1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * cs_dsp.c -- Cirrus Logic DSP firmware support
4 *
5 * Based on sound/soc/codecs/wm_adsp.c
6 *
7 * Copyright 2012 Wolfson Microelectronics plc
8 * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9 * Cirrus Logic International Semiconductor Ltd.
10 */
11
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/seq_file.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20
21 #include <linux/firmware/cirrus/cs_dsp.h>
22 #include <linux/firmware/cirrus/wmfw.h>
23
24 #define cs_dsp_err(_dsp, fmt, ...) \
25 dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
26 #define cs_dsp_warn(_dsp, fmt, ...) \
27 dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
28 #define cs_dsp_info(_dsp, fmt, ...) \
29 dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
30 #define cs_dsp_dbg(_dsp, fmt, ...) \
31 dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
32
33 #define ADSP1_CONTROL_1 0x00
34 #define ADSP1_CONTROL_2 0x02
35 #define ADSP1_CONTROL_3 0x03
36 #define ADSP1_CONTROL_4 0x04
37 #define ADSP1_CONTROL_5 0x06
38 #define ADSP1_CONTROL_6 0x07
39 #define ADSP1_CONTROL_7 0x08
40 #define ADSP1_CONTROL_8 0x09
41 #define ADSP1_CONTROL_9 0x0A
42 #define ADSP1_CONTROL_10 0x0B
43 #define ADSP1_CONTROL_11 0x0C
44 #define ADSP1_CONTROL_12 0x0D
45 #define ADSP1_CONTROL_13 0x0F
46 #define ADSP1_CONTROL_14 0x10
47 #define ADSP1_CONTROL_15 0x11
48 #define ADSP1_CONTROL_16 0x12
49 #define ADSP1_CONTROL_17 0x13
50 #define ADSP1_CONTROL_18 0x14
51 #define ADSP1_CONTROL_19 0x16
52 #define ADSP1_CONTROL_20 0x17
53 #define ADSP1_CONTROL_21 0x18
54 #define ADSP1_CONTROL_22 0x1A
55 #define ADSP1_CONTROL_23 0x1B
56 #define ADSP1_CONTROL_24 0x1C
57 #define ADSP1_CONTROL_25 0x1E
58 #define ADSP1_CONTROL_26 0x20
59 #define ADSP1_CONTROL_27 0x21
60 #define ADSP1_CONTROL_28 0x22
61 #define ADSP1_CONTROL_29 0x23
62 #define ADSP1_CONTROL_30 0x24
63 #define ADSP1_CONTROL_31 0x26
64
65 /*
66 * ADSP1 Control 19
67 */
68 #define ADSP1_WDMA_BUFFER_LENGTH_MASK 0x00FF /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
69 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT 0 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
70 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH 8 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
71
72 /*
73 * ADSP1 Control 30
74 */
75 #define ADSP1_DBG_CLK_ENA 0x0008 /* DSP1_DBG_CLK_ENA */
76 #define ADSP1_DBG_CLK_ENA_MASK 0x0008 /* DSP1_DBG_CLK_ENA */
77 #define ADSP1_DBG_CLK_ENA_SHIFT 3 /* DSP1_DBG_CLK_ENA */
78 #define ADSP1_DBG_CLK_ENA_WIDTH 1 /* DSP1_DBG_CLK_ENA */
79 #define ADSP1_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
80 #define ADSP1_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
81 #define ADSP1_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
82 #define ADSP1_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
83 #define ADSP1_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
84 #define ADSP1_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
85 #define ADSP1_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
86 #define ADSP1_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
87 #define ADSP1_START 0x0001 /* DSP1_START */
88 #define ADSP1_START_MASK 0x0001 /* DSP1_START */
89 #define ADSP1_START_SHIFT 0 /* DSP1_START */
90 #define ADSP1_START_WIDTH 1 /* DSP1_START */
91
92 /*
93 * ADSP1 Control 31
94 */
95 #define ADSP1_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
96 #define ADSP1_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
97 #define ADSP1_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
98
99 #define ADSP2_CONTROL 0x0
100 #define ADSP2_CLOCKING 0x1
101 #define ADSP2V2_CLOCKING 0x2
102 #define ADSP2_STATUS1 0x4
103 #define ADSP2_WDMA_CONFIG_1 0x30
104 #define ADSP2_WDMA_CONFIG_2 0x31
105 #define ADSP2V2_WDMA_CONFIG_2 0x32
106 #define ADSP2_RDMA_CONFIG_1 0x34
107
108 #define ADSP2_SCRATCH0 0x40
109 #define ADSP2_SCRATCH1 0x41
110 #define ADSP2_SCRATCH2 0x42
111 #define ADSP2_SCRATCH3 0x43
112
113 #define ADSP2V2_SCRATCH0_1 0x40
114 #define ADSP2V2_SCRATCH2_3 0x42
115
116 /*
117 * ADSP2 Control
118 */
119 #define ADSP2_MEM_ENA 0x0010 /* DSP1_MEM_ENA */
120 #define ADSP2_MEM_ENA_MASK 0x0010 /* DSP1_MEM_ENA */
121 #define ADSP2_MEM_ENA_SHIFT 4 /* DSP1_MEM_ENA */
122 #define ADSP2_MEM_ENA_WIDTH 1 /* DSP1_MEM_ENA */
123 #define ADSP2_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
124 #define ADSP2_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
125 #define ADSP2_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
126 #define ADSP2_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
127 #define ADSP2_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
128 #define ADSP2_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
129 #define ADSP2_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
130 #define ADSP2_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
131 #define ADSP2_START 0x0001 /* DSP1_START */
132 #define ADSP2_START_MASK 0x0001 /* DSP1_START */
133 #define ADSP2_START_SHIFT 0 /* DSP1_START */
134 #define ADSP2_START_WIDTH 1 /* DSP1_START */
135
136 /*
137 * ADSP2 clocking
138 */
139 #define ADSP2_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
140 #define ADSP2_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
141 #define ADSP2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
142
143 /*
144 * ADSP2V2 clocking
145 */
146 #define ADSP2V2_CLK_SEL_MASK 0x70000 /* CLK_SEL_ENA */
147 #define ADSP2V2_CLK_SEL_SHIFT 16 /* CLK_SEL_ENA */
148 #define ADSP2V2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
149
150 #define ADSP2V2_RATE_MASK 0x7800 /* DSP_RATE */
151 #define ADSP2V2_RATE_SHIFT 11 /* DSP_RATE */
152 #define ADSP2V2_RATE_WIDTH 4 /* DSP_RATE */
153
154 /*
155 * ADSP2 Status 1
156 */
157 #define ADSP2_RAM_RDY 0x0001
158 #define ADSP2_RAM_RDY_MASK 0x0001
159 #define ADSP2_RAM_RDY_SHIFT 0
160 #define ADSP2_RAM_RDY_WIDTH 1
161
162 /*
163 * ADSP2 Lock support
164 */
165 #define ADSP2_LOCK_CODE_0 0x5555
166 #define ADSP2_LOCK_CODE_1 0xAAAA
167
168 #define ADSP2_WATCHDOG 0x0A
169 #define ADSP2_BUS_ERR_ADDR 0x52
170 #define ADSP2_REGION_LOCK_STATUS 0x64
171 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0 0x66
172 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2 0x68
173 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4 0x6A
174 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6 0x6C
175 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8 0x6E
176 #define ADSP2_LOCK_REGION_CTRL 0x7A
177 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR 0x7C
178
179 #define ADSP2_REGION_LOCK_ERR_MASK 0x8000
180 #define ADSP2_ADDR_ERR_MASK 0x4000
181 #define ADSP2_WDT_TIMEOUT_STS_MASK 0x2000
182 #define ADSP2_CTRL_ERR_PAUSE_ENA 0x0002
183 #define ADSP2_CTRL_ERR_EINT 0x0001
184
185 #define ADSP2_BUS_ERR_ADDR_MASK 0x00FFFFFF
186 #define ADSP2_XMEM_ERR_ADDR_MASK 0x0000FFFF
187 #define ADSP2_PMEM_ERR_ADDR_MASK 0x7FFF0000
188 #define ADSP2_PMEM_ERR_ADDR_SHIFT 16
189 #define ADSP2_WDT_ENA_MASK 0xFFFFFFFD
190
191 #define ADSP2_LOCK_REGION_SHIFT 16
192
193 /*
194 * Event control messages
195 */
196 #define CS_DSP_FW_EVENT_SHUTDOWN 0x000001
197
198 /*
199 * HALO system info
200 */
201 #define HALO_AHBM_WINDOW_DEBUG_0 0x02040
202 #define HALO_AHBM_WINDOW_DEBUG_1 0x02044
203
204 /*
205 * HALO core
206 */
207 #define HALO_SCRATCH1 0x005c0
208 #define HALO_SCRATCH2 0x005c8
209 #define HALO_SCRATCH3 0x005d0
210 #define HALO_SCRATCH4 0x005d8
211 #define HALO_CCM_CORE_CONTROL 0x41000
212 #define HALO_CORE_SOFT_RESET 0x00010
213 #define HALO_WDT_CONTROL 0x47000
214
215 /*
216 * HALO MPU banks
217 */
218 #define HALO_MPU_XMEM_ACCESS_0 0x43000
219 #define HALO_MPU_YMEM_ACCESS_0 0x43004
220 #define HALO_MPU_WINDOW_ACCESS_0 0x43008
221 #define HALO_MPU_XREG_ACCESS_0 0x4300C
222 #define HALO_MPU_YREG_ACCESS_0 0x43014
223 #define HALO_MPU_XMEM_ACCESS_1 0x43018
224 #define HALO_MPU_YMEM_ACCESS_1 0x4301C
225 #define HALO_MPU_WINDOW_ACCESS_1 0x43020
226 #define HALO_MPU_XREG_ACCESS_1 0x43024
227 #define HALO_MPU_YREG_ACCESS_1 0x4302C
228 #define HALO_MPU_XMEM_ACCESS_2 0x43030
229 #define HALO_MPU_YMEM_ACCESS_2 0x43034
230 #define HALO_MPU_WINDOW_ACCESS_2 0x43038
231 #define HALO_MPU_XREG_ACCESS_2 0x4303C
232 #define HALO_MPU_YREG_ACCESS_2 0x43044
233 #define HALO_MPU_XMEM_ACCESS_3 0x43048
234 #define HALO_MPU_YMEM_ACCESS_3 0x4304C
235 #define HALO_MPU_WINDOW_ACCESS_3 0x43050
236 #define HALO_MPU_XREG_ACCESS_3 0x43054
237 #define HALO_MPU_YREG_ACCESS_3 0x4305C
238 #define HALO_MPU_XM_VIO_ADDR 0x43100
239 #define HALO_MPU_XM_VIO_STATUS 0x43104
240 #define HALO_MPU_YM_VIO_ADDR 0x43108
241 #define HALO_MPU_YM_VIO_STATUS 0x4310C
242 #define HALO_MPU_PM_VIO_ADDR 0x43110
243 #define HALO_MPU_PM_VIO_STATUS 0x43114
244 #define HALO_MPU_LOCK_CONFIG 0x43140
245
246 /*
247 * HALO_AHBM_WINDOW_DEBUG_1
248 */
249 #define HALO_AHBM_CORE_ERR_ADDR_MASK 0x0fffff00
250 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT 8
251 #define HALO_AHBM_FLAGS_ERR_MASK 0x000000ff
252
253 /*
254 * HALO_CCM_CORE_CONTROL
255 */
256 #define HALO_CORE_RESET 0x00000200
257 #define HALO_CORE_EN 0x00000001
258
259 /*
260 * HALO_CORE_SOFT_RESET
261 */
262 #define HALO_CORE_SOFT_RESET_MASK 0x00000001
263
264 /*
265 * HALO_WDT_CONTROL
266 */
267 #define HALO_WDT_EN_MASK 0x00000001
268
269 /*
270 * HALO_MPU_?M_VIO_STATUS
271 */
272 #define HALO_MPU_VIO_STS_MASK 0x007e0000
273 #define HALO_MPU_VIO_STS_SHIFT 17
274 #define HALO_MPU_VIO_ERR_WR_MASK 0x00008000
275 #define HALO_MPU_VIO_ERR_SRC_MASK 0x00007fff
276 #define HALO_MPU_VIO_ERR_SRC_SHIFT 0
277
278 struct cs_dsp_ops {
279 bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
280 unsigned int (*parse_sizes)(struct cs_dsp *dsp,
281 const char * const file,
282 unsigned int pos,
283 const struct firmware *firmware);
284 int (*setup_algs)(struct cs_dsp *dsp);
285 unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
286 unsigned int offset);
287
288 void (*show_fw_status)(struct cs_dsp *dsp);
289 void (*stop_watchdog)(struct cs_dsp *dsp);
290
291 int (*enable_memory)(struct cs_dsp *dsp);
292 void (*disable_memory)(struct cs_dsp *dsp);
293 int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
294
295 int (*enable_core)(struct cs_dsp *dsp);
296 void (*disable_core)(struct cs_dsp *dsp);
297
298 int (*start_core)(struct cs_dsp *dsp);
299 void (*stop_core)(struct cs_dsp *dsp);
300 };
301
302 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
303 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
304 static const struct cs_dsp_ops cs_dsp_halo_ops;
305 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
306
307 struct cs_dsp_buf {
308 struct list_head list;
309 void *buf;
310 };
311
cs_dsp_buf_alloc(const void * src,size_t len,struct list_head * list)312 static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
313 struct list_head *list)
314 {
315 struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
316
317 if (buf == NULL)
318 return NULL;
319
320 buf->buf = vmalloc(len);
321 if (!buf->buf) {
322 kfree(buf);
323 return NULL;
324 }
325 memcpy(buf->buf, src, len);
326
327 if (list)
328 list_add_tail(&buf->list, list);
329
330 return buf;
331 }
332
cs_dsp_buf_free(struct list_head * list)333 static void cs_dsp_buf_free(struct list_head *list)
334 {
335 while (!list_empty(list)) {
336 struct cs_dsp_buf *buf = list_first_entry(list,
337 struct cs_dsp_buf,
338 list);
339 list_del(&buf->list);
340 vfree(buf->buf);
341 kfree(buf);
342 }
343 }
344
345 /**
346 * cs_dsp_mem_region_name() - Return a name string for a memory type
347 * @type: the memory type to match
348 *
349 * Return: A const string identifying the memory region.
350 */
cs_dsp_mem_region_name(unsigned int type)351 const char *cs_dsp_mem_region_name(unsigned int type)
352 {
353 switch (type) {
354 case WMFW_ADSP1_PM:
355 return "PM";
356 case WMFW_HALO_PM_PACKED:
357 return "PM_PACKED";
358 case WMFW_ADSP1_DM:
359 return "DM";
360 case WMFW_ADSP2_XM:
361 return "XM";
362 case WMFW_HALO_XM_PACKED:
363 return "XM_PACKED";
364 case WMFW_ADSP2_YM:
365 return "YM";
366 case WMFW_HALO_YM_PACKED:
367 return "YM_PACKED";
368 case WMFW_ADSP1_ZM:
369 return "ZM";
370 default:
371 return NULL;
372 }
373 }
374 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, FW_CS_DSP);
375
376 #ifdef CONFIG_DEBUG_FS
cs_dsp_debugfs_save_wmfwname(struct cs_dsp * dsp,const char * s)377 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
378 {
379 char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
380
381 kfree(dsp->wmfw_file_name);
382 dsp->wmfw_file_name = tmp;
383 }
384
cs_dsp_debugfs_save_binname(struct cs_dsp * dsp,const char * s)385 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
386 {
387 char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
388
389 kfree(dsp->bin_file_name);
390 dsp->bin_file_name = tmp;
391 }
392
cs_dsp_debugfs_clear(struct cs_dsp * dsp)393 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
394 {
395 kfree(dsp->wmfw_file_name);
396 kfree(dsp->bin_file_name);
397 dsp->wmfw_file_name = NULL;
398 dsp->bin_file_name = NULL;
399 }
400
cs_dsp_debugfs_wmfw_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)401 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
402 char __user *user_buf,
403 size_t count, loff_t *ppos)
404 {
405 struct cs_dsp *dsp = file->private_data;
406 ssize_t ret;
407
408 mutex_lock(&dsp->pwr_lock);
409
410 if (!dsp->wmfw_file_name || !dsp->booted)
411 ret = 0;
412 else
413 ret = simple_read_from_buffer(user_buf, count, ppos,
414 dsp->wmfw_file_name,
415 strlen(dsp->wmfw_file_name));
416
417 mutex_unlock(&dsp->pwr_lock);
418 return ret;
419 }
420
cs_dsp_debugfs_bin_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)421 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
422 char __user *user_buf,
423 size_t count, loff_t *ppos)
424 {
425 struct cs_dsp *dsp = file->private_data;
426 ssize_t ret;
427
428 mutex_lock(&dsp->pwr_lock);
429
430 if (!dsp->bin_file_name || !dsp->booted)
431 ret = 0;
432 else
433 ret = simple_read_from_buffer(user_buf, count, ppos,
434 dsp->bin_file_name,
435 strlen(dsp->bin_file_name));
436
437 mutex_unlock(&dsp->pwr_lock);
438 return ret;
439 }
440
441 static const struct {
442 const char *name;
443 const struct file_operations fops;
444 } cs_dsp_debugfs_fops[] = {
445 {
446 .name = "wmfw_file_name",
447 .fops = {
448 .open = simple_open,
449 .read = cs_dsp_debugfs_wmfw_read,
450 },
451 },
452 {
453 .name = "bin_file_name",
454 .fops = {
455 .open = simple_open,
456 .read = cs_dsp_debugfs_bin_read,
457 },
458 },
459 };
460
461 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
462 unsigned int off);
463
cs_dsp_debugfs_read_controls_show(struct seq_file * s,void * ignored)464 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
465 {
466 struct cs_dsp *dsp = s->private;
467 struct cs_dsp_coeff_ctl *ctl;
468 unsigned int reg;
469
470 list_for_each_entry(ctl, &dsp->ctl_list, list) {
471 cs_dsp_coeff_base_reg(ctl, ®, 0);
472 seq_printf(s, "%22.*s: %#8zx %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
473 ctl->subname_len, ctl->subname, ctl->len,
474 cs_dsp_mem_region_name(ctl->alg_region.type),
475 ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
476 ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
477 ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
478 ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
479 ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
480 ctl->enabled ? "enabled" : "disabled",
481 ctl->set ? "dirty" : "clean");
482 }
483
484 return 0;
485 }
486 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
487
488 /**
489 * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
490 * @dsp: pointer to DSP structure
491 * @debugfs_root: pointer to debugfs directory in which to create this DSP
492 * representation
493 */
cs_dsp_init_debugfs(struct cs_dsp * dsp,struct dentry * debugfs_root)494 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
495 {
496 struct dentry *root = NULL;
497 int i;
498
499 root = debugfs_create_dir(dsp->name, debugfs_root);
500
501 debugfs_create_bool("booted", 0444, root, &dsp->booted);
502 debugfs_create_bool("running", 0444, root, &dsp->running);
503 debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
504 debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
505
506 for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
507 debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
508 dsp, &cs_dsp_debugfs_fops[i].fops);
509
510 debugfs_create_file("controls", 0444, root, dsp,
511 &cs_dsp_debugfs_read_controls_fops);
512
513 dsp->debugfs_root = root;
514 }
515 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
516
517 /**
518 * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
519 * @dsp: pointer to DSP structure
520 */
cs_dsp_cleanup_debugfs(struct cs_dsp * dsp)521 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
522 {
523 cs_dsp_debugfs_clear(dsp);
524 debugfs_remove_recursive(dsp->debugfs_root);
525 dsp->debugfs_root = ERR_PTR(-ENODEV);
526 }
527 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
528 #else
cs_dsp_init_debugfs(struct cs_dsp * dsp,struct dentry * debugfs_root)529 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
530 {
531 }
532 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
533
cs_dsp_cleanup_debugfs(struct cs_dsp * dsp)534 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
535 {
536 }
537 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
538
cs_dsp_debugfs_save_wmfwname(struct cs_dsp * dsp,const char * s)539 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
540 const char *s)
541 {
542 }
543
cs_dsp_debugfs_save_binname(struct cs_dsp * dsp,const char * s)544 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
545 const char *s)
546 {
547 }
548
cs_dsp_debugfs_clear(struct cs_dsp * dsp)549 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
550 {
551 }
552 #endif
553
cs_dsp_find_region(struct cs_dsp * dsp,int type)554 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
555 int type)
556 {
557 int i;
558
559 for (i = 0; i < dsp->num_mems; i++)
560 if (dsp->mem[i].type == type)
561 return &dsp->mem[i];
562
563 return NULL;
564 }
565
cs_dsp_region_to_reg(struct cs_dsp_region const * mem,unsigned int offset)566 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
567 unsigned int offset)
568 {
569 switch (mem->type) {
570 case WMFW_ADSP1_PM:
571 return mem->base + (offset * 3);
572 case WMFW_ADSP1_DM:
573 case WMFW_ADSP2_XM:
574 case WMFW_ADSP2_YM:
575 case WMFW_ADSP1_ZM:
576 return mem->base + (offset * 2);
577 default:
578 WARN(1, "Unknown memory region type");
579 return offset;
580 }
581 }
582
cs_dsp_halo_region_to_reg(struct cs_dsp_region const * mem,unsigned int offset)583 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
584 unsigned int offset)
585 {
586 switch (mem->type) {
587 case WMFW_ADSP2_XM:
588 case WMFW_ADSP2_YM:
589 return mem->base + (offset * 4);
590 case WMFW_HALO_XM_PACKED:
591 case WMFW_HALO_YM_PACKED:
592 return (mem->base + (offset * 3)) & ~0x3;
593 case WMFW_HALO_PM_PACKED:
594 return mem->base + (offset * 5);
595 default:
596 WARN(1, "Unknown memory region type");
597 return offset;
598 }
599 }
600
cs_dsp_read_fw_status(struct cs_dsp * dsp,int noffs,unsigned int * offs)601 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
602 int noffs, unsigned int *offs)
603 {
604 unsigned int i;
605 int ret;
606
607 for (i = 0; i < noffs; ++i) {
608 ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
609 if (ret) {
610 cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
611 return;
612 }
613 }
614 }
615
cs_dsp_adsp2_show_fw_status(struct cs_dsp * dsp)616 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
617 {
618 unsigned int offs[] = {
619 ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
620 };
621
622 cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
623
624 cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
625 offs[0], offs[1], offs[2], offs[3]);
626 }
627
cs_dsp_adsp2v2_show_fw_status(struct cs_dsp * dsp)628 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
629 {
630 unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
631
632 cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
633
634 cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
635 offs[0] & 0xFFFF, offs[0] >> 16,
636 offs[1] & 0xFFFF, offs[1] >> 16);
637 }
638
cs_dsp_halo_show_fw_status(struct cs_dsp * dsp)639 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
640 {
641 unsigned int offs[] = {
642 HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
643 };
644
645 cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
646
647 cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
648 offs[0], offs[1], offs[2], offs[3]);
649 }
650
cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl * ctl,unsigned int * reg,unsigned int off)651 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
652 unsigned int off)
653 {
654 const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
655 struct cs_dsp *dsp = ctl->dsp;
656 const struct cs_dsp_region *mem;
657
658 mem = cs_dsp_find_region(dsp, alg_region->type);
659 if (!mem) {
660 cs_dsp_err(dsp, "No base for region %x\n",
661 alg_region->type);
662 return -EINVAL;
663 }
664
665 *reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
666
667 return 0;
668 }
669
670 /**
671 * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
672 * @ctl: pointer to acked coefficient control
673 * @event_id: the value to write to the given acked control
674 *
675 * Once the value has been written to the control the function shall block
676 * until the running firmware acknowledges the write or timeout is exceeded.
677 *
678 * Must be called with pwr_lock held.
679 *
680 * Return: Zero for success, a negative number on error.
681 */
cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl * ctl,unsigned int event_id)682 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
683 {
684 struct cs_dsp *dsp = ctl->dsp;
685 __be32 val = cpu_to_be32(event_id);
686 unsigned int reg;
687 int i, ret;
688
689 lockdep_assert_held(&dsp->pwr_lock);
690
691 if (!dsp->running)
692 return -EPERM;
693
694 ret = cs_dsp_coeff_base_reg(ctl, ®, 0);
695 if (ret)
696 return ret;
697
698 cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
699 event_id, ctl->alg_region.alg,
700 cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
701
702 ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
703 if (ret) {
704 cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
705 return ret;
706 }
707
708 /*
709 * Poll for ack, we initially poll at ~1ms intervals for firmwares
710 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
711 * to ack instantly so we do the first 1ms delay before reading the
712 * control to avoid a pointless bus transaction
713 */
714 for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
715 switch (i) {
716 case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
717 usleep_range(1000, 2000);
718 i++;
719 break;
720 default:
721 usleep_range(10000, 20000);
722 i += 10;
723 break;
724 }
725
726 ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
727 if (ret) {
728 cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
729 return ret;
730 }
731
732 if (val == 0) {
733 cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
734 return 0;
735 }
736 }
737
738 cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
739 reg, ctl->alg_region.alg,
740 cs_dsp_mem_region_name(ctl->alg_region.type),
741 ctl->offset);
742
743 return -ETIMEDOUT;
744 }
745 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, FW_CS_DSP);
746
cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)747 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
748 unsigned int off, const void *buf, size_t len)
749 {
750 struct cs_dsp *dsp = ctl->dsp;
751 void *scratch;
752 int ret;
753 unsigned int reg;
754
755 ret = cs_dsp_coeff_base_reg(ctl, ®, off);
756 if (ret)
757 return ret;
758
759 scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
760 if (!scratch)
761 return -ENOMEM;
762
763 ret = regmap_raw_write(dsp->regmap, reg, scratch,
764 len);
765 if (ret) {
766 cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
767 len, reg, ret);
768 kfree(scratch);
769 return ret;
770 }
771 cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
772
773 kfree(scratch);
774
775 return 0;
776 }
777
778 /**
779 * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
780 * @ctl: pointer to coefficient control
781 * @off: word offset at which data should be written
782 * @buf: the buffer to write to the given control
783 * @len: the length of the buffer in bytes
784 *
785 * Must be called with pwr_lock held.
786 *
787 * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
788 */
cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)789 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
790 unsigned int off, const void *buf, size_t len)
791 {
792 int ret = 0;
793
794 if (!ctl)
795 return -ENOENT;
796
797 lockdep_assert_held(&ctl->dsp->pwr_lock);
798
799 if (ctl->flags && !(ctl->flags & WMFW_CTL_FLAG_WRITEABLE))
800 return -EPERM;
801
802 if (len + off * sizeof(u32) > ctl->len)
803 return -EINVAL;
804
805 if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
806 ret = -EPERM;
807 } else if (buf != ctl->cache) {
808 if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
809 memcpy(ctl->cache + off * sizeof(u32), buf, len);
810 else
811 return 0;
812 }
813
814 ctl->set = 1;
815 if (ctl->enabled && ctl->dsp->running)
816 ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
817
818 if (ret < 0)
819 return ret;
820
821 return 1;
822 }
823 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, FW_CS_DSP);
824
cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)825 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
826 unsigned int off, void *buf, size_t len)
827 {
828 struct cs_dsp *dsp = ctl->dsp;
829 void *scratch;
830 int ret;
831 unsigned int reg;
832
833 ret = cs_dsp_coeff_base_reg(ctl, ®, off);
834 if (ret)
835 return ret;
836
837 scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
838 if (!scratch)
839 return -ENOMEM;
840
841 ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
842 if (ret) {
843 cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
844 len, reg, ret);
845 kfree(scratch);
846 return ret;
847 }
848 cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
849
850 memcpy(buf, scratch, len);
851 kfree(scratch);
852
853 return 0;
854 }
855
856 /**
857 * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
858 * @ctl: pointer to coefficient control
859 * @off: word offset at which data should be read
860 * @buf: the buffer to store to the given control
861 * @len: the length of the buffer in bytes
862 *
863 * Must be called with pwr_lock held.
864 *
865 * Return: Zero for success, a negative number on error.
866 */
cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)867 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
868 unsigned int off, void *buf, size_t len)
869 {
870 int ret = 0;
871
872 if (!ctl)
873 return -ENOENT;
874
875 lockdep_assert_held(&ctl->dsp->pwr_lock);
876
877 if (len + off * sizeof(u32) > ctl->len)
878 return -EINVAL;
879
880 if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
881 if (ctl->enabled && ctl->dsp->running)
882 return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
883 else
884 return -EPERM;
885 } else {
886 if (!ctl->flags && ctl->enabled && ctl->dsp->running)
887 ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
888
889 if (buf != ctl->cache)
890 memcpy(buf, ctl->cache + off * sizeof(u32), len);
891 }
892
893 return ret;
894 }
895 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, FW_CS_DSP);
896
cs_dsp_coeff_init_control_caches(struct cs_dsp * dsp)897 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
898 {
899 struct cs_dsp_coeff_ctl *ctl;
900 int ret;
901
902 list_for_each_entry(ctl, &dsp->ctl_list, list) {
903 if (!ctl->enabled || ctl->set)
904 continue;
905 if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
906 continue;
907
908 /*
909 * For readable controls populate the cache from the DSP memory.
910 * For non-readable controls the cache was zero-filled when
911 * created so we don't need to do anything.
912 */
913 if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
914 ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
915 if (ret < 0)
916 return ret;
917 }
918 }
919
920 return 0;
921 }
922
cs_dsp_coeff_sync_controls(struct cs_dsp * dsp)923 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
924 {
925 struct cs_dsp_coeff_ctl *ctl;
926 int ret;
927
928 list_for_each_entry(ctl, &dsp->ctl_list, list) {
929 if (!ctl->enabled)
930 continue;
931 if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
932 ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
933 ctl->len);
934 if (ret < 0)
935 return ret;
936 }
937 }
938
939 return 0;
940 }
941
cs_dsp_signal_event_controls(struct cs_dsp * dsp,unsigned int event)942 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
943 unsigned int event)
944 {
945 struct cs_dsp_coeff_ctl *ctl;
946 int ret;
947
948 list_for_each_entry(ctl, &dsp->ctl_list, list) {
949 if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
950 continue;
951
952 if (!ctl->enabled)
953 continue;
954
955 ret = cs_dsp_coeff_write_acked_control(ctl, event);
956 if (ret)
957 cs_dsp_warn(dsp,
958 "Failed to send 0x%x event to alg 0x%x (%d)\n",
959 event, ctl->alg_region.alg, ret);
960 }
961 }
962
cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl * ctl)963 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
964 {
965 kfree(ctl->cache);
966 kfree(ctl->subname);
967 kfree(ctl);
968 }
969
cs_dsp_create_control(struct cs_dsp * dsp,const struct cs_dsp_alg_region * alg_region,unsigned int offset,unsigned int len,const char * subname,unsigned int subname_len,unsigned int flags,unsigned int type)970 static int cs_dsp_create_control(struct cs_dsp *dsp,
971 const struct cs_dsp_alg_region *alg_region,
972 unsigned int offset, unsigned int len,
973 const char *subname, unsigned int subname_len,
974 unsigned int flags, unsigned int type)
975 {
976 struct cs_dsp_coeff_ctl *ctl;
977 int ret;
978
979 list_for_each_entry(ctl, &dsp->ctl_list, list) {
980 if (ctl->fw_name == dsp->fw_name &&
981 ctl->alg_region.alg == alg_region->alg &&
982 ctl->alg_region.type == alg_region->type) {
983 if ((!subname && !ctl->subname) ||
984 (subname && (ctl->subname_len == subname_len) &&
985 !strncmp(ctl->subname, subname, ctl->subname_len))) {
986 if (!ctl->enabled)
987 ctl->enabled = 1;
988 return 0;
989 }
990 }
991 }
992
993 ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
994 if (!ctl)
995 return -ENOMEM;
996
997 ctl->fw_name = dsp->fw_name;
998 ctl->alg_region = *alg_region;
999 if (subname && dsp->fw_ver >= 2) {
1000 ctl->subname_len = subname_len;
1001 ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
1002 if (!ctl->subname) {
1003 ret = -ENOMEM;
1004 goto err_ctl;
1005 }
1006 }
1007 ctl->enabled = 1;
1008 ctl->set = 0;
1009 ctl->dsp = dsp;
1010
1011 ctl->flags = flags;
1012 ctl->type = type;
1013 ctl->offset = offset;
1014 ctl->len = len;
1015 ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
1016 if (!ctl->cache) {
1017 ret = -ENOMEM;
1018 goto err_ctl_subname;
1019 }
1020
1021 list_add(&ctl->list, &dsp->ctl_list);
1022
1023 if (dsp->client_ops->control_add) {
1024 ret = dsp->client_ops->control_add(ctl);
1025 if (ret)
1026 goto err_list_del;
1027 }
1028
1029 return 0;
1030
1031 err_list_del:
1032 list_del(&ctl->list);
1033 kfree(ctl->cache);
1034 err_ctl_subname:
1035 kfree(ctl->subname);
1036 err_ctl:
1037 kfree(ctl);
1038
1039 return ret;
1040 }
1041
1042 struct cs_dsp_coeff_parsed_alg {
1043 int id;
1044 const u8 *name;
1045 int name_len;
1046 int ncoeff;
1047 };
1048
1049 struct cs_dsp_coeff_parsed_coeff {
1050 int offset;
1051 int mem_type;
1052 const u8 *name;
1053 int name_len;
1054 unsigned int ctl_type;
1055 int flags;
1056 int len;
1057 };
1058
cs_dsp_coeff_parse_string(int bytes,const u8 ** pos,unsigned int avail,const u8 ** str)1059 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, unsigned int avail,
1060 const u8 **str)
1061 {
1062 int length, total_field_len;
1063
1064 /* String fields are at least one __le32 */
1065 if (sizeof(__le32) > avail) {
1066 *pos = NULL;
1067 return 0;
1068 }
1069
1070 switch (bytes) {
1071 case 1:
1072 length = **pos;
1073 break;
1074 case 2:
1075 length = le16_to_cpu(*((__le16 *)*pos));
1076 break;
1077 default:
1078 return 0;
1079 }
1080
1081 total_field_len = ((length + bytes) + 3) & ~0x03;
1082 if ((unsigned int)total_field_len > avail) {
1083 *pos = NULL;
1084 return 0;
1085 }
1086
1087 if (str)
1088 *str = *pos + bytes;
1089
1090 *pos += total_field_len;
1091
1092 return length;
1093 }
1094
cs_dsp_coeff_parse_int(int bytes,const u8 ** pos)1095 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1096 {
1097 int val = 0;
1098
1099 switch (bytes) {
1100 case 2:
1101 val = le16_to_cpu(*((__le16 *)*pos));
1102 break;
1103 case 4:
1104 val = le32_to_cpu(*((__le32 *)*pos));
1105 break;
1106 default:
1107 break;
1108 }
1109
1110 *pos += bytes;
1111
1112 return val;
1113 }
1114
cs_dsp_coeff_parse_alg(struct cs_dsp * dsp,const struct wmfw_region * region,struct cs_dsp_coeff_parsed_alg * blk)1115 static int cs_dsp_coeff_parse_alg(struct cs_dsp *dsp,
1116 const struct wmfw_region *region,
1117 struct cs_dsp_coeff_parsed_alg *blk)
1118 {
1119 const struct wmfw_adsp_alg_data *raw;
1120 unsigned int data_len = le32_to_cpu(region->len);
1121 unsigned int pos;
1122 const u8 *tmp;
1123
1124 raw = (const struct wmfw_adsp_alg_data *)region->data;
1125
1126 switch (dsp->fw_ver) {
1127 case 0:
1128 case 1:
1129 if (sizeof(*raw) > data_len)
1130 return -EOVERFLOW;
1131
1132 blk->id = le32_to_cpu(raw->id);
1133 blk->name = raw->name;
1134 blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1135 blk->ncoeff = le32_to_cpu(raw->ncoeff);
1136
1137 pos = sizeof(*raw);
1138 break;
1139 default:
1140 if (sizeof(raw->id) > data_len)
1141 return -EOVERFLOW;
1142
1143 tmp = region->data;
1144 blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), &tmp);
1145 pos = tmp - region->data;
1146
1147 tmp = ®ion->data[pos];
1148 blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1149 &blk->name);
1150 if (!tmp)
1151 return -EOVERFLOW;
1152
1153 pos = tmp - region->data;
1154 cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1155 if (!tmp)
1156 return -EOVERFLOW;
1157
1158 pos = tmp - region->data;
1159 if (sizeof(raw->ncoeff) > (data_len - pos))
1160 return -EOVERFLOW;
1161
1162 blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), &tmp);
1163 pos += sizeof(raw->ncoeff);
1164 break;
1165 }
1166
1167 if ((int)blk->ncoeff < 0)
1168 return -EOVERFLOW;
1169
1170 cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1171 cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1172 cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1173
1174 return pos;
1175 }
1176
cs_dsp_coeff_parse_coeff(struct cs_dsp * dsp,const struct wmfw_region * region,unsigned int pos,struct cs_dsp_coeff_parsed_coeff * blk)1177 static int cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp,
1178 const struct wmfw_region *region,
1179 unsigned int pos,
1180 struct cs_dsp_coeff_parsed_coeff *blk)
1181 {
1182 const struct wmfw_adsp_coeff_data *raw;
1183 unsigned int data_len = le32_to_cpu(region->len);
1184 unsigned int blk_len, blk_end_pos;
1185 const u8 *tmp;
1186
1187 raw = (const struct wmfw_adsp_coeff_data *)®ion->data[pos];
1188 if (sizeof(raw->hdr) > (data_len - pos))
1189 return -EOVERFLOW;
1190
1191 blk_len = le32_to_cpu(raw->hdr.size);
1192 if (blk_len > S32_MAX)
1193 return -EOVERFLOW;
1194
1195 if (blk_len > (data_len - pos - sizeof(raw->hdr)))
1196 return -EOVERFLOW;
1197
1198 blk_end_pos = pos + sizeof(raw->hdr) + blk_len;
1199
1200 blk->offset = le16_to_cpu(raw->hdr.offset);
1201 blk->mem_type = le16_to_cpu(raw->hdr.type);
1202
1203 switch (dsp->fw_ver) {
1204 case 0:
1205 case 1:
1206 if (sizeof(*raw) > (data_len - pos))
1207 return -EOVERFLOW;
1208
1209 blk->name = raw->name;
1210 blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1211 blk->ctl_type = le16_to_cpu(raw->ctl_type);
1212 blk->flags = le16_to_cpu(raw->flags);
1213 blk->len = le32_to_cpu(raw->len);
1214 break;
1215 default:
1216 pos += sizeof(raw->hdr);
1217 tmp = ®ion->data[pos];
1218 blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1219 &blk->name);
1220 if (!tmp)
1221 return -EOVERFLOW;
1222
1223 pos = tmp - region->data;
1224 cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos, NULL);
1225 if (!tmp)
1226 return -EOVERFLOW;
1227
1228 pos = tmp - region->data;
1229 cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1230 if (!tmp)
1231 return -EOVERFLOW;
1232
1233 pos = tmp - region->data;
1234 if (sizeof(raw->ctl_type) + sizeof(raw->flags) + sizeof(raw->len) >
1235 (data_len - pos))
1236 return -EOVERFLOW;
1237
1238 blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1239 pos += sizeof(raw->ctl_type);
1240 blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1241 pos += sizeof(raw->flags);
1242 blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1243 break;
1244 }
1245
1246 cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1247 cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1248 cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1249 cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1250 cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1251 cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1252
1253 return blk_end_pos;
1254 }
1255
cs_dsp_check_coeff_flags(struct cs_dsp * dsp,const struct cs_dsp_coeff_parsed_coeff * coeff_blk,unsigned int f_required,unsigned int f_illegal)1256 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1257 const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1258 unsigned int f_required,
1259 unsigned int f_illegal)
1260 {
1261 if ((coeff_blk->flags & f_illegal) ||
1262 ((coeff_blk->flags & f_required) != f_required)) {
1263 cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1264 coeff_blk->flags, coeff_blk->ctl_type);
1265 return -EINVAL;
1266 }
1267
1268 return 0;
1269 }
1270
cs_dsp_parse_coeff(struct cs_dsp * dsp,const struct wmfw_region * region)1271 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1272 const struct wmfw_region *region)
1273 {
1274 struct cs_dsp_alg_region alg_region = {};
1275 struct cs_dsp_coeff_parsed_alg alg_blk;
1276 struct cs_dsp_coeff_parsed_coeff coeff_blk;
1277 int i, pos, ret;
1278
1279 pos = cs_dsp_coeff_parse_alg(dsp, region, &alg_blk);
1280 if (pos < 0)
1281 return pos;
1282
1283 for (i = 0; i < alg_blk.ncoeff; i++) {
1284 pos = cs_dsp_coeff_parse_coeff(dsp, region, pos, &coeff_blk);
1285 if (pos < 0)
1286 return pos;
1287
1288 switch (coeff_blk.ctl_type) {
1289 case WMFW_CTL_TYPE_BYTES:
1290 break;
1291 case WMFW_CTL_TYPE_ACKED:
1292 if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1293 continue; /* ignore */
1294
1295 ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1296 WMFW_CTL_FLAG_VOLATILE |
1297 WMFW_CTL_FLAG_WRITEABLE |
1298 WMFW_CTL_FLAG_READABLE,
1299 0);
1300 if (ret)
1301 return -EINVAL;
1302 break;
1303 case WMFW_CTL_TYPE_HOSTEVENT:
1304 case WMFW_CTL_TYPE_FWEVENT:
1305 ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1306 WMFW_CTL_FLAG_SYS |
1307 WMFW_CTL_FLAG_VOLATILE |
1308 WMFW_CTL_FLAG_WRITEABLE |
1309 WMFW_CTL_FLAG_READABLE,
1310 0);
1311 if (ret)
1312 return -EINVAL;
1313 break;
1314 case WMFW_CTL_TYPE_HOST_BUFFER:
1315 ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1316 WMFW_CTL_FLAG_SYS |
1317 WMFW_CTL_FLAG_VOLATILE |
1318 WMFW_CTL_FLAG_READABLE,
1319 0);
1320 if (ret)
1321 return -EINVAL;
1322 break;
1323 default:
1324 cs_dsp_err(dsp, "Unknown control type: %d\n",
1325 coeff_blk.ctl_type);
1326 return -EINVAL;
1327 }
1328
1329 alg_region.type = coeff_blk.mem_type;
1330 alg_region.alg = alg_blk.id;
1331
1332 ret = cs_dsp_create_control(dsp, &alg_region,
1333 coeff_blk.offset,
1334 coeff_blk.len,
1335 coeff_blk.name,
1336 coeff_blk.name_len,
1337 coeff_blk.flags,
1338 coeff_blk.ctl_type);
1339 if (ret < 0)
1340 cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1341 coeff_blk.name_len, coeff_blk.name, ret);
1342 }
1343
1344 return 0;
1345 }
1346
cs_dsp_adsp1_parse_sizes(struct cs_dsp * dsp,const char * const file,unsigned int pos,const struct firmware * firmware)1347 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1348 const char * const file,
1349 unsigned int pos,
1350 const struct firmware *firmware)
1351 {
1352 const struct wmfw_adsp1_sizes *adsp1_sizes;
1353
1354 adsp1_sizes = (void *)&firmware->data[pos];
1355 if (sizeof(*adsp1_sizes) > firmware->size - pos) {
1356 cs_dsp_err(dsp, "%s: file truncated\n", file);
1357 return 0;
1358 }
1359
1360 cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1361 le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1362 le32_to_cpu(adsp1_sizes->zm));
1363
1364 return pos + sizeof(*adsp1_sizes);
1365 }
1366
cs_dsp_adsp2_parse_sizes(struct cs_dsp * dsp,const char * const file,unsigned int pos,const struct firmware * firmware)1367 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1368 const char * const file,
1369 unsigned int pos,
1370 const struct firmware *firmware)
1371 {
1372 const struct wmfw_adsp2_sizes *adsp2_sizes;
1373
1374 adsp2_sizes = (void *)&firmware->data[pos];
1375 if (sizeof(*adsp2_sizes) > firmware->size - pos) {
1376 cs_dsp_err(dsp, "%s: file truncated\n", file);
1377 return 0;
1378 }
1379
1380 cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1381 le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1382 le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1383
1384 return pos + sizeof(*adsp2_sizes);
1385 }
1386
cs_dsp_validate_version(struct cs_dsp * dsp,unsigned int version)1387 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1388 {
1389 switch (version) {
1390 case 0:
1391 cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1392 return true;
1393 case 1:
1394 case 2:
1395 return true;
1396 default:
1397 return false;
1398 }
1399 }
1400
cs_dsp_halo_validate_version(struct cs_dsp * dsp,unsigned int version)1401 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1402 {
1403 switch (version) {
1404 case 3:
1405 return true;
1406 default:
1407 return false;
1408 }
1409 }
1410
cs_dsp_load(struct cs_dsp * dsp,const struct firmware * firmware,const char * file)1411 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1412 const char *file)
1413 {
1414 LIST_HEAD(buf_list);
1415 struct regmap *regmap = dsp->regmap;
1416 unsigned int pos = 0;
1417 const struct wmfw_header *header;
1418 const struct wmfw_footer *footer;
1419 const struct wmfw_region *region;
1420 const struct cs_dsp_region *mem;
1421 const char *region_name;
1422 char *text = NULL;
1423 struct cs_dsp_buf *buf;
1424 unsigned int reg;
1425 int regions = 0;
1426 int ret, offset, type;
1427
1428 if (!firmware)
1429 return 0;
1430
1431 ret = -EINVAL;
1432
1433 if (sizeof(*header) >= firmware->size) {
1434 ret = -EOVERFLOW;
1435 goto out_fw;
1436 }
1437
1438 header = (void *)&firmware->data[0];
1439
1440 if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1441 cs_dsp_err(dsp, "%s: invalid magic\n", file);
1442 goto out_fw;
1443 }
1444
1445 if (!dsp->ops->validate_version(dsp, header->ver)) {
1446 cs_dsp_err(dsp, "%s: unknown file format %d\n",
1447 file, header->ver);
1448 goto out_fw;
1449 }
1450
1451 cs_dsp_info(dsp, "Firmware version: %d\n", header->ver);
1452 dsp->fw_ver = header->ver;
1453
1454 if (header->core != dsp->type) {
1455 cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1456 file, header->core, dsp->type);
1457 goto out_fw;
1458 }
1459
1460 pos = sizeof(*header);
1461 pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1462 if ((pos == 0) || (sizeof(*footer) > firmware->size - pos)) {
1463 ret = -EOVERFLOW;
1464 goto out_fw;
1465 }
1466
1467 footer = (void *)&firmware->data[pos];
1468 pos += sizeof(*footer);
1469
1470 if (le32_to_cpu(header->len) != pos) {
1471 ret = -EOVERFLOW;
1472 goto out_fw;
1473 }
1474
1475 cs_dsp_dbg(dsp, "%s: timestamp %llu\n", file,
1476 le64_to_cpu(footer->timestamp));
1477
1478 while (pos < firmware->size) {
1479 /* Is there enough data for a complete block header? */
1480 if (sizeof(*region) > firmware->size - pos) {
1481 ret = -EOVERFLOW;
1482 goto out_fw;
1483 }
1484
1485 region = (void *)&(firmware->data[pos]);
1486
1487 if (le32_to_cpu(region->len) > firmware->size - pos - sizeof(*region)) {
1488 ret = -EOVERFLOW;
1489 goto out_fw;
1490 }
1491
1492 region_name = "Unknown";
1493 reg = 0;
1494 text = NULL;
1495 offset = le32_to_cpu(region->offset) & 0xffffff;
1496 type = be32_to_cpu(region->type) & 0xff;
1497
1498 switch (type) {
1499 case WMFW_NAME_TEXT:
1500 region_name = "Firmware name";
1501 text = kzalloc(le32_to_cpu(region->len) + 1,
1502 GFP_KERNEL);
1503 break;
1504 case WMFW_ALGORITHM_DATA:
1505 region_name = "Algorithm";
1506 ret = cs_dsp_parse_coeff(dsp, region);
1507 if (ret != 0)
1508 goto out_fw;
1509 break;
1510 case WMFW_INFO_TEXT:
1511 region_name = "Information";
1512 text = kzalloc(le32_to_cpu(region->len) + 1,
1513 GFP_KERNEL);
1514 break;
1515 case WMFW_ABSOLUTE:
1516 region_name = "Absolute";
1517 reg = offset;
1518 break;
1519 case WMFW_ADSP1_PM:
1520 case WMFW_ADSP1_DM:
1521 case WMFW_ADSP2_XM:
1522 case WMFW_ADSP2_YM:
1523 case WMFW_ADSP1_ZM:
1524 case WMFW_HALO_PM_PACKED:
1525 case WMFW_HALO_XM_PACKED:
1526 case WMFW_HALO_YM_PACKED:
1527 mem = cs_dsp_find_region(dsp, type);
1528 if (!mem) {
1529 cs_dsp_err(dsp, "No region of type: %x\n", type);
1530 ret = -EINVAL;
1531 goto out_fw;
1532 }
1533
1534 region_name = cs_dsp_mem_region_name(type);
1535 reg = dsp->ops->region_to_reg(mem, offset);
1536 break;
1537 default:
1538 cs_dsp_warn(dsp,
1539 "%s.%d: Unknown region type %x at %d(%x)\n",
1540 file, regions, type, pos, pos);
1541 break;
1542 }
1543
1544 cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1545 regions, le32_to_cpu(region->len), offset,
1546 region_name);
1547
1548 if (text) {
1549 memcpy(text, region->data, le32_to_cpu(region->len));
1550 cs_dsp_info(dsp, "%s: %s\n", file, text);
1551 kfree(text);
1552 text = NULL;
1553 }
1554
1555 if (reg) {
1556 buf = cs_dsp_buf_alloc(region->data,
1557 le32_to_cpu(region->len),
1558 &buf_list);
1559 if (!buf) {
1560 cs_dsp_err(dsp, "Out of memory\n");
1561 ret = -ENOMEM;
1562 goto out_fw;
1563 }
1564
1565 ret = regmap_raw_write(regmap, reg, buf->buf,
1566 le32_to_cpu(region->len));
1567 if (ret != 0) {
1568 cs_dsp_err(dsp,
1569 "%s.%d: Failed to write %d bytes at %d in %s: %d\n",
1570 file, regions,
1571 le32_to_cpu(region->len), offset,
1572 region_name, ret);
1573 goto out_fw;
1574 }
1575 }
1576
1577 pos += le32_to_cpu(region->len) + sizeof(*region);
1578 regions++;
1579 }
1580
1581 if (pos > firmware->size)
1582 cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1583 file, regions, pos - firmware->size);
1584
1585 cs_dsp_debugfs_save_wmfwname(dsp, file);
1586
1587 out_fw:
1588 cs_dsp_buf_free(&buf_list);
1589 kfree(text);
1590
1591 if (ret == -EOVERFLOW)
1592 cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
1593
1594 return ret;
1595 }
1596
1597 /**
1598 * cs_dsp_get_ctl() - Finds a matching coefficient control
1599 * @dsp: pointer to DSP structure
1600 * @name: pointer to string to match with a control's subname
1601 * @type: the algorithm type to match
1602 * @alg: the algorithm id to match
1603 *
1604 * Find cs_dsp_coeff_ctl with input name as its subname
1605 *
1606 * Return: pointer to the control on success, NULL if not found
1607 */
cs_dsp_get_ctl(struct cs_dsp * dsp,const char * name,int type,unsigned int alg)1608 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1609 unsigned int alg)
1610 {
1611 struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1612
1613 lockdep_assert_held(&dsp->pwr_lock);
1614
1615 list_for_each_entry(pos, &dsp->ctl_list, list) {
1616 if (!pos->subname)
1617 continue;
1618 if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1619 pos->fw_name == dsp->fw_name &&
1620 pos->alg_region.alg == alg &&
1621 pos->alg_region.type == type) {
1622 rslt = pos;
1623 break;
1624 }
1625 }
1626
1627 return rslt;
1628 }
1629 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, FW_CS_DSP);
1630
cs_dsp_ctl_fixup_base(struct cs_dsp * dsp,const struct cs_dsp_alg_region * alg_region)1631 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1632 const struct cs_dsp_alg_region *alg_region)
1633 {
1634 struct cs_dsp_coeff_ctl *ctl;
1635
1636 list_for_each_entry(ctl, &dsp->ctl_list, list) {
1637 if (ctl->fw_name == dsp->fw_name &&
1638 alg_region->alg == ctl->alg_region.alg &&
1639 alg_region->type == ctl->alg_region.type) {
1640 ctl->alg_region.base = alg_region->base;
1641 }
1642 }
1643 }
1644
cs_dsp_read_algs(struct cs_dsp * dsp,size_t n_algs,const struct cs_dsp_region * mem,unsigned int pos,unsigned int len)1645 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1646 const struct cs_dsp_region *mem,
1647 unsigned int pos, unsigned int len)
1648 {
1649 void *alg;
1650 unsigned int reg;
1651 int ret;
1652 __be32 val;
1653
1654 if (n_algs == 0) {
1655 cs_dsp_err(dsp, "No algorithms\n");
1656 return ERR_PTR(-EINVAL);
1657 }
1658
1659 if (n_algs > 1024) {
1660 cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1661 return ERR_PTR(-EINVAL);
1662 }
1663
1664 /* Read the terminator first to validate the length */
1665 reg = dsp->ops->region_to_reg(mem, pos + len);
1666
1667 ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1668 if (ret != 0) {
1669 cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1670 ret);
1671 return ERR_PTR(ret);
1672 }
1673
1674 if (be32_to_cpu(val) != 0xbedead)
1675 cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1676 reg, be32_to_cpu(val));
1677
1678 /* Convert length from DSP words to bytes */
1679 len *= sizeof(u32);
1680
1681 alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1682 if (!alg)
1683 return ERR_PTR(-ENOMEM);
1684
1685 reg = dsp->ops->region_to_reg(mem, pos);
1686
1687 ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1688 if (ret != 0) {
1689 cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1690 kfree(alg);
1691 return ERR_PTR(ret);
1692 }
1693
1694 return alg;
1695 }
1696
1697 /**
1698 * cs_dsp_find_alg_region() - Finds a matching algorithm region
1699 * @dsp: pointer to DSP structure
1700 * @type: the algorithm type to match
1701 * @id: the algorithm id to match
1702 *
1703 * Return: Pointer to matching algorithm region, or NULL if not found.
1704 */
cs_dsp_find_alg_region(struct cs_dsp * dsp,int type,unsigned int id)1705 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1706 int type, unsigned int id)
1707 {
1708 struct cs_dsp_alg_region *alg_region;
1709
1710 lockdep_assert_held(&dsp->pwr_lock);
1711
1712 list_for_each_entry(alg_region, &dsp->alg_regions, list) {
1713 if (id == alg_region->alg && type == alg_region->type)
1714 return alg_region;
1715 }
1716
1717 return NULL;
1718 }
1719 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, FW_CS_DSP);
1720
cs_dsp_create_region(struct cs_dsp * dsp,int type,__be32 id,__be32 ver,__be32 base)1721 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1722 int type, __be32 id,
1723 __be32 ver, __be32 base)
1724 {
1725 struct cs_dsp_alg_region *alg_region;
1726
1727 alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
1728 if (!alg_region)
1729 return ERR_PTR(-ENOMEM);
1730
1731 alg_region->type = type;
1732 alg_region->alg = be32_to_cpu(id);
1733 alg_region->ver = be32_to_cpu(ver);
1734 alg_region->base = be32_to_cpu(base);
1735
1736 list_add_tail(&alg_region->list, &dsp->alg_regions);
1737
1738 if (dsp->fw_ver > 0)
1739 cs_dsp_ctl_fixup_base(dsp, alg_region);
1740
1741 return alg_region;
1742 }
1743
cs_dsp_free_alg_regions(struct cs_dsp * dsp)1744 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1745 {
1746 struct cs_dsp_alg_region *alg_region;
1747
1748 while (!list_empty(&dsp->alg_regions)) {
1749 alg_region = list_first_entry(&dsp->alg_regions,
1750 struct cs_dsp_alg_region,
1751 list);
1752 list_del(&alg_region->list);
1753 kfree(alg_region);
1754 }
1755 }
1756
cs_dsp_parse_wmfw_id_header(struct cs_dsp * dsp,struct wmfw_id_hdr * fw,int nalgs)1757 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1758 struct wmfw_id_hdr *fw, int nalgs)
1759 {
1760 dsp->fw_id = be32_to_cpu(fw->id);
1761 dsp->fw_id_version = be32_to_cpu(fw->ver);
1762
1763 cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1764 dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1765 (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1766 nalgs);
1767 }
1768
cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp * dsp,struct wmfw_v3_id_hdr * fw,int nalgs)1769 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1770 struct wmfw_v3_id_hdr *fw, int nalgs)
1771 {
1772 dsp->fw_id = be32_to_cpu(fw->id);
1773 dsp->fw_id_version = be32_to_cpu(fw->ver);
1774 dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1775
1776 cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1777 dsp->fw_id, dsp->fw_vendor_id,
1778 (dsp->fw_id_version & 0xff0000) >> 16,
1779 (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1780 nalgs);
1781 }
1782
cs_dsp_create_regions(struct cs_dsp * dsp,__be32 id,__be32 ver,int nregions,const int * type,__be32 * base)1783 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1784 int nregions, const int *type, __be32 *base)
1785 {
1786 struct cs_dsp_alg_region *alg_region;
1787 int i;
1788
1789 for (i = 0; i < nregions; i++) {
1790 alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1791 if (IS_ERR(alg_region))
1792 return PTR_ERR(alg_region);
1793 }
1794
1795 return 0;
1796 }
1797
cs_dsp_adsp1_setup_algs(struct cs_dsp * dsp)1798 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1799 {
1800 struct wmfw_adsp1_id_hdr adsp1_id;
1801 struct wmfw_adsp1_alg_hdr *adsp1_alg;
1802 struct cs_dsp_alg_region *alg_region;
1803 const struct cs_dsp_region *mem;
1804 unsigned int pos, len;
1805 size_t n_algs;
1806 int i, ret;
1807
1808 mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1809 if (WARN_ON(!mem))
1810 return -EINVAL;
1811
1812 ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1813 sizeof(adsp1_id));
1814 if (ret != 0) {
1815 cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1816 ret);
1817 return ret;
1818 }
1819
1820 n_algs = be32_to_cpu(adsp1_id.n_algs);
1821
1822 cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1823
1824 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1825 adsp1_id.fw.id, adsp1_id.fw.ver,
1826 adsp1_id.zm);
1827 if (IS_ERR(alg_region))
1828 return PTR_ERR(alg_region);
1829
1830 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1831 adsp1_id.fw.id, adsp1_id.fw.ver,
1832 adsp1_id.dm);
1833 if (IS_ERR(alg_region))
1834 return PTR_ERR(alg_region);
1835
1836 /* Calculate offset and length in DSP words */
1837 pos = sizeof(adsp1_id) / sizeof(u32);
1838 len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1839
1840 adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1841 if (IS_ERR(adsp1_alg))
1842 return PTR_ERR(adsp1_alg);
1843
1844 for (i = 0; i < n_algs; i++) {
1845 cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1846 i, be32_to_cpu(adsp1_alg[i].alg.id),
1847 (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1848 (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1849 be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1850 be32_to_cpu(adsp1_alg[i].dm),
1851 be32_to_cpu(adsp1_alg[i].zm));
1852
1853 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1854 adsp1_alg[i].alg.id,
1855 adsp1_alg[i].alg.ver,
1856 adsp1_alg[i].dm);
1857 if (IS_ERR(alg_region)) {
1858 ret = PTR_ERR(alg_region);
1859 goto out;
1860 }
1861 if (dsp->fw_ver == 0) {
1862 if (i + 1 < n_algs) {
1863 len = be32_to_cpu(adsp1_alg[i + 1].dm);
1864 len -= be32_to_cpu(adsp1_alg[i].dm);
1865 len *= 4;
1866 cs_dsp_create_control(dsp, alg_region, 0,
1867 len, NULL, 0, 0,
1868 WMFW_CTL_TYPE_BYTES);
1869 } else {
1870 cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1871 be32_to_cpu(adsp1_alg[i].alg.id));
1872 }
1873 }
1874
1875 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1876 adsp1_alg[i].alg.id,
1877 adsp1_alg[i].alg.ver,
1878 adsp1_alg[i].zm);
1879 if (IS_ERR(alg_region)) {
1880 ret = PTR_ERR(alg_region);
1881 goto out;
1882 }
1883 if (dsp->fw_ver == 0) {
1884 if (i + 1 < n_algs) {
1885 len = be32_to_cpu(adsp1_alg[i + 1].zm);
1886 len -= be32_to_cpu(adsp1_alg[i].zm);
1887 len *= 4;
1888 cs_dsp_create_control(dsp, alg_region, 0,
1889 len, NULL, 0, 0,
1890 WMFW_CTL_TYPE_BYTES);
1891 } else {
1892 cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1893 be32_to_cpu(adsp1_alg[i].alg.id));
1894 }
1895 }
1896 }
1897
1898 out:
1899 kfree(adsp1_alg);
1900 return ret;
1901 }
1902
cs_dsp_adsp2_setup_algs(struct cs_dsp * dsp)1903 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1904 {
1905 struct wmfw_adsp2_id_hdr adsp2_id;
1906 struct wmfw_adsp2_alg_hdr *adsp2_alg;
1907 struct cs_dsp_alg_region *alg_region;
1908 const struct cs_dsp_region *mem;
1909 unsigned int pos, len;
1910 size_t n_algs;
1911 int i, ret;
1912
1913 mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1914 if (WARN_ON(!mem))
1915 return -EINVAL;
1916
1917 ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1918 sizeof(adsp2_id));
1919 if (ret != 0) {
1920 cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1921 ret);
1922 return ret;
1923 }
1924
1925 n_algs = be32_to_cpu(adsp2_id.n_algs);
1926
1927 cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1928
1929 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1930 adsp2_id.fw.id, adsp2_id.fw.ver,
1931 adsp2_id.xm);
1932 if (IS_ERR(alg_region))
1933 return PTR_ERR(alg_region);
1934
1935 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1936 adsp2_id.fw.id, adsp2_id.fw.ver,
1937 adsp2_id.ym);
1938 if (IS_ERR(alg_region))
1939 return PTR_ERR(alg_region);
1940
1941 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1942 adsp2_id.fw.id, adsp2_id.fw.ver,
1943 adsp2_id.zm);
1944 if (IS_ERR(alg_region))
1945 return PTR_ERR(alg_region);
1946
1947 /* Calculate offset and length in DSP words */
1948 pos = sizeof(adsp2_id) / sizeof(u32);
1949 len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
1950
1951 adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1952 if (IS_ERR(adsp2_alg))
1953 return PTR_ERR(adsp2_alg);
1954
1955 for (i = 0; i < n_algs; i++) {
1956 cs_dsp_dbg(dsp,
1957 "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
1958 i, be32_to_cpu(adsp2_alg[i].alg.id),
1959 (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
1960 (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
1961 be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
1962 be32_to_cpu(adsp2_alg[i].xm),
1963 be32_to_cpu(adsp2_alg[i].ym),
1964 be32_to_cpu(adsp2_alg[i].zm));
1965
1966 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1967 adsp2_alg[i].alg.id,
1968 adsp2_alg[i].alg.ver,
1969 adsp2_alg[i].xm);
1970 if (IS_ERR(alg_region)) {
1971 ret = PTR_ERR(alg_region);
1972 goto out;
1973 }
1974 if (dsp->fw_ver == 0) {
1975 if (i + 1 < n_algs) {
1976 len = be32_to_cpu(adsp2_alg[i + 1].xm);
1977 len -= be32_to_cpu(adsp2_alg[i].xm);
1978 len *= 4;
1979 cs_dsp_create_control(dsp, alg_region, 0,
1980 len, NULL, 0, 0,
1981 WMFW_CTL_TYPE_BYTES);
1982 } else {
1983 cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
1984 be32_to_cpu(adsp2_alg[i].alg.id));
1985 }
1986 }
1987
1988 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1989 adsp2_alg[i].alg.id,
1990 adsp2_alg[i].alg.ver,
1991 adsp2_alg[i].ym);
1992 if (IS_ERR(alg_region)) {
1993 ret = PTR_ERR(alg_region);
1994 goto out;
1995 }
1996 if (dsp->fw_ver == 0) {
1997 if (i + 1 < n_algs) {
1998 len = be32_to_cpu(adsp2_alg[i + 1].ym);
1999 len -= be32_to_cpu(adsp2_alg[i].ym);
2000 len *= 4;
2001 cs_dsp_create_control(dsp, alg_region, 0,
2002 len, NULL, 0, 0,
2003 WMFW_CTL_TYPE_BYTES);
2004 } else {
2005 cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
2006 be32_to_cpu(adsp2_alg[i].alg.id));
2007 }
2008 }
2009
2010 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
2011 adsp2_alg[i].alg.id,
2012 adsp2_alg[i].alg.ver,
2013 adsp2_alg[i].zm);
2014 if (IS_ERR(alg_region)) {
2015 ret = PTR_ERR(alg_region);
2016 goto out;
2017 }
2018 if (dsp->fw_ver == 0) {
2019 if (i + 1 < n_algs) {
2020 len = be32_to_cpu(adsp2_alg[i + 1].zm);
2021 len -= be32_to_cpu(adsp2_alg[i].zm);
2022 len *= 4;
2023 cs_dsp_create_control(dsp, alg_region, 0,
2024 len, NULL, 0, 0,
2025 WMFW_CTL_TYPE_BYTES);
2026 } else {
2027 cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
2028 be32_to_cpu(adsp2_alg[i].alg.id));
2029 }
2030 }
2031 }
2032
2033 out:
2034 kfree(adsp2_alg);
2035 return ret;
2036 }
2037
cs_dsp_halo_create_regions(struct cs_dsp * dsp,__be32 id,__be32 ver,__be32 xm_base,__be32 ym_base)2038 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
2039 __be32 xm_base, __be32 ym_base)
2040 {
2041 static const int types[] = {
2042 WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
2043 WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
2044 };
2045 __be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
2046
2047 return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
2048 }
2049
cs_dsp_halo_setup_algs(struct cs_dsp * dsp)2050 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
2051 {
2052 struct wmfw_halo_id_hdr halo_id;
2053 struct wmfw_halo_alg_hdr *halo_alg;
2054 const struct cs_dsp_region *mem;
2055 unsigned int pos, len;
2056 size_t n_algs;
2057 int i, ret;
2058
2059 mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
2060 if (WARN_ON(!mem))
2061 return -EINVAL;
2062
2063 ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
2064 sizeof(halo_id));
2065 if (ret != 0) {
2066 cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
2067 ret);
2068 return ret;
2069 }
2070
2071 n_algs = be32_to_cpu(halo_id.n_algs);
2072
2073 cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
2074
2075 ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
2076 halo_id.xm_base, halo_id.ym_base);
2077 if (ret)
2078 return ret;
2079
2080 /* Calculate offset and length in DSP words */
2081 pos = sizeof(halo_id) / sizeof(u32);
2082 len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
2083
2084 halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2085 if (IS_ERR(halo_alg))
2086 return PTR_ERR(halo_alg);
2087
2088 for (i = 0; i < n_algs; i++) {
2089 cs_dsp_dbg(dsp,
2090 "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2091 i, be32_to_cpu(halo_alg[i].alg.id),
2092 (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2093 (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2094 be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2095 be32_to_cpu(halo_alg[i].xm_base),
2096 be32_to_cpu(halo_alg[i].ym_base));
2097
2098 ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2099 halo_alg[i].alg.ver,
2100 halo_alg[i].xm_base,
2101 halo_alg[i].ym_base);
2102 if (ret)
2103 goto out;
2104 }
2105
2106 out:
2107 kfree(halo_alg);
2108 return ret;
2109 }
2110
cs_dsp_load_coeff(struct cs_dsp * dsp,const struct firmware * firmware,const char * file)2111 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2112 const char *file)
2113 {
2114 LIST_HEAD(buf_list);
2115 struct regmap *regmap = dsp->regmap;
2116 struct wmfw_coeff_hdr *hdr;
2117 struct wmfw_coeff_item *blk;
2118 const struct cs_dsp_region *mem;
2119 struct cs_dsp_alg_region *alg_region;
2120 const char *region_name;
2121 int ret, pos, blocks, type, offset, reg, version;
2122 char *text = NULL;
2123 struct cs_dsp_buf *buf;
2124
2125 if (!firmware)
2126 return 0;
2127
2128 ret = -EINVAL;
2129
2130 if (sizeof(*hdr) >= firmware->size) {
2131 cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2132 file, firmware->size);
2133 goto out_fw;
2134 }
2135
2136 hdr = (void *)&firmware->data[0];
2137 if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2138 cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2139 goto out_fw;
2140 }
2141
2142 switch (be32_to_cpu(hdr->rev) & 0xff) {
2143 case 1:
2144 case 2:
2145 break;
2146 default:
2147 cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2148 file, be32_to_cpu(hdr->rev) & 0xff);
2149 ret = -EINVAL;
2150 goto out_fw;
2151 }
2152
2153 cs_dsp_info(dsp, "%s: v%d.%d.%d\n", file,
2154 (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2155 (le32_to_cpu(hdr->ver) >> 8) & 0xff,
2156 le32_to_cpu(hdr->ver) & 0xff);
2157
2158 pos = le32_to_cpu(hdr->len);
2159
2160 blocks = 0;
2161 while (pos < firmware->size) {
2162 /* Is there enough data for a complete block header? */
2163 if (sizeof(*blk) > firmware->size - pos) {
2164 ret = -EOVERFLOW;
2165 goto out_fw;
2166 }
2167
2168 blk = (void *)(&firmware->data[pos]);
2169
2170 if (le32_to_cpu(blk->len) > firmware->size - pos - sizeof(*blk)) {
2171 ret = -EOVERFLOW;
2172 goto out_fw;
2173 }
2174
2175 type = le16_to_cpu(blk->type);
2176 offset = le16_to_cpu(blk->offset);
2177 version = le32_to_cpu(blk->ver) >> 8;
2178
2179 cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2180 file, blocks, le32_to_cpu(blk->id),
2181 (le32_to_cpu(blk->ver) >> 16) & 0xff,
2182 (le32_to_cpu(blk->ver) >> 8) & 0xff,
2183 le32_to_cpu(blk->ver) & 0xff);
2184 cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2185 file, blocks, le32_to_cpu(blk->len), offset, type);
2186
2187 reg = 0;
2188 region_name = "Unknown";
2189 switch (type) {
2190 case (WMFW_NAME_TEXT << 8):
2191 text = kzalloc(le32_to_cpu(blk->len) + 1, GFP_KERNEL);
2192 break;
2193 case (WMFW_INFO_TEXT << 8):
2194 case (WMFW_METADATA << 8):
2195 break;
2196 case (WMFW_ABSOLUTE << 8):
2197 /*
2198 * Old files may use this for global
2199 * coefficients.
2200 */
2201 if (le32_to_cpu(blk->id) == dsp->fw_id &&
2202 offset == 0) {
2203 region_name = "global coefficients";
2204 mem = cs_dsp_find_region(dsp, type);
2205 if (!mem) {
2206 cs_dsp_err(dsp, "No ZM\n");
2207 break;
2208 }
2209 reg = dsp->ops->region_to_reg(mem, 0);
2210
2211 } else {
2212 region_name = "register";
2213 reg = offset;
2214 }
2215 break;
2216
2217 case WMFW_ADSP1_DM:
2218 case WMFW_ADSP1_ZM:
2219 case WMFW_ADSP2_XM:
2220 case WMFW_ADSP2_YM:
2221 case WMFW_HALO_XM_PACKED:
2222 case WMFW_HALO_YM_PACKED:
2223 case WMFW_HALO_PM_PACKED:
2224 cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2225 file, blocks, le32_to_cpu(blk->len),
2226 type, le32_to_cpu(blk->id));
2227
2228 region_name = cs_dsp_mem_region_name(type);
2229 mem = cs_dsp_find_region(dsp, type);
2230 if (!mem) {
2231 cs_dsp_err(dsp, "No base for region %x\n", type);
2232 break;
2233 }
2234
2235 alg_region = cs_dsp_find_alg_region(dsp, type,
2236 le32_to_cpu(blk->id));
2237 if (alg_region) {
2238 if (version != alg_region->ver)
2239 cs_dsp_warn(dsp,
2240 "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2241 (version >> 16) & 0xFF,
2242 (version >> 8) & 0xFF,
2243 version & 0xFF,
2244 (alg_region->ver >> 16) & 0xFF,
2245 (alg_region->ver >> 8) & 0xFF,
2246 alg_region->ver & 0xFF);
2247
2248 reg = alg_region->base;
2249 reg = dsp->ops->region_to_reg(mem, reg);
2250 reg += offset;
2251 } else {
2252 cs_dsp_err(dsp, "No %s for algorithm %x\n",
2253 region_name, le32_to_cpu(blk->id));
2254 }
2255 break;
2256
2257 default:
2258 cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2259 file, blocks, type, pos);
2260 break;
2261 }
2262
2263 if (text) {
2264 memcpy(text, blk->data, le32_to_cpu(blk->len));
2265 cs_dsp_info(dsp, "%s: %s\n", dsp->fw_name, text);
2266 kfree(text);
2267 text = NULL;
2268 }
2269
2270 if (reg) {
2271 buf = cs_dsp_buf_alloc(blk->data,
2272 le32_to_cpu(blk->len),
2273 &buf_list);
2274 if (!buf) {
2275 cs_dsp_err(dsp, "Out of memory\n");
2276 ret = -ENOMEM;
2277 goto out_fw;
2278 }
2279
2280 cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
2281 file, blocks, le32_to_cpu(blk->len),
2282 reg);
2283 ret = regmap_raw_write(regmap, reg, buf->buf,
2284 le32_to_cpu(blk->len));
2285 if (ret != 0) {
2286 cs_dsp_err(dsp,
2287 "%s.%d: Failed to write to %x in %s: %d\n",
2288 file, blocks, reg, region_name, ret);
2289 }
2290 }
2291
2292 pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2293 blocks++;
2294 }
2295
2296 if (pos > firmware->size)
2297 cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2298 file, blocks, pos - firmware->size);
2299
2300 cs_dsp_debugfs_save_binname(dsp, file);
2301
2302 out_fw:
2303 cs_dsp_buf_free(&buf_list);
2304 kfree(text);
2305
2306 if (ret == -EOVERFLOW)
2307 cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
2308
2309 return ret;
2310 }
2311
cs_dsp_create_name(struct cs_dsp * dsp)2312 static int cs_dsp_create_name(struct cs_dsp *dsp)
2313 {
2314 if (!dsp->name) {
2315 dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2316 dsp->num);
2317 if (!dsp->name)
2318 return -ENOMEM;
2319 }
2320
2321 return 0;
2322 }
2323
cs_dsp_common_init(struct cs_dsp * dsp)2324 static int cs_dsp_common_init(struct cs_dsp *dsp)
2325 {
2326 int ret;
2327
2328 ret = cs_dsp_create_name(dsp);
2329 if (ret)
2330 return ret;
2331
2332 INIT_LIST_HEAD(&dsp->alg_regions);
2333 INIT_LIST_HEAD(&dsp->ctl_list);
2334
2335 mutex_init(&dsp->pwr_lock);
2336
2337 #ifdef CONFIG_DEBUG_FS
2338 /* Ensure this is invalid if client never provides a debugfs root */
2339 dsp->debugfs_root = ERR_PTR(-ENODEV);
2340 #endif
2341
2342 return 0;
2343 }
2344
2345 /**
2346 * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2347 * @dsp: pointer to DSP structure
2348 *
2349 * Return: Zero for success, a negative number on error.
2350 */
cs_dsp_adsp1_init(struct cs_dsp * dsp)2351 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2352 {
2353 dsp->ops = &cs_dsp_adsp1_ops;
2354
2355 return cs_dsp_common_init(dsp);
2356 }
2357 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, FW_CS_DSP);
2358
2359 /**
2360 * cs_dsp_adsp1_power_up() - Load and start the named firmware
2361 * @dsp: pointer to DSP structure
2362 * @wmfw_firmware: the firmware to be sent
2363 * @wmfw_filename: file name of firmware to be sent
2364 * @coeff_firmware: the coefficient data to be sent
2365 * @coeff_filename: file name of coefficient to data be sent
2366 * @fw_name: the user-friendly firmware name
2367 *
2368 * Return: Zero for success, a negative number on error.
2369 */
cs_dsp_adsp1_power_up(struct cs_dsp * dsp,const struct firmware * wmfw_firmware,char * wmfw_filename,const struct firmware * coeff_firmware,char * coeff_filename,const char * fw_name)2370 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2371 const struct firmware *wmfw_firmware, char *wmfw_filename,
2372 const struct firmware *coeff_firmware, char *coeff_filename,
2373 const char *fw_name)
2374 {
2375 unsigned int val;
2376 int ret;
2377
2378 mutex_lock(&dsp->pwr_lock);
2379
2380 dsp->fw_name = fw_name;
2381
2382 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2383 ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2384
2385 /*
2386 * For simplicity set the DSP clock rate to be the
2387 * SYSCLK rate rather than making it configurable.
2388 */
2389 if (dsp->sysclk_reg) {
2390 ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2391 if (ret != 0) {
2392 cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2393 goto err_mutex;
2394 }
2395
2396 val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2397
2398 ret = regmap_update_bits(dsp->regmap,
2399 dsp->base + ADSP1_CONTROL_31,
2400 ADSP1_CLK_SEL_MASK, val);
2401 if (ret != 0) {
2402 cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2403 goto err_mutex;
2404 }
2405 }
2406
2407 ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2408 if (ret != 0)
2409 goto err_ena;
2410
2411 ret = cs_dsp_adsp1_setup_algs(dsp);
2412 if (ret != 0)
2413 goto err_ena;
2414
2415 ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2416 if (ret != 0)
2417 goto err_ena;
2418
2419 /* Initialize caches for enabled and unset controls */
2420 ret = cs_dsp_coeff_init_control_caches(dsp);
2421 if (ret != 0)
2422 goto err_ena;
2423
2424 /* Sync set controls */
2425 ret = cs_dsp_coeff_sync_controls(dsp);
2426 if (ret != 0)
2427 goto err_ena;
2428
2429 dsp->booted = true;
2430
2431 /* Start the core running */
2432 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2433 ADSP1_CORE_ENA | ADSP1_START,
2434 ADSP1_CORE_ENA | ADSP1_START);
2435
2436 dsp->running = true;
2437
2438 mutex_unlock(&dsp->pwr_lock);
2439
2440 return 0;
2441
2442 err_ena:
2443 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2444 ADSP1_SYS_ENA, 0);
2445 err_mutex:
2446 mutex_unlock(&dsp->pwr_lock);
2447 return ret;
2448 }
2449 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, FW_CS_DSP);
2450
2451 /**
2452 * cs_dsp_adsp1_power_down() - Halts the DSP
2453 * @dsp: pointer to DSP structure
2454 */
cs_dsp_adsp1_power_down(struct cs_dsp * dsp)2455 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2456 {
2457 struct cs_dsp_coeff_ctl *ctl;
2458
2459 mutex_lock(&dsp->pwr_lock);
2460
2461 dsp->running = false;
2462 dsp->booted = false;
2463
2464 /* Halt the core */
2465 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2466 ADSP1_CORE_ENA | ADSP1_START, 0);
2467
2468 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2469 ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2470
2471 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2472 ADSP1_SYS_ENA, 0);
2473
2474 list_for_each_entry(ctl, &dsp->ctl_list, list)
2475 ctl->enabled = 0;
2476
2477 cs_dsp_free_alg_regions(dsp);
2478
2479 mutex_unlock(&dsp->pwr_lock);
2480 }
2481 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, FW_CS_DSP);
2482
cs_dsp_adsp2v2_enable_core(struct cs_dsp * dsp)2483 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2484 {
2485 unsigned int val;
2486 int ret, count;
2487
2488 /* Wait for the RAM to start, should be near instantaneous */
2489 for (count = 0; count < 10; ++count) {
2490 ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2491 if (ret != 0)
2492 return ret;
2493
2494 if (val & ADSP2_RAM_RDY)
2495 break;
2496
2497 usleep_range(250, 500);
2498 }
2499
2500 if (!(val & ADSP2_RAM_RDY)) {
2501 cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2502 return -EBUSY;
2503 }
2504
2505 cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2506
2507 return 0;
2508 }
2509
cs_dsp_adsp2_enable_core(struct cs_dsp * dsp)2510 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2511 {
2512 int ret;
2513
2514 ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2515 ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2516 if (ret != 0)
2517 return ret;
2518
2519 return cs_dsp_adsp2v2_enable_core(dsp);
2520 }
2521
cs_dsp_adsp2_lock(struct cs_dsp * dsp,unsigned int lock_regions)2522 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2523 {
2524 struct regmap *regmap = dsp->regmap;
2525 unsigned int code0, code1, lock_reg;
2526
2527 if (!(lock_regions & CS_ADSP2_REGION_ALL))
2528 return 0;
2529
2530 lock_regions &= CS_ADSP2_REGION_ALL;
2531 lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2532
2533 while (lock_regions) {
2534 code0 = code1 = 0;
2535 if (lock_regions & BIT(0)) {
2536 code0 = ADSP2_LOCK_CODE_0;
2537 code1 = ADSP2_LOCK_CODE_1;
2538 }
2539 if (lock_regions & BIT(1)) {
2540 code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2541 code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2542 }
2543 regmap_write(regmap, lock_reg, code0);
2544 regmap_write(regmap, lock_reg, code1);
2545 lock_regions >>= 2;
2546 lock_reg += 2;
2547 }
2548
2549 return 0;
2550 }
2551
cs_dsp_adsp2_enable_memory(struct cs_dsp * dsp)2552 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2553 {
2554 return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2555 ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2556 }
2557
cs_dsp_adsp2_disable_memory(struct cs_dsp * dsp)2558 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2559 {
2560 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2561 ADSP2_MEM_ENA, 0);
2562 }
2563
cs_dsp_adsp2_disable_core(struct cs_dsp * dsp)2564 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2565 {
2566 regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2567 regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2568 regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2569
2570 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2571 ADSP2_SYS_ENA, 0);
2572 }
2573
cs_dsp_adsp2v2_disable_core(struct cs_dsp * dsp)2574 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2575 {
2576 regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2577 regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2578 regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2579 }
2580
cs_dsp_halo_configure_mpu(struct cs_dsp * dsp,unsigned int lock_regions)2581 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2582 {
2583 struct reg_sequence config[] = {
2584 { dsp->base + HALO_MPU_LOCK_CONFIG, 0x5555 },
2585 { dsp->base + HALO_MPU_LOCK_CONFIG, 0xAAAA },
2586 { dsp->base + HALO_MPU_XMEM_ACCESS_0, 0xFFFFFFFF },
2587 { dsp->base + HALO_MPU_YMEM_ACCESS_0, 0xFFFFFFFF },
2588 { dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2589 { dsp->base + HALO_MPU_XREG_ACCESS_0, lock_regions },
2590 { dsp->base + HALO_MPU_YREG_ACCESS_0, lock_regions },
2591 { dsp->base + HALO_MPU_XMEM_ACCESS_1, 0xFFFFFFFF },
2592 { dsp->base + HALO_MPU_YMEM_ACCESS_1, 0xFFFFFFFF },
2593 { dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2594 { dsp->base + HALO_MPU_XREG_ACCESS_1, lock_regions },
2595 { dsp->base + HALO_MPU_YREG_ACCESS_1, lock_regions },
2596 { dsp->base + HALO_MPU_XMEM_ACCESS_2, 0xFFFFFFFF },
2597 { dsp->base + HALO_MPU_YMEM_ACCESS_2, 0xFFFFFFFF },
2598 { dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2599 { dsp->base + HALO_MPU_XREG_ACCESS_2, lock_regions },
2600 { dsp->base + HALO_MPU_YREG_ACCESS_2, lock_regions },
2601 { dsp->base + HALO_MPU_XMEM_ACCESS_3, 0xFFFFFFFF },
2602 { dsp->base + HALO_MPU_YMEM_ACCESS_3, 0xFFFFFFFF },
2603 { dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2604 { dsp->base + HALO_MPU_XREG_ACCESS_3, lock_regions },
2605 { dsp->base + HALO_MPU_YREG_ACCESS_3, lock_regions },
2606 { dsp->base + HALO_MPU_LOCK_CONFIG, 0 },
2607 };
2608
2609 return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2610 }
2611
2612 /**
2613 * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2614 * @dsp: pointer to DSP structure
2615 * @freq: clock rate to set
2616 *
2617 * This is only for use on ADSP2 cores.
2618 *
2619 * Return: Zero for success, a negative number on error.
2620 */
cs_dsp_set_dspclk(struct cs_dsp * dsp,unsigned int freq)2621 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2622 {
2623 int ret;
2624
2625 ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2626 ADSP2_CLK_SEL_MASK,
2627 freq << ADSP2_CLK_SEL_SHIFT);
2628 if (ret)
2629 cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2630
2631 return ret;
2632 }
2633 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, FW_CS_DSP);
2634
cs_dsp_stop_watchdog(struct cs_dsp * dsp)2635 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2636 {
2637 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2638 ADSP2_WDT_ENA_MASK, 0);
2639 }
2640
cs_dsp_halo_stop_watchdog(struct cs_dsp * dsp)2641 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2642 {
2643 regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2644 HALO_WDT_EN_MASK, 0);
2645 }
2646
2647 /**
2648 * cs_dsp_power_up() - Downloads firmware to the DSP
2649 * @dsp: pointer to DSP structure
2650 * @wmfw_firmware: the firmware to be sent
2651 * @wmfw_filename: file name of firmware to be sent
2652 * @coeff_firmware: the coefficient data to be sent
2653 * @coeff_filename: file name of coefficient to data be sent
2654 * @fw_name: the user-friendly firmware name
2655 *
2656 * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2657 * and downloads the firmware but does not start the firmware running. The
2658 * cs_dsp booted flag will be set once completed and if the core has a low-power
2659 * memory retention mode it will be put into this state after the firmware is
2660 * downloaded.
2661 *
2662 * Return: Zero for success, a negative number on error.
2663 */
cs_dsp_power_up(struct cs_dsp * dsp,const struct firmware * wmfw_firmware,char * wmfw_filename,const struct firmware * coeff_firmware,char * coeff_filename,const char * fw_name)2664 int cs_dsp_power_up(struct cs_dsp *dsp,
2665 const struct firmware *wmfw_firmware, char *wmfw_filename,
2666 const struct firmware *coeff_firmware, char *coeff_filename,
2667 const char *fw_name)
2668 {
2669 int ret;
2670
2671 mutex_lock(&dsp->pwr_lock);
2672
2673 dsp->fw_name = fw_name;
2674
2675 if (dsp->ops->enable_memory) {
2676 ret = dsp->ops->enable_memory(dsp);
2677 if (ret != 0)
2678 goto err_mutex;
2679 }
2680
2681 if (dsp->ops->enable_core) {
2682 ret = dsp->ops->enable_core(dsp);
2683 if (ret != 0)
2684 goto err_mem;
2685 }
2686
2687 ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2688 if (ret != 0)
2689 goto err_ena;
2690
2691 ret = dsp->ops->setup_algs(dsp);
2692 if (ret != 0)
2693 goto err_ena;
2694
2695 ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2696 if (ret != 0)
2697 goto err_ena;
2698
2699 /* Initialize caches for enabled and unset controls */
2700 ret = cs_dsp_coeff_init_control_caches(dsp);
2701 if (ret != 0)
2702 goto err_ena;
2703
2704 if (dsp->ops->disable_core)
2705 dsp->ops->disable_core(dsp);
2706
2707 dsp->booted = true;
2708
2709 mutex_unlock(&dsp->pwr_lock);
2710
2711 return 0;
2712 err_ena:
2713 if (dsp->ops->disable_core)
2714 dsp->ops->disable_core(dsp);
2715 err_mem:
2716 if (dsp->ops->disable_memory)
2717 dsp->ops->disable_memory(dsp);
2718 err_mutex:
2719 mutex_unlock(&dsp->pwr_lock);
2720
2721 return ret;
2722 }
2723 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, FW_CS_DSP);
2724
2725 /**
2726 * cs_dsp_power_down() - Powers-down the DSP
2727 * @dsp: pointer to DSP structure
2728 *
2729 * cs_dsp_stop() must have been called before this function. The core will be
2730 * fully powered down and so the memory will not be retained.
2731 */
cs_dsp_power_down(struct cs_dsp * dsp)2732 void cs_dsp_power_down(struct cs_dsp *dsp)
2733 {
2734 struct cs_dsp_coeff_ctl *ctl;
2735
2736 mutex_lock(&dsp->pwr_lock);
2737
2738 cs_dsp_debugfs_clear(dsp);
2739
2740 dsp->fw_id = 0;
2741 dsp->fw_id_version = 0;
2742
2743 dsp->booted = false;
2744
2745 if (dsp->ops->disable_memory)
2746 dsp->ops->disable_memory(dsp);
2747
2748 list_for_each_entry(ctl, &dsp->ctl_list, list)
2749 ctl->enabled = 0;
2750
2751 cs_dsp_free_alg_regions(dsp);
2752
2753 mutex_unlock(&dsp->pwr_lock);
2754
2755 cs_dsp_dbg(dsp, "Shutdown complete\n");
2756 }
2757 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, FW_CS_DSP);
2758
cs_dsp_adsp2_start_core(struct cs_dsp * dsp)2759 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2760 {
2761 return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2762 ADSP2_CORE_ENA | ADSP2_START,
2763 ADSP2_CORE_ENA | ADSP2_START);
2764 }
2765
cs_dsp_adsp2_stop_core(struct cs_dsp * dsp)2766 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2767 {
2768 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2769 ADSP2_CORE_ENA | ADSP2_START, 0);
2770 }
2771
2772 /**
2773 * cs_dsp_run() - Starts the firmware running
2774 * @dsp: pointer to DSP structure
2775 *
2776 * cs_dsp_power_up() must have previously been called successfully.
2777 *
2778 * Return: Zero for success, a negative number on error.
2779 */
cs_dsp_run(struct cs_dsp * dsp)2780 int cs_dsp_run(struct cs_dsp *dsp)
2781 {
2782 int ret;
2783
2784 mutex_lock(&dsp->pwr_lock);
2785
2786 if (!dsp->booted) {
2787 ret = -EIO;
2788 goto err;
2789 }
2790
2791 if (dsp->ops->enable_core) {
2792 ret = dsp->ops->enable_core(dsp);
2793 if (ret != 0)
2794 goto err;
2795 }
2796
2797 if (dsp->client_ops->pre_run) {
2798 ret = dsp->client_ops->pre_run(dsp);
2799 if (ret)
2800 goto err;
2801 }
2802
2803 /* Sync set controls */
2804 ret = cs_dsp_coeff_sync_controls(dsp);
2805 if (ret != 0)
2806 goto err;
2807
2808 if (dsp->ops->lock_memory) {
2809 ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2810 if (ret != 0) {
2811 cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2812 goto err;
2813 }
2814 }
2815
2816 if (dsp->ops->start_core) {
2817 ret = dsp->ops->start_core(dsp);
2818 if (ret != 0)
2819 goto err;
2820 }
2821
2822 dsp->running = true;
2823
2824 if (dsp->client_ops->post_run) {
2825 ret = dsp->client_ops->post_run(dsp);
2826 if (ret)
2827 goto err;
2828 }
2829
2830 mutex_unlock(&dsp->pwr_lock);
2831
2832 return 0;
2833
2834 err:
2835 if (dsp->ops->stop_core)
2836 dsp->ops->stop_core(dsp);
2837 if (dsp->ops->disable_core)
2838 dsp->ops->disable_core(dsp);
2839 mutex_unlock(&dsp->pwr_lock);
2840
2841 return ret;
2842 }
2843 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, FW_CS_DSP);
2844
2845 /**
2846 * cs_dsp_stop() - Stops the firmware
2847 * @dsp: pointer to DSP structure
2848 *
2849 * Memory will not be disabled so firmware will remain loaded.
2850 */
cs_dsp_stop(struct cs_dsp * dsp)2851 void cs_dsp_stop(struct cs_dsp *dsp)
2852 {
2853 /* Tell the firmware to cleanup */
2854 cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2855
2856 if (dsp->ops->stop_watchdog)
2857 dsp->ops->stop_watchdog(dsp);
2858
2859 /* Log firmware state, it can be useful for analysis */
2860 if (dsp->ops->show_fw_status)
2861 dsp->ops->show_fw_status(dsp);
2862
2863 mutex_lock(&dsp->pwr_lock);
2864
2865 if (dsp->client_ops->pre_stop)
2866 dsp->client_ops->pre_stop(dsp);
2867
2868 dsp->running = false;
2869
2870 if (dsp->ops->stop_core)
2871 dsp->ops->stop_core(dsp);
2872 if (dsp->ops->disable_core)
2873 dsp->ops->disable_core(dsp);
2874
2875 if (dsp->client_ops->post_stop)
2876 dsp->client_ops->post_stop(dsp);
2877
2878 mutex_unlock(&dsp->pwr_lock);
2879
2880 cs_dsp_dbg(dsp, "Execution stopped\n");
2881 }
2882 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, FW_CS_DSP);
2883
cs_dsp_halo_start_core(struct cs_dsp * dsp)2884 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2885 {
2886 int ret;
2887
2888 ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2889 HALO_CORE_RESET | HALO_CORE_EN,
2890 HALO_CORE_RESET | HALO_CORE_EN);
2891 if (ret)
2892 return ret;
2893
2894 return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2895 HALO_CORE_RESET, 0);
2896 }
2897
cs_dsp_halo_stop_core(struct cs_dsp * dsp)2898 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2899 {
2900 regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2901 HALO_CORE_EN, 0);
2902
2903 /* reset halo core with CORE_SOFT_RESET */
2904 regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2905 HALO_CORE_SOFT_RESET_MASK, 1);
2906 }
2907
2908 /**
2909 * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2910 * @dsp: pointer to DSP structure
2911 *
2912 * Return: Zero for success, a negative number on error.
2913 */
cs_dsp_adsp2_init(struct cs_dsp * dsp)2914 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2915 {
2916 int ret;
2917
2918 switch (dsp->rev) {
2919 case 0:
2920 /*
2921 * Disable the DSP memory by default when in reset for a small
2922 * power saving.
2923 */
2924 ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2925 ADSP2_MEM_ENA, 0);
2926 if (ret) {
2927 cs_dsp_err(dsp,
2928 "Failed to clear memory retention: %d\n", ret);
2929 return ret;
2930 }
2931
2932 dsp->ops = &cs_dsp_adsp2_ops[0];
2933 break;
2934 case 1:
2935 dsp->ops = &cs_dsp_adsp2_ops[1];
2936 break;
2937 default:
2938 dsp->ops = &cs_dsp_adsp2_ops[2];
2939 break;
2940 }
2941
2942 return cs_dsp_common_init(dsp);
2943 }
2944 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, FW_CS_DSP);
2945
2946 /**
2947 * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2948 * @dsp: pointer to DSP structure
2949 *
2950 * Return: Zero for success, a negative number on error.
2951 */
cs_dsp_halo_init(struct cs_dsp * dsp)2952 int cs_dsp_halo_init(struct cs_dsp *dsp)
2953 {
2954 if (dsp->no_core_startstop)
2955 dsp->ops = &cs_dsp_halo_ao_ops;
2956 else
2957 dsp->ops = &cs_dsp_halo_ops;
2958
2959 return cs_dsp_common_init(dsp);
2960 }
2961 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, FW_CS_DSP);
2962
2963 /**
2964 * cs_dsp_remove() - Clean a cs_dsp before deletion
2965 * @dsp: pointer to DSP structure
2966 */
cs_dsp_remove(struct cs_dsp * dsp)2967 void cs_dsp_remove(struct cs_dsp *dsp)
2968 {
2969 struct cs_dsp_coeff_ctl *ctl;
2970
2971 while (!list_empty(&dsp->ctl_list)) {
2972 ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
2973
2974 if (dsp->client_ops->control_remove)
2975 dsp->client_ops->control_remove(ctl);
2976
2977 list_del(&ctl->list);
2978 cs_dsp_free_ctl_blk(ctl);
2979 }
2980 }
2981 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, FW_CS_DSP);
2982
2983 /**
2984 * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
2985 * @dsp: pointer to DSP structure
2986 * @mem_type: the type of DSP memory containing the data to be read
2987 * @mem_addr: the address of the data within the memory region
2988 * @num_words: the length of the data to read
2989 * @data: a buffer to store the fetched data
2990 *
2991 * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
2992 * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
2993 * cs_dsp_remove_padding()
2994 *
2995 * Return: Zero for success, a negative number on error.
2996 */
cs_dsp_read_raw_data_block(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,unsigned int num_words,__be32 * data)2997 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
2998 unsigned int num_words, __be32 *data)
2999 {
3000 struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3001 unsigned int reg;
3002 int ret;
3003
3004 lockdep_assert_held(&dsp->pwr_lock);
3005
3006 if (!mem)
3007 return -EINVAL;
3008
3009 reg = dsp->ops->region_to_reg(mem, mem_addr);
3010
3011 ret = regmap_raw_read(dsp->regmap, reg, data,
3012 sizeof(*data) * num_words);
3013 if (ret < 0)
3014 return ret;
3015
3016 return 0;
3017 }
3018 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, FW_CS_DSP);
3019
3020 /**
3021 * cs_dsp_read_data_word() - Reads a word from DSP memory
3022 * @dsp: pointer to DSP structure
3023 * @mem_type: the type of DSP memory containing the data to be read
3024 * @mem_addr: the address of the data within the memory region
3025 * @data: a buffer to store the fetched data
3026 *
3027 * Return: Zero for success, a negative number on error.
3028 */
cs_dsp_read_data_word(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,u32 * data)3029 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
3030 {
3031 __be32 raw;
3032 int ret;
3033
3034 ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
3035 if (ret < 0)
3036 return ret;
3037
3038 *data = be32_to_cpu(raw) & 0x00ffffffu;
3039
3040 return 0;
3041 }
3042 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, FW_CS_DSP);
3043
3044 /**
3045 * cs_dsp_write_data_word() - Writes a word to DSP memory
3046 * @dsp: pointer to DSP structure
3047 * @mem_type: the type of DSP memory containing the data to be written
3048 * @mem_addr: the address of the data within the memory region
3049 * @data: the data to be written
3050 *
3051 * Return: Zero for success, a negative number on error.
3052 */
cs_dsp_write_data_word(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,u32 data)3053 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
3054 {
3055 struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3056 __be32 val = cpu_to_be32(data & 0x00ffffffu);
3057 unsigned int reg;
3058
3059 lockdep_assert_held(&dsp->pwr_lock);
3060
3061 if (!mem)
3062 return -EINVAL;
3063
3064 reg = dsp->ops->region_to_reg(mem, mem_addr);
3065
3066 return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
3067 }
3068 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, FW_CS_DSP);
3069
3070 /**
3071 * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
3072 * @buf: buffer containing DSP words read from DSP memory
3073 * @nwords: number of words to convert
3074 *
3075 * DSP words from the register map have pad bytes and the data bytes
3076 * are in swapped order. This swaps to the native endian order and
3077 * strips the pad bytes.
3078 */
cs_dsp_remove_padding(u32 * buf,int nwords)3079 void cs_dsp_remove_padding(u32 *buf, int nwords)
3080 {
3081 const __be32 *pack_in = (__be32 *)buf;
3082 u8 *pack_out = (u8 *)buf;
3083 int i;
3084
3085 for (i = 0; i < nwords; i++) {
3086 u32 word = be32_to_cpu(*pack_in++);
3087 *pack_out++ = (u8)word;
3088 *pack_out++ = (u8)(word >> 8);
3089 *pack_out++ = (u8)(word >> 16);
3090 }
3091 }
3092 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, FW_CS_DSP);
3093
3094 /**
3095 * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3096 * @dsp: pointer to DSP structure
3097 *
3098 * The firmware and DSP state will be logged for future analysis.
3099 */
cs_dsp_adsp2_bus_error(struct cs_dsp * dsp)3100 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3101 {
3102 unsigned int val;
3103 struct regmap *regmap = dsp->regmap;
3104 int ret = 0;
3105
3106 mutex_lock(&dsp->pwr_lock);
3107
3108 ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3109 if (ret) {
3110 cs_dsp_err(dsp,
3111 "Failed to read Region Lock Ctrl register: %d\n", ret);
3112 goto error;
3113 }
3114
3115 if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3116 cs_dsp_err(dsp, "watchdog timeout error\n");
3117 dsp->ops->stop_watchdog(dsp);
3118 if (dsp->client_ops->watchdog_expired)
3119 dsp->client_ops->watchdog_expired(dsp);
3120 }
3121
3122 if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3123 if (val & ADSP2_ADDR_ERR_MASK)
3124 cs_dsp_err(dsp, "bus error: address error\n");
3125 else
3126 cs_dsp_err(dsp, "bus error: region lock error\n");
3127
3128 ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3129 if (ret) {
3130 cs_dsp_err(dsp,
3131 "Failed to read Bus Err Addr register: %d\n",
3132 ret);
3133 goto error;
3134 }
3135
3136 cs_dsp_err(dsp, "bus error address = 0x%x\n",
3137 val & ADSP2_BUS_ERR_ADDR_MASK);
3138
3139 ret = regmap_read(regmap,
3140 dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3141 &val);
3142 if (ret) {
3143 cs_dsp_err(dsp,
3144 "Failed to read Pmem Xmem Err Addr register: %d\n",
3145 ret);
3146 goto error;
3147 }
3148
3149 cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3150 val & ADSP2_XMEM_ERR_ADDR_MASK);
3151 cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3152 (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3153 ADSP2_PMEM_ERR_ADDR_SHIFT);
3154 }
3155
3156 regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3157 ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3158
3159 error:
3160 mutex_unlock(&dsp->pwr_lock);
3161 }
3162 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, FW_CS_DSP);
3163
3164 /**
3165 * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3166 * @dsp: pointer to DSP structure
3167 *
3168 * The firmware and DSP state will be logged for future analysis.
3169 */
cs_dsp_halo_bus_error(struct cs_dsp * dsp)3170 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3171 {
3172 struct regmap *regmap = dsp->regmap;
3173 unsigned int fault[6];
3174 struct reg_sequence clear[] = {
3175 { dsp->base + HALO_MPU_XM_VIO_STATUS, 0x0 },
3176 { dsp->base + HALO_MPU_YM_VIO_STATUS, 0x0 },
3177 { dsp->base + HALO_MPU_PM_VIO_STATUS, 0x0 },
3178 };
3179 int ret;
3180
3181 mutex_lock(&dsp->pwr_lock);
3182
3183 ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3184 fault);
3185 if (ret) {
3186 cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3187 goto exit_unlock;
3188 }
3189
3190 cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3191 *fault & HALO_AHBM_FLAGS_ERR_MASK,
3192 (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3193 HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3194
3195 ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3196 fault);
3197 if (ret) {
3198 cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3199 goto exit_unlock;
3200 }
3201
3202 cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3203
3204 ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3205 fault, ARRAY_SIZE(fault));
3206 if (ret) {
3207 cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3208 goto exit_unlock;
3209 }
3210
3211 cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3212 cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3213 cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3214
3215 ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3216 if (ret)
3217 cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3218
3219 exit_unlock:
3220 mutex_unlock(&dsp->pwr_lock);
3221 }
3222 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, FW_CS_DSP);
3223
3224 /**
3225 * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3226 * @dsp: pointer to DSP structure
3227 *
3228 * This is logged for future analysis.
3229 */
cs_dsp_halo_wdt_expire(struct cs_dsp * dsp)3230 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3231 {
3232 mutex_lock(&dsp->pwr_lock);
3233
3234 cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3235
3236 dsp->ops->stop_watchdog(dsp);
3237 if (dsp->client_ops->watchdog_expired)
3238 dsp->client_ops->watchdog_expired(dsp);
3239
3240 mutex_unlock(&dsp->pwr_lock);
3241 }
3242 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, FW_CS_DSP);
3243
3244 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3245 .validate_version = cs_dsp_validate_version,
3246 .parse_sizes = cs_dsp_adsp1_parse_sizes,
3247 .region_to_reg = cs_dsp_region_to_reg,
3248 };
3249
3250 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3251 {
3252 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3253 .validate_version = cs_dsp_validate_version,
3254 .setup_algs = cs_dsp_adsp2_setup_algs,
3255 .region_to_reg = cs_dsp_region_to_reg,
3256
3257 .show_fw_status = cs_dsp_adsp2_show_fw_status,
3258
3259 .enable_memory = cs_dsp_adsp2_enable_memory,
3260 .disable_memory = cs_dsp_adsp2_disable_memory,
3261
3262 .enable_core = cs_dsp_adsp2_enable_core,
3263 .disable_core = cs_dsp_adsp2_disable_core,
3264
3265 .start_core = cs_dsp_adsp2_start_core,
3266 .stop_core = cs_dsp_adsp2_stop_core,
3267
3268 },
3269 {
3270 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3271 .validate_version = cs_dsp_validate_version,
3272 .setup_algs = cs_dsp_adsp2_setup_algs,
3273 .region_to_reg = cs_dsp_region_to_reg,
3274
3275 .show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3276
3277 .enable_memory = cs_dsp_adsp2_enable_memory,
3278 .disable_memory = cs_dsp_adsp2_disable_memory,
3279 .lock_memory = cs_dsp_adsp2_lock,
3280
3281 .enable_core = cs_dsp_adsp2v2_enable_core,
3282 .disable_core = cs_dsp_adsp2v2_disable_core,
3283
3284 .start_core = cs_dsp_adsp2_start_core,
3285 .stop_core = cs_dsp_adsp2_stop_core,
3286 },
3287 {
3288 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3289 .validate_version = cs_dsp_validate_version,
3290 .setup_algs = cs_dsp_adsp2_setup_algs,
3291 .region_to_reg = cs_dsp_region_to_reg,
3292
3293 .show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3294 .stop_watchdog = cs_dsp_stop_watchdog,
3295
3296 .enable_memory = cs_dsp_adsp2_enable_memory,
3297 .disable_memory = cs_dsp_adsp2_disable_memory,
3298 .lock_memory = cs_dsp_adsp2_lock,
3299
3300 .enable_core = cs_dsp_adsp2v2_enable_core,
3301 .disable_core = cs_dsp_adsp2v2_disable_core,
3302
3303 .start_core = cs_dsp_adsp2_start_core,
3304 .stop_core = cs_dsp_adsp2_stop_core,
3305 },
3306 };
3307
3308 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3309 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3310 .validate_version = cs_dsp_halo_validate_version,
3311 .setup_algs = cs_dsp_halo_setup_algs,
3312 .region_to_reg = cs_dsp_halo_region_to_reg,
3313
3314 .show_fw_status = cs_dsp_halo_show_fw_status,
3315 .stop_watchdog = cs_dsp_halo_stop_watchdog,
3316
3317 .lock_memory = cs_dsp_halo_configure_mpu,
3318
3319 .start_core = cs_dsp_halo_start_core,
3320 .stop_core = cs_dsp_halo_stop_core,
3321 };
3322
3323 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3324 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3325 .validate_version = cs_dsp_halo_validate_version,
3326 .setup_algs = cs_dsp_halo_setup_algs,
3327 .region_to_reg = cs_dsp_halo_region_to_reg,
3328 .show_fw_status = cs_dsp_halo_show_fw_status,
3329 };
3330
3331 /**
3332 * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3333 * @ch: Pointer to the chunk structure
3334 * @nbits: Number of bits to write
3335 * @val: Value to write
3336 *
3337 * This function sequentially writes values into the format required for DSP
3338 * memory, it handles both inserting of the padding bytes and converting to
3339 * big endian. Note that data is only committed to the chunk when a whole DSP
3340 * words worth of data is available.
3341 *
3342 * Return: Zero for success, a negative number on error.
3343 */
cs_dsp_chunk_write(struct cs_dsp_chunk * ch,int nbits,u32 val)3344 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3345 {
3346 int nwrite, i;
3347
3348 nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3349
3350 ch->cache <<= nwrite;
3351 ch->cache |= val >> (nbits - nwrite);
3352 ch->cachebits += nwrite;
3353 nbits -= nwrite;
3354
3355 if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3356 if (cs_dsp_chunk_end(ch))
3357 return -ENOSPC;
3358
3359 ch->cache &= 0xFFFFFF;
3360 for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3361 *ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3362
3363 ch->bytes += sizeof(ch->cache);
3364 ch->cachebits = 0;
3365 }
3366
3367 if (nbits)
3368 return cs_dsp_chunk_write(ch, nbits, val);
3369
3370 return 0;
3371 }
3372 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, FW_CS_DSP);
3373
3374 /**
3375 * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3376 * @ch: Pointer to the chunk structure
3377 *
3378 * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3379 * be written out it is possible that some data will remain in the cache, this
3380 * function will pad that data with zeros upto a whole DSP word and write out.
3381 *
3382 * Return: Zero for success, a negative number on error.
3383 */
cs_dsp_chunk_flush(struct cs_dsp_chunk * ch)3384 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3385 {
3386 if (!ch->cachebits)
3387 return 0;
3388
3389 return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3390 }
3391 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, FW_CS_DSP);
3392
3393 /**
3394 * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3395 * @ch: Pointer to the chunk structure
3396 * @nbits: Number of bits to read
3397 *
3398 * This function sequentially reads values from a DSP memory formatted buffer,
3399 * it handles both removing of the padding bytes and converting from big endian.
3400 *
3401 * Return: A negative number is returned on error, otherwise the read value.
3402 */
cs_dsp_chunk_read(struct cs_dsp_chunk * ch,int nbits)3403 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3404 {
3405 int nread, i;
3406 u32 result;
3407
3408 if (!ch->cachebits) {
3409 if (cs_dsp_chunk_end(ch))
3410 return -ENOSPC;
3411
3412 ch->cache = 0;
3413 ch->cachebits = CS_DSP_DATA_WORD_BITS;
3414
3415 for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3416 ch->cache |= *ch->data++;
3417
3418 ch->bytes += sizeof(ch->cache);
3419 }
3420
3421 nread = min(ch->cachebits, nbits);
3422 nbits -= nread;
3423
3424 result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3425 ch->cache <<= nread;
3426 ch->cachebits -= nread;
3427
3428 if (nbits)
3429 result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3430
3431 return result;
3432 }
3433 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, FW_CS_DSP);
3434
3435 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3436 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3437 MODULE_LICENSE("GPL v2");
3438