1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/cpu.h" 25 #include "accel/tcg/cpu-ops.h" 26 #include "accel/tcg/helper-retaddr.h" 27 #include "trace.h" 28 #include "disas/disas.h" 29 #include "exec/cpu-common.h" 30 #include "exec/cpu-interrupt.h" 31 #include "exec/page-protection.h" 32 #include "exec/mmap-lock.h" 33 #include "exec/translation-block.h" 34 #include "tcg/tcg.h" 35 #include "qemu/atomic.h" 36 #include "qemu/rcu.h" 37 #include "exec/log.h" 38 #include "qemu/main-loop.h" 39 #include "exec/icount.h" 40 #include "exec/replay-core.h" 41 #include "system/tcg.h" 42 #include "exec/helper-proto-common.h" 43 #include "tcg-accel-ops.h" 44 #include "tb-jmp-cache.h" 45 #include "tb-hash.h" 46 #include "tb-context.h" 47 #include "tb-internal.h" 48 #include "internal-common.h" 49 50 /* -icount align implementation. */ 51 52 typedef struct SyncClocks { 53 int64_t diff_clk; 54 int64_t last_cpu_icount; 55 int64_t realtime_clock; 56 } SyncClocks; 57 58 #if !defined(CONFIG_USER_ONLY) 59 /* Allow the guest to have a max 3ms advance. 60 * The difference between the 2 clocks could therefore 61 * oscillate around 0. 62 */ 63 #define VM_CLOCK_ADVANCE 3000000 64 #define THRESHOLD_REDUCE 1.5 65 #define MAX_DELAY_PRINT_RATE 2000000000LL 66 #define MAX_NB_PRINTS 100 67 68 int64_t max_delay; 69 int64_t max_advance; 70 71 static void align_clocks(SyncClocks *sc, CPUState *cpu) 72 { 73 int64_t cpu_icount; 74 75 if (!icount_align_option) { 76 return; 77 } 78 79 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 80 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 81 sc->last_cpu_icount = cpu_icount; 82 83 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 84 #ifndef _WIN32 85 struct timespec sleep_delay, rem_delay; 86 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 87 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 88 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 89 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 90 } else { 91 sc->diff_clk = 0; 92 } 93 #else 94 Sleep(sc->diff_clk / SCALE_MS); 95 sc->diff_clk = 0; 96 #endif 97 } 98 } 99 100 static void print_delay(const SyncClocks *sc) 101 { 102 static float threshold_delay; 103 static int64_t last_realtime_clock; 104 static int nb_prints; 105 106 if (icount_align_option && 107 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 108 nb_prints < MAX_NB_PRINTS) { 109 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 110 (-sc->diff_clk / (float)1000000000LL < 111 (threshold_delay - THRESHOLD_REDUCE))) { 112 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 113 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 114 threshold_delay - 1, 115 threshold_delay); 116 nb_prints++; 117 last_realtime_clock = sc->realtime_clock; 118 } 119 } 120 } 121 122 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 123 { 124 if (!icount_align_option) { 125 return; 126 } 127 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 128 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 129 sc->last_cpu_icount 130 = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 131 if (sc->diff_clk < max_delay) { 132 max_delay = sc->diff_clk; 133 } 134 if (sc->diff_clk > max_advance) { 135 max_advance = sc->diff_clk; 136 } 137 138 /* Print every 2s max if the guest is late. We limit the number 139 of printed messages to NB_PRINT_MAX(currently 100) */ 140 print_delay(sc); 141 } 142 #else 143 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 144 { 145 } 146 147 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 148 { 149 } 150 #endif /* CONFIG USER ONLY */ 151 152 struct tb_desc { 153 TCGTBCPUState s; 154 CPUArchState *env; 155 tb_page_addr_t page_addr0; 156 }; 157 158 static bool tb_lookup_cmp(const void *p, const void *d) 159 { 160 const TranslationBlock *tb = p; 161 const struct tb_desc *desc = d; 162 163 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->s.pc) && 164 tb_page_addr0(tb) == desc->page_addr0 && 165 tb->cs_base == desc->s.cs_base && 166 tb->flags == desc->s.flags && 167 tb_cflags(tb) == desc->s.cflags) { 168 /* check next page if needed */ 169 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 170 if (tb_phys_page1 == -1) { 171 return true; 172 } else { 173 tb_page_addr_t phys_page1; 174 vaddr virt_page1; 175 176 /* 177 * We know that the first page matched, and an otherwise valid TB 178 * encountered an incomplete instruction at the end of that page, 179 * therefore we know that generating a new TB from the current PC 180 * must also require reading from the next page -- even if the 181 * second pages do not match, and therefore the resulting insn 182 * is different for the new TB. Therefore any exception raised 183 * here by the faulting lookup is not premature. 184 */ 185 virt_page1 = TARGET_PAGE_ALIGN(desc->s.pc); 186 phys_page1 = get_page_addr_code(desc->env, virt_page1); 187 if (tb_phys_page1 == phys_page1) { 188 return true; 189 } 190 } 191 } 192 return false; 193 } 194 195 static TranslationBlock *tb_htable_lookup(CPUState *cpu, TCGTBCPUState s) 196 { 197 tb_page_addr_t phys_pc; 198 struct tb_desc desc; 199 uint32_t h; 200 201 desc.s = s; 202 desc.env = cpu_env(cpu); 203 phys_pc = get_page_addr_code(desc.env, s.pc); 204 if (phys_pc == -1) { 205 return NULL; 206 } 207 desc.page_addr0 = phys_pc; 208 h = tb_hash_func(phys_pc, (s.cflags & CF_PCREL ? 0 : s.pc), 209 s.flags, s.cs_base, s.cflags); 210 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 211 } 212 213 /** 214 * tb_lookup: 215 * @cpu: CPU that will execute the returned translation block 216 * @pc: guest PC 217 * @cs_base: arch-specific value associated with translation block 218 * @flags: arch-specific translation block flags 219 * @cflags: CF_* flags 220 * 221 * Look up a translation block inside the QHT using @pc, @cs_base, @flags and 222 * @cflags. Uses @cpu's tb_jmp_cache. Might cause an exception, so have a 223 * longjmp destination ready. 224 * 225 * Returns: an existing translation block or NULL. 226 */ 227 static inline TranslationBlock *tb_lookup(CPUState *cpu, TCGTBCPUState s) 228 { 229 TranslationBlock *tb; 230 CPUJumpCache *jc; 231 uint32_t hash; 232 233 /* we should never be trying to look up an INVALID tb */ 234 tcg_debug_assert(!(s.cflags & CF_INVALID)); 235 236 hash = tb_jmp_cache_hash_func(s.pc); 237 jc = cpu->tb_jmp_cache; 238 239 tb = qatomic_read(&jc->array[hash].tb); 240 if (likely(tb && 241 jc->array[hash].pc == s.pc && 242 tb->cs_base == s.cs_base && 243 tb->flags == s.flags && 244 tb_cflags(tb) == s.cflags)) { 245 goto hit; 246 } 247 248 tb = tb_htable_lookup(cpu, s); 249 if (tb == NULL) { 250 return NULL; 251 } 252 253 jc->array[hash].pc = s.pc; 254 qatomic_set(&jc->array[hash].tb, tb); 255 256 hit: 257 /* 258 * As long as tb is not NULL, the contents are consistent. Therefore, 259 * the virtual PC has to match for non-CF_PCREL translations. 260 */ 261 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == s.pc); 262 return tb; 263 } 264 265 static void log_cpu_exec(vaddr pc, CPUState *cpu, 266 const TranslationBlock *tb) 267 { 268 if (qemu_log_in_addr_range(pc)) { 269 qemu_log_mask(CPU_LOG_EXEC, 270 "Trace %d: %p [%08" PRIx64 271 "/%016" VADDR_PRIx "/%08x/%08x] %s\n", 272 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 273 tb->flags, tb->cflags, lookup_symbol(pc)); 274 275 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 276 FILE *logfile = qemu_log_trylock(); 277 if (logfile) { 278 int flags = CPU_DUMP_CCOP; 279 280 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 281 flags |= CPU_DUMP_FPU; 282 } 283 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 284 flags |= CPU_DUMP_VPU; 285 } 286 cpu_dump_state(cpu, logfile, flags); 287 qemu_log_unlock(logfile); 288 } 289 } 290 } 291 } 292 293 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, 294 uint32_t *cflags) 295 { 296 CPUBreakpoint *bp; 297 bool match_page = false; 298 299 /* 300 * Singlestep overrides breakpoints. 301 * This requirement is visible in the record-replay tests, where 302 * we would fail to make forward progress in reverse-continue. 303 * 304 * TODO: gdb singlestep should only override gdb breakpoints, 305 * so that one could (gdb) singlestep into the guest kernel's 306 * architectural breakpoint handler. 307 */ 308 if (cpu->singlestep_enabled) { 309 return false; 310 } 311 312 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 313 /* 314 * If we have an exact pc match, trigger the breakpoint. 315 * Otherwise, note matches within the page. 316 */ 317 if (pc == bp->pc) { 318 bool match_bp = false; 319 320 if (bp->flags & BP_GDB) { 321 match_bp = true; 322 } else if (bp->flags & BP_CPU) { 323 #ifdef CONFIG_USER_ONLY 324 g_assert_not_reached(); 325 #else 326 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 327 assert(tcg_ops->debug_check_breakpoint); 328 match_bp = tcg_ops->debug_check_breakpoint(cpu); 329 #endif 330 } 331 332 if (match_bp) { 333 cpu->exception_index = EXCP_DEBUG; 334 return true; 335 } 336 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 337 match_page = true; 338 } 339 } 340 341 /* 342 * Within the same page as a breakpoint, single-step, 343 * returning to helper_lookup_tb_ptr after each insn looking 344 * for the actual breakpoint. 345 * 346 * TODO: Perhaps better to record all of the TBs associated 347 * with a given virtual page that contains a breakpoint, and 348 * then invalidate them when a new overlapping breakpoint is 349 * set on the page. Non-overlapping TBs would not be 350 * invalidated, nor would any TB need to be invalidated as 351 * breakpoints are removed. 352 */ 353 if (match_page) { 354 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1; 355 } 356 return false; 357 } 358 359 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, 360 uint32_t *cflags) 361 { 362 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 363 check_for_breakpoints_slow(cpu, pc, cflags); 364 } 365 366 /** 367 * helper_lookup_tb_ptr: quick check for next tb 368 * @env: current cpu state 369 * 370 * Look for an existing TB matching the current cpu state. 371 * If found, return the code pointer. If not found, return 372 * the tcg epilogue so that we return into cpu_tb_exec. 373 */ 374 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 375 { 376 CPUState *cpu = env_cpu(env); 377 TranslationBlock *tb; 378 379 /* 380 * By definition we've just finished a TB, so I/O is OK. 381 * Avoid the possibility of calling cpu_io_recompile() if 382 * a page table walk triggered by tb_lookup() calling 383 * probe_access_internal() happens to touch an MMIO device. 384 * The next TB, if we chain to it, will clear the flag again. 385 */ 386 cpu->neg.can_do_io = true; 387 388 TCGTBCPUState s = cpu->cc->tcg_ops->get_tb_cpu_state(cpu); 389 s.cflags = curr_cflags(cpu); 390 391 if (check_for_breakpoints(cpu, s.pc, &s.cflags)) { 392 cpu_loop_exit(cpu); 393 } 394 395 tb = tb_lookup(cpu, s); 396 if (tb == NULL) { 397 return tcg_code_gen_epilogue; 398 } 399 400 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 401 log_cpu_exec(s.pc, cpu, tb); 402 } 403 404 return tb->tc.ptr; 405 } 406 407 /* Return the current PC from CPU, which may be cached in TB. */ 408 static vaddr log_pc(CPUState *cpu, const TranslationBlock *tb) 409 { 410 if (tb_cflags(tb) & CF_PCREL) { 411 return cpu->cc->get_pc(cpu); 412 } else { 413 return tb->pc; 414 } 415 } 416 417 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 418 /* 419 * Disable CFI checks. 420 * TCG creates binary blobs at runtime, with the transformed code. 421 * A TB is a blob of binary code, created at runtime and called with an 422 * indirect function call. Since such function did not exist at compile time, 423 * the CFI runtime has no way to verify its signature and would fail. 424 * TCG is not considered a security-sensitive part of QEMU so this does not 425 * affect the impact of CFI in environment with high security requirements 426 */ 427 static inline TranslationBlock * QEMU_DISABLE_CFI 428 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 429 { 430 uintptr_t ret; 431 TranslationBlock *last_tb; 432 const void *tb_ptr = itb->tc.ptr; 433 434 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 435 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 436 } 437 438 qemu_thread_jit_execute(); 439 ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr); 440 cpu->neg.can_do_io = true; 441 qemu_plugin_disable_mem_helpers(cpu); 442 /* 443 * TODO: Delay swapping back to the read-write region of the TB 444 * until we actually need to modify the TB. The read-only copy, 445 * coming from the rx region, shares the same host TLB entry as 446 * the code that executed the exit_tb opcode that arrived here. 447 * If we insist on touching both the RX and the RW pages, we 448 * double the host TLB pressure. 449 */ 450 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 451 *tb_exit = ret & TB_EXIT_MASK; 452 453 trace_exec_tb_exit(last_tb, *tb_exit); 454 455 if (*tb_exit > TB_EXIT_IDX1) { 456 /* We didn't start executing this TB (eg because the instruction 457 * counter hit zero); we must restore the guest PC to the address 458 * of the start of the TB. 459 */ 460 CPUClass *cc = cpu->cc; 461 const TCGCPUOps *tcg_ops = cc->tcg_ops; 462 463 if (tcg_ops->synchronize_from_tb) { 464 tcg_ops->synchronize_from_tb(cpu, last_tb); 465 } else { 466 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 467 assert(cc->set_pc); 468 cc->set_pc(cpu, last_tb->pc); 469 } 470 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 471 vaddr pc = log_pc(cpu, last_tb); 472 if (qemu_log_in_addr_range(pc)) { 473 qemu_log("Stopped execution of TB chain before %p [%016" 474 VADDR_PRIx "] %s\n", 475 last_tb->tc.ptr, pc, lookup_symbol(pc)); 476 } 477 } 478 } 479 480 /* 481 * If gdb single-step, and we haven't raised another exception, 482 * raise a debug exception. Single-step with another exception 483 * is handled in cpu_handle_exception. 484 */ 485 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 486 cpu->exception_index = EXCP_DEBUG; 487 cpu_loop_exit(cpu); 488 } 489 490 return last_tb; 491 } 492 493 494 static void cpu_exec_enter(CPUState *cpu) 495 { 496 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 497 498 if (tcg_ops->cpu_exec_enter) { 499 tcg_ops->cpu_exec_enter(cpu); 500 } 501 } 502 503 static void cpu_exec_exit(CPUState *cpu) 504 { 505 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 506 507 if (tcg_ops->cpu_exec_exit) { 508 tcg_ops->cpu_exec_exit(cpu); 509 } 510 } 511 512 static void cpu_exec_longjmp_cleanup(CPUState *cpu) 513 { 514 /* Non-buggy compilers preserve this; assert the correct value. */ 515 g_assert(cpu == current_cpu); 516 517 #ifdef CONFIG_USER_ONLY 518 clear_helper_retaddr(); 519 if (have_mmap_lock()) { 520 mmap_unlock(); 521 } 522 #else 523 /* 524 * For softmmu, a tlb_fill fault during translation will land here, 525 * and we need to release any page locks held. In system mode we 526 * have one tcg_ctx per thread, so we know it was this cpu doing 527 * the translation. 528 * 529 * Alternative 1: Install a cleanup to be called via an exception 530 * handling safe longjmp. It seems plausible that all our hosts 531 * support such a thing. We'd have to properly register unwind info 532 * for the JIT for EH, rather that just for GDB. 533 * 534 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to 535 * capture the cpu_loop_exit longjmp, perform the cleanup, and 536 * jump again to arrive here. 537 */ 538 if (tcg_ctx->gen_tb) { 539 tb_unlock_pages(tcg_ctx->gen_tb); 540 tcg_ctx->gen_tb = NULL; 541 } 542 #endif 543 if (bql_locked()) { 544 bql_unlock(); 545 } 546 assert_no_pages_locked(); 547 } 548 549 void cpu_exec_step_atomic(CPUState *cpu) 550 { 551 TranslationBlock *tb; 552 int tb_exit; 553 554 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 555 start_exclusive(); 556 g_assert(cpu == current_cpu); 557 g_assert(!cpu->running); 558 cpu->running = true; 559 560 TCGTBCPUState s = cpu->cc->tcg_ops->get_tb_cpu_state(cpu); 561 s.cflags = curr_cflags(cpu); 562 563 /* Execute in a serial context. */ 564 s.cflags &= ~CF_PARALLEL; 565 /* After 1 insn, return and release the exclusive lock. */ 566 s.cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 567 /* 568 * No need to check_for_breakpoints here. 569 * We only arrive in cpu_exec_step_atomic after beginning execution 570 * of an insn that includes an atomic operation we can't handle. 571 * Any breakpoint for this insn will have been recognized earlier. 572 */ 573 574 tb = tb_lookup(cpu, s); 575 if (tb == NULL) { 576 mmap_lock(); 577 tb = tb_gen_code(cpu, s); 578 mmap_unlock(); 579 } 580 581 cpu_exec_enter(cpu); 582 /* execute the generated code */ 583 trace_exec_tb(tb, s.pc); 584 cpu_tb_exec(cpu, tb, &tb_exit); 585 cpu_exec_exit(cpu); 586 } else { 587 cpu_exec_longjmp_cleanup(cpu); 588 } 589 590 /* 591 * As we start the exclusive region before codegen we must still 592 * be in the region if we longjump out of either the codegen or 593 * the execution. 594 */ 595 g_assert(cpu_in_exclusive_context(cpu)); 596 cpu->running = false; 597 end_exclusive(); 598 } 599 600 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 601 { 602 /* 603 * Get the rx view of the structure, from which we find the 604 * executable code address, and tb_target_set_jmp_target can 605 * produce a pc-relative displacement to jmp_target_addr[n]. 606 */ 607 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 608 uintptr_t offset = tb->jmp_insn_offset[n]; 609 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 610 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 611 612 tb->jmp_target_addr[n] = addr; 613 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 614 } 615 616 static inline void tb_add_jump(TranslationBlock *tb, int n, 617 TranslationBlock *tb_next) 618 { 619 uintptr_t old; 620 621 qemu_thread_jit_write(); 622 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 623 qemu_spin_lock(&tb_next->jmp_lock); 624 625 /* make sure the destination TB is valid */ 626 if (tb_next->cflags & CF_INVALID) { 627 goto out_unlock_next; 628 } 629 /* Atomically claim the jump destination slot only if it was NULL */ 630 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 631 (uintptr_t)tb_next); 632 if (old) { 633 goto out_unlock_next; 634 } 635 636 /* patch the native jump address */ 637 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 638 639 /* add in TB jmp list */ 640 tb->jmp_list_next[n] = tb_next->jmp_list_head; 641 tb_next->jmp_list_head = (uintptr_t)tb | n; 642 643 qemu_spin_unlock(&tb_next->jmp_lock); 644 645 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 646 tb->tc.ptr, n, tb_next->tc.ptr); 647 return; 648 649 out_unlock_next: 650 qemu_spin_unlock(&tb_next->jmp_lock); 651 } 652 653 static inline bool cpu_handle_halt(CPUState *cpu) 654 { 655 #ifndef CONFIG_USER_ONLY 656 if (cpu->halted) { 657 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 658 bool leave_halt = tcg_ops->cpu_exec_halt(cpu); 659 660 if (!leave_halt) { 661 return true; 662 } 663 664 cpu->halted = 0; 665 } 666 #endif /* !CONFIG_USER_ONLY */ 667 668 return false; 669 } 670 671 static inline void cpu_handle_debug_exception(CPUState *cpu) 672 { 673 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 674 CPUWatchpoint *wp; 675 676 if (!cpu->watchpoint_hit) { 677 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 678 wp->flags &= ~BP_WATCHPOINT_HIT; 679 } 680 } 681 682 if (tcg_ops->debug_excp_handler) { 683 tcg_ops->debug_excp_handler(cpu); 684 } 685 } 686 687 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 688 { 689 if (cpu->exception_index < 0) { 690 #ifndef CONFIG_USER_ONLY 691 if (replay_has_exception() 692 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { 693 /* Execute just one insn to trigger exception pending in the log */ 694 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 695 | CF_NOIRQ | 1; 696 } 697 #endif 698 return false; 699 } 700 701 if (cpu->exception_index >= EXCP_INTERRUPT) { 702 /* exit request from the cpu execution loop */ 703 *ret = cpu->exception_index; 704 if (*ret == EXCP_DEBUG) { 705 cpu_handle_debug_exception(cpu); 706 } 707 cpu->exception_index = -1; 708 return true; 709 } 710 711 #if defined(CONFIG_USER_ONLY) 712 /* 713 * If user mode only, we simulate a fake exception which will be 714 * handled outside the cpu execution loop. 715 */ 716 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 717 if (tcg_ops->fake_user_interrupt) { 718 tcg_ops->fake_user_interrupt(cpu); 719 } 720 *ret = cpu->exception_index; 721 cpu->exception_index = -1; 722 return true; 723 #else 724 if (replay_exception()) { 725 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 726 727 bql_lock(); 728 tcg_ops->do_interrupt(cpu); 729 bql_unlock(); 730 cpu->exception_index = -1; 731 732 if (unlikely(cpu->singlestep_enabled)) { 733 /* 734 * After processing the exception, ensure an EXCP_DEBUG is 735 * raised when single-stepping so that GDB doesn't miss the 736 * next instruction. 737 */ 738 *ret = EXCP_DEBUG; 739 cpu_handle_debug_exception(cpu); 740 return true; 741 } 742 } else if (!replay_has_interrupt()) { 743 /* give a chance to iothread in replay mode */ 744 *ret = EXCP_INTERRUPT; 745 return true; 746 } 747 #endif 748 749 return false; 750 } 751 752 void tcg_kick_vcpu_thread(CPUState *cpu) 753 { 754 #ifndef CONFIG_USER_ONLY 755 /* 756 * Ensure cpu_exec will see the reason why the exit request was set. 757 * FIXME: this is not always needed. Other accelerators instead 758 * read interrupt_request and set exit_request on demand from the 759 * CPU thread; see kvm_arch_pre_run() for example. 760 */ 761 qatomic_store_release(&cpu->exit_request, true); 762 #endif 763 764 /* Ensure cpu_exec will see the exit request after TCG has exited. */ 765 qatomic_store_release(&cpu->neg.icount_decr.u16.high, -1); 766 } 767 768 static inline bool icount_exit_request(CPUState *cpu) 769 { 770 if (!icount_enabled()) { 771 return false; 772 } 773 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) { 774 return false; 775 } 776 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0; 777 } 778 779 static inline bool cpu_handle_interrupt(CPUState *cpu, 780 TranslationBlock **last_tb) 781 { 782 /* 783 * If we have requested custom cflags with CF_NOIRQ we should 784 * skip checking here. Any pending interrupts will get picked up 785 * by the next TB we execute under normal cflags. 786 */ 787 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 788 return false; 789 } 790 791 /* Clear the interrupt flag now since we're processing 792 * cpu->interrupt_request and cpu->exit_request. 793 * Ensure zeroing happens before reading cpu->exit_request or 794 * cpu->interrupt_request (see also store-release in 795 * tcg_kick_vcpu_thread()) 796 */ 797 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); 798 799 #ifdef CONFIG_USER_ONLY 800 assert(!cpu_test_interrupt(cpu, ~0)); 801 #else 802 if (unlikely(cpu_test_interrupt(cpu, ~0))) { 803 bql_lock(); 804 if (cpu_test_interrupt(cpu, CPU_INTERRUPT_DEBUG)) { 805 cpu_reset_interrupt(cpu, CPU_INTERRUPT_DEBUG); 806 cpu->exception_index = EXCP_DEBUG; 807 bql_unlock(); 808 return true; 809 } 810 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 811 /* Do nothing */ 812 } else if (cpu_test_interrupt(cpu, CPU_INTERRUPT_HALT)) { 813 replay_interrupt(); 814 cpu_reset_interrupt(cpu, CPU_INTERRUPT_HALT); 815 cpu->halted = 1; 816 cpu->exception_index = EXCP_HLT; 817 bql_unlock(); 818 return true; 819 } else { 820 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 821 int interrupt_request = cpu->interrupt_request; 822 823 if (cpu_test_interrupt(cpu, CPU_INTERRUPT_RESET)) { 824 replay_interrupt(); 825 tcg_ops->cpu_exec_reset(cpu); 826 bql_unlock(); 827 return true; 828 } 829 830 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 831 /* Mask out external interrupts for this step. */ 832 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 833 } 834 835 /* 836 * The target hook has 3 exit conditions: 837 * False when the interrupt isn't processed, 838 * True when it is, and we should restart on a new TB, 839 * and via longjmp via cpu_loop_exit. 840 */ 841 if (tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 842 if (!tcg_ops->need_replay_interrupt || 843 tcg_ops->need_replay_interrupt(interrupt_request)) { 844 replay_interrupt(); 845 } 846 /* 847 * After processing the interrupt, ensure an EXCP_DEBUG is 848 * raised when single-stepping so that GDB doesn't miss the 849 * next instruction. 850 */ 851 if (unlikely(cpu->singlestep_enabled)) { 852 cpu->exception_index = EXCP_DEBUG; 853 bql_unlock(); 854 return true; 855 } 856 cpu->exception_index = -1; 857 *last_tb = NULL; 858 } 859 } 860 if (cpu_test_interrupt(cpu, CPU_INTERRUPT_EXITTB)) { 861 cpu_reset_interrupt(cpu, CPU_INTERRUPT_EXITTB); 862 /* ensure that no TB jump will be modified as 863 the program flow was changed */ 864 *last_tb = NULL; 865 } 866 867 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 868 bql_unlock(); 869 } 870 #endif /* !CONFIG_USER_ONLY */ 871 872 /* 873 * Finally, check if we need to exit to the main loop. 874 * The corresponding store-release is in cpu_exit. 875 */ 876 if (unlikely(qatomic_load_acquire(&cpu->exit_request)) || icount_exit_request(cpu)) { 877 if (cpu->exception_index == -1) { 878 cpu->exception_index = EXCP_INTERRUPT; 879 } 880 return true; 881 } 882 883 return false; 884 } 885 886 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 887 vaddr pc, TranslationBlock **last_tb, 888 int *tb_exit) 889 { 890 trace_exec_tb(tb, pc); 891 tb = cpu_tb_exec(cpu, tb, tb_exit); 892 if (*tb_exit != TB_EXIT_REQUESTED) { 893 *last_tb = tb; 894 return; 895 } 896 897 *last_tb = NULL; 898 if (cpu_loop_exit_requested(cpu)) { 899 /* Something asked us to stop executing chained TBs; just 900 * continue round the main loop. Whatever requested the exit 901 * will also have set something else (eg exit_request or 902 * interrupt_request) which will be handled by 903 * cpu_handle_interrupt. cpu_handle_interrupt will also 904 * clear cpu->icount_decr.u16.high. 905 */ 906 return; 907 } 908 909 /* Instruction counter expired. */ 910 assert(icount_enabled()); 911 #ifndef CONFIG_USER_ONLY 912 /* Ensure global icount has gone forward */ 913 icount_update(cpu); 914 /* Refill decrementer and continue execution. */ 915 int32_t insns_left = MIN(0xffff, cpu->icount_budget); 916 cpu->neg.icount_decr.u16.low = insns_left; 917 cpu->icount_extra = cpu->icount_budget - insns_left; 918 919 /* 920 * If the next tb has more instructions than we have left to 921 * execute we need to ensure we find/generate a TB with exactly 922 * insns_left instructions in it. 923 */ 924 if (insns_left > 0 && insns_left < tb->icount) { 925 assert(insns_left <= CF_COUNT_MASK); 926 assert(cpu->icount_extra == 0); 927 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 928 } 929 #endif 930 } 931 932 /* main execution loop */ 933 934 static int __attribute__((noinline)) 935 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 936 { 937 int ret; 938 939 /* if an exception is pending, we execute it here */ 940 while (!cpu_handle_exception(cpu, &ret)) { 941 TranslationBlock *last_tb = NULL; 942 int tb_exit = 0; 943 944 while (!cpu_handle_interrupt(cpu, &last_tb)) { 945 TranslationBlock *tb; 946 TCGTBCPUState s = cpu->cc->tcg_ops->get_tb_cpu_state(cpu); 947 s.cflags = cpu->cflags_next_tb; 948 949 /* 950 * When requested, use an exact setting for cflags for the next 951 * execution. This is used for icount, precise smc, and stop- 952 * after-access watchpoints. Since this request should never 953 * have CF_INVALID set, -1 is a convenient invalid value that 954 * does not require tcg headers for cpu_common_reset. 955 */ 956 if (s.cflags == -1) { 957 s.cflags = curr_cflags(cpu); 958 } else { 959 cpu->cflags_next_tb = -1; 960 } 961 962 if (check_for_breakpoints(cpu, s.pc, &s.cflags)) { 963 break; 964 } 965 966 tb = tb_lookup(cpu, s); 967 if (tb == NULL) { 968 CPUJumpCache *jc; 969 uint32_t h; 970 971 mmap_lock(); 972 tb = tb_gen_code(cpu, s); 973 mmap_unlock(); 974 975 /* 976 * We add the TB in the virtual pc hash table 977 * for the fast lookup 978 */ 979 h = tb_jmp_cache_hash_func(s.pc); 980 jc = cpu->tb_jmp_cache; 981 jc->array[h].pc = s.pc; 982 qatomic_set(&jc->array[h].tb, tb); 983 } 984 985 #ifndef CONFIG_USER_ONLY 986 /* 987 * We don't take care of direct jumps when address mapping 988 * changes in system emulation. So it's not safe to make a 989 * direct jump to a TB spanning two pages because the mapping 990 * for the second page can change. 991 */ 992 if (tb_page_addr1(tb) != -1) { 993 last_tb = NULL; 994 } 995 #endif 996 /* See if we can patch the calling TB. */ 997 if (last_tb) { 998 tb_add_jump(last_tb, tb_exit, tb); 999 } 1000 1001 cpu_loop_exec_tb(cpu, tb, s.pc, &last_tb, &tb_exit); 1002 1003 /* Try to align the host and virtual clocks 1004 if the guest is in advance */ 1005 align_clocks(sc, cpu); 1006 } 1007 } 1008 return ret; 1009 } 1010 1011 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1012 { 1013 /* Prepare setjmp context for exception handling. */ 1014 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1015 cpu_exec_longjmp_cleanup(cpu); 1016 } 1017 1018 return cpu_exec_loop(cpu, sc); 1019 } 1020 1021 int cpu_exec(CPUState *cpu) 1022 { 1023 int ret; 1024 SyncClocks sc = { 0 }; 1025 1026 /* replay_interrupt may need current_cpu */ 1027 current_cpu = cpu; 1028 1029 if (cpu_handle_halt(cpu)) { 1030 return EXCP_HALTED; 1031 } 1032 1033 RCU_READ_LOCK_GUARD(); 1034 cpu_exec_enter(cpu); 1035 1036 /* 1037 * Calculate difference between guest clock and host clock. 1038 * This delay includes the delay of the last cycle, so 1039 * what we have to do is sleep until it is 0. As for the 1040 * advance/delay we gain here, we try to fix it next time. 1041 */ 1042 init_delay_params(&sc, cpu); 1043 1044 ret = cpu_exec_setjmp(cpu, &sc); 1045 1046 cpu_exec_exit(cpu); 1047 return ret; 1048 } 1049 1050 bool tcg_exec_realizefn(CPUState *cpu, Error **errp) 1051 { 1052 static bool tcg_target_initialized; 1053 1054 if (!tcg_target_initialized) { 1055 /* Check mandatory TCGCPUOps handlers */ 1056 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 1057 #ifndef CONFIG_USER_ONLY 1058 assert(tcg_ops->cpu_exec_halt); 1059 assert(tcg_ops->cpu_exec_interrupt); 1060 assert(tcg_ops->cpu_exec_reset); 1061 assert(tcg_ops->pointer_wrap); 1062 #endif /* !CONFIG_USER_ONLY */ 1063 assert(tcg_ops->translate_code); 1064 assert(tcg_ops->get_tb_cpu_state); 1065 assert(tcg_ops->mmu_index); 1066 tcg_ops->initialize(); 1067 tcg_target_initialized = true; 1068 } 1069 1070 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1071 tlb_init(cpu); 1072 #ifndef CONFIG_USER_ONLY 1073 tcg_iommu_init_notifier_list(cpu); 1074 #endif /* !CONFIG_USER_ONLY */ 1075 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1076 1077 return true; 1078 } 1079 1080 /* undo the initializations in reverse order */ 1081 void tcg_exec_unrealizefn(CPUState *cpu) 1082 { 1083 #ifndef CONFIG_USER_ONLY 1084 tcg_iommu_free_notifier_list(cpu); 1085 #endif /* !CONFIG_USER_ONLY */ 1086 1087 tlb_destroy(cpu); 1088 g_free_rcu(cpu->tb_jmp_cache, rcu); 1089 } 1090