xref: /openbmc/qemu/system/cpus.c (revision dcc6d1d956ff6e5ab8e757b37bb00cc6b421630d)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "monitor/monitor.h"
27 #include "qemu/coroutine-tls.h"
28 #include "qapi/error.h"
29 #include "qapi/qapi-commands-machine.h"
30 #include "qapi/qapi-commands-misc.h"
31 #include "qapi/qapi-events-run-state.h"
32 #include "qapi/qmp/qerror.h"
33 #include "exec/gdbstub.h"
34 #include "accel/accel-cpu-ops.h"
35 #include "system/hw_accel.h"
36 #include "exec/cpu-common.h"
37 #include "qemu/thread.h"
38 #include "qemu/main-loop.h"
39 #include "qemu/plugin.h"
40 #include "system/cpus.h"
41 #include "qemu/guest-random.h"
42 #include "hw/nmi.h"
43 #include "system/replay.h"
44 #include "system/runstate.h"
45 #include "system/cpu-timers.h"
46 #include "system/whpx.h"
47 #include "hw/boards.h"
48 #include "hw/hw.h"
49 #include "trace.h"
50 
51 #ifdef CONFIG_LINUX
52 
53 #include <sys/prctl.h>
54 
55 #ifndef PR_MCE_KILL
56 #define PR_MCE_KILL 33
57 #endif
58 
59 #ifndef PR_MCE_KILL_SET
60 #define PR_MCE_KILL_SET 1
61 #endif
62 
63 #ifndef PR_MCE_KILL_EARLY
64 #define PR_MCE_KILL_EARLY 1
65 #endif
66 
67 #endif /* CONFIG_LINUX */
68 
69 /* The Big QEMU Lock (BQL) */
70 static QemuMutex bql;
71 
72 /*
73  * The chosen accelerator is supposed to register this.
74  */
75 static const AccelOpsClass *cpus_accel;
76 
77 bool cpu_is_stopped(CPUState *cpu)
78 {
79     return cpu->stopped || !runstate_is_running();
80 }
81 
82 bool cpu_work_list_empty(CPUState *cpu)
83 {
84     return QSIMPLEQ_EMPTY_ATOMIC(&cpu->work_list);
85 }
86 
87 bool cpu_thread_is_idle(CPUState *cpu)
88 {
89     if (cpu->stop || !cpu_work_list_empty(cpu)) {
90         return false;
91     }
92     if (cpu_is_stopped(cpu)) {
93         return true;
94     }
95     if (!cpu->halted || cpu_has_work(cpu)) {
96         return false;
97     }
98     if (cpus_accel->cpu_thread_is_idle) {
99         return cpus_accel->cpu_thread_is_idle(cpu);
100     }
101     return true;
102 }
103 
104 bool all_cpu_threads_idle(void)
105 {
106     CPUState *cpu;
107 
108     CPU_FOREACH(cpu) {
109         if (!cpu_thread_is_idle(cpu)) {
110             return false;
111         }
112     }
113     return true;
114 }
115 
116 /***********************************************************/
117 void hw_error(const char *fmt, ...)
118 {
119     va_list ap;
120     CPUState *cpu;
121 
122     va_start(ap, fmt);
123     fprintf(stderr, "qemu: hardware error: ");
124     vfprintf(stderr, fmt, ap);
125     fprintf(stderr, "\n");
126     CPU_FOREACH(cpu) {
127         fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
128         cpu_dump_state(cpu, stderr, CPU_DUMP_FPU);
129     }
130     va_end(ap);
131     abort();
132 }
133 
134 void cpu_synchronize_all_states(void)
135 {
136     CPUState *cpu;
137 
138     CPU_FOREACH(cpu) {
139         cpu_synchronize_state(cpu);
140     }
141 }
142 
143 void cpu_synchronize_all_post_reset(void)
144 {
145     CPUState *cpu;
146 
147     CPU_FOREACH(cpu) {
148         cpu_synchronize_post_reset(cpu);
149     }
150 }
151 
152 void cpu_synchronize_all_post_init(void)
153 {
154     CPUState *cpu;
155 
156     CPU_FOREACH(cpu) {
157         cpu_synchronize_post_init(cpu);
158     }
159 }
160 
161 void cpu_synchronize_all_pre_loadvm(void)
162 {
163     CPUState *cpu;
164 
165     CPU_FOREACH(cpu) {
166         cpu_synchronize_pre_loadvm(cpu);
167     }
168 }
169 
170 void cpu_synchronize_state(CPUState *cpu)
171 {
172     if (cpus_accel->synchronize_state) {
173         cpus_accel->synchronize_state(cpu);
174     }
175 }
176 
177 void cpu_synchronize_post_reset(CPUState *cpu)
178 {
179     if (cpus_accel->synchronize_post_reset) {
180         cpus_accel->synchronize_post_reset(cpu);
181     }
182 }
183 
184 void cpu_synchronize_post_init(CPUState *cpu)
185 {
186     if (cpus_accel->synchronize_post_init) {
187         cpus_accel->synchronize_post_init(cpu);
188     }
189 }
190 
191 void cpu_synchronize_pre_loadvm(CPUState *cpu)
192 {
193     if (cpus_accel->synchronize_pre_loadvm) {
194         cpus_accel->synchronize_pre_loadvm(cpu);
195     }
196 }
197 
198 bool cpus_are_resettable(void)
199 {
200     if (cpus_accel->cpus_are_resettable) {
201         return cpus_accel->cpus_are_resettable();
202     }
203     return true;
204 }
205 
206 void cpu_exec_reset_hold(CPUState *cpu)
207 {
208     if (cpus_accel->cpu_reset_hold) {
209         cpus_accel->cpu_reset_hold(cpu);
210     }
211 }
212 
213 int64_t cpus_get_virtual_clock(void)
214 {
215     /*
216      * XXX
217      *
218      * need to check that cpus_accel is not NULL, because qcow2 calls
219      * qemu_get_clock_ns(CLOCK_VIRTUAL) without any accel initialized and
220      * with ticks disabled in some io-tests:
221      * 030 040 041 060 099 120 127 140 156 161 172 181 191 192 195 203 229 249 256 267
222      *
223      * is this expected?
224      *
225      * XXX
226      */
227     if (cpus_accel && cpus_accel->get_virtual_clock) {
228         return cpus_accel->get_virtual_clock();
229     }
230     return cpu_get_clock();
231 }
232 
233 /*
234  * Signal the new virtual time to the accelerator. This is only needed
235  * by accelerators that need to track the changes as we warp time.
236  */
237 void cpus_set_virtual_clock(int64_t new_time)
238 {
239     if (cpus_accel && cpus_accel->set_virtual_clock) {
240         cpus_accel->set_virtual_clock(new_time);
241     }
242 }
243 
244 /*
245  * return the time elapsed in VM between vm_start and vm_stop.  Unless
246  * icount is active, cpus_get_elapsed_ticks() uses units of the host CPU cycle
247  * counter.
248  */
249 int64_t cpus_get_elapsed_ticks(void)
250 {
251     if (cpus_accel->get_elapsed_ticks) {
252         return cpus_accel->get_elapsed_ticks();
253     }
254     return cpu_get_ticks();
255 }
256 
257 void cpu_set_interrupt(CPUState *cpu, int mask)
258 {
259     /* Pairs with cpu_test_interrupt(). */
260     qatomic_or(&cpu->interrupt_request, mask);
261 }
262 
263 void generic_handle_interrupt(CPUState *cpu, int mask)
264 {
265     cpu_set_interrupt(cpu, mask);
266 
267     if (!qemu_cpu_is_self(cpu)) {
268         qemu_cpu_kick(cpu);
269     }
270 }
271 
272 void cpu_interrupt(CPUState *cpu, int mask)
273 {
274     g_assert(bql_locked());
275 
276     cpus_accel->handle_interrupt(cpu, mask);
277 }
278 
279 /*
280  * True if the vm was previously suspended, and has not been woken or reset.
281  */
282 static int vm_was_suspended;
283 
284 void vm_set_suspended(bool suspended)
285 {
286     vm_was_suspended = suspended;
287 }
288 
289 bool vm_get_suspended(void)
290 {
291     return vm_was_suspended;
292 }
293 
294 static int do_vm_stop(RunState state, bool send_stop)
295 {
296     int ret = 0;
297     RunState oldstate = runstate_get();
298 
299     if (runstate_is_live(oldstate)) {
300         vm_was_suspended = (oldstate == RUN_STATE_SUSPENDED);
301         runstate_set(state);
302         cpu_disable_ticks();
303         if (oldstate == RUN_STATE_RUNNING) {
304             pause_all_vcpus();
305         }
306         ret = vm_state_notify(0, state);
307         if (send_stop) {
308             qapi_event_send_stop();
309         }
310     }
311 
312     bdrv_drain_all();
313     /*
314      * Even if vm_state_notify() return failure,
315      * it would be better to flush as before.
316      */
317     ret |= bdrv_flush_all();
318     trace_vm_stop_flush_all(ret);
319 
320     return ret;
321 }
322 
323 /* Special vm_stop() variant for terminating the process.  Historically clients
324  * did not expect a QMP STOP event and so we need to retain compatibility.
325  */
326 int vm_shutdown(void)
327 {
328     return do_vm_stop(RUN_STATE_SHUTDOWN, false);
329 }
330 
331 bool cpu_can_run(CPUState *cpu)
332 {
333     if (cpu->stop) {
334         return false;
335     }
336     if (cpu_is_stopped(cpu)) {
337         return false;
338     }
339     return true;
340 }
341 
342 void cpu_handle_guest_debug(CPUState *cpu)
343 {
344     if (replay_running_debug()) {
345         if (!cpu->singlestep_enabled) {
346             /*
347              * Report about the breakpoint and
348              * make a single step to skip it
349              */
350             replay_breakpoint();
351             cpu_single_step(cpu, SSTEP_ENABLE);
352         } else {
353             cpu_single_step(cpu, 0);
354         }
355     } else {
356         gdb_set_stop_cpu(cpu);
357         qemu_system_debug_request();
358         cpu->stopped = true;
359     }
360 }
361 
362 #ifdef CONFIG_LINUX
363 static void sigbus_reraise(void)
364 {
365     sigset_t set;
366     struct sigaction action;
367 
368     memset(&action, 0, sizeof(action));
369     action.sa_handler = SIG_DFL;
370     if (!sigaction(SIGBUS, &action, NULL)) {
371         raise(SIGBUS);
372         sigemptyset(&set);
373         sigaddset(&set, SIGBUS);
374         pthread_sigmask(SIG_UNBLOCK, &set, NULL);
375     }
376     perror("Failed to re-raise SIGBUS!");
377     abort();
378 }
379 
380 static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
381 {
382     if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
383         sigbus_reraise();
384     }
385 
386     if (current_cpu) {
387         /* Called asynchronously in VCPU thread.  */
388         if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
389             sigbus_reraise();
390         }
391     } else {
392         /* Called synchronously (via signalfd) in main thread.  */
393         if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
394             sigbus_reraise();
395         }
396     }
397 }
398 
399 static void qemu_init_sigbus(void)
400 {
401     struct sigaction action;
402 
403     /*
404      * ALERT: when modifying this, take care that SIGBUS forwarding in
405      * qemu_prealloc_mem() will continue working as expected.
406      */
407     memset(&action, 0, sizeof(action));
408     action.sa_flags = SA_SIGINFO;
409     action.sa_sigaction = sigbus_handler;
410     sigaction(SIGBUS, &action, NULL);
411 
412     prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
413 }
414 #else /* !CONFIG_LINUX */
415 static void qemu_init_sigbus(void)
416 {
417 }
418 #endif /* !CONFIG_LINUX */
419 
420 static QemuThread io_thread;
421 
422 /* cpu creation */
423 static QemuCond qemu_cpu_cond;
424 /* system init */
425 static QemuCond qemu_pause_cond;
426 
427 void qemu_init_cpu_loop(void)
428 {
429     qemu_init_sigbus();
430     qemu_cond_init(&qemu_cpu_cond);
431     qemu_cond_init(&qemu_pause_cond);
432     qemu_mutex_init(&bql);
433 
434     qemu_thread_get_self(&io_thread);
435 }
436 
437 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
438 {
439     do_run_on_cpu(cpu, func, data, &bql);
440 }
441 
442 static void qemu_cpu_stop(CPUState *cpu, bool exit)
443 {
444     g_assert(qemu_cpu_is_self(cpu));
445     cpu->stop = false;
446     cpu->stopped = true;
447     if (exit) {
448         cpu_exit(cpu);
449     }
450     qemu_cond_broadcast(&qemu_pause_cond);
451 }
452 
453 void qemu_process_cpu_events_common(CPUState *cpu)
454 {
455     qatomic_set_mb(&cpu->thread_kicked, false);
456     if (cpu->stop) {
457         qemu_cpu_stop(cpu, false);
458     }
459     process_queued_cpu_work(cpu);
460 }
461 
462 void qemu_process_cpu_events(CPUState *cpu)
463 {
464     bool slept = false;
465 
466     qatomic_set(&cpu->exit_request, false);
467     while (cpu_thread_is_idle(cpu)) {
468         if (!slept) {
469             slept = true;
470             qemu_plugin_vcpu_idle_cb(cpu);
471         }
472         qemu_cond_wait(cpu->halt_cond, &bql);
473     }
474     if (slept) {
475         qemu_plugin_vcpu_resume_cb(cpu);
476     }
477 
478     qemu_process_cpu_events_common(cpu);
479 }
480 
481 void cpus_kick_thread(CPUState *cpu)
482 {
483     if (qatomic_read(&cpu->thread_kicked)) {
484         return;
485     }
486     qatomic_set(&cpu->thread_kicked, true);
487 
488 #ifndef _WIN32
489     int err = pthread_kill(cpu->thread->thread, SIG_IPI);
490     if (err && err != ESRCH) {
491         fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
492         exit(1);
493     }
494 #else
495     qemu_sem_post(&cpu->sem);
496 #endif
497 }
498 
499 void qemu_cpu_kick(CPUState *cpu)
500 {
501     qemu_cond_broadcast(cpu->halt_cond);
502     if (cpus_accel->kick_vcpu_thread) {
503         cpus_accel->kick_vcpu_thread(cpu);
504     } else { /* default */
505         cpus_kick_thread(cpu);
506     }
507 }
508 
509 void qemu_cpu_kick_self(void)
510 {
511     assert(current_cpu);
512     cpus_kick_thread(current_cpu);
513 }
514 
515 bool qemu_cpu_is_self(CPUState *cpu)
516 {
517     return qemu_thread_is_self(cpu->thread);
518 }
519 
520 bool qemu_in_vcpu_thread(void)
521 {
522     return current_cpu && qemu_cpu_is_self(current_cpu);
523 }
524 
525 QEMU_DEFINE_STATIC_CO_TLS(bool, bql_locked)
526 
527 bool mutex_is_bql(QemuMutex *mutex)
528 {
529     return mutex == &bql;
530 }
531 
532 void bql_update_status(bool locked)
533 {
534     /* This function should only be used when an update happened.. */
535     assert(bql_locked() != locked);
536     set_bql_locked(locked);
537 }
538 
539 static uint32_t bql_unlock_blocked;
540 
541 void bql_block_unlock(bool increase)
542 {
543     uint32_t new_value;
544 
545     assert(bql_locked());
546 
547     /* check for overflow! */
548     new_value = bql_unlock_blocked + increase - !increase;
549     assert((new_value > bql_unlock_blocked) == increase);
550     bql_unlock_blocked = new_value;
551 }
552 
553 bool bql_locked(void)
554 {
555     return get_bql_locked();
556 }
557 
558 bool qemu_in_main_thread(void)
559 {
560     return bql_locked();
561 }
562 
563 void rust_bql_mock_lock(void)
564 {
565     error_report("This function should be used only from tests");
566     abort();
567 }
568 
569 /*
570  * The BQL is taken from so many places that it is worth profiling the
571  * callers directly, instead of funneling them all through a single function.
572  */
573 void bql_lock_impl(const char *file, int line)
574 {
575     QemuMutexLockFunc bql_lock_fn = qatomic_read(&bql_mutex_lock_func);
576 
577     g_assert(!bql_locked());
578     bql_lock_fn(&bql, file, line);
579 }
580 
581 void bql_unlock(void)
582 {
583     g_assert(bql_locked());
584     g_assert(!bql_unlock_blocked);
585     qemu_mutex_unlock(&bql);
586 }
587 
588 void qemu_cond_wait_bql(QemuCond *cond)
589 {
590     qemu_cond_wait(cond, &bql);
591 }
592 
593 void qemu_cond_timedwait_bql(QemuCond *cond, int ms)
594 {
595     qemu_cond_timedwait(cond, &bql, ms);
596 }
597 
598 /* signal CPU creation */
599 void cpu_thread_signal_created(CPUState *cpu)
600 {
601     cpu->created = true;
602     qemu_cond_signal(&qemu_cpu_cond);
603 }
604 
605 /* signal CPU destruction */
606 void cpu_thread_signal_destroyed(CPUState *cpu)
607 {
608     cpu->created = false;
609     qemu_cond_signal(&qemu_cpu_cond);
610 }
611 
612 void cpu_pause(CPUState *cpu)
613 {
614     if (qemu_cpu_is_self(cpu)) {
615         qemu_cpu_stop(cpu, true);
616     } else {
617         cpu->stop = true;
618         cpu_exit(cpu);
619     }
620 }
621 
622 void cpu_resume(CPUState *cpu)
623 {
624     cpu->stop = false;
625     cpu->stopped = false;
626     qemu_cpu_kick(cpu);
627 }
628 
629 static bool all_vcpus_paused(void)
630 {
631     CPUState *cpu;
632 
633     CPU_FOREACH(cpu) {
634         if (!cpu->stopped) {
635             return false;
636         }
637     }
638 
639     return true;
640 }
641 
642 void pause_all_vcpus(void)
643 {
644     CPUState *cpu;
645 
646     qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
647     CPU_FOREACH(cpu) {
648         cpu_pause(cpu);
649     }
650 
651     /* We need to drop the replay_lock so any vCPU threads woken up
652      * can finish their replay tasks
653      */
654     replay_mutex_unlock();
655 
656     while (!all_vcpus_paused()) {
657         qemu_cond_wait(&qemu_pause_cond, &bql);
658         /* FIXME: is this needed? */
659         CPU_FOREACH(cpu) {
660             qemu_cpu_kick(cpu);
661         }
662     }
663 
664     bql_unlock();
665     replay_mutex_lock();
666     bql_lock();
667 }
668 
669 void resume_all_vcpus(void)
670 {
671     CPUState *cpu;
672 
673     if (!runstate_is_running()) {
674         return;
675     }
676 
677     qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
678     CPU_FOREACH(cpu) {
679         cpu_resume(cpu);
680     }
681 }
682 
683 void cpu_remove_sync(CPUState *cpu)
684 {
685     cpu->stop = true;
686     cpu->unplug = true;
687     cpu_exit(cpu);
688     bql_unlock();
689     qemu_thread_join(cpu->thread);
690     bql_lock();
691 }
692 
693 void cpus_register_accel(const AccelOpsClass *ops)
694 {
695     assert(ops != NULL);
696     assert(ops->create_vcpu_thread != NULL); /* mandatory */
697     assert(ops->handle_interrupt);
698 
699     cpus_accel = ops;
700 }
701 
702 const AccelOpsClass *cpus_get_accel(void)
703 {
704     /* broken if we call this early */
705     assert(cpus_accel);
706     return cpus_accel;
707 }
708 
709 void qemu_init_vcpu(CPUState *cpu)
710 {
711     MachineState *ms = MACHINE(qdev_get_machine());
712 
713     cpu->nr_threads =  ms->smp.threads;
714     cpu->stopped = true;
715     cpu->random_seed = qemu_guest_random_seed_thread_part1();
716 
717     if (!cpu->as) {
718         /* If the target cpu hasn't set up any address spaces itself,
719          * give it the default one.
720          */
721         cpu->num_ases = 1;
722         cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory);
723     }
724 
725     /* accelerators all implement the AccelOpsClass */
726     g_assert(cpus_accel != NULL && cpus_accel->create_vcpu_thread != NULL);
727     cpus_accel->create_vcpu_thread(cpu);
728 
729     while (!cpu->created) {
730         qemu_cond_wait(&qemu_cpu_cond, &bql);
731     }
732 }
733 
734 void cpu_stop_current(void)
735 {
736     if (current_cpu) {
737         current_cpu->stop = true;
738         cpu_exit(current_cpu);
739     }
740 }
741 
742 int vm_stop(RunState state)
743 {
744     if (qemu_in_vcpu_thread()) {
745         qemu_system_vmstop_request_prepare();
746         qemu_system_vmstop_request(state);
747         /*
748          * FIXME: should not return to device code in case
749          * vm_stop() has been requested.
750          */
751         cpu_stop_current();
752         return 0;
753     }
754 
755     return do_vm_stop(state, true);
756 }
757 
758 /**
759  * Prepare for (re)starting the VM.
760  * Returns 0 if the vCPUs should be restarted, -1 on an error condition,
761  * and 1 otherwise.
762  */
763 int vm_prepare_start(bool step_pending)
764 {
765     int ret = vm_was_suspended ? 1 : 0;
766     RunState state = vm_was_suspended ? RUN_STATE_SUSPENDED : RUN_STATE_RUNNING;
767     RunState requested;
768 
769     qemu_vmstop_requested(&requested);
770     if (runstate_is_running() && requested == RUN_STATE__MAX) {
771         return -1;
772     }
773 
774     /* Ensure that a STOP/RESUME pair of events is emitted if a
775      * vmstop request was pending.  The BLOCK_IO_ERROR event, for
776      * example, according to documentation is always followed by
777      * the STOP event.
778      */
779     if (runstate_is_running()) {
780         qapi_event_send_stop();
781         qapi_event_send_resume();
782         return -1;
783     }
784 
785     /*
786      * WHPX accelerator needs to know whether we are going to step
787      * any CPUs, before starting the first one.
788      */
789     accel_pre_resume(MACHINE(qdev_get_machine()), step_pending);
790 
791     /* We are sending this now, but the CPUs will be resumed shortly later */
792     qapi_event_send_resume();
793 
794     cpu_enable_ticks();
795     runstate_set(state);
796     vm_state_notify(1, state);
797     vm_was_suspended = false;
798     return ret;
799 }
800 
801 void vm_start(void)
802 {
803     if (!vm_prepare_start(false)) {
804         resume_all_vcpus();
805     }
806 }
807 
808 void vm_resume(RunState state)
809 {
810     if (runstate_is_live(state)) {
811         vm_start();
812     } else {
813         runstate_set(state);
814     }
815 }
816 
817 /* does a state transition even if the VM is already stopped,
818    current state is forgotten forever */
819 int vm_stop_force_state(RunState state)
820 {
821     if (runstate_is_live(runstate_get())) {
822         return vm_stop(state);
823     } else {
824         int ret;
825         runstate_set(state);
826 
827         bdrv_drain_all();
828         /* Make sure to return an error if the flush in a previous vm_stop()
829          * failed. */
830         ret = bdrv_flush_all();
831         trace_vm_stop_flush_all(ret);
832         return ret;
833     }
834 }
835 
836 void qmp_memsave(uint64_t addr, uint64_t size, const char *filename,
837                  bool has_cpu, int64_t cpu_index, Error **errp)
838 {
839     FILE *f;
840     uint64_t l;
841     CPUState *cpu;
842     uint8_t buf[1024];
843     uint64_t orig_addr = addr, orig_size = size;
844 
845     if (!has_cpu) {
846         cpu_index = 0;
847     }
848 
849     cpu = qemu_get_cpu(cpu_index);
850     if (cpu == NULL) {
851         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
852                    "a CPU number");
853         return;
854     }
855 
856     f = fopen(filename, "wb");
857     if (!f) {
858         error_setg_file_open(errp, errno, filename);
859         return;
860     }
861 
862     while (size != 0) {
863         l = sizeof(buf);
864         if (l > size)
865             l = size;
866         if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
867             error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRIu64
868                              " specified", orig_addr, orig_size);
869             goto exit;
870         }
871         if (fwrite(buf, 1, l, f) != l) {
872             error_setg(errp, "writing memory to '%s' failed",
873                        filename);
874             goto exit;
875         }
876         addr += l;
877         size -= l;
878     }
879 
880 exit:
881     fclose(f);
882 }
883 
884 void qmp_pmemsave(uint64_t addr, uint64_t size, const char *filename,
885                   Error **errp)
886 {
887     FILE *f;
888     uint64_t l;
889     uint8_t buf[1024];
890 
891     f = fopen(filename, "wb");
892     if (!f) {
893         error_setg_file_open(errp, errno, filename);
894         return;
895     }
896 
897     while (size != 0) {
898         l = sizeof(buf);
899         if (l > size)
900             l = size;
901         cpu_physical_memory_read(addr, buf, l);
902         if (fwrite(buf, 1, l, f) != l) {
903             error_setg(errp, "writing memory to '%s' failed",
904                        filename);
905             goto exit;
906         }
907         addr += l;
908         size -= l;
909     }
910 
911 exit:
912     fclose(f);
913 }
914 
915 void qmp_inject_nmi(Error **errp)
916 {
917     nmi_monitor_handle(monitor_get_cpu_index(monitor_cur()), errp);
918 }
919 
920