1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Hash: Hash algorithms under the crypto API
4 *
5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7
8 #ifndef _CRYPTO_HASH_H
9 #define _CRYPTO_HASH_H
10
11 #include <linux/atomic.h>
12 #include <linux/crypto.h>
13 #include <linux/string.h>
14
15 struct crypto_ahash;
16
17 /**
18 * DOC: Message Digest Algorithm Definitions
19 *
20 * These data structures define modular message digest algorithm
21 * implementations, managed via crypto_register_ahash(),
22 * crypto_register_shash(), crypto_unregister_ahash() and
23 * crypto_unregister_shash().
24 */
25
26 /*
27 * struct crypto_istat_hash - statistics for has algorithm
28 * @hash_cnt: number of hash requests
29 * @hash_tlen: total data size hashed
30 * @err_cnt: number of error for hash requests
31 */
32 struct crypto_istat_hash {
33 atomic64_t hash_cnt;
34 atomic64_t hash_tlen;
35 atomic64_t err_cnt;
36 };
37
38 #ifdef CONFIG_CRYPTO_STATS
39 #define HASH_ALG_COMMON_STAT struct crypto_istat_hash stat;
40 #else
41 #define HASH_ALG_COMMON_STAT
42 #endif
43
44 /*
45 * struct hash_alg_common - define properties of message digest
46 * @stat: Statistics for hash algorithm.
47 * @digestsize: Size of the result of the transformation. A buffer of this size
48 * must be available to the @final and @finup calls, so they can
49 * store the resulting hash into it. For various predefined sizes,
50 * search include/crypto/ using
51 * git grep _DIGEST_SIZE include/crypto.
52 * @statesize: Size of the block for partial state of the transformation. A
53 * buffer of this size must be passed to the @export function as it
54 * will save the partial state of the transformation into it. On the
55 * other side, the @import function will load the state from a
56 * buffer of this size as well.
57 * @base: Start of data structure of cipher algorithm. The common data
58 * structure of crypto_alg contains information common to all ciphers.
59 * The hash_alg_common data structure now adds the hash-specific
60 * information.
61 */
62 #define HASH_ALG_COMMON { \
63 HASH_ALG_COMMON_STAT \
64 \
65 unsigned int digestsize; \
66 unsigned int statesize; \
67 \
68 struct crypto_alg base; \
69 }
70 struct hash_alg_common HASH_ALG_COMMON;
71
72 struct ahash_request {
73 struct crypto_async_request base;
74
75 unsigned int nbytes;
76 struct scatterlist *src;
77 u8 *result;
78
79 /* This field may only be used by the ahash API code. */
80 void *priv;
81
82 void *__ctx[] CRYPTO_MINALIGN_ATTR;
83 };
84
85 /**
86 * struct ahash_alg - asynchronous message digest definition
87 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
88 * state of the HASH transformation at the beginning. This shall fill in
89 * the internal structures used during the entire duration of the whole
90 * transformation. No data processing happens at this point. Driver code
91 * implementation must not use req->result.
92 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
93 * function actually pushes blocks of data from upper layers into the
94 * driver, which then passes those to the hardware as seen fit. This
95 * function must not finalize the HASH transformation by calculating the
96 * final message digest as this only adds more data into the
97 * transformation. This function shall not modify the transformation
98 * context, as this function may be called in parallel with the same
99 * transformation object. Data processing can happen synchronously
100 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use
101 * req->result.
102 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
103 * transformation and retrieves the resulting hash from the driver and
104 * pushes it back to upper layers. No data processing happens at this
105 * point unless hardware requires it to finish the transformation
106 * (then the data buffered by the device driver is processed).
107 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
108 * combination of @update and @final calls issued in sequence. As some
109 * hardware cannot do @update and @final separately, this callback was
110 * added to allow such hardware to be used at least by IPsec. Data
111 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
112 * at this point.
113 * @digest: Combination of @init and @update and @final. This function
114 * effectively behaves as the entire chain of operations, @init,
115 * @update and @final issued in sequence. Just like @finup, this was
116 * added for hardware which cannot do even the @finup, but can only do
117 * the whole transformation in one run. Data processing can happen
118 * synchronously [SHASH] or asynchronously [AHASH] at this point.
119 * @setkey: Set optional key used by the hashing algorithm. Intended to push
120 * optional key used by the hashing algorithm from upper layers into
121 * the driver. This function can store the key in the transformation
122 * context or can outright program it into the hardware. In the former
123 * case, one must be careful to program the key into the hardware at
124 * appropriate time and one must be careful that .setkey() can be
125 * called multiple times during the existence of the transformation
126 * object. Not all hashing algorithms do implement this function as it
127 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
128 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
129 * this function. This function must be called before any other of the
130 * @init, @update, @final, @finup, @digest is called. No data
131 * processing happens at this point.
132 * @export: Export partial state of the transformation. This function dumps the
133 * entire state of the ongoing transformation into a provided block of
134 * data so it can be @import 'ed back later on. This is useful in case
135 * you want to save partial result of the transformation after
136 * processing certain amount of data and reload this partial result
137 * multiple times later on for multiple re-use. No data processing
138 * happens at this point. Driver must not use req->result.
139 * @import: Import partial state of the transformation. This function loads the
140 * entire state of the ongoing transformation from a provided block of
141 * data so the transformation can continue from this point onward. No
142 * data processing happens at this point. Driver must not use
143 * req->result.
144 * @init_tfm: Initialize the cryptographic transformation object.
145 * This function is called only once at the instantiation
146 * time, right after the transformation context was
147 * allocated. In case the cryptographic hardware has
148 * some special requirements which need to be handled
149 * by software, this function shall check for the precise
150 * requirement of the transformation and put any software
151 * fallbacks in place.
152 * @exit_tfm: Deinitialize the cryptographic transformation object.
153 * This is a counterpart to @init_tfm, used to remove
154 * various changes set in @init_tfm.
155 * @clone_tfm: Copy transform into new object, may allocate memory.
156 * @reqsize: Size of the request context.
157 * @halg: see struct hash_alg_common
158 */
159 struct ahash_alg {
160 int (*init)(struct ahash_request *req);
161 int (*update)(struct ahash_request *req);
162 int (*final)(struct ahash_request *req);
163 int (*finup)(struct ahash_request *req);
164 int (*digest)(struct ahash_request *req);
165 int (*export)(struct ahash_request *req, void *out);
166 int (*import)(struct ahash_request *req, const void *in);
167 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
168 unsigned int keylen);
169 int (*init_tfm)(struct crypto_ahash *tfm);
170 void (*exit_tfm)(struct crypto_ahash *tfm);
171 int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src);
172
173 unsigned int reqsize;
174
175 struct hash_alg_common halg;
176 };
177
178 struct shash_desc {
179 struct crypto_shash *tfm;
180 void *__ctx[] __aligned(ARCH_SLAB_MINALIGN);
181 };
182
183 #define HASH_MAX_DIGESTSIZE 64
184
185 /*
186 * Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc'
187 * containing a 'struct sha3_state'.
188 */
189 #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360)
190
191 #define SHASH_DESC_ON_STACK(shash, ctx) \
192 char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \
193 __aligned(__alignof__(struct shash_desc)); \
194 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
195
196 /**
197 * struct shash_alg - synchronous message digest definition
198 * @init: see struct ahash_alg
199 * @update: see struct ahash_alg
200 * @final: see struct ahash_alg
201 * @finup: see struct ahash_alg
202 * @digest: see struct ahash_alg
203 * @export: see struct ahash_alg
204 * @import: see struct ahash_alg
205 * @setkey: see struct ahash_alg
206 * @init_tfm: Initialize the cryptographic transformation object.
207 * This function is called only once at the instantiation
208 * time, right after the transformation context was
209 * allocated. In case the cryptographic hardware has
210 * some special requirements which need to be handled
211 * by software, this function shall check for the precise
212 * requirement of the transformation and put any software
213 * fallbacks in place.
214 * @exit_tfm: Deinitialize the cryptographic transformation object.
215 * This is a counterpart to @init_tfm, used to remove
216 * various changes set in @init_tfm.
217 * @clone_tfm: Copy transform into new object, may allocate memory.
218 * @digestsize: see struct ahash_alg
219 * @statesize: see struct ahash_alg
220 * @descsize: Size of the operational state for the message digest. This state
221 * size is the memory size that needs to be allocated for
222 * shash_desc.__ctx
223 * @stat: Statistics for hash algorithm.
224 * @base: internally used
225 * @halg: see struct hash_alg_common
226 * @HASH_ALG_COMMON: see struct hash_alg_common
227 */
228 struct shash_alg {
229 int (*init)(struct shash_desc *desc);
230 int (*update)(struct shash_desc *desc, const u8 *data,
231 unsigned int len);
232 int (*final)(struct shash_desc *desc, u8 *out);
233 int (*finup)(struct shash_desc *desc, const u8 *data,
234 unsigned int len, u8 *out);
235 int (*digest)(struct shash_desc *desc, const u8 *data,
236 unsigned int len, u8 *out);
237 int (*export)(struct shash_desc *desc, void *out);
238 int (*import)(struct shash_desc *desc, const void *in);
239 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
240 unsigned int keylen);
241 int (*init_tfm)(struct crypto_shash *tfm);
242 void (*exit_tfm)(struct crypto_shash *tfm);
243 int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src);
244
245 unsigned int descsize;
246
247 union {
248 struct HASH_ALG_COMMON;
249 struct hash_alg_common halg;
250 };
251 };
252 #undef HASH_ALG_COMMON
253 #undef HASH_ALG_COMMON_STAT
254
255 struct crypto_ahash {
256 int (*init)(struct ahash_request *req);
257 int (*update)(struct ahash_request *req);
258 int (*final)(struct ahash_request *req);
259 int (*finup)(struct ahash_request *req);
260 int (*digest)(struct ahash_request *req);
261 int (*export)(struct ahash_request *req, void *out);
262 int (*import)(struct ahash_request *req, const void *in);
263 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
264 unsigned int keylen);
265
266 unsigned int statesize;
267 unsigned int reqsize;
268 struct crypto_tfm base;
269 };
270
271 struct crypto_shash {
272 unsigned int descsize;
273 struct crypto_tfm base;
274 };
275
276 /**
277 * DOC: Asynchronous Message Digest API
278 *
279 * The asynchronous message digest API is used with the ciphers of type
280 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
281 *
282 * The asynchronous cipher operation discussion provided for the
283 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
284 */
285
__crypto_ahash_cast(struct crypto_tfm * tfm)286 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
287 {
288 return container_of(tfm, struct crypto_ahash, base);
289 }
290
291 /**
292 * crypto_alloc_ahash() - allocate ahash cipher handle
293 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
294 * ahash cipher
295 * @type: specifies the type of the cipher
296 * @mask: specifies the mask for the cipher
297 *
298 * Allocate a cipher handle for an ahash. The returned struct
299 * crypto_ahash is the cipher handle that is required for any subsequent
300 * API invocation for that ahash.
301 *
302 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
303 * of an error, PTR_ERR() returns the error code.
304 */
305 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
306 u32 mask);
307
308 struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm);
309
crypto_ahash_tfm(struct crypto_ahash * tfm)310 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
311 {
312 return &tfm->base;
313 }
314
315 /**
316 * crypto_free_ahash() - zeroize and free the ahash handle
317 * @tfm: cipher handle to be freed
318 *
319 * If @tfm is a NULL or error pointer, this function does nothing.
320 */
crypto_free_ahash(struct crypto_ahash * tfm)321 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
322 {
323 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
324 }
325
326 /**
327 * crypto_has_ahash() - Search for the availability of an ahash.
328 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
329 * ahash
330 * @type: specifies the type of the ahash
331 * @mask: specifies the mask for the ahash
332 *
333 * Return: true when the ahash is known to the kernel crypto API; false
334 * otherwise
335 */
336 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
337
crypto_ahash_alg_name(struct crypto_ahash * tfm)338 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
339 {
340 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
341 }
342
crypto_ahash_driver_name(struct crypto_ahash * tfm)343 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
344 {
345 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
346 }
347
crypto_ahash_alignmask(struct crypto_ahash * tfm)348 static inline unsigned int crypto_ahash_alignmask(
349 struct crypto_ahash *tfm)
350 {
351 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
352 }
353
354 /**
355 * crypto_ahash_blocksize() - obtain block size for cipher
356 * @tfm: cipher handle
357 *
358 * The block size for the message digest cipher referenced with the cipher
359 * handle is returned.
360 *
361 * Return: block size of cipher
362 */
crypto_ahash_blocksize(struct crypto_ahash * tfm)363 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
364 {
365 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
366 }
367
__crypto_hash_alg_common(struct crypto_alg * alg)368 static inline struct hash_alg_common *__crypto_hash_alg_common(
369 struct crypto_alg *alg)
370 {
371 return container_of(alg, struct hash_alg_common, base);
372 }
373
crypto_hash_alg_common(struct crypto_ahash * tfm)374 static inline struct hash_alg_common *crypto_hash_alg_common(
375 struct crypto_ahash *tfm)
376 {
377 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
378 }
379
380 /**
381 * crypto_ahash_digestsize() - obtain message digest size
382 * @tfm: cipher handle
383 *
384 * The size for the message digest created by the message digest cipher
385 * referenced with the cipher handle is returned.
386 *
387 *
388 * Return: message digest size of cipher
389 */
crypto_ahash_digestsize(struct crypto_ahash * tfm)390 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
391 {
392 return crypto_hash_alg_common(tfm)->digestsize;
393 }
394
395 /**
396 * crypto_ahash_statesize() - obtain size of the ahash state
397 * @tfm: cipher handle
398 *
399 * Return the size of the ahash state. With the crypto_ahash_export()
400 * function, the caller can export the state into a buffer whose size is
401 * defined with this function.
402 *
403 * Return: size of the ahash state
404 */
crypto_ahash_statesize(struct crypto_ahash * tfm)405 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
406 {
407 return tfm->statesize;
408 }
409
crypto_ahash_get_flags(struct crypto_ahash * tfm)410 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
411 {
412 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
413 }
414
crypto_ahash_set_flags(struct crypto_ahash * tfm,u32 flags)415 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
416 {
417 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
418 }
419
crypto_ahash_clear_flags(struct crypto_ahash * tfm,u32 flags)420 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
421 {
422 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
423 }
424
425 /**
426 * crypto_ahash_reqtfm() - obtain cipher handle from request
427 * @req: asynchronous request handle that contains the reference to the ahash
428 * cipher handle
429 *
430 * Return the ahash cipher handle that is registered with the asynchronous
431 * request handle ahash_request.
432 *
433 * Return: ahash cipher handle
434 */
crypto_ahash_reqtfm(struct ahash_request * req)435 static inline struct crypto_ahash *crypto_ahash_reqtfm(
436 struct ahash_request *req)
437 {
438 return __crypto_ahash_cast(req->base.tfm);
439 }
440
441 /**
442 * crypto_ahash_reqsize() - obtain size of the request data structure
443 * @tfm: cipher handle
444 *
445 * Return: size of the request data
446 */
crypto_ahash_reqsize(struct crypto_ahash * tfm)447 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
448 {
449 return tfm->reqsize;
450 }
451
ahash_request_ctx(struct ahash_request * req)452 static inline void *ahash_request_ctx(struct ahash_request *req)
453 {
454 return req->__ctx;
455 }
456
457 /**
458 * crypto_ahash_setkey - set key for cipher handle
459 * @tfm: cipher handle
460 * @key: buffer holding the key
461 * @keylen: length of the key in bytes
462 *
463 * The caller provided key is set for the ahash cipher. The cipher
464 * handle must point to a keyed hash in order for this function to succeed.
465 *
466 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
467 */
468 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
469 unsigned int keylen);
470
471 /**
472 * crypto_ahash_finup() - update and finalize message digest
473 * @req: reference to the ahash_request handle that holds all information
474 * needed to perform the cipher operation
475 *
476 * This function is a "short-hand" for the function calls of
477 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
478 * meaning as discussed for those separate functions.
479 *
480 * Return: see crypto_ahash_final()
481 */
482 int crypto_ahash_finup(struct ahash_request *req);
483
484 /**
485 * crypto_ahash_final() - calculate message digest
486 * @req: reference to the ahash_request handle that holds all information
487 * needed to perform the cipher operation
488 *
489 * Finalize the message digest operation and create the message digest
490 * based on all data added to the cipher handle. The message digest is placed
491 * into the output buffer registered with the ahash_request handle.
492 *
493 * Return:
494 * 0 if the message digest was successfully calculated;
495 * -EINPROGRESS if data is fed into hardware (DMA) or queued for later;
496 * -EBUSY if queue is full and request should be resubmitted later;
497 * other < 0 if an error occurred
498 */
499 int crypto_ahash_final(struct ahash_request *req);
500
501 /**
502 * crypto_ahash_digest() - calculate message digest for a buffer
503 * @req: reference to the ahash_request handle that holds all information
504 * needed to perform the cipher operation
505 *
506 * This function is a "short-hand" for the function calls of crypto_ahash_init,
507 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
508 * meaning as discussed for those separate three functions.
509 *
510 * Return: see crypto_ahash_final()
511 */
512 int crypto_ahash_digest(struct ahash_request *req);
513
514 /**
515 * crypto_ahash_export() - extract current message digest state
516 * @req: reference to the ahash_request handle whose state is exported
517 * @out: output buffer of sufficient size that can hold the hash state
518 *
519 * This function exports the hash state of the ahash_request handle into the
520 * caller-allocated output buffer out which must have sufficient size (e.g. by
521 * calling crypto_ahash_statesize()).
522 *
523 * Return: 0 if the export was successful; < 0 if an error occurred
524 */
crypto_ahash_export(struct ahash_request * req,void * out)525 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
526 {
527 return crypto_ahash_reqtfm(req)->export(req, out);
528 }
529
530 /**
531 * crypto_ahash_import() - import message digest state
532 * @req: reference to ahash_request handle the state is imported into
533 * @in: buffer holding the state
534 *
535 * This function imports the hash state into the ahash_request handle from the
536 * input buffer. That buffer should have been generated with the
537 * crypto_ahash_export function.
538 *
539 * Return: 0 if the import was successful; < 0 if an error occurred
540 */
crypto_ahash_import(struct ahash_request * req,const void * in)541 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
542 {
543 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
544
545 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
546 return -ENOKEY;
547
548 return tfm->import(req, in);
549 }
550
551 /**
552 * crypto_ahash_init() - (re)initialize message digest handle
553 * @req: ahash_request handle that already is initialized with all necessary
554 * data using the ahash_request_* API functions
555 *
556 * The call (re-)initializes the message digest referenced by the ahash_request
557 * handle. Any potentially existing state created by previous operations is
558 * discarded.
559 *
560 * Return: see crypto_ahash_final()
561 */
crypto_ahash_init(struct ahash_request * req)562 static inline int crypto_ahash_init(struct ahash_request *req)
563 {
564 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
565
566 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
567 return -ENOKEY;
568
569 return tfm->init(req);
570 }
571
hash_get_stat(struct hash_alg_common * alg)572 static inline struct crypto_istat_hash *hash_get_stat(
573 struct hash_alg_common *alg)
574 {
575 #ifdef CONFIG_CRYPTO_STATS
576 return &alg->stat;
577 #else
578 return NULL;
579 #endif
580 }
581
crypto_hash_errstat(struct hash_alg_common * alg,int err)582 static inline int crypto_hash_errstat(struct hash_alg_common *alg, int err)
583 {
584 if (!IS_ENABLED(CONFIG_CRYPTO_STATS))
585 return err;
586
587 if (err && err != -EINPROGRESS && err != -EBUSY)
588 atomic64_inc(&hash_get_stat(alg)->err_cnt);
589
590 return err;
591 }
592
593 /**
594 * crypto_ahash_update() - add data to message digest for processing
595 * @req: ahash_request handle that was previously initialized with the
596 * crypto_ahash_init call.
597 *
598 * Updates the message digest state of the &ahash_request handle. The input data
599 * is pointed to by the scatter/gather list registered in the &ahash_request
600 * handle
601 *
602 * Return: see crypto_ahash_final()
603 */
crypto_ahash_update(struct ahash_request * req)604 static inline int crypto_ahash_update(struct ahash_request *req)
605 {
606 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
607 struct hash_alg_common *alg = crypto_hash_alg_common(tfm);
608
609 if (IS_ENABLED(CONFIG_CRYPTO_STATS))
610 atomic64_add(req->nbytes, &hash_get_stat(alg)->hash_tlen);
611
612 return crypto_hash_errstat(alg, tfm->update(req));
613 }
614
615 /**
616 * DOC: Asynchronous Hash Request Handle
617 *
618 * The &ahash_request data structure contains all pointers to data
619 * required for the asynchronous cipher operation. This includes the cipher
620 * handle (which can be used by multiple &ahash_request instances), pointer
621 * to plaintext and the message digest output buffer, asynchronous callback
622 * function, etc. It acts as a handle to the ahash_request_* API calls in a
623 * similar way as ahash handle to the crypto_ahash_* API calls.
624 */
625
626 /**
627 * ahash_request_set_tfm() - update cipher handle reference in request
628 * @req: request handle to be modified
629 * @tfm: cipher handle that shall be added to the request handle
630 *
631 * Allow the caller to replace the existing ahash handle in the request
632 * data structure with a different one.
633 */
ahash_request_set_tfm(struct ahash_request * req,struct crypto_ahash * tfm)634 static inline void ahash_request_set_tfm(struct ahash_request *req,
635 struct crypto_ahash *tfm)
636 {
637 req->base.tfm = crypto_ahash_tfm(tfm);
638 }
639
640 /**
641 * ahash_request_alloc() - allocate request data structure
642 * @tfm: cipher handle to be registered with the request
643 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
644 *
645 * Allocate the request data structure that must be used with the ahash
646 * message digest API calls. During
647 * the allocation, the provided ahash handle
648 * is registered in the request data structure.
649 *
650 * Return: allocated request handle in case of success, or NULL if out of memory
651 */
ahash_request_alloc(struct crypto_ahash * tfm,gfp_t gfp)652 static inline struct ahash_request *ahash_request_alloc(
653 struct crypto_ahash *tfm, gfp_t gfp)
654 {
655 struct ahash_request *req;
656
657 req = kmalloc(sizeof(struct ahash_request) +
658 crypto_ahash_reqsize(tfm), gfp);
659
660 if (likely(req))
661 ahash_request_set_tfm(req, tfm);
662
663 return req;
664 }
665
666 /**
667 * ahash_request_free() - zeroize and free the request data structure
668 * @req: request data structure cipher handle to be freed
669 */
ahash_request_free(struct ahash_request * req)670 static inline void ahash_request_free(struct ahash_request *req)
671 {
672 kfree_sensitive(req);
673 }
674
ahash_request_zero(struct ahash_request * req)675 static inline void ahash_request_zero(struct ahash_request *req)
676 {
677 memzero_explicit(req, sizeof(*req) +
678 crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
679 }
680
ahash_request_cast(struct crypto_async_request * req)681 static inline struct ahash_request *ahash_request_cast(
682 struct crypto_async_request *req)
683 {
684 return container_of(req, struct ahash_request, base);
685 }
686
687 /**
688 * ahash_request_set_callback() - set asynchronous callback function
689 * @req: request handle
690 * @flags: specify zero or an ORing of the flags
691 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
692 * increase the wait queue beyond the initial maximum size;
693 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
694 * @compl: callback function pointer to be registered with the request handle
695 * @data: The data pointer refers to memory that is not used by the kernel
696 * crypto API, but provided to the callback function for it to use. Here,
697 * the caller can provide a reference to memory the callback function can
698 * operate on. As the callback function is invoked asynchronously to the
699 * related functionality, it may need to access data structures of the
700 * related functionality which can be referenced using this pointer. The
701 * callback function can access the memory via the "data" field in the
702 * &crypto_async_request data structure provided to the callback function.
703 *
704 * This function allows setting the callback function that is triggered once
705 * the cipher operation completes.
706 *
707 * The callback function is registered with the &ahash_request handle and
708 * must comply with the following template::
709 *
710 * void callback_function(struct crypto_async_request *req, int error)
711 */
ahash_request_set_callback(struct ahash_request * req,u32 flags,crypto_completion_t compl,void * data)712 static inline void ahash_request_set_callback(struct ahash_request *req,
713 u32 flags,
714 crypto_completion_t compl,
715 void *data)
716 {
717 req->base.complete = compl;
718 req->base.data = data;
719 req->base.flags = flags;
720 }
721
722 /**
723 * ahash_request_set_crypt() - set data buffers
724 * @req: ahash_request handle to be updated
725 * @src: source scatter/gather list
726 * @result: buffer that is filled with the message digest -- the caller must
727 * ensure that the buffer has sufficient space by, for example, calling
728 * crypto_ahash_digestsize()
729 * @nbytes: number of bytes to process from the source scatter/gather list
730 *
731 * By using this call, the caller references the source scatter/gather list.
732 * The source scatter/gather list points to the data the message digest is to
733 * be calculated for.
734 */
ahash_request_set_crypt(struct ahash_request * req,struct scatterlist * src,u8 * result,unsigned int nbytes)735 static inline void ahash_request_set_crypt(struct ahash_request *req,
736 struct scatterlist *src, u8 *result,
737 unsigned int nbytes)
738 {
739 req->src = src;
740 req->nbytes = nbytes;
741 req->result = result;
742 }
743
744 /**
745 * DOC: Synchronous Message Digest API
746 *
747 * The synchronous message digest API is used with the ciphers of type
748 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
749 *
750 * The message digest API is able to maintain state information for the
751 * caller.
752 *
753 * The synchronous message digest API can store user-related context in its
754 * shash_desc request data structure.
755 */
756
757 /**
758 * crypto_alloc_shash() - allocate message digest handle
759 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
760 * message digest cipher
761 * @type: specifies the type of the cipher
762 * @mask: specifies the mask for the cipher
763 *
764 * Allocate a cipher handle for a message digest. The returned &struct
765 * crypto_shash is the cipher handle that is required for any subsequent
766 * API invocation for that message digest.
767 *
768 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
769 * of an error, PTR_ERR() returns the error code.
770 */
771 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
772 u32 mask);
773
774 struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm);
775
776 int crypto_has_shash(const char *alg_name, u32 type, u32 mask);
777
crypto_shash_tfm(struct crypto_shash * tfm)778 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
779 {
780 return &tfm->base;
781 }
782
783 /**
784 * crypto_free_shash() - zeroize and free the message digest handle
785 * @tfm: cipher handle to be freed
786 *
787 * If @tfm is a NULL or error pointer, this function does nothing.
788 */
crypto_free_shash(struct crypto_shash * tfm)789 static inline void crypto_free_shash(struct crypto_shash *tfm)
790 {
791 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
792 }
793
crypto_shash_alg_name(struct crypto_shash * tfm)794 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
795 {
796 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
797 }
798
crypto_shash_driver_name(struct crypto_shash * tfm)799 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
800 {
801 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
802 }
803
crypto_shash_alignmask(struct crypto_shash * tfm)804 static inline unsigned int crypto_shash_alignmask(
805 struct crypto_shash *tfm)
806 {
807 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
808 }
809
810 /**
811 * crypto_shash_blocksize() - obtain block size for cipher
812 * @tfm: cipher handle
813 *
814 * The block size for the message digest cipher referenced with the cipher
815 * handle is returned.
816 *
817 * Return: block size of cipher
818 */
crypto_shash_blocksize(struct crypto_shash * tfm)819 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
820 {
821 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
822 }
823
__crypto_shash_alg(struct crypto_alg * alg)824 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
825 {
826 return container_of(alg, struct shash_alg, base);
827 }
828
crypto_shash_alg(struct crypto_shash * tfm)829 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
830 {
831 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
832 }
833
834 /**
835 * crypto_shash_digestsize() - obtain message digest size
836 * @tfm: cipher handle
837 *
838 * The size for the message digest created by the message digest cipher
839 * referenced with the cipher handle is returned.
840 *
841 * Return: digest size of cipher
842 */
crypto_shash_digestsize(struct crypto_shash * tfm)843 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
844 {
845 return crypto_shash_alg(tfm)->digestsize;
846 }
847
crypto_shash_statesize(struct crypto_shash * tfm)848 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
849 {
850 return crypto_shash_alg(tfm)->statesize;
851 }
852
crypto_shash_get_flags(struct crypto_shash * tfm)853 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
854 {
855 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
856 }
857
crypto_shash_set_flags(struct crypto_shash * tfm,u32 flags)858 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
859 {
860 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
861 }
862
crypto_shash_clear_flags(struct crypto_shash * tfm,u32 flags)863 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
864 {
865 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
866 }
867
868 /**
869 * crypto_shash_descsize() - obtain the operational state size
870 * @tfm: cipher handle
871 *
872 * The size of the operational state the cipher needs during operation is
873 * returned for the hash referenced with the cipher handle. This size is
874 * required to calculate the memory requirements to allow the caller allocating
875 * sufficient memory for operational state.
876 *
877 * The operational state is defined with struct shash_desc where the size of
878 * that data structure is to be calculated as
879 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
880 *
881 * Return: size of the operational state
882 */
crypto_shash_descsize(struct crypto_shash * tfm)883 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
884 {
885 return tfm->descsize;
886 }
887
shash_desc_ctx(struct shash_desc * desc)888 static inline void *shash_desc_ctx(struct shash_desc *desc)
889 {
890 return desc->__ctx;
891 }
892
893 /**
894 * crypto_shash_setkey() - set key for message digest
895 * @tfm: cipher handle
896 * @key: buffer holding the key
897 * @keylen: length of the key in bytes
898 *
899 * The caller provided key is set for the keyed message digest cipher. The
900 * cipher handle must point to a keyed message digest cipher in order for this
901 * function to succeed.
902 *
903 * Context: Any context.
904 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
905 */
906 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
907 unsigned int keylen);
908
909 /**
910 * crypto_shash_digest() - calculate message digest for buffer
911 * @desc: see crypto_shash_final()
912 * @data: see crypto_shash_update()
913 * @len: see crypto_shash_update()
914 * @out: see crypto_shash_final()
915 *
916 * This function is a "short-hand" for the function calls of crypto_shash_init,
917 * crypto_shash_update and crypto_shash_final. The parameters have the same
918 * meaning as discussed for those separate three functions.
919 *
920 * Context: Any context.
921 * Return: 0 if the message digest creation was successful; < 0 if an error
922 * occurred
923 */
924 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
925 unsigned int len, u8 *out);
926
927 /**
928 * crypto_shash_tfm_digest() - calculate message digest for buffer
929 * @tfm: hash transformation object
930 * @data: see crypto_shash_update()
931 * @len: see crypto_shash_update()
932 * @out: see crypto_shash_final()
933 *
934 * This is a simplified version of crypto_shash_digest() for users who don't
935 * want to allocate their own hash descriptor (shash_desc). Instead,
936 * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash)
937 * directly, and it allocates a hash descriptor on the stack internally.
938 * Note that this stack allocation may be fairly large.
939 *
940 * Context: Any context.
941 * Return: 0 on success; < 0 if an error occurred.
942 */
943 int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
944 unsigned int len, u8 *out);
945
946 /**
947 * crypto_shash_export() - extract operational state for message digest
948 * @desc: reference to the operational state handle whose state is exported
949 * @out: output buffer of sufficient size that can hold the hash state
950 *
951 * This function exports the hash state of the operational state handle into the
952 * caller-allocated output buffer out which must have sufficient size (e.g. by
953 * calling crypto_shash_descsize).
954 *
955 * Context: Any context.
956 * Return: 0 if the export creation was successful; < 0 if an error occurred
957 */
crypto_shash_export(struct shash_desc * desc,void * out)958 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
959 {
960 return crypto_shash_alg(desc->tfm)->export(desc, out);
961 }
962
963 /**
964 * crypto_shash_import() - import operational state
965 * @desc: reference to the operational state handle the state imported into
966 * @in: buffer holding the state
967 *
968 * This function imports the hash state into the operational state handle from
969 * the input buffer. That buffer should have been generated with the
970 * crypto_ahash_export function.
971 *
972 * Context: Any context.
973 * Return: 0 if the import was successful; < 0 if an error occurred
974 */
crypto_shash_import(struct shash_desc * desc,const void * in)975 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
976 {
977 struct crypto_shash *tfm = desc->tfm;
978
979 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
980 return -ENOKEY;
981
982 return crypto_shash_alg(tfm)->import(desc, in);
983 }
984
985 /**
986 * crypto_shash_init() - (re)initialize message digest
987 * @desc: operational state handle that is already filled
988 *
989 * The call (re-)initializes the message digest referenced by the
990 * operational state handle. Any potentially existing state created by
991 * previous operations is discarded.
992 *
993 * Context: Any context.
994 * Return: 0 if the message digest initialization was successful; < 0 if an
995 * error occurred
996 */
crypto_shash_init(struct shash_desc * desc)997 static inline int crypto_shash_init(struct shash_desc *desc)
998 {
999 struct crypto_shash *tfm = desc->tfm;
1000
1001 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
1002 return -ENOKEY;
1003
1004 return crypto_shash_alg(tfm)->init(desc);
1005 }
1006
1007 /**
1008 * crypto_shash_update() - add data to message digest for processing
1009 * @desc: operational state handle that is already initialized
1010 * @data: input data to be added to the message digest
1011 * @len: length of the input data
1012 *
1013 * Updates the message digest state of the operational state handle.
1014 *
1015 * Context: Any context.
1016 * Return: 0 if the message digest update was successful; < 0 if an error
1017 * occurred
1018 */
1019 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
1020 unsigned int len);
1021
1022 /**
1023 * crypto_shash_final() - calculate message digest
1024 * @desc: operational state handle that is already filled with data
1025 * @out: output buffer filled with the message digest
1026 *
1027 * Finalize the message digest operation and create the message digest
1028 * based on all data added to the cipher handle. The message digest is placed
1029 * into the output buffer. The caller must ensure that the output buffer is
1030 * large enough by using crypto_shash_digestsize.
1031 *
1032 * Context: Any context.
1033 * Return: 0 if the message digest creation was successful; < 0 if an error
1034 * occurred
1035 */
1036 int crypto_shash_final(struct shash_desc *desc, u8 *out);
1037
1038 /**
1039 * crypto_shash_finup() - calculate message digest of buffer
1040 * @desc: see crypto_shash_final()
1041 * @data: see crypto_shash_update()
1042 * @len: see crypto_shash_update()
1043 * @out: see crypto_shash_final()
1044 *
1045 * This function is a "short-hand" for the function calls of
1046 * crypto_shash_update and crypto_shash_final. The parameters have the same
1047 * meaning as discussed for those separate functions.
1048 *
1049 * Context: Any context.
1050 * Return: 0 if the message digest creation was successful; < 0 if an error
1051 * occurred
1052 */
1053 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
1054 unsigned int len, u8 *out);
1055
shash_desc_zero(struct shash_desc * desc)1056 static inline void shash_desc_zero(struct shash_desc *desc)
1057 {
1058 memzero_explicit(desc,
1059 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
1060 }
1061
1062 #endif /* _CRYPTO_HASH_H */
1063