1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/device.h>
25 #include <linux/export.h>
26 #include <linux/err.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/compat.h>
33 #include <uapi/linux/kfd_ioctl.h>
34 #include <linux/time.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/ptrace.h>
38 #include <linux/dma-buf.h>
39 #include <linux/fdtable.h>
40 #include <linux/processor.h>
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "amdgpu_amdkfd.h"
45 #include "kfd_smi_events.h"
46 #include "amdgpu_dma_buf.h"
47 #include "kfd_debug.h"
48
49 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
50 static int kfd_open(struct inode *, struct file *);
51 static int kfd_release(struct inode *, struct file *);
52 static int kfd_mmap(struct file *, struct vm_area_struct *);
53
54 static const char kfd_dev_name[] = "kfd";
55
56 static const struct file_operations kfd_fops = {
57 .owner = THIS_MODULE,
58 .unlocked_ioctl = kfd_ioctl,
59 .compat_ioctl = compat_ptr_ioctl,
60 .open = kfd_open,
61 .release = kfd_release,
62 .mmap = kfd_mmap,
63 };
64
65 static int kfd_char_dev_major = -1;
66 static struct class *kfd_class;
67 struct device *kfd_device;
68
kfd_lock_pdd_by_id(struct kfd_process * p,__u32 gpu_id)69 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
70 {
71 struct kfd_process_device *pdd;
72
73 mutex_lock(&p->mutex);
74 pdd = kfd_process_device_data_by_id(p, gpu_id);
75
76 if (pdd)
77 return pdd;
78
79 mutex_unlock(&p->mutex);
80 return NULL;
81 }
82
kfd_unlock_pdd(struct kfd_process_device * pdd)83 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
84 {
85 mutex_unlock(&pdd->process->mutex);
86 }
87
kfd_chardev_init(void)88 int kfd_chardev_init(void)
89 {
90 int err = 0;
91
92 kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
93 err = kfd_char_dev_major;
94 if (err < 0)
95 goto err_register_chrdev;
96
97 kfd_class = class_create(kfd_dev_name);
98 err = PTR_ERR(kfd_class);
99 if (IS_ERR(kfd_class))
100 goto err_class_create;
101
102 kfd_device = device_create(kfd_class, NULL,
103 MKDEV(kfd_char_dev_major, 0),
104 NULL, kfd_dev_name);
105 err = PTR_ERR(kfd_device);
106 if (IS_ERR(kfd_device))
107 goto err_device_create;
108
109 return 0;
110
111 err_device_create:
112 class_destroy(kfd_class);
113 err_class_create:
114 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
115 err_register_chrdev:
116 return err;
117 }
118
kfd_chardev_exit(void)119 void kfd_chardev_exit(void)
120 {
121 device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
122 class_destroy(kfd_class);
123 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
124 kfd_device = NULL;
125 }
126
127
kfd_open(struct inode * inode,struct file * filep)128 static int kfd_open(struct inode *inode, struct file *filep)
129 {
130 struct kfd_process *process;
131 bool is_32bit_user_mode;
132
133 if (iminor(inode) != 0)
134 return -ENODEV;
135
136 is_32bit_user_mode = in_compat_syscall();
137
138 if (is_32bit_user_mode) {
139 dev_warn(kfd_device,
140 "Process %d (32-bit) failed to open /dev/kfd\n"
141 "32-bit processes are not supported by amdkfd\n",
142 current->pid);
143 return -EPERM;
144 }
145
146 process = kfd_create_process(current);
147 if (IS_ERR(process))
148 return PTR_ERR(process);
149
150 if (kfd_process_init_cwsr_apu(process, filep)) {
151 kfd_unref_process(process);
152 return -EFAULT;
153 }
154
155 /* filep now owns the reference returned by kfd_create_process */
156 filep->private_data = process;
157
158 dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
159 process->pasid, process->is_32bit_user_mode);
160
161 return 0;
162 }
163
kfd_release(struct inode * inode,struct file * filep)164 static int kfd_release(struct inode *inode, struct file *filep)
165 {
166 struct kfd_process *process = filep->private_data;
167
168 if (process)
169 kfd_unref_process(process);
170
171 return 0;
172 }
173
kfd_ioctl_get_version(struct file * filep,struct kfd_process * p,void * data)174 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
175 void *data)
176 {
177 struct kfd_ioctl_get_version_args *args = data;
178
179 args->major_version = KFD_IOCTL_MAJOR_VERSION;
180 args->minor_version = KFD_IOCTL_MINOR_VERSION;
181
182 return 0;
183 }
184
set_queue_properties_from_user(struct queue_properties * q_properties,struct kfd_ioctl_create_queue_args * args)185 static int set_queue_properties_from_user(struct queue_properties *q_properties,
186 struct kfd_ioctl_create_queue_args *args)
187 {
188 /*
189 * Repurpose queue percentage to accommodate new features:
190 * bit 0-7: queue percentage
191 * bit 8-15: pm4_target_xcc
192 */
193 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
194 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
195 return -EINVAL;
196 }
197
198 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
199 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
200 return -EINVAL;
201 }
202
203 if ((args->ring_base_address) &&
204 (!access_ok((const void __user *) args->ring_base_address,
205 sizeof(uint64_t)))) {
206 pr_err("Can't access ring base address\n");
207 return -EFAULT;
208 }
209
210 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
211 pr_err("Ring size must be a power of 2 or 0\n");
212 return -EINVAL;
213 }
214
215 if (!access_ok((const void __user *) args->read_pointer_address,
216 sizeof(uint32_t))) {
217 pr_err("Can't access read pointer\n");
218 return -EFAULT;
219 }
220
221 if (!access_ok((const void __user *) args->write_pointer_address,
222 sizeof(uint32_t))) {
223 pr_err("Can't access write pointer\n");
224 return -EFAULT;
225 }
226
227 if (args->eop_buffer_address &&
228 !access_ok((const void __user *) args->eop_buffer_address,
229 sizeof(uint32_t))) {
230 pr_debug("Can't access eop buffer");
231 return -EFAULT;
232 }
233
234 if (args->ctx_save_restore_address &&
235 !access_ok((const void __user *) args->ctx_save_restore_address,
236 sizeof(uint32_t))) {
237 pr_debug("Can't access ctx save restore buffer");
238 return -EFAULT;
239 }
240
241 q_properties->is_interop = false;
242 q_properties->is_gws = false;
243 q_properties->queue_percent = args->queue_percentage & 0xFF;
244 /* bit 8-15 are repurposed to be PM4 target XCC */
245 q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
246 q_properties->priority = args->queue_priority;
247 q_properties->queue_address = args->ring_base_address;
248 q_properties->queue_size = args->ring_size;
249 q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
250 q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
251 q_properties->eop_ring_buffer_address = args->eop_buffer_address;
252 q_properties->eop_ring_buffer_size = args->eop_buffer_size;
253 q_properties->ctx_save_restore_area_address =
254 args->ctx_save_restore_address;
255 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
256 q_properties->ctl_stack_size = args->ctl_stack_size;
257 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
258 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
259 q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
260 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
261 q_properties->type = KFD_QUEUE_TYPE_SDMA;
262 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
263 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
264 else
265 return -ENOTSUPP;
266
267 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
268 q_properties->format = KFD_QUEUE_FORMAT_AQL;
269 else
270 q_properties->format = KFD_QUEUE_FORMAT_PM4;
271
272 pr_debug("Queue Percentage: %d, %d\n",
273 q_properties->queue_percent, args->queue_percentage);
274
275 pr_debug("Queue Priority: %d, %d\n",
276 q_properties->priority, args->queue_priority);
277
278 pr_debug("Queue Address: 0x%llX, 0x%llX\n",
279 q_properties->queue_address, args->ring_base_address);
280
281 pr_debug("Queue Size: 0x%llX, %u\n",
282 q_properties->queue_size, args->ring_size);
283
284 pr_debug("Queue r/w Pointers: %px, %px\n",
285 q_properties->read_ptr,
286 q_properties->write_ptr);
287
288 pr_debug("Queue Format: %d\n", q_properties->format);
289
290 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
291
292 pr_debug("Queue CTX save area: 0x%llX\n",
293 q_properties->ctx_save_restore_area_address);
294
295 return 0;
296 }
297
kfd_ioctl_create_queue(struct file * filep,struct kfd_process * p,void * data)298 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
299 void *data)
300 {
301 struct kfd_ioctl_create_queue_args *args = data;
302 struct kfd_node *dev;
303 int err = 0;
304 unsigned int queue_id;
305 struct kfd_process_device *pdd;
306 struct queue_properties q_properties;
307 uint32_t doorbell_offset_in_process = 0;
308 struct amdgpu_bo *wptr_bo = NULL;
309
310 memset(&q_properties, 0, sizeof(struct queue_properties));
311
312 pr_debug("Creating queue ioctl\n");
313
314 err = set_queue_properties_from_user(&q_properties, args);
315 if (err)
316 return err;
317
318 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
319
320 mutex_lock(&p->mutex);
321
322 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
323 if (!pdd) {
324 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
325 err = -EINVAL;
326 goto err_pdd;
327 }
328 dev = pdd->dev;
329
330 pdd = kfd_bind_process_to_device(dev, p);
331 if (IS_ERR(pdd)) {
332 err = -ESRCH;
333 goto err_bind_process;
334 }
335
336 if (!pdd->qpd.proc_doorbells) {
337 err = kfd_alloc_process_doorbells(dev->kfd, pdd);
338 if (err) {
339 pr_debug("failed to allocate process doorbells\n");
340 goto err_bind_process;
341 }
342 }
343
344 /* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
345 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
346 */
347 if (dev->kfd->shared_resources.enable_mes &&
348 ((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
349 >> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
350 struct amdgpu_bo_va_mapping *wptr_mapping;
351 struct amdgpu_vm *wptr_vm;
352
353 wptr_vm = drm_priv_to_vm(pdd->drm_priv);
354 err = amdgpu_bo_reserve(wptr_vm->root.bo, false);
355 if (err)
356 goto err_wptr_map_gart;
357
358 wptr_mapping = amdgpu_vm_bo_lookup_mapping(
359 wptr_vm, args->write_pointer_address >> PAGE_SHIFT);
360 amdgpu_bo_unreserve(wptr_vm->root.bo);
361 if (!wptr_mapping) {
362 pr_err("Failed to lookup wptr bo\n");
363 err = -EINVAL;
364 goto err_wptr_map_gart;
365 }
366
367 wptr_bo = wptr_mapping->bo_va->base.bo;
368 if (wptr_bo->tbo.base.size > PAGE_SIZE) {
369 pr_err("Requested GART mapping for wptr bo larger than one page\n");
370 err = -EINVAL;
371 goto err_wptr_map_gart;
372 }
373
374 err = amdgpu_amdkfd_map_gtt_bo_to_gart(dev->adev, wptr_bo);
375 if (err) {
376 pr_err("Failed to map wptr bo to GART\n");
377 goto err_wptr_map_gart;
378 }
379 }
380
381 pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
382 p->pasid,
383 dev->id);
384
385 err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo,
386 NULL, NULL, NULL, &doorbell_offset_in_process);
387 if (err != 0)
388 goto err_create_queue;
389
390 args->queue_id = queue_id;
391
392
393 /* Return gpu_id as doorbell offset for mmap usage */
394 args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
395 args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
396 if (KFD_IS_SOC15(dev))
397 /* On SOC15 ASICs, include the doorbell offset within the
398 * process doorbell frame, which is 2 pages.
399 */
400 args->doorbell_offset |= doorbell_offset_in_process;
401
402 mutex_unlock(&p->mutex);
403
404 pr_debug("Queue id %d was created successfully\n", args->queue_id);
405
406 pr_debug("Ring buffer address == 0x%016llX\n",
407 args->ring_base_address);
408
409 pr_debug("Read ptr address == 0x%016llX\n",
410 args->read_pointer_address);
411
412 pr_debug("Write ptr address == 0x%016llX\n",
413 args->write_pointer_address);
414
415 kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
416 return 0;
417
418 err_create_queue:
419 if (wptr_bo)
420 amdgpu_amdkfd_free_gtt_mem(dev->adev, (void **)&wptr_bo);
421 err_wptr_map_gart:
422 err_bind_process:
423 err_pdd:
424 mutex_unlock(&p->mutex);
425 return err;
426 }
427
kfd_ioctl_destroy_queue(struct file * filp,struct kfd_process * p,void * data)428 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
429 void *data)
430 {
431 int retval;
432 struct kfd_ioctl_destroy_queue_args *args = data;
433
434 pr_debug("Destroying queue id %d for pasid 0x%x\n",
435 args->queue_id,
436 p->pasid);
437
438 mutex_lock(&p->mutex);
439
440 retval = pqm_destroy_queue(&p->pqm, args->queue_id);
441
442 mutex_unlock(&p->mutex);
443 return retval;
444 }
445
kfd_ioctl_update_queue(struct file * filp,struct kfd_process * p,void * data)446 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
447 void *data)
448 {
449 int retval;
450 struct kfd_ioctl_update_queue_args *args = data;
451 struct queue_properties properties;
452
453 /*
454 * Repurpose queue percentage to accommodate new features:
455 * bit 0-7: queue percentage
456 * bit 8-15: pm4_target_xcc
457 */
458 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
459 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
460 return -EINVAL;
461 }
462
463 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
464 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
465 return -EINVAL;
466 }
467
468 if ((args->ring_base_address) &&
469 (!access_ok((const void __user *) args->ring_base_address,
470 sizeof(uint64_t)))) {
471 pr_err("Can't access ring base address\n");
472 return -EFAULT;
473 }
474
475 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
476 pr_err("Ring size must be a power of 2 or 0\n");
477 return -EINVAL;
478 }
479
480 properties.queue_address = args->ring_base_address;
481 properties.queue_size = args->ring_size;
482 properties.queue_percent = args->queue_percentage & 0xFF;
483 /* bit 8-15 are repurposed to be PM4 target XCC */
484 properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
485 properties.priority = args->queue_priority;
486
487 pr_debug("Updating queue id %d for pasid 0x%x\n",
488 args->queue_id, p->pasid);
489
490 mutex_lock(&p->mutex);
491
492 retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
493
494 mutex_unlock(&p->mutex);
495
496 return retval;
497 }
498
kfd_ioctl_set_cu_mask(struct file * filp,struct kfd_process * p,void * data)499 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
500 void *data)
501 {
502 int retval;
503 const int max_num_cus = 1024;
504 struct kfd_ioctl_set_cu_mask_args *args = data;
505 struct mqd_update_info minfo = {0};
506 uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
507 size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
508
509 if ((args->num_cu_mask % 32) != 0) {
510 pr_debug("num_cu_mask 0x%x must be a multiple of 32",
511 args->num_cu_mask);
512 return -EINVAL;
513 }
514
515 minfo.cu_mask.count = args->num_cu_mask;
516 if (minfo.cu_mask.count == 0) {
517 pr_debug("CU mask cannot be 0");
518 return -EINVAL;
519 }
520
521 /* To prevent an unreasonably large CU mask size, set an arbitrary
522 * limit of max_num_cus bits. We can then just drop any CU mask bits
523 * past max_num_cus bits and just use the first max_num_cus bits.
524 */
525 if (minfo.cu_mask.count > max_num_cus) {
526 pr_debug("CU mask cannot be greater than 1024 bits");
527 minfo.cu_mask.count = max_num_cus;
528 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
529 }
530
531 minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
532 if (!minfo.cu_mask.ptr)
533 return -ENOMEM;
534
535 retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
536 if (retval) {
537 pr_debug("Could not copy CU mask from userspace");
538 retval = -EFAULT;
539 goto out;
540 }
541
542 mutex_lock(&p->mutex);
543
544 retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
545
546 mutex_unlock(&p->mutex);
547
548 out:
549 kfree(minfo.cu_mask.ptr);
550 return retval;
551 }
552
kfd_ioctl_get_queue_wave_state(struct file * filep,struct kfd_process * p,void * data)553 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
554 struct kfd_process *p, void *data)
555 {
556 struct kfd_ioctl_get_queue_wave_state_args *args = data;
557 int r;
558
559 mutex_lock(&p->mutex);
560
561 r = pqm_get_wave_state(&p->pqm, args->queue_id,
562 (void __user *)args->ctl_stack_address,
563 &args->ctl_stack_used_size,
564 &args->save_area_used_size);
565
566 mutex_unlock(&p->mutex);
567
568 return r;
569 }
570
kfd_ioctl_set_memory_policy(struct file * filep,struct kfd_process * p,void * data)571 static int kfd_ioctl_set_memory_policy(struct file *filep,
572 struct kfd_process *p, void *data)
573 {
574 struct kfd_ioctl_set_memory_policy_args *args = data;
575 int err = 0;
576 struct kfd_process_device *pdd;
577 enum cache_policy default_policy, alternate_policy;
578
579 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
580 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
581 return -EINVAL;
582 }
583
584 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
585 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
586 return -EINVAL;
587 }
588
589 mutex_lock(&p->mutex);
590 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
591 if (!pdd) {
592 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
593 err = -EINVAL;
594 goto err_pdd;
595 }
596
597 pdd = kfd_bind_process_to_device(pdd->dev, p);
598 if (IS_ERR(pdd)) {
599 err = -ESRCH;
600 goto out;
601 }
602
603 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
604 ? cache_policy_coherent : cache_policy_noncoherent;
605
606 alternate_policy =
607 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
608 ? cache_policy_coherent : cache_policy_noncoherent;
609
610 if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
611 &pdd->qpd,
612 default_policy,
613 alternate_policy,
614 (void __user *)args->alternate_aperture_base,
615 args->alternate_aperture_size))
616 err = -EINVAL;
617
618 out:
619 err_pdd:
620 mutex_unlock(&p->mutex);
621
622 return err;
623 }
624
kfd_ioctl_set_trap_handler(struct file * filep,struct kfd_process * p,void * data)625 static int kfd_ioctl_set_trap_handler(struct file *filep,
626 struct kfd_process *p, void *data)
627 {
628 struct kfd_ioctl_set_trap_handler_args *args = data;
629 int err = 0;
630 struct kfd_process_device *pdd;
631
632 mutex_lock(&p->mutex);
633
634 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
635 if (!pdd) {
636 err = -EINVAL;
637 goto err_pdd;
638 }
639
640 pdd = kfd_bind_process_to_device(pdd->dev, p);
641 if (IS_ERR(pdd)) {
642 err = -ESRCH;
643 goto out;
644 }
645
646 kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
647
648 out:
649 err_pdd:
650 mutex_unlock(&p->mutex);
651
652 return err;
653 }
654
kfd_ioctl_dbg_register(struct file * filep,struct kfd_process * p,void * data)655 static int kfd_ioctl_dbg_register(struct file *filep,
656 struct kfd_process *p, void *data)
657 {
658 return -EPERM;
659 }
660
kfd_ioctl_dbg_unregister(struct file * filep,struct kfd_process * p,void * data)661 static int kfd_ioctl_dbg_unregister(struct file *filep,
662 struct kfd_process *p, void *data)
663 {
664 return -EPERM;
665 }
666
kfd_ioctl_dbg_address_watch(struct file * filep,struct kfd_process * p,void * data)667 static int kfd_ioctl_dbg_address_watch(struct file *filep,
668 struct kfd_process *p, void *data)
669 {
670 return -EPERM;
671 }
672
673 /* Parse and generate fixed size data structure for wave control */
kfd_ioctl_dbg_wave_control(struct file * filep,struct kfd_process * p,void * data)674 static int kfd_ioctl_dbg_wave_control(struct file *filep,
675 struct kfd_process *p, void *data)
676 {
677 return -EPERM;
678 }
679
kfd_ioctl_get_clock_counters(struct file * filep,struct kfd_process * p,void * data)680 static int kfd_ioctl_get_clock_counters(struct file *filep,
681 struct kfd_process *p, void *data)
682 {
683 struct kfd_ioctl_get_clock_counters_args *args = data;
684 struct kfd_process_device *pdd;
685
686 mutex_lock(&p->mutex);
687 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
688 mutex_unlock(&p->mutex);
689 if (pdd)
690 /* Reading GPU clock counter from KGD */
691 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
692 else
693 /* Node without GPU resource */
694 args->gpu_clock_counter = 0;
695
696 /* No access to rdtsc. Using raw monotonic time */
697 args->cpu_clock_counter = ktime_get_raw_ns();
698 args->system_clock_counter = ktime_get_boottime_ns();
699
700 /* Since the counter is in nano-seconds we use 1GHz frequency */
701 args->system_clock_freq = 1000000000;
702
703 return 0;
704 }
705
706
kfd_ioctl_get_process_apertures(struct file * filp,struct kfd_process * p,void * data)707 static int kfd_ioctl_get_process_apertures(struct file *filp,
708 struct kfd_process *p, void *data)
709 {
710 struct kfd_ioctl_get_process_apertures_args *args = data;
711 struct kfd_process_device_apertures *pAperture;
712 int i;
713
714 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
715
716 args->num_of_nodes = 0;
717
718 mutex_lock(&p->mutex);
719 /* Run over all pdd of the process */
720 for (i = 0; i < p->n_pdds; i++) {
721 struct kfd_process_device *pdd = p->pdds[i];
722
723 pAperture =
724 &args->process_apertures[args->num_of_nodes];
725 pAperture->gpu_id = pdd->dev->id;
726 pAperture->lds_base = pdd->lds_base;
727 pAperture->lds_limit = pdd->lds_limit;
728 pAperture->gpuvm_base = pdd->gpuvm_base;
729 pAperture->gpuvm_limit = pdd->gpuvm_limit;
730 pAperture->scratch_base = pdd->scratch_base;
731 pAperture->scratch_limit = pdd->scratch_limit;
732
733 dev_dbg(kfd_device,
734 "node id %u\n", args->num_of_nodes);
735 dev_dbg(kfd_device,
736 "gpu id %u\n", pdd->dev->id);
737 dev_dbg(kfd_device,
738 "lds_base %llX\n", pdd->lds_base);
739 dev_dbg(kfd_device,
740 "lds_limit %llX\n", pdd->lds_limit);
741 dev_dbg(kfd_device,
742 "gpuvm_base %llX\n", pdd->gpuvm_base);
743 dev_dbg(kfd_device,
744 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
745 dev_dbg(kfd_device,
746 "scratch_base %llX\n", pdd->scratch_base);
747 dev_dbg(kfd_device,
748 "scratch_limit %llX\n", pdd->scratch_limit);
749
750 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
751 break;
752 }
753 mutex_unlock(&p->mutex);
754
755 return 0;
756 }
757
kfd_ioctl_get_process_apertures_new(struct file * filp,struct kfd_process * p,void * data)758 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
759 struct kfd_process *p, void *data)
760 {
761 struct kfd_ioctl_get_process_apertures_new_args *args = data;
762 struct kfd_process_device_apertures *pa;
763 int ret;
764 int i;
765
766 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
767
768 if (args->num_of_nodes == 0) {
769 /* Return number of nodes, so that user space can alloacate
770 * sufficient memory
771 */
772 mutex_lock(&p->mutex);
773 args->num_of_nodes = p->n_pdds;
774 goto out_unlock;
775 }
776
777 /* Fill in process-aperture information for all available
778 * nodes, but not more than args->num_of_nodes as that is
779 * the amount of memory allocated by user
780 */
781 pa = kcalloc(args->num_of_nodes, sizeof(struct kfd_process_device_apertures),
782 GFP_KERNEL);
783 if (!pa)
784 return -ENOMEM;
785
786 mutex_lock(&p->mutex);
787
788 if (!p->n_pdds) {
789 args->num_of_nodes = 0;
790 kfree(pa);
791 goto out_unlock;
792 }
793
794 /* Run over all pdd of the process */
795 for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
796 struct kfd_process_device *pdd = p->pdds[i];
797
798 pa[i].gpu_id = pdd->dev->id;
799 pa[i].lds_base = pdd->lds_base;
800 pa[i].lds_limit = pdd->lds_limit;
801 pa[i].gpuvm_base = pdd->gpuvm_base;
802 pa[i].gpuvm_limit = pdd->gpuvm_limit;
803 pa[i].scratch_base = pdd->scratch_base;
804 pa[i].scratch_limit = pdd->scratch_limit;
805
806 dev_dbg(kfd_device,
807 "gpu id %u\n", pdd->dev->id);
808 dev_dbg(kfd_device,
809 "lds_base %llX\n", pdd->lds_base);
810 dev_dbg(kfd_device,
811 "lds_limit %llX\n", pdd->lds_limit);
812 dev_dbg(kfd_device,
813 "gpuvm_base %llX\n", pdd->gpuvm_base);
814 dev_dbg(kfd_device,
815 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
816 dev_dbg(kfd_device,
817 "scratch_base %llX\n", pdd->scratch_base);
818 dev_dbg(kfd_device,
819 "scratch_limit %llX\n", pdd->scratch_limit);
820 }
821 mutex_unlock(&p->mutex);
822
823 args->num_of_nodes = i;
824 ret = copy_to_user(
825 (void __user *)args->kfd_process_device_apertures_ptr,
826 pa,
827 (i * sizeof(struct kfd_process_device_apertures)));
828 kfree(pa);
829 return ret ? -EFAULT : 0;
830
831 out_unlock:
832 mutex_unlock(&p->mutex);
833 return 0;
834 }
835
kfd_ioctl_create_event(struct file * filp,struct kfd_process * p,void * data)836 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
837 void *data)
838 {
839 struct kfd_ioctl_create_event_args *args = data;
840 int err;
841
842 /* For dGPUs the event page is allocated in user mode. The
843 * handle is passed to KFD with the first call to this IOCTL
844 * through the event_page_offset field.
845 */
846 if (args->event_page_offset) {
847 mutex_lock(&p->mutex);
848 err = kfd_kmap_event_page(p, args->event_page_offset);
849 mutex_unlock(&p->mutex);
850 if (err)
851 return err;
852 }
853
854 err = kfd_event_create(filp, p, args->event_type,
855 args->auto_reset != 0, args->node_id,
856 &args->event_id, &args->event_trigger_data,
857 &args->event_page_offset,
858 &args->event_slot_index);
859
860 pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
861 return err;
862 }
863
kfd_ioctl_destroy_event(struct file * filp,struct kfd_process * p,void * data)864 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
865 void *data)
866 {
867 struct kfd_ioctl_destroy_event_args *args = data;
868
869 return kfd_event_destroy(p, args->event_id);
870 }
871
kfd_ioctl_set_event(struct file * filp,struct kfd_process * p,void * data)872 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
873 void *data)
874 {
875 struct kfd_ioctl_set_event_args *args = data;
876
877 return kfd_set_event(p, args->event_id);
878 }
879
kfd_ioctl_reset_event(struct file * filp,struct kfd_process * p,void * data)880 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
881 void *data)
882 {
883 struct kfd_ioctl_reset_event_args *args = data;
884
885 return kfd_reset_event(p, args->event_id);
886 }
887
kfd_ioctl_wait_events(struct file * filp,struct kfd_process * p,void * data)888 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
889 void *data)
890 {
891 struct kfd_ioctl_wait_events_args *args = data;
892
893 return kfd_wait_on_events(p, args->num_events,
894 (void __user *)args->events_ptr,
895 (args->wait_for_all != 0),
896 &args->timeout, &args->wait_result);
897 }
kfd_ioctl_set_scratch_backing_va(struct file * filep,struct kfd_process * p,void * data)898 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
899 struct kfd_process *p, void *data)
900 {
901 struct kfd_ioctl_set_scratch_backing_va_args *args = data;
902 struct kfd_process_device *pdd;
903 struct kfd_node *dev;
904 long err;
905
906 mutex_lock(&p->mutex);
907 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
908 if (!pdd) {
909 err = -EINVAL;
910 goto err_pdd;
911 }
912 dev = pdd->dev;
913
914 pdd = kfd_bind_process_to_device(dev, p);
915 if (IS_ERR(pdd)) {
916 err = PTR_ERR(pdd);
917 goto bind_process_to_device_fail;
918 }
919
920 pdd->qpd.sh_hidden_private_base = args->va_addr;
921
922 mutex_unlock(&p->mutex);
923
924 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
925 pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
926 dev->kfd2kgd->set_scratch_backing_va(
927 dev->adev, args->va_addr, pdd->qpd.vmid);
928
929 return 0;
930
931 bind_process_to_device_fail:
932 err_pdd:
933 mutex_unlock(&p->mutex);
934 return err;
935 }
936
kfd_ioctl_get_tile_config(struct file * filep,struct kfd_process * p,void * data)937 static int kfd_ioctl_get_tile_config(struct file *filep,
938 struct kfd_process *p, void *data)
939 {
940 struct kfd_ioctl_get_tile_config_args *args = data;
941 struct kfd_process_device *pdd;
942 struct tile_config config;
943 int err = 0;
944
945 mutex_lock(&p->mutex);
946 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
947 mutex_unlock(&p->mutex);
948 if (!pdd)
949 return -EINVAL;
950
951 amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
952
953 args->gb_addr_config = config.gb_addr_config;
954 args->num_banks = config.num_banks;
955 args->num_ranks = config.num_ranks;
956
957 if (args->num_tile_configs > config.num_tile_configs)
958 args->num_tile_configs = config.num_tile_configs;
959 err = copy_to_user((void __user *)args->tile_config_ptr,
960 config.tile_config_ptr,
961 args->num_tile_configs * sizeof(uint32_t));
962 if (err) {
963 args->num_tile_configs = 0;
964 return -EFAULT;
965 }
966
967 if (args->num_macro_tile_configs > config.num_macro_tile_configs)
968 args->num_macro_tile_configs =
969 config.num_macro_tile_configs;
970 err = copy_to_user((void __user *)args->macro_tile_config_ptr,
971 config.macro_tile_config_ptr,
972 args->num_macro_tile_configs * sizeof(uint32_t));
973 if (err) {
974 args->num_macro_tile_configs = 0;
975 return -EFAULT;
976 }
977
978 return 0;
979 }
980
kfd_ioctl_acquire_vm(struct file * filep,struct kfd_process * p,void * data)981 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
982 void *data)
983 {
984 struct kfd_ioctl_acquire_vm_args *args = data;
985 struct kfd_process_device *pdd;
986 struct file *drm_file;
987 int ret;
988
989 drm_file = fget(args->drm_fd);
990 if (!drm_file)
991 return -EINVAL;
992
993 mutex_lock(&p->mutex);
994 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
995 if (!pdd) {
996 ret = -EINVAL;
997 goto err_pdd;
998 }
999
1000 if (pdd->drm_file) {
1001 ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1002 goto err_drm_file;
1003 }
1004
1005 ret = kfd_process_device_init_vm(pdd, drm_file);
1006 if (ret)
1007 goto err_unlock;
1008
1009 /* On success, the PDD keeps the drm_file reference */
1010 mutex_unlock(&p->mutex);
1011
1012 return 0;
1013
1014 err_unlock:
1015 err_pdd:
1016 err_drm_file:
1017 mutex_unlock(&p->mutex);
1018 fput(drm_file);
1019 return ret;
1020 }
1021
kfd_dev_is_large_bar(struct kfd_node * dev)1022 bool kfd_dev_is_large_bar(struct kfd_node *dev)
1023 {
1024 if (debug_largebar) {
1025 pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1026 return true;
1027 }
1028
1029 if (dev->local_mem_info.local_mem_size_private == 0 &&
1030 dev->local_mem_info.local_mem_size_public > 0)
1031 return true;
1032
1033 if (dev->local_mem_info.local_mem_size_public == 0 &&
1034 dev->kfd->adev->gmc.is_app_apu) {
1035 pr_debug("APP APU, Consider like a large bar system\n");
1036 return true;
1037 }
1038
1039 return false;
1040 }
1041
kfd_ioctl_get_available_memory(struct file * filep,struct kfd_process * p,void * data)1042 static int kfd_ioctl_get_available_memory(struct file *filep,
1043 struct kfd_process *p, void *data)
1044 {
1045 struct kfd_ioctl_get_available_memory_args *args = data;
1046 struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1047
1048 if (!pdd)
1049 return -EINVAL;
1050 args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1051 pdd->dev->node_id);
1052 kfd_unlock_pdd(pdd);
1053 return 0;
1054 }
1055
kfd_ioctl_alloc_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1056 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1057 struct kfd_process *p, void *data)
1058 {
1059 struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1060 struct kfd_process_device *pdd;
1061 void *mem;
1062 struct kfd_node *dev;
1063 int idr_handle;
1064 long err;
1065 uint64_t offset = args->mmap_offset;
1066 uint32_t flags = args->flags;
1067
1068 if (args->size == 0)
1069 return -EINVAL;
1070
1071 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1072 /* Flush pending deferred work to avoid racing with deferred actions
1073 * from previous memory map changes (e.g. munmap).
1074 */
1075 svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1076 mutex_lock(&p->svms.lock);
1077 mmap_write_unlock(current->mm);
1078 if (interval_tree_iter_first(&p->svms.objects,
1079 args->va_addr >> PAGE_SHIFT,
1080 (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1081 pr_err("Address: 0x%llx already allocated by SVM\n",
1082 args->va_addr);
1083 mutex_unlock(&p->svms.lock);
1084 return -EADDRINUSE;
1085 }
1086
1087 /* When register user buffer check if it has been registered by svm by
1088 * buffer cpu virtual address.
1089 */
1090 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1091 interval_tree_iter_first(&p->svms.objects,
1092 args->mmap_offset >> PAGE_SHIFT,
1093 (args->mmap_offset + args->size - 1) >> PAGE_SHIFT)) {
1094 pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1095 args->mmap_offset);
1096 mutex_unlock(&p->svms.lock);
1097 return -EADDRINUSE;
1098 }
1099
1100 mutex_unlock(&p->svms.lock);
1101 #endif
1102 mutex_lock(&p->mutex);
1103 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1104 if (!pdd) {
1105 err = -EINVAL;
1106 goto err_pdd;
1107 }
1108
1109 dev = pdd->dev;
1110
1111 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1112 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1113 !kfd_dev_is_large_bar(dev)) {
1114 pr_err("Alloc host visible vram on small bar is not allowed\n");
1115 err = -EINVAL;
1116 goto err_large_bar;
1117 }
1118
1119 pdd = kfd_bind_process_to_device(dev, p);
1120 if (IS_ERR(pdd)) {
1121 err = PTR_ERR(pdd);
1122 goto err_unlock;
1123 }
1124
1125 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1126 if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1127 err = -EINVAL;
1128 goto err_unlock;
1129 }
1130 offset = kfd_get_process_doorbells(pdd);
1131 if (!offset) {
1132 err = -ENOMEM;
1133 goto err_unlock;
1134 }
1135 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1136 if (args->size != PAGE_SIZE) {
1137 err = -EINVAL;
1138 goto err_unlock;
1139 }
1140 offset = dev->adev->rmmio_remap.bus_addr;
1141 if (!offset || (PAGE_SIZE > 4096)) {
1142 err = -ENOMEM;
1143 goto err_unlock;
1144 }
1145 }
1146
1147 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1148 dev->adev, args->va_addr, args->size,
1149 pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1150 flags, false);
1151
1152 if (err)
1153 goto err_unlock;
1154
1155 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1156 if (idr_handle < 0) {
1157 err = -EFAULT;
1158 goto err_free;
1159 }
1160
1161 /* Update the VRAM usage count */
1162 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1163 uint64_t size = args->size;
1164
1165 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1166 size >>= 1;
1167 atomic64_add(PAGE_ALIGN(size), &pdd->vram_usage);
1168 }
1169
1170 mutex_unlock(&p->mutex);
1171
1172 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1173 args->mmap_offset = offset;
1174
1175 /* MMIO is mapped through kfd device
1176 * Generate a kfd mmap offset
1177 */
1178 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1179 args->mmap_offset = KFD_MMAP_TYPE_MMIO
1180 | KFD_MMAP_GPU_ID(args->gpu_id);
1181
1182 return 0;
1183
1184 err_free:
1185 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1186 pdd->drm_priv, NULL);
1187 err_unlock:
1188 err_pdd:
1189 err_large_bar:
1190 mutex_unlock(&p->mutex);
1191 return err;
1192 }
1193
kfd_ioctl_free_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1194 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1195 struct kfd_process *p, void *data)
1196 {
1197 struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1198 struct kfd_process_device *pdd;
1199 void *mem;
1200 int ret;
1201 uint64_t size = 0;
1202
1203 mutex_lock(&p->mutex);
1204 /*
1205 * Safeguard to prevent user space from freeing signal BO.
1206 * It will be freed at process termination.
1207 */
1208 if (p->signal_handle && (p->signal_handle == args->handle)) {
1209 pr_err("Free signal BO is not allowed\n");
1210 ret = -EPERM;
1211 goto err_unlock;
1212 }
1213
1214 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1215 if (!pdd) {
1216 pr_err("Process device data doesn't exist\n");
1217 ret = -EINVAL;
1218 goto err_pdd;
1219 }
1220
1221 mem = kfd_process_device_translate_handle(
1222 pdd, GET_IDR_HANDLE(args->handle));
1223 if (!mem) {
1224 ret = -EINVAL;
1225 goto err_unlock;
1226 }
1227
1228 ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1229 (struct kgd_mem *)mem, pdd->drm_priv, &size);
1230
1231 /* If freeing the buffer failed, leave the handle in place for
1232 * clean-up during process tear-down.
1233 */
1234 if (!ret)
1235 kfd_process_device_remove_obj_handle(
1236 pdd, GET_IDR_HANDLE(args->handle));
1237
1238 atomic64_sub(size, &pdd->vram_usage);
1239
1240 err_unlock:
1241 err_pdd:
1242 mutex_unlock(&p->mutex);
1243 return ret;
1244 }
1245
kfd_ioctl_map_memory_to_gpu(struct file * filep,struct kfd_process * p,void * data)1246 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1247 struct kfd_process *p, void *data)
1248 {
1249 struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1250 struct kfd_process_device *pdd, *peer_pdd;
1251 void *mem;
1252 struct kfd_node *dev;
1253 long err = 0;
1254 int i;
1255 uint32_t *devices_arr = NULL;
1256
1257 if (!args->n_devices) {
1258 pr_debug("Device IDs array empty\n");
1259 return -EINVAL;
1260 }
1261 if (args->n_success > args->n_devices) {
1262 pr_debug("n_success exceeds n_devices\n");
1263 return -EINVAL;
1264 }
1265
1266 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1267 GFP_KERNEL);
1268 if (!devices_arr)
1269 return -ENOMEM;
1270
1271 err = copy_from_user(devices_arr,
1272 (void __user *)args->device_ids_array_ptr,
1273 args->n_devices * sizeof(*devices_arr));
1274 if (err != 0) {
1275 err = -EFAULT;
1276 goto copy_from_user_failed;
1277 }
1278
1279 mutex_lock(&p->mutex);
1280 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1281 if (!pdd) {
1282 err = -EINVAL;
1283 goto get_process_device_data_failed;
1284 }
1285 dev = pdd->dev;
1286
1287 pdd = kfd_bind_process_to_device(dev, p);
1288 if (IS_ERR(pdd)) {
1289 err = PTR_ERR(pdd);
1290 goto bind_process_to_device_failed;
1291 }
1292
1293 mem = kfd_process_device_translate_handle(pdd,
1294 GET_IDR_HANDLE(args->handle));
1295 if (!mem) {
1296 err = -ENOMEM;
1297 goto get_mem_obj_from_handle_failed;
1298 }
1299
1300 for (i = args->n_success; i < args->n_devices; i++) {
1301 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1302 if (!peer_pdd) {
1303 pr_debug("Getting device by id failed for 0x%x\n",
1304 devices_arr[i]);
1305 err = -EINVAL;
1306 goto get_mem_obj_from_handle_failed;
1307 }
1308
1309 peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1310 if (IS_ERR(peer_pdd)) {
1311 err = PTR_ERR(peer_pdd);
1312 goto get_mem_obj_from_handle_failed;
1313 }
1314
1315 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1316 peer_pdd->dev->adev, (struct kgd_mem *)mem,
1317 peer_pdd->drm_priv);
1318 if (err) {
1319 struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1320
1321 dev_err(dev->adev->dev,
1322 "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1323 pci_domain_nr(pdev->bus),
1324 pdev->bus->number,
1325 PCI_SLOT(pdev->devfn),
1326 PCI_FUNC(pdev->devfn),
1327 ((struct kgd_mem *)mem)->domain);
1328 goto map_memory_to_gpu_failed;
1329 }
1330 args->n_success = i+1;
1331 }
1332
1333 err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1334 if (err) {
1335 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1336 goto sync_memory_failed;
1337 }
1338
1339 mutex_unlock(&p->mutex);
1340
1341 /* Flush TLBs after waiting for the page table updates to complete */
1342 for (i = 0; i < args->n_devices; i++) {
1343 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1344 if (WARN_ON_ONCE(!peer_pdd))
1345 continue;
1346 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1347 }
1348 kfree(devices_arr);
1349
1350 return err;
1351
1352 get_process_device_data_failed:
1353 bind_process_to_device_failed:
1354 get_mem_obj_from_handle_failed:
1355 map_memory_to_gpu_failed:
1356 sync_memory_failed:
1357 mutex_unlock(&p->mutex);
1358 copy_from_user_failed:
1359 kfree(devices_arr);
1360
1361 return err;
1362 }
1363
kfd_ioctl_unmap_memory_from_gpu(struct file * filep,struct kfd_process * p,void * data)1364 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1365 struct kfd_process *p, void *data)
1366 {
1367 struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1368 struct kfd_process_device *pdd, *peer_pdd;
1369 void *mem;
1370 long err = 0;
1371 uint32_t *devices_arr = NULL, i;
1372 bool flush_tlb;
1373
1374 if (!args->n_devices) {
1375 pr_debug("Device IDs array empty\n");
1376 return -EINVAL;
1377 }
1378 if (args->n_success > args->n_devices) {
1379 pr_debug("n_success exceeds n_devices\n");
1380 return -EINVAL;
1381 }
1382
1383 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1384 GFP_KERNEL);
1385 if (!devices_arr)
1386 return -ENOMEM;
1387
1388 err = copy_from_user(devices_arr,
1389 (void __user *)args->device_ids_array_ptr,
1390 args->n_devices * sizeof(*devices_arr));
1391 if (err != 0) {
1392 err = -EFAULT;
1393 goto copy_from_user_failed;
1394 }
1395
1396 mutex_lock(&p->mutex);
1397 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1398 if (!pdd) {
1399 err = -EINVAL;
1400 goto bind_process_to_device_failed;
1401 }
1402
1403 mem = kfd_process_device_translate_handle(pdd,
1404 GET_IDR_HANDLE(args->handle));
1405 if (!mem) {
1406 err = -ENOMEM;
1407 goto get_mem_obj_from_handle_failed;
1408 }
1409
1410 for (i = args->n_success; i < args->n_devices; i++) {
1411 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1412 if (!peer_pdd) {
1413 err = -EINVAL;
1414 goto get_mem_obj_from_handle_failed;
1415 }
1416 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1417 peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1418 if (err) {
1419 pr_err("Failed to unmap from gpu %d/%d\n",
1420 i, args->n_devices);
1421 goto unmap_memory_from_gpu_failed;
1422 }
1423 args->n_success = i+1;
1424 }
1425
1426 flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1427 if (flush_tlb) {
1428 err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1429 (struct kgd_mem *) mem, true);
1430 if (err) {
1431 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1432 goto sync_memory_failed;
1433 }
1434 }
1435
1436 /* Flush TLBs after waiting for the page table updates to complete */
1437 for (i = 0; i < args->n_devices; i++) {
1438 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1439 if (WARN_ON_ONCE(!peer_pdd))
1440 continue;
1441 if (flush_tlb)
1442 kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1443
1444 /* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1445 err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv);
1446 if (err)
1447 goto sync_memory_failed;
1448 }
1449
1450 mutex_unlock(&p->mutex);
1451
1452 kfree(devices_arr);
1453
1454 return 0;
1455
1456 bind_process_to_device_failed:
1457 get_mem_obj_from_handle_failed:
1458 unmap_memory_from_gpu_failed:
1459 sync_memory_failed:
1460 mutex_unlock(&p->mutex);
1461 copy_from_user_failed:
1462 kfree(devices_arr);
1463 return err;
1464 }
1465
kfd_ioctl_alloc_queue_gws(struct file * filep,struct kfd_process * p,void * data)1466 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1467 struct kfd_process *p, void *data)
1468 {
1469 int retval;
1470 struct kfd_ioctl_alloc_queue_gws_args *args = data;
1471 struct queue *q;
1472 struct kfd_node *dev;
1473
1474 mutex_lock(&p->mutex);
1475 q = pqm_get_user_queue(&p->pqm, args->queue_id);
1476
1477 if (q) {
1478 dev = q->device;
1479 } else {
1480 retval = -EINVAL;
1481 goto out_unlock;
1482 }
1483
1484 if (!dev->gws) {
1485 retval = -ENODEV;
1486 goto out_unlock;
1487 }
1488
1489 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1490 retval = -ENODEV;
1491 goto out_unlock;
1492 }
1493
1494 if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1495 kfd_dbg_has_cwsr_workaround(dev))) {
1496 retval = -EBUSY;
1497 goto out_unlock;
1498 }
1499
1500 retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1501 mutex_unlock(&p->mutex);
1502
1503 args->first_gws = 0;
1504 return retval;
1505
1506 out_unlock:
1507 mutex_unlock(&p->mutex);
1508 return retval;
1509 }
1510
kfd_ioctl_get_dmabuf_info(struct file * filep,struct kfd_process * p,void * data)1511 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1512 struct kfd_process *p, void *data)
1513 {
1514 struct kfd_ioctl_get_dmabuf_info_args *args = data;
1515 struct kfd_node *dev = NULL;
1516 struct amdgpu_device *dmabuf_adev;
1517 void *metadata_buffer = NULL;
1518 uint32_t flags;
1519 int8_t xcp_id;
1520 unsigned int i;
1521 int r;
1522
1523 /* Find a KFD GPU device that supports the get_dmabuf_info query */
1524 for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1525 if (dev && !kfd_devcgroup_check_permission(dev))
1526 break;
1527 if (!dev)
1528 return -EINVAL;
1529
1530 if (args->metadata_ptr) {
1531 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1532 if (!metadata_buffer)
1533 return -ENOMEM;
1534 }
1535
1536 /* Get dmabuf info from KGD */
1537 r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1538 &dmabuf_adev, &args->size,
1539 metadata_buffer, args->metadata_size,
1540 &args->metadata_size, &flags, &xcp_id);
1541 if (r)
1542 goto exit;
1543
1544 if (xcp_id >= 0)
1545 args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1546 else
1547 args->gpu_id = dev->id;
1548 args->flags = flags;
1549
1550 /* Copy metadata buffer to user mode */
1551 if (metadata_buffer) {
1552 r = copy_to_user((void __user *)args->metadata_ptr,
1553 metadata_buffer, args->metadata_size);
1554 if (r != 0)
1555 r = -EFAULT;
1556 }
1557
1558 exit:
1559 kfree(metadata_buffer);
1560
1561 return r;
1562 }
1563
kfd_ioctl_import_dmabuf(struct file * filep,struct kfd_process * p,void * data)1564 static int kfd_ioctl_import_dmabuf(struct file *filep,
1565 struct kfd_process *p, void *data)
1566 {
1567 struct kfd_ioctl_import_dmabuf_args *args = data;
1568 struct kfd_process_device *pdd;
1569 struct dma_buf *dmabuf;
1570 int idr_handle;
1571 uint64_t size;
1572 void *mem;
1573 int r;
1574
1575 dmabuf = dma_buf_get(args->dmabuf_fd);
1576 if (IS_ERR(dmabuf))
1577 return PTR_ERR(dmabuf);
1578
1579 mutex_lock(&p->mutex);
1580 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1581 if (!pdd) {
1582 r = -EINVAL;
1583 goto err_unlock;
1584 }
1585
1586 pdd = kfd_bind_process_to_device(pdd->dev, p);
1587 if (IS_ERR(pdd)) {
1588 r = PTR_ERR(pdd);
1589 goto err_unlock;
1590 }
1591
1592 r = amdgpu_amdkfd_gpuvm_import_dmabuf(pdd->dev->adev, dmabuf,
1593 args->va_addr, pdd->drm_priv,
1594 (struct kgd_mem **)&mem, &size,
1595 NULL);
1596 if (r)
1597 goto err_unlock;
1598
1599 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1600 if (idr_handle < 0) {
1601 r = -EFAULT;
1602 goto err_free;
1603 }
1604
1605 mutex_unlock(&p->mutex);
1606 dma_buf_put(dmabuf);
1607
1608 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1609
1610 return 0;
1611
1612 err_free:
1613 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1614 pdd->drm_priv, NULL);
1615 err_unlock:
1616 mutex_unlock(&p->mutex);
1617 dma_buf_put(dmabuf);
1618 return r;
1619 }
1620
kfd_ioctl_export_dmabuf(struct file * filep,struct kfd_process * p,void * data)1621 static int kfd_ioctl_export_dmabuf(struct file *filep,
1622 struct kfd_process *p, void *data)
1623 {
1624 struct kfd_ioctl_export_dmabuf_args *args = data;
1625 struct kfd_process_device *pdd;
1626 struct dma_buf *dmabuf;
1627 struct kfd_node *dev;
1628 void *mem;
1629 int ret = 0;
1630
1631 dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1632 if (!dev)
1633 return -EINVAL;
1634
1635 mutex_lock(&p->mutex);
1636
1637 pdd = kfd_get_process_device_data(dev, p);
1638 if (!pdd) {
1639 ret = -EINVAL;
1640 goto err_unlock;
1641 }
1642
1643 mem = kfd_process_device_translate_handle(pdd,
1644 GET_IDR_HANDLE(args->handle));
1645 if (!mem) {
1646 ret = -EINVAL;
1647 goto err_unlock;
1648 }
1649
1650 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1651 mutex_unlock(&p->mutex);
1652 if (ret)
1653 goto err_out;
1654
1655 ret = dma_buf_fd(dmabuf, args->flags);
1656 if (ret < 0) {
1657 dma_buf_put(dmabuf);
1658 goto err_out;
1659 }
1660 /* dma_buf_fd assigns the reference count to the fd, no need to
1661 * put the reference here.
1662 */
1663 args->dmabuf_fd = ret;
1664
1665 return 0;
1666
1667 err_unlock:
1668 mutex_unlock(&p->mutex);
1669 err_out:
1670 return ret;
1671 }
1672
1673 /* Handle requests for watching SMI events */
kfd_ioctl_smi_events(struct file * filep,struct kfd_process * p,void * data)1674 static int kfd_ioctl_smi_events(struct file *filep,
1675 struct kfd_process *p, void *data)
1676 {
1677 struct kfd_ioctl_smi_events_args *args = data;
1678 struct kfd_process_device *pdd;
1679
1680 mutex_lock(&p->mutex);
1681
1682 pdd = kfd_process_device_data_by_id(p, args->gpuid);
1683 mutex_unlock(&p->mutex);
1684 if (!pdd)
1685 return -EINVAL;
1686
1687 return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1688 }
1689
1690 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1691
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1692 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1693 struct kfd_process *p, void *data)
1694 {
1695 struct kfd_ioctl_set_xnack_mode_args *args = data;
1696 int r = 0;
1697
1698 mutex_lock(&p->mutex);
1699 if (args->xnack_enabled >= 0) {
1700 if (!list_empty(&p->pqm.queues)) {
1701 pr_debug("Process has user queues running\n");
1702 r = -EBUSY;
1703 goto out_unlock;
1704 }
1705
1706 if (p->xnack_enabled == args->xnack_enabled)
1707 goto out_unlock;
1708
1709 if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1710 r = -EPERM;
1711 goto out_unlock;
1712 }
1713
1714 r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1715 } else {
1716 args->xnack_enabled = p->xnack_enabled;
1717 }
1718
1719 out_unlock:
1720 mutex_unlock(&p->mutex);
1721
1722 return r;
1723 }
1724
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1725 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1726 {
1727 struct kfd_ioctl_svm_args *args = data;
1728 int r = 0;
1729
1730 pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1731 args->start_addr, args->size, args->op, args->nattr);
1732
1733 if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1734 return -EINVAL;
1735 if (!args->start_addr || !args->size)
1736 return -EINVAL;
1737
1738 r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1739 args->attrs);
1740
1741 return r;
1742 }
1743 #else
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1744 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1745 struct kfd_process *p, void *data)
1746 {
1747 return -EPERM;
1748 }
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1749 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1750 {
1751 return -EPERM;
1752 }
1753 #endif
1754
criu_checkpoint_process(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_offset)1755 static int criu_checkpoint_process(struct kfd_process *p,
1756 uint8_t __user *user_priv_data,
1757 uint64_t *priv_offset)
1758 {
1759 struct kfd_criu_process_priv_data process_priv;
1760 int ret;
1761
1762 memset(&process_priv, 0, sizeof(process_priv));
1763
1764 process_priv.version = KFD_CRIU_PRIV_VERSION;
1765 /* For CR, we don't consider negative xnack mode which is used for
1766 * querying without changing it, here 0 simply means disabled and 1
1767 * means enabled so retry for finding a valid PTE.
1768 */
1769 process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1770
1771 ret = copy_to_user(user_priv_data + *priv_offset,
1772 &process_priv, sizeof(process_priv));
1773
1774 if (ret) {
1775 pr_err("Failed to copy process information to user\n");
1776 ret = -EFAULT;
1777 }
1778
1779 *priv_offset += sizeof(process_priv);
1780 return ret;
1781 }
1782
criu_checkpoint_devices(struct kfd_process * p,uint32_t num_devices,uint8_t __user * user_addr,uint8_t __user * user_priv_data,uint64_t * priv_offset)1783 static int criu_checkpoint_devices(struct kfd_process *p,
1784 uint32_t num_devices,
1785 uint8_t __user *user_addr,
1786 uint8_t __user *user_priv_data,
1787 uint64_t *priv_offset)
1788 {
1789 struct kfd_criu_device_priv_data *device_priv = NULL;
1790 struct kfd_criu_device_bucket *device_buckets = NULL;
1791 int ret = 0, i;
1792
1793 device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1794 if (!device_buckets) {
1795 ret = -ENOMEM;
1796 goto exit;
1797 }
1798
1799 device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1800 if (!device_priv) {
1801 ret = -ENOMEM;
1802 goto exit;
1803 }
1804
1805 for (i = 0; i < num_devices; i++) {
1806 struct kfd_process_device *pdd = p->pdds[i];
1807
1808 device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1809 device_buckets[i].actual_gpu_id = pdd->dev->id;
1810
1811 /*
1812 * priv_data does not contain useful information for now and is reserved for
1813 * future use, so we do not set its contents.
1814 */
1815 }
1816
1817 ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1818 if (ret) {
1819 pr_err("Failed to copy device information to user\n");
1820 ret = -EFAULT;
1821 goto exit;
1822 }
1823
1824 ret = copy_to_user(user_priv_data + *priv_offset,
1825 device_priv,
1826 num_devices * sizeof(*device_priv));
1827 if (ret) {
1828 pr_err("Failed to copy device information to user\n");
1829 ret = -EFAULT;
1830 }
1831 *priv_offset += num_devices * sizeof(*device_priv);
1832
1833 exit:
1834 kvfree(device_buckets);
1835 kvfree(device_priv);
1836 return ret;
1837 }
1838
get_process_num_bos(struct kfd_process * p)1839 static uint32_t get_process_num_bos(struct kfd_process *p)
1840 {
1841 uint32_t num_of_bos = 0;
1842 int i;
1843
1844 /* Run over all PDDs of the process */
1845 for (i = 0; i < p->n_pdds; i++) {
1846 struct kfd_process_device *pdd = p->pdds[i];
1847 void *mem;
1848 int id;
1849
1850 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1851 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1852
1853 if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1854 num_of_bos++;
1855 }
1856 }
1857 return num_of_bos;
1858 }
1859
criu_get_prime_handle(struct kgd_mem * mem,int flags,u32 * shared_fd)1860 static int criu_get_prime_handle(struct kgd_mem *mem, int flags,
1861 u32 *shared_fd)
1862 {
1863 struct dma_buf *dmabuf;
1864 int ret;
1865
1866 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1867 if (ret) {
1868 pr_err("dmabuf export failed for the BO\n");
1869 return ret;
1870 }
1871
1872 ret = dma_buf_fd(dmabuf, flags);
1873 if (ret < 0) {
1874 pr_err("dmabuf create fd failed, ret:%d\n", ret);
1875 goto out_free_dmabuf;
1876 }
1877
1878 *shared_fd = ret;
1879 return 0;
1880
1881 out_free_dmabuf:
1882 dma_buf_put(dmabuf);
1883 return ret;
1884 }
1885
criu_checkpoint_bos(struct kfd_process * p,uint32_t num_bos,uint8_t __user * user_bos,uint8_t __user * user_priv_data,uint64_t * priv_offset)1886 static int criu_checkpoint_bos(struct kfd_process *p,
1887 uint32_t num_bos,
1888 uint8_t __user *user_bos,
1889 uint8_t __user *user_priv_data,
1890 uint64_t *priv_offset)
1891 {
1892 struct kfd_criu_bo_bucket *bo_buckets;
1893 struct kfd_criu_bo_priv_data *bo_privs;
1894 int ret = 0, pdd_index, bo_index = 0, id;
1895 void *mem;
1896
1897 bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1898 if (!bo_buckets)
1899 return -ENOMEM;
1900
1901 bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1902 if (!bo_privs) {
1903 ret = -ENOMEM;
1904 goto exit;
1905 }
1906
1907 for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1908 struct kfd_process_device *pdd = p->pdds[pdd_index];
1909 struct amdgpu_bo *dumper_bo;
1910 struct kgd_mem *kgd_mem;
1911
1912 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1913 struct kfd_criu_bo_bucket *bo_bucket;
1914 struct kfd_criu_bo_priv_data *bo_priv;
1915 int i, dev_idx = 0;
1916
1917 if (!mem) {
1918 ret = -ENOMEM;
1919 goto exit;
1920 }
1921
1922 kgd_mem = (struct kgd_mem *)mem;
1923 dumper_bo = kgd_mem->bo;
1924
1925 /* Skip checkpointing BOs that are used for Trap handler
1926 * code and state. Currently, these BOs have a VA that
1927 * is less GPUVM Base
1928 */
1929 if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1930 continue;
1931
1932 bo_bucket = &bo_buckets[bo_index];
1933 bo_priv = &bo_privs[bo_index];
1934
1935 bo_bucket->gpu_id = pdd->user_gpu_id;
1936 bo_bucket->addr = (uint64_t)kgd_mem->va;
1937 bo_bucket->size = amdgpu_bo_size(dumper_bo);
1938 bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1939 bo_priv->idr_handle = id;
1940
1941 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1942 ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1943 &bo_priv->user_addr);
1944 if (ret) {
1945 pr_err("Failed to obtain user address for user-pointer bo\n");
1946 goto exit;
1947 }
1948 }
1949 if (bo_bucket->alloc_flags
1950 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1951 ret = criu_get_prime_handle(kgd_mem,
1952 bo_bucket->alloc_flags &
1953 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1954 &bo_bucket->dmabuf_fd);
1955 if (ret)
1956 goto exit;
1957 } else {
1958 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1959 }
1960
1961 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1962 bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1963 KFD_MMAP_GPU_ID(pdd->dev->id);
1964 else if (bo_bucket->alloc_flags &
1965 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1966 bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1967 KFD_MMAP_GPU_ID(pdd->dev->id);
1968 else
1969 bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1970
1971 for (i = 0; i < p->n_pdds; i++) {
1972 if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem))
1973 bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1974 }
1975
1976 pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1977 "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1978 bo_bucket->size,
1979 bo_bucket->addr,
1980 bo_bucket->offset,
1981 bo_bucket->gpu_id,
1982 bo_bucket->alloc_flags,
1983 bo_priv->idr_handle);
1984 bo_index++;
1985 }
1986 }
1987
1988 ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1989 if (ret) {
1990 pr_err("Failed to copy BO information to user\n");
1991 ret = -EFAULT;
1992 goto exit;
1993 }
1994
1995 ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
1996 if (ret) {
1997 pr_err("Failed to copy BO priv information to user\n");
1998 ret = -EFAULT;
1999 goto exit;
2000 }
2001
2002 *priv_offset += num_bos * sizeof(*bo_privs);
2003
2004 exit:
2005 while (ret && bo_index--) {
2006 if (bo_buckets[bo_index].alloc_flags
2007 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2008 close_fd(bo_buckets[bo_index].dmabuf_fd);
2009 }
2010
2011 kvfree(bo_buckets);
2012 kvfree(bo_privs);
2013 return ret;
2014 }
2015
criu_get_process_object_info(struct kfd_process * p,uint32_t * num_devices,uint32_t * num_bos,uint32_t * num_objects,uint64_t * objs_priv_size)2016 static int criu_get_process_object_info(struct kfd_process *p,
2017 uint32_t *num_devices,
2018 uint32_t *num_bos,
2019 uint32_t *num_objects,
2020 uint64_t *objs_priv_size)
2021 {
2022 uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2023 uint32_t num_queues, num_events, num_svm_ranges;
2024 int ret;
2025
2026 *num_devices = p->n_pdds;
2027 *num_bos = get_process_num_bos(p);
2028
2029 ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2030 if (ret)
2031 return ret;
2032
2033 num_events = kfd_get_num_events(p);
2034
2035 ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2036 if (ret)
2037 return ret;
2038
2039 *num_objects = num_queues + num_events + num_svm_ranges;
2040
2041 if (objs_priv_size) {
2042 priv_size = sizeof(struct kfd_criu_process_priv_data);
2043 priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2044 priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2045 priv_size += queues_priv_data_size;
2046 priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2047 priv_size += svm_priv_data_size;
2048 *objs_priv_size = priv_size;
2049 }
2050 return 0;
2051 }
2052
criu_checkpoint(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2053 static int criu_checkpoint(struct file *filep,
2054 struct kfd_process *p,
2055 struct kfd_ioctl_criu_args *args)
2056 {
2057 int ret;
2058 uint32_t num_devices, num_bos, num_objects;
2059 uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2060
2061 if (!args->devices || !args->bos || !args->priv_data)
2062 return -EINVAL;
2063
2064 mutex_lock(&p->mutex);
2065
2066 if (!p->n_pdds) {
2067 pr_err("No pdd for given process\n");
2068 ret = -ENODEV;
2069 goto exit_unlock;
2070 }
2071
2072 /* Confirm all process queues are evicted */
2073 if (!p->queues_paused) {
2074 pr_err("Cannot dump process when queues are not in evicted state\n");
2075 /* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2076 ret = -EINVAL;
2077 goto exit_unlock;
2078 }
2079
2080 ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2081 if (ret)
2082 goto exit_unlock;
2083
2084 if (num_devices != args->num_devices ||
2085 num_bos != args->num_bos ||
2086 num_objects != args->num_objects ||
2087 priv_size != args->priv_data_size) {
2088
2089 ret = -EINVAL;
2090 goto exit_unlock;
2091 }
2092
2093 /* each function will store private data inside priv_data and adjust priv_offset */
2094 ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2095 if (ret)
2096 goto exit_unlock;
2097
2098 ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2099 (uint8_t __user *)args->priv_data, &priv_offset);
2100 if (ret)
2101 goto exit_unlock;
2102
2103 /* Leave room for BOs in the private data. They need to be restored
2104 * before events, but we checkpoint them last to simplify the error
2105 * handling.
2106 */
2107 bo_priv_offset = priv_offset;
2108 priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2109
2110 if (num_objects) {
2111 ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2112 &priv_offset);
2113 if (ret)
2114 goto exit_unlock;
2115
2116 ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2117 &priv_offset);
2118 if (ret)
2119 goto exit_unlock;
2120
2121 ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2122 if (ret)
2123 goto exit_unlock;
2124 }
2125
2126 /* This must be the last thing in this function that can fail.
2127 * Otherwise we leak dmabuf file descriptors.
2128 */
2129 ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2130 (uint8_t __user *)args->priv_data, &bo_priv_offset);
2131
2132 exit_unlock:
2133 mutex_unlock(&p->mutex);
2134 if (ret)
2135 pr_err("Failed to dump CRIU ret:%d\n", ret);
2136 else
2137 pr_debug("CRIU dump ret:%d\n", ret);
2138
2139 return ret;
2140 }
2141
criu_restore_process(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2142 static int criu_restore_process(struct kfd_process *p,
2143 struct kfd_ioctl_criu_args *args,
2144 uint64_t *priv_offset,
2145 uint64_t max_priv_data_size)
2146 {
2147 int ret = 0;
2148 struct kfd_criu_process_priv_data process_priv;
2149
2150 if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2151 return -EINVAL;
2152
2153 ret = copy_from_user(&process_priv,
2154 (void __user *)(args->priv_data + *priv_offset),
2155 sizeof(process_priv));
2156 if (ret) {
2157 pr_err("Failed to copy process private information from user\n");
2158 ret = -EFAULT;
2159 goto exit;
2160 }
2161 *priv_offset += sizeof(process_priv);
2162
2163 if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2164 pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2165 process_priv.version, KFD_CRIU_PRIV_VERSION);
2166 return -EINVAL;
2167 }
2168
2169 pr_debug("Setting XNACK mode\n");
2170 if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2171 pr_err("xnack mode cannot be set\n");
2172 ret = -EPERM;
2173 goto exit;
2174 } else {
2175 pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2176 p->xnack_enabled = process_priv.xnack_mode;
2177 }
2178
2179 exit:
2180 return ret;
2181 }
2182
criu_restore_devices(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2183 static int criu_restore_devices(struct kfd_process *p,
2184 struct kfd_ioctl_criu_args *args,
2185 uint64_t *priv_offset,
2186 uint64_t max_priv_data_size)
2187 {
2188 struct kfd_criu_device_bucket *device_buckets;
2189 struct kfd_criu_device_priv_data *device_privs;
2190 int ret = 0;
2191 uint32_t i;
2192
2193 if (args->num_devices != p->n_pdds)
2194 return -EINVAL;
2195
2196 if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2197 return -EINVAL;
2198
2199 device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2200 if (!device_buckets)
2201 return -ENOMEM;
2202
2203 ret = copy_from_user(device_buckets, (void __user *)args->devices,
2204 args->num_devices * sizeof(*device_buckets));
2205 if (ret) {
2206 pr_err("Failed to copy devices buckets from user\n");
2207 ret = -EFAULT;
2208 goto exit;
2209 }
2210
2211 for (i = 0; i < args->num_devices; i++) {
2212 struct kfd_node *dev;
2213 struct kfd_process_device *pdd;
2214 struct file *drm_file;
2215
2216 /* device private data is not currently used */
2217
2218 if (!device_buckets[i].user_gpu_id) {
2219 pr_err("Invalid user gpu_id\n");
2220 ret = -EINVAL;
2221 goto exit;
2222 }
2223
2224 dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2225 if (!dev) {
2226 pr_err("Failed to find device with gpu_id = %x\n",
2227 device_buckets[i].actual_gpu_id);
2228 ret = -EINVAL;
2229 goto exit;
2230 }
2231
2232 pdd = kfd_get_process_device_data(dev, p);
2233 if (!pdd) {
2234 pr_err("Failed to get pdd for gpu_id = %x\n",
2235 device_buckets[i].actual_gpu_id);
2236 ret = -EINVAL;
2237 goto exit;
2238 }
2239 pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2240
2241 drm_file = fget(device_buckets[i].drm_fd);
2242 if (!drm_file) {
2243 pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2244 device_buckets[i].drm_fd);
2245 ret = -EINVAL;
2246 goto exit;
2247 }
2248
2249 if (pdd->drm_file) {
2250 ret = -EINVAL;
2251 goto exit;
2252 }
2253
2254 /* create the vm using render nodes for kfd pdd */
2255 if (kfd_process_device_init_vm(pdd, drm_file)) {
2256 pr_err("could not init vm for given pdd\n");
2257 /* On success, the PDD keeps the drm_file reference */
2258 fput(drm_file);
2259 ret = -EINVAL;
2260 goto exit;
2261 }
2262 /*
2263 * pdd now already has the vm bound to render node so below api won't create a new
2264 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2265 * for iommu v2 binding and runtime pm.
2266 */
2267 pdd = kfd_bind_process_to_device(dev, p);
2268 if (IS_ERR(pdd)) {
2269 ret = PTR_ERR(pdd);
2270 goto exit;
2271 }
2272
2273 if (!pdd->qpd.proc_doorbells) {
2274 ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2275 if (ret)
2276 goto exit;
2277 }
2278 }
2279
2280 /*
2281 * We are not copying device private data from user as we are not using the data for now,
2282 * but we still adjust for its private data.
2283 */
2284 *priv_offset += args->num_devices * sizeof(*device_privs);
2285
2286 exit:
2287 kfree(device_buckets);
2288 return ret;
2289 }
2290
criu_restore_memory_of_gpu(struct kfd_process_device * pdd,struct kfd_criu_bo_bucket * bo_bucket,struct kfd_criu_bo_priv_data * bo_priv,struct kgd_mem ** kgd_mem)2291 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2292 struct kfd_criu_bo_bucket *bo_bucket,
2293 struct kfd_criu_bo_priv_data *bo_priv,
2294 struct kgd_mem **kgd_mem)
2295 {
2296 int idr_handle;
2297 int ret;
2298 const bool criu_resume = true;
2299 u64 offset;
2300
2301 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2302 if (bo_bucket->size !=
2303 kfd_doorbell_process_slice(pdd->dev->kfd))
2304 return -EINVAL;
2305
2306 offset = kfd_get_process_doorbells(pdd);
2307 if (!offset)
2308 return -ENOMEM;
2309 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2310 /* MMIO BOs need remapped bus address */
2311 if (bo_bucket->size != PAGE_SIZE) {
2312 pr_err("Invalid page size\n");
2313 return -EINVAL;
2314 }
2315 offset = pdd->dev->adev->rmmio_remap.bus_addr;
2316 if (!offset || (PAGE_SIZE > 4096)) {
2317 pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2318 return -ENOMEM;
2319 }
2320 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2321 offset = bo_priv->user_addr;
2322 }
2323 /* Create the BO */
2324 ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2325 bo_bucket->size, pdd->drm_priv, kgd_mem,
2326 &offset, bo_bucket->alloc_flags, criu_resume);
2327 if (ret) {
2328 pr_err("Could not create the BO\n");
2329 return ret;
2330 }
2331 pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2332 bo_bucket->size, bo_bucket->addr, offset);
2333
2334 /* Restore previous IDR handle */
2335 pr_debug("Restoring old IDR handle for the BO");
2336 idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2337 bo_priv->idr_handle + 1, GFP_KERNEL);
2338
2339 if (idr_handle < 0) {
2340 pr_err("Could not allocate idr\n");
2341 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2342 NULL);
2343 return -ENOMEM;
2344 }
2345
2346 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2347 bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2348 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2349 bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2350 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2351 bo_bucket->restored_offset = offset;
2352 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2353 bo_bucket->restored_offset = offset;
2354 /* Update the VRAM usage count */
2355 atomic64_add(bo_bucket->size, &pdd->vram_usage);
2356 }
2357 return 0;
2358 }
2359
criu_restore_bo(struct kfd_process * p,struct kfd_criu_bo_bucket * bo_bucket,struct kfd_criu_bo_priv_data * bo_priv)2360 static int criu_restore_bo(struct kfd_process *p,
2361 struct kfd_criu_bo_bucket *bo_bucket,
2362 struct kfd_criu_bo_priv_data *bo_priv)
2363 {
2364 struct kfd_process_device *pdd;
2365 struct kgd_mem *kgd_mem;
2366 int ret;
2367 int j;
2368
2369 pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2370 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2371 bo_priv->idr_handle);
2372
2373 pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2374 if (!pdd) {
2375 pr_err("Failed to get pdd\n");
2376 return -ENODEV;
2377 }
2378
2379 ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2380 if (ret)
2381 return ret;
2382
2383 /* now map these BOs to GPU/s */
2384 for (j = 0; j < p->n_pdds; j++) {
2385 struct kfd_node *peer;
2386 struct kfd_process_device *peer_pdd;
2387
2388 if (!bo_priv->mapped_gpuids[j])
2389 break;
2390
2391 peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2392 if (!peer_pdd)
2393 return -EINVAL;
2394
2395 peer = peer_pdd->dev;
2396
2397 peer_pdd = kfd_bind_process_to_device(peer, p);
2398 if (IS_ERR(peer_pdd))
2399 return PTR_ERR(peer_pdd);
2400
2401 ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2402 peer_pdd->drm_priv);
2403 if (ret) {
2404 pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2405 return ret;
2406 }
2407 }
2408
2409 pr_debug("map memory was successful for the BO\n");
2410 /* create the dmabuf object and export the bo */
2411 if (bo_bucket->alloc_flags
2412 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2413 ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2414 &bo_bucket->dmabuf_fd);
2415 if (ret)
2416 return ret;
2417 } else {
2418 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2419 }
2420
2421 return 0;
2422 }
2423
criu_restore_bos(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2424 static int criu_restore_bos(struct kfd_process *p,
2425 struct kfd_ioctl_criu_args *args,
2426 uint64_t *priv_offset,
2427 uint64_t max_priv_data_size)
2428 {
2429 struct kfd_criu_bo_bucket *bo_buckets = NULL;
2430 struct kfd_criu_bo_priv_data *bo_privs = NULL;
2431 int ret = 0;
2432 uint32_t i = 0;
2433
2434 if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2435 return -EINVAL;
2436
2437 /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2438 amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2439
2440 bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2441 if (!bo_buckets)
2442 return -ENOMEM;
2443
2444 ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2445 args->num_bos * sizeof(*bo_buckets));
2446 if (ret) {
2447 pr_err("Failed to copy BOs information from user\n");
2448 ret = -EFAULT;
2449 goto exit;
2450 }
2451
2452 bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2453 if (!bo_privs) {
2454 ret = -ENOMEM;
2455 goto exit;
2456 }
2457
2458 ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2459 args->num_bos * sizeof(*bo_privs));
2460 if (ret) {
2461 pr_err("Failed to copy BOs information from user\n");
2462 ret = -EFAULT;
2463 goto exit;
2464 }
2465 *priv_offset += args->num_bos * sizeof(*bo_privs);
2466
2467 /* Create and map new BOs */
2468 for (; i < args->num_bos; i++) {
2469 ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]);
2470 if (ret) {
2471 pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2472 goto exit;
2473 }
2474 } /* done */
2475
2476 /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2477 ret = copy_to_user((void __user *)args->bos,
2478 bo_buckets,
2479 (args->num_bos * sizeof(*bo_buckets)));
2480 if (ret)
2481 ret = -EFAULT;
2482
2483 exit:
2484 while (ret && i--) {
2485 if (bo_buckets[i].alloc_flags
2486 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2487 close_fd(bo_buckets[i].dmabuf_fd);
2488 }
2489 kvfree(bo_buckets);
2490 kvfree(bo_privs);
2491 return ret;
2492 }
2493
criu_restore_objects(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2494 static int criu_restore_objects(struct file *filep,
2495 struct kfd_process *p,
2496 struct kfd_ioctl_criu_args *args,
2497 uint64_t *priv_offset,
2498 uint64_t max_priv_data_size)
2499 {
2500 int ret = 0;
2501 uint32_t i;
2502
2503 BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2504 BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2505 BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2506
2507 for (i = 0; i < args->num_objects; i++) {
2508 uint32_t object_type;
2509
2510 if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2511 pr_err("Invalid private data size\n");
2512 return -EINVAL;
2513 }
2514
2515 ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2516 if (ret) {
2517 pr_err("Failed to copy private information from user\n");
2518 goto exit;
2519 }
2520
2521 switch (object_type) {
2522 case KFD_CRIU_OBJECT_TYPE_QUEUE:
2523 ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2524 priv_offset, max_priv_data_size);
2525 if (ret)
2526 goto exit;
2527 break;
2528 case KFD_CRIU_OBJECT_TYPE_EVENT:
2529 ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2530 priv_offset, max_priv_data_size);
2531 if (ret)
2532 goto exit;
2533 break;
2534 case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2535 ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2536 priv_offset, max_priv_data_size);
2537 if (ret)
2538 goto exit;
2539 break;
2540 default:
2541 pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2542 ret = -EINVAL;
2543 goto exit;
2544 }
2545 }
2546 exit:
2547 return ret;
2548 }
2549
criu_restore(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2550 static int criu_restore(struct file *filep,
2551 struct kfd_process *p,
2552 struct kfd_ioctl_criu_args *args)
2553 {
2554 uint64_t priv_offset = 0;
2555 int ret = 0;
2556
2557 pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2558 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2559
2560 if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2561 !args->num_devices || !args->num_bos)
2562 return -EINVAL;
2563
2564 mutex_lock(&p->mutex);
2565
2566 /*
2567 * Set the process to evicted state to avoid running any new queues before all the memory
2568 * mappings are ready.
2569 */
2570 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2571 if (ret)
2572 goto exit_unlock;
2573
2574 /* Each function will adjust priv_offset based on how many bytes they consumed */
2575 ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2576 if (ret)
2577 goto exit_unlock;
2578
2579 ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2580 if (ret)
2581 goto exit_unlock;
2582
2583 ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2584 if (ret)
2585 goto exit_unlock;
2586
2587 ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2588 if (ret)
2589 goto exit_unlock;
2590
2591 if (priv_offset != args->priv_data_size) {
2592 pr_err("Invalid private data size\n");
2593 ret = -EINVAL;
2594 }
2595
2596 exit_unlock:
2597 mutex_unlock(&p->mutex);
2598 if (ret)
2599 pr_err("Failed to restore CRIU ret:%d\n", ret);
2600 else
2601 pr_debug("CRIU restore successful\n");
2602
2603 return ret;
2604 }
2605
criu_unpause(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2606 static int criu_unpause(struct file *filep,
2607 struct kfd_process *p,
2608 struct kfd_ioctl_criu_args *args)
2609 {
2610 int ret;
2611
2612 mutex_lock(&p->mutex);
2613
2614 if (!p->queues_paused) {
2615 mutex_unlock(&p->mutex);
2616 return -EINVAL;
2617 }
2618
2619 ret = kfd_process_restore_queues(p);
2620 if (ret)
2621 pr_err("Failed to unpause queues ret:%d\n", ret);
2622 else
2623 p->queues_paused = false;
2624
2625 mutex_unlock(&p->mutex);
2626
2627 return ret;
2628 }
2629
criu_resume(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2630 static int criu_resume(struct file *filep,
2631 struct kfd_process *p,
2632 struct kfd_ioctl_criu_args *args)
2633 {
2634 struct kfd_process *target = NULL;
2635 struct pid *pid = NULL;
2636 int ret = 0;
2637
2638 pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2639 args->pid);
2640
2641 pid = find_get_pid(args->pid);
2642 if (!pid) {
2643 pr_err("Cannot find pid info for %i\n", args->pid);
2644 return -ESRCH;
2645 }
2646
2647 pr_debug("calling kfd_lookup_process_by_pid\n");
2648 target = kfd_lookup_process_by_pid(pid);
2649
2650 put_pid(pid);
2651
2652 if (!target) {
2653 pr_debug("Cannot find process info for %i\n", args->pid);
2654 return -ESRCH;
2655 }
2656
2657 mutex_lock(&target->mutex);
2658 ret = kfd_criu_resume_svm(target);
2659 if (ret) {
2660 pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2661 goto exit;
2662 }
2663
2664 ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2665 if (ret)
2666 pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2667
2668 exit:
2669 mutex_unlock(&target->mutex);
2670
2671 kfd_unref_process(target);
2672 return ret;
2673 }
2674
criu_process_info(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2675 static int criu_process_info(struct file *filep,
2676 struct kfd_process *p,
2677 struct kfd_ioctl_criu_args *args)
2678 {
2679 int ret = 0;
2680
2681 mutex_lock(&p->mutex);
2682
2683 if (!p->n_pdds) {
2684 pr_err("No pdd for given process\n");
2685 ret = -ENODEV;
2686 goto err_unlock;
2687 }
2688
2689 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2690 if (ret)
2691 goto err_unlock;
2692
2693 p->queues_paused = true;
2694
2695 args->pid = task_pid_nr_ns(p->lead_thread,
2696 task_active_pid_ns(p->lead_thread));
2697
2698 ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2699 &args->num_objects, &args->priv_data_size);
2700 if (ret)
2701 goto err_unlock;
2702
2703 dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2704 args->num_devices, args->num_bos, args->num_objects,
2705 args->priv_data_size);
2706
2707 err_unlock:
2708 if (ret) {
2709 kfd_process_restore_queues(p);
2710 p->queues_paused = false;
2711 }
2712 mutex_unlock(&p->mutex);
2713 return ret;
2714 }
2715
kfd_ioctl_criu(struct file * filep,struct kfd_process * p,void * data)2716 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2717 {
2718 struct kfd_ioctl_criu_args *args = data;
2719 int ret;
2720
2721 dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2722 switch (args->op) {
2723 case KFD_CRIU_OP_PROCESS_INFO:
2724 ret = criu_process_info(filep, p, args);
2725 break;
2726 case KFD_CRIU_OP_CHECKPOINT:
2727 ret = criu_checkpoint(filep, p, args);
2728 break;
2729 case KFD_CRIU_OP_UNPAUSE:
2730 ret = criu_unpause(filep, p, args);
2731 break;
2732 case KFD_CRIU_OP_RESTORE:
2733 ret = criu_restore(filep, p, args);
2734 break;
2735 case KFD_CRIU_OP_RESUME:
2736 ret = criu_resume(filep, p, args);
2737 break;
2738 default:
2739 dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2740 ret = -EINVAL;
2741 break;
2742 }
2743
2744 if (ret)
2745 dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2746
2747 return ret;
2748 }
2749
runtime_enable(struct kfd_process * p,uint64_t r_debug,bool enable_ttmp_setup)2750 static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2751 bool enable_ttmp_setup)
2752 {
2753 int i = 0, ret = 0;
2754
2755 if (p->is_runtime_retry)
2756 goto retry;
2757
2758 if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2759 return -EBUSY;
2760
2761 for (i = 0; i < p->n_pdds; i++) {
2762 struct kfd_process_device *pdd = p->pdds[i];
2763
2764 if (pdd->qpd.queue_count)
2765 return -EEXIST;
2766
2767 /*
2768 * Setup TTMPs by default.
2769 * Note that this call must remain here for MES ADD QUEUE to
2770 * skip_process_ctx_clear unconditionally as the first call to
2771 * SET_SHADER_DEBUGGER clears any stale process context data
2772 * saved in MES.
2773 */
2774 if (pdd->dev->kfd->shared_resources.enable_mes)
2775 kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2776 }
2777
2778 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2779 p->runtime_info.r_debug = r_debug;
2780 p->runtime_info.ttmp_setup = enable_ttmp_setup;
2781
2782 if (p->runtime_info.ttmp_setup) {
2783 for (i = 0; i < p->n_pdds; i++) {
2784 struct kfd_process_device *pdd = p->pdds[i];
2785
2786 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2787 amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2788 pdd->dev->kfd2kgd->enable_debug_trap(
2789 pdd->dev->adev,
2790 true,
2791 pdd->dev->vm_info.last_vmid_kfd);
2792 } else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2793 pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2794 pdd->dev->adev,
2795 false,
2796 0);
2797 }
2798 }
2799 }
2800
2801 retry:
2802 if (p->debug_trap_enabled) {
2803 if (!p->is_runtime_retry) {
2804 kfd_dbg_trap_activate(p);
2805 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2806 p, NULL, 0, false, NULL, 0);
2807 }
2808
2809 mutex_unlock(&p->mutex);
2810 ret = down_interruptible(&p->runtime_enable_sema);
2811 mutex_lock(&p->mutex);
2812
2813 p->is_runtime_retry = !!ret;
2814 }
2815
2816 return ret;
2817 }
2818
runtime_disable(struct kfd_process * p)2819 static int runtime_disable(struct kfd_process *p)
2820 {
2821 int i = 0, ret;
2822 bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2823
2824 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2825 p->runtime_info.r_debug = 0;
2826
2827 if (p->debug_trap_enabled) {
2828 if (was_enabled)
2829 kfd_dbg_trap_deactivate(p, false, 0);
2830
2831 if (!p->is_runtime_retry)
2832 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2833 p, NULL, 0, false, NULL, 0);
2834
2835 mutex_unlock(&p->mutex);
2836 ret = down_interruptible(&p->runtime_enable_sema);
2837 mutex_lock(&p->mutex);
2838
2839 p->is_runtime_retry = !!ret;
2840 if (ret)
2841 return ret;
2842 }
2843
2844 if (was_enabled && p->runtime_info.ttmp_setup) {
2845 for (i = 0; i < p->n_pdds; i++) {
2846 struct kfd_process_device *pdd = p->pdds[i];
2847
2848 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2849 amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2850 }
2851 }
2852
2853 p->runtime_info.ttmp_setup = false;
2854
2855 /* disable ttmp setup */
2856 for (i = 0; i < p->n_pdds; i++) {
2857 struct kfd_process_device *pdd = p->pdds[i];
2858
2859 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2860 pdd->spi_dbg_override =
2861 pdd->dev->kfd2kgd->disable_debug_trap(
2862 pdd->dev->adev,
2863 false,
2864 pdd->dev->vm_info.last_vmid_kfd);
2865
2866 if (!pdd->dev->kfd->shared_resources.enable_mes)
2867 debug_refresh_runlist(pdd->dev->dqm);
2868 else
2869 kfd_dbg_set_mes_debug_mode(pdd,
2870 !kfd_dbg_has_cwsr_workaround(pdd->dev));
2871 }
2872 }
2873
2874 return 0;
2875 }
2876
kfd_ioctl_runtime_enable(struct file * filep,struct kfd_process * p,void * data)2877 static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2878 {
2879 struct kfd_ioctl_runtime_enable_args *args = data;
2880 int r;
2881
2882 mutex_lock(&p->mutex);
2883
2884 if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2885 r = runtime_enable(p, args->r_debug,
2886 !!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2887 else
2888 r = runtime_disable(p);
2889
2890 mutex_unlock(&p->mutex);
2891
2892 return r;
2893 }
2894
kfd_ioctl_set_debug_trap(struct file * filep,struct kfd_process * p,void * data)2895 static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2896 {
2897 struct kfd_ioctl_dbg_trap_args *args = data;
2898 struct task_struct *thread = NULL;
2899 struct mm_struct *mm = NULL;
2900 struct pid *pid = NULL;
2901 struct kfd_process *target = NULL;
2902 struct kfd_process_device *pdd = NULL;
2903 int r = 0;
2904
2905 if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2906 pr_err("Debugging does not support sched_policy %i", sched_policy);
2907 return -EINVAL;
2908 }
2909
2910 pid = find_get_pid(args->pid);
2911 if (!pid) {
2912 pr_debug("Cannot find pid info for %i\n", args->pid);
2913 r = -ESRCH;
2914 goto out;
2915 }
2916
2917 thread = get_pid_task(pid, PIDTYPE_PID);
2918 if (!thread) {
2919 r = -ESRCH;
2920 goto out;
2921 }
2922
2923 mm = get_task_mm(thread);
2924 if (!mm) {
2925 r = -ESRCH;
2926 goto out;
2927 }
2928
2929 if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2930 bool create_process;
2931
2932 rcu_read_lock();
2933 create_process = thread && thread != current && ptrace_parent(thread) == current;
2934 rcu_read_unlock();
2935
2936 target = create_process ? kfd_create_process(thread) :
2937 kfd_lookup_process_by_pid(pid);
2938 } else {
2939 target = kfd_lookup_process_by_pid(pid);
2940 }
2941
2942 if (IS_ERR_OR_NULL(target)) {
2943 pr_debug("Cannot find process PID %i to debug\n", args->pid);
2944 r = target ? PTR_ERR(target) : -ESRCH;
2945 goto out;
2946 }
2947
2948 /* Check if target is still PTRACED. */
2949 rcu_read_lock();
2950 if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2951 && ptrace_parent(target->lead_thread) != current) {
2952 pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2953 r = -EPERM;
2954 }
2955 rcu_read_unlock();
2956
2957 if (r)
2958 goto out;
2959
2960 mutex_lock(&target->mutex);
2961
2962 if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2963 pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2964 r = -EINVAL;
2965 goto unlock_out;
2966 }
2967
2968 if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2969 (args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2970 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2971 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2972 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2973 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2974 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2975 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2976 r = -EPERM;
2977 goto unlock_out;
2978 }
2979
2980 if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2981 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2982 int user_gpu_id = kfd_process_get_user_gpu_id(target,
2983 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2984 args->set_node_address_watch.gpu_id :
2985 args->clear_node_address_watch.gpu_id);
2986
2987 pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2988 if (user_gpu_id == -EINVAL || !pdd) {
2989 r = -ENODEV;
2990 goto unlock_out;
2991 }
2992 }
2993
2994 switch (args->op) {
2995 case KFD_IOC_DBG_TRAP_ENABLE:
2996 if (target != p)
2997 target->debugger_process = p;
2998
2999 r = kfd_dbg_trap_enable(target,
3000 args->enable.dbg_fd,
3001 (void __user *)args->enable.rinfo_ptr,
3002 &args->enable.rinfo_size);
3003 if (!r)
3004 target->exception_enable_mask = args->enable.exception_mask;
3005
3006 break;
3007 case KFD_IOC_DBG_TRAP_DISABLE:
3008 r = kfd_dbg_trap_disable(target);
3009 break;
3010 case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3011 r = kfd_dbg_send_exception_to_runtime(target,
3012 args->send_runtime_event.gpu_id,
3013 args->send_runtime_event.queue_id,
3014 args->send_runtime_event.exception_mask);
3015 break;
3016 case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3017 kfd_dbg_set_enabled_debug_exception_mask(target,
3018 args->set_exceptions_enabled.exception_mask);
3019 break;
3020 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3021 r = kfd_dbg_trap_set_wave_launch_override(target,
3022 args->launch_override.override_mode,
3023 args->launch_override.enable_mask,
3024 args->launch_override.support_request_mask,
3025 &args->launch_override.enable_mask,
3026 &args->launch_override.support_request_mask);
3027 break;
3028 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3029 r = kfd_dbg_trap_set_wave_launch_mode(target,
3030 args->launch_mode.launch_mode);
3031 break;
3032 case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3033 r = suspend_queues(target,
3034 args->suspend_queues.num_queues,
3035 args->suspend_queues.grace_period,
3036 args->suspend_queues.exception_mask,
3037 (uint32_t *)args->suspend_queues.queue_array_ptr);
3038
3039 break;
3040 case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3041 r = resume_queues(target, args->resume_queues.num_queues,
3042 (uint32_t *)args->resume_queues.queue_array_ptr);
3043 break;
3044 case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3045 r = kfd_dbg_trap_set_dev_address_watch(pdd,
3046 args->set_node_address_watch.address,
3047 args->set_node_address_watch.mask,
3048 &args->set_node_address_watch.id,
3049 args->set_node_address_watch.mode);
3050 break;
3051 case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3052 r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3053 args->clear_node_address_watch.id);
3054 break;
3055 case KFD_IOC_DBG_TRAP_SET_FLAGS:
3056 r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3057 break;
3058 case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3059 r = kfd_dbg_ev_query_debug_event(target,
3060 &args->query_debug_event.queue_id,
3061 &args->query_debug_event.gpu_id,
3062 args->query_debug_event.exception_mask,
3063 &args->query_debug_event.exception_mask);
3064 break;
3065 case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3066 r = kfd_dbg_trap_query_exception_info(target,
3067 args->query_exception_info.source_id,
3068 args->query_exception_info.exception_code,
3069 args->query_exception_info.clear_exception,
3070 (void __user *)args->query_exception_info.info_ptr,
3071 &args->query_exception_info.info_size);
3072 break;
3073 case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3074 r = pqm_get_queue_snapshot(&target->pqm,
3075 args->queue_snapshot.exception_mask,
3076 (void __user *)args->queue_snapshot.snapshot_buf_ptr,
3077 &args->queue_snapshot.num_queues,
3078 &args->queue_snapshot.entry_size);
3079 break;
3080 case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3081 r = kfd_dbg_trap_device_snapshot(target,
3082 args->device_snapshot.exception_mask,
3083 (void __user *)args->device_snapshot.snapshot_buf_ptr,
3084 &args->device_snapshot.num_devices,
3085 &args->device_snapshot.entry_size);
3086 break;
3087 default:
3088 pr_err("Invalid option: %i\n", args->op);
3089 r = -EINVAL;
3090 }
3091
3092 unlock_out:
3093 mutex_unlock(&target->mutex);
3094
3095 out:
3096 if (thread)
3097 put_task_struct(thread);
3098
3099 if (mm)
3100 mmput(mm);
3101
3102 if (pid)
3103 put_pid(pid);
3104
3105 if (target)
3106 kfd_unref_process(target);
3107
3108 return r;
3109 }
3110
3111 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3112 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3113 .cmd_drv = 0, .name = #ioctl}
3114
3115 /** Ioctl table */
3116 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3117 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3118 kfd_ioctl_get_version, 0),
3119
3120 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3121 kfd_ioctl_create_queue, 0),
3122
3123 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3124 kfd_ioctl_destroy_queue, 0),
3125
3126 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3127 kfd_ioctl_set_memory_policy, 0),
3128
3129 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3130 kfd_ioctl_get_clock_counters, 0),
3131
3132 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3133 kfd_ioctl_get_process_apertures, 0),
3134
3135 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3136 kfd_ioctl_update_queue, 0),
3137
3138 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3139 kfd_ioctl_create_event, 0),
3140
3141 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3142 kfd_ioctl_destroy_event, 0),
3143
3144 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3145 kfd_ioctl_set_event, 0),
3146
3147 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3148 kfd_ioctl_reset_event, 0),
3149
3150 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3151 kfd_ioctl_wait_events, 0),
3152
3153 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3154 kfd_ioctl_dbg_register, 0),
3155
3156 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3157 kfd_ioctl_dbg_unregister, 0),
3158
3159 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3160 kfd_ioctl_dbg_address_watch, 0),
3161
3162 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3163 kfd_ioctl_dbg_wave_control, 0),
3164
3165 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3166 kfd_ioctl_set_scratch_backing_va, 0),
3167
3168 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3169 kfd_ioctl_get_tile_config, 0),
3170
3171 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3172 kfd_ioctl_set_trap_handler, 0),
3173
3174 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3175 kfd_ioctl_get_process_apertures_new, 0),
3176
3177 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3178 kfd_ioctl_acquire_vm, 0),
3179
3180 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3181 kfd_ioctl_alloc_memory_of_gpu, 0),
3182
3183 AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3184 kfd_ioctl_free_memory_of_gpu, 0),
3185
3186 AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3187 kfd_ioctl_map_memory_to_gpu, 0),
3188
3189 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3190 kfd_ioctl_unmap_memory_from_gpu, 0),
3191
3192 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3193 kfd_ioctl_set_cu_mask, 0),
3194
3195 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3196 kfd_ioctl_get_queue_wave_state, 0),
3197
3198 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3199 kfd_ioctl_get_dmabuf_info, 0),
3200
3201 AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3202 kfd_ioctl_import_dmabuf, 0),
3203
3204 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3205 kfd_ioctl_alloc_queue_gws, 0),
3206
3207 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3208 kfd_ioctl_smi_events, 0),
3209
3210 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3211
3212 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3213 kfd_ioctl_set_xnack_mode, 0),
3214
3215 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3216 kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3217
3218 AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3219 kfd_ioctl_get_available_memory, 0),
3220
3221 AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3222 kfd_ioctl_export_dmabuf, 0),
3223
3224 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3225 kfd_ioctl_runtime_enable, 0),
3226
3227 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3228 kfd_ioctl_set_debug_trap, 0),
3229 };
3230
3231 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
3232
kfd_ioctl(struct file * filep,unsigned int cmd,unsigned long arg)3233 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3234 {
3235 struct kfd_process *process;
3236 amdkfd_ioctl_t *func;
3237 const struct amdkfd_ioctl_desc *ioctl = NULL;
3238 unsigned int nr = _IOC_NR(cmd);
3239 char stack_kdata[128];
3240 char *kdata = NULL;
3241 unsigned int usize, asize;
3242 int retcode = -EINVAL;
3243 bool ptrace_attached = false;
3244
3245 if (nr >= AMDKFD_CORE_IOCTL_COUNT)
3246 goto err_i1;
3247
3248 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3249 u32 amdkfd_size;
3250
3251 ioctl = &amdkfd_ioctls[nr];
3252
3253 amdkfd_size = _IOC_SIZE(ioctl->cmd);
3254 usize = asize = _IOC_SIZE(cmd);
3255 if (amdkfd_size > asize)
3256 asize = amdkfd_size;
3257
3258 cmd = ioctl->cmd;
3259 } else
3260 goto err_i1;
3261
3262 dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3263
3264 /* Get the process struct from the filep. Only the process
3265 * that opened /dev/kfd can use the file descriptor. Child
3266 * processes need to create their own KFD device context.
3267 */
3268 process = filep->private_data;
3269
3270 rcu_read_lock();
3271 if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3272 ptrace_parent(process->lead_thread) == current)
3273 ptrace_attached = true;
3274 rcu_read_unlock();
3275
3276 if (process->lead_thread != current->group_leader
3277 && !ptrace_attached) {
3278 dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3279 retcode = -EBADF;
3280 goto err_i1;
3281 }
3282
3283 /* Do not trust userspace, use our own definition */
3284 func = ioctl->func;
3285
3286 if (unlikely(!func)) {
3287 dev_dbg(kfd_device, "no function\n");
3288 retcode = -EINVAL;
3289 goto err_i1;
3290 }
3291
3292 /*
3293 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3294 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3295 * more priviledged access.
3296 */
3297 if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3298 if (!capable(CAP_CHECKPOINT_RESTORE) &&
3299 !capable(CAP_SYS_ADMIN)) {
3300 retcode = -EACCES;
3301 goto err_i1;
3302 }
3303 }
3304
3305 if (cmd & (IOC_IN | IOC_OUT)) {
3306 if (asize <= sizeof(stack_kdata)) {
3307 kdata = stack_kdata;
3308 } else {
3309 kdata = kmalloc(asize, GFP_KERNEL);
3310 if (!kdata) {
3311 retcode = -ENOMEM;
3312 goto err_i1;
3313 }
3314 }
3315 if (asize > usize)
3316 memset(kdata + usize, 0, asize - usize);
3317 }
3318
3319 if (cmd & IOC_IN) {
3320 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3321 retcode = -EFAULT;
3322 goto err_i1;
3323 }
3324 } else if (cmd & IOC_OUT) {
3325 memset(kdata, 0, usize);
3326 }
3327
3328 retcode = func(filep, process, kdata);
3329
3330 if (cmd & IOC_OUT)
3331 if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3332 retcode = -EFAULT;
3333
3334 err_i1:
3335 if (!ioctl)
3336 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3337 task_pid_nr(current), cmd, nr);
3338
3339 if (kdata != stack_kdata)
3340 kfree(kdata);
3341
3342 if (retcode)
3343 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3344 nr, arg, retcode);
3345
3346 return retcode;
3347 }
3348
kfd_mmio_mmap(struct kfd_node * dev,struct kfd_process * process,struct vm_area_struct * vma)3349 static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3350 struct vm_area_struct *vma)
3351 {
3352 phys_addr_t address;
3353
3354 if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3355 return -EINVAL;
3356
3357 if (PAGE_SIZE > 4096)
3358 return -EINVAL;
3359
3360 address = dev->adev->rmmio_remap.bus_addr;
3361
3362 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3363 VM_DONTDUMP | VM_PFNMAP);
3364
3365 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3366
3367 pr_debug("pasid 0x%x mapping mmio page\n"
3368 " target user address == 0x%08llX\n"
3369 " physical address == 0x%08llX\n"
3370 " vm_flags == 0x%04lX\n"
3371 " size == 0x%04lX\n",
3372 process->pasid, (unsigned long long) vma->vm_start,
3373 address, vma->vm_flags, PAGE_SIZE);
3374
3375 return io_remap_pfn_range(vma,
3376 vma->vm_start,
3377 address >> PAGE_SHIFT,
3378 PAGE_SIZE,
3379 vma->vm_page_prot);
3380 }
3381
3382
kfd_mmap(struct file * filp,struct vm_area_struct * vma)3383 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3384 {
3385 struct kfd_process *process;
3386 struct kfd_node *dev = NULL;
3387 unsigned long mmap_offset;
3388 unsigned int gpu_id;
3389
3390 process = kfd_get_process(current);
3391 if (IS_ERR(process))
3392 return PTR_ERR(process);
3393
3394 mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3395 gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3396 if (gpu_id)
3397 dev = kfd_device_by_id(gpu_id);
3398
3399 switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3400 case KFD_MMAP_TYPE_DOORBELL:
3401 if (!dev)
3402 return -ENODEV;
3403 return kfd_doorbell_mmap(dev, process, vma);
3404
3405 case KFD_MMAP_TYPE_EVENTS:
3406 return kfd_event_mmap(process, vma);
3407
3408 case KFD_MMAP_TYPE_RESERVED_MEM:
3409 if (!dev)
3410 return -ENODEV;
3411 return kfd_reserved_mem_mmap(dev, process, vma);
3412 case KFD_MMAP_TYPE_MMIO:
3413 if (!dev)
3414 return -ENODEV;
3415 return kfd_mmio_mmap(dev, process, vma);
3416 }
3417
3418 return -EFAULT;
3419 }
3420