xref: /openbmc/qemu/include/exec/cpu-common.h (revision dcc6d1d956ff6e5ab8e757b37bb00cc6b421630d)
1 /*
2  * CPU interfaces that are target independent.
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * SPDX-License-Identifier: LGPL-2.1+
7  */
8 #ifndef CPU_COMMON_H
9 #define CPU_COMMON_H
10 
11 #include "exec/vaddr.h"
12 #include "exec/hwaddr.h"
13 #include "hw/core/cpu.h"
14 #include "tcg/debug-assert.h"
15 #include "exec/page-protection.h"
16 
17 #define EXCP_INTERRUPT  0x10000 /* async interruption */
18 #define EXCP_HLT        0x10001 /* hlt instruction reached */
19 #define EXCP_DEBUG      0x10002 /* cpu stopped after a breakpoint or singlestep */
20 #define EXCP_HALTED     0x10003 /* cpu is halted (waiting for external event) */
21 #define EXCP_YIELD      0x10004 /* cpu wants to yield timeslice to another */
22 #define EXCP_ATOMIC     0x10005 /* stop-the-world and emulate atomic */
23 
24 void cpu_exec_init_all(void);
25 void cpu_exec_step_atomic(CPUState *cpu);
26 
27 #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size())
28 
29 /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */
30 extern QemuMutex qemu_cpu_list_lock;
31 void qemu_init_cpu_list(void);
32 void cpu_list_lock(void);
33 void cpu_list_unlock(void);
34 unsigned int cpu_list_generation_id_get(void);
35 
36 int cpu_get_free_index(void);
37 
38 void tcg_iommu_init_notifier_list(CPUState *cpu);
39 void tcg_iommu_free_notifier_list(CPUState *cpu);
40 
41 enum device_endian {
42     DEVICE_NATIVE_ENDIAN,
43     DEVICE_BIG_ENDIAN,
44     DEVICE_LITTLE_ENDIAN,
45 };
46 
47 /* address in the RAM (different from a physical address) */
48 #if defined(CONFIG_XEN_BACKEND)
49 typedef uint64_t ram_addr_t;
50 #  define RAM_ADDR_MAX UINT64_MAX
51 #  define RAM_ADDR_FMT "%" PRIx64
52 #else
53 typedef uintptr_t ram_addr_t;
54 #  define RAM_ADDR_MAX UINTPTR_MAX
55 #  define RAM_ADDR_FMT "%" PRIxPTR
56 #endif
57 
58 /* memory API */
59 
60 void qemu_ram_remap(ram_addr_t addr);
61 /* This should not be used by devices.  */
62 ram_addr_t qemu_ram_addr_from_host(void *ptr);
63 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr);
64 RAMBlock *qemu_ram_block_by_name(const char *name);
65 
66 /*
67  * Translates a host ptr back to a RAMBlock and an offset in that RAMBlock.
68  *
69  * @ptr: The host pointer to translate.
70  * @round_offset: Whether to round the result offset down to a target page
71  * @offset: Will be set to the offset within the returned RAMBlock.
72  *
73  * Returns: RAMBlock (or NULL if not found)
74  *
75  * By the time this function returns, the returned pointer is not protected
76  * by RCU anymore.  If the caller is not within an RCU critical section and
77  * does not hold the BQL, it must have other means of protecting the
78  * pointer, such as a reference to the memory region that owns the RAMBlock.
79  */
80 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
81                                    ram_addr_t *offset);
82 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host);
83 void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev);
84 void qemu_ram_unset_idstr(RAMBlock *block);
85 const char *qemu_ram_get_idstr(RAMBlock *rb);
86 void *qemu_ram_get_host_addr(RAMBlock *rb);
87 ram_addr_t qemu_ram_get_offset(RAMBlock *rb);
88 ram_addr_t qemu_ram_get_fd_offset(RAMBlock *rb);
89 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb);
90 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb);
91 bool qemu_ram_is_shared(RAMBlock *rb);
92 bool qemu_ram_is_noreserve(RAMBlock *rb);
93 bool qemu_ram_is_uf_zeroable(RAMBlock *rb);
94 void qemu_ram_set_uf_zeroable(RAMBlock *rb);
95 bool qemu_ram_is_migratable(RAMBlock *rb);
96 void qemu_ram_set_migratable(RAMBlock *rb);
97 void qemu_ram_unset_migratable(RAMBlock *rb);
98 bool qemu_ram_is_named_file(RAMBlock *rb);
99 int qemu_ram_get_fd(RAMBlock *rb);
100 
101 size_t qemu_ram_pagesize(RAMBlock *block);
102 size_t qemu_ram_pagesize_largest(void);
103 
104 /**
105  * cpu_address_space_init:
106  * @cpu: CPU to add this address space to
107  * @asidx: integer index of this address space
108  * @prefix: prefix to be used as name of address space
109  * @mr: the root memory region of address space
110  *
111  * Add the specified address space to the CPU's cpu_ases list.
112  * The address space added with @asidx 0 is the one used for the
113  * convenience pointer cpu->as.
114  * The target-specific code which registers ASes is responsible
115  * for defining what semantics address space 0, 1, 2, etc have.
116  *
117  * Before the first call to this function, the caller must set
118  * cpu->num_ases to the total number of address spaces it needs
119  * to support.
120  *
121  * Note that with KVM only one address space is supported.
122  */
123 void cpu_address_space_init(CPUState *cpu, int asidx,
124                             const char *prefix, MemoryRegion *mr);
125 /**
126  * cpu_destroy_address_spaces:
127  * @cpu: CPU for which address spaces need to be destroyed
128  *
129  * Destroy all address spaces associated with this CPU; this
130  * is called as part of unrealizing the CPU.
131  */
132 void cpu_destroy_address_spaces(CPUState *cpu);
133 
134 void cpu_physical_memory_read(hwaddr addr, void *buf, hwaddr len);
135 void cpu_physical_memory_write(hwaddr addr, const void *buf, hwaddr len);
136 void *cpu_physical_memory_map(hwaddr addr,
137                               hwaddr *plen,
138                               bool is_write);
139 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
140                                bool is_write, hwaddr access_len);
141 
142 /* Coalesced MMIO regions are areas where write operations can be reordered.
143  * This usually implies that write operations are side-effect free.  This allows
144  * batching which can make a major impact on performance when using
145  * virtualization.
146  */
147 void qemu_flush_coalesced_mmio_buffer(void);
148 
149 typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque);
150 
151 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque);
152 
153 /* vl.c */
154 void list_cpus(void);
155 
156 #ifdef CONFIG_TCG
157 #include "qemu/atomic.h"
158 
159 /**
160  * cpu_unwind_state_data:
161  * @cpu: the cpu context
162  * @host_pc: the host pc within the translation
163  * @data: output data
164  *
165  * Attempt to load the unwind state for a host pc occurring in
166  * translated code.  If @host_pc is not in translated code, the
167  * function returns false; otherwise @data is loaded.
168  * This is the same unwind info as given to restore_state_to_opc.
169  */
170 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data);
171 
172 /**
173  * cpu_restore_state:
174  * @cpu: the cpu context
175  * @host_pc: the host pc within the translation
176  * @return: true if state was restored, false otherwise
177  *
178  * Attempt to restore the state for a fault occurring in translated
179  * code. If @host_pc is not in translated code no state is
180  * restored and the function returns false.
181  */
182 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc);
183 
184 /**
185  * cpu_loop_exit_requested:
186  * @cpu: The CPU state to be tested
187  *
188  * Indicate if somebody asked for a return of the CPU to the main loop
189  * (e.g., via cpu_exit() or cpu_interrupt()).
190  *
191  * This is helpful for architectures that support interruptible
192  * instructions. After writing back all state to registers/memory, this
193  * call can be used to check if it makes sense to return to the main loop
194  * or to continue executing the interruptible instruction.
195  */
196 static inline bool cpu_loop_exit_requested(CPUState *cpu)
197 {
198     return (int32_t)qatomic_read(&cpu->neg.icount_decr.u32) < 0;
199 }
200 
201 G_NORETURN void cpu_loop_exit_noexc(CPUState *cpu);
202 G_NORETURN void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
203 G_NORETURN void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
204 #endif /* CONFIG_TCG */
205 G_NORETURN void cpu_loop_exit(CPUState *cpu);
206 
207 /* accel/tcg/cpu-exec.c */
208 int cpu_exec(CPUState *cpu);
209 
210 /**
211  * env_archcpu(env)
212  * @env: The architecture environment
213  *
214  * Return the ArchCPU associated with the environment.
215  */
216 static inline ArchCPU *env_archcpu(CPUArchState *env)
217 {
218     return (void *)env - sizeof(CPUState);
219 }
220 
221 /**
222  * env_cpu_const(env)
223  * @env: The architecture environment
224  *
225  * Return the CPUState associated with the environment.
226  */
227 static inline const CPUState *env_cpu_const(const CPUArchState *env)
228 {
229     return (void *)env - sizeof(CPUState);
230 }
231 
232 /**
233  * env_cpu(env)
234  * @env: The architecture environment
235  *
236  * Return the CPUState associated with the environment.
237  */
238 static inline CPUState *env_cpu(CPUArchState *env)
239 {
240     return (CPUState *)env_cpu_const(env);
241 }
242 
243 #endif /* CPU_COMMON_H */
244