1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4 * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
5 * Copyright (C) 2013 Red Hat
6 * Author: Rob Clark <robdclark@gmail.com>
7 */
8
9 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
10 #include <linux/sort.h>
11 #include <linux/debugfs.h>
12 #include <linux/ktime.h>
13 #include <linux/bits.h>
14
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_blend.h>
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_flip_work.h>
19 #include <drm/drm_framebuffer.h>
20 #include <drm/drm_mode.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_rect.h>
23 #include <drm/drm_vblank.h>
24 #include <drm/drm_self_refresh_helper.h>
25
26 #include "dpu_kms.h"
27 #include "dpu_hw_lm.h"
28 #include "dpu_hw_ctl.h"
29 #include "dpu_hw_dspp.h"
30 #include "dpu_crtc.h"
31 #include "dpu_plane.h"
32 #include "dpu_encoder.h"
33 #include "dpu_vbif.h"
34 #include "dpu_core_perf.h"
35 #include "dpu_trace.h"
36
37 /* layer mixer index on dpu_crtc */
38 #define LEFT_MIXER 0
39 #define RIGHT_MIXER 1
40
41 /* timeout in ms waiting for frame done */
42 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60
43
44 #define CONVERT_S3_15(val) \
45 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
46
_dpu_crtc_get_kms(struct drm_crtc * crtc)47 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
48 {
49 struct msm_drm_private *priv = crtc->dev->dev_private;
50
51 return to_dpu_kms(priv->kms);
52 }
53
dpu_crtc_destroy(struct drm_crtc * crtc)54 static void dpu_crtc_destroy(struct drm_crtc *crtc)
55 {
56 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
57
58 if (!crtc)
59 return;
60
61 drm_crtc_cleanup(crtc);
62 kfree(dpu_crtc);
63 }
64
get_encoder_from_crtc(struct drm_crtc * crtc)65 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc)
66 {
67 struct drm_device *dev = crtc->dev;
68 struct drm_encoder *encoder;
69
70 drm_for_each_encoder(encoder, dev)
71 if (encoder->crtc == crtc)
72 return encoder;
73
74 return NULL;
75 }
76
dpu_crtc_parse_crc_source(const char * src_name)77 static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name)
78 {
79 if (!src_name ||
80 !strcmp(src_name, "none"))
81 return DPU_CRTC_CRC_SOURCE_NONE;
82 if (!strcmp(src_name, "auto") ||
83 !strcmp(src_name, "lm"))
84 return DPU_CRTC_CRC_SOURCE_LAYER_MIXER;
85 if (!strcmp(src_name, "encoder"))
86 return DPU_CRTC_CRC_SOURCE_ENCODER;
87
88 return DPU_CRTC_CRC_SOURCE_INVALID;
89 }
90
dpu_crtc_verify_crc_source(struct drm_crtc * crtc,const char * src_name,size_t * values_cnt)91 static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc,
92 const char *src_name, size_t *values_cnt)
93 {
94 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
95 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
96
97 if (source < 0) {
98 DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index);
99 return -EINVAL;
100 }
101
102 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) {
103 *values_cnt = crtc_state->num_mixers;
104 } else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) {
105 struct drm_encoder *drm_enc;
106
107 *values_cnt = 0;
108
109 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
110 *values_cnt += dpu_encoder_get_crc_values_cnt(drm_enc);
111 }
112
113 return 0;
114 }
115
dpu_crtc_setup_lm_misr(struct dpu_crtc_state * crtc_state)116 static void dpu_crtc_setup_lm_misr(struct dpu_crtc_state *crtc_state)
117 {
118 struct dpu_crtc_mixer *m;
119 int i;
120
121 for (i = 0; i < crtc_state->num_mixers; ++i) {
122 m = &crtc_state->mixers[i];
123
124 if (!m->hw_lm || !m->hw_lm->ops.setup_misr)
125 continue;
126
127 /* Calculate MISR over 1 frame */
128 m->hw_lm->ops.setup_misr(m->hw_lm);
129 }
130 }
131
dpu_crtc_setup_encoder_misr(struct drm_crtc * crtc)132 static void dpu_crtc_setup_encoder_misr(struct drm_crtc *crtc)
133 {
134 struct drm_encoder *drm_enc;
135
136 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
137 dpu_encoder_setup_misr(drm_enc);
138 }
139
dpu_crtc_set_crc_source(struct drm_crtc * crtc,const char * src_name)140 static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name)
141 {
142 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
143 enum dpu_crtc_crc_source current_source;
144 struct dpu_crtc_state *crtc_state;
145 struct drm_device *drm_dev = crtc->dev;
146
147 bool was_enabled;
148 bool enable = false;
149 int ret = 0;
150
151 if (source < 0) {
152 DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index);
153 return -EINVAL;
154 }
155
156 ret = drm_modeset_lock(&crtc->mutex, NULL);
157
158 if (ret)
159 return ret;
160
161 enable = (source != DPU_CRTC_CRC_SOURCE_NONE);
162 crtc_state = to_dpu_crtc_state(crtc->state);
163
164 spin_lock_irq(&drm_dev->event_lock);
165 current_source = crtc_state->crc_source;
166 spin_unlock_irq(&drm_dev->event_lock);
167
168 was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE);
169
170 if (!was_enabled && enable) {
171 ret = drm_crtc_vblank_get(crtc);
172
173 if (ret)
174 goto cleanup;
175
176 } else if (was_enabled && !enable) {
177 drm_crtc_vblank_put(crtc);
178 }
179
180 spin_lock_irq(&drm_dev->event_lock);
181 crtc_state->crc_source = source;
182 spin_unlock_irq(&drm_dev->event_lock);
183
184 crtc_state->crc_frame_skip_count = 0;
185
186 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
187 dpu_crtc_setup_lm_misr(crtc_state);
188 else if (source == DPU_CRTC_CRC_SOURCE_ENCODER)
189 dpu_crtc_setup_encoder_misr(crtc);
190 else
191 ret = -EINVAL;
192
193 cleanup:
194 drm_modeset_unlock(&crtc->mutex);
195
196 return ret;
197 }
198
dpu_crtc_get_vblank_counter(struct drm_crtc * crtc)199 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc)
200 {
201 struct drm_encoder *encoder = get_encoder_from_crtc(crtc);
202 if (!encoder) {
203 DRM_ERROR("no encoder found for crtc %d\n", crtc->index);
204 return 0;
205 }
206
207 return dpu_encoder_get_vsync_count(encoder);
208 }
209
dpu_crtc_get_lm_crc(struct drm_crtc * crtc,struct dpu_crtc_state * crtc_state)210 static int dpu_crtc_get_lm_crc(struct drm_crtc *crtc,
211 struct dpu_crtc_state *crtc_state)
212 {
213 struct dpu_crtc_mixer *m;
214 u32 crcs[CRTC_DUAL_MIXERS];
215
216 int rc = 0;
217 int i;
218
219 BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers));
220
221 for (i = 0; i < crtc_state->num_mixers; ++i) {
222
223 m = &crtc_state->mixers[i];
224
225 if (!m->hw_lm || !m->hw_lm->ops.collect_misr)
226 continue;
227
228 rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]);
229
230 if (rc) {
231 if (rc != -ENODATA)
232 DRM_DEBUG_DRIVER("MISR read failed\n");
233 return rc;
234 }
235 }
236
237 return drm_crtc_add_crc_entry(crtc, true,
238 drm_crtc_accurate_vblank_count(crtc), crcs);
239 }
240
dpu_crtc_get_encoder_crc(struct drm_crtc * crtc)241 static int dpu_crtc_get_encoder_crc(struct drm_crtc *crtc)
242 {
243 struct drm_encoder *drm_enc;
244 int rc, pos = 0;
245 u32 crcs[INTF_MAX];
246
247 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) {
248 rc = dpu_encoder_get_crc(drm_enc, crcs, pos);
249 if (rc < 0) {
250 if (rc != -ENODATA)
251 DRM_DEBUG_DRIVER("MISR read failed\n");
252
253 return rc;
254 }
255
256 pos += rc;
257 }
258
259 return drm_crtc_add_crc_entry(crtc, true,
260 drm_crtc_accurate_vblank_count(crtc), crcs);
261 }
262
dpu_crtc_get_crc(struct drm_crtc * crtc)263 static int dpu_crtc_get_crc(struct drm_crtc *crtc)
264 {
265 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
266
267 /* Skip first 2 frames in case of "uncooked" CRCs */
268 if (crtc_state->crc_frame_skip_count < 2) {
269 crtc_state->crc_frame_skip_count++;
270 return 0;
271 }
272
273 if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
274 return dpu_crtc_get_lm_crc(crtc, crtc_state);
275 else if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_ENCODER)
276 return dpu_crtc_get_encoder_crc(crtc);
277
278 return -EINVAL;
279 }
280
dpu_crtc_get_scanout_position(struct drm_crtc * crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)281 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc,
282 bool in_vblank_irq,
283 int *vpos, int *hpos,
284 ktime_t *stime, ktime_t *etime,
285 const struct drm_display_mode *mode)
286 {
287 unsigned int pipe = crtc->index;
288 struct drm_encoder *encoder;
289 int line, vsw, vbp, vactive_start, vactive_end, vfp_end;
290
291 encoder = get_encoder_from_crtc(crtc);
292 if (!encoder) {
293 DRM_ERROR("no encoder found for crtc %d\n", pipe);
294 return false;
295 }
296
297 vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
298 vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
299
300 /*
301 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at
302 * the end of VFP. Translate the porch values relative to the line
303 * counter positions.
304 */
305
306 vactive_start = vsw + vbp + 1;
307 vactive_end = vactive_start + mode->crtc_vdisplay;
308
309 /* last scan line before VSYNC */
310 vfp_end = mode->crtc_vtotal;
311
312 if (stime)
313 *stime = ktime_get();
314
315 line = dpu_encoder_get_linecount(encoder);
316
317 if (line < vactive_start)
318 line -= vactive_start;
319 else if (line > vactive_end)
320 line = line - vfp_end - vactive_start;
321 else
322 line -= vactive_start;
323
324 *vpos = line;
325 *hpos = 0;
326
327 if (etime)
328 *etime = ktime_get();
329
330 return true;
331 }
332
_dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer * mixer,struct dpu_plane_state * pstate,struct dpu_format * format)333 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
334 struct dpu_plane_state *pstate, struct dpu_format *format)
335 {
336 struct dpu_hw_mixer *lm = mixer->hw_lm;
337 uint32_t blend_op;
338 uint32_t fg_alpha, bg_alpha;
339
340 fg_alpha = pstate->base.alpha >> 8;
341 bg_alpha = 0xff - fg_alpha;
342
343 /* default to opaque blending */
344 if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE ||
345 !format->alpha_enable) {
346 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
347 DPU_BLEND_BG_ALPHA_BG_CONST;
348 } else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) {
349 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
350 DPU_BLEND_BG_ALPHA_FG_PIXEL;
351 if (fg_alpha != 0xff) {
352 bg_alpha = fg_alpha;
353 blend_op |= DPU_BLEND_BG_MOD_ALPHA |
354 DPU_BLEND_BG_INV_MOD_ALPHA;
355 } else {
356 blend_op |= DPU_BLEND_BG_INV_ALPHA;
357 }
358 } else {
359 /* coverage blending */
360 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
361 DPU_BLEND_BG_ALPHA_FG_PIXEL;
362 if (fg_alpha != 0xff) {
363 bg_alpha = fg_alpha;
364 blend_op |= DPU_BLEND_FG_MOD_ALPHA |
365 DPU_BLEND_FG_INV_MOD_ALPHA |
366 DPU_BLEND_BG_MOD_ALPHA |
367 DPU_BLEND_BG_INV_MOD_ALPHA;
368 } else {
369 blend_op |= DPU_BLEND_BG_INV_ALPHA;
370 }
371 }
372
373 lm->ops.setup_blend_config(lm, pstate->stage,
374 fg_alpha, bg_alpha, blend_op);
375
376 DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n",
377 &format->base.pixel_format, format->alpha_enable, blend_op);
378 }
379
_dpu_crtc_program_lm_output_roi(struct drm_crtc * crtc)380 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
381 {
382 struct dpu_crtc_state *crtc_state;
383 int lm_idx, lm_horiz_position;
384
385 crtc_state = to_dpu_crtc_state(crtc->state);
386
387 lm_horiz_position = 0;
388 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
389 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
390 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
391 struct dpu_hw_mixer_cfg cfg;
392
393 if (!lm_roi || !drm_rect_visible(lm_roi))
394 continue;
395
396 cfg.out_width = drm_rect_width(lm_roi);
397 cfg.out_height = drm_rect_height(lm_roi);
398 cfg.right_mixer = lm_horiz_position++;
399 cfg.flags = 0;
400 hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
401 }
402 }
403
_dpu_crtc_blend_setup_pipe(struct drm_crtc * crtc,struct drm_plane * plane,struct dpu_crtc_mixer * mixer,u32 num_mixers,enum dpu_stage stage,struct dpu_format * format,uint64_t modifier,struct dpu_sw_pipe * pipe,unsigned int stage_idx,struct dpu_hw_stage_cfg * stage_cfg)404 static void _dpu_crtc_blend_setup_pipe(struct drm_crtc *crtc,
405 struct drm_plane *plane,
406 struct dpu_crtc_mixer *mixer,
407 u32 num_mixers,
408 enum dpu_stage stage,
409 struct dpu_format *format,
410 uint64_t modifier,
411 struct dpu_sw_pipe *pipe,
412 unsigned int stage_idx,
413 struct dpu_hw_stage_cfg *stage_cfg
414 )
415 {
416 uint32_t lm_idx;
417 enum dpu_sspp sspp_idx;
418 struct drm_plane_state *state;
419
420 sspp_idx = pipe->sspp->idx;
421
422 state = plane->state;
423
424 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
425 state, to_dpu_plane_state(state), stage_idx,
426 format->base.pixel_format,
427 modifier);
428
429 DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d multirect_idx %d\n",
430 crtc->base.id,
431 stage,
432 plane->base.id,
433 sspp_idx - SSPP_NONE,
434 state->fb ? state->fb->base.id : -1,
435 pipe->multirect_index);
436
437 stage_cfg->stage[stage][stage_idx] = sspp_idx;
438 stage_cfg->multirect_index[stage][stage_idx] = pipe->multirect_index;
439
440 /* blend config update */
441 for (lm_idx = 0; lm_idx < num_mixers; lm_idx++)
442 mixer[lm_idx].lm_ctl->ops.update_pending_flush_sspp(mixer[lm_idx].lm_ctl, sspp_idx);
443 }
444
_dpu_crtc_blend_setup_mixer(struct drm_crtc * crtc,struct dpu_crtc * dpu_crtc,struct dpu_crtc_mixer * mixer,struct dpu_hw_stage_cfg * stage_cfg)445 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
446 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer,
447 struct dpu_hw_stage_cfg *stage_cfg)
448 {
449 struct drm_plane *plane;
450 struct drm_framebuffer *fb;
451 struct drm_plane_state *state;
452 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
453 struct dpu_plane_state *pstate = NULL;
454 struct dpu_format *format;
455 struct dpu_hw_ctl *ctl = mixer->lm_ctl;
456
457 uint32_t lm_idx;
458 bool bg_alpha_enable = false;
459 DECLARE_BITMAP(fetch_active, SSPP_MAX);
460
461 memset(fetch_active, 0, sizeof(fetch_active));
462 drm_atomic_crtc_for_each_plane(plane, crtc) {
463 state = plane->state;
464 if (!state)
465 continue;
466
467 if (!state->visible)
468 continue;
469
470 pstate = to_dpu_plane_state(state);
471 fb = state->fb;
472
473 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb));
474
475 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
476 bg_alpha_enable = true;
477
478 set_bit(pstate->pipe.sspp->idx, fetch_active);
479 _dpu_crtc_blend_setup_pipe(crtc, plane,
480 mixer, cstate->num_mixers,
481 pstate->stage,
482 format, fb ? fb->modifier : 0,
483 &pstate->pipe, 0, stage_cfg);
484
485 if (pstate->r_pipe.sspp) {
486 set_bit(pstate->r_pipe.sspp->idx, fetch_active);
487 _dpu_crtc_blend_setup_pipe(crtc, plane,
488 mixer, cstate->num_mixers,
489 pstate->stage,
490 format, fb ? fb->modifier : 0,
491 &pstate->r_pipe, 1, stage_cfg);
492 }
493
494 /* blend config update */
495 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
496 _dpu_crtc_setup_blend_cfg(mixer + lm_idx, pstate, format);
497
498 if (bg_alpha_enable && !format->alpha_enable)
499 mixer[lm_idx].mixer_op_mode = 0;
500 else
501 mixer[lm_idx].mixer_op_mode |=
502 1 << pstate->stage;
503 }
504 }
505
506 if (ctl->ops.set_active_pipes)
507 ctl->ops.set_active_pipes(ctl, fetch_active);
508
509 _dpu_crtc_program_lm_output_roi(crtc);
510 }
511
512 /**
513 * _dpu_crtc_blend_setup - configure crtc mixers
514 * @crtc: Pointer to drm crtc structure
515 */
_dpu_crtc_blend_setup(struct drm_crtc * crtc)516 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
517 {
518 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
519 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
520 struct dpu_crtc_mixer *mixer = cstate->mixers;
521 struct dpu_hw_ctl *ctl;
522 struct dpu_hw_mixer *lm;
523 struct dpu_hw_stage_cfg stage_cfg;
524 int i;
525
526 DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name);
527
528 for (i = 0; i < cstate->num_mixers; i++) {
529 mixer[i].mixer_op_mode = 0;
530 if (mixer[i].lm_ctl->ops.clear_all_blendstages)
531 mixer[i].lm_ctl->ops.clear_all_blendstages(
532 mixer[i].lm_ctl);
533 }
534
535 /* initialize stage cfg */
536 memset(&stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
537
538 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer, &stage_cfg);
539
540 for (i = 0; i < cstate->num_mixers; i++) {
541 ctl = mixer[i].lm_ctl;
542 lm = mixer[i].hw_lm;
543
544 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
545
546 /* stage config flush mask */
547 ctl->ops.update_pending_flush_mixer(ctl,
548 mixer[i].hw_lm->idx);
549
550 DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d\n",
551 mixer[i].hw_lm->idx - LM_0,
552 mixer[i].mixer_op_mode,
553 ctl->idx - CTL_0);
554
555 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
556 &stage_cfg);
557 }
558 }
559
560 /**
561 * _dpu_crtc_complete_flip - signal pending page_flip events
562 * Any pending vblank events are added to the vblank_event_list
563 * so that the next vblank interrupt shall signal them.
564 * However PAGE_FLIP events are not handled through the vblank_event_list.
565 * This API signals any pending PAGE_FLIP events requested through
566 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
567 * @crtc: Pointer to drm crtc structure
568 */
_dpu_crtc_complete_flip(struct drm_crtc * crtc)569 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
570 {
571 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
572 struct drm_device *dev = crtc->dev;
573 unsigned long flags;
574
575 spin_lock_irqsave(&dev->event_lock, flags);
576 if (dpu_crtc->event) {
577 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name,
578 dpu_crtc->event);
579 trace_dpu_crtc_complete_flip(DRMID(crtc));
580 drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
581 dpu_crtc->event = NULL;
582 }
583 spin_unlock_irqrestore(&dev->event_lock, flags);
584 }
585
dpu_crtc_get_intf_mode(struct drm_crtc * crtc)586 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
587 {
588 struct drm_encoder *encoder;
589
590 /*
591 * TODO: This function is called from dpu debugfs and as part of atomic
592 * check. When called from debugfs, the crtc->mutex must be held to
593 * read crtc->state. However reading crtc->state from atomic check isn't
594 * allowed (unless you have a good reason, a big comment, and a deep
595 * understanding of how the atomic/modeset locks work (<- and this is
596 * probably not possible)). So we'll keep the WARN_ON here for now, but
597 * really we need to figure out a better way to track our operating mode
598 */
599 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
600
601 /* TODO: Returns the first INTF_MODE, could there be multiple values? */
602 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
603 return dpu_encoder_get_intf_mode(encoder);
604
605 return INTF_MODE_NONE;
606 }
607
dpu_crtc_vblank_callback(struct drm_crtc * crtc)608 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
609 {
610 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
611
612 /* keep statistics on vblank callback - with auto reset via debugfs */
613 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
614 dpu_crtc->vblank_cb_time = ktime_get();
615 else
616 dpu_crtc->vblank_cb_count++;
617
618 dpu_crtc_get_crc(crtc);
619
620 drm_crtc_handle_vblank(crtc);
621 trace_dpu_crtc_vblank_cb(DRMID(crtc));
622 }
623
dpu_crtc_frame_event_work(struct kthread_work * work)624 static void dpu_crtc_frame_event_work(struct kthread_work *work)
625 {
626 struct dpu_crtc_frame_event *fevent = container_of(work,
627 struct dpu_crtc_frame_event, work);
628 struct drm_crtc *crtc = fevent->crtc;
629 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
630 unsigned long flags;
631 bool frame_done = false;
632
633 DPU_ATRACE_BEGIN("crtc_frame_event");
634
635 DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
636 ktime_to_ns(fevent->ts));
637
638 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
639 | DPU_ENCODER_FRAME_EVENT_ERROR
640 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
641
642 if (atomic_read(&dpu_crtc->frame_pending) < 1) {
643 /* ignore vblank when not pending */
644 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
645 /* release bandwidth and other resources */
646 trace_dpu_crtc_frame_event_done(DRMID(crtc),
647 fevent->event);
648 dpu_core_perf_crtc_release_bw(crtc);
649 } else {
650 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
651 fevent->event);
652 }
653
654 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
655 | DPU_ENCODER_FRAME_EVENT_ERROR))
656 frame_done = true;
657 }
658
659 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
660 DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
661 crtc->base.id, ktime_to_ns(fevent->ts));
662
663 if (frame_done)
664 complete_all(&dpu_crtc->frame_done_comp);
665
666 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
667 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
668 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
669 DPU_ATRACE_END("crtc_frame_event");
670 }
671
672 /*
673 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module
674 * registers this API to encoder for all frame event callbacks like
675 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events
676 * from different context - IRQ, user thread, commit_thread, etc. Each event
677 * should be carefully reviewed and should be processed in proper task context
678 * to avoid schedulin delay or properly manage the irq context's bottom half
679 * processing.
680 */
dpu_crtc_frame_event_cb(void * data,u32 event)681 static void dpu_crtc_frame_event_cb(void *data, u32 event)
682 {
683 struct drm_crtc *crtc = (struct drm_crtc *)data;
684 struct dpu_crtc *dpu_crtc;
685 struct msm_drm_private *priv;
686 struct dpu_crtc_frame_event *fevent;
687 unsigned long flags;
688 u32 crtc_id;
689
690 /* Nothing to do on idle event */
691 if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
692 return;
693
694 dpu_crtc = to_dpu_crtc(crtc);
695 priv = crtc->dev->dev_private;
696 crtc_id = drm_crtc_index(crtc);
697
698 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
699
700 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
701 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
702 struct dpu_crtc_frame_event, list);
703 if (fevent)
704 list_del_init(&fevent->list);
705 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
706
707 if (!fevent) {
708 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
709 return;
710 }
711
712 fevent->event = event;
713 fevent->crtc = crtc;
714 fevent->ts = ktime_get();
715 kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work);
716 }
717
dpu_crtc_complete_commit(struct drm_crtc * crtc)718 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
719 {
720 trace_dpu_crtc_complete_commit(DRMID(crtc));
721 dpu_core_perf_crtc_update(crtc, 0);
722 _dpu_crtc_complete_flip(crtc);
723 }
724
_dpu_crtc_check_and_setup_lm_bounds(struct drm_crtc * crtc,struct drm_crtc_state * state)725 static int _dpu_crtc_check_and_setup_lm_bounds(struct drm_crtc *crtc,
726 struct drm_crtc_state *state)
727 {
728 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
729 struct drm_display_mode *adj_mode = &state->adjusted_mode;
730 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
731 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
732 int i;
733
734 for (i = 0; i < cstate->num_mixers; i++) {
735 struct drm_rect *r = &cstate->lm_bounds[i];
736 r->x1 = crtc_split_width * i;
737 r->y1 = 0;
738 r->x2 = r->x1 + crtc_split_width;
739 r->y2 = adj_mode->vdisplay;
740
741 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
742
743 if (drm_rect_width(r) > dpu_kms->catalog->caps->max_mixer_width)
744 return -E2BIG;
745 }
746
747 return 0;
748 }
749
_dpu_crtc_get_pcc_coeff(struct drm_crtc_state * state,struct dpu_hw_pcc_cfg * cfg)750 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
751 struct dpu_hw_pcc_cfg *cfg)
752 {
753 struct drm_color_ctm *ctm;
754
755 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
756
757 ctm = (struct drm_color_ctm *)state->ctm->data;
758
759 if (!ctm)
760 return;
761
762 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
763 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
764 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
765
766 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
767 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
768 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
769
770 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
771 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
772 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
773 }
774
_dpu_crtc_setup_cp_blocks(struct drm_crtc * crtc)775 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
776 {
777 struct drm_crtc_state *state = crtc->state;
778 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
779 struct dpu_crtc_mixer *mixer = cstate->mixers;
780 struct dpu_hw_pcc_cfg cfg;
781 struct dpu_hw_ctl *ctl;
782 struct dpu_hw_dspp *dspp;
783 int i;
784
785
786 if (!state->color_mgmt_changed && !drm_atomic_crtc_needs_modeset(state))
787 return;
788
789 for (i = 0; i < cstate->num_mixers; i++) {
790 ctl = mixer[i].lm_ctl;
791 dspp = mixer[i].hw_dspp;
792
793 if (!dspp || !dspp->ops.setup_pcc)
794 continue;
795
796 if (!state->ctm) {
797 dspp->ops.setup_pcc(dspp, NULL);
798 } else {
799 _dpu_crtc_get_pcc_coeff(state, &cfg);
800 dspp->ops.setup_pcc(dspp, &cfg);
801 }
802
803 /* stage config flush mask */
804 ctl->ops.update_pending_flush_dspp(ctl,
805 mixer[i].hw_dspp->idx, DPU_DSPP_PCC);
806 }
807 }
808
dpu_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)809 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
810 struct drm_atomic_state *state)
811 {
812 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
813 struct drm_encoder *encoder;
814
815 if (!crtc->state->enable) {
816 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n",
817 crtc->base.id, crtc->state->enable);
818 return;
819 }
820
821 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
822
823 _dpu_crtc_check_and_setup_lm_bounds(crtc, crtc->state);
824
825 /* encoder will trigger pending mask now */
826 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
827 dpu_encoder_trigger_kickoff_pending(encoder);
828
829 /*
830 * If no mixers have been allocated in dpu_crtc_atomic_check(),
831 * it means we are trying to flush a CRTC whose state is disabled:
832 * nothing else needs to be done.
833 */
834 if (unlikely(!cstate->num_mixers))
835 return;
836
837 _dpu_crtc_blend_setup(crtc);
838
839 _dpu_crtc_setup_cp_blocks(crtc);
840
841 /*
842 * PP_DONE irq is only used by command mode for now.
843 * It is better to request pending before FLUSH and START trigger
844 * to make sure no pp_done irq missed.
845 * This is safe because no pp_done will happen before SW trigger
846 * in command mode.
847 */
848 }
849
dpu_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)850 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
851 struct drm_atomic_state *state)
852 {
853 struct dpu_crtc *dpu_crtc;
854 struct drm_device *dev;
855 struct drm_plane *plane;
856 struct msm_drm_private *priv;
857 unsigned long flags;
858 struct dpu_crtc_state *cstate;
859
860 if (!crtc->state->enable) {
861 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n",
862 crtc->base.id, crtc->state->enable);
863 return;
864 }
865
866 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
867
868 dpu_crtc = to_dpu_crtc(crtc);
869 cstate = to_dpu_crtc_state(crtc->state);
870 dev = crtc->dev;
871 priv = dev->dev_private;
872
873 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) {
874 DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
875 return;
876 }
877
878 WARN_ON(dpu_crtc->event);
879 spin_lock_irqsave(&dev->event_lock, flags);
880 dpu_crtc->event = crtc->state->event;
881 crtc->state->event = NULL;
882 spin_unlock_irqrestore(&dev->event_lock, flags);
883
884 /*
885 * If no mixers has been allocated in dpu_crtc_atomic_check(),
886 * it means we are trying to flush a CRTC whose state is disabled:
887 * nothing else needs to be done.
888 */
889 if (unlikely(!cstate->num_mixers))
890 return;
891
892 /* update performance setting before crtc kickoff */
893 dpu_core_perf_crtc_update(crtc, 1);
894
895 /*
896 * Final plane updates: Give each plane a chance to complete all
897 * required writes/flushing before crtc's "flush
898 * everything" call below.
899 */
900 drm_atomic_crtc_for_each_plane(plane, crtc) {
901 if (dpu_crtc->smmu_state.transition_error)
902 dpu_plane_set_error(plane, true);
903 dpu_plane_flush(plane);
904 }
905
906 /* Kickoff will be scheduled by outer layer */
907 }
908
909 /**
910 * dpu_crtc_destroy_state - state destroy hook
911 * @crtc: drm CRTC
912 * @state: CRTC state object to release
913 */
dpu_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)914 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
915 struct drm_crtc_state *state)
916 {
917 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
918
919 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
920
921 __drm_atomic_helper_crtc_destroy_state(state);
922
923 kfree(cstate);
924 }
925
_dpu_crtc_wait_for_frame_done(struct drm_crtc * crtc)926 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
927 {
928 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
929 int ret, rc = 0;
930
931 if (!atomic_read(&dpu_crtc->frame_pending)) {
932 DRM_DEBUG_ATOMIC("no frames pending\n");
933 return 0;
934 }
935
936 DPU_ATRACE_BEGIN("frame done completion wait");
937 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
938 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
939 if (!ret) {
940 DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
941 rc = -ETIMEDOUT;
942 }
943 DPU_ATRACE_END("frame done completion wait");
944
945 return rc;
946 }
947
dpu_crtc_commit_kickoff(struct drm_crtc * crtc)948 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
949 {
950 struct drm_encoder *encoder;
951 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
952 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
953 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
954
955 /*
956 * If no mixers has been allocated in dpu_crtc_atomic_check(),
957 * it means we are trying to start a CRTC whose state is disabled:
958 * nothing else needs to be done.
959 */
960 if (unlikely(!cstate->num_mixers))
961 return;
962
963 DPU_ATRACE_BEGIN("crtc_commit");
964
965 drm_for_each_encoder_mask(encoder, crtc->dev,
966 crtc->state->encoder_mask) {
967 if (!dpu_encoder_is_valid_for_commit(encoder)) {
968 DRM_DEBUG_ATOMIC("invalid FB not kicking off crtc\n");
969 goto end;
970 }
971 }
972 /*
973 * Encoder will flush/start now, unless it has a tx pending. If so, it
974 * may delay and flush at an irq event (e.g. ppdone)
975 */
976 drm_for_each_encoder_mask(encoder, crtc->dev,
977 crtc->state->encoder_mask)
978 dpu_encoder_prepare_for_kickoff(encoder);
979
980 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
981 /* acquire bandwidth and other resources */
982 DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id);
983 } else
984 DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id);
985
986 dpu_crtc->play_count++;
987
988 dpu_vbif_clear_errors(dpu_kms);
989
990 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
991 dpu_encoder_kickoff(encoder);
992
993 reinit_completion(&dpu_crtc->frame_done_comp);
994
995 end:
996 DPU_ATRACE_END("crtc_commit");
997 }
998
dpu_crtc_reset(struct drm_crtc * crtc)999 static void dpu_crtc_reset(struct drm_crtc *crtc)
1000 {
1001 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
1002
1003 if (crtc->state)
1004 dpu_crtc_destroy_state(crtc, crtc->state);
1005
1006 if (cstate)
1007 __drm_atomic_helper_crtc_reset(crtc, &cstate->base);
1008 else
1009 __drm_atomic_helper_crtc_reset(crtc, NULL);
1010 }
1011
1012 /**
1013 * dpu_crtc_duplicate_state - state duplicate hook
1014 * @crtc: Pointer to drm crtc structure
1015 */
dpu_crtc_duplicate_state(struct drm_crtc * crtc)1016 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
1017 {
1018 struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state);
1019
1020 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
1021 if (!cstate) {
1022 DPU_ERROR("failed to allocate state\n");
1023 return NULL;
1024 }
1025
1026 /* duplicate base helper */
1027 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
1028
1029 return &cstate->base;
1030 }
1031
dpu_crtc_atomic_print_state(struct drm_printer * p,const struct drm_crtc_state * state)1032 static void dpu_crtc_atomic_print_state(struct drm_printer *p,
1033 const struct drm_crtc_state *state)
1034 {
1035 const struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
1036 int i;
1037
1038 for (i = 0; i < cstate->num_mixers; i++) {
1039 drm_printf(p, "\tlm[%d]=%d\n", i, cstate->mixers[i].hw_lm->idx - LM_0);
1040 drm_printf(p, "\tctl[%d]=%d\n", i, cstate->mixers[i].lm_ctl->idx - CTL_0);
1041 if (cstate->mixers[i].hw_dspp)
1042 drm_printf(p, "\tdspp[%d]=%d\n", i, cstate->mixers[i].hw_dspp->idx - DSPP_0);
1043 }
1044 }
1045
dpu_crtc_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)1046 static void dpu_crtc_disable(struct drm_crtc *crtc,
1047 struct drm_atomic_state *state)
1048 {
1049 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1050 crtc);
1051 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1052 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
1053 struct drm_encoder *encoder;
1054 unsigned long flags;
1055 bool release_bandwidth = false;
1056
1057 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1058
1059 /* If disable is triggered while in self refresh mode,
1060 * reset the encoder software state so that in enable
1061 * it won't trigger a warn while assigning crtc.
1062 */
1063 if (old_crtc_state->self_refresh_active) {
1064 drm_for_each_encoder_mask(encoder, crtc->dev,
1065 old_crtc_state->encoder_mask) {
1066 dpu_encoder_assign_crtc(encoder, NULL);
1067 }
1068 return;
1069 }
1070
1071 /* Disable/save vblank irq handling */
1072 drm_crtc_vblank_off(crtc);
1073
1074 drm_for_each_encoder_mask(encoder, crtc->dev,
1075 old_crtc_state->encoder_mask) {
1076 /* in video mode, we hold an extra bandwidth reference
1077 * as we cannot drop bandwidth at frame-done if any
1078 * crtc is being used in video mode.
1079 */
1080 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1081 release_bandwidth = true;
1082
1083 /*
1084 * If disable is triggered during psr active(e.g: screen dim in PSR),
1085 * we will need encoder->crtc connection to process the device sleep &
1086 * preserve it during psr sequence.
1087 */
1088 if (!crtc->state->self_refresh_active)
1089 dpu_encoder_assign_crtc(encoder, NULL);
1090 }
1091
1092 /* wait for frame_event_done completion */
1093 if (_dpu_crtc_wait_for_frame_done(crtc))
1094 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
1095 crtc->base.id,
1096 atomic_read(&dpu_crtc->frame_pending));
1097
1098 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
1099 dpu_crtc->enabled = false;
1100
1101 if (atomic_read(&dpu_crtc->frame_pending)) {
1102 trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
1103 atomic_read(&dpu_crtc->frame_pending));
1104 if (release_bandwidth)
1105 dpu_core_perf_crtc_release_bw(crtc);
1106 atomic_set(&dpu_crtc->frame_pending, 0);
1107 }
1108
1109 dpu_core_perf_crtc_update(crtc, 0);
1110
1111 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1112 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL);
1113
1114 memset(cstate->mixers, 0, sizeof(cstate->mixers));
1115 cstate->num_mixers = 0;
1116
1117 /* disable clk & bw control until clk & bw properties are set */
1118 cstate->bw_control = false;
1119 cstate->bw_split_vote = false;
1120
1121 if (crtc->state->event && !crtc->state->active) {
1122 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1123 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1124 crtc->state->event = NULL;
1125 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1126 }
1127
1128 pm_runtime_put_sync(crtc->dev->dev);
1129 }
1130
dpu_crtc_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)1131 static void dpu_crtc_enable(struct drm_crtc *crtc,
1132 struct drm_atomic_state *state)
1133 {
1134 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1135 struct drm_encoder *encoder;
1136 bool request_bandwidth = false;
1137 struct drm_crtc_state *old_crtc_state;
1138
1139 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1140
1141 pm_runtime_get_sync(crtc->dev->dev);
1142
1143 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1144
1145 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
1146 /* in video mode, we hold an extra bandwidth reference
1147 * as we cannot drop bandwidth at frame-done if any
1148 * crtc is being used in video mode.
1149 */
1150 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1151 request_bandwidth = true;
1152 dpu_encoder_register_frame_event_callback(encoder,
1153 dpu_crtc_frame_event_cb, (void *)crtc);
1154 }
1155
1156 if (request_bandwidth)
1157 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1158
1159 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
1160 dpu_crtc->enabled = true;
1161
1162 if (!old_crtc_state->self_refresh_active) {
1163 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1164 dpu_encoder_assign_crtc(encoder, crtc);
1165 }
1166
1167 /* Enable/restore vblank irq handling */
1168 drm_crtc_vblank_on(crtc);
1169 }
1170
dpu_crtc_needs_dirtyfb(struct drm_crtc_state * cstate)1171 static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate)
1172 {
1173 struct drm_crtc *crtc = cstate->crtc;
1174 struct drm_encoder *encoder;
1175
1176 if (cstate->self_refresh_active)
1177 return true;
1178
1179 drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) {
1180 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) {
1181 return true;
1182 }
1183 }
1184
1185 return false;
1186 }
1187
dpu_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)1188 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
1189 struct drm_atomic_state *state)
1190 {
1191 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1192 crtc);
1193 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1194 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state);
1195
1196 const struct drm_plane_state *pstate;
1197 struct drm_plane *plane;
1198
1199 int rc = 0;
1200
1201 bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state);
1202
1203 if (!crtc_state->enable || !drm_atomic_crtc_effectively_active(crtc_state)) {
1204 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n",
1205 crtc->base.id, crtc_state->enable,
1206 crtc_state->active);
1207 memset(&cstate->new_perf, 0, sizeof(cstate->new_perf));
1208 return 0;
1209 }
1210
1211 DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name);
1212
1213 /* force a full mode set if active state changed */
1214 if (crtc_state->active_changed)
1215 crtc_state->mode_changed = true;
1216
1217 if (cstate->num_mixers) {
1218 rc = _dpu_crtc_check_and_setup_lm_bounds(crtc, crtc_state);
1219 if (rc)
1220 return rc;
1221 }
1222
1223 /* FIXME: move this to dpu_plane_atomic_check? */
1224 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
1225 struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate);
1226
1227 if (IS_ERR_OR_NULL(pstate)) {
1228 rc = PTR_ERR(pstate);
1229 DPU_ERROR("%s: failed to get plane%d state, %d\n",
1230 dpu_crtc->name, plane->base.id, rc);
1231 return rc;
1232 }
1233
1234 if (!pstate->visible)
1235 continue;
1236
1237 dpu_pstate->needs_dirtyfb = needs_dirtyfb;
1238 }
1239
1240 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1241
1242 rc = dpu_core_perf_crtc_check(crtc, crtc_state);
1243 if (rc) {
1244 DPU_ERROR("crtc%d failed performance check %d\n",
1245 crtc->base.id, rc);
1246 return rc;
1247 }
1248
1249 return 0;
1250 }
1251
dpu_crtc_vblank(struct drm_crtc * crtc,bool en)1252 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1253 {
1254 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1255 struct drm_encoder *enc;
1256
1257 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1258
1259 /*
1260 * Normally we would iterate through encoder_mask in crtc state to find
1261 * attached encoders. In this case, we might be disabling vblank _after_
1262 * encoder_mask has been cleared.
1263 *
1264 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1265 * disable (which is also after encoder_mask is cleared). So instead of
1266 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1267 * currently assigned to our crtc.
1268 *
1269 * Note also that this function cannot be called while crtc is disabled
1270 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1271 * about the assigned crtcs being inconsistent with the current state
1272 * (which means no need to worry about modeset locks).
1273 */
1274 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1275 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1276 dpu_crtc);
1277
1278 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1279 }
1280
1281 return 0;
1282 }
1283
1284 #ifdef CONFIG_DEBUG_FS
_dpu_debugfs_status_show(struct seq_file * s,void * data)1285 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1286 {
1287 struct dpu_crtc *dpu_crtc;
1288 struct dpu_plane_state *pstate = NULL;
1289 struct dpu_crtc_mixer *m;
1290
1291 struct drm_crtc *crtc;
1292 struct drm_plane *plane;
1293 struct drm_display_mode *mode;
1294 struct drm_framebuffer *fb;
1295 struct drm_plane_state *state;
1296 struct dpu_crtc_state *cstate;
1297
1298 int i, out_width;
1299
1300 dpu_crtc = s->private;
1301 crtc = &dpu_crtc->base;
1302
1303 drm_modeset_lock_all(crtc->dev);
1304 cstate = to_dpu_crtc_state(crtc->state);
1305
1306 mode = &crtc->state->adjusted_mode;
1307 out_width = mode->hdisplay / cstate->num_mixers;
1308
1309 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1310 mode->hdisplay, mode->vdisplay);
1311
1312 seq_puts(s, "\n");
1313
1314 for (i = 0; i < cstate->num_mixers; ++i) {
1315 m = &cstate->mixers[i];
1316 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1317 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1318 out_width, mode->vdisplay);
1319 }
1320
1321 seq_puts(s, "\n");
1322
1323 drm_atomic_crtc_for_each_plane(plane, crtc) {
1324 pstate = to_dpu_plane_state(plane->state);
1325 state = plane->state;
1326
1327 if (!pstate || !state)
1328 continue;
1329
1330 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1331 pstate->stage);
1332
1333 if (plane->state->fb) {
1334 fb = plane->state->fb;
1335
1336 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1337 fb->base.id, (char *) &fb->format->format,
1338 fb->width, fb->height);
1339 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1340 seq_printf(s, "cpp[%d]:%u ",
1341 i, fb->format->cpp[i]);
1342 seq_puts(s, "\n\t");
1343
1344 seq_printf(s, "modifier:%8llu ", fb->modifier);
1345 seq_puts(s, "\n");
1346
1347 seq_puts(s, "\t");
1348 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1349 seq_printf(s, "pitches[%d]:%8u ", i,
1350 fb->pitches[i]);
1351 seq_puts(s, "\n");
1352
1353 seq_puts(s, "\t");
1354 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1355 seq_printf(s, "offsets[%d]:%8u ", i,
1356 fb->offsets[i]);
1357 seq_puts(s, "\n");
1358 }
1359
1360 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1361 state->src_x, state->src_y, state->src_w, state->src_h);
1362
1363 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1364 state->crtc_x, state->crtc_y, state->crtc_w,
1365 state->crtc_h);
1366 seq_printf(s, "\tsspp[0]:%s\n",
1367 pstate->pipe.sspp->cap->name);
1368 seq_printf(s, "\tmultirect[0]: mode: %d index: %d\n",
1369 pstate->pipe.multirect_mode, pstate->pipe.multirect_index);
1370 if (pstate->r_pipe.sspp) {
1371 seq_printf(s, "\tsspp[1]:%s\n",
1372 pstate->r_pipe.sspp->cap->name);
1373 seq_printf(s, "\tmultirect[1]: mode: %d index: %d\n",
1374 pstate->r_pipe.multirect_mode, pstate->r_pipe.multirect_index);
1375 }
1376
1377 seq_puts(s, "\n");
1378 }
1379 if (dpu_crtc->vblank_cb_count) {
1380 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1381 s64 diff_ms = ktime_to_ms(diff);
1382 s64 fps = diff_ms ? div_s64(
1383 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1384
1385 seq_printf(s,
1386 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1387 fps, dpu_crtc->vblank_cb_count,
1388 ktime_to_ms(diff), dpu_crtc->play_count);
1389
1390 /* reset time & count for next measurement */
1391 dpu_crtc->vblank_cb_count = 0;
1392 dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1393 }
1394
1395 drm_modeset_unlock_all(crtc->dev);
1396
1397 return 0;
1398 }
1399
1400 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status);
1401
dpu_crtc_debugfs_state_show(struct seq_file * s,void * v)1402 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1403 {
1404 struct drm_crtc *crtc = s->private;
1405 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1406
1407 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1408 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1409 seq_printf(s, "core_clk_rate: %llu\n",
1410 dpu_crtc->cur_perf.core_clk_rate);
1411 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl);
1412 seq_printf(s, "max_per_pipe_ib: %llu\n",
1413 dpu_crtc->cur_perf.max_per_pipe_ib);
1414
1415 return 0;
1416 }
1417 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state);
1418
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1419 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1420 {
1421 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1422
1423 debugfs_create_file("status", 0400,
1424 crtc->debugfs_entry,
1425 dpu_crtc, &_dpu_debugfs_status_fops);
1426 debugfs_create_file("state", 0600,
1427 crtc->debugfs_entry,
1428 &dpu_crtc->base,
1429 &dpu_crtc_debugfs_state_fops);
1430
1431 return 0;
1432 }
1433 #else
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1434 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1435 {
1436 return 0;
1437 }
1438 #endif /* CONFIG_DEBUG_FS */
1439
dpu_crtc_late_register(struct drm_crtc * crtc)1440 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1441 {
1442 return _dpu_crtc_init_debugfs(crtc);
1443 }
1444
1445 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1446 .set_config = drm_atomic_helper_set_config,
1447 .destroy = dpu_crtc_destroy,
1448 .page_flip = drm_atomic_helper_page_flip,
1449 .reset = dpu_crtc_reset,
1450 .atomic_duplicate_state = dpu_crtc_duplicate_state,
1451 .atomic_destroy_state = dpu_crtc_destroy_state,
1452 .atomic_print_state = dpu_crtc_atomic_print_state,
1453 .late_register = dpu_crtc_late_register,
1454 .verify_crc_source = dpu_crtc_verify_crc_source,
1455 .set_crc_source = dpu_crtc_set_crc_source,
1456 .enable_vblank = msm_crtc_enable_vblank,
1457 .disable_vblank = msm_crtc_disable_vblank,
1458 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1459 .get_vblank_counter = dpu_crtc_get_vblank_counter,
1460 };
1461
1462 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1463 .atomic_disable = dpu_crtc_disable,
1464 .atomic_enable = dpu_crtc_enable,
1465 .atomic_check = dpu_crtc_atomic_check,
1466 .atomic_begin = dpu_crtc_atomic_begin,
1467 .atomic_flush = dpu_crtc_atomic_flush,
1468 .get_scanout_position = dpu_crtc_get_scanout_position,
1469 };
1470
1471 /* initialize crtc */
dpu_crtc_init(struct drm_device * dev,struct drm_plane * plane,struct drm_plane * cursor)1472 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1473 struct drm_plane *cursor)
1474 {
1475 struct msm_drm_private *priv = dev->dev_private;
1476 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
1477 struct drm_crtc *crtc = NULL;
1478 struct dpu_crtc *dpu_crtc = NULL;
1479 int i, ret;
1480
1481 dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL);
1482 if (!dpu_crtc)
1483 return ERR_PTR(-ENOMEM);
1484
1485 crtc = &dpu_crtc->base;
1486 crtc->dev = dev;
1487
1488 spin_lock_init(&dpu_crtc->spin_lock);
1489 atomic_set(&dpu_crtc->frame_pending, 0);
1490
1491 init_completion(&dpu_crtc->frame_done_comp);
1492
1493 INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1494
1495 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1496 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1497 list_add(&dpu_crtc->frame_events[i].list,
1498 &dpu_crtc->frame_event_list);
1499 kthread_init_work(&dpu_crtc->frame_events[i].work,
1500 dpu_crtc_frame_event_work);
1501 }
1502
1503 drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs,
1504 NULL);
1505
1506 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1507
1508 if (dpu_kms->catalog->dspp_count)
1509 drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1510
1511 /* save user friendly CRTC name for later */
1512 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1513
1514 /* initialize event handling */
1515 spin_lock_init(&dpu_crtc->event_lock);
1516
1517 ret = drm_self_refresh_helper_init(crtc);
1518 if (ret) {
1519 DPU_ERROR("Failed to initialize %s with self-refresh helpers %d\n",
1520 crtc->name, ret);
1521 return ERR_PTR(ret);
1522 }
1523
1524 DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name);
1525 return crtc;
1526 }
1527