1 /*
2 * Declarations for cpu physical memory functions
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or
10 * later. See the COPYING file in the top-level directory.
11 *
12 */
13
14 /*
15 * This header is for use by exec.c and memory.c ONLY. Do not include it.
16 * The functions declared here will be removed soon.
17 */
18
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
21
22 #ifndef CONFIG_USER_ONLY
23 #include "cpu.h"
24 #include "system/xen.h"
25 #include "system/tcg.h"
26 #include "exec/cputlb.h"
27 #include "exec/ramlist.h"
28 #include "exec/ramblock.h"
29 #include "exec/exec-all.h"
30 #include "qemu/rcu.h"
31
32 #include "exec/hwaddr.h"
33 #include "exec/cpu-common.h"
34
35 extern uint64_t total_dirty_pages;
36
37 /**
38 * clear_bmap_size: calculate clear bitmap size
39 *
40 * @pages: number of guest pages
41 * @shift: guest page number shift
42 *
43 * Returns: number of bits for the clear bitmap
44 */
clear_bmap_size(uint64_t pages,uint8_t shift)45 static inline long clear_bmap_size(uint64_t pages, uint8_t shift)
46 {
47 return DIV_ROUND_UP(pages, 1UL << shift);
48 }
49
50 /**
51 * clear_bmap_set: set clear bitmap for the page range. Must be with
52 * bitmap_mutex held.
53 *
54 * @rb: the ramblock to operate on
55 * @start: the start page number
56 * @size: number of pages to set in the bitmap
57 *
58 * Returns: None
59 */
clear_bmap_set(RAMBlock * rb,uint64_t start,uint64_t npages)60 static inline void clear_bmap_set(RAMBlock *rb, uint64_t start,
61 uint64_t npages)
62 {
63 uint8_t shift = rb->clear_bmap_shift;
64
65 bitmap_set(rb->clear_bmap, start >> shift, clear_bmap_size(npages, shift));
66 }
67
68 /**
69 * clear_bmap_test_and_clear: test clear bitmap for the page, clear if set.
70 * Must be with bitmap_mutex held.
71 *
72 * @rb: the ramblock to operate on
73 * @page: the page number to check
74 *
75 * Returns: true if the bit was set, false otherwise
76 */
clear_bmap_test_and_clear(RAMBlock * rb,uint64_t page)77 static inline bool clear_bmap_test_and_clear(RAMBlock *rb, uint64_t page)
78 {
79 uint8_t shift = rb->clear_bmap_shift;
80
81 return bitmap_test_and_clear(rb->clear_bmap, page >> shift, 1);
82 }
83
offset_in_ramblock(RAMBlock * b,ram_addr_t offset)84 static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
85 {
86 return (b && b->host && offset < b->used_length) ? true : false;
87 }
88
ramblock_ptr(RAMBlock * block,ram_addr_t offset)89 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
90 {
91 assert(offset_in_ramblock(block, offset));
92 return (char *)block->host + offset;
93 }
94
ramblock_recv_bitmap_offset(void * host_addr,RAMBlock * rb)95 static inline unsigned long int ramblock_recv_bitmap_offset(void *host_addr,
96 RAMBlock *rb)
97 {
98 uint64_t host_addr_offset =
99 (uint64_t)(uintptr_t)(host_addr - (void *)rb->host);
100 return host_addr_offset >> TARGET_PAGE_BITS;
101 }
102
103 bool ramblock_is_pmem(RAMBlock *rb);
104
105 /**
106 * qemu_ram_alloc_from_file,
107 * qemu_ram_alloc_from_fd: Allocate a ram block from the specified backing
108 * file or device
109 *
110 * Parameters:
111 * @size: the size in bytes of the ram block
112 * @max_size: the maximum size of the block after resizing
113 * @mr: the memory region where the ram block is
114 * @resized: callback after calls to qemu_ram_resize
115 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
116 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
117 * RAM_READONLY_FD, RAM_GUEST_MEMFD
118 * @mem_path or @fd: specify the backing file or device
119 * @offset: Offset into target file
120 * @grow: extend file if necessary (but an empty file is always extended).
121 * @errp: pointer to Error*, to store an error if it happens
122 *
123 * Return:
124 * On success, return a pointer to the ram block.
125 * On failure, return NULL.
126 */
127 typedef void (*qemu_ram_resize_cb)(const char *, uint64_t length, void *host);
128
129 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
130 uint32_t ram_flags, const char *mem_path,
131 off_t offset, Error **errp);
132 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, ram_addr_t max_size,
133 qemu_ram_resize_cb resized, MemoryRegion *mr,
134 uint32_t ram_flags, int fd, off_t offset,
135 bool grow,
136 Error **errp);
137
138 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
139 MemoryRegion *mr, Error **errp);
140 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, MemoryRegion *mr,
141 Error **errp);
142 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
143 qemu_ram_resize_cb resized,
144 MemoryRegion *mr, Error **errp);
145 void qemu_ram_free(RAMBlock *block);
146
147 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
148
149 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length);
150
151 /* Clear whole block of mem */
qemu_ram_block_writeback(RAMBlock * block)152 static inline void qemu_ram_block_writeback(RAMBlock *block)
153 {
154 qemu_ram_msync(block, 0, block->used_length);
155 }
156
157 #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
158 #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
159
cpu_physical_memory_get_dirty(ram_addr_t start,ram_addr_t length,unsigned client)160 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
161 ram_addr_t length,
162 unsigned client)
163 {
164 DirtyMemoryBlocks *blocks;
165 unsigned long end, page;
166 unsigned long idx, offset, base;
167 bool dirty = false;
168
169 assert(client < DIRTY_MEMORY_NUM);
170
171 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
172 page = start >> TARGET_PAGE_BITS;
173
174 WITH_RCU_READ_LOCK_GUARD() {
175 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
176
177 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
178 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
179 base = page - offset;
180 while (page < end) {
181 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
182 unsigned long num = next - base;
183 unsigned long found = find_next_bit(blocks->blocks[idx],
184 num, offset);
185 if (found < num) {
186 dirty = true;
187 break;
188 }
189
190 page = next;
191 idx++;
192 offset = 0;
193 base += DIRTY_MEMORY_BLOCK_SIZE;
194 }
195 }
196
197 return dirty;
198 }
199
cpu_physical_memory_all_dirty(ram_addr_t start,ram_addr_t length,unsigned client)200 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
201 ram_addr_t length,
202 unsigned client)
203 {
204 DirtyMemoryBlocks *blocks;
205 unsigned long end, page;
206 unsigned long idx, offset, base;
207 bool dirty = true;
208
209 assert(client < DIRTY_MEMORY_NUM);
210
211 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
212 page = start >> TARGET_PAGE_BITS;
213
214 RCU_READ_LOCK_GUARD();
215
216 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
217
218 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
219 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
220 base = page - offset;
221 while (page < end) {
222 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
223 unsigned long num = next - base;
224 unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
225 if (found < num) {
226 dirty = false;
227 break;
228 }
229
230 page = next;
231 idx++;
232 offset = 0;
233 base += DIRTY_MEMORY_BLOCK_SIZE;
234 }
235
236 return dirty;
237 }
238
cpu_physical_memory_get_dirty_flag(ram_addr_t addr,unsigned client)239 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
240 unsigned client)
241 {
242 return cpu_physical_memory_get_dirty(addr, 1, client);
243 }
244
cpu_physical_memory_is_clean(ram_addr_t addr)245 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
246 {
247 bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
248 bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
249 bool migration =
250 cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
251 return !(vga && code && migration);
252 }
253
cpu_physical_memory_range_includes_clean(ram_addr_t start,ram_addr_t length,uint8_t mask)254 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
255 ram_addr_t length,
256 uint8_t mask)
257 {
258 uint8_t ret = 0;
259
260 if (mask & (1 << DIRTY_MEMORY_VGA) &&
261 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
262 ret |= (1 << DIRTY_MEMORY_VGA);
263 }
264 if (mask & (1 << DIRTY_MEMORY_CODE) &&
265 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
266 ret |= (1 << DIRTY_MEMORY_CODE);
267 }
268 if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
269 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
270 ret |= (1 << DIRTY_MEMORY_MIGRATION);
271 }
272 return ret;
273 }
274
cpu_physical_memory_set_dirty_flag(ram_addr_t addr,unsigned client)275 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
276 unsigned client)
277 {
278 unsigned long page, idx, offset;
279 DirtyMemoryBlocks *blocks;
280
281 assert(client < DIRTY_MEMORY_NUM);
282
283 page = addr >> TARGET_PAGE_BITS;
284 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
285 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
286
287 RCU_READ_LOCK_GUARD();
288
289 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
290
291 set_bit_atomic(offset, blocks->blocks[idx]);
292 }
293
cpu_physical_memory_set_dirty_range(ram_addr_t start,ram_addr_t length,uint8_t mask)294 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
295 ram_addr_t length,
296 uint8_t mask)
297 {
298 DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
299 unsigned long end, page;
300 unsigned long idx, offset, base;
301 int i;
302
303 if (!mask && !xen_enabled()) {
304 return;
305 }
306
307 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
308 page = start >> TARGET_PAGE_BITS;
309
310 WITH_RCU_READ_LOCK_GUARD() {
311 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
312 blocks[i] = qatomic_rcu_read(&ram_list.dirty_memory[i]);
313 }
314
315 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
316 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
317 base = page - offset;
318 while (page < end) {
319 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
320
321 if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
322 bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
323 offset, next - page);
324 }
325 if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
326 bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
327 offset, next - page);
328 }
329 if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
330 bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
331 offset, next - page);
332 }
333
334 page = next;
335 idx++;
336 offset = 0;
337 base += DIRTY_MEMORY_BLOCK_SIZE;
338 }
339 }
340
341 xen_hvm_modified_memory(start, length);
342 }
343
344 #if !defined(_WIN32)
345
346 /*
347 * Contrary to cpu_physical_memory_sync_dirty_bitmap() this function returns
348 * the number of dirty pages in @bitmap passed as argument. On the other hand,
349 * cpu_physical_memory_sync_dirty_bitmap() returns newly dirtied pages that
350 * weren't set in the global migration bitmap.
351 */
352 static inline
cpu_physical_memory_set_dirty_lebitmap(unsigned long * bitmap,ram_addr_t start,ram_addr_t pages)353 uint64_t cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
354 ram_addr_t start,
355 ram_addr_t pages)
356 {
357 unsigned long i, j;
358 unsigned long page_number, c, nbits;
359 hwaddr addr;
360 ram_addr_t ram_addr;
361 uint64_t num_dirty = 0;
362 unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
363 unsigned long hpratio = qemu_real_host_page_size() / TARGET_PAGE_SIZE;
364 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
365
366 /* start address is aligned at the start of a word? */
367 if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
368 (hpratio == 1)) {
369 unsigned long **blocks[DIRTY_MEMORY_NUM];
370 unsigned long idx;
371 unsigned long offset;
372 long k;
373 long nr = BITS_TO_LONGS(pages);
374
375 idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
376 offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
377 DIRTY_MEMORY_BLOCK_SIZE);
378
379 WITH_RCU_READ_LOCK_GUARD() {
380 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
381 blocks[i] =
382 qatomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
383 }
384
385 for (k = 0; k < nr; k++) {
386 if (bitmap[k]) {
387 unsigned long temp = leul_to_cpu(bitmap[k]);
388
389 nbits = ctpopl(temp);
390 qatomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
391
392 if (global_dirty_tracking) {
393 qatomic_or(
394 &blocks[DIRTY_MEMORY_MIGRATION][idx][offset],
395 temp);
396 if (unlikely(
397 global_dirty_tracking & GLOBAL_DIRTY_DIRTY_RATE)) {
398 total_dirty_pages += nbits;
399 }
400 }
401
402 num_dirty += nbits;
403
404 if (tcg_enabled()) {
405 qatomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset],
406 temp);
407 }
408 }
409
410 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
411 offset = 0;
412 idx++;
413 }
414 }
415 }
416
417 xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS);
418 } else {
419 uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
420
421 if (!global_dirty_tracking) {
422 clients &= ~(1 << DIRTY_MEMORY_MIGRATION);
423 }
424
425 /*
426 * bitmap-traveling is faster than memory-traveling (for addr...)
427 * especially when most of the memory is not dirty.
428 */
429 for (i = 0; i < len; i++) {
430 if (bitmap[i] != 0) {
431 c = leul_to_cpu(bitmap[i]);
432 nbits = ctpopl(c);
433 if (unlikely(global_dirty_tracking & GLOBAL_DIRTY_DIRTY_RATE)) {
434 total_dirty_pages += nbits;
435 }
436 num_dirty += nbits;
437 do {
438 j = ctzl(c);
439 c &= ~(1ul << j);
440 page_number = (i * HOST_LONG_BITS + j) * hpratio;
441 addr = page_number * TARGET_PAGE_SIZE;
442 ram_addr = start + addr;
443 cpu_physical_memory_set_dirty_range(ram_addr,
444 TARGET_PAGE_SIZE * hpratio, clients);
445 } while (c != 0);
446 }
447 }
448 }
449
450 return num_dirty;
451 }
452 #endif /* not _WIN32 */
453
cpu_physical_memory_dirty_bits_cleared(ram_addr_t start,ram_addr_t length)454 static inline void cpu_physical_memory_dirty_bits_cleared(ram_addr_t start,
455 ram_addr_t length)
456 {
457 if (tcg_enabled()) {
458 tlb_reset_dirty_range_all(start, length);
459 }
460
461 }
462 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
463 ram_addr_t length,
464 unsigned client);
465
466 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
467 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client);
468
469 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
470 ram_addr_t start,
471 ram_addr_t length);
472
cpu_physical_memory_clear_dirty_range(ram_addr_t start,ram_addr_t length)473 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
474 ram_addr_t length)
475 {
476 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
477 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
478 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
479 }
480
481
482 /* Called with RCU critical section */
483 static inline
cpu_physical_memory_sync_dirty_bitmap(RAMBlock * rb,ram_addr_t start,ram_addr_t length)484 uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock *rb,
485 ram_addr_t start,
486 ram_addr_t length)
487 {
488 ram_addr_t addr;
489 unsigned long word = BIT_WORD((start + rb->offset) >> TARGET_PAGE_BITS);
490 uint64_t num_dirty = 0;
491 unsigned long *dest = rb->bmap;
492
493 /* start address and length is aligned at the start of a word? */
494 if (((word * BITS_PER_LONG) << TARGET_PAGE_BITS) ==
495 (start + rb->offset) &&
496 !(length & ((BITS_PER_LONG << TARGET_PAGE_BITS) - 1))) {
497 int k;
498 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
499 unsigned long * const *src;
500 unsigned long idx = (word * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
501 unsigned long offset = BIT_WORD((word * BITS_PER_LONG) %
502 DIRTY_MEMORY_BLOCK_SIZE);
503 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
504
505 src = qatomic_rcu_read(
506 &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
507
508 for (k = page; k < page + nr; k++) {
509 if (src[idx][offset]) {
510 unsigned long bits = qatomic_xchg(&src[idx][offset], 0);
511 unsigned long new_dirty;
512 new_dirty = ~dest[k];
513 dest[k] |= bits;
514 new_dirty &= bits;
515 num_dirty += ctpopl(new_dirty);
516 }
517
518 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
519 offset = 0;
520 idx++;
521 }
522 }
523 if (num_dirty) {
524 cpu_physical_memory_dirty_bits_cleared(start, length);
525 }
526
527 if (rb->clear_bmap) {
528 /*
529 * Postpone the dirty bitmap clear to the point before we
530 * really send the pages, also we will split the clear
531 * dirty procedure into smaller chunks.
532 */
533 clear_bmap_set(rb, start >> TARGET_PAGE_BITS,
534 length >> TARGET_PAGE_BITS);
535 } else {
536 /* Slow path - still do that in a huge chunk */
537 memory_region_clear_dirty_bitmap(rb->mr, start, length);
538 }
539 } else {
540 ram_addr_t offset = rb->offset;
541
542 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
543 if (cpu_physical_memory_test_and_clear_dirty(
544 start + addr + offset,
545 TARGET_PAGE_SIZE,
546 DIRTY_MEMORY_MIGRATION)) {
547 long k = (start + addr) >> TARGET_PAGE_BITS;
548 if (!test_and_set_bit(k, dest)) {
549 num_dirty++;
550 }
551 }
552 }
553 }
554
555 return num_dirty;
556 }
557 #endif
558 #endif
559