423
424 /* DMA interface functions */
dw_mci_stop_dma(struct dw_mci * host)425 static void dw_mci_stop_dma(struct dw_mci *host)
426 {
427 if (host->using_dma) {
428 host->dma_ops->stop(host);
429 host->dma_ops->cleanup(host);
430 }
431
432 /* Data transfer was stopped by the interrupt handler */
433 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
434 }
435
dw_mci_dma_cleanup(struct dw_mci * host)436 static void dw_mci_dma_cleanup(struct dw_mci *host)
437 {
438 struct mmc_data *data = host->data;
439
440 if (data && data->host_cookie == COOKIE_MAPPED) {
441 dma_unmap_sg(host->dev,
442 data->sg,
443 data->sg_len,
444 mmc_get_dma_dir(data));
445 data->host_cookie = COOKIE_UNMAPPED;
446 }
447 }
448
dw_mci_idmac_reset(struct dw_mci * host)449 static void dw_mci_idmac_reset(struct dw_mci *host)
450 {
451 u32 bmod = mci_readl(host, BMOD);
452 /* Software reset of DMA */
453 bmod |= SDMMC_IDMAC_SWRESET;
454 mci_writel(host, BMOD, bmod);
455 }
456
dw_mci_idmac_stop_dma(struct dw_mci * host)457 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
458 {
459 u32 temp;
460
461 /* Disable and reset the IDMAC interface */
462 temp = mci_readl(host, CTRL);
463 temp &= ~SDMMC_CTRL_USE_IDMAC;
464 temp |= SDMMC_CTRL_DMA_RESET;
465 mci_writel(host, CTRL, temp);
466
467 /* Stop the IDMAC running */
468 temp = mci_readl(host, BMOD);
469 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
470 temp |= SDMMC_IDMAC_SWRESET;
471 mci_writel(host, BMOD, temp);
472 }
473
dw_mci_dmac_complete_dma(void * arg)474 static void dw_mci_dmac_complete_dma(void *arg)
475 {
476 struct dw_mci *host = arg;
477 struct mmc_data *data = host->data;
478
479 dev_vdbg(host->dev, "DMA complete\n");
480
481 if ((host->use_dma == TRANS_MODE_EDMAC) &&
482 data && (data->flags & MMC_DATA_READ))
483 /* Invalidate cache after read */
484 dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
485 data->sg,
486 data->sg_len,
487 DMA_FROM_DEVICE);
488
489 host->dma_ops->cleanup(host);
490
491 /*
492 * If the card was removed, data will be NULL. No point in trying to
493 * send the stop command or waiting for NBUSY in this case.
494 */
495 if (data) {
496 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
497 tasklet_schedule(&host->tasklet);
498 }
499 }
500
dw_mci_idmac_init(struct dw_mci * host)501 static int dw_mci_idmac_init(struct dw_mci *host)
502 {
503 int i;
504
505 if (host->dma_64bit_address == 1) {
506 struct idmac_desc_64addr *p;
507 /* Number of descriptors in the ring buffer */
508 host->ring_size =
509 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
510
511 /* Forward link the descriptor list */
512 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
513 i++, p++) {
514 p->des6 = (host->sg_dma +
515 (sizeof(struct idmac_desc_64addr) *
516 (i + 1))) & 0xffffffff;
517
518 p->des7 = (u64)(host->sg_dma +
519 (sizeof(struct idmac_desc_64addr) *
520 (i + 1))) >> 32;
521 /* Initialize reserved and buffer size fields to "0" */
522 p->des0 = 0;
523 p->des1 = 0;
524 p->des2 = 0;
525 p->des3 = 0;
526 }
527
528 /* Set the last descriptor as the end-of-ring descriptor */
529 p->des6 = host->sg_dma & 0xffffffff;
530 p->des7 = (u64)host->sg_dma >> 32;
531 p->des0 = IDMAC_DES0_ER;
532
533 } else {
534 struct idmac_desc *p;
535 /* Number of descriptors in the ring buffer */
536 host->ring_size =
537 DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
538
539 /* Forward link the descriptor list */
540 for (i = 0, p = host->sg_cpu;
541 i < host->ring_size - 1;
542 i++, p++) {
543 p->des3 = cpu_to_le32(host->sg_dma +
544 (sizeof(struct idmac_desc) * (i + 1)));
545 p->des0 = 0;
546 p->des1 = 0;
547 }
548
549 /* Set the last descriptor as the end-of-ring descriptor */
550 p->des3 = cpu_to_le32(host->sg_dma);
551 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
552 }
553
554 dw_mci_idmac_reset(host);
555
556 if (host->dma_64bit_address == 1) {
557 /* Mask out interrupts - get Tx & Rx complete only */
558 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
559 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
560 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
561
562 /* Set the descriptor base address */
563 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
564 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
565
566 } else {
567 /* Mask out interrupts - get Tx & Rx complete only */
568 mci_writel(host, IDSTS, IDMAC_INT_CLR);
569 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
570 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
571
572 /* Set the descriptor base address */
573 mci_writel(host, DBADDR, host->sg_dma);
574 }
575
576 return 0;
577 }
578
dw_mci_prepare_desc64(struct dw_mci * host,struct mmc_data * data,unsigned int sg_len)579 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
580 struct mmc_data *data,
581 unsigned int sg_len)
582 {
583 unsigned int desc_len;
584 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
585 u32 val;
586 int i;
587
588 desc_first = desc_last = desc = host->sg_cpu;
589
590 for (i = 0; i < sg_len; i++) {
591 unsigned int length = sg_dma_len(&data->sg[i]);
592
593 u64 mem_addr = sg_dma_address(&data->sg[i]);
594
595 for ( ; length ; desc++) {
596 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
597 length : DW_MCI_DESC_DATA_LENGTH;
598
599 length -= desc_len;
600
601 /*
602 * Wait for the former clear OWN bit operation
603 * of IDMAC to make sure that this descriptor
604 * isn't still owned by IDMAC as IDMAC's write
605 * ops and CPU's read ops are asynchronous.
606 */
607 if (readl_poll_timeout_atomic(&desc->des0, val,
608 !(val & IDMAC_DES0_OWN),
609 10, 100 * USEC_PER_MSEC))
610 goto err_own_bit;
611
612 /*
613 * Set the OWN bit and disable interrupts
614 * for this descriptor
615 */
616 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
617 IDMAC_DES0_CH;
618
619 /* Buffer length */
620 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
621
622 /* Physical address to DMA to/from */
623 desc->des4 = mem_addr & 0xffffffff;
624 desc->des5 = mem_addr >> 32;
625
626 /* Update physical address for the next desc */
627 mem_addr += desc_len;
628
629 /* Save pointer to the last descriptor */
630 desc_last = desc;
631 }
632 }
633
634 /* Set first descriptor */
635 desc_first->des0 |= IDMAC_DES0_FD;
636
637 /* Set last descriptor */
638 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
639 desc_last->des0 |= IDMAC_DES0_LD;
640
641 return 0;
642 err_own_bit:
643 /* restore the descriptor chain as it's polluted */
644 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
645 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
646 dw_mci_idmac_init(host);
647 return -EINVAL;
648 }
649
650
dw_mci_prepare_desc32(struct dw_mci * host,struct mmc_data * data,unsigned int sg_len)651 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
652 struct mmc_data *data,
653 unsigned int sg_len)
654 {
655 unsigned int desc_len;
656 struct idmac_desc *desc_first, *desc_last, *desc;
657 u32 val;
658 int i;
659
660 desc_first = desc_last = desc = host->sg_cpu;
661
662 for (i = 0; i < sg_len; i++) {
663 unsigned int length = sg_dma_len(&data->sg[i]);
664
665 u32 mem_addr = sg_dma_address(&data->sg[i]);
666
667 for ( ; length ; desc++) {
668 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
669 length : DW_MCI_DESC_DATA_LENGTH;
670
671 length -= desc_len;
672
673 /*
674 * Wait for the former clear OWN bit operation
675 * of IDMAC to make sure that this descriptor
676 * isn't still owned by IDMAC as IDMAC's write
677 * ops and CPU's read ops are asynchronous.
678 */
679 if (readl_poll_timeout_atomic(&desc->des0, val,
680 IDMAC_OWN_CLR64(val),
681 10,
682 100 * USEC_PER_MSEC))
683 goto err_own_bit;
684
685 /*
686 * Set the OWN bit and disable interrupts
687 * for this descriptor
688 */
689 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
690 IDMAC_DES0_DIC |
691 IDMAC_DES0_CH);
692
693 /* Buffer length */
694 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
695
696 /* Physical address to DMA to/from */
697 desc->des2 = cpu_to_le32(mem_addr);
698
699 /* Update physical address for the next desc */
700 mem_addr += desc_len;
701
702 /* Save pointer to the last descriptor */
703 desc_last = desc;
704 }
705 }
706
707 /* Set first descriptor */
708 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
709
710 /* Set last descriptor */
711 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
712 IDMAC_DES0_DIC));
713 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
714
715 return 0;
716 err_own_bit:
717 /* restore the descriptor chain as it's polluted */
718 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
719 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
720 dw_mci_idmac_init(host);
721 return -EINVAL;
722 }
723
dw_mci_idmac_start_dma(struct dw_mci * host,unsigned int sg_len)724 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
725 {
726 u32 temp;
727 int ret;
728
729 if (host->dma_64bit_address == 1)
730 ret = dw_mci_prepare_desc64(host, host->data, sg_len);
731 else
732 ret = dw_mci_prepare_desc32(host, host->data, sg_len);
733
734 if (ret)
735 goto out;
736
737 /* drain writebuffer */
738 wmb();
739
740 /* Make sure to reset DMA in case we did PIO before this */
741 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
742 dw_mci_idmac_reset(host);
743
744 /* Select IDMAC interface */
745 temp = mci_readl(host, CTRL);
746 temp |= SDMMC_CTRL_USE_IDMAC;
747 mci_writel(host, CTRL, temp);
748
749 /* drain writebuffer */
750 wmb();
751
752 /* Enable the IDMAC */
753 temp = mci_readl(host, BMOD);
754 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
755 mci_writel(host, BMOD, temp);
756
757 /* Start it running */
758 mci_writel(host, PLDMND, 1);
759
760 out:
761 return ret;
762 }
763
764 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
765 .init = dw_mci_idmac_init,
766 .start = dw_mci_idmac_start_dma,
767 .stop = dw_mci_idmac_stop_dma,
768 .complete = dw_mci_dmac_complete_dma,
769 .cleanup = dw_mci_dma_cleanup,
770 };
771
dw_mci_edmac_stop_dma(struct dw_mci * host)772 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
773 {
774 dmaengine_terminate_async(host->dms->ch);
775 }
776
dw_mci_edmac_start_dma(struct dw_mci * host,unsigned int sg_len)777 static int dw_mci_edmac_start_dma(struct dw_mci *host,
778 unsigned int sg_len)
779 {
780 struct dma_slave_config cfg;
781 struct dma_async_tx_descriptor *desc = NULL;
782 struct scatterlist *sgl = host->data->sg;
783 static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
784 u32 sg_elems = host->data->sg_len;
785 u32 fifoth_val;
786 u32 fifo_offset = host->fifo_reg - host->regs;
787 int ret = 0;
788
789 /* Set external dma config: burst size, burst width */
790 memset(&cfg, 0, sizeof(cfg));
791 cfg.dst_addr = host->phy_regs + fifo_offset;
792 cfg.src_addr = cfg.dst_addr;
793 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
794 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
795
796 /* Match burst msize with external dma config */
797 fifoth_val = mci_readl(host, FIFOTH);
798 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
799 cfg.src_maxburst = cfg.dst_maxburst;
800
801 if (host->data->flags & MMC_DATA_WRITE)
802 cfg.direction = DMA_MEM_TO_DEV;
803 else
804 cfg.direction = DMA_DEV_TO_MEM;
805
806 ret = dmaengine_slave_config(host->dms->ch, &cfg);
807 if (ret) {
808 dev_err(host->dev, "Failed to config edmac.\n");
809 return -EBUSY;
810 }
811
812 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
813 sg_len, cfg.direction,
814 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
815 if (!desc) {
816 dev_err(host->dev, "Can't prepare slave sg.\n");
817 return -EBUSY;
818 }
819
820 /* Set dw_mci_dmac_complete_dma as callback */
821 desc->callback = dw_mci_dmac_complete_dma;
822 desc->callback_param = (void *)host;
823 dmaengine_submit(desc);
824
825 /* Flush cache before write */
826 if (host->data->flags & MMC_DATA_WRITE)
827 dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
828 sg_elems, DMA_TO_DEVICE);
829
830 dma_async_issue_pending(host->dms->ch);
831
832 return 0;
833 }
834
dw_mci_edmac_init(struct dw_mci * host)835 static int dw_mci_edmac_init(struct dw_mci *host)
836 {
837 /* Request external dma channel */
838 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
839 if (!host->dms)
840 return -ENOMEM;
841
842 host->dms->ch = dma_request_chan(host->dev, "rx-tx");
843 if (IS_ERR(host->dms->ch)) {
844 int ret = PTR_ERR(host->dms->ch);
845
846 dev_err(host->dev, "Failed to get external DMA channel.\n");
847 kfree(host->dms);
848 host->dms = NULL;
849 return ret;
850 }
851
852 return 0;
853 }
854
dw_mci_edmac_exit(struct dw_mci * host)855 static void dw_mci_edmac_exit(struct dw_mci *host)
856 {
857 if (host->dms) {
858 if (host->dms->ch) {
859 dma_release_channel(host->dms->ch);
860 host->dms->ch = NULL;
861 }
862 kfree(host->dms);
863 host->dms = NULL;
864 }
865 }
866
867 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
868 .init = dw_mci_edmac_init,
869 .exit = dw_mci_edmac_exit,
870 .start = dw_mci_edmac_start_dma,
871 .stop = dw_mci_edmac_stop_dma,
872 .complete = dw_mci_dmac_complete_dma,
873 .cleanup = dw_mci_dma_cleanup,
874 };
875
dw_mci_pre_dma_transfer(struct dw_mci * host,struct mmc_data * data,int cookie)876 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
877 struct mmc_data *data,
878 int cookie)
879 {
880 struct scatterlist *sg;
881 unsigned int i, sg_len;
882
883 if (data->host_cookie == COOKIE_PRE_MAPPED)
884 return data->sg_len;
885
886 /*
887 * We don't do DMA on "complex" transfers, i.e. with
888 * non-word-aligned buffers or lengths. Also, we don't bother
889 * with all the DMA setup overhead for short transfers.
890 */
891 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
892 return -EINVAL;
893
894 if (data->blksz & 3)
895 return -EINVAL;
896
897 for_each_sg(data->sg, sg, data->sg_len, i) {
898 if (sg->offset & 3 || sg->length & 3)
899 return -EINVAL;
900 }
901
902 sg_len = dma_map_sg(host->dev,
903 data->sg,
904 data->sg_len,
905 mmc_get_dma_dir(data));
906 if (sg_len == 0)
907 return -EINVAL;
908
909 data->host_cookie = cookie;
910
911 return sg_len;
912 }
913
dw_mci_pre_req(struct mmc_host * mmc,struct mmc_request * mrq)914 static void dw_mci_pre_req(struct mmc_host *mmc,
915 struct mmc_request *mrq)
916 {
917 struct dw_mci_slot *slot = mmc_priv(mmc);
918 struct mmc_data *data = mrq->data;
919
920 if (!slot->host->use_dma || !data)
921 return;
922
923 /* This data might be unmapped at this time */
924 data->host_cookie = COOKIE_UNMAPPED;
925
926 if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
927 COOKIE_PRE_MAPPED) < 0)
928 data->host_cookie = COOKIE_UNMAPPED;
929 }
930
dw_mci_post_req(struct mmc_host * mmc,struct mmc_request * mrq,int err)931 static void dw_mci_post_req(struct mmc_host *mmc,
932 struct mmc_request *mrq,
933 int err)
934 {
935 struct dw_mci_slot *slot = mmc_priv(mmc);
936 struct mmc_data *data = mrq->data;
937
938 if (!slot->host->use_dma || !data)
939 return;
940
941 if (data->host_cookie != COOKIE_UNMAPPED)
942 dma_unmap_sg(slot->host->dev,
943 data->sg,
944 data->sg_len,
945 mmc_get_dma_dir(data));
946 data->host_cookie = COOKIE_UNMAPPED;
947 }
948
dw_mci_get_cd(struct mmc_host * mmc)949 static int dw_mci_get_cd(struct mmc_host *mmc)
950 {
951 int present;
952 struct dw_mci_slot *slot = mmc_priv(mmc);
953 struct dw_mci *host = slot->host;
954 int gpio_cd = mmc_gpio_get_cd(mmc);
955
956 /* Use platform get_cd function, else try onboard card detect */
957 if (((mmc->caps & MMC_CAP_NEEDS_POLL)
958 || !mmc_card_is_removable(mmc))) {
959 present = 1;
960
961 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
962 if (mmc->caps & MMC_CAP_NEEDS_POLL) {
963 dev_info(&mmc->class_dev,
964 "card is polling.\n");
965 } else {
966 dev_info(&mmc->class_dev,
967 "card is non-removable.\n");
968 }
969 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
970 }
971
972 return present;
973 } else if (gpio_cd >= 0)
974 present = gpio_cd;
975 else
976 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
977 == 0 ? 1 : 0;
978
979 spin_lock_bh(&host->lock);
980 if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
981 dev_dbg(&mmc->class_dev, "card is present\n");
982 else if (!present &&
983 !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
984 dev_dbg(&mmc->class_dev, "card is not present\n");
985 spin_unlock_bh(&host->lock);
986
987 return present;
988 }
989
dw_mci_adjust_fifoth(struct dw_mci * host,struct mmc_data * data)990 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
991 {
992 unsigned int blksz = data->blksz;
993 static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
994 u32 fifo_width = 1 << host->data_shift;
995 u32 blksz_depth = blksz / fifo_width, fifoth_val;
996 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
997 int idx = ARRAY_SIZE(mszs) - 1;
998
999 /* pio should ship this scenario */
1000 if (!host->use_dma)
1001 return;
1002
1003 tx_wmark = (host->fifo_depth) / 2;
1004 tx_wmark_invers = host->fifo_depth - tx_wmark;
1005
1006 /*
1007 * MSIZE is '1',
1008 * if blksz is not a multiple of the FIFO width
1009 */
1010 if (blksz % fifo_width)
1011 goto done;
1012
1013 do {
1014 if (!((blksz_depth % mszs[idx]) ||
1015 (tx_wmark_invers % mszs[idx]))) {
1016 msize = idx;
1017 rx_wmark = mszs[idx] - 1;
1018 break;
1019 }
1020 } while (--idx > 0);
1021 /*
1022 * If idx is '0', it won't be tried
1023 * Thus, initial values are uesed
1024 */
1025 done:
1026 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1027 mci_writel(host, FIFOTH, fifoth_val);
1028 }
1029
dw_mci_ctrl_thld(struct dw_mci * host,struct mmc_data * data)1030 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1031 {
1032 unsigned int blksz = data->blksz;
1033 u32 blksz_depth, fifo_depth;
1034 u16 thld_size;
1035 u8 enable;
1036
1037 /*
1038 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1039 * in the FIFO region, so we really shouldn't access it).
1040 */
1041 if (host->verid < DW_MMC_240A ||
1042 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1043 return;
1044
1045 /*
1046 * Card write Threshold is introduced since 2.80a
1047 * It's used when HS400 mode is enabled.
1048 */
1049 if (data->flags & MMC_DATA_WRITE &&
1050 host->timing != MMC_TIMING_MMC_HS400)
1051 goto disable;
1052
1053 if (data->flags & MMC_DATA_WRITE)
1054 enable = SDMMC_CARD_WR_THR_EN;
1055 else
1056 enable = SDMMC_CARD_RD_THR_EN;
1057
1058 if (host->timing != MMC_TIMING_MMC_HS200 &&
1059 host->timing != MMC_TIMING_UHS_SDR104 &&
1060 host->timing != MMC_TIMING_MMC_HS400)
1061 goto disable;
1062
1063 blksz_depth = blksz / (1 << host->data_shift);
1064 fifo_depth = host->fifo_depth;
1065
1066 if (blksz_depth > fifo_depth)
1067 goto disable;
1068
1069 /*
1070 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1071 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1072 * Currently just choose blksz.
1073 */
1074 thld_size = blksz;
1075 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1076 return;
1077
1078 disable:
1079 mci_writel(host, CDTHRCTL, 0);
1080 }
1081
dw_mci_submit_data_dma(struct dw_mci * host,struct mmc_data * data)1082 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1083 {
1084 unsigned long irqflags;
1085 int sg_len;
1086 u32 temp;
1087
1088 host->using_dma = 0;
1089
1090 /* If we don't have a channel, we can't do DMA */
1091 if (!host->use_dma)
1092 return -ENODEV;
1093
1094 sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1095 if (sg_len < 0) {
1096 host->dma_ops->stop(host);
1097 return sg_len;
1098 }
1099
1100 host->using_dma = 1;
1101
1102 if (host->use_dma == TRANS_MODE_IDMAC)
1103 dev_vdbg(host->dev,
1104 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1105 (unsigned long)host->sg_cpu,
1106 (unsigned long)host->sg_dma,
1107 sg_len);
1108
1109 /*
1110 * Decide the MSIZE and RX/TX Watermark.
1111 * If current block size is same with previous size,
1112 * no need to update fifoth.
1113 */
1114 if (host->prev_blksz != data->blksz)
1115 dw_mci_adjust_fifoth(host, data);
1116
1117 /* Enable the DMA interface */
1118 temp = mci_readl(host, CTRL);
1119 temp |= SDMMC_CTRL_DMA_ENABLE;
1120 mci_writel(host, CTRL, temp);
1121
1122 /* Disable RX/TX IRQs, let DMA handle it */
1123 spin_lock_irqsave(&host->irq_lock, irqflags);
1124 temp = mci_readl(host, INTMASK);
1125 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1126 mci_writel(host, INTMASK, temp);
1127 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1128
1129 if (host->dma_ops->start(host, sg_len)) {
1130 host->dma_ops->stop(host);
1131 /* We can't do DMA, try PIO for this one */
1132 dev_dbg(host->dev,
1133 "%s: fall back to PIO mode for current transfer\n",
1134 __func__);
1135 return -ENODEV;
1136 }
1137
1138 return 0;
1139 }
1140
dw_mci_submit_data(struct dw_mci * host,struct mmc_data * data)1141 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1142 {
1143 unsigned long irqflags;
1144 int flags = SG_MITER_ATOMIC;
1145 u32 temp;
1146
1147 data->error = -EINPROGRESS;
1148
1149 WARN_ON(host->data);
1150 host->sg = NULL;
1151 host->data = data;
1152
1153 if (data->flags & MMC_DATA_READ)
1154 host->dir_status = DW_MCI_RECV_STATUS;
1155 else
1156 host->dir_status = DW_MCI_SEND_STATUS;
1157
1158 dw_mci_ctrl_thld(host, data);
1159
1160 if (dw_mci_submit_data_dma(host, data)) {
1161 if (host->data->flags & MMC_DATA_READ)
1162 flags |= SG_MITER_TO_SG;
1163 else
1164 flags |= SG_MITER_FROM_SG;
1165
1166 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1167 host->sg = data->sg;
1168 host->part_buf_start = 0;
1169 host->part_buf_count = 0;
1170
1171 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1172
1173 spin_lock_irqsave(&host->irq_lock, irqflags);
1174 temp = mci_readl(host, INTMASK);
1175 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1176 mci_writel(host, INTMASK, temp);
1177 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1178
1179 temp = mci_readl(host, CTRL);
1180 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1181 mci_writel(host, CTRL, temp);
1182
1183 /*
1184 * Use the initial fifoth_val for PIO mode. If wm_algined
1185 * is set, we set watermark same as data size.
1186 * If next issued data may be transfered by DMA mode,
1187 * prev_blksz should be invalidated.
1188 */
1189 if (host->wm_aligned)
1190 dw_mci_adjust_fifoth(host, data);
1191 else
1192 mci_writel(host, FIFOTH, host->fifoth_val);
1193 host->prev_blksz = 0;
1194 } else {
1195 /*
1196 * Keep the current block size.
1197 * It will be used to decide whether to update
1198 * fifoth register next time.
1199 */
1200 host->prev_blksz = data->blksz;
1201 }
1202 }
1203
dw_mci_setup_bus(struct dw_mci_slot * slot,bool force_clkinit)1204 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1205 {
1206 struct dw_mci *host = slot->host;
1207 unsigned int clock = slot->clock;
1208 u32 div;
1209 u32 clk_en_a;
1210 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1211
1212 /* We must continue to set bit 28 in CMD until the change is complete */
1213 if (host->state == STATE_WAITING_CMD11_DONE)
1214 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1215
1216 slot->mmc->actual_clock = 0;
1217
1218 if (!clock) {
1219 mci_writel(host, CLKENA, 0);
1220 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1221 } else if (clock != host->current_speed || force_clkinit) {
1222 div = host->bus_hz / clock;
1223 if (host->bus_hz % clock && host->bus_hz > clock)
1224 /*
1225 * move the + 1 after the divide to prevent
1226 * over-clocking the card.
1227 */
1228 div += 1;
1229
1230 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1231
1232 if ((clock != slot->__clk_old &&
1233 !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1234 force_clkinit) {
1235 /* Silent the verbose log if calling from PM context */
1236 if (!force_clkinit)
1237 dev_info(&slot->mmc->class_dev,
1238 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1239 slot->id, host->bus_hz, clock,
1240 div ? ((host->bus_hz / div) >> 1) :
1241 host->bus_hz, div);
1242
1243 /*
1244 * If card is polling, display the message only
1245 * one time at boot time.
1246 */
1247 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1248 slot->mmc->f_min == clock)
1249 set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1250 }
1251
1252 /* disable clock */
1253 mci_writel(host, CLKENA, 0);
1254 mci_writel(host, CLKSRC, 0);
1255
1256 /* inform CIU */
1257 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1258
1259 /* set clock to desired speed */
1260 mci_writel(host, CLKDIV, div);
1261
1262 /* inform CIU */
1263 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1264
1265 /* enable clock; only low power if no SDIO */
1266 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1267 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1268 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1269 mci_writel(host, CLKENA, clk_en_a);
1270
1271 /* inform CIU */
1272 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1273
1274 /* keep the last clock value that was requested from core */
1275 slot->__clk_old = clock;
1276 slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1277 host->bus_hz;
1278 }
1279
1280 host->current_speed = clock;
1281
1282 /* Set the current slot bus width */
1283 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1284 }
1285
dw_mci_set_data_timeout(struct dw_mci * host,unsigned int timeout_ns)1286 static void dw_mci_set_data_timeout(struct dw_mci *host,
1287 unsigned int timeout_ns)
1288 {
1289 const struct dw_mci_drv_data *drv_data = host->drv_data;
1290 u32 clk_div, tmout;
1291 u64 tmp;
1292
1293 if (drv_data && drv_data->set_data_timeout)
1294 return drv_data->set_data_timeout(host, timeout_ns);
1295
1296 clk_div = (mci_readl(host, CLKDIV) & 0xFF) * 2;
1297 if (clk_div == 0)
1298 clk_div = 1;
1299
1300 tmp = DIV_ROUND_UP_ULL((u64)timeout_ns * host->bus_hz, NSEC_PER_SEC);
1301 tmp = DIV_ROUND_UP_ULL(tmp, clk_div);
1302
1303 /* TMOUT[7:0] (RESPONSE_TIMEOUT) */
1304 tmout = 0xFF; /* Set maximum */
1305
1306 /* TMOUT[31:8] (DATA_TIMEOUT) */
1307 if (!tmp || tmp > 0xFFFFFF)
1308 tmout |= (0xFFFFFF << 8);
1309 else
1310 tmout |= (tmp & 0xFFFFFF) << 8;
1311
1312 mci_writel(host, TMOUT, tmout);
1313 dev_dbg(host->dev, "timeout_ns: %u => TMOUT[31:8]: %#08x",
1314 timeout_ns, tmout >> 8);
1315 }
1316
__dw_mci_start_request(struct dw_mci * host,struct dw_mci_slot * slot,struct mmc_command * cmd)1317 static void __dw_mci_start_request(struct dw_mci *host,
1318 struct dw_mci_slot *slot,
1319 struct mmc_command *cmd)
1320 {
1321 struct mmc_request *mrq;
1322 struct mmc_data *data;
1323 u32 cmdflags;
1324
1325 mrq = slot->mrq;
1326
1327 host->mrq = mrq;
1328
1329 host->pending_events = 0;
1330 host->completed_events = 0;
1331 host->cmd_status = 0;
1332 host->data_status = 0;
1333 host->dir_status = 0;
1334
1335 data = cmd->data;
1336 if (data) {
1337 dw_mci_set_data_timeout(host, data->timeout_ns);
1338 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1339 mci_writel(host, BLKSIZ, data->blksz);
1340 }
1341
1342 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1343
1344 /* this is the first command, send the initialization clock */
1345 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1346 cmdflags |= SDMMC_CMD_INIT;
1347
1348 if (data) {
1349 dw_mci_submit_data(host, data);
1350 wmb(); /* drain writebuffer */
1351 }
1352
1353 dw_mci_start_command(host, cmd, cmdflags);
1354
1355 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1356 unsigned long irqflags;
1357
1358 /*
1359 * Databook says to fail after 2ms w/ no response, but evidence
1360 * shows that sometimes the cmd11 interrupt takes over 130ms.
1361 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1362 * is just about to roll over.
1363 *
1364 * We do this whole thing under spinlock and only if the
1365 * command hasn't already completed (indicating the irq
1366 * already ran so we don't want the timeout).
1367 */
1368 spin_lock_irqsave(&host->irq_lock, irqflags);
1369 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1370 mod_timer(&host->cmd11_timer,
1371 jiffies + msecs_to_jiffies(500) + 1);
1372 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1373 }
1374
1375 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1376 }
1377
dw_mci_start_request(struct dw_mci * host,struct dw_mci_slot * slot)1378 static void dw_mci_start_request(struct dw_mci *host,
1379 struct dw_mci_slot *slot)
1380 {
1381 struct mmc_request *mrq = slot->mrq;
1382 struct mmc_command *cmd;
1383
1384 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1385 __dw_mci_start_request(host, slot, cmd);
1386 }
1387
1388 /* must be called with host->lock held */
dw_mci_queue_request(struct dw_mci * host,struct dw_mci_slot * slot,struct mmc_request * mrq)1389 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1390 struct mmc_request *mrq)
1391 {
1392 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1393 host->state);
1394
1395 slot->mrq = mrq;
1396
1397 if (host->state == STATE_WAITING_CMD11_DONE) {
1398 dev_warn(&slot->mmc->class_dev,
1399 "Voltage change didn't complete\n");
1400 /*
1401 * this case isn't expected to happen, so we can
1402 * either crash here or just try to continue on
1403 * in the closest possible state
1404 */
1405 host->state = STATE_IDLE;
1406 }
1407
1408 if (host->state == STATE_IDLE) {
1409 host->state = STATE_SENDING_CMD;
1410 dw_mci_start_request(host, slot);
1411 } else {
1412 list_add_tail(&slot->queue_node, &host->queue);
1413 }
1414 }
1415
dw_mci_request(struct mmc_host * mmc,struct mmc_request * mrq)1416 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1417 {
1418 struct dw_mci_slot *slot = mmc_priv(mmc);
1419 struct dw_mci *host = slot->host;
1420
1421 WARN_ON(slot->mrq);
1422
1423 /*
1424 * The check for card presence and queueing of the request must be
1425 * atomic, otherwise the card could be removed in between and the
1426 * request wouldn't fail until another card was inserted.
1427 */
1428
1429 if (!dw_mci_get_cd(mmc)) {
1430 mrq->cmd->error = -ENOMEDIUM;
1431 mmc_request_done(mmc, mrq);
1432 return;
1433 }
1434
1435 spin_lock_bh(&host->lock);
1436
1437 dw_mci_queue_request(host, slot, mrq);
1438
1439 spin_unlock_bh(&host->lock);
1440 }
1441
dw_mci_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1442 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1443 {
1444 struct dw_mci_slot *slot = mmc_priv(mmc);
1445 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1446 u32 regs;
1447 int ret;
1448
1449 switch (ios->bus_width) {
1450 case MMC_BUS_WIDTH_4:
1451 slot->ctype = SDMMC_CTYPE_4BIT;
1452 break;
1453 case MMC_BUS_WIDTH_8:
1454 slot->ctype = SDMMC_CTYPE_8BIT;
1455 break;
1456 default:
1457 /* set default 1 bit mode */
1458 slot->ctype = SDMMC_CTYPE_1BIT;
1459 }
1460
1461 regs = mci_readl(slot->host, UHS_REG);
1462
1463 /* DDR mode set */
1464 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1465 ios->timing == MMC_TIMING_UHS_DDR50 ||
1466 ios->timing == MMC_TIMING_MMC_HS400)
1467 regs |= ((0x1 << slot->id) << 16);
1468 else
1469 regs &= ~((0x1 << slot->id) << 16);
1470
1471 mci_writel(slot->host, UHS_REG, regs);
1472 slot->host->timing = ios->timing;
1473
1474 /*
1475 * Use mirror of ios->clock to prevent race with mmc
1476 * core ios update when finding the minimum.
1477 */
1478 slot->clock = ios->clock;
1479
1480 if (drv_data && drv_data->set_ios)
1481 drv_data->set_ios(slot->host, ios);
1482
1483 switch (ios->power_mode) {
1484 case MMC_POWER_UP:
1485 if (!IS_ERR(mmc->supply.vmmc)) {
1486 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1487 ios->vdd);
1488 if (ret) {
1489 dev_err(slot->host->dev,
1490 "failed to enable vmmc regulator\n");
1491 /*return, if failed turn on vmmc*/
1492 return;
1493 }
1494 }
1495 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1496 regs = mci_readl(slot->host, PWREN);
1497 regs |= (1 << slot->id);
1498 mci_writel(slot->host, PWREN, regs);
1499 break;
1500 case MMC_POWER_ON:
1501 if (!slot->host->vqmmc_enabled) {
1502 if (!IS_ERR(mmc->supply.vqmmc)) {
1503 ret = regulator_enable(mmc->supply.vqmmc);
1504 if (ret < 0)
1505 dev_err(slot->host->dev,
1506 "failed to enable vqmmc\n");
1507 else
1508 slot->host->vqmmc_enabled = true;
1509
1510 } else {
1511 /* Keep track so we don't reset again */
1512 slot->host->vqmmc_enabled = true;
1513 }
1514
1515 /* Reset our state machine after powering on */
1516 dw_mci_ctrl_reset(slot->host,
1517 SDMMC_CTRL_ALL_RESET_FLAGS);
1518 }
1519
1520 /* Adjust clock / bus width after power is up */
1521 dw_mci_setup_bus(slot, false);
1522
1523 break;
1524 case MMC_POWER_OFF:
1525 /* Turn clock off before power goes down */
1526 dw_mci_setup_bus(slot, false);
1527
1528 if (!IS_ERR(mmc->supply.vmmc))
1529 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1530
1531 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1532 regulator_disable(mmc->supply.vqmmc);
1533 slot->host->vqmmc_enabled = false;
1534
1535 regs = mci_readl(slot->host, PWREN);
1536 regs &= ~(1 << slot->id);
1537 mci_writel(slot->host, PWREN, regs);
1538 break;
1539 default:
1540 break;
1541 }
1542
1543 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1544 slot->host->state = STATE_IDLE;
1545 }
1546
dw_mci_card_busy(struct mmc_host * mmc)1547 static int dw_mci_card_busy(struct mmc_host *mmc)
1548 {
1549 struct dw_mci_slot *slot = mmc_priv(mmc);
1550 u32 status;
1551
1552 /*
1553 * Check the busy bit which is low when DAT[3:0]
1554 * (the data lines) are 0000
1555 */
1556 status = mci_readl(slot->host, STATUS);
1557
1558 return !!(status & SDMMC_STATUS_BUSY);
1559 }
1560
dw_mci_switch_voltage(struct mmc_host * mmc,struct mmc_ios * ios)1561 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1562 {
1563 struct dw_mci_slot *slot = mmc_priv(mmc);
1564 struct dw_mci *host = slot->host;
1565 const struct dw_mci_drv_data *drv_data = host->drv_data;
1566 u32 uhs;
1567 u32 v18 = SDMMC_UHS_18V << slot->id;
1568 int ret;
1569
1570 if (drv_data && drv_data->switch_voltage)
1571 return drv_data->switch_voltage(mmc, ios);
1572
1573 /*
1574 * Program the voltage. Note that some instances of dw_mmc may use
1575 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1576 * does no harm but you need to set the regulator directly. Try both.
1577 */
1578 uhs = mci_readl(host, UHS_REG);
1579 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1580 uhs &= ~v18;
1581 else
1582 uhs |= v18;
1583
1584 if (!IS_ERR(mmc->supply.vqmmc)) {
1585 ret = mmc_regulator_set_vqmmc(mmc, ios);
1586 if (ret < 0) {
1587 dev_dbg(&mmc->class_dev,
1588 "Regulator set error %d - %s V\n",
1589 ret, uhs & v18 ? "1.8" : "3.3");
1590 return ret;
1591 }
1592 }
1593 mci_writel(host, UHS_REG, uhs);
1594
1595 return 0;
1596 }
1597
dw_mci_get_ro(struct mmc_host * mmc)1598 static int dw_mci_get_ro(struct mmc_host *mmc)
1599 {
1600 int read_only;
1601 struct dw_mci_slot *slot = mmc_priv(mmc);
1602 int gpio_ro = mmc_gpio_get_ro(mmc);
1603
1604 /* Use platform get_ro function, else try on board write protect */
1605 if (gpio_ro >= 0)
1606 read_only = gpio_ro;
1607 else
1608 read_only =
1609 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1610
1611 dev_dbg(&mmc->class_dev, "card is %s\n",
1612 read_only ? "read-only" : "read-write");
1613
1614 return read_only;
1615 }
1616
dw_mci_hw_reset(struct mmc_host * mmc)1617 static void dw_mci_hw_reset(struct mmc_host *mmc)
1618 {
1619 struct dw_mci_slot *slot = mmc_priv(mmc);
1620 struct dw_mci *host = slot->host;
1621 int reset;
1622
1623 if (host->use_dma == TRANS_MODE_IDMAC)
1624 dw_mci_idmac_reset(host);
1625
1626 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1627 SDMMC_CTRL_FIFO_RESET))
1628 return;
1629
1630 /*
1631 * According to eMMC spec, card reset procedure:
1632 * tRstW >= 1us: RST_n pulse width
1633 * tRSCA >= 200us: RST_n to Command time
1634 * tRSTH >= 1us: RST_n high period
1635 */
1636 reset = mci_readl(host, RST_N);
1637 reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1638 mci_writel(host, RST_N, reset);
1639 usleep_range(1, 2);
1640 reset |= SDMMC_RST_HWACTIVE << slot->id;
1641 mci_writel(host, RST_N, reset);
1642 usleep_range(200, 300);
1643 }
1644
dw_mci_prepare_sdio_irq(struct dw_mci_slot * slot,bool prepare)1645 static void dw_mci_prepare_sdio_irq(struct dw_mci_slot *slot, bool prepare)
1646 {
1647 struct dw_mci *host = slot->host;
1648 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1649 u32 clk_en_a_old;
1650 u32 clk_en_a;
1651
1652 /*
1653 * Low power mode will stop the card clock when idle. According to the
1654 * description of the CLKENA register we should disable low power mode
1655 * for SDIO cards if we need SDIO interrupts to work.
1656 */
1657
1658 clk_en_a_old = mci_readl(host, CLKENA);
1659 if (prepare) {
1660 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1661 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1662 } else {
1663 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1664 clk_en_a = clk_en_a_old | clken_low_pwr;
1665 }
1666
1667 if (clk_en_a != clk_en_a_old) {
1668 mci_writel(host, CLKENA, clk_en_a);
1669 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT,
1670 0);
1671 }
1672 }
1673
__dw_mci_enable_sdio_irq(struct dw_mci_slot * slot,int enb)1674 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1675 {
1676 struct dw_mci *host = slot->host;
1677 unsigned long irqflags;
1678 u32 int_mask;
1679
1680 spin_lock_irqsave(&host->irq_lock, irqflags);
1681
1682 /* Enable/disable Slot Specific SDIO interrupt */
1683 int_mask = mci_readl(host, INTMASK);
1684 if (enb)
1685 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1686 else
1687 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1688 mci_writel(host, INTMASK, int_mask);
1689
1690 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1691 }
1692
dw_mci_enable_sdio_irq(struct mmc_host * mmc,int enb)1693 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1694 {
1695 struct dw_mci_slot *slot = mmc_priv(mmc);
1696 struct dw_mci *host = slot->host;
1697
1698 dw_mci_prepare_sdio_irq(slot, enb);
1699 __dw_mci_enable_sdio_irq(slot, enb);
1700
1701 /* Avoid runtime suspending the device when SDIO IRQ is enabled */
1702 if (enb)
1703 pm_runtime_get_noresume(host->dev);
1704 else
1705 pm_runtime_put_noidle(host->dev);
1706 }
1707
dw_mci_ack_sdio_irq(struct mmc_host * mmc)1708 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1709 {
1710 struct dw_mci_slot *slot = mmc_priv(mmc);
1711
1712 __dw_mci_enable_sdio_irq(slot, 1);
1713 }
1714
dw_mci_execute_tuning(struct mmc_host * mmc,u32 opcode)1715 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1716 {
1717 struct dw_mci_slot *slot = mmc_priv(mmc);
1718 struct dw_mci *host = slot->host;
1719 const struct dw_mci_drv_data *drv_data = host->drv_data;
1720 int err = -EINVAL;
1721
1722 if (drv_data && drv_data->execute_tuning)
1723 err = drv_data->execute_tuning(slot, opcode);
1724 return err;
1725 }
1726
dw_mci_prepare_hs400_tuning(struct mmc_host * mmc,struct mmc_ios * ios)1727 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1728 struct mmc_ios *ios)
1729 {
1730 struct dw_mci_slot *slot = mmc_priv(mmc);
1731 struct dw_mci *host = slot->host;
1732 const struct dw_mci_drv_data *drv_data = host->drv_data;
1733
1734 if (drv_data && drv_data->prepare_hs400_tuning)
1735 return drv_data->prepare_hs400_tuning(host, ios);
1736
1737 return 0;
1738 }
1739
dw_mci_reset(struct dw_mci * host)1740 static bool dw_mci_reset(struct dw_mci *host)
1741 {
1742 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1743 bool ret = false;
1744 u32 status = 0;
1745
1746 /*
1747 * Resetting generates a block interrupt, hence setting
1748 * the scatter-gather pointer to NULL.
1749 */
1750 if (host->sg) {
1751 sg_miter_stop(&host->sg_miter);
1752 host->sg = NULL;
1753 }
1754
1755 if (host->use_dma)
1756 flags |= SDMMC_CTRL_DMA_RESET;
1757
1758 if (dw_mci_ctrl_reset(host, flags)) {
1759 /*
1760 * In all cases we clear the RAWINTS
1761 * register to clear any interrupts.
1762 */
1763 mci_writel(host, RINTSTS, 0xFFFFFFFF);
1764
1765 if (!host->use_dma) {
1766 ret = true;
1767 goto ciu_out;
1768 }
1769
1770 /* Wait for dma_req to be cleared */
1771 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1772 status,
1773 !(status & SDMMC_STATUS_DMA_REQ),
1774 1, 500 * USEC_PER_MSEC)) {
1775 dev_err(host->dev,
1776 "%s: Timeout waiting for dma_req to be cleared\n",
1777 __func__);
1778 goto ciu_out;
1779 }
1780
1781 /* when using DMA next we reset the fifo again */
1782 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1783 goto ciu_out;
1784 } else {
1785 /* if the controller reset bit did clear, then set clock regs */
1786 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1787 dev_err(host->dev,
1788 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1789 __func__);
1790 goto ciu_out;
1791 }
1792 }
1793
1794 if (host->use_dma == TRANS_MODE_IDMAC)
1795 /* It is also required that we reinit idmac */
1796 dw_mci_idmac_init(host);
1797
1798 ret = true;
1799
1800 ciu_out:
1801 /* After a CTRL reset we need to have CIU set clock registers */
1802 mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1803
1804 return ret;
1805 }
1806
1807 static const struct mmc_host_ops dw_mci_ops = {
1808 .request = dw_mci_request,
1809 .pre_req = dw_mci_pre_req,
1810 .post_req = dw_mci_post_req,
1811 .set_ios = dw_mci_set_ios,
1812 .get_ro = dw_mci_get_ro,
1813 .get_cd = dw_mci_get_cd,
1814 .card_hw_reset = dw_mci_hw_reset,
1815 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1816 .ack_sdio_irq = dw_mci_ack_sdio_irq,
1817 .execute_tuning = dw_mci_execute_tuning,
1818 .card_busy = dw_mci_card_busy,
1819 .start_signal_voltage_switch = dw_mci_switch_voltage,
1820 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1821 };
1822
1823 #ifdef CONFIG_FAULT_INJECTION
dw_mci_fault_timer(struct hrtimer * t)1824 static enum hrtimer_restart dw_mci_fault_timer(struct hrtimer *t)
1825 {
1826 struct dw_mci *host = container_of(t, struct dw_mci, fault_timer);
1827 unsigned long flags;
1828
1829 spin_lock_irqsave(&host->irq_lock, flags);
1830
1831 /*
1832 * Only inject an error if we haven't already got an error or data over
1833 * interrupt.
1834 */
1835 if (!host->data_status) {
1836 host->data_status = SDMMC_INT_DCRC;
1837 set_bit(EVENT_DATA_ERROR, &host->pending_events);
1838 tasklet_schedule(&host->tasklet);
1839 }
1840
1841 spin_unlock_irqrestore(&host->irq_lock, flags);
1842
1843 return HRTIMER_NORESTART;
1844 }
1845
dw_mci_start_fault_timer(struct dw_mci * host)1846 static void dw_mci_start_fault_timer(struct dw_mci *host)
1847 {
1848 struct mmc_data *data = host->data;
1849
1850 if (!data || data->blocks <= 1)
1851 return;
1852
1853 if (!should_fail(&host->fail_data_crc, 1))
1854 return;
1855
1856 /*
1857 * Try to inject the error at random points during the data transfer.
1858 */
1859 hrtimer_start(&host->fault_timer,
1860 ms_to_ktime(get_random_u32_below(25)),
1861 HRTIMER_MODE_REL);
1862 }
1863
dw_mci_stop_fault_timer(struct dw_mci * host)1864 static void dw_mci_stop_fault_timer(struct dw_mci *host)
1865 {
1866 hrtimer_cancel(&host->fault_timer);
1867 }
1868
dw_mci_init_fault(struct dw_mci * host)1869 static void dw_mci_init_fault(struct dw_mci *host)
1870 {
1871 host->fail_data_crc = (struct fault_attr) FAULT_ATTR_INITIALIZER;
1872
1873 hrtimer_init(&host->fault_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1874 host->fault_timer.function = dw_mci_fault_timer;
1875 }
1876 #else
dw_mci_init_fault(struct dw_mci * host)1877 static void dw_mci_init_fault(struct dw_mci *host)
1878 {
1879 }
1880
dw_mci_start_fault_timer(struct dw_mci * host)1881 static void dw_mci_start_fault_timer(struct dw_mci *host)
1882 {
1883 }
1884
dw_mci_stop_fault_timer(struct dw_mci * host)1885 static void dw_mci_stop_fault_timer(struct dw_mci *host)
1886 {
1887 }
1888 #endif
1889
dw_mci_request_end(struct dw_mci * host,struct mmc_request * mrq)1890 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1891 __releases(&host->lock)
1892 __acquires(&host->lock)
1893 {
1894 struct dw_mci_slot *slot;
1895 struct mmc_host *prev_mmc = host->slot->mmc;
1896
1897 WARN_ON(host->cmd || host->data);
1898
1899 host->slot->mrq = NULL;
1900 host->mrq = NULL;
1901 if (!list_empty(&host->queue)) {
1902 slot = list_entry(host->queue.next,
1903 struct dw_mci_slot, queue_node);
1904 list_del(&slot->queue_node);
1905 dev_vdbg(host->dev, "list not empty: %s is next\n",
1906 mmc_hostname(slot->mmc));
1907 host->state = STATE_SENDING_CMD;
1908 dw_mci_start_request(host, slot);
1909 } else {
1910 dev_vdbg(host->dev, "list empty\n");
1911
1912 if (host->state == STATE_SENDING_CMD11)
1913 host->state = STATE_WAITING_CMD11_DONE;
1914 else
1915 host->state = STATE_IDLE;
1916 }
1917
1918 spin_unlock(&host->lock);
1919 mmc_request_done(prev_mmc, mrq);
1920 spin_lock(&host->lock);
1921 }
1922
dw_mci_command_complete(struct dw_mci * host,struct mmc_command * cmd)1923 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1924 {
1925 u32 status = host->cmd_status;
1926
1927 host->cmd_status = 0;
1928
1929 /* Read the response from the card (up to 16 bytes) */
1930 if (cmd->flags & MMC_RSP_PRESENT) {
1931 if (cmd->flags & MMC_RSP_136) {
1932 cmd->resp[3] = mci_readl(host, RESP0);
1933 cmd->resp[2] = mci_readl(host, RESP1);
1934 cmd->resp[1] = mci_readl(host, RESP2);
1935 cmd->resp[0] = mci_readl(host, RESP3);
1936 } else {
1937 cmd->resp[0] = mci_readl(host, RESP0);
1938 cmd->resp[1] = 0;
1939 cmd->resp[2] = 0;
1940 cmd->resp[3] = 0;
1941 }
1942 }
1943
1944 if (status & SDMMC_INT_RTO)
1945 cmd->error = -ETIMEDOUT;
1946 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1947 cmd->error = -EILSEQ;
1948 else if (status & SDMMC_INT_RESP_ERR)
1949 cmd->error = -EIO;
1950 else
1951 cmd->error = 0;
1952
1953 return cmd->error;
1954 }
1955
dw_mci_data_complete(struct dw_mci * host,struct mmc_data * data)1956 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1957 {
1958 u32 status = host->data_status;
1959
1960 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1961 if (status & SDMMC_INT_DRTO) {
1962 data->error = -ETIMEDOUT;
1963 } else if (status & SDMMC_INT_DCRC) {
1964 data->error = -EILSEQ;
1965 } else if (status & SDMMC_INT_EBE) {
1966 if (host->dir_status ==
1967 DW_MCI_SEND_STATUS) {
1968 /*
1969 * No data CRC status was returned.
1970 * The number of bytes transferred
1971 * will be exaggerated in PIO mode.
1972 */
1973 data->bytes_xfered = 0;
1974 data->error = -ETIMEDOUT;
1975 } else if (host->dir_status ==
1976 DW_MCI_RECV_STATUS) {
1977 data->error = -EILSEQ;
1978 }
1979 } else {
1980 /* SDMMC_INT_SBE is included */
1981 data->error = -EILSEQ;
1982 }
1983
1984 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1985
1986 /*
1987 * After an error, there may be data lingering
1988 * in the FIFO
1989 */
1990 dw_mci_reset(host);
1991 } else {
1992 data->bytes_xfered = data->blocks * data->blksz;
1993 data->error = 0;
1994 }
1995
1996 return data->error;
1997 }
1998
dw_mci_set_drto(struct dw_mci * host)1999 static void dw_mci_set_drto(struct dw_mci *host)
2000 {
2001 const struct dw_mci_drv_data *drv_data = host->drv_data;
2002 unsigned int drto_clks;
2003 unsigned int drto_div;
2004 unsigned int drto_ms;
2005 unsigned long irqflags;
2006
2007 if (drv_data && drv_data->get_drto_clks)
2008 drto_clks = drv_data->get_drto_clks(host);
2009 else
2010 drto_clks = mci_readl(host, TMOUT) >> 8;
2011 drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
2012 if (drto_div == 0)
2013 drto_div = 1;
2014
2015 drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
2016 host->bus_hz);
2017
2018 dev_dbg(host->dev, "drto_ms: %u\n", drto_ms);
2019
2020 /* add a bit spare time */
2021 drto_ms += 10;
2022
2023 spin_lock_irqsave(&host->irq_lock, irqflags);
2024 if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2025 mod_timer(&host->dto_timer,
2026 jiffies + msecs_to_jiffies(drto_ms));
2027 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2028 }
2029
dw_mci_clear_pending_cmd_complete(struct dw_mci * host)2030 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
2031 {
2032 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
2033 return false;
2034
2035 /*
2036 * Really be certain that the timer has stopped. This is a bit of
2037 * paranoia and could only really happen if we had really bad
2038 * interrupt latency and the interrupt routine and timeout were
2039 * running concurrently so that the del_timer() in the interrupt
2040 * handler couldn't run.
2041 */
2042 WARN_ON(del_timer_sync(&host->cto_timer));
2043 clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2044
2045 return true;
2046 }
2047
dw_mci_clear_pending_data_complete(struct dw_mci * host)2048 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
2049 {
2050 if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2051 return false;
2052
2053 /* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
2054 WARN_ON(del_timer_sync(&host->dto_timer));
2055 clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2056
2057 return true;
2058 }
2059
dw_mci_tasklet_func(struct tasklet_struct * t)2060 static void dw_mci_tasklet_func(struct tasklet_struct *t)
2061 {
2062 struct dw_mci *host = from_tasklet(host, t, tasklet);
2063 struct mmc_data *data;
2064 struct mmc_command *cmd;
2065 struct mmc_request *mrq;
2066 enum dw_mci_state state;
2067 enum dw_mci_state prev_state;
2068 unsigned int err;
2069
2070 spin_lock(&host->lock);
2071
2072 state = host->state;
2073 data = host->data;
2074 mrq = host->mrq;
2075
2076 do {
2077 prev_state = state;
2078
2079 switch (state) {
2080 case STATE_IDLE:
2081 case STATE_WAITING_CMD11_DONE:
2082 break;
2083
2084 case STATE_SENDING_CMD11:
2085 case STATE_SENDING_CMD:
2086 if (!dw_mci_clear_pending_cmd_complete(host))
2087 break;
2088
2089 cmd = host->cmd;
2090 host->cmd = NULL;
2091 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
2092 err = dw_mci_command_complete(host, cmd);
2093 if (cmd == mrq->sbc && !err) {
2094 __dw_mci_start_request(host, host->slot,
2095 mrq->cmd);
2096 goto unlock;
2097 }
2098
2099 if (cmd->data && err) {
2100 /*
2101 * During UHS tuning sequence, sending the stop
2102 * command after the response CRC error would
2103 * throw the system into a confused state
2104 * causing all future tuning phases to report
2105 * failure.
2106 *
2107 * In such case controller will move into a data
2108 * transfer state after a response error or
2109 * response CRC error. Let's let that finish
2110 * before trying to send a stop, so we'll go to
2111 * STATE_SENDING_DATA.
2112 *
2113 * Although letting the data transfer take place
2114 * will waste a bit of time (we already know
2115 * the command was bad), it can't cause any
2116 * errors since it's possible it would have
2117 * taken place anyway if this tasklet got
2118 * delayed. Allowing the transfer to take place
2119 * avoids races and keeps things simple.
2120 */
2121 if (err != -ETIMEDOUT &&
2122 host->dir_status == DW_MCI_RECV_STATUS) {
2123 state = STATE_SENDING_DATA;
2124 continue;
2125 }
2126
2127 send_stop_abort(host, data);
2128 dw_mci_stop_dma(host);
2129 state = STATE_SENDING_STOP;
2130 break;
2131 }
2132
2133 if (!cmd->data || err) {
2134 dw_mci_request_end(host, mrq);
2135 goto unlock;
2136 }
2137
2138 prev_state = state = STATE_SENDING_DATA;
2139 fallthrough;
2140
2141 case STATE_SENDING_DATA:
2142 /*
2143 * We could get a data error and never a transfer
2144 * complete so we'd better check for it here.
2145 *
2146 * Note that we don't really care if we also got a
2147 * transfer complete; stopping the DMA and sending an
2148 * abort won't hurt.
2149 */
2150 if (test_and_clear_bit(EVENT_DATA_ERROR,
2151 &host->pending_events)) {
2152 if (!(host->data_status & (SDMMC_INT_DRTO |
2153 SDMMC_INT_EBE)))
2154 send_stop_abort(host, data);
2155 dw_mci_stop_dma(host);
2156 state = STATE_DATA_ERROR;
2157 break;
2158 }
2159
2160 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2161 &host->pending_events)) {
2162 /*
2163 * If all data-related interrupts don't come
2164 * within the given time in reading data state.
2165 */
2166 if (host->dir_status == DW_MCI_RECV_STATUS)
2167 dw_mci_set_drto(host);
2168 break;
2169 }
2170
2171 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2172
2173 /*
2174 * Handle an EVENT_DATA_ERROR that might have shown up
2175 * before the transfer completed. This might not have
2176 * been caught by the check above because the interrupt
2177 * could have gone off between the previous check and
2178 * the check for transfer complete.
2179 *
2180 * Technically this ought not be needed assuming we
2181 * get a DATA_COMPLETE eventually (we'll notice the
2182 * error and end the request), but it shouldn't hurt.
2183 *
2184 * This has the advantage of sending the stop command.
2185 */
2186 if (test_and_clear_bit(EVENT_DATA_ERROR,
2187 &host->pending_events)) {
2188 if (!(host->data_status & (SDMMC_INT_DRTO |
2189 SDMMC_INT_EBE)))
2190 send_stop_abort(host, data);
2191 dw_mci_stop_dma(host);
2192 state = STATE_DATA_ERROR;
2193 break;
2194 }
2195 prev_state = state = STATE_DATA_BUSY;
2196
2197 fallthrough;
2198
2199 case STATE_DATA_BUSY:
2200 if (!dw_mci_clear_pending_data_complete(host)) {
2201 /*
2202 * If data error interrupt comes but data over
2203 * interrupt doesn't come within the given time.
2204 * in reading data state.
2205 */
2206 if (host->dir_status == DW_MCI_RECV_STATUS)
2207 dw_mci_set_drto(host);
2208 break;
2209 }
2210
2211 dw_mci_stop_fault_timer(host);
2212 host->data = NULL;
2213 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2214 err = dw_mci_data_complete(host, data);
2215
2216 if (!err) {
2217 if (!data->stop || mrq->sbc) {
2218 if (mrq->sbc && data->stop)
2219 data->stop->error = 0;
2220 dw_mci_request_end(host, mrq);
2221 goto unlock;
2222 }
2223
2224 /* stop command for open-ended transfer*/
2225 if (data->stop)
2226 send_stop_abort(host, data);
2227 } else {
2228 /*
2229 * If we don't have a command complete now we'll
2230 * never get one since we just reset everything;
2231 * better end the request.
2232 *
2233 * If we do have a command complete we'll fall
2234 * through to the SENDING_STOP command and
2235 * everything will be peachy keen.
2236 */
2237 if (!test_bit(EVENT_CMD_COMPLETE,
2238 &host->pending_events)) {
2239 host->cmd = NULL;
2240 dw_mci_request_end(host, mrq);
2241 goto unlock;
2242 }
2243 }
2244
2245 /*
2246 * If err has non-zero,
2247 * stop-abort command has been already issued.
2248 */
2249 prev_state = state = STATE_SENDING_STOP;
2250
2251 fallthrough;
2252
2253 case STATE_SENDING_STOP:
2254 if (!dw_mci_clear_pending_cmd_complete(host))
2255 break;
2256
2257 /* CMD error in data command */
2258 if (mrq->cmd->error && mrq->data)
2259 dw_mci_reset(host);
2260
2261 dw_mci_stop_fault_timer(host);
2262 host->cmd = NULL;
2263 host->data = NULL;
2264
2265 if (!mrq->sbc && mrq->stop)
2266 dw_mci_command_complete(host, mrq->stop);
2267 else
2268 host->cmd_status = 0;
2269
2270 dw_mci_request_end(host, mrq);
2271 goto unlock;
2272
2273 case STATE_DATA_ERROR:
2274 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2275 &host->pending_events))
2276 break;
2277
2278 state = STATE_DATA_BUSY;
2279 break;
2280 }
2281 } while (state != prev_state);
2282
2283 host->state = state;
2284 unlock:
2285 spin_unlock(&host->lock);
2286
2287 }
2288
2289 /* push final bytes to part_buf, only use during push */
dw_mci_set_part_bytes(struct dw_mci * host,void * buf,int cnt)2290 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2291 {
2292 memcpy((void *)&host->part_buf, buf, cnt);
2293 host->part_buf_count = cnt;
2294 }
2295
2296 /* append bytes to part_buf, only use during push */
dw_mci_push_part_bytes(struct dw_mci * host,void * buf,int cnt)2297 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2298 {
2299 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2300 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2301 host->part_buf_count += cnt;
2302 return cnt;
2303 }
2304
2305 /* pull first bytes from part_buf, only use during pull */
dw_mci_pull_part_bytes(struct dw_mci * host,void * buf,int cnt)2306 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2307 {
2308 cnt = min_t(int, cnt, host->part_buf_count);
2309 if (cnt) {
2310 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2311 cnt);
2312 host->part_buf_count -= cnt;
2313 host->part_buf_start += cnt;
2314 }
2315 return cnt;
2316 }
2317
2318 /* pull final bytes from the part_buf, assuming it's just been filled */
dw_mci_pull_final_bytes(struct dw_mci * host,void * buf,int cnt)2319 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2320 {
2321 memcpy(buf, &host->part_buf, cnt);
2322 host->part_buf_start = cnt;
2323 host->part_buf_count = (1 << host->data_shift) - cnt;
2324 }
2325
dw_mci_push_data16(struct dw_mci * host,void * buf,int cnt)2326 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2327 {
2328 struct mmc_data *data = host->data;
2329 int init_cnt = cnt;
2330
2331 /* try and push anything in the part_buf */
2332 if (unlikely(host->part_buf_count)) {
2333 int len = dw_mci_push_part_bytes(host, buf, cnt);
2334
2335 buf += len;
2336 cnt -= len;
2337 if (host->part_buf_count == 2) {
2338 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2339 host->part_buf_count = 0;
2340 }
2341 }
2342 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2343 if (unlikely((unsigned long)buf & 0x1)) {
2344 while (cnt >= 2) {
2345 u16 aligned_buf[64];
2346 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2347 int items = len >> 1;
2348 int i;
2349 /* memcpy from input buffer into aligned buffer */
2350 memcpy(aligned_buf, buf, len);
2351 buf += len;
2352 cnt -= len;
2353 /* push data from aligned buffer into fifo */
2354 for (i = 0; i < items; ++i)
2355 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2356 }
2357 } else
2358 #endif
2359 {
2360 u16 *pdata = buf;
2361
2362 for (; cnt >= 2; cnt -= 2)
2363 mci_fifo_writew(host->fifo_reg, *pdata++);
2364 buf = pdata;
2365 }
2366 /* put anything remaining in the part_buf */
2367 if (cnt) {
2368 dw_mci_set_part_bytes(host, buf, cnt);
2369 /* Push data if we have reached the expected data length */
2370 if ((data->bytes_xfered + init_cnt) ==
2371 (data->blksz * data->blocks))
2372 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2373 }
2374 }
2375
dw_mci_pull_data16(struct dw_mci * host,void * buf,int cnt)2376 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2377 {
2378 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2379 if (unlikely((unsigned long)buf & 0x1)) {
2380 while (cnt >= 2) {
2381 /* pull data from fifo into aligned buffer */
2382 u16 aligned_buf[64];
2383 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2384 int items = len >> 1;
2385 int i;
2386
2387 for (i = 0; i < items; ++i)
2388 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2389 /* memcpy from aligned buffer into output buffer */
2390 memcpy(buf, aligned_buf, len);
2391 buf += len;
2392 cnt -= len;
2393 }
2394 } else
2395 #endif
2396 {
2397 u16 *pdata = buf;
2398
2399 for (; cnt >= 2; cnt -= 2)
2400 *pdata++ = mci_fifo_readw(host->fifo_reg);
2401 buf = pdata;
2402 }
2403 if (cnt) {
2404 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2405 dw_mci_pull_final_bytes(host, buf, cnt);
2406 }
2407 }
2408
dw_mci_push_data32(struct dw_mci * host,void * buf,int cnt)2409 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2410 {
2411 struct mmc_data *data = host->data;
2412 int init_cnt = cnt;
2413
2414 /* try and push anything in the part_buf */
2415 if (unlikely(host->part_buf_count)) {
2416 int len = dw_mci_push_part_bytes(host, buf, cnt);
2417
2418 buf += len;
2419 cnt -= len;
2420 if (host->part_buf_count == 4) {
2421 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2422 host->part_buf_count = 0;
2423 }
2424 }
2425 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2426 if (unlikely((unsigned long)buf & 0x3)) {
2427 while (cnt >= 4) {
2428 u32 aligned_buf[32];
2429 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2430 int items = len >> 2;
2431 int i;
2432 /* memcpy from input buffer into aligned buffer */
2433 memcpy(aligned_buf, buf, len);
2434 buf += len;
2435 cnt -= len;
2436 /* push data from aligned buffer into fifo */
2437 for (i = 0; i < items; ++i)
2438 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2439 }
2440 } else
2441 #endif
2442 {
2443 u32 *pdata = buf;
2444
2445 for (; cnt >= 4; cnt -= 4)
2446 mci_fifo_writel(host->fifo_reg, *pdata++);
2447 buf = pdata;
2448 }
2449 /* put anything remaining in the part_buf */
2450 if (cnt) {
2451 dw_mci_set_part_bytes(host, buf, cnt);
2452 /* Push data if we have reached the expected data length */
2453 if ((data->bytes_xfered + init_cnt) ==
2454 (data->blksz * data->blocks))
2455 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2456 }
2457 }
2458
dw_mci_pull_data32(struct dw_mci * host,void * buf,int cnt)2459 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2460 {
2461 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2462 if (unlikely((unsigned long)buf & 0x3)) {
2463 while (cnt >= 4) {
2464 /* pull data from fifo into aligned buffer */
2465 u32 aligned_buf[32];
2466 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2467 int items = len >> 2;
2468 int i;
2469
2470 for (i = 0; i < items; ++i)
2471 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2472 /* memcpy from aligned buffer into output buffer */
2473 memcpy(buf, aligned_buf, len);
2474 buf += len;
2475 cnt -= len;
2476 }
2477 } else
2478 #endif
2479 {
2480 u32 *pdata = buf;
2481
2482 for (; cnt >= 4; cnt -= 4)
2483 *pdata++ = mci_fifo_readl(host->fifo_reg);
2484 buf = pdata;
2485 }
2486 if (cnt) {
2487 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2488 dw_mci_pull_final_bytes(host, buf, cnt);
2489 }
2490 }
2491
dw_mci_push_data64(struct dw_mci * host,void * buf,int cnt)2492 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2493 {
2494 struct mmc_data *data = host->data;
2495 int init_cnt = cnt;
2496
2497 /* try and push anything in the part_buf */
2498 if (unlikely(host->part_buf_count)) {
2499 int len = dw_mci_push_part_bytes(host, buf, cnt);
2500
2501 buf += len;
2502 cnt -= len;
2503
2504 if (host->part_buf_count == 8) {
2505 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2506 host->part_buf_count = 0;
2507 }
2508 }
2509 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2510 if (unlikely((unsigned long)buf & 0x7)) {
2511 while (cnt >= 8) {
2512 u64 aligned_buf[16];
2513 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2514 int items = len >> 3;
2515 int i;
2516 /* memcpy from input buffer into aligned buffer */
2517 memcpy(aligned_buf, buf, len);
2518 buf += len;
2519 cnt -= len;
2520 /* push data from aligned buffer into fifo */
2521 for (i = 0; i < items; ++i)
2522 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2523 }
2524 } else
2525 #endif
2526 {
2527 u64 *pdata = buf;
2528
2529 for (; cnt >= 8; cnt -= 8)
2530 mci_fifo_writeq(host->fifo_reg, *pdata++);
2531 buf = pdata;
2532 }
2533 /* put anything remaining in the part_buf */
2534 if (cnt) {
2535 dw_mci_set_part_bytes(host, buf, cnt);
2536 /* Push data if we have reached the expected data length */
2537 if ((data->bytes_xfered + init_cnt) ==
2538 (data->blksz * data->blocks))
2539 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2540 }
2541 }
2542
dw_mci_pull_data64(struct dw_mci * host,void * buf,int cnt)2543 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2544 {
2545 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2546 if (unlikely((unsigned long)buf & 0x7)) {
2547 while (cnt >= 8) {
2548 /* pull data from fifo into aligned buffer */
2549 u64 aligned_buf[16];
2550 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2551 int items = len >> 3;
2552 int i;
2553
2554 for (i = 0; i < items; ++i)
2555 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2556
2557 /* memcpy from aligned buffer into output buffer */
2558 memcpy(buf, aligned_buf, len);
2559 buf += len;
2560 cnt -= len;
2561 }
2562 } else
2563 #endif
2564 {
2565 u64 *pdata = buf;
2566
2567 for (; cnt >= 8; cnt -= 8)
2568 *pdata++ = mci_fifo_readq(host->fifo_reg);
2569 buf = pdata;
2570 }
2571 if (cnt) {
2572 host->part_buf = mci_fifo_readq(host->fifo_reg);
2573 dw_mci_pull_final_bytes(host, buf, cnt);
2574 }
2575 }
2576
dw_mci_push_data64_32(struct dw_mci * host,void * buf,int cnt)2577 static void dw_mci_push_data64_32(struct dw_mci *host, void *buf, int cnt)
2578 {
2579 struct mmc_data *data = host->data;
2580 int init_cnt = cnt;
2581
2582 /* try and push anything in the part_buf */
2583 if (unlikely(host->part_buf_count)) {
2584 int len = dw_mci_push_part_bytes(host, buf, cnt);
2585
2586 buf += len;
2587 cnt -= len;
2588
2589 if (host->part_buf_count == 8) {
2590 mci_fifo_l_writeq(host->fifo_reg, host->part_buf);
2591 host->part_buf_count = 0;
2592 }
2593 }
2594 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2595 if (unlikely((unsigned long)buf & 0x7)) {
2596 while (cnt >= 8) {
2597 u64 aligned_buf[16];
2598 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2599 int items = len >> 3;
2600 int i;
2601 /* memcpy from input buffer into aligned buffer */
2602 memcpy(aligned_buf, buf, len);
2603 buf += len;
2604 cnt -= len;
2605 /* push data from aligned buffer into fifo */
2606 for (i = 0; i < items; ++i)
2607 mci_fifo_l_writeq(host->fifo_reg, aligned_buf[i]);
2608 }
2609 } else
2610 #endif
2611 {
2612 u64 *pdata = buf;
2613
2614 for (; cnt >= 8; cnt -= 8)
2615 mci_fifo_l_writeq(host->fifo_reg, *pdata++);
2616 buf = pdata;
2617 }
2618 /* put anything remaining in the part_buf */
2619 if (cnt) {
2620 dw_mci_set_part_bytes(host, buf, cnt);
2621 /* Push data if we have reached the expected data length */
2622 if ((data->bytes_xfered + init_cnt) ==
2623 (data->blksz * data->blocks))
2624 mci_fifo_l_writeq(host->fifo_reg, host->part_buf);
2625 }
2626 }
2627
dw_mci_pull_data64_32(struct dw_mci * host,void * buf,int cnt)2628 static void dw_mci_pull_data64_32(struct dw_mci *host, void *buf, int cnt)
2629 {
2630 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2631 if (unlikely((unsigned long)buf & 0x7)) {
2632 while (cnt >= 8) {
2633 /* pull data from fifo into aligned buffer */
2634 u64 aligned_buf[16];
2635 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2636 int items = len >> 3;
2637 int i;
2638
2639 for (i = 0; i < items; ++i)
2640 aligned_buf[i] = mci_fifo_l_readq(host->fifo_reg);
2641
2642 /* memcpy from aligned buffer into output buffer */
2643 memcpy(buf, aligned_buf, len);
2644 buf += len;
2645 cnt -= len;
2646 }
2647 } else
2648 #endif
2649 {
2650 u64 *pdata = buf;
2651
2652 for (; cnt >= 8; cnt -= 8)
2653 *pdata++ = mci_fifo_l_readq(host->fifo_reg);
2654 buf = pdata;
2655 }
2656 if (cnt) {
2657 host->part_buf = mci_fifo_l_readq(host->fifo_reg);
2658 dw_mci_pull_final_bytes(host, buf, cnt);
2659 }
2660 }
2661
dw_mci_pull_data(struct dw_mci * host,void * buf,int cnt)2662 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2663 {
2664 int len;
2665
2666 /* get remaining partial bytes */
2667 len = dw_mci_pull_part_bytes(host, buf, cnt);
2668 if (unlikely(len == cnt))
2669 return;
2670 buf += len;
2671 cnt -= len;
2672
2673 /* get the rest of the data */
2674 host->pull_data(host, buf, cnt);
2675 }
2676
dw_mci_read_data_pio(struct dw_mci * host,bool dto)2677 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2678 {
2679 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2680 void *buf;
2681 unsigned int offset;
2682 struct mmc_data *data = host->data;
2683 int shift = host->data_shift;
2684 u32 status;
2685 unsigned int len;
2686 unsigned int remain, fcnt;
2687
2688 do {
2689 if (!sg_miter_next(sg_miter))
2690 goto done;
2691
2692 host->sg = sg_miter->piter.sg;
2693 buf = sg_miter->addr;
2694 remain = sg_miter->length;
2695 offset = 0;
2696
2697 do {
2698 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2699 << shift) + host->part_buf_count;
2700 len = min(remain, fcnt);
2701 if (!len)
2702 break;
2703 dw_mci_pull_data(host, (void *)(buf + offset), len);
2704 data->bytes_xfered += len;
2705 offset += len;
2706 remain -= len;
2707 } while (remain);
2708
2709 sg_miter->consumed = offset;
2710 status = mci_readl(host, MINTSTS);
2711 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2712 /* if the RXDR is ready read again */
2713 } while ((status & SDMMC_INT_RXDR) ||
2714 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2715
2716 if (!remain) {
2717 if (!sg_miter_next(sg_miter))
2718 goto done;
2719 sg_miter->consumed = 0;
2720 }
2721 sg_miter_stop(sg_miter);
2722 return;
2723
2724 done:
2725 sg_miter_stop(sg_miter);
2726 host->sg = NULL;
2727 smp_wmb(); /* drain writebuffer */
2728 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2729 }
2730
dw_mci_write_data_pio(struct dw_mci * host)2731 static void dw_mci_write_data_pio(struct dw_mci *host)
2732 {
2733 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2734 void *buf;
2735 unsigned int offset;
2736 struct mmc_data *data = host->data;
2737 int shift = host->data_shift;
2738 u32 status;
2739 unsigned int len;
2740 unsigned int fifo_depth = host->fifo_depth;
2741 unsigned int remain, fcnt;
2742
2743 do {
2744 if (!sg_miter_next(sg_miter))
2745 goto done;
2746
2747 host->sg = sg_miter->piter.sg;
2748 buf = sg_miter->addr;
2749 remain = sg_miter->length;
2750 offset = 0;
2751
2752 do {
2753 fcnt = ((fifo_depth -
2754 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2755 << shift) - host->part_buf_count;
2756 len = min(remain, fcnt);
2757 if (!len)
2758 break;
2759 host->push_data(host, (void *)(buf + offset), len);
2760 data->bytes_xfered += len;
2761 offset += len;
2762 remain -= len;
2763 } while (remain);
2764
2765 sg_miter->consumed = offset;
2766 status = mci_readl(host, MINTSTS);
2767 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2768 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2769
2770 if (!remain) {
2771 if (!sg_miter_next(sg_miter))
2772 goto done;
2773 sg_miter->consumed = 0;
2774 }
2775 sg_miter_stop(sg_miter);
2776 return;
2777
2778 done:
2779 sg_miter_stop(sg_miter);
2780 host->sg = NULL;
2781 smp_wmb(); /* drain writebuffer */
2782 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2783 }
2784
dw_mci_cmd_interrupt(struct dw_mci * host,u32 status)2785 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2786 {
2787 del_timer(&host->cto_timer);
2788
2789 if (!host->cmd_status)
2790 host->cmd_status = status;
2791
2792 smp_wmb(); /* drain writebuffer */
2793
2794 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2795 tasklet_schedule(&host->tasklet);
2796
2797 dw_mci_start_fault_timer(host);
2798 }
2799
dw_mci_handle_cd(struct dw_mci * host)2800 static void dw_mci_handle_cd(struct dw_mci *host)
2801 {
2802 struct dw_mci_slot *slot = host->slot;
2803
2804 mmc_detect_change(slot->mmc,
2805 msecs_to_jiffies(host->pdata->detect_delay_ms));
2806 }
2807
dw_mci_interrupt(int irq,void * dev_id)2808 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2809 {
2810 struct dw_mci *host = dev_id;
2811 u32 pending;
2812 struct dw_mci_slot *slot = host->slot;
2813
2814 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2815
2816 if (pending) {
2817 /* Check volt switch first, since it can look like an error */
2818 if ((host->state == STATE_SENDING_CMD11) &&
2819 (pending & SDMMC_INT_VOLT_SWITCH)) {
2820 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2821 pending &= ~SDMMC_INT_VOLT_SWITCH;
2822
2823 /*
2824 * Hold the lock; we know cmd11_timer can't be kicked
2825 * off after the lock is released, so safe to delete.
2826 */
2827 spin_lock(&host->irq_lock);
2828 dw_mci_cmd_interrupt(host, pending);
2829 spin_unlock(&host->irq_lock);
2830
2831 del_timer(&host->cmd11_timer);
2832 }
2833
2834 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2835 spin_lock(&host->irq_lock);
2836
2837 del_timer(&host->cto_timer);
2838 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2839 host->cmd_status = pending;
2840 smp_wmb(); /* drain writebuffer */
2841 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2842
2843 spin_unlock(&host->irq_lock);
2844 }
2845
2846 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2847 spin_lock(&host->irq_lock);
2848
2849 if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2850 del_timer(&host->dto_timer);
2851
2852 /* if there is an error report DATA_ERROR */
2853 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2854 host->data_status = pending;
2855 smp_wmb(); /* drain writebuffer */
2856 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2857
2858 if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2859 /* In case of error, we cannot expect a DTO */
2860 set_bit(EVENT_DATA_COMPLETE,
2861 &host->pending_events);
2862
2863 tasklet_schedule(&host->tasklet);
2864
2865 spin_unlock(&host->irq_lock);
2866 }
2867
2868 if (pending & SDMMC_INT_DATA_OVER) {
2869 spin_lock(&host->irq_lock);
2870
2871 del_timer(&host->dto_timer);
2872
2873 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2874 if (!host->data_status)
2875 host->data_status = pending;
2876 smp_wmb(); /* drain writebuffer */
2877 if (host->dir_status == DW_MCI_RECV_STATUS) {
2878 if (host->sg != NULL)
2879 dw_mci_read_data_pio(host, true);
2880 }
2881 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2882 tasklet_schedule(&host->tasklet);
2883
2884 spin_unlock(&host->irq_lock);
2885 }
2886
2887 if (pending & SDMMC_INT_RXDR) {
2888 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2889 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2890 dw_mci_read_data_pio(host, false);
2891 }
2892
2893 if (pending & SDMMC_INT_TXDR) {
2894 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2895 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2896 dw_mci_write_data_pio(host);
2897 }
2898
2899 if (pending & SDMMC_INT_CMD_DONE) {
2900 spin_lock(&host->irq_lock);
2901
2902 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2903 dw_mci_cmd_interrupt(host, pending);
2904
2905 spin_unlock(&host->irq_lock);
2906 }
2907
2908 if (pending & SDMMC_INT_CD) {
2909 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2910 dw_mci_handle_cd(host);
2911 }
2912
2913 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2914 mci_writel(host, RINTSTS,
2915 SDMMC_INT_SDIO(slot->sdio_id));
2916 __dw_mci_enable_sdio_irq(slot, 0);
2917 sdio_signal_irq(slot->mmc);
2918 }
2919
2920 }
2921
2922 if (host->use_dma != TRANS_MODE_IDMAC)
2923 return IRQ_HANDLED;
2924
2925 /* Handle IDMA interrupts */
2926 if (host->dma_64bit_address == 1) {
2927 pending = mci_readl(host, IDSTS64);
2928 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2929 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2930 SDMMC_IDMAC_INT_RI);
2931 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2932 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2933 host->dma_ops->complete((void *)host);
2934 }
2935 } else {
2936 pending = mci_readl(host, IDSTS);
2937 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2938 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2939 SDMMC_IDMAC_INT_RI);
2940 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2941 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2942 host->dma_ops->complete((void *)host);
2943 }
2944 }
2945
2946 return IRQ_HANDLED;
2947 }
2948
dw_mci_init_slot_caps(struct dw_mci_slot * slot)2949 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2950 {
2951 struct dw_mci *host = slot->host;
2952 const struct dw_mci_drv_data *drv_data = host->drv_data;
2953 struct mmc_host *mmc = slot->mmc;
2954 int ctrl_id;
2955
2956 if (host->pdata->caps)
2957 mmc->caps = host->pdata->caps;
2958
2959 if (host->pdata->pm_caps)
2960 mmc->pm_caps = host->pdata->pm_caps;
2961
2962 if (drv_data)
2963 mmc->caps |= drv_data->common_caps;
2964
2965 if (host->dev->of_node) {
2966 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2967 if (ctrl_id < 0)
2968 ctrl_id = 0;
2969 } else {
2970 ctrl_id = to_platform_device(host->dev)->id;
2971 }
2972
2973 if (drv_data && drv_data->caps) {
2974 if (ctrl_id >= drv_data->num_caps) {
2975 dev_err(host->dev, "invalid controller id %d\n",
2976 ctrl_id);
2977 return -EINVAL;
2978 }
2979 mmc->caps |= drv_data->caps[ctrl_id];
2980 }
2981
2982 if (host->pdata->caps2)
2983 mmc->caps2 = host->pdata->caps2;
2984
2985 /* if host has set a minimum_freq, we should respect it */
2986 if (host->minimum_speed)
2987 mmc->f_min = host->minimum_speed;
2988 else
2989 mmc->f_min = DW_MCI_FREQ_MIN;
2990
2991 if (!mmc->f_max)
2992 mmc->f_max = DW_MCI_FREQ_MAX;
2993
2994 /* Process SDIO IRQs through the sdio_irq_work. */
2995 if (mmc->caps & MMC_CAP_SDIO_IRQ)
2996 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2997
2998 return 0;
2999 }
3000
dw_mci_init_slot(struct dw_mci * host)3001 static int dw_mci_init_slot(struct dw_mci *host)
3002 {
3003 struct mmc_host *mmc;
3004 struct dw_mci_slot *slot;
3005 int ret;
3006
3007 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
3008 if (!mmc)
3009 return -ENOMEM;
3010
3011 slot = mmc_priv(mmc);
3012 slot->id = 0;
3013 slot->sdio_id = host->sdio_id0 + slot->id;
3014 slot->mmc = mmc;
3015 slot->host = host;
3016 host->slot = slot;
3017
3018 mmc->ops = &dw_mci_ops;
3019
3020 /*if there are external regulators, get them*/
3021 ret = mmc_regulator_get_supply(mmc);
3022 if (ret)
3023 goto err_host_allocated;
3024
3025 if (!mmc->ocr_avail)
3026 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
3027
3028 ret = mmc_of_parse(mmc);
3029 if (ret)
3030 goto err_host_allocated;
3031
3032 ret = dw_mci_init_slot_caps(slot);
3033 if (ret)
3034 goto err_host_allocated;
3035
3036 /* Useful defaults if platform data is unset. */
3037 if (host->use_dma == TRANS_MODE_IDMAC) {
3038 mmc->max_segs = host->ring_size;
3039 mmc->max_blk_size = 65535;
3040 mmc->max_seg_size = 0x1000;
3041 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
3042 mmc->max_blk_count = mmc->max_req_size / 512;
3043 } else if (host->use_dma == TRANS_MODE_EDMAC) {
3044 mmc->max_segs = 64;
3045 mmc->max_blk_size = 65535;
3046 mmc->max_blk_count = 65535;
3047 mmc->max_req_size =
3048 mmc->max_blk_size * mmc->max_blk_count;
3049 mmc->max_seg_size = mmc->max_req_size;
3050 } else {
3051 /* TRANS_MODE_PIO */
3052 mmc->max_segs = 64;
3053 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
3054 mmc->max_blk_count = 512;
3055 mmc->max_req_size = mmc->max_blk_size *
3056 mmc->max_blk_count;
3057 mmc->max_seg_size = mmc->max_req_size;
3058 }
3059
3060 dw_mci_get_cd(mmc);
3061
3062 ret = mmc_add_host(mmc);
3063 if (ret)
3064 goto err_host_allocated;
3065
3066 #if defined(CONFIG_DEBUG_FS)
3067 dw_mci_init_debugfs(slot);
3068 #endif
3069
3070 return 0;
3071
3072 err_host_allocated:
3073 mmc_free_host(mmc);
3074 return ret;
3075 }
3076
dw_mci_cleanup_slot(struct dw_mci_slot * slot)3077 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
3078 {
3079 /* Debugfs stuff is cleaned up by mmc core */
3080 mmc_remove_host(slot->mmc);
3081 slot->host->slot = NULL;
3082 mmc_free_host(slot->mmc);
3083 }
3084
dw_mci_init_dma(struct dw_mci * host)3085 static void dw_mci_init_dma(struct dw_mci *host)
3086 {
3087 int addr_config;
3088 struct device *dev = host->dev;
3089
3090 /*
3091 * Check tansfer mode from HCON[17:16]
3092 * Clear the ambiguous description of dw_mmc databook:
3093 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
3094 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
3095 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
3096 * 2b'11: Non DW DMA Interface -> pio only
3097 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
3098 * simpler request/acknowledge handshake mechanism and both of them
3099 * are regarded as external dma master for dw_mmc.
3100 */
3101 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
3102 if (host->use_dma == DMA_INTERFACE_IDMA) {
3103 host->use_dma = TRANS_MODE_IDMAC;
3104 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
3105 host->use_dma == DMA_INTERFACE_GDMA) {
3106 host->use_dma = TRANS_MODE_EDMAC;
3107 } else {
3108 goto no_dma;
3109 }
3110
3111 /* Determine which DMA interface to use */
3112 if (host->use_dma == TRANS_MODE_IDMAC) {
3113 /*
3114 * Check ADDR_CONFIG bit in HCON to find
3115 * IDMAC address bus width
3116 */
3117 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
3118
3119 if (addr_config == 1) {
3120 /* host supports IDMAC in 64-bit address mode */
3121 host->dma_64bit_address = 1;
3122 dev_info(host->dev,
3123 "IDMAC supports 64-bit address mode.\n");
3124 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
3125 dma_set_coherent_mask(host->dev,
3126 DMA_BIT_MASK(64));
3127 } else {
3128 /* host supports IDMAC in 32-bit address mode */
3129 host->dma_64bit_address = 0;
3130 dev_info(host->dev,
3131 "IDMAC supports 32-bit address mode.\n");
3132 }
3133
3134 /* Alloc memory for sg translation */
3135 host->sg_cpu = dmam_alloc_coherent(host->dev,
3136 DESC_RING_BUF_SZ,
3137 &host->sg_dma, GFP_KERNEL);
3138 if (!host->sg_cpu) {
3139 dev_err(host->dev,
3140 "%s: could not alloc DMA memory\n",
3141 __func__);
3142 goto no_dma;
3143 }
3144
3145 host->dma_ops = &dw_mci_idmac_ops;
3146 dev_info(host->dev, "Using internal DMA controller.\n");
3147 } else {
3148 /* TRANS_MODE_EDMAC: check dma bindings again */
3149 if ((device_property_string_array_count(dev, "dma-names") < 0) ||
3150 !device_property_present(dev, "dmas")) {
3151 goto no_dma;
3152 }
3153 host->dma_ops = &dw_mci_edmac_ops;
3154 dev_info(host->dev, "Using external DMA controller.\n");
3155 }
3156
3157 if (host->dma_ops->init && host->dma_ops->start &&
3158 host->dma_ops->stop && host->dma_ops->cleanup) {
3159 if (host->dma_ops->init(host)) {
3160 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
3161 __func__);
3162 goto no_dma;
3163 }
3164 } else {
3165 dev_err(host->dev, "DMA initialization not found.\n");
3166 goto no_dma;
3167 }
3168
3169 return;
3170
3171 no_dma:
3172 dev_info(host->dev, "Using PIO mode.\n");
3173 host->use_dma = TRANS_MODE_PIO;
3174 }
3175
dw_mci_cmd11_timer(struct timer_list * t)3176 static void dw_mci_cmd11_timer(struct timer_list *t)
3177 {
3178 struct dw_mci *host = from_timer(host, t, cmd11_timer);
3179
3180 if (host->state != STATE_SENDING_CMD11) {
3181 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
3182 return;
3183 }
3184
3185 host->cmd_status = SDMMC_INT_RTO;
3186 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3187 tasklet_schedule(&host->tasklet);
3188 }
3189
dw_mci_cto_timer(struct timer_list * t)3190 static void dw_mci_cto_timer(struct timer_list *t)
3191 {
3192 struct dw_mci *host = from_timer(host, t, cto_timer);
3193 unsigned long irqflags;
3194 u32 pending;
3195
3196 spin_lock_irqsave(&host->irq_lock, irqflags);
3197
3198 /*
3199 * If somehow we have very bad interrupt latency it's remotely possible
3200 * that the timer could fire while the interrupt is still pending or
3201 * while the interrupt is midway through running. Let's be paranoid
3202 * and detect those two cases. Note that this is paranoia is somewhat
3203 * justified because in this function we don't actually cancel the
3204 * pending command in the controller--we just assume it will never come.
3205 */
3206 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3207 if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3208 /* The interrupt should fire; no need to act but we can warn */
3209 dev_warn(host->dev, "Unexpected interrupt latency\n");
3210 goto exit;
3211 }
3212 if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3213 /* Presumably interrupt handler couldn't delete the timer */
3214 dev_warn(host->dev, "CTO timeout when already completed\n");
3215 goto exit;
3216 }
3217
3218 /*
3219 * Continued paranoia to make sure we're in the state we expect.
3220 * This paranoia isn't really justified but it seems good to be safe.
3221 */
3222 switch (host->state) {
3223 case STATE_SENDING_CMD11:
3224 case STATE_SENDING_CMD:
3225 case STATE_SENDING_STOP:
3226 /*
3227 * If CMD_DONE interrupt does NOT come in sending command
3228 * state, we should notify the driver to terminate current
3229 * transfer and report a command timeout to the core.
3230 */
3231 host->cmd_status = SDMMC_INT_RTO;
3232 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3233 tasklet_schedule(&host->tasklet);
3234 break;
3235 default:
3236 dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3237 host->state);
3238 break;
3239 }
3240
3241 exit:
3242 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3243 }
3244
dw_mci_dto_timer(struct timer_list * t)3245 static void dw_mci_dto_timer(struct timer_list *t)
3246 {
3247 struct dw_mci *host = from_timer(host, t, dto_timer);
3248 unsigned long irqflags;
3249 u32 pending;
3250
3251 spin_lock_irqsave(&host->irq_lock, irqflags);
3252
3253 /*
3254 * The DTO timer is much longer than the CTO timer, so it's even less
3255 * likely that we'll these cases, but it pays to be paranoid.
3256 */
3257 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3258 if (pending & SDMMC_INT_DATA_OVER) {
3259 /* The interrupt should fire; no need to act but we can warn */
3260 dev_warn(host->dev, "Unexpected data interrupt latency\n");
3261 goto exit;
3262 }
3263 if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3264 /* Presumably interrupt handler couldn't delete the timer */
3265 dev_warn(host->dev, "DTO timeout when already completed\n");
3266 goto exit;
3267 }
3268
3269 /*
3270 * Continued paranoia to make sure we're in the state we expect.
3271 * This paranoia isn't really justified but it seems good to be safe.
3272 */
3273 switch (host->state) {
3274 case STATE_SENDING_DATA:
3275 case STATE_DATA_BUSY:
3276 /*
3277 * If DTO interrupt does NOT come in sending data state,
3278 * we should notify the driver to terminate current transfer
3279 * and report a data timeout to the core.
3280 */
3281 host->data_status = SDMMC_INT_DRTO;
3282 set_bit(EVENT_DATA_ERROR, &host->pending_events);
3283 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3284 tasklet_schedule(&host->tasklet);
3285 break;
3286 default:
3287 dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3288 host->state);
3289 break;
3290 }
3291
3292 exit:
3293 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3294 }
3295
3296 #ifdef CONFIG_OF
dw_mci_parse_dt(struct dw_mci * host)3297 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3298 {
3299 struct dw_mci_board *pdata;
3300 struct device *dev = host->dev;
3301 const struct dw_mci_drv_data *drv_data = host->drv_data;
3302 int ret;
3303 u32 clock_frequency;
3304
3305 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3306 if (!pdata)
3307 return ERR_PTR(-ENOMEM);
3308
3309 /* find reset controller when exist */
3310 pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3311 if (IS_ERR(pdata->rstc))
3312 return ERR_CAST(pdata->rstc);
3313
3314 if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3315 dev_info(dev,
3316 "fifo-depth property not found, using value of FIFOTH register as default\n");
3317
3318 device_property_read_u32(dev, "card-detect-delay",
3319 &pdata->detect_delay_ms);
3320
3321 device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3322
3323 if (device_property_present(dev, "fifo-watermark-aligned"))
3324 host->wm_aligned = true;
3325
3326 if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3327 pdata->bus_hz = clock_frequency;
3328
3329 if (drv_data && drv_data->parse_dt) {
3330 ret = drv_data->parse_dt(host);
3331 if (ret)
3332 return ERR_PTR(ret);
3333 }
3334
3335 return pdata;
3336 }
3337
3338 #else /* CONFIG_OF */
dw_mci_parse_dt(struct dw_mci * host)3339 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3340 {
3341 return ERR_PTR(-EINVAL);
3342 }
3343 #endif /* CONFIG_OF */
3344
dw_mci_enable_cd(struct dw_mci * host)3345 static void dw_mci_enable_cd(struct dw_mci *host)
3346 {
3347 unsigned long irqflags;
3348 u32 temp;
3349
3350 /*
3351 * No need for CD if all slots have a non-error GPIO
3352 * as well as broken card detection is found.
3353 */
3354 if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3355 return;
3356
3357 if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3358 spin_lock_irqsave(&host->irq_lock, irqflags);
3359 temp = mci_readl(host, INTMASK);
3360 temp |= SDMMC_INT_CD;
3361 mci_writel(host, INTMASK, temp);
3362 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3363 }
3364 }
3365
dw_mci_probe(struct dw_mci * host)3366 int dw_mci_probe(struct dw_mci *host)
3367 {
3368 const struct dw_mci_drv_data *drv_data = host->drv_data;
3369 int width, i, ret = 0;
3370 u32 fifo_size;
3371
3372 if (!host->pdata) {
3373 host->pdata = dw_mci_parse_dt(host);
3374 if (IS_ERR(host->pdata))
3375 return dev_err_probe(host->dev, PTR_ERR(host->pdata),
3376 "platform data not available\n");
3377 }
3378
3379 host->biu_clk = devm_clk_get(host->dev, "biu");
3380 if (IS_ERR(host->biu_clk)) {
3381 dev_dbg(host->dev, "biu clock not available\n");
3382 ret = PTR_ERR(host->biu_clk);
3383 if (ret == -EPROBE_DEFER)
3384 return ret;
3385
3386 } else {
3387 ret = clk_prepare_enable(host->biu_clk);
3388 if (ret) {
3389 dev_err(host->dev, "failed to enable biu clock\n");
3390 return ret;
3391 }
3392 }
3393
3394 host->ciu_clk = devm_clk_get(host->dev, "ciu");
3395 if (IS_ERR(host->ciu_clk)) {
3396 dev_dbg(host->dev, "ciu clock not available\n");
3397 ret = PTR_ERR(host->ciu_clk);
3398 if (ret == -EPROBE_DEFER)
3399 goto err_clk_biu;
3400
3401 host->bus_hz = host->pdata->bus_hz;
3402 } else {
3403 ret = clk_prepare_enable(host->ciu_clk);
3404 if (ret) {
3405 dev_err(host->dev, "failed to enable ciu clock\n");
3406 goto err_clk_biu;
3407 }
3408
3409 if (host->pdata->bus_hz) {
3410 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3411 if (ret)
3412 dev_warn(host->dev,
3413 "Unable to set bus rate to %uHz\n",
3414 host->pdata->bus_hz);
3415 }
3416 host->bus_hz = clk_get_rate(host->ciu_clk);
3417 }
3418
3419 if (!host->bus_hz) {
3420 dev_err(host->dev,
3421 "Platform data must supply bus speed\n");
3422 ret = -ENODEV;
3423 goto err_clk_ciu;
3424 }
3425
3426 if (host->pdata->rstc) {
3427 reset_control_assert(host->pdata->rstc);
3428 usleep_range(10, 50);
3429 reset_control_deassert(host->pdata->rstc);
3430 }
3431
3432 if (drv_data && drv_data->init) {
3433 ret = drv_data->init(host);
3434 if (ret) {
3435 dev_err(host->dev,
3436 "implementation specific init failed\n");
3437 goto err_clk_ciu;
3438 }
3439 }
3440
3441 timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3442 timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3443 timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3444
3445 spin_lock_init(&host->lock);
3446 spin_lock_init(&host->irq_lock);
3447 INIT_LIST_HEAD(&host->queue);
3448
3449 dw_mci_init_fault(host);
3450
3451 /*
3452 * Get the host data width - this assumes that HCON has been set with
3453 * the correct values.
3454 */
3455 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3456 if (!i) {
3457 host->push_data = dw_mci_push_data16;
3458 host->pull_data = dw_mci_pull_data16;
3459 width = 16;
3460 host->data_shift = 1;
3461 } else if (i == 2) {
3462 if ((host->quirks & DW_MMC_QUIRK_FIFO64_32)) {
3463 host->push_data = dw_mci_push_data64_32;
3464 host->pull_data = dw_mci_pull_data64_32;
3465 } else {
3466 host->push_data = dw_mci_push_data64;
3467 host->pull_data = dw_mci_pull_data64;
3468 }
3469 width = 64;
3470 host->data_shift = 3;
3471 } else {
3472 /* Check for a reserved value, and warn if it is */
3473 WARN((i != 1),
3474 "HCON reports a reserved host data width!\n"
3475 "Defaulting to 32-bit access.\n");
3476 host->push_data = dw_mci_push_data32;
3477 host->pull_data = dw_mci_pull_data32;
3478 width = 32;
3479 host->data_shift = 2;
3480 }
3481
3482 /* Reset all blocks */
3483 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3484 ret = -ENODEV;
3485 goto err_clk_ciu;
3486 }
3487
3488 host->dma_ops = host->pdata->dma_ops;
3489 dw_mci_init_dma(host);
3490
3491 /* Clear the interrupts for the host controller */
3492 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3493 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3494
3495 /* Put in max timeout */
3496 mci_writel(host, TMOUT, 0xFFFFFFFF);
3497
3498 /*
3499 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3500 * Tx Mark = fifo_size / 2 DMA Size = 8
3501 */
3502 if (!host->pdata->fifo_depth) {
3503 /*
3504 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3505 * have been overwritten by the bootloader, just like we're
3506 * about to do, so if you know the value for your hardware, you
3507 * should put it in the platform data.
3508 */
3509 fifo_size = mci_readl(host, FIFOTH);
3510 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3511 } else {
3512 fifo_size = host->pdata->fifo_depth;
3513 }
3514 host->fifo_depth = fifo_size;
3515 host->fifoth_val =
3516 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3517 mci_writel(host, FIFOTH, host->fifoth_val);
3518
3519 /* disable clock to CIU */
3520 mci_writel(host, CLKENA, 0);
3521 mci_writel(host, CLKSRC, 0);
3522
3523 /*
3524 * In 2.40a spec, Data offset is changed.
3525 * Need to check the version-id and set data-offset for DATA register.
3526 */
3527 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3528 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3529
3530 if (host->data_addr_override)
3531 host->fifo_reg = host->regs + host->data_addr_override;
3532 else if (host->verid < DW_MMC_240A)
3533 host->fifo_reg = host->regs + DATA_OFFSET;
3534 else
3535 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3536
3537 tasklet_setup(&host->tasklet, dw_mci_tasklet_func);
3538 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3539 host->irq_flags, "dw-mci", host);
3540 if (ret)
3541 goto err_dmaunmap;
3542
3543 /*
3544 * Enable interrupts for command done, data over, data empty,
3545 * receive ready and error such as transmit, receive timeout, crc error
3546 */
3547 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3548 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3549 DW_MCI_ERROR_FLAGS);
3550 /* Enable mci interrupt */
3551 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3552
3553 dev_info(host->dev,
3554 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3555 host->irq, width, fifo_size);
3556
3557 /* We need at least one slot to succeed */
3558 ret = dw_mci_init_slot(host);
3559 if (ret) {
3560 dev_dbg(host->dev, "slot %d init failed\n", i);
3561 goto err_dmaunmap;
3562 }
3563
3564 /* Now that slots are all setup, we can enable card detect */
3565 dw_mci_enable_cd(host);
3566
3567 return 0;
3568
3569 err_dmaunmap:
3570 if (host->use_dma && host->dma_ops->exit)
3571 host->dma_ops->exit(host);
3572
3573 reset_control_assert(host->pdata->rstc);
3574
3575 err_clk_ciu:
3576 clk_disable_unprepare(host->ciu_clk);
3577
3578 err_clk_biu:
3579 clk_disable_unprepare(host->biu_clk);
3580
3581 return ret;
3582 }
3583 EXPORT_SYMBOL(dw_mci_probe);
3584
dw_mci_remove(struct dw_mci * host)3585 void dw_mci_remove(struct dw_mci *host)
3586 {
3587 dev_dbg(host->dev, "remove slot\n");
3588 if (host->slot)
3589 dw_mci_cleanup_slot(host->slot);
3590
3591 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3592 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3593
3594 /* disable clock to CIU */
3595 mci_writel(host, CLKENA, 0);
3596 mci_writel(host, CLKSRC, 0);
3597
3598 if (host->use_dma && host->dma_ops->exit)
3599 host->dma_ops->exit(host);
3600
3601 reset_control_assert(host->pdata->rstc);
3602
3603 clk_disable_unprepare(host->ciu_clk);
3604 clk_disable_unprepare(host->biu_clk);
3605 }
3606 EXPORT_SYMBOL(dw_mci_remove);
3607
3608
3609
3610 #ifdef CONFIG_PM
dw_mci_runtime_suspend(struct device * dev)3611 int dw_mci_runtime_suspend(struct device *dev)
3612 {
3613 struct dw_mci *host = dev_get_drvdata(dev);
3614
3615 if (host->use_dma && host->dma_ops->exit)
3616 host->dma_ops->exit(host);
3617
3618 clk_disable_unprepare(host->ciu_clk);
3619
3620 if (host->slot &&
3621 (mmc_can_gpio_cd(host->slot->mmc) ||
3622 !mmc_card_is_removable(host->slot->mmc)))
3623 clk_disable_unprepare(host->biu_clk);
3624
3625 return 0;
3626 }
3627 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3628
dw_mci_runtime_resume(struct device * dev)3629 int dw_mci_runtime_resume(struct device *dev)
3630 {
3631 int ret = 0;
3632 struct dw_mci *host = dev_get_drvdata(dev);
3633
3634 if (host->slot &&
3635 (mmc_can_gpio_cd(host->slot->mmc) ||
3636 !mmc_card_is_removable(host->slot->mmc))) {
3637 ret = clk_prepare_enable(host->biu_clk);
3638 if (ret)
3639 return ret;
3640 }
3641
3642 ret = clk_prepare_enable(host->ciu_clk);
3643 if (ret)
3644 goto err;
3645
3646 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3647 clk_disable_unprepare(host->ciu_clk);
3648 ret = -ENODEV;
3649 goto err;
3650 }
3651
3652 if (host->use_dma && host->dma_ops->init)
3653 host->dma_ops->init(host);
3654
3655 /*
3656 * Restore the initial value at FIFOTH register
3657 * And Invalidate the prev_blksz with zero
3658 */
3659 mci_writel(host, FIFOTH, host->fifoth_val);
3660 host->prev_blksz = 0;
3661
3662 /* Put in max timeout */
3663 mci_writel(host, TMOUT, 0xFFFFFFFF);
3664
3665 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3666 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3667 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3668 DW_MCI_ERROR_FLAGS);
3669 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3670
3671
3672 if (host->slot && host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3673 dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3674
3675 /* Force setup bus to guarantee available clock output */
3676 dw_mci_setup_bus(host->slot, true);
3677
3678 /* Re-enable SDIO interrupts. */
3679 if (sdio_irq_claimed(host->slot->mmc))
3680 __dw_mci_enable_sdio_irq(host->slot, 1);
3681
3682 /* Now that slots are all setup, we can enable card detect */
3683 dw_mci_enable_cd(host);
3684
3685 return 0;
3686
3687 err:
3688 if (host->slot &&
3689 (mmc_can_gpio_cd(host->slot->mmc) ||
3690 !mmc_card_is_removable(host->slot->mmc)))
3691 clk_disable_unprepare(host->biu_clk);
3692
3693 return ret;
3694 }
3695 EXPORT_SYMBOL(dw_mci_runtime_resume);
3696 #endif /* CONFIG_PM */
3697
dw_mci_init(void)3698 static int __init dw_mci_init(void)
3699 {
3700 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3701 return 0;
3702 }
3703
dw_mci_exit(void)3704 static void __exit dw_mci_exit(void)
3705 {
3706 }
3707
3708 module_init(dw_mci_init);
3709 module_exit(dw_mci_exit);
3710
3711 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3712 MODULE_AUTHOR("NXP Semiconductor VietNam");
3713 MODULE_AUTHOR("Imagination Technologies Ltd");
3714 MODULE_LICENSE("GPL v2");
3715