xref: /openbmc/qemu/cpu-common.c (revision 53b41bb78950912ba2d9809eef6b45e4df30c647)
1 /*
2  * CPU thread main loop - common bits for user and system mode emulation
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "exec/cpu-common.h"
23 #include "hw/core/cpu.h"
24 #include "qemu/lockable.h"
25 #include "trace/trace-root.h"
26 
27 QemuMutex qemu_cpu_list_lock;
28 static QemuCond exclusive_cond;
29 static QemuCond exclusive_resume;
30 static QemuCond qemu_work_cond;
31 
32 /* >= 1 if a thread is inside start_exclusive/end_exclusive.  Written
33  * under qemu_cpu_list_lock, read with atomic operations.
34  */
35 static int pending_cpus;
36 
37 void qemu_init_cpu_list(void)
38 {
39     /* This is needed because qemu_init_cpu_list is also called by the
40      * child process in a fork.  */
41     pending_cpus = 0;
42 
43     qemu_mutex_init(&qemu_cpu_list_lock);
44     qemu_cond_init(&exclusive_cond);
45     qemu_cond_init(&exclusive_resume);
46     qemu_cond_init(&qemu_work_cond);
47 }
48 
49 void cpu_list_lock(void)
50 {
51     qemu_mutex_lock(&qemu_cpu_list_lock);
52 }
53 
54 void cpu_list_unlock(void)
55 {
56     qemu_mutex_unlock(&qemu_cpu_list_lock);
57 }
58 
59 
60 int cpu_get_free_index(void)
61 {
62     CPUState *some_cpu;
63     int max_cpu_index = 0;
64 
65     CPU_FOREACH(some_cpu) {
66         if (some_cpu->cpu_index >= max_cpu_index) {
67             max_cpu_index = some_cpu->cpu_index + 1;
68         }
69     }
70     return max_cpu_index;
71 }
72 
73 CPUTailQ cpus_queue = QTAILQ_HEAD_INITIALIZER(cpus_queue);
74 static unsigned int cpu_list_generation_id;
75 
76 unsigned int cpu_list_generation_id_get(void)
77 {
78     return cpu_list_generation_id;
79 }
80 
81 void cpu_list_add(CPUState *cpu)
82 {
83     static bool cpu_index_auto_assigned;
84 
85     QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
86     if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
87         cpu_index_auto_assigned = true;
88         cpu->cpu_index = cpu_get_free_index();
89         assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
90     } else {
91         assert(!cpu_index_auto_assigned);
92     }
93     QTAILQ_INSERT_TAIL_RCU(&cpus_queue, cpu, node);
94     cpu_list_generation_id++;
95 }
96 
97 void cpu_list_remove(CPUState *cpu)
98 {
99     QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
100     if (!QTAILQ_IN_USE(cpu, node)) {
101         /* there is nothing to undo since cpu_exec_init() hasn't been called */
102         return;
103     }
104 
105     QTAILQ_REMOVE_RCU(&cpus_queue, cpu, node);
106     cpu->cpu_index = UNASSIGNED_CPU_INDEX;
107     cpu_list_generation_id++;
108 }
109 
110 CPUState *qemu_get_cpu(int index)
111 {
112     CPUState *cpu;
113 
114     CPU_FOREACH(cpu) {
115         if (cpu->cpu_index == index) {
116             return cpu;
117         }
118     }
119 
120     return NULL;
121 }
122 
123 /* current CPU in the current thread. It is only valid inside cpu_exec() */
124 __thread CPUState *current_cpu;
125 
126 struct qemu_work_item {
127     QSIMPLEQ_ENTRY(qemu_work_item) node;
128     run_on_cpu_func func;
129     run_on_cpu_data data;
130     bool free, exclusive, done;
131 };
132 
133 static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi)
134 {
135     qemu_mutex_lock(&cpu->work_mutex);
136     QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node);
137     wi->done = false;
138     qemu_mutex_unlock(&cpu->work_mutex);
139 
140     /* exit the inner loop and reach qemu_process_cpu_events_common().  */
141     cpu_exit(cpu);
142 }
143 
144 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
145                    QemuMutex *mutex)
146 {
147     struct qemu_work_item wi;
148 
149     if (qemu_cpu_is_self(cpu)) {
150         func(cpu, data);
151         return;
152     }
153 
154     wi.func = func;
155     wi.data = data;
156     wi.done = false;
157     wi.free = false;
158     wi.exclusive = false;
159 
160     queue_work_on_cpu(cpu, &wi);
161     while (!qatomic_load_acquire(&wi.done)) {
162         CPUState *self_cpu = current_cpu;
163 
164         qemu_cond_wait(&qemu_work_cond, mutex);
165         current_cpu = self_cpu;
166     }
167 }
168 
169 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
170 {
171     struct qemu_work_item *wi;
172 
173     wi = g_new0(struct qemu_work_item, 1);
174     wi->func = func;
175     wi->data = data;
176     wi->free = true;
177 
178     queue_work_on_cpu(cpu, wi);
179 }
180 
181 /* Wait for pending exclusive operations to complete.  The CPU list lock
182    must be held.  */
183 static inline void exclusive_idle(void)
184 {
185     while (pending_cpus) {
186         qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock);
187     }
188 }
189 
190 /* Start an exclusive operation.
191    Must only be called from outside cpu_exec.  */
192 void start_exclusive(void)
193 {
194     CPUState *other_cpu;
195     int running_cpus;
196 
197     /* Ensure we are not running, or start_exclusive will be blocked. */
198     g_assert(!current_cpu->running);
199 
200     if (current_cpu->exclusive_context_count) {
201         current_cpu->exclusive_context_count++;
202         return;
203     }
204 
205     qemu_mutex_lock(&qemu_cpu_list_lock);
206     exclusive_idle();
207 
208     /* Make all other cpus stop executing.  */
209     qatomic_set(&pending_cpus, 1);
210 
211     /* Write pending_cpus before reading other_cpu->running.  */
212     smp_mb();
213     running_cpus = 0;
214     CPU_FOREACH(other_cpu) {
215         if (qatomic_read(&other_cpu->running)) {
216             other_cpu->has_waiter = true;
217             running_cpus++;
218             qemu_cpu_kick(other_cpu);
219         }
220     }
221 
222     qatomic_set(&pending_cpus, running_cpus + 1);
223     while (pending_cpus > 1) {
224         qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
225     }
226 
227     /* Can release mutex, no one will enter another exclusive
228      * section until end_exclusive resets pending_cpus to 0.
229      */
230     qemu_mutex_unlock(&qemu_cpu_list_lock);
231 
232     current_cpu->exclusive_context_count = 1;
233 }
234 
235 /* Finish an exclusive operation.  */
236 void end_exclusive(void)
237 {
238     current_cpu->exclusive_context_count--;
239     if (current_cpu->exclusive_context_count) {
240         return;
241     }
242 
243     qemu_mutex_lock(&qemu_cpu_list_lock);
244     qatomic_set(&pending_cpus, 0);
245     qemu_cond_broadcast(&exclusive_resume);
246     qemu_mutex_unlock(&qemu_cpu_list_lock);
247 }
248 
249 /* Wait for exclusive ops to finish, and begin cpu execution.  */
250 void cpu_exec_start(CPUState *cpu)
251 {
252     trace_cpu_exec_start(cpu->cpu_index);
253 
254     qatomic_set(&cpu->running, true);
255 
256     /* Write cpu->running before reading pending_cpus.  */
257     smp_mb();
258 
259     /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
260      * After taking the lock we'll see cpu->has_waiter == true and run---not
261      * for long because start_exclusive kicked us.  cpu_exec_end will
262      * decrement pending_cpus and signal the waiter.
263      *
264      * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
265      * This includes the case when an exclusive item is running now.
266      * Then we'll see cpu->has_waiter == false and wait for the item to
267      * complete.
268      *
269      * 3. pending_cpus == 0.  Then start_exclusive is definitely going to
270      * see cpu->running == true, and it will kick the CPU.
271      */
272     if (unlikely(qatomic_read(&pending_cpus))) {
273         QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
274         if (!cpu->has_waiter) {
275             /* Not counted in pending_cpus, let the exclusive item
276              * run.  Since we have the lock, just set cpu->running to true
277              * while holding it; no need to check pending_cpus again.
278              */
279             qatomic_set(&cpu->running, false);
280             exclusive_idle();
281             /* Now pending_cpus is zero.  */
282             qatomic_set(&cpu->running, true);
283         } else {
284             /* Counted in pending_cpus, go ahead and release the
285              * waiter at cpu_exec_end.
286              */
287         }
288     }
289 }
290 
291 /* Mark cpu as not executing, and release pending exclusive ops.  */
292 void cpu_exec_end(CPUState *cpu)
293 {
294     qatomic_set(&cpu->running, false);
295 
296     /* Write cpu->running before reading pending_cpus.  */
297     smp_mb();
298 
299     /* 1. start_exclusive saw cpu->running == true.  Then it will increment
300      * pending_cpus and wait for exclusive_cond.  After taking the lock
301      * we'll see cpu->has_waiter == true.
302      *
303      * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
304      * This includes the case when an exclusive item started after setting
305      * cpu->running to false and before we read pending_cpus.  Then we'll see
306      * cpu->has_waiter == false and not touch pending_cpus.  The next call to
307      * cpu_exec_start will run exclusive_idle if still necessary, thus waiting
308      * for the item to complete.
309      *
310      * 3. pending_cpus == 0.  Then start_exclusive is definitely going to
311      * see cpu->running == false, and it can ignore this CPU until the
312      * next cpu_exec_start.
313      */
314     if (unlikely(qatomic_read(&pending_cpus))) {
315         QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
316         if (cpu->has_waiter) {
317             cpu->has_waiter = false;
318             qatomic_set(&pending_cpus, pending_cpus - 1);
319             if (pending_cpus == 1) {
320                 qemu_cond_signal(&exclusive_cond);
321             }
322         }
323     }
324     trace_cpu_exec_end(cpu->cpu_index);
325 }
326 
327 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func,
328                            run_on_cpu_data data)
329 {
330     struct qemu_work_item *wi;
331 
332     wi = g_new0(struct qemu_work_item, 1);
333     wi->func = func;
334     wi->data = data;
335     wi->free = true;
336     wi->exclusive = true;
337 
338     queue_work_on_cpu(cpu, wi);
339 }
340 
341 void free_queued_cpu_work(CPUState *cpu)
342 {
343     while (!QSIMPLEQ_EMPTY(&cpu->work_list)) {
344         struct qemu_work_item *wi = QSIMPLEQ_FIRST(&cpu->work_list);
345         QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node);
346         if (wi->free) {
347             g_free(wi);
348         }
349     }
350 }
351 
352 void process_queued_cpu_work(CPUState *cpu)
353 {
354     struct qemu_work_item *wi;
355 
356     qemu_mutex_lock(&cpu->work_mutex);
357     if (QSIMPLEQ_EMPTY(&cpu->work_list)) {
358         qemu_mutex_unlock(&cpu->work_mutex);
359         return;
360     }
361     while (!QSIMPLEQ_EMPTY(&cpu->work_list)) {
362         wi = QSIMPLEQ_FIRST(&cpu->work_list);
363         QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node);
364         qemu_mutex_unlock(&cpu->work_mutex);
365         if (wi->exclusive) {
366             /* Running work items outside the BQL avoids the following deadlock:
367              * 1) start_exclusive() is called with the BQL taken while another
368              * CPU is running; 2) cpu_exec in the other CPU tries to takes the
369              * BQL, so it goes to sleep; start_exclusive() is sleeping too, so
370              * neither CPU can proceed.
371              */
372             bql_unlock();
373             start_exclusive();
374             wi->func(cpu, wi->data);
375             end_exclusive();
376             bql_lock();
377         } else {
378             wi->func(cpu, wi->data);
379         }
380         qemu_mutex_lock(&cpu->work_mutex);
381         if (wi->free) {
382             g_free(wi);
383         } else {
384             qatomic_store_release(&wi->done, true);
385         }
386     }
387     qemu_mutex_unlock(&cpu->work_mutex);
388     qemu_cond_broadcast(&qemu_work_cond);
389 }
390 
391 /* Add a breakpoint.  */
392 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
393                           CPUBreakpoint **breakpoint)
394 {
395     CPUBreakpoint *bp;
396 
397     if (cpu->cc->gdb_adjust_breakpoint) {
398         pc = cpu->cc->gdb_adjust_breakpoint(cpu, pc);
399     }
400 
401     bp = g_malloc(sizeof(*bp));
402 
403     bp->pc = pc;
404     bp->flags = flags;
405 
406     /* keep all GDB-injected breakpoints in front */
407     if (flags & BP_GDB) {
408         QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
409     } else {
410         QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
411     }
412 
413     if (breakpoint) {
414         *breakpoint = bp;
415     }
416 
417     trace_breakpoint_insert(cpu->cpu_index, pc, flags);
418     return 0;
419 }
420 
421 /* Remove a specific breakpoint.  */
422 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
423 {
424     CPUBreakpoint *bp;
425 
426     if (cpu->cc->gdb_adjust_breakpoint) {
427         pc = cpu->cc->gdb_adjust_breakpoint(cpu, pc);
428     }
429 
430     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
431         if (bp->pc == pc && bp->flags == flags) {
432             cpu_breakpoint_remove_by_ref(cpu, bp);
433             return 0;
434         }
435     }
436     return -ENOENT;
437 }
438 
439 /* Remove a specific breakpoint by reference.  */
440 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *bp)
441 {
442     QTAILQ_REMOVE(&cpu->breakpoints, bp, entry);
443 
444     trace_breakpoint_remove(cpu->cpu_index, bp->pc, bp->flags);
445     g_free(bp);
446 }
447 
448 /* Remove all matching breakpoints. */
449 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
450 {
451     CPUBreakpoint *bp, *next;
452 
453     QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
454         if (bp->flags & mask) {
455             cpu_breakpoint_remove_by_ref(cpu, bp);
456         }
457     }
458 }
459