1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cacheinfo support - processor cache information via sysfs 4 * 5 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c 6 * Author: Sudeep Holla <sudeep.holla@arm.com> 7 */ 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/acpi.h> 11 #include <linux/bitops.h> 12 #include <linux/cacheinfo.h> 13 #include <linux/compiler.h> 14 #include <linux/cpu.h> 15 #include <linux/device.h> 16 #include <linux/init.h> 17 #include <linux/of.h> 18 #include <linux/sched.h> 19 #include <linux/slab.h> 20 #include <linux/smp.h> 21 #include <linux/sysfs.h> 22 23 /* pointer to per cpu cacheinfo */ 24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo); 25 #define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu)) 26 #define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves) 27 #define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list) 28 #define per_cpu_cacheinfo_idx(cpu, idx) \ 29 (per_cpu_cacheinfo(cpu) + (idx)) 30 31 /* Set if no cache information is found in DT/ACPI. */ 32 static bool use_arch_info; 33 get_cpu_cacheinfo(unsigned int cpu)34 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu) 35 { 36 return ci_cacheinfo(cpu); 37 } 38 cache_leaves_are_shared(struct cacheinfo * this_leaf,struct cacheinfo * sib_leaf)39 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf, 40 struct cacheinfo *sib_leaf) 41 { 42 /* 43 * For non DT/ACPI systems, assume unique level 1 caches, 44 * system-wide shared caches for all other levels. 45 */ 46 if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) || 47 use_arch_info) 48 return (this_leaf->level != 1) && (sib_leaf->level != 1); 49 50 if ((sib_leaf->attributes & CACHE_ID) && 51 (this_leaf->attributes & CACHE_ID)) 52 return sib_leaf->id == this_leaf->id; 53 54 return sib_leaf->fw_token == this_leaf->fw_token; 55 } 56 last_level_cache_is_valid(unsigned int cpu)57 bool last_level_cache_is_valid(unsigned int cpu) 58 { 59 struct cacheinfo *llc; 60 61 if (!cache_leaves(cpu) || !per_cpu_cacheinfo(cpu)) 62 return false; 63 64 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); 65 66 return (llc->attributes & CACHE_ID) || !!llc->fw_token; 67 68 } 69 last_level_cache_is_shared(unsigned int cpu_x,unsigned int cpu_y)70 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y) 71 { 72 struct cacheinfo *llc_x, *llc_y; 73 74 if (!last_level_cache_is_valid(cpu_x) || 75 !last_level_cache_is_valid(cpu_y)) 76 return false; 77 78 llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1); 79 llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1); 80 81 return cache_leaves_are_shared(llc_x, llc_y); 82 } 83 84 #ifdef CONFIG_OF 85 86 static bool of_check_cache_nodes(struct device_node *np); 87 88 /* OF properties to query for a given cache type */ 89 struct cache_type_info { 90 const char *size_prop; 91 const char *line_size_props[2]; 92 const char *nr_sets_prop; 93 }; 94 95 static const struct cache_type_info cache_type_info[] = { 96 { 97 .size_prop = "cache-size", 98 .line_size_props = { "cache-line-size", 99 "cache-block-size", }, 100 .nr_sets_prop = "cache-sets", 101 }, { 102 .size_prop = "i-cache-size", 103 .line_size_props = { "i-cache-line-size", 104 "i-cache-block-size", }, 105 .nr_sets_prop = "i-cache-sets", 106 }, { 107 .size_prop = "d-cache-size", 108 .line_size_props = { "d-cache-line-size", 109 "d-cache-block-size", }, 110 .nr_sets_prop = "d-cache-sets", 111 }, 112 }; 113 get_cacheinfo_idx(enum cache_type type)114 static inline int get_cacheinfo_idx(enum cache_type type) 115 { 116 if (type == CACHE_TYPE_UNIFIED) 117 return 0; 118 return type; 119 } 120 cache_size(struct cacheinfo * this_leaf,struct device_node * np)121 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np) 122 { 123 const char *propname; 124 int ct_idx; 125 126 ct_idx = get_cacheinfo_idx(this_leaf->type); 127 propname = cache_type_info[ct_idx].size_prop; 128 129 of_property_read_u32(np, propname, &this_leaf->size); 130 } 131 132 /* not cache_line_size() because that's a macro in include/linux/cache.h */ cache_get_line_size(struct cacheinfo * this_leaf,struct device_node * np)133 static void cache_get_line_size(struct cacheinfo *this_leaf, 134 struct device_node *np) 135 { 136 int i, lim, ct_idx; 137 138 ct_idx = get_cacheinfo_idx(this_leaf->type); 139 lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props); 140 141 for (i = 0; i < lim; i++) { 142 int ret; 143 u32 line_size; 144 const char *propname; 145 146 propname = cache_type_info[ct_idx].line_size_props[i]; 147 ret = of_property_read_u32(np, propname, &line_size); 148 if (!ret) { 149 this_leaf->coherency_line_size = line_size; 150 break; 151 } 152 } 153 } 154 cache_nr_sets(struct cacheinfo * this_leaf,struct device_node * np)155 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np) 156 { 157 const char *propname; 158 int ct_idx; 159 160 ct_idx = get_cacheinfo_idx(this_leaf->type); 161 propname = cache_type_info[ct_idx].nr_sets_prop; 162 163 of_property_read_u32(np, propname, &this_leaf->number_of_sets); 164 } 165 cache_associativity(struct cacheinfo * this_leaf)166 static void cache_associativity(struct cacheinfo *this_leaf) 167 { 168 unsigned int line_size = this_leaf->coherency_line_size; 169 unsigned int nr_sets = this_leaf->number_of_sets; 170 unsigned int size = this_leaf->size; 171 172 /* 173 * If the cache is fully associative, there is no need to 174 * check the other properties. 175 */ 176 if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0)) 177 this_leaf->ways_of_associativity = (size / nr_sets) / line_size; 178 } 179 cache_node_is_unified(struct cacheinfo * this_leaf,struct device_node * np)180 static bool cache_node_is_unified(struct cacheinfo *this_leaf, 181 struct device_node *np) 182 { 183 return of_property_read_bool(np, "cache-unified"); 184 } 185 cache_of_set_props(struct cacheinfo * this_leaf,struct device_node * np)186 static void cache_of_set_props(struct cacheinfo *this_leaf, 187 struct device_node *np) 188 { 189 /* 190 * init_cache_level must setup the cache level correctly 191 * overriding the architecturally specified levels, so 192 * if type is NONE at this stage, it should be unified 193 */ 194 if (this_leaf->type == CACHE_TYPE_NOCACHE && 195 cache_node_is_unified(this_leaf, np)) 196 this_leaf->type = CACHE_TYPE_UNIFIED; 197 cache_size(this_leaf, np); 198 cache_get_line_size(this_leaf, np); 199 cache_nr_sets(this_leaf, np); 200 cache_associativity(this_leaf); 201 } 202 cache_setup_of_node(unsigned int cpu)203 static int cache_setup_of_node(unsigned int cpu) 204 { 205 struct device_node *np, *prev; 206 struct cacheinfo *this_leaf; 207 unsigned int index = 0; 208 209 np = of_cpu_device_node_get(cpu); 210 if (!np) { 211 pr_err("Failed to find cpu%d device node\n", cpu); 212 return -ENOENT; 213 } 214 215 if (!of_check_cache_nodes(np)) { 216 of_node_put(np); 217 return -ENOENT; 218 } 219 220 prev = np; 221 222 while (index < cache_leaves(cpu)) { 223 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 224 if (this_leaf->level != 1) { 225 np = of_find_next_cache_node(np); 226 of_node_put(prev); 227 prev = np; 228 if (!np) 229 break; 230 } 231 cache_of_set_props(this_leaf, np); 232 this_leaf->fw_token = np; 233 index++; 234 } 235 236 of_node_put(np); 237 238 if (index != cache_leaves(cpu)) /* not all OF nodes populated */ 239 return -ENOENT; 240 241 return 0; 242 } 243 of_check_cache_nodes(struct device_node * np)244 static bool of_check_cache_nodes(struct device_node *np) 245 { 246 struct device_node *next; 247 248 if (of_property_present(np, "cache-size") || 249 of_property_present(np, "i-cache-size") || 250 of_property_present(np, "d-cache-size") || 251 of_property_present(np, "cache-unified")) 252 return true; 253 254 next = of_find_next_cache_node(np); 255 if (next) { 256 of_node_put(next); 257 return true; 258 } 259 260 return false; 261 } 262 of_count_cache_leaves(struct device_node * np)263 static int of_count_cache_leaves(struct device_node *np) 264 { 265 unsigned int leaves = 0; 266 267 if (of_property_read_bool(np, "cache-size")) 268 ++leaves; 269 if (of_property_read_bool(np, "i-cache-size")) 270 ++leaves; 271 if (of_property_read_bool(np, "d-cache-size")) 272 ++leaves; 273 274 if (!leaves) { 275 /* The '[i-|d-|]cache-size' property is required, but 276 * if absent, fallback on the 'cache-unified' property. 277 */ 278 if (of_property_read_bool(np, "cache-unified")) 279 return 1; 280 else 281 return 2; 282 } 283 284 return leaves; 285 } 286 init_of_cache_level(unsigned int cpu)287 int init_of_cache_level(unsigned int cpu) 288 { 289 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 290 struct device_node *np = of_cpu_device_node_get(cpu); 291 struct device_node *prev = NULL; 292 unsigned int levels = 0, leaves, level; 293 294 if (!of_check_cache_nodes(np)) { 295 of_node_put(np); 296 return -ENOENT; 297 } 298 299 leaves = of_count_cache_leaves(np); 300 if (leaves > 0) 301 levels = 1; 302 303 prev = np; 304 while ((np = of_find_next_cache_node(np))) { 305 of_node_put(prev); 306 prev = np; 307 if (!of_device_is_compatible(np, "cache")) 308 goto err_out; 309 if (of_property_read_u32(np, "cache-level", &level)) 310 goto err_out; 311 if (level <= levels) 312 goto err_out; 313 314 leaves += of_count_cache_leaves(np); 315 levels = level; 316 } 317 318 of_node_put(np); 319 this_cpu_ci->num_levels = levels; 320 this_cpu_ci->num_leaves = leaves; 321 322 return 0; 323 324 err_out: 325 of_node_put(np); 326 return -EINVAL; 327 } 328 329 #else cache_setup_of_node(unsigned int cpu)330 static inline int cache_setup_of_node(unsigned int cpu) { return 0; } init_of_cache_level(unsigned int cpu)331 int init_of_cache_level(unsigned int cpu) { return 0; } 332 #endif 333 cache_setup_acpi(unsigned int cpu)334 int __weak cache_setup_acpi(unsigned int cpu) 335 { 336 return -ENOTSUPP; 337 } 338 339 unsigned int coherency_max_size; 340 cache_setup_properties(unsigned int cpu)341 static int cache_setup_properties(unsigned int cpu) 342 { 343 int ret = 0; 344 345 if (of_have_populated_dt()) 346 ret = cache_setup_of_node(cpu); 347 else if (!acpi_disabled) 348 ret = cache_setup_acpi(cpu); 349 350 // Assume there is no cache information available in DT/ACPI from now. 351 if (ret && use_arch_cache_info()) 352 use_arch_info = true; 353 354 return ret; 355 } 356 cache_shared_cpu_map_setup(unsigned int cpu)357 static int cache_shared_cpu_map_setup(unsigned int cpu) 358 { 359 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 360 struct cacheinfo *this_leaf, *sib_leaf; 361 unsigned int index, sib_index; 362 int ret = 0; 363 364 if (this_cpu_ci->cpu_map_populated) 365 return 0; 366 367 /* 368 * skip setting up cache properties if LLC is valid, just need 369 * to update the shared cpu_map if the cache attributes were 370 * populated early before all the cpus are brought online 371 */ 372 if (!last_level_cache_is_valid(cpu) && !use_arch_info) { 373 ret = cache_setup_properties(cpu); 374 if (ret) 375 return ret; 376 } 377 378 for (index = 0; index < cache_leaves(cpu); index++) { 379 unsigned int i; 380 381 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 382 383 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 384 for_each_online_cpu(i) { 385 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i); 386 387 if (i == cpu || !sib_cpu_ci->info_list) 388 continue;/* skip if itself or no cacheinfo */ 389 for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) { 390 sib_leaf = per_cpu_cacheinfo_idx(i, sib_index); 391 392 /* 393 * Comparing cache IDs only makes sense if the leaves 394 * belong to the same cache level of same type. Skip 395 * the check if level and type do not match. 396 */ 397 if (sib_leaf->level != this_leaf->level || 398 sib_leaf->type != this_leaf->type) 399 continue; 400 401 if (cache_leaves_are_shared(this_leaf, sib_leaf)) { 402 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map); 403 cpumask_set_cpu(i, &this_leaf->shared_cpu_map); 404 break; 405 } 406 } 407 } 408 /* record the maximum cache line size */ 409 if (this_leaf->coherency_line_size > coherency_max_size) 410 coherency_max_size = this_leaf->coherency_line_size; 411 } 412 413 /* shared_cpu_map is now populated for the cpu */ 414 this_cpu_ci->cpu_map_populated = true; 415 return 0; 416 } 417 cache_shared_cpu_map_remove(unsigned int cpu)418 static void cache_shared_cpu_map_remove(unsigned int cpu) 419 { 420 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 421 struct cacheinfo *this_leaf, *sib_leaf; 422 unsigned int sibling, index, sib_index; 423 424 for (index = 0; index < cache_leaves(cpu); index++) { 425 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 426 for_each_cpu(sibling, &this_leaf->shared_cpu_map) { 427 struct cpu_cacheinfo *sib_cpu_ci = 428 get_cpu_cacheinfo(sibling); 429 430 if (sibling == cpu || !sib_cpu_ci->info_list) 431 continue;/* skip if itself or no cacheinfo */ 432 433 for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) { 434 sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index); 435 436 /* 437 * Comparing cache IDs only makes sense if the leaves 438 * belong to the same cache level of same type. Skip 439 * the check if level and type do not match. 440 */ 441 if (sib_leaf->level != this_leaf->level || 442 sib_leaf->type != this_leaf->type) 443 continue; 444 445 if (cache_leaves_are_shared(this_leaf, sib_leaf)) { 446 cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map); 447 cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map); 448 break; 449 } 450 } 451 } 452 } 453 454 /* cpu is no longer populated in the shared map */ 455 this_cpu_ci->cpu_map_populated = false; 456 } 457 free_cache_attributes(unsigned int cpu)458 static void free_cache_attributes(unsigned int cpu) 459 { 460 if (!per_cpu_cacheinfo(cpu)) 461 return; 462 463 cache_shared_cpu_map_remove(cpu); 464 } 465 early_cache_level(unsigned int cpu)466 int __weak early_cache_level(unsigned int cpu) 467 { 468 return -ENOENT; 469 } 470 init_cache_level(unsigned int cpu)471 int __weak init_cache_level(unsigned int cpu) 472 { 473 return -ENOENT; 474 } 475 populate_cache_leaves(unsigned int cpu)476 int __weak populate_cache_leaves(unsigned int cpu) 477 { 478 return -ENOENT; 479 } 480 allocate_cache_info(int cpu)481 static inline int allocate_cache_info(int cpu) 482 { 483 per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu), sizeof(struct cacheinfo), GFP_ATOMIC); 484 if (!per_cpu_cacheinfo(cpu)) { 485 cache_leaves(cpu) = 0; 486 return -ENOMEM; 487 } 488 489 return 0; 490 } 491 fetch_cache_info(unsigned int cpu)492 int fetch_cache_info(unsigned int cpu) 493 { 494 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 495 unsigned int levels = 0, split_levels = 0; 496 int ret; 497 498 if (acpi_disabled) { 499 ret = init_of_cache_level(cpu); 500 } else { 501 ret = acpi_get_cache_info(cpu, &levels, &split_levels); 502 if (!ret) { 503 this_cpu_ci->num_levels = levels; 504 /* 505 * This assumes that: 506 * - there cannot be any split caches (data/instruction) 507 * above a unified cache 508 * - data/instruction caches come by pair 509 */ 510 this_cpu_ci->num_leaves = levels + split_levels; 511 } 512 } 513 514 if (ret || !cache_leaves(cpu)) { 515 ret = early_cache_level(cpu); 516 if (ret) 517 return ret; 518 519 if (!cache_leaves(cpu)) 520 return -ENOENT; 521 522 this_cpu_ci->early_ci_levels = true; 523 } 524 525 return allocate_cache_info(cpu); 526 } 527 init_level_allocate_ci(unsigned int cpu)528 static inline int init_level_allocate_ci(unsigned int cpu) 529 { 530 unsigned int early_leaves = cache_leaves(cpu); 531 532 /* Since early initialization/allocation of the cacheinfo is allowed 533 * via fetch_cache_info() and this also gets called as CPU hotplug 534 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped 535 * as it will happen only once (the cacheinfo memory is never freed). 536 * Just populate the cacheinfo. However, if the cacheinfo has been 537 * allocated early through the arch-specific early_cache_level() call, 538 * there is a chance the info is wrong (this can happen on arm64). In 539 * that case, call init_cache_level() anyway to give the arch-specific 540 * code a chance to make things right. 541 */ 542 if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels) 543 return 0; 544 545 if (init_cache_level(cpu) || !cache_leaves(cpu)) 546 return -ENOENT; 547 548 /* 549 * Now that we have properly initialized the cache level info, make 550 * sure we don't try to do that again the next time we are called 551 * (e.g. as CPU hotplug callbacks). 552 */ 553 ci_cacheinfo(cpu)->early_ci_levels = false; 554 555 /* 556 * Some architectures (e.g., x86) do not use early initialization. 557 * Allocate memory now in such case. 558 */ 559 if (cache_leaves(cpu) <= early_leaves && per_cpu_cacheinfo(cpu)) 560 return 0; 561 562 kfree(per_cpu_cacheinfo(cpu)); 563 return allocate_cache_info(cpu); 564 } 565 detect_cache_attributes(unsigned int cpu)566 int detect_cache_attributes(unsigned int cpu) 567 { 568 int ret; 569 570 ret = init_level_allocate_ci(cpu); 571 if (ret) 572 return ret; 573 574 /* 575 * If LLC is valid the cache leaves were already populated so just go to 576 * update the cpu map. 577 */ 578 if (!last_level_cache_is_valid(cpu)) { 579 /* 580 * populate_cache_leaves() may completely setup the cache leaves and 581 * shared_cpu_map or it may leave it partially setup. 582 */ 583 ret = populate_cache_leaves(cpu); 584 if (ret) 585 goto free_ci; 586 } 587 588 /* 589 * For systems using DT for cache hierarchy, fw_token 590 * and shared_cpu_map will be set up here only if they are 591 * not populated already 592 */ 593 ret = cache_shared_cpu_map_setup(cpu); 594 if (ret) { 595 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu); 596 goto free_ci; 597 } 598 599 return 0; 600 601 free_ci: 602 free_cache_attributes(cpu); 603 return ret; 604 } 605 606 /* pointer to cpuX/cache device */ 607 static DEFINE_PER_CPU(struct device *, ci_cache_dev); 608 #define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu)) 609 610 static cpumask_t cache_dev_map; 611 612 /* pointer to array of devices for cpuX/cache/indexY */ 613 static DEFINE_PER_CPU(struct device **, ci_index_dev); 614 #define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu)) 615 #define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx]) 616 617 #define show_one(file_name, object) \ 618 static ssize_t file_name##_show(struct device *dev, \ 619 struct device_attribute *attr, char *buf) \ 620 { \ 621 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ 622 return sysfs_emit(buf, "%u\n", this_leaf->object); \ 623 } 624 625 show_one(id, id); 626 show_one(level, level); 627 show_one(coherency_line_size, coherency_line_size); 628 show_one(number_of_sets, number_of_sets); 629 show_one(physical_line_partition, physical_line_partition); 630 show_one(ways_of_associativity, ways_of_associativity); 631 size_show(struct device * dev,struct device_attribute * attr,char * buf)632 static ssize_t size_show(struct device *dev, 633 struct device_attribute *attr, char *buf) 634 { 635 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 636 637 return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10); 638 } 639 shared_cpu_map_show(struct device * dev,struct device_attribute * attr,char * buf)640 static ssize_t shared_cpu_map_show(struct device *dev, 641 struct device_attribute *attr, char *buf) 642 { 643 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 644 const struct cpumask *mask = &this_leaf->shared_cpu_map; 645 646 return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask); 647 } 648 shared_cpu_list_show(struct device * dev,struct device_attribute * attr,char * buf)649 static ssize_t shared_cpu_list_show(struct device *dev, 650 struct device_attribute *attr, char *buf) 651 { 652 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 653 const struct cpumask *mask = &this_leaf->shared_cpu_map; 654 655 return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask); 656 } 657 type_show(struct device * dev,struct device_attribute * attr,char * buf)658 static ssize_t type_show(struct device *dev, 659 struct device_attribute *attr, char *buf) 660 { 661 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 662 const char *output; 663 664 switch (this_leaf->type) { 665 case CACHE_TYPE_DATA: 666 output = "Data"; 667 break; 668 case CACHE_TYPE_INST: 669 output = "Instruction"; 670 break; 671 case CACHE_TYPE_UNIFIED: 672 output = "Unified"; 673 break; 674 default: 675 return -EINVAL; 676 } 677 678 return sysfs_emit(buf, "%s\n", output); 679 } 680 allocation_policy_show(struct device * dev,struct device_attribute * attr,char * buf)681 static ssize_t allocation_policy_show(struct device *dev, 682 struct device_attribute *attr, char *buf) 683 { 684 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 685 unsigned int ci_attr = this_leaf->attributes; 686 const char *output; 687 688 if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE)) 689 output = "ReadWriteAllocate"; 690 else if (ci_attr & CACHE_READ_ALLOCATE) 691 output = "ReadAllocate"; 692 else if (ci_attr & CACHE_WRITE_ALLOCATE) 693 output = "WriteAllocate"; 694 else 695 return 0; 696 697 return sysfs_emit(buf, "%s\n", output); 698 } 699 write_policy_show(struct device * dev,struct device_attribute * attr,char * buf)700 static ssize_t write_policy_show(struct device *dev, 701 struct device_attribute *attr, char *buf) 702 { 703 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 704 unsigned int ci_attr = this_leaf->attributes; 705 int n = 0; 706 707 if (ci_attr & CACHE_WRITE_THROUGH) 708 n = sysfs_emit(buf, "WriteThrough\n"); 709 else if (ci_attr & CACHE_WRITE_BACK) 710 n = sysfs_emit(buf, "WriteBack\n"); 711 return n; 712 } 713 714 static DEVICE_ATTR_RO(id); 715 static DEVICE_ATTR_RO(level); 716 static DEVICE_ATTR_RO(type); 717 static DEVICE_ATTR_RO(coherency_line_size); 718 static DEVICE_ATTR_RO(ways_of_associativity); 719 static DEVICE_ATTR_RO(number_of_sets); 720 static DEVICE_ATTR_RO(size); 721 static DEVICE_ATTR_RO(allocation_policy); 722 static DEVICE_ATTR_RO(write_policy); 723 static DEVICE_ATTR_RO(shared_cpu_map); 724 static DEVICE_ATTR_RO(shared_cpu_list); 725 static DEVICE_ATTR_RO(physical_line_partition); 726 727 static struct attribute *cache_default_attrs[] = { 728 &dev_attr_id.attr, 729 &dev_attr_type.attr, 730 &dev_attr_level.attr, 731 &dev_attr_shared_cpu_map.attr, 732 &dev_attr_shared_cpu_list.attr, 733 &dev_attr_coherency_line_size.attr, 734 &dev_attr_ways_of_associativity.attr, 735 &dev_attr_number_of_sets.attr, 736 &dev_attr_size.attr, 737 &dev_attr_allocation_policy.attr, 738 &dev_attr_write_policy.attr, 739 &dev_attr_physical_line_partition.attr, 740 NULL 741 }; 742 743 static umode_t cache_default_attrs_is_visible(struct kobject * kobj,struct attribute * attr,int unused)744 cache_default_attrs_is_visible(struct kobject *kobj, 745 struct attribute *attr, int unused) 746 { 747 struct device *dev = kobj_to_dev(kobj); 748 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 749 const struct cpumask *mask = &this_leaf->shared_cpu_map; 750 umode_t mode = attr->mode; 751 752 if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID)) 753 return mode; 754 if ((attr == &dev_attr_type.attr) && this_leaf->type) 755 return mode; 756 if ((attr == &dev_attr_level.attr) && this_leaf->level) 757 return mode; 758 if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask)) 759 return mode; 760 if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask)) 761 return mode; 762 if ((attr == &dev_attr_coherency_line_size.attr) && 763 this_leaf->coherency_line_size) 764 return mode; 765 if ((attr == &dev_attr_ways_of_associativity.attr) && 766 this_leaf->size) /* allow 0 = full associativity */ 767 return mode; 768 if ((attr == &dev_attr_number_of_sets.attr) && 769 this_leaf->number_of_sets) 770 return mode; 771 if ((attr == &dev_attr_size.attr) && this_leaf->size) 772 return mode; 773 if ((attr == &dev_attr_write_policy.attr) && 774 (this_leaf->attributes & CACHE_WRITE_POLICY_MASK)) 775 return mode; 776 if ((attr == &dev_attr_allocation_policy.attr) && 777 (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK)) 778 return mode; 779 if ((attr == &dev_attr_physical_line_partition.attr) && 780 this_leaf->physical_line_partition) 781 return mode; 782 783 return 0; 784 } 785 786 static const struct attribute_group cache_default_group = { 787 .attrs = cache_default_attrs, 788 .is_visible = cache_default_attrs_is_visible, 789 }; 790 791 static const struct attribute_group *cache_default_groups[] = { 792 &cache_default_group, 793 NULL, 794 }; 795 796 static const struct attribute_group *cache_private_groups[] = { 797 &cache_default_group, 798 NULL, /* Place holder for private group */ 799 NULL, 800 }; 801 802 const struct attribute_group * cache_get_priv_group(struct cacheinfo * this_leaf)803 __weak cache_get_priv_group(struct cacheinfo *this_leaf) 804 { 805 return NULL; 806 } 807 808 static const struct attribute_group ** cache_get_attribute_groups(struct cacheinfo * this_leaf)809 cache_get_attribute_groups(struct cacheinfo *this_leaf) 810 { 811 const struct attribute_group *priv_group = 812 cache_get_priv_group(this_leaf); 813 814 if (!priv_group) 815 return cache_default_groups; 816 817 if (!cache_private_groups[1]) 818 cache_private_groups[1] = priv_group; 819 820 return cache_private_groups; 821 } 822 823 /* Add/Remove cache interface for CPU device */ cpu_cache_sysfs_exit(unsigned int cpu)824 static void cpu_cache_sysfs_exit(unsigned int cpu) 825 { 826 int i; 827 struct device *ci_dev; 828 829 if (per_cpu_index_dev(cpu)) { 830 for (i = 0; i < cache_leaves(cpu); i++) { 831 ci_dev = per_cache_index_dev(cpu, i); 832 if (!ci_dev) 833 continue; 834 device_unregister(ci_dev); 835 } 836 kfree(per_cpu_index_dev(cpu)); 837 per_cpu_index_dev(cpu) = NULL; 838 } 839 device_unregister(per_cpu_cache_dev(cpu)); 840 per_cpu_cache_dev(cpu) = NULL; 841 } 842 cpu_cache_sysfs_init(unsigned int cpu)843 static int cpu_cache_sysfs_init(unsigned int cpu) 844 { 845 struct device *dev = get_cpu_device(cpu); 846 847 if (per_cpu_cacheinfo(cpu) == NULL) 848 return -ENOENT; 849 850 per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache"); 851 if (IS_ERR(per_cpu_cache_dev(cpu))) 852 return PTR_ERR(per_cpu_cache_dev(cpu)); 853 854 /* Allocate all required memory */ 855 per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu), 856 sizeof(struct device *), GFP_KERNEL); 857 if (unlikely(per_cpu_index_dev(cpu) == NULL)) 858 goto err_out; 859 860 return 0; 861 862 err_out: 863 cpu_cache_sysfs_exit(cpu); 864 return -ENOMEM; 865 } 866 cache_add_dev(unsigned int cpu)867 static int cache_add_dev(unsigned int cpu) 868 { 869 unsigned int i; 870 int rc; 871 struct device *ci_dev, *parent; 872 struct cacheinfo *this_leaf; 873 const struct attribute_group **cache_groups; 874 875 rc = cpu_cache_sysfs_init(cpu); 876 if (unlikely(rc < 0)) 877 return rc; 878 879 parent = per_cpu_cache_dev(cpu); 880 for (i = 0; i < cache_leaves(cpu); i++) { 881 this_leaf = per_cpu_cacheinfo_idx(cpu, i); 882 if (this_leaf->disable_sysfs) 883 continue; 884 if (this_leaf->type == CACHE_TYPE_NOCACHE) 885 break; 886 cache_groups = cache_get_attribute_groups(this_leaf); 887 ci_dev = cpu_device_create(parent, this_leaf, cache_groups, 888 "index%1u", i); 889 if (IS_ERR(ci_dev)) { 890 rc = PTR_ERR(ci_dev); 891 goto err; 892 } 893 per_cache_index_dev(cpu, i) = ci_dev; 894 } 895 cpumask_set_cpu(cpu, &cache_dev_map); 896 897 return 0; 898 err: 899 cpu_cache_sysfs_exit(cpu); 900 return rc; 901 } 902 cacheinfo_cpu_online(unsigned int cpu)903 static int cacheinfo_cpu_online(unsigned int cpu) 904 { 905 int rc = detect_cache_attributes(cpu); 906 907 if (rc) 908 return rc; 909 rc = cache_add_dev(cpu); 910 if (rc) 911 free_cache_attributes(cpu); 912 return rc; 913 } 914 cacheinfo_cpu_pre_down(unsigned int cpu)915 static int cacheinfo_cpu_pre_down(unsigned int cpu) 916 { 917 if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map)) 918 cpu_cache_sysfs_exit(cpu); 919 920 free_cache_attributes(cpu); 921 return 0; 922 } 923 cacheinfo_sysfs_init(void)924 static int __init cacheinfo_sysfs_init(void) 925 { 926 return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE, 927 "base/cacheinfo:online", 928 cacheinfo_cpu_online, cacheinfo_cpu_pre_down); 929 } 930 device_initcall(cacheinfo_sysfs_init); 931